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1. Introduction

1.1. Objectives and outline

In a wide class of structural models, when the analyst is not willing to make
assumptions that are driven by convenience rather than by economic theory, the
resulting economic structures are incomplete in the sense that they do not yield
unique reduced forms. In this paper, we consider the class of such models that can
be represented as follows: given a structural parameter θ ∈ Θ and the realization
u ∈ U of an unobservable random variable, the model predicts a nonsingleton set,
denoted G(u|θ), of values for the outcome variable; that is, G(u|θ) is a subset of
the (finite) outcome space S. Importantly, the model is silent on how the realized
outcome s is selected from G(u|θ). The object of interest is θ.

An important example (based on Jovanovic (1989)) is a discrete normal form
game where u is a latent variable, θ is a parameter in the payoff matrix, S is
the set of (pure) strategies, and G (u | θ) is the set of Nash equilibrium (pure)
strategy profiles for the given u and θ. The multiplicity of equilibria and the
absence of a theory of equilibrium selection lead to a multi-valued prediction.
Alternative solution concepts can also be adopted. For example, a refinement
of Nash equilibrium can be modeled via a suitable sub-correspondence; and a
weaker solution concept such as rationalizability can be modeled via a suitable
super-correspondence. Whichever solution concept is adopted, there is complete
ignorance about selection.

The lack of a unique reduced form implies that a conventional identification
analysis based on a (single) likelihood cannot be applied, which has motivated
recent research on identification and inference in incomplete models. An impor-
tant objective of this literature is expressed by Ciliberto and Tamer (2009, p.
1800), who write in the context of entry games: ”This [selection] mechanism is
not specified, and one objective of the methodology in this paper is to examine
the question of what can be learned when researchers remain agnostic about this
selection function.”

Our starting point is to observe that agnosticism about selection has implica-
tions that have been overlooked in the literature. To elaborate, think of a number
of experiments, or random events, indexed by i = 1, 2, ..., each of which may be
described as above, for a common Θ, G and S; for example, each experiment could
correspond to a different market where an entry game is played. Then, given θ,
each infinite sequence of unobserved variables u∞ ≡ (u1, u2, ...) generates a sam-
ple (s1, s2, ...) of outcomes, where si ∈ G (ui | θ) for all i. A prevalent assumption
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in the literature is the availability of samples of outcomes that are well-behaved
in the sense that sample averages converge (ergodicity) and obey classical limit
theorems. This restricts heterogeneity and dependence of outcomes across exper-
iments in an analytically convenient way because then the sampling distribution
around the limiting empirical frequency of any event can be approximated in large
samples by a normal distribution. A leading example is the assumption that sam-
ples are i.i.d. An alternative and more general assumption is that samples are
stationary and strongly mixing (Chernozhukov, Hong, and Tamer 2004, Andrews
and Soares 2010).

Though seemingly standard and innocuous, the assumption that samples ad-
mit classical limit theorems becomes subtle given incompleteness of the model and
the declared agnosticism about selection. This is because if the selection mecha-
nism in each market is not understood, then there is no basis for taking a stand
on how such selections are related to each other across experiments. To empha-
size this point further, think of the nonsingleton nature of G (ui | θ) in terms of
”omitted variables:” a complete theory may exist in principle in that it may be
possible to explain and predict selection given a suitable set of explanatory vari-
ables. However, the analyst’s theory does not identify these omitted variables.
They are not only unobservable to her, as are the latent variables captured by
U–more fundamentally, their identity is unknown. Consequently, there is no basis
for understanding how selection, and thus realized outcomes, may differ or be
related across experiments. In particular, one cannot be sure even that empirical
frequencies converge, thus limiting the applicability (or robustness) of existing
inference methods. Accordingly, in this paper we develop a new inference method
that is robust to heterogeneity and dependence of an unknown form.

Before outlining our approach, we emphasize that our inference method is not
only of theoretical interest–it is applicable to a number of empirical models in
the literature. These models include: entry games with multiple Nash equilib-
ria (Bresnahan and Reiss 1990 and 1991, Berry 1992, Jia 2008, Ciliberto and
Tamer 2009);1 first-price auctions (Haile and Tamer 2003); innovation and prod-
uct variety (Eizenberg 2014); sincere versus strategic voting (Kawai and Watanabe
2013); municipal mergers (Weese 2015); discrete-choice with social interactions
(Soetevent and Kooreman 2007); matching with externalities (Uetake and Watan-

1See Section 4.1 for a canonical example of such entry games due to Jovanovic (1989). Note
also that the online Supplementary Material provides a detailed guide to implementing our
method in the context of the entry games in Bresnahan and Reiss (1990,1991), Berry (1992),
and Ciliberto and Tamer (2009).
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abe 2012); and friendship networks (Miyauchi 2014). In these models, incomplete
structures arise for different reasons. For example, in discrete-game models, in-
completeness arises because of the modeler’s agnosticism about the mechanism
for selecting from among multiple equilibria; while in Haile and Tamer’s auc-
tion model, it is due to the modeler’s agnosticism about the precise game form
underlying the auction data in her sample, which leads her to adopt only weak
assumptions about bidders’ behavior. Solution concepts also vary–for example,
in matching and network formation models, pairwise stability or similar concepts
are used.

Here is a sketch of how we proceed (leaving technical details and formal results
for the sequel). The first step is to specify the set of outcome sequences that are
consistent with what is known according to the analyst’s theory. For each given
θ, robustness to an unknown form of dependence implies that if for each i, si is a
conceivable outcome in the ith experiment (in isolation) given ui, then (s1, s2, ...)
is a conceivable sequence given (u1, u2, ...). Thus, without further assumptions,
the model predicts that the selected outcomes (s1, s2, · · · ) take their values in the
Cartesian product of G(ui|θ), i = 1, 2, ..., and we define:

G∞ (u1, ..., ui, ... | θ) ≡ Π∞i=1G (ui | θ) . (1.1)

Note that experiments are indistinguishable in the sense that the same correspon-
dence G (· | θ) applies to each experiment. However, even if G (ui | θ) = G (uj | θ),
as when ui = uj, any outcome in G (ui | θ) is possible in experiment i and any
possibly different outcome is possible in experiment j. Therefore, the model, ex-
panded in this way to sequences, does not restrict how selection might differ or
be related across experiments.

The second step is to add a suitable stochastic structure that again leaves the
heterogeneity and dependence structure of selections unrestricted. Fix θ. Assume
that u∞ jointly follows a parametric distribution m∞θ , the i.i.d. product of the
measure mθ on U .2 For each given u∞, any probability distribution Pu∞ supported
on G∞ (u∞ | θ) is a valid conditional distribution of the sequence of outcomes; and
the implied distribution of outcomes is P =

∫
Pu∞dm

∞
θ . Accordingly, we consider

the entire set Pθ of distributions over outcomes given by

Pθ =

{
P ∈ ∆ (S∞) : P =

∫
U∞

Pu∞dm
∞
θ (u∞) , Pu∞ ∈ ∆ (G∞ (u∞ | θ)) m∞θ -a.s.

}
.

2In fact, as indicated below, more general probability laws on U∞ can be adopted.
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Note that because ∆ (G∞ (u∞ | θ)) equals the entire simplex of distributions on
Π∞i=1G (ui | θ), including both nonidentical product measures and nonproduct
measures, the set Pθ accommodates many forms of heterogeneity and dependence
across experiments even given u∞.

Though sets of probability measures may not seem to be convenient vehicles
for conducting inference, the set Pθ has a special structure that makes it tractable:
its lower envelope ν∞θ , defined, for every measurable B ⊂ S∞, by

ν∞θ (B) = inf
P∈Pθ

P (B), (1.2)

is a belief function on S∞.3 We exploit this and prove a (new) central limit
theorem (CLT) for each belief function ν∞θ and thus indirectly also for each set
Pθ. Then we show how, paralleling the classical analysis for complete models, the
CLT can be used to construct suitably robust confidence regions for the unknown
parameter θ.

A confidence region Cn is a set of parameter values constructed from a finite
number of observations s1, ..., sn such that, for each θ, the coverage probability is
asymptotically at least at a prespecified level 1−α under any probability distribu-
tion in Pθ. We construct Cn using a statistic based on the empirical frequencies
n−1

∑n
i=1 I(si ∈ Aj) for a class {Aj}Jj=1 of subsets of S. Then we use the CLT to

prove that ν∞θ ({θ ∈ Cn})→ 1− α, which implies that Cn controls the asymptotic
coverage probability uniformly over Pθ. Furthermore, we show that the coverage
is uniform over the generalized parameter space F = {(θ, P ) : P ∈ Pθ, θ ∈ Θ};
that is, our confidence region satisfies

lim inf
n→∞

inf
(θ,P )∈F

P (θ ∈ Cn) ≥ 1− α.

After describing some links to the literature in the remainder of this intro-
duction, the paper proceeds as follows. Section 2 lays out the formal framework.
The latter is used in Section 3 which presents our results regarding inference. Ex-
amples and some Monte Carlo simulation results follow in the next two sections.
To this point, the analysis is carried out under the assumption that there is no
observable heterogeneity across experiments. Section 6 describes an extension to

3Belief functions are special cases of capacities (or ”non-additive probabilities”), sometimes
referred to as totally, completely, or infinitely monotone capacities. They originated in Dempster
(1967) and Shafer (1976). Definitions for more general settings can be found, for example, in
Philippe, Debs and Jaffray (1999), and Molchanov (2005).
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include covariates. Appendices contain proofs as well as an outline of an exten-
sion that robustifies the treatment of latent variables. The online Supplementary
Material provides details regarding implementation.

1.2. Relation to the literature4

The analysis of incomplete economic models dates back at least to Wald (1950)
who studies inference on parameters based on incomplete systems of equations
where the number of endogenous variables exceeds the number of structural equa-
tions. He considers the special case where the inclusion si ∈ G (ui | θ) can be
inverted to solve for ui in the form ui = g (si | θ) for some function g. This
structure does not intersect any of the applied models (including those based on
multiple Nash equilibria) studied in the more recent literature. Jovanovic (1989)
highlights the potential difficulty for identification raised by model incompleteness
and provides a theoretical framework for studying the predictive content of such
models. Bresnahan and Reiss (1990, 1991) and Berry (1992) consider an iden-
tification and estimation method that is robust to the multiplicity of equilibria.
Their strategy is to transform the outcome variable so that the model becomes
complete after the transformation. Since this transformation aggregates some of
the outcomes that can be selected from multiple equilibria, it incurs a loss of infor-
mation. Tamer (2003) shows that one can (point or partially) identify structural
parameters and mitigate the loss of information by using inequality restrictions
on the probabilities of outcomes that are not predicted uniquely.

More recently, the theory of random sets (and induced capacities) has been
applied to address identification and inference. Capacities have been employed to
characterize the set of parameter values that are identifiable from the observed
variable (Galichon and Henry 2011, Beresteanu, Molchanov, and Molinari 2011,
Chesher and Rosen 2014). For example, Galichon and Henry (2011) use the
capacity defined by µθ(A) ≡ mθ(G(u|θ) ∩ A 6= ∅), A ⊂ S, as a primitive object
to conduct their identification analysis. This functional gives, for each single
experiment, the upper envelope of the probability of A over the set of distributions
compatible with the model. Here we use the conjugate capacity whereby the
capacity of A is measured by 1 − µθ(S\A); this defines a belief function which
gives the lower envelope, and hence is directly relevant for studying the robust
control of the asymptotic coverage probability. Another difference is that we

4Those unfamiliar with the literature on partial identification may wish to skim or even skip
this section on first reading.
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focus explicitly on the entire sequence of experiments jointly. Our approach to
inference is related to Beresteanu and Molinari (2008) in the sense that we both
use generalized (albeit much different) limit theorems. An important difference is
that they assume that the entire set of outcomes is observed for each experiment
rather than merely the selected outcome (for example, outcomes are interval-
valued). Galichon and Henry (2006, 2009, 2013) study inference using a statistic
based on capacities, but they also maintain the assumption that samples obey
classical limit theorems. None of these papers addresses robustness with regard
to unknown forms of heterogeneity and dependence.

In various incomplete models, structural parameters often satisfy model re-
strictions that take the form of moment inequalities. Therefore, econometric tools
for moment inequalities have been used to do inference in incomplete models
(Chernozhukov, Hong, and Tamer 2007, Andrews and Soares 2010, Bugni 2009,
Andrews and Shi 2013). As noted above, these methods commonly assume that
data are generated across experiments in such a way that classical limit theorems
are applicable, which precludes robustness against unknown forms of heterogene-
ity and dependence due to model incompleteness. Though the method we develop
here is applicable to the narrower class of incomplete structural models, it has the
advantage of being robust.

The only paper of which we are aware that explicitly allows outcome sequences
that do not necessarily obey classical limit theorems is Menzel (2011). He develops
a computational tool to conduct robust Bayes inference assuming that outcome
samples are drawn from an exchangeable rather than i.i.d. distribution, which de-
livers some robustness. However, he restricts selection to depend only on variables
that affect payoffs, and thus his method is not robust against unknown forms of
heterogeneity and dependence.

A notable and desirable feature of our confidence region, besides robustness,
is that, in contrast to existing methods, its construction does not require tun-
ing parameters. This is due to the different procedure used to approximate the
(worst-case) probability that the confidence region covers θ. As we show below, the
model implies that asymptotically the probability of any set of outcomes A ⊂ S
lies in a probability interval [νθ(A), ν∗θ(A)] that depends on θ. Under the assump-
tions adopted in existing methods, the empirical frequency converges to a unique
probability p(A). The pointwise limiting distribution of the test statistic used to
construct confidence regions changes depending on whether p(A) equals νθ(A),
or ν∗θ(A), or is in the interior of the interval, with the result that this limiting
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distribution depends discontinuously on the underlying data generating process.5

A sequence of tuning parameters is commonly used to handle this discontinuity.
However, though the choice of tuning parameters often affects the performance of
existing methods in non-trivial ways, it is also an arbitrary component of existing
inference methods. We attribute this arbitrariness to the assumption that the em-
pirical frequency converges to a unique limit. In contrast, we do not presume such
convergence. Even so, inference on the structural parameter is possible because
if θ is the true parameter, then the empirical frequency cannot deviate from the
above probability interval asymptotically. Our CLT provides a normal approxima-
tion to the distribution of deviations from this restriction in finite samples. This
normal approximation is expressed in terms of the lower envelope over all possible
data generating processes, and thus the true data generating process does not
affect the approximation given θ. Thus discontinuity of the limiting distribution
does not arise.

Another reflection of the difference in the approach to inference adopted here
is that while the notion of the ”identified set” receives a great deal of attention
in the literature, it does not play a role here. A brief remark may be helpful for
readers familiar with the literature on partial identification. Following Manski
(2003), the identified set is taken to be the set of parameters compatible with
what is revealed asymptotically by the sampling process. Given the structure
(S, U,G,Θ;m) augmented by the assumptions that the outcome in each market is
distributed according to some measure p ∈ ∆ (S) and that the outcome sequence
is ergodic, then empirical frequencies converge almost surely to p, rendering p
observable. The identified set, denoted ΘI (p), consists of all θ such that there
exists a (suitably measurable) selection rule u 7−→ pu ∈ ∆ (G (u | θ)) satisfying

p (·) =

∫
U

pu (·) dmθ (u) ,

which equates true and predicted empirical frequencies.6 A number of papers
describe (finite sample) estimators for ΘI ; see, for example, Ciliberto and Tamer

5For example, a commonly used test statistic is Tn(θ) =√
nmax{νθ(A) − n−1

∑n
i=1 I(si ∈ A), n−1

∑n
i=1 I(si ∈ A) − ν∗θ(A)}. Let Z have the limiting

distribution of
√
n(n−1

∑n
i=1 I(si ∈ A) − p(A)) under the assumption that a classical CLT

applies. Then Tn(θ) converges in distribution to −Z, −∞, Z, or max{−Z,Z} according as
νθ(A) = p(A) < ν∗θ(A), νθ(A) < p(A) < ν∗θ(A), νθ(A) < p(A) = ν∗θ(A), or νθ(A) = p(A) =
ν∗θ(A), respectively.

6See Beresteanu, Molchanov and Molinari (2011) and Galichon and Henry (2011), for exam-
ple.
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(2009). From our perspective, such a focus on ΘI (p) is unjustified since both its
definition and interpretation presume that outcomes are ergodic which we have
argued is problematic when the analyst’s model is incomplete. When robustness
with respect to unknown forms of heterogeneity and dependence is sought, it is ap-
parent that the appropriate definition of an identified set should be formulated in
the space of outcome sequences. However, we do not pursue such a definition here
because it does not seem vital for studying inference about the true parameter.

Finally, belief functions play a central role in Epstein and Seo (2015), who de-
scribe a Bayesian-style approach to doing inference in incomplete models. Besides
their subjectivist as opposed to frequentist approach, their paper differs also in
its focus on axiomatic decision-theoretic foundations.

2. The framework

Consider a setting with an infinite sequence of experiments (or random events),
where Si = S denotes the set of possible outcomes for the ith experiment; we as-
sume throughout that S is finite. The economic model of each single experiment is
described by (S, U,G,Θ;m) with the following interpretation and restrictions. Θ
is a set of structural parameters. The true parameter is common to all experiments
but is unknown to the analyst. Each u in U describes the unobservable character-
istics of the single experiment under consideration. In alternative terminology, S
and U capture endogenous and latent variables respectively; an extension to in-
clude covariates describing observable heterogeneity is provided in Section 6. We
assume that U is a Polish (complete separable metric) space. Latent variables are
distributed according to the Borel probability measure mθ, which is known up to
the parameter θ; let m = (mθ)θ∈Θ. Finally, for each θ ∈ Θ, G (· | θ) : U  S is a
correspondence that describes the set of outcomes for each given u and parameter
θ. The multi-valued nature of G gives one sense in which the analyst’s model
(or theory) is incomplete: for each single experiment, and given the structural
parameter, theory prescribes only a set of possible outcomes, with no indication
of which outcomes in the set are more or less likely to be selected. We assume
that, for each θ, G (· | θ) is weakly measurable.7

7A correspondence Γ : U  X, where X is metric, is weakly measurable if {u : Γ (u) ⊂ A}
is a (Borel) measurable subset of U for every closed A ⊂ X. If Γ is compact-valued, then weak
measurability is equivalent to the property that {u : Γ (u) ⊂ A} is measurable for every open
A ⊂ X (Aliprantis and Border 2006, Lemma 18.2).
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The analyst observes outcomes in some experiments and wishes to draw infer-
ences, via the construction of confidence regions for the structural parameters. To
address inference, we extend the above formal structure to accommodate the entire
sequence of experiments.8 Accordingly, consider the tuple (S∞, U∞, G∞,Θ;m∞).
The meaning of and rationale for S∞ and U∞ are clear;9 they have generic elements
s∞ = (s1, s2, ...) and u∞ = (u1, u2, ...) respectively. By m∞, an abbreviation for
(m∞θ )θ∈Θ, we mean that, conditional on θ, unobserved variables are distributed
i.i.d. across experiments according to mθ. The parameter set Θ remains un-
changed and parameters are assumed to be constant across experiments. The
remaining component G∞, a key to our approach, is, for each θ, a correspondence
G∞ (· | θ) : U∞  S∞ defined as in (1.1). As described there, the Cartesian prod-
uct structure in (1.1) imposes no restrictions on how selection might differ or be
related across experiments. This is another important sense of model incomplete-
ness. Note that G∞ (· | θ) is weakly measurable by Aliprantis and Border (2006,
Lemma 18.4); it is also compact-valued.

In seeking robust inferences, the analyst takes into account all probability dis-
tributions P ∈ ∆ (S∞) that are consistent with the given (S∞, U∞, G∞,Θ;m∞),
that is, for each given θ, she considers the set Pθ defined in the introduction and
repeated here for convenience:

Pθ =

{
P ∈ ∆ (S∞) : P =

∫
U∞

Pu∞dm
∞
θ (u∞) , Pu∞ ∈ ∆ (G∞ (u∞ | θ)) m∞θ -a.s.

}
.

(2.1)
Each indicated conditional distribution Pu∞ is assumed to be such that u∞ 7−→
Pu∞ (B) is measurable for every measurable B ⊂ S∞, and is referred to as a
selection rule. When the analyst’s model is complete, (G∞ (· | θ) is single-valued),
then Pθ = {Pθ} is a singleton and Pθ is the i.i.d. product of the measure on
S induced by mθ and G (· | θ) : U → S. However, in general, she considers all
(including non-ergodic) selection rules consistent with her incomplete theory.

The structure of the set Pθ defined in (2.1) implies a form of symmetry
across experiments that warrants explicit mention. Roughly, it indicates that

8Our formal model of a single experiment is adapted from Koopmans and Reiersol (1950)
and Jovanovic (1989); a similar structure is employed by Galichon and Henry (2009, 2011).
However, we deviate from existing literature in adopting also the following formal model of the
sequence of experiments.

9For any metric space X, we endow X∞ with the product metric and corresponding Borel
σ-algebra. (Then, given that S is finite, S∞ is separable compact metric, and hence Polish).
We denote by ∆ (X) the set of Borel (countably additive) probability measures on X.
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the ordering of experiments has no significance in the following sense. For any
finite permutation π of the indices 1, 2, ..., and any probability measure P on
S∞, denote by πP the unique probability measure satisfying (for all rectangles)
(πP ) (A1 × A2 × ...) = P

(
Aπ−1(1) × Aπ−1(2) × ...

)
. Then it is easy to see that Pθ

is symmetric, or ”exchangeable,” in the sense that

P ∈ Pθ ⇐⇒ πP ∈ Pθ. (2.2)

Such symmetry seems more natural in a cross-sectional setting where experiments
are resolved simultaneously than in a time-series context where experiments are
differentiated because they are ordered temporally. Accordingly, though the for-
mal results that follow do not require the cross-sectional interpretation, we think
of our approach to inference as particularly relevant to cross-sectional data. When
considering symmetry, keep in mind that currently we are ruling out observable
differences between experiments. When these are included and modeled via covari-
ates as in Section 6, then the implied symmetry is suitably conditional–roughly,
(2.2) is weakened so as to apply only to permutations that permute experiments
having common covariate values.

A feature of Pθ that we exploit heavily is its connection to a belief function,
which we now explain. Define ν∞θ (·) to be the lower envelope of Pθ as in (1.2).
Then ν∞θ can also be expressed in the form: For every measurable B ⊂ S∞,

ν∞θ (B) ≡ m∞θ ({u∞ ∈ U∞ : G∞ (u∞ | θ) ⊂ B}) . (2.3)

Thus ν∞θ is the capacity on measurable subsets of S∞ induced by the correspon-
dence G∞ (· | θ) and the probability measure m∞θ on U∞, which is in the form of
one of the common definitions of a belief function.

Remark 1. Here are some technical details supporting the preceding claims. Be-
cause these are well-known in the literature (see, for example, Aliprantis and Bor-
der (2006, Ch. 18) and Philippe, Debs and Jaffray (1999)), we provide only an
outline here rather than a formal lemma. The set {u∞ ∈ U∞ : G∞ (u∞ | θ) ⊂ B}
in (2.3) is in general not measurable for every Borel measurable B. However, it
is universally measurable, and moreover, each Borel measure m∞θ has a unique
extension to a probability measure (also denoted m∞θ ) on the collection of all uni-
versally measurable subsets of S∞. This renders the RHS of (2.3) well-defined. In
addition, it follows from Philippe, Debs and Jaffray (1999, Theorem 3) that (2.3)
and (1.2) provide equivalent definitions of ν∞θ .
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One can proceed similarly to define a belief function when considering a single
experiment in isolation. Then the set of all probability laws on any single exper-
iment that are consistent with θ and the given structure (S, U,G,Θ;m) is given
by {

p ∈ ∆ (S) : p =

∫
U

pudmθ (u) , pu (G (u | θ)) = 1 mθ-a.s.

}
.

If we define νθ on S as the lower envelope of this set, then

νθ (A) ≡ mθ ({u ∈ U : G (u | θ) ⊂ A}) , A ⊂ S, (2.4)

from which we can conclude that νθ is a belief function on S. The upper envelope
of the set of consistent measures is also of interest. Thus define also the conjugate
of νθ, denoted ν∗θ, by

ν∗θ (A) = 1− νθ (S\A) . (2.5)

Then ν∗θ (A) is the maximum probability of A consistent with the model. Of
course, for all measurable A ⊂ S,

νθ (A) ≤ ν∗θ (A) .

There is a relation between the belief function νθ on S and the belief function
ν∞θ on S∞ that is suggested by our notation and that is important below. Specif-
ically, one can view ν∞θ as an ”i.i.d. product” of νθ because they satisfy:10 for
every finite n, and for all subsets Ai of Si = S, i = 1, ..., n,

ν∞θ
(
A1 × ...× An × Π∞i=n+1Si

)
= Πn

i=1νθ (Ai) . (2.6)

Given the central role played by i.i.d. probability measures in the classical CLT,
it should not be surprising that a corresponding notion for belief functions is
important for the CLT derived in the next section. We caution, however, that
the parallel with the case of probability measures should not be carried too far.
The relation (2.6) does not express stochastic independence of selection across
markets as such independence is usually understood. Rather, as described when
interpretingG∞ (· | θ) defined in (1.1), which underlies (2.6), it reflects agnosticism
about how selection is related across markets in that ignorance about selection in

10The following is readily derived from the Cartesian product definition of G∞ (· | θ) and the
i.i.d. nature of each measure mθ. See Epstein and Seo (2015) and the references therein for
more on i.i.d. products of belief functions.
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one experiment is ”independent” of, or unrelated to, ignorance about selection in
any other experiment.

We conclude this section with remarks about the scope of our framework. First,
we emphasize that Pθ is not a primitive–if one starts with an arbitrary set Pθ and
defines the lower envelope by (2.3), then ν∞θ will typically not be a belief function
and the inference procedure that follows does not apply.11 It is important to keep
in mind that the primitive in our approach is the tuple (S∞, U∞, G∞,Θ;m∞), the
elements of which are used to define Pθ by (2.1). The analyst must determine
if a tuple of this form captures the problem at hand, and if so, as is the case
for the empirical studies cited in the introduction, then our procedure can be
applied. We do not know if it is possible to extend our CLT to accommodate sets
Pθ constructed in some other way.

A related point of clarification is that our method provides robustness to com-
plete agnosticism about how selection operates, but is presumably overly conserva-
tive if the analyst is confident in restricting the possible patterns of selection across
experiments. For example, one way to restrict patterns of selection across exper-
iments is to replace G∞ (· | θ) in (2.1) by a correspondence H (· | θ) : U∞  S∞

such that H (· | θ) ⊂ G∞ (· | θ). Denote by P ′θ the set of probability laws defined
in this way. Then the lower envelope of P ′θ is a belief function, but not an i.i.d.
product belief function, that is, it does not satisfy (2.6), and our CLT does not
apply. Though it is arguably regrettable that less than ”maximal robustness” is
excluded by our analysis, we offer two (subjective) justifications in defense: max-
imal robustness is what has often been called for in the literature, as illustrated
by the above quote from Ciliberto and Tamer; and, if ignorance about selection in
any single market is due to missing variables, whose identity is not even known by
the analyst, then ignorance about the cross-sectional variation in selection follows
logically.

A final comment is that, in common with all the surrounding literature, our
framework treats asymmetrically the uncertainty generated by latent variables as
opposed to the uncertainty regarding selection–the former is described by a single
i.i.d. probability measure (for each θ) while there is complete ignorance about
the latter. One may question the assumption of extensive knowledge of latent
variables particularly since they are not observed by the analyst. However, we
can do better in this regard. As explained in the discussion of our CLT (Theorem

11Also demonstrated in Philippe, Debs and Jaffray (1999) is that the set Pθ defined by (2.1)
coincides with the core of ν∞θ , core (ν∞θ ) = {P ∈ ∆ (S∞) : P (·) ≥ ν∞θ (·)}, which shows again
that Pθ is special–it must be the core of a belief function.
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3.1), the assumption that each m∞θ is i.i.d. can be relaxed. Further and more
fundamentally, our framework also permits the analyst to have an incomplete
model of latent variables in that one can take each mθ to be a belief function on
U , and the approach to inference that follows carries through. See Appendix E
for details.

3. Inference

Here we construct confidence regions for the unknown parameters that are robust
to the limitations of the analyst’s model. The approach largely mimics the classical
approach used when Pθ is a singleton i.i.d. measure, where the classical CLT can
be used to construct desired confidence regions. We show that a corresponding
procedure can be adopted also when the analyst’s model is incomplete. The first
step is to establish (in Theorem 3.1) a CLT for belief functions ν∞θ . The coverage
property of our confidence regions is then established in Theorem 3.2.

3.1. A central limit theorem

Belief functions aid tractability because they permit extensions of some basic
tools of probability theory, namely the LLN and CLT. The former is taken from
Maccheroni and Marinacci (2005), while the CLT is original to this paper and is
described shortly.

Let Ψn (s∞) (·) be the empirical frequency measure in the first n experiments
along the sample s∞ = (s1, s2, ...), that is,

Ψn (s∞) (A) =
1

n
Σn
i=1I (si ∈ A) , for every A ⊂ S.

Though empirical frequencies need not converge, the LLN asserts certainty that
asymptotically Ψn (s∞) (A) lies in the interval [νθ (A) , ν∗θ (A)]:

ν∞θ {s∞ : [lim inf Ψn (s∞) (A) , lim sup Ψn (s∞) (A)] ⊂ [νθ (A) , ν∗θ (A)]} = 1; (3.1)

and this condition is tight in the sense that

ν∞θ ({s∞ : νθ (A) < lim inf Ψn (s∞) (A)}) = 0, and (3.2)

ν∞θ ({s∞ : lim sup Ψn (s∞) (A) < ν∗θ (A)}) = 0.

In light of the lower envelope condition (1.2), the LLN asserts that the event in
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(3.1) has unit probability according to every measure in Pθ, while each event
appearing in (3.2) has arbitrarily small probability according to some measure in
Pθ.

Turn to the CLT. For any positive semidefinite matrix Λ ∈ RJ ·J , NJ (.; Λ)
denotes the J-dimensional normal cdf with zero mean and covariance matrix Λ–
for any c = (c1, ..., cJ) ∈ RJ , NJ (c; Λ) is the probability mass associated with
values less than or equal to c (in the vector sense), that is, with the closed lower
orthant at c. Of primary interest will be covariance matrices constructed as follows.
Fix J events, A1, ..., AJ , subsets of S, and for any θ, let

covθ (Ai, Aj) = νθ (Ai ∩ Aj)− νθ (Ai) νθ (Aj) , (3.3)

varθ (Ai) = νθ (Ai) (1− νθ (Ai)) = covθ (Ai, Ai) .

Denote by Λθ the J×J symmetric and positive semidefinite matrix (covθ (Ai, Aj)).
12

Theorem 3.1. Suppose θn ∈ Θ and cn ∈ RJ , n = 1, 2, ..., and let Λθn → Λ ∈ RJ ·J

and cn → c ∈ RJ . Then

ν∞θn
(
∩Jj=1

{
s∞ :

√
n [νθn (Aj)−Ψn (s∞) (Aj)] ≤ cnj

})
→NJ (c; Λ) . (3.4)

See Appendix A for a proof.13

Though the inequalities in (3.4) place only a lower bound on empirical frequen-
cies, upper bounds are also accommodated. To demonstrate this and to facilitate
interpretation of the CLT, suppose that J = 2I and that AI+i = S\Ai for each
i = 1, ..., I, that is, each event Ai is accompanied by its complement AI+i; in this
case we refer to {Aj} as being ”complement-closed.” Then the event appearing in
(3.4) is

∩Ii=1

{
−cni/

√
n+ νθn (Ai) ≤ Ψn (s∞) (Ai) ≤ ν∗θn (Ai) + cn(I+i)/

√
n
}

, (3.5)

where ν∗θn is the conjugate belief function defined as in (2.5). For greater clarity,
suppose further that (θn, cn) = (θ, c) for all n. Then, rather than certainty that the
empirical frequency of Ai in an infinite sample lies in the interval [νθ (Ai) , ν

∗
θ (Ai)],

as in the LLN, the CLT describes, as an approximation, the distribution of de-
viations from that restriction in finite samples. In particular, when ci and cI+i

12Positive semidefiniteness is proven in the theorem.
13Marinacci (1999, Theorem 16) proves a central limit theorem for a class of capacities that

he calls ”controlled,” which property neither implies nor is implied by being a belief function.
Thus the CLTs are not comparable. Marinacci does not study confidence regions.
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are positive, the empirical frequency can be smaller than νθ (Ai) or larger than
ν∗θ (Ai), and the distribution of such deviations according to ν∞θ is approximately
normal.

When each νθn is additive and hence a probability measure, then the variances
and covariances defined in (3.3) are the usual notions applied to indicator functions
I(s ∈ Ai) and I(s ∈ Aj) and the CLT reduces to (a special case of) the classical
triangular CLT (see, for example, White (2001, Theorem 5.11)). Other special
cases of the theorem are also immediate implications of classical results. For
example, if J = 1, then the CLT provides an approximation to

ν∞θn
({
−cn1/

√
n+ νθn (A1) ≤ Ψn (s∞) (A1)

})
. (3.6)

But it can be shown that for this event the minimum in (1.2) is achieved at an
i.i.d. measure P ∗n .14 Thus one can invoke a classical triangular CLT. However, in
general, reduction to the classical additive case is not elementary because even if
minimizing measures exist, they are not easily determined nor is there any reason
to expect that they are i.i.d. measures.

The proof of our general result exploits the close connection between belief
functions and probability measures expressed in (2.3), and also the Cartesian
product structure of G∞ given in (1.1). Together they permit, for each θn, trans-
forming our assertion about belief functions into one about i.i.d. probability
measures m∞θn as follows:

ν∞θn
(√

n (νθn (Aj)−Ψn (s∞) (Aj)) ≤ cnj for each j
)

= m∞θn

(
1√
n

n∑
i=1

(
νθn (Aj)−Xj

ni

)
≤ cnj for each j

)
, (3.7)

where for each j, Xj
ni = I(G(ui|θ) ⊂ A), i = 1, · · · , n, is an i.i.d. sequence of

random variables. Then the classical CLT can be applied. Note that despite the
fact that the distribution of the sequence of outcomes involves incidental param-
eters Pu∞ describing selection, the fact that selection can vary arbitrarily across
markets does not affect our limit theorem. This is because each belief function
ν∞θn is a lower envelope (1.2) as one varies over all possible selections, which set
is described by the i.i.d. set-valued random variable G (· | θn). Consequently,
the (selection) incidental parameters do not enter into the representation of belief
functions as in (2.3).

14P ∗n is the i.i.d. product of p∗n ∈ ∆ (S) such that p∗n (A1) = νθn (A1). When a minimizer
exists in (1.2) for an event, refer to it as a minimizing or worst-case measure for that event.
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We also note that the assumption that m∞θn is i.i.d. (for each θn) may be
relaxed, that is, one can establish a CLT similar to Theorem 3.1 while allowing
for heterogeneity and dependence of a known form for m∞θn . This is because, in
light of (3.7), as long as the sequence of random vectors Xni = (X1

ni, · · · , XJ
ni)
′,

i = 1, · · · , n, obey a suitable central limit theorem under m∞θn , such an extended
result becomes available.15

3.2. Confidence regions

Fix 0 < α < 1 and A1, · · · , AJ , subsets of S. For each θ, let Λθ be the J × J
covariance matrix defined as above, and let

σθ ≡
(√

varθ (A1), ...,
√
varθ (AJ)

)
. (3.8)

Our confidence region Cn is given by

Cn =

{
θ ∈ Θ : νθ (Aj)−Ψn (s∞) (Aj) ≤ cθ

√
varθ (Aj) /n, j = 1, ..., J

}
, (3.9)

where16

cθ = min {c ∈ R+ : NJ (cσθ; Λθ) ≥ 1− α} . (3.10)

Note that Cn is based on a normalized Kolmogorov-Smirnov-type statistic, be-
cause it equals {θ ∈ Θ : Tn(θ) ≤ cθ}, where Tn(θ) is the maximum of the normal-
ized empirical frequencies Tj,n(θ) ≡ (νθ (Aj) − Ψn (s∞) (Aj)) /

√
varθ(Aj)/n, j =

1, · · · , J , where we take 1/0 = ∞, 0/0 = 0 and −1/0 = −∞. Here, varθ(Aj) is
equal to 0 if and only if νθ(Aj) = 0 or 1. If νθ(Aj) = 0, then Tj,n(θ) = −∞ and
event Aj does not provide any restriction on θ. If νθ(Aj) = 1, then θ is excluded
from the confidence region whenever Ψn(s∞)(Aj) < 1, (Tj,n(θ) =∞ in this case),
while it is included in the confidence region if Ψn(s∞)(Aj) = 1 (Tj,n(θ) = 0 in this
case) and Tk,n(θ) ≤ cθ for all k 6= j.

The asymptotic coverage property of Cn is established next.

15For example, Jenish and Prucha’s (2009) central limit theorem for arrays of random fields
allows variables to have spatial correlations.

16The proof of the next theorem shows that cθ is well-defined. If σθ = 0, then NJ (0; Λθ)
refers to a degenerate distribution at the mean, which is 0, and thus NJ (cσθ; Λθ) = 1 for all
c ≥ 0, and cθ = 0.

17



Theorem 3.2. Let 0 < α < 1. Then

lim inf
n→∞

inf
θ∈Θ

ν∞θ ({s∞ : θ ∈ Cn}) ≥ 1− α. (3.11)

Further, there is equality in (3.11) if α < 1/2 and Λθ 6= 0 for some θ ∈ Θ.

Given θ, Pθ is the set of all probability laws consistent with the model and ν∞θ
gives its lower envelope. Therefore, the theorem establishes that if θ is the “true
value” of the parameter, then, in the limit for large samples, Cn contains θ with
probability at least 1−α according to every probability law that is consistent with
the model and θ. Moreover, (3.11) can also be stated as lim infn→∞ inf(θ,P )∈F P (θ ∈
Cn) ≥ 1−α, where F = {(θ, P ) : P ∈ Pθ, θ ∈ Θ}. Thus our coverage statement is
uniform on the general parameter space F . Finally, the noted coverage is tight in
the sense of equality in (3.11) if (as one would expect) α < 1/2, and if we exclude
the very special case where σθ = 0 for all θ ∈ Θ, that is, where νθ (Aj) ∈ {0, 1}
for all j and θ.17

The confidence regions and their coverage properties are discussed further in
the next section in the context of examples.

4. Examples

4.1. Discrete normal form games

A widely studied class of games in the applied literature is the class of entry
games with multiple Nash equilibria. Here we focus on the canonical example
from Jovanovic (1989), because it illustrates simply the main issues and because
it is used widely for that purpose in the ambient literature. However, the reader
will likely realize that our analysis accommodates a much broader class of games–
more on this after outlining how the Jovanovic game is accommodated.

In the Jovanovic entry game, in each market two firms play the entry game
described by the following payoff matrix:

out in
out 0, 0 0,−u2

in −u1, 0 θ1/2 − u1, θ
1/2 − u2

The parameter θ lies in [0, 1] and u = (u1, u2) is observed by players but not by
the analyst. She views θ as fixed and common across markets and u as uniformly

17Note that because Λθ is positive semidefinite, σθ = 0 if and only if Λθ = 0.
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distributed on [0, 1]2 and i.i.d. across markets. Her theory is that the outcome in
each market is a pure strategy Nash equilibrium. However, her theory is incom-
plete because she does not understand equilibrium selection. Thus the translation
into our set up has: S = {0, 1}, where 0 (1) indicates that no (both) firms enter
the market; Θ = [0, 1]; U = [0, 1]2; m independent of θ and uniform on [0, 1]2; and
G equal to the (pure strategy) Nash equilibrium correspondence given by

G (u1, u2 | θ) =

{
{0, 1} if 0 ≤ u1, u2 ≤ θ1/2

{0} otherwise.
(4.1)

The implied set of distributions over S consists of all probability measures for
which the probability of s = 1 lies in [0, θ]. This interval of probabilities is
equivalently represented by the belief function νθ, where

νθ (1) = 0, νθ (0) = 1− θ, νθ ({0, 1}) = 1.

Turn to inference about θ. Suppose first that J = 1 and A1 = {1}. Then, for
all θ, νθ (1) = 0 and σθ = 0. It follows that Cn = Θ = [0, 1]. Thus without making
use of the (implied) sample frequency of s = 0, observations of s = 1 alone do not
provide any information about the unknown parameter θ.

Suppose, however, that (J = 2 and) we use also the sample frequency of

A2 = {0}. Then, for each θ, νθ (0) = 1 − θ and σθ =
(

0, [θ (1− θ)]1/2
)

, and

therefore,

Cn = {θ ∈ [0, 1] : Ψn (s∞) (1) ≤ θ + cθ [θ (1− θ)]1/2 /
√
n},

where cθ = 0 if θ = 0 or 1, and otherwise cθ is the critical value for the standard
normal variable and satisfies N 1 (cθ; 1) ≥ 1 − α.18 Thus the interval constraint
imposed by the LLN (see the appropriate form of (3.1)), whereby asymptotically
the empirical frequency of s = 1 is bounded above by θ, is relaxed here to the
degree expressed by cθ [θ (1− θ)]1/2 /

√
n. In particular, cθ = 1.645 if α = .05.

It must be noted that the identical confidence region can arise also if the analyst
completes her model and assumes that selections are i.i.d. across markets, and
that when there are multiple equilibria then the equilibrium where both firms enter
(s = 1) is selected with probability 1.19 Then si is a Bernoulli random variable

18The reduction to a univariate distribution is a consequence of the fact that varθ ({1}) = 0
for all θ.

19We are not claiming that this is the most natural way to complete the model–just that the
identical confidence region can arise also with some complete model featuring i.i.d. selection.
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with parameter θ which is the largest (unconditional) probability consistent with
the incomplete model. The MLE for θ is then θ̂ ≡ Ψn(s∞)(1). Assuming that the
CLT for i.i.d. samples applies, θ̂ has the limiting normal distribution with mean
0 and variance θ(1− θ), and the identical set Cn arises.

The preceding begs the questions ”why does the noted procedural equivalence
arise?” and ”when does incompleteness make a difference?” The key observation
is that in this example, for any given θ,

ν∞θ ({s∞ : θ ∈ Cn}) = ν∞θ

({
s∞ : Ψn (s∞) (1) ≤ θ + cθ [θ (1− θ)]1/2 /

√
n
})

= min
P∈Pθ

P
({
s∞ : Ψn (s∞) (1) ≤ θ + cθ [θ (1− θ)]1/2 /

√
n
})

,

and that a minimizing (or worst-case) measure exists as pointed out in the dis-
cussion surrounding (3.6)–a worst-case scenario for an event defined by an upper
bound on the frequency of s = 1 is that the probability that s = 1 in each mar-
ket is maximal (hence equal to θ) and is independent across markets. Thus the
confidence region generated by the ‘completed’ model as above is also robust to
all the scenarios arising from model incompleteness.

However, the scope of such procedural equivalence is limited. Indeed, it fails
once both upper and lower bounds on the empirical frequency are relevant as in
the next more general example.

Though we have focussed on the Jovanovic game, it is evident that our anal-
ysis can be applied also to any normal form game having finitely many pure
strategies and where pure strategy Nash equilibria exist, that is, the equilibrium
correspondence G (· | θ) is nonempy-valued for every parameter θ. The frame-
work accommodates also games where players do not necessarily play equilibrium
strategies. For example, if the analyst is willing to assume only that outcomes cor-
respond to rationalizable strategy profiles, then the correspondence G (· | θ) can
be defined accordingly and inference can proceed as described above.20 However,
the restriction to pure strategies is important. If we allowed mixed strategies,
then the equilibrium correspondence G (· | θ) would map into subsets of the prob-
ability simplex ∆ (S) and νθ would be a belief function on ∆ (S) rather than on
S. Our formal results can be extended to this case in principle (though we have
not studied the generalization of the CLT to infinite state spaces such as ∆ (S)).

20Every Nash equilibrium profile is rationalizable and the converse is false in general. All
profiles are rationalizable in the Jovanovic example, but in some games rationalizability rules
out many profiles. See Chapters 4 and 5 of Osborne and Rubinstein (1994).
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However, the corresponding CLT would refer to the empirical frequencies of mixed
strategies, which are unobservable, rather than to the observable frequencies of
realized pure strategies. Thus it seems that mixed strategies are beyond the scope
of our approach to inference.

4.2. Binary experiments

This is a slight generalization of the Jovanovic example where the minimum prob-
ability is not fixed to equal 0; it corresponds also to a natural generalization of
coin-tossing that incorporates an incomplete theory about the coin. Thus take
S = {0, 1}. The set of structural parameters is Θ = {θ = (θ1, θ2) ∈ [0, 1]2 : θ1 ≤
θ2}, where θ1 and θ2 are interpreted as the minimal and maximal probabilities for
the outcome s = 1. For (U,m) , take any nonatomic probability space (with U
Polish and mθ = m for all θ). Finally, define G (· | θ) : U  S by

G (u | θ) =


{1} if u ∈ Uθ1
{0} if u ∈ Uθ2
{1, 0} otherwise,

where Uθ1 and Uθ2 are disjoint (Borel measurable) subsets of U such thatm (Uθ1) =
θ1 and m (Uθ2) = 1− θ2. Then each θ induces the belief function νθ on S, where
νθ (1) = θ1 and νθ (0) = 1− θ2.

For inference about θ, take J = 2, A1 = {1} and A2 = {0}. Then

Cn =
{
θ : θ1 − cθ [θ1 (1− θ1) /n]1/2 ≤ Ψn (s∞) (1) ≤ θ2 + cθ [θ2 (1− θ2) /n]1/2

}
,

(4.2)
which is the set of all θ1 ≤ θ2 in the unit square that are either consistent with
the interval restriction (3.1) due to the LLN, (here asserting that all limit points
of Ψn (s∞) (1) lie in [θ1, θ2]), or that permit the indicated small deviations from
it. The region excludes θs for which θ1 is ”too large,” but all sufficiently small θ1

satisfy the first indicated inequality. This is because θ1 is a minimum probability,
and a small minimum cannot be contradicted by a larger empirical frequency for
s = 1 which is attributed by the model to the vagaries of selection. Similarly, the
confidence region excludes values of θ2 that are too small relative to the empirical
frequency, but all sufficiently large values are included.

A noteworthy feature of Cn, that reflects the robustness of our approach, is
that the critical value cθ is scaled differently on the two extreme sides of the in-
equalities. The intuition is as follows. While (4.2) can be understood as describing
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a relaxation of the LLN to accommodate finite samples, the issue is how much to
relax each inequality; for example, how much smaller than θ1 can the empirical
frequency be and still be seen as consistent with θ1? This amounts to deciding on
how much sampling variability to allow for Ψn (s∞) (1). Since any probability law
in Pθ may apply, a conservative approach is to use the worst-case scenario, which,
as in the Jovanovic example, is the i.i.d. law with the minimum probability for
s = 1, namely θ1. The associated variance is thus θ1 (1− θ1), as above. Similarly,
for the upper bound on Ψn (s∞) (1), for which the worst-case scenario has the
maximum probability, namely θ2, for s = 1, and thus a conservative approach
leads to the variance θ2 (1− θ2) for the second inequality in (4.2). The resulting
difference in scaling factors is implicit in the Jovanovic example because θ1 = 0
there.

There is another way to see why, in contrast with the preceding example,
model incompleteness makes a difference here for confidence regions. Roughly
speaking, our confidence regions provide coverage at least 1 − α according to
every measure in Pθ, and thus are driven by the least favorable scenarios for the
events {s∞ : θ ∈ Cn} ={

s∞ : θ1 − cθ [θ1 (1− θ1) /n]1/2 ≤ Ψn (s∞) (1) ≤ θ2 + cθ [θ2 (1− θ2) /n]1/2
}

.

(4.3)
Because of the two-sided constraint on the frequency Ψn (s∞) (1), these scenarios
are not i.i.d., but rather feature ”positive correlation” across markets which makes
extreme values for the empirical frequency likely. We cannot be more precise
about the nature of these unfavorable scenarios, in particular, we cannot identify
particular parametric forms of dependence.21 However, our confidence regions
provide the desired coverage no matter what form that dependence might take.

Fix α = .05. The critical value cθ depends on θ according to (3.10). Though
closed-forms are not available for all θ, the following can be shown by elementary
arguments applied to the bivariate normal distribution (Appendix C):

c(0,0) = c(0,1) = c(1,1) = 0

c(θ1,1) = 1.645 if 0 < θ1 < 1

c(0,θ2) = 1.645 if 0 < θ2 < 1 (4.4)

c(θ1,θ2) = 1.96 if 0 < θ1 = θ2 < 1

{cθ : 0 < θ1 < θ2 < 1} = {c : 1.955 < c < 1.96}.
21Dependence in a cross-sectional context is often modeled by various parametric copulas.
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In addition, c(θ1,θ2) is (strictly) increasing in θ1 and decreasing in θ2 on the domain
{0 < θ1 < θ2 < 1}.

One may compare our confidence region to those in the moment inequalities
(MI) literature. Below, we discuss a confidence region that assumes i.i.d. sam-
pling. Under this assumption, the standard LLN and CLT imply that Ψn(s∞)(1)
converges in probability to p(1) = p(s = 1) and that the studentized empiri-
cal frequency

√
n(Ψn(s∞)(1)− p(1))/[Ψn(s∞)(1)(1−Ψn(s∞)(1))]1/2 converges in

distribution to the standard normal distribution. Thus let

CMI
n =

{
θ ∈ Θ : θ1 − c̃n,θ[Ψn(s∞)(1)(1−Ψn(s∞)(1))/n]1/2 ≤ Ψn(s∞)(1)

≤ θ2 + c̃n,θ[Ψn(s∞)(1)(1−Ψn(s∞)(1))/n]1/2
}
.

The critical value c̃n,θ is given by:22

c̃n,θ =


1.645 if l̂1n(θ) ≤ κn and l̂2n(θ) > κn
1.645 if l̂1n(θ) > κn and l̂2n(θ) ≤ κn
1.96 if l̂1n(θ) ≤ κn and l̂2n(θ) ≤ κn

0 if l̂1n(θ) > κn and l̂2n(θ) > κn

, (4.5)

where {κn} is a sequence of positive constants (tuning parameters) such that
κn →∞ and κn/

√
n→ 0 and

l̂1,n(θ) ≡
√
n(Ψn(s∞)(1)− θ1)

[Ψn(s∞)(1)(1−Ψn(s∞)(1))]1/2
, l̂2,n(θ) ≡

√
n(θ2 −Ψn(s∞)(1))

[Ψn(s∞)(1)(1−Ψn(s∞)(1))]1/2
.

(4.6)
CMI
n is a confidence region based on moment inequalities.23 The studentized mo-

ments l̂j,n are used to select those constraints to enter into calculation of the

critical value. For example, when l̂1,n(θ) ≤ κn, the MI approach interprets this as
indicating that the corresponding population constraint p(1) − θ1 ≥ 0 is close to
being binding, and hence retains this constraint in calculating the critical value;
when l̂1,n(θ) > κn, this constraint is not used.

The two confidence regions Cn and CMI
n differ in terms of their critical values

and scaling factors. As opposed to our method, the MI approach scales its criti-
cal value by the square root of Ψn(s∞)(1)(1 − Ψn(s∞)(1)). This is because their

22For comparison purposes, we use the critical value based on an asymptotic normal approx-
imation instead of bootstrap approximations commonly used in the literature.

23One may view CMI
n as Galichon and Henry’s (2009) inference method with studentized

moments. It also belongs to the general class of confidence regions studied by Andrews and
Soares (2010).
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inference is based on the LLN and CLT with the i.i.d. assumption, under which
the studentized empirical frequency converges in distribution to the standard nor-
mal distribution. Second, while c̃n,θ and c(θ1,θ2) both take values between 0 and
1.96, the ways these critical values switch between distinct values are different:
c̃n,θ switches between 0, 1.645, and 1.96 depending on the number of constraints
selected by the procedure, while c(θ1,θ2) changes its values depending on the co-
variance of the bivariate normal distribution.

The MI approach uses c̃n,θ = 1.96 when the two inequalities are locally binding,

that is, l̂1n(θ) ≤ κn and l̂2n(θ) ≤ κn. This is likely to occur when the interval
[θ1, θ2] is short, meaning that its length is comparable to the order O(n−1/2) of
the sampling variation of Ψn(s∞)(1). Heuristically, Ψn(s∞)(1) can then fall on
either side of the interval, which motivates the two-sided critical value.24 The
value c̃n,θ = 1.645 is used when only one of the constraints is selected, which
occurs when Ψn(s∞)(1) is close to one of the end points, say θ1 but not to θ2. The
MI approach interprets this as the length of the interval being large relative to the
sampling variation and p(1) being close to θ1 but not to θ2. Hence, if the empirical
frequency is convergent to p(1), then asymptotically it may fall to the left of θ1

but not to the right of θ2. Therefore, the problem reduces to a one-sided problem,
which motivates c̃n,θ = 1.645. Finally, c̃n,θ = 0 is used when both constraints
are considered slack, which occurs when the interval is long and p(1) is not close
to either endpoint. Since the MI approach assumes that Ψn(s∞)(1) converges to
p(1) in the interior of the interval, the probability of it falling outside the interval
tends to 0, which motivates c̃n,θ = 0.

In our framework, Ψn(s∞)(1) does not necessarily converge. Hence, except in
the special cases discussed below, Ψn(s∞)(1) may fall on either side of the interval
even asymptotically. Using our CLT, we approximate the minimum probability
of the event where the empirical frequency is in an enlarged interval (in (4.3))
by a bivariate normal distribution. Therefore, the critical value c(θ1,θ2) depends
on θ through the parameters in the bivariate normal distribution according to
(3.10). Accordingly, as stated in (4.4), c(θ1,θ2) = 1.96 when 0 < θ1 = θ2 < 1. This
is because the two moments have a perfect (negative) correlation in this case,
and the coverage probability reduces to Ψn(s∞)(1)’s two-sided variation around a
common point θ1 = θ2. The value c(θ1,θ2) = 1.645 is used when either θ1 or θ2 is on
the boundary of the parameter space. For example, when θ1 = 0, there is no room
for Ψn(s∞)(1) to the left of θ1; hence, it suffices to consider Ψn(s∞)(1)’s variation
around θ2, which motivates the one-sided critical value. Finally, c(θ1,θ2) = 0 when

24This was pointed out previously by Imbens and Manski (2004) and Stoye (2009).
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both θ1 and θ2 are on the boundary. For example when (θ1, θ2) = (0, 1), there is
no room for Ψn(s∞)(1) on the left of θ1 or on the right of θ2, which motivates 0
as the critical value. When (θ1, θ2) = (0, 0) or (1, 1), Ψn(s∞)(1) does not involve
any randomness and there is no need to relax any of the inequalities.

5. Monte Carlo simulations

We conduct Monte Carlo simulations to illustrate the performance of our infer-
ence method. For comparison purposes, we also include the results of existing
procedures.25

Simulations are based on the binary experiment, slightly specialized so that
U = [0, 1], m is uniform on [0, 1], Θ = {(θ1, θ2) ∈ [0, 1]2 : θ1 ≤ θ2}, and

G (u|θ) =


{1} if u < θ1

{0} if u > θ2

{0, 1} if u ∈ [θ1, θ2] .

Thus each θ induces the belief function νθ on {0, 1} given by

νθ(1) = θ1, and νθ(0) = 1− θ2. (5.1)

We consider two specifications for the equilibrium selection mechanism. In
both specifications, si = 1 is selected from {0, 1} when ui ∈ [θ1, θ2] and a binary
latent variable vi takes 1. The first specification is an i.i.d. selection mechanism,
in which vi is generated as an i.i.d. Bernoulli random variable independent of ui
with prob(vi = 1) = τ for some τ ∈ [0, 1].

The second specification is a non-i.i.d. selection mechanism, which in fact is
non-ergodic. For this, let Nk, k = 1, 2, · · · , be an increasing sequence of integers.
The set {i : Nk−1 < i ≤ Nk} defines a cluster of markets. We impose a common
selection mechanism within each cluster. Let h(i) = Nk if Nk−1 < i ≤ Nk and
define

vi =

{
1 ΨG

h(i)(u
∞) > θ1

θ1+(1−θ2)

0 ΨG
h(i)(u

∞) ≤ θ1
θ1+(1−θ2)

, where ΨG
n (u∞) =

∑n
i=1 I[G(ui|θ) = {1}]∑n

i=1 I[G(ui|θ) 6= {0, 1}]
.

(5.2)
The non-i.i.d. specification selects si = 1 from {0, 1} when ΨG

n (u∞), the relative
frequency of the event where the model predicts {1} as a unique outcome, crosses a

25The MATLAB code for our simulations is available at: http://sites.google.com/site/seo8240.
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threshold. Otherwise, si = 0 is selected. This mechanism applies to all i belonging
to the k-th cluster for which multiple equilibria are present.

Our inference procedure is implemented as follows. Since the belief function
has a closed form (see (5.1)), computing the statistic and components of the covari-
ance matrix Λθ is straightforward. To compute the critical value cθ, one needs to
evaluate a CDF of a multivariate normal distribution with covariance matrix Λθ.
We do so by using simulated draws from the Geweke-Hajivassiliou-Keane (GHK)
simulator and approximating the CDF NJ (·; Λθ) by Monte Carlo integration.26

The critical value is then computed according to (3.10) replacing NJ (·; Λθ) by
its approximation. Throughout this section, we denote our confidence region by
CEKS
n .

We compare the performance of the robust confidence region with that of
existing methods. For each θ, let M̄n,θ ≡ (ν∗θ(1)−Ψn(s∞)(1), ν∗θ(0)−Ψn(s∞)(0))′.
Confidence regions in the moment inequalities (MI) literature take the form:

CSn =
{
θ ∈ Θ : Γ(

√
nM̄n,θ, Σ̂n,θ) ≤ c̃n,θ(κn)

}
,

where Γ : RJ × RJ ·J → R is a function that aggregates (normalized) moment
functions, and Σ̂n,θ is an estimator of the asymptotic variance of

√
nM̄n,θ. c̃n,θ is

a critical value that depends on a possibly data-dependent tuning parameter κn.
We consider two confidence regions that belong to this class. The first, denoted

CMI
n , based on Galichon and Henry (2009) and Andrews and Soares (2010), uses

the following criterion function and estimator of the asymptotic variance:

Γ(M,Σ) = max
j=1,··· ,J

(−Σ
−1/2
jj Mj)

Σ̂n,θ =
1

n

n∑
i=1

(Mθ(si)− M̄n,θ)(Mθ(si)− M̄n,θ)
′,

where Mθ(s) ≡ (ν∗θ(1) − I(si = 1), ν∗θ(0) − I(si = 0))′. We then compute c̃n,θ
via bootstrap combined with a generalized moment selection (GMS) procedure.
This method selects the moments that are relevant for inference by comparing
sample moments to a tuning parameter κn provided by the researcher. Specifically,

26See simulation procedure 2 in the online Supplementary Material for details on the im-
plementation of our procedure. In the present simulations, J = 2 and we need to compute
bivariate normal CDF values. There are faster and more accurate algorithms for the bivariate
case, (see Genz (2004), for example), but we adopt the GHK method because it may be used
for applications with larger J .
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for each j, let l̂j,n(θ) = M̄j,n,θ/[Ψn(s∞)(1)(1 − Ψn(s∞)(1))]1/2 be the studentized
moment and let ϕn,θ be a J × 1 vector whose j-th component satisfies

ϕj,n,θ =

{
0 if l̂j,n(θ) ≤ κn

∞ if l̂j,n(θ) > κn .

The critical value is then calculated as the 1 − α quantile of the bootstrapped
statistic Γ(M̄∗

n,θ + ϕn,θ, Σ̂
∗
n,θ), where (M̄∗

n,θ, Σ̂
∗
n,θ) is a bootstrap counterpart of

(M̄n,θ, Σ̂n,θ).
27

The second confidence region, denoted CAB
n , based on Andrews and Barwick

(2012), uses the test statistic Tn(θ) = Γ(
√
nM̄n,θ, Σ̃n,θ) with the following criterion

function and regularized estimator of the asymptotic variance:

Γ(M,Σ) = inf
t∈R̄J+

(M − t)′−1(M − t)

Σ̃n,θ ≡ Σ̂n,θ + max(0.012− det(Ω̂n,θ), 0)D̂n,θ,

where D̂n,θ = diag(Σ̂n,θ) and Ω̂n,θ = D̂
−1/2
n,θ Σ̂n,θD̂

−1/2
n,θ . Their critical value requires

three tuning parameters including κn, which we set following their recommenda-
tions.

Table 5.1 reports the coverage probabilities of the three confidence regions
CEKS
n , CMI

n , and CAB
n under alternative values of (θ1, θ2) for a nominal level of

0.95. We set τ = 0.5 and 1 for the i.i.d. selection mechanism, and Nk =
22k ∈ {4, 16, 256, 65536} for the non-i.i.d. selection mechanism. We report sim-
ulation results based on samples of size n ∈ {100, 256, 400, 10000, 65536}. CMI

n

uses the generalized moment selection procedure with the tuning parameter value
κn = ln lnn. CAB

n uses the tuning parameter values recommended by Andrews
and Barwick (2012).28

We note that the non-i.i.d. selection mechanism becomes less favorable to
controlling the coverage probability when n is close to Nk for some k. This can be
understood as follows. When the empirical frequency of the event G(ui|θ) = {1},
i.e. 1 being predicted as a unique outcome, crosses the threshold in (5.2), then
the selection mechanism additionally selects si = 1 across all markets in cluster

27See Andrews and Soares (2010) for details on general GMS procedures that include ϕn,θ as
a special case. The moment selection tuning parameter κn here corresponds to

√
n times the

tuning parameter hn in Galichon and Henry (2009).
28The moment selection tuning parameter κn and size correction factors (η1n, η2n) are selected

from Table I in Andrews and Barwick (2012) based on the smallest off-diagonal element of Ω̂n,θ.
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Table 5.1: Coverage Probabilities of Confidence Regions

Eq. Sel. Sample Size Robust MI Robust MI
n CEKS

n CMI
n CAB

n CEKS
n CMI

n CAB
n

A: (θ1, θ2) = (0.4, 0.6) B: (θ1, θ2) = (0.49, 0.51)
i.i.d. (τ = 0.5) 100 1.000 0.999 0.999 0.963 0.934 0.966

256 1.000 1.000 1.000 0.983 0.946 0.979
400 1.000 1.000 1.000 0.979 0.949 0.974

10000 1.000 1.000 1.000 1.000 1.000 1.000
65536 1.000 1.000 1.000 1.000 1.000 1.000

i.i.d. (τ = 1) 100 0.981 0.961 0.959 0.959 0.932 0.964
256 0.977 0.960 0.959 0.973 0.936 0.970
400 0.981 0.950 0.954 0.973 0.941 0.978

10000 0.973 0.940 0.941 0.969 0.945 0.943
65536 0.974 0.941 0.947 0.976 0.950 0.952

non-i.i.d. 100 0.952 0.919 0.926 0.952 0.905 0.954
256 0.955 0.919 0.914 0.949 0.893 0.938
400 0.984 0.967 0.964 0.962 0.923 0.959

10000 0.973 0.953 0.946 0.962 0.922 0.923
65536 0.969 0.918 0.925 0.958 0.909 0.913

Note: We simulate 1000 datasets for each setting. For the non-i.i.d case,

Nk = 22k ∈ {4, 16, 256, 65536}. CMI
n uses the generalized moment selection procedure

with the tuning parameter value κn = ln lnn. CAB
n uses the tuning parameter values

recommended by Andrews and Barwick (2012).

k where multiple equilibria are predicted. This increases the empirical frequency
of {1}, and thus lowers the probability of the statistic being dominated by the
critical value.

Overall, our confidence region controls the coverage probability properly across
all specifications even in small samples. This confirms the robustness of our pro-
cedure. The coverage probabilities of the two other confidence regions depend on
the equilibrium selection specifications.

Panel A in Table 5.1 shows the results for the case (θ1, θ2) = (0.4, 0.6). Under
the i.i.d. selection mechanism with τ = 0.5, the coverage probabilities of all
confidence regions are close to 1. This is because, under this specification the
empirical frequency converges to a point (p = 0.5) in the interior of the probability
interval [θ1, θ2] whose length is long relative to the sampling variation of the
empirical frequency. When τ = 1, the empirical frequency Ψn(1) converges to
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Table 5.2: Volume of Confidence Regions

Eq. Sel. Sample Size Robust MI Robust MI
n CEKS

n CMI
n CAB

n CEKS
n CMI

n CAB
n

A: (θ1, θ2) = (0.4, 0.6) B: (θ1, θ2) = (0.49, 0.51)
i.i.d. (τ = 0.5) 100 0.360 0.340 0.326 0.360 0.341 0.327

256 0.314 0.303 0.299 0.314 0.304 0.298
400 0.300 0.293 0.290 0.300 0.293 0.290

10000 0.262 0.261 0.261 0.262 0.261 0.261
65536 0.262 0.261 0.261 0.262 0.261 0.261

i.i.d. (τ = 1) 100 0.350 0.329 0.317 0.360 0.341 0.327
256 0.305 0.294 0.289 0.314 0.304 0.299
400 0.290 0.282 0.280 0.300 0.292 0.290

10000 0.252 0.251 0.251 0.257 0.255 0.256
65536 0.252 0.251 0.252 0.250 0.250 0.250

non-i.i.d. 100 0.346 0.326 0.314 0.359 0.340 0.326
256 0.300 0.290 0.285 0.314 0.303 0.298
400 0.293 0.285 0.283 0.300 0.292 0.290

10000 0.252 0.251 0.251 0.257 0.255 0.255
65536 0.252 0.252 0.252 0.250 0.250 0.250

Note: We simulate 1000 datasets for each setting. For the non-i.i.d case,

Nk = 22k ∈ {4, 16, 256, 65536}. CMI
n uses the generalized moment selection procedure

with the tuning parameter value κn = ln lnn. CAB
n uses the tuning parameter values

recommended by Andrews and Barwick (2012).

ν∗θ(1). All confidence regions control the coverage probabilities reasonably well
under this specification. Under the non-i.i.d. specification, the empirical frequency
does not have a unique limit point. As discussed above, size control becomes more
difficult when n is close to Nk for some k. The coverage probabilities of CMI

n and
CAB
n in such settings are below the nominal level, for example, they equal 0.919

and 0.914 respectively when n = 256. Even when n = 65536, their respective
coverage probabilities equal 0.918 and 0.925, thus exhibiting size distortions even
in large samples due to the non-i.i.d. (highly dependent) nature of the selection
mechanism.

Panel B in Table 5.1 reports coverage probabilities for (θ1, θ2) = (0.49, 0.51). In
this setting, the probability interval has a shorter length. Overall, under the i.i.d.
specifications, existing methods control size reasonably well although the coverage
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probability for CMI
n is slightly below the nominal level in small samples.29 For the

non-i.i.d. specification, however, we again see that they have size distortions when
the sample size equals Nk for some k. For example, the coverage probabilities of
CMI
n and CAB

n are 0.909 and 0.913 respectively when n = 65536. In addition, there
are size distortions even when sample sizes are not close to Nk (e.g. their coverage
probabilities are 0.922 and 0.923 respectively when n = 10000).

Finally, we examine the cost of robustness by comparing the volume of the
robust confidence region to the volumes in existing methods. Table 5.2 shows the
average volume of the different confidence regions. Overall, the robust confidence
region has a slightly higher volume than the other methods especially in small
samples. However, this difference becomes very small as the sample size gets
large. These features hold under both i.i.d. and non-i.i.d. specifications.

6. Covariates

This section describes an extension of our approach to accommodate covariates
that model observable heterogeneity. Because interpretations follow closely those
for the stripped-down model, we keep discussions brief and focussed on the new
features.

The model of each individual experiment is now described by (S,X,U,G,Θ; q,m),
where: S, U,Θ,m are as before, and X is the finite set of covariate values. Co-
variates are stochastic and distributed according to the full support measure
q ∈ ∆ (X), independently from u. Model predictions take the form of a (weakly
measurable) correspondence G (· | θ, x) : U  S, for each θ ∈ Θ and x ∈ X. The
latter and m induce, the belief function νθ (· | x) on S, that is conditional on each
θ and x, and is given by

νθ (A | x) = mθ ({u ∈ U : G (u | θ, x) ⊂ A}) , A ⊂ S.

To model the infinite sequence of experiments, consider (S∞, X∞, U∞, G∞,Θ; q∞,m∞),
where (xi, ui) are assumed to be i.i.d. and distributed according to the product of
q∞ and m∞. The outcomes for the entire sequence of experiments are described
by the correspondence, G∞ (· | θ, x∞) : U∞  S∞, where, for each θ and sequence
of covariates x∞ ≡ (x1, ..., xi, ...) ∈ X∞,

G∞ (u1, ..., ui, ... | θ, x∞) ≡ Π∞i=1G (ui | θ, xi) .

29Under the i.i.d. specification with τ = 0.5, the coverage probabilities of all confidence regions
are now below 1 in relatively small samples due to the shorter length of the probability interval.
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This correspondence induces, for each θ ∈ Θ and x∞ ∈ X∞, the belief function
ν∞θ (· | x∞) on S∞ given by

ν∞θ (B | x∞) = m∞θ ({u∞ ∈ U∞ : G∞ (u∞ | θ, x∞) ⊂ B}) , B ⊂ S∞.

Then, ν∞θ (· | x∞) gives the lower envelope of the set Pθ,x∞ , paralleling (2.1), of
all probability laws over S∞ that are consistent with the given theory and θ and
with agnosticism about selection. Consistent with such agnosticism, the set Pθ,x∞
does not restrict how selection varies with the covariate.

For inference we fix A1, ..., AJ , subsets of S.30 Define, for each θ and x ∈ X,

covθ (Ai, Aj | x) = νθ (Ai ∩ Aj | x)− νθ (Ai | x) νθ (Aj | x) (6.1)

varθ (Aj | x) = covθ (Aj, Aj | x) . (6.2)

Let Λθ,x be the covariance matrix, conditional on x: (Λθ,x)jj′ = covθ (Aj, Aj′ | x).
Let Λθ be the |X| J-by-|X| J block-diagonal matrix where Λθ,x1 , ...,Λθ,x|X| are the
blocks; the (k(J − 1) + j, k′(J − 1) + j′) element of Λθ is 0 if k 6= k′, and equals
covθ (Aj, Aj′ | xk) if k = k′.

Define cθ = min
{
c ∈ R+ : N |X|J (cσθ; Λθ) ≥ 1− α

}
. Another way to express

cθ is as follows. Let Zθ =
(
Zθ,1, ..., Zθ,|X|J

)
be multivariate normal with mean

0 and covariance Λθ, and let W = maxk=1,...,|X|J Zθ,k/σθ,k with the conventions
1/0 = ∞, 0/0 = 0 and −1/0 = −∞. Then cθ is the critical value of W : cθ =
min {c ∈ R+ : Pr (W ≤ c) ≥ 1− α}. It can be shown that, if 0 < α < 1/2 and
Λθ 6= 0, then Pr (W ≤ cθ) = 1− α.

For each s∞ ∈ S∞, x∞ ∈ X∞ and A ⊂ S, denote by Ψn (s∞, x∞) (A | x) the
empirical frequency of A in the first n experiments counting only those experi-
ments where xi = x:

Ψn (s∞, x∞) (A | x) =

(
n∑
i=1

I (xi = x)

)−1 n∑
i=1

I (xi = x, si ∈ A) .

Since q has the full support, Ψn is well-defined asymptotically. Define the statistic

Tn (θ) = max
(x,j)∈X×{1,...,J}

{
νθ (Aj | x)−Ψn (s∞, x∞) (Aj | x)√

varθ (Aj | x) /n

}
, (6.3)

30Below the same collection {Aj} of events is used for each covariate value. This is only for

simplicity; we could alternatively use {Akj }
Jk
j=1 for covariate x = xk.
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where we adopt the conventions 1/0 =∞, 0/0 = 0 and −1/0 = −∞.
Finally, define the confidence region:

Cn = {θ ∈ Θ : Tn (θ) ≤ cθ} .

It is not difficult to verify that

Cn =
⋂

(x,j)∈X×{1,...,J}

{
θ ∈ Θ : νθ (Aj | x)−Ψn (s∞, x∞) (Aj | x) ≤ cθ

√
varθ (Aj | x) /n

}
.

Theorem 6.1. Suppose that each x ∈ X appears in the given sequence x∞ =
(x1, x2, ...) infinitely many times. Then,

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn | x∞) ≥ 1− α.

Moreover, equality prevails if 0 < α < 1
2

and Λθ 6= 0 for some θ ∈ Θ.

The main coverage property for the model with covariates follows as a corollary.
Define the unconditional belief function by

ν∞θ (·) =

∫
ν∞θ (· | x∞) dq∞ (x∞) .

Corollary 6.2. We have

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) ≥ 1− α.

Moreover, equality prevails if 0 < α < 1
2

and Λθ 6= 0 for some θ ∈ Θ.

A. Appendix: Proof of CLT

Fix θ. A particular case of the conditional structure (U,G (· | θ) ,mθ) occurs when
U = K (S), the set of all nonempty (and necessarily closed) subsets of S, endowed

with the discrete metric because S is finite, and G (· | θ) = Ĝ maps any K ∈ K (S)

into Ĝ (K) = K ⊂ S. In fact, Choquet’s Theorem (Philippe, Debs and Jaffray
1999, Molchanov 2005) shows that the latter structure is without loss of generality:
a belief function νθ on S generated by any (U,G (· | θ) ,mθ) can also be generated

by
(
K (S) , Ĝ, m̂θ

)
for some probability measure m̂θ on K (S); and similarly for
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ν∞θ . Because
(
K (S) , Ĝ, m̂θ

)
is typically viewed as the canonical representation

of a belief function, we adopt it in the following proof of the CLT. We also denote
the measure on K (S) by mθ rather than m̂θ. Then, without loss of generality,
suppose that νθ and ν∞θ satisfy

νθ (A) = mθ ({K ∈ K (S) : K ⊂ A}) , A ⊂ S,

and

ν∞θ (B) = m∞θ ({K1 ×K2 × ... ∈ (K (S))∞ : Π∞i=1Ki ⊂ B}) , B ⊂ S∞.

Now we consider a sequence {θn}, which induces the sequence of structures
{(U,G (· | θn) ,mθn)}. On the probability space

(
(K (S))∞,m∞θn

)
, define random

variables Xj
ni by

Xj
ni = I (Ki ⊂ Aj) =

{
1 if Ki ⊂ Aj
0 otherwise

for each i, n = 1, 2, ... and j = 1, ..., J .

Then, (using m∞θn), EXj
ni = νθn (Aj),

cov
(
Xj
ni, X

l
ni

)
= E

(
Xj
niX

l
ni

)
− E

(
Xj
ni

)
E
(
X l
ni

)
=

∫
I (Ki ⊂ Aj) I (Ki ⊂ Al) dmθn (Ki)− νθn (Aj) νθn (Al)

=

∫
I (Ki ⊂ Aj ∩ Al) dmθn (Ki)− νθn (Aj) νθn (Al)

= νθn (Aj ∩ Al)− νθn (Aj) νθn (Al) , and

var
(
Xj
i

)
= cov

(
Xj
i , X

j
i

)
= νθn (Aj) (1− νθn (Aj)) .

Let Xni be the RJ -valued random variable with jth component Xj
i . Define

Y j
ni =

(
Xj
ni − EX

j
ni

)
,

and let Yni be the corresponding RJ -valued random variable. Then, EYni = 0 and
Yni has the variance-covariance matrix Λθn .

Compute that, for any β ∈ RJ ,

K1 ×K2 × ... ⊂
{
s∞ : βj ≤ nΨn (s∞) (Aj) for each j

}
⇐⇒
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K1 ×K2 × ... ⊂
{
s∞ : βj ≤

n∑
i=1

I (si ∈ Aj) for each j

}
⇐⇒

βj ≤ min
s∞∈K1×K2×...

n∑
i=1

I (si ∈ Aj) for each j ⇐⇒

βj ≤
n∑
i=1

min
si∈Ki

I (si ∈ Aj) for each j ⇐⇒

βj ≤
n∑
i=1

I (Ki ⊂ Aj) for each j ⇐⇒

βj ≤
n∑
i=1

Xj
ni for each j = 1, ..., J.

Hence,

ν∞θn
({
s∞ : βj ≤ nΨn (s∞) (Aj) for each j

})
= m∞θn

({
K1 ×K2 × ... ∈ (K (S))∞ : βj ≤

n∑
i=1

Xj
ni for each j

})
,

and consequently, for any cn ∈ RJ ,

ν∞θn
(√

n (νθn (Aj)−Ψn (s∞) (Aj)) ≤ cnj for each j
)

= ν∞θn
(
nνθn (Aj)−

√
ncnj ≤ nΨn (s∞) (Aj) for each j

)
= m∞θn

(
nνθn (Aj)−

√
ncnj ≤

n∑
i=1

Xj
ni for each j

)
= m∞θn

(
−cnj ≤

1√
n

n∑
i=1

(
Xj
ni − νθn (Aj)

)
for each j

)
= m∞θn

(
−cnj ≤

1√
n

n∑
i=1

Y j
ni for each j

)
.

Thus the assertion to be proven has been translated into one about independent
(triangular) random variables and classical results can be applied.

We prove that Ỹn ≡ cn + 1√
n

∑n
i=1 Yni →d Z where Z is J-dimensional mul-

tivariate normal with mean c and covariance matrix Λ. Apply the Cramér-Wold

device: let a ∈ RJ and show that a′Ỹn →d a
′Z. Note that limn→∞ var

(
a′Ỹn

)
=

limn→∞ a
′Λθna = a′Λa. If a′Λa = 0, then a′Ỹn →d c = a′Z. If a′Λa > 0, we can
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apply a triangular CLT (White 2001, Theorem 5.11),31 to prove that∑n
i=1 a

′Yni√
n (a′Λθna)

→d N (0, 1) .

Since limn→∞ a
′Λθna = a′Λa,

a′Ỹn = a′cn +

∑n
i=1 a

′Yni√
n

→d N (a′c, a′Λa) .

Thus a′Ỹn →d a
′Z for all a ∈ RJ , which implies that Ỹn →d Z.

The proof of (3.4) is completed by noting that

ν∞θn
(
∩Jj=1

{
s∞ :

√
n [νθn (Aj)−Ψn (s∞) (Aj)] ≤ cnj

})
= m∞θn

(
0 ≤ Ỹn

)
→ Pr (0 ≤ Z) = Pr (−Z + c ≤ c) = NJ (c; Λ) .

�

B. Appendix: Proof of Theorem 3.2

A preliminary remark is that {s∞ : θ ∈ Cn} is measurable for each θ because it

equals
⋂J
j=1

{
s∞ : νθ (Aj)−Ψn (s∞) (Aj) ≤ cθ

√
varθ (Aj) /n

}
and because s∞ 7→

Ψn (s∞) (Aj) is measurable for each j.
For any positive semidefinite matrix Λ ∈ RJ ·J , let σ (Λ) ≡

(√
Λ11, ...,

√
ΛJJ

)
and define

c (Λ) = min {c ∈ R+ : NJ (cσ (Λ) ; Λ) ≥ 1− α} .

We show shortly that c (Λ) is defined even if Λ /∈ {Λθ : θ ∈ Θ}. It will follow that
c (Λθ) = cθ for every θ.

Step 1: NJ

(√
J
α
σ (Λ) ; Λ

)
≥ 1 − α: Let X be multivariate normal with mean 0

and covariance matrix Λ. Then the Chebyshev inequality implies that, for c > 0,

1−NJ (cσ (Λ) ; Λ) = Pr

(
J⋃
j=1

{Xj > cσj (Λ)}

)
≤
∑
j

Pr (Xj > cσj (Λ)) ≤ J

c2
.

31The condition in the theorem that E |a′Yni|2+δ is bounded is satisfied here because Yni is
bounded.
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Set c2 = J
α

. (In particular, when σ (Λ) = 0, then NJ

(√
J
α
σ (Λ) ; Λ

)
= NJ (0; Λ) =

1 > 1− α.)
Step 2: c (Λ) is well-defined for every 0 < α < 1: Note that c 7−→NJ (cσ (Λ) ; Λ) is
upper semicontinuous and (weakly) increasing for all Λ, and (by Step 1) NJ (cσ (Λ) ; Λ) ≥
1 − α for some c ≥ 0. It follows that c (Λ) is well-defined as a minimum. Note
also that, for c∗ ≥ 0,

NJ (c∗σ (Λ) ; Λ) ≥ 1− α ⇐⇒ c∗ ≥ c (Λ) . (B.1)

Step 3: (c,Λ) 7−→ NJ (cσ (Λ) ; Λ) is upper semicontinuous: Take (cn,Λn) →
(c,Λ) ∈ R × RJ ·J . Let Xn and X be multivariate normal random vectors with
means −cnσ (Λn) and −cσ (Λ), and variances Λn and Λ, respectively. Then the
characteristic functions of Xn converge pointwise to the characteristic function of
X, which implies that Xn →d X by Lévy’s Continuity Theorem. Thus

lim sup
n→∞

NJ (cnσ (Λn) ; Λn) = lim sup
n→∞

Pr (Xn ≤ 0) ≤ Pr (X ≤ 0) .

Step 4: [Λn → Λ and c (Λn)→ c∗] =⇒ c∗ ≥ c (Λ): By Step 3, NJ (c∗σ (Λ) ; Λ) ≥
1− α. Apply (B.1).
Step 5: Let Bel (S) be the set of belief functions on S equipped with the sup-norm
topology. Since S is finite, Bel (S) is compact. For ν ∈ Bel (S), let Λν be the
covariance matrix as defined in (3.3). Then ν 7−→ Λν is continuous and hence
{Λν : ν ∈ Bel (S)} is compact.
Step 6: Complete the proof of (3.11). Let {θn} be a sequence such that

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) = lim inf
n→∞

ν∞θn (θn ∈ Cn) .

Since ν∞θn (θn ∈ Cn) is bounded, by taking a subsequence if necessary, we can as-
sume that lim infn→∞ ν

∞
θn

(θn ∈ Cn) = limn→∞ ν
∞
θn

(θn ∈ Cn). Moreover, by Step 5,
and by taking a further subsequence if necessary, we can assume that Λθn → Λ ∈
RJ ·J . By Step 1 and (B.1), 0 ≤ c (Λθn) ≤

[
J
α

]1/2
. Therefore, a further subsequence

allows us to assume that c (Λθn)→ c∗. Thus, the CLT (Theorem 3.1) implies that

lim
n→∞

ν∞θn (θn ∈ Cn) = NJ (c∗σ (Λ) ; Λ)

(by Step 4) ≥ NJ (c (Λ)σ (Λ) ; Λ) ≥ 1− α.

Step 7: If NJ (cθσθ; Λθ) = 1 − α, then limn→∞ ν
∞
θ ({s∞ : θ ∈ Cn}) = 1 − α: The

CLT implies that

lim
n→∞

ν∞θ ({s∞ : θ ∈ Cn}) = NJ (cθσθ; Λθ) = 1− α.

36



Step 8: If 0 < α < 1
2

and Λθ 6= 0, then NJ (cθσθ; Λθ) = 1 − α: Λθ 6= 0 =⇒
σ (Λθ) 6= 0. Wlog let σ1 (Λθ) > 0. Then c 7−→ NJ (cσθ; Λθ) is continuous and
strictly increasing on c ≥ 0.

Argue that NJ (0; Λθ) < 1 − α: Let Z be multivariate normal with mean 0
and covariance matrix Λθ 6= 0. Then,

NJ (0; Λθ) = Pr (X ≤ 0) = Pr (X1 ≤ 0) Pr (X2, ..., XJ ≤ 0 | X1 ≤ 0)

≤ Pr (X1 ≤ 0) = 1
2
< 1− α.

By Step 1, limc→∞NJ (cσθ; Λθ) > 1 − α. Therefore, NJ (cσθ; Λθ) = 1 − α has a
solution c > 0, and c = cθ necessarily.
Step 9: If NJ (cθσθ; Λθ) = 1−α for some θ ∈ Θ, then limn→∞ infθ∈Θ ν

∞
θ ({s∞ : θ ∈ Cn}) =

1− α: Note that

lim sup
n→∞

inf
θ∈Θ

ν∞θ ({s∞ : θ ∈ Cn}) ≤ lim sup
n→∞

ν∞
θ

({
s∞ : θ ∈ Cn

})
= 1− α

≤ lim inf
n→∞

inf
θ∈Θ

ν∞θ ({s∞ : θ ∈ Cn})

where the equality follows from Step 7 and the last inequality follows from (3.11).
�

C. Appendix: Details for the binary example

Proof of (4.4): For any λ in [−1, 0], define Λ (λ) =

[
1 λ
λ 1

]
, and c (λ) by

N 2 ((c (λ) , c (λ)); Λ (λ)) = 0.95.

Then λ 7−→ c (λ) is (strictly) decreasing on [−1, 0] because N 2 (·; Λ (λ))
λ

↗.32 It

follows that c (λ)
λ

↘. In addition, λ 7−→ c (λ) is continuous on [−1, 0].33

32The simple intuition is that the probability of both component r.v.s falling below (in a vector
sense) any given β ∈ R2 is large when the components move together, or are less negatively
correlated. See Muller and Scarsini (2000, Theorem 4.2) for a formal result.

33A question may arise for λ = −1 because Λ (−1) is singular. Thus here are some details. By
the noted monotonicity, limλ↘−1 c (λ) ≤ c (−1); and the opposite inequality follows from Step
4 in the proof of Theorem 3.2.
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Fix α = .05. For θs such that one or more of the variances varθ (A1) and
varθ (A2) vanish, then, as in the Jovanovic example, the dimensionality is reduced
below 2 and closed-form expressions can be derived.

For θs satisfying 0 < θ1 < θ2 < 1– one has σθ >> 0 and

N 2 (cσθ; Λθ) = N 2 ((c, c); Λ (λθ)) ,

where

λ′θ = −
[

θ1

1− θ1

· 1− θ2

θ2

]1/2

. (C.1)

Thus cθ = c (λ′θ), and from the preliminary arguments above, c(θ1,θ2) is increasing
in θ1 and decreasing in θ2, and c(θ1,θ2) varies continuously with θ in this ”interior”
region. In addition, because −1 < λ′θ < 0, infer that

c (0) < cθ < c(−1), (C.2)

and
c (0) = lim

θ1↘0
c(θ1,θ2), lim

θ1↗θ2
c(θ1,θ2) = c (−1) .

Finally, note that: (1) c(−1) is defined by N 2 ((c(−1), c(−1)); Λ (−1)) = 1−α.
Because Λ (−1) is singular, any underlying r.v. Z = (Z1, Z2) satisfies Z1 = −Z2

a.s. Accordingly, c(−1) is such that a standard 1-dimensional normal variable
Z1 satisfies −c(−1) ≤ Z1 ≤ c(−1) with probability 1 − α; in other words, given
α = .05, c (−1) = 1.96. (2) c(0) is defined by N 2 ((c(0), c(0)) ; Λ (0)) = .95 or

N 1 (c(0); 1) = [.95]1/2 ' .9747, which gives c(0) = 1.955. �

D. Appendix: Proofs for covariates

We outline the proof of Theorem 6.1, which adapts the arguments for the no-
covariate case. We use two lemmas that highlight the added steps needed to
accommodate covariates. The assumption that each x appears infinitely often is
maintained.

Write S∞ = S1 × S2 × ..., where Si = S for all i. For any I ⊂ {1, 2, ...},
denote by ΣI the σ-algebra generated by (Borel measurable) cylinders of the form
Πi∈IAi × Πi 6∈ISi, where Ai ⊂ Si = S. Say that B1, B2 ⊂ S∞ are orthogonal if
they depend on different experiments in the sense that B1 ∈ ΣI1 and B2 ∈ ΣI2 for
some disjoint I1 and I2.

38



Lemma D.1. ν∞θ

(
K⋂
k=1

Bk | x∞
)

=
K∏
k=1

ν∞θ (Bk | x∞) if B1, ..., BK are pairwise

orthogonal.

Proof. Let Bk ∈ ΣIk , k = 1, ..., K, where I1, ..., IK are pairwise disjoint. Then

ν∞θ

(
K⋂
k=1

Bk | x∞
)

= m∞θ

({
u∞ ∈ U∞ :

∞∏
i=1

G (ui | θ, xi) ⊂
K⋂
k=1

Bk

})

= m∞θ

(
K⋂
k=1

{
u∞ ∈ U∞ :

∏
i∈Ik

G (ui | θ, xi) ⊂ Bk

})

=
K∏
k=1

m∞θ

({
u∞ ∈ U∞ :

∏
i∈Ik

G (ui | θ, xi) ⊂ Bk

})

=
K∏
k=1

ν∞θ (Bk | x∞) . �

Lemma D.2. Let Λθn,xk → Λk ∈ RJ ·J for each k = 1, ..., |X|, and let Λ be
the |X| J-by-|X| J block diagonal matrix where Λ1, ...,Λ|X| are the blocks. Also
assume cn → c ∈ R|X|J . Then

ν∞θn

(
∩|X|k=1 ∩

J
j=1

{
s∞ :

√
n [νθn (Aj | xk)−Ψn (s∞, x∞) (Aj | xk)] ≤ cnkj

})
→N |X|J (c; Λ) .

Proof. The events ∩Jj=1 {s∞ :
√
n [νθn (Aj | xk)−Ψn (s∞, x∞) (Aj | xk)] ≤ cnkj},

k = 1, ..., |X|, are pairwise orthogonal. Therefore, by the preceding lemma,

ν∞θn

(
∩|X|k=1 ∩

J
j=1

{
s∞ :

√
n [νθn (Aj | xk)−Ψn (s∞, x∞) (Aj | xk)] ≤ cnkj

})
=

|X|∏
k=1

ν∞θn
(
∩Jj=1

{
s∞ :

√
n [νθn (Aj | xk)−Ψn (s∞, x∞) (Aj | xk)] ≤ cnkj

})
→

|X|∏
k=1

NJ (ck; Λk) = N |X|J (c; Λ) .

Here, cnkj ∈ R, cn = (cnkj)k,j ∈ R|X|J , ck ∈ RJ and c = (ck)k ∈ R|X|J . �

39



The rest of the proof of Theorem 6.1 is similar to that for the no-covariate
case.

Proof of Corollary 6.2: Let X∞inf be the set of all x∞ ∈ X∞ for which each
value in X appears infinitely often. Then,

ν∞θ (·) =

∫
X∞inf

ν∞θ (· | x∞) dq∞ (x∞) , and

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) ≥
∫
X∞inf

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn | x∞) dq∞ (x∞) ≥ 1− α.

To show the equality assertion, let θ ∈ Θ satisfy Λθ 6= 0. Then,

lim sup
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) ≤ lim sup
n→∞

ν∞
θ

(
θ ∈ Cn

)
= lim sup

n→∞

∫
X∞inf

ν∞
θ

(
θ ∈ Cn | x∞

)
dq∞ (x∞)

≤
∫
X∞inf

lim sup
n→∞

ν∞
θ

(
θ ∈ Cn | x∞

)
dq∞ (x∞) = 1− α

≤ lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) . �

E. Appendix: Latent variables robustified

Currently, we define models via primitives (S, U,G,Θ,m), including, in particu-
lar, the probability measures mθ on U for every θ . Model incompleteness arises
only because of the multiplicity of equilibria and ignorance of selection. Here we
follow up on the remarks at the end of Section 2 and consider another source of
incompleteness–limited understanding of the latent variables, which seems intu-
itive for variables that are not observed by the analyst. Formally, we suggest that
this situation can be modeled as above except that every mθ is a belief function
rather than a measure. Also in this case we obtain belief functions νθ on S that
satisfy a CLT which in turn can be used to construct robust confidence regions.
Note that in the present context, robustness with regard to (limited) ignorance
about latent variables is desirable even if selection is well-understood, for example,
if equilibria are unique.
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Let S, U , G and Θ be as before. Instead of adopting m as another primitive,

we derive it from more basic primitives. Thus let the tuple
(
Û ,Γ, m̂

)
describe

the (limited) understanding of latent variables, where Û is Polish, m̂ = (m̂θ)θ∈Θ,

each m̂θ is a Borel probability measure on Û , and Γ (· | θ) : Û  U is weakly
measurable. (The assumption that the same parameters θ enter here is without
loss of generality since one could expand the parameter space Θ as needed.) Thus

probabilistic knowledge is assumed on Û which, via the correspondence Γ, provides
only coarse information about the latent variables u ∈ U . Paralleling (2.4), the

elements Û , Γ and m̂ induce (for each θ) a belief function on U , denoted by mθ

and given by
mθ (Y ) =m̂θ ({û : Γ (û | θ) ⊂ Y }) , Y ⊂ U . (E.1)

Consider now the model (S, U,G,Θ,m) where m = (mθ)θ∈Θ and each mθ is a
belief function on U . Define νθ on (subsets of) S exactly as in (2.4), that is,

νθ (A) = mθ ({u : G (u | θ) ⊂ A}) , A ⊂ S.

Then νθ is a belief function: To see this, take Y = {u : G (u | θ) ⊂ A} in (E.1) to
derive

νθ (A) = m̂θ ({û : Γ (û | θ) ⊂ {u : G (u | θ) ⊂ A}})
= m̂θ

({
û : ∪u∈Γ(û|θ)G (u | θ) ⊂ A

})
= m̂θ

({
û : Ĝ (û | θ) ⊂ A

})
,

where Ĝ (· | θ) : Û  S is the ”composition” of G and Γ defined by

Ĝ (û | θ) = ∪u∈Γ(û|θ)G (u | θ) . (E.2)

Thus
(
Û , Ĝ, m̂

)
generates νθ exactly as in (2.4), which proves that νθ is a belief

function.
Because it depends only on having a belief function νθ on S for each parameter

θ, the inference method described in Section 3 applies without modification. Only
the interpretation must be modified slightly to reflect the fact that there are
now two sources of model incompleteness or areas of ignorance: in addition to
ignorance of how outcomes are selected from G (u | θ), there is also the coarse
information about u due to Γ (· | θ) being set-valued. The (extended) inference
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method is robust to heterogeneity and dependence across experiments in both
selection and in the unknown fine details regarding latent variables in U .

In a sense there is nothing new above since one could take
(
S, Û , Ĝ,Θ, m̂

)
as

the model. However, in applications the identity of Û , Γ and m̂ underlying the
modeling of latent variables in U may not be clear. In those cases, the analyst
might begin with the reduced form model (S, U,G,Θ,m) where each mθ is a belief
function. One can view the preceding as providing a rationale for doing so when
the underlying primitives are not clear. Specification of mθ may involve some
arbitrariness but this is the case also when probability distributions are adopted
for latent variables.
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