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Abstract

This paper studies the macroeconomic implications of the rise in firm-level scale economies. My

empirical finding is that the average firm-level returns to scale increased within all US sectors, go-

ing from 1 to 1.05 between 1980 and 2014. Simultaneously, business dynamism declined, markups

rose, and firms devoted increasing resources to customer acquisition, suggesting their active in-

volvement in building and exploiting scales. To jointly account for these facts, I propose a novel

theory of firm dynamics grounded in directed search in the product market. Search frictions mi-

crofound the customer accumulation process and the presence of heterogeneous markups. The

rise in returns to scale explains 62-70% of the decline in business dynamism; 29% of the increase in

markups; and 14-45% of the growth in expenditures devoted to customers acquisition. Addition-

ally, the model rationalizes further facts: the aging of US firms, the reallocation of sales toward

high markup firms, and firms’ declining responsiveness to productivity shocks.
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1 Introduction

Over the last decades, firm-level production processes have undergone spectacular transformations.

The introduction of new technologies, such as information and communication technologies (ICT),

and extensive data availability have changed the way firms organize their production. The poten-

tial of these technological advancements to expand firms’ scale economies—the cost advantages that

firms obtain due to their scale of operation—has captured the attention of academic researchers.1

Meanwhile, US policymakers’ concerns about the effect of these changes on firms’ pricing strategies

and competition for customers have gained momentum.2 This is because, rising scale economies,

manifesting through lower costs for the largest firms, may have enabled these same firms to become

highly effective in pricing, attracting customers, and exerting market power. Simultaneously, firms

have devoted increasing resources to customers acquisition throughout activities such as advertise-

ment and trademarks, suggesting their active involvement in building and exploiting scales.3

These technological transformations in firm-level production processes may explain why the US

economy has experienced noteworthy trends over the same period of time. In particular, business

dynamism—the entry rate of new firms and the reallocation rate of labor across firms—has declined

steadily while markups have risen.4 This has led some observers to speculate that the engine of US

productivity may have slowed down, and that its economy may have moved from a competitive to

a rent-based one.5

However, to date, few studies have systematically analyzed the evolution of firm-level scale

economies. What are the consequences of this technological transformation for the above US trends?

This project aims to provide an explanation that links these phenomena and makes two contributions.

First, I use firm-level data from Compustat to investigate the evolution of firm-level returns to scale

in production in the US between 1980 and 2014. Second, I propose a novel theoretical framework to

study the implications of changes in returns to scale through their impact on customer accumulation.

To study the evolution of returns to scale in the US economy, I estimate the firm-level production

function. Here, I follow two state-of-the-art techniques. The first is the control function approach, as

1Bloom, Garicano, Sadun, and Van Reenen (2014) show the link between better information technologies and a wider
firm-level span of control.

2Khan (2016), now chair of the Federal Trade Commission, argued extensively about her worries regarding the pricing
strategies adopted by Amazon and how this might be the outcome of the firm’s scale economies.

3Kost, Pearce, and Wu (2019) document the rise in trademark activities in the US and how this is associated with
market power, whereas De Loecker, Eeckhout, and Unger (2020) show that firms spending more on selling general and
administrative are associated with higher markups.

4Decker, Haltiwanger, Jarmin, and Miranda (2014) document the decline in business dynamism, that is, the slowdown
in the entry rate of new firms and the reallocation rate of labor across firms. De Loecker, Eeckhout, and Unger (2020) show
the rise in markups.

5Decker, Haltiwanger, Jarmin, and Miranda (2016) explain how declining business dynamism may impair the reallo-
cation process across firms, and hence, lower US productivity. Philippon (2019) and Eeckhout (2021) discuss some of the
potential reasons why the US economy has become less competitive.
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in Ackerberg, Caves, and Frazer (2015), widely used by the empirical Industrial Organization liter-

ature. Second, I use the cost shares approach adopted by Syverson (2004) and Foster, Haltiwanger,

and Syverson (2008). Estimating production technologies in two-digit sectors and over time, as in

De Loecker, Eeckhout, and Unger (2020), I find a 5% increase in the average returns to scale, going

from 1 in 1980 to 1.05 in 2014. Additionally, this rise shows an acceleration around 1990, consistent

with the ICT acceleration ongoing in the same period.6 Estimating production technologies at the

sector level makes it possible to go beyond the analysis to the evolution of the average returns to

scale—which could neglect distributional changes across sectors—and to study alternative reasons

for this rise, exploiting cross-sectional variation. In particular, there are two potential reasons why

the average returns to scale may have risen. First, returns to scale may have increased within all sec-

tors. Second, there could have been a reallocation of economic activity between sectors toward sectors

with ex-ante higher returns to scale. To study these two possibilities, I exploit a statistical decompo-

sition at the sector level, which shows that the rise in the average returns to scale is a within-sector

phenomenon.

Although other works have noticed the rise in returns to scale, this paper is the first to highlight

the within-sector nature of this phenomenon. This novel fact is consistent with the view that US

firms have undergone a technological transformation that has enabled them to increase their scale

of operations.7 I interpret the estimated increase in returns to scale as an exogenous technological

change, seeking to understand its consequences for the US economy and the recent trends mentioned

above.

To understand the consequences of this technological change, I propose a novel model of cus-

tomer accumulation. The framework builds on Gourio and Rudanko (2014) and Roldan-Blanco and

Gilbukh (2020) and brings additional tools from the labor-search literature to model customer switch-

ing across firms, which in the data is between 10-25% a year.8 Accounting for customer switching im-

poses discipline on market power dynamics, as firms internalize the effect of their pricing decisions

on their customer base endogenous attrition. To do so, I introduce directed search in the product

market, which implies that firms use prices and markups to compete for customers. Further, search

frictions imply that firms devote resources to contact new customers. In the model, the presence of

fixed operating costs introduces the endogenous entry and exit of firms as standard in most firm dy-

6For instance, the World Wide Web entered everyday life in the first period of the 1990s.
7Haskel and Westlake (2018) argue in their book that the rise of intangible capital—which is highly related to the digital

revolution—has increased the ability of firms to scale their production. Newman (2014), Agrawal, Gans, and Goldfarb
(2018), Begenau, Farboodi, and Veldkamp (2018), Goldfarb and Trefler (2018), Carriere-Swallow and Haksar (2019), and
Jones and Tonetti (2020) all emphasize the potential role of data, particularly gathering information from the customer base,
for the rise of returns to scale and the presence of increasing returns. Lashkari, Bauer, and Boussard (2021) document, using
French data, that the adoption of ICT inputs has allowed firms to improve their organization, helping them to improve
their scale economies and giving rise to higher returns to scale.

8See, for example, the value surveyed by Gourio and Rudanko (2014) from industry estimates.
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namics frameworks à la Hopenhayn (1992). Therefore, while remaining tractable for computational

analysis, the framework can manage a rich set of firm-level facts and aggregate trends.

The model is grounded in search frictions in the product market. Search frictions microfound

firm-level investments in the customer base and firms’ strategic use of prices and markups to attract

and retain customers, which are an established feature of the firms’ activities.9 Perhaps most im-

portantly, they align the model with the literature pioneered by Foster, Haltiwanger, and Syverson

(2008), which shows that firms mostly grow by accumulating demand. In this vein, recent empirical

works by Afrouzi, Dernik, and Kim (2020) and Einav, Klenow, Levin, and Murciano-Goroff (2020)

show that customer accumulation accounts for 70% of firms’ overall life-cycle growth.

I calibrate the model to the 1980s period using identifying moments of the firms’ life-cycle, busi-

ness dynamism statistics from that period, and moments related to firm-level markups. First, as a

validation exercise, I show that the model is consistent with a range of cross-sectional and firm-level

facts. Second, I demonstrate that the introduction of customer accumulation through search frictions

improves the general fit of the model on a series of important but often neglected firms’ life-cycle

facts. In particular, the model captures the upward sloping life-cycle path of markups and the down-

ward sloping life-cycle path of selling-expenditures, relative to production costs, as observed in the

microdata.

In the model, a rise in returns to scale reduces the marginal cost of production and, due to the

properties of increasing returns to scale in production, reduces it by more for the biggest firms. This

implies that the biggest firms in the economy become very effective in pricing, attracting customers,

and charging markups. Therefore, although all firms are subject to the same change, its outcome is

highly unequal, as it favors the biggest firms in the economy. This decline in marginal costs has three

direct implications: (i) it increases the willingness of firms to scale up, and hence, their expenditures

devoted to customer acquisition; (ii) it raises the firm-level markups due to the presence of incom-

plete pass-through; and (iii) it weakens the selection process in the model, implying a lower entry

and reallocation rate. It is noteworthy that the first prediction—that is, the endogenous rise in selling-

related expenditures relative to production costs after a rise in returns to scale—is a unique feature

of this model, where firms invest in their demand through selling-related expenditures.10 I test and

confirm all the predictions in the cross-section of sectors of the Compustat data: I find that higher

returns to scale in a sector are positively associated with higher average markups and higher average

9Dubé, Hitsch, and Rossi (2010) and Bronnenberg, Dubé, and Gentzkow (2012) document the prevalence of long-term
customer relations. Ruhl and Willis (2008) and Eaton, Eslava, Kugler, and Tybout (2009) show that the buildup of market
shares is a slow process. Paciello, Pozzi, and Trachter (2019) show that customers are sensitive to prices and that firms
consider this while setting them.

10Models in which market power comes from horizontal differentiation (Dixit and Stiglitz (1977), Kimball (1995), and
Atkeson and Burstein (2008)) or search frictions, with only strategic pricing (Paciello, Pozzi, and Trachter (2019) and
Roldan-Blanco and Gilbukh (2020)), would not be able to produce the aforementioned facts as, normally, the only non-
production costs they feature are fixed costs.
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selling-related expenditures, relative to production costs, and negatively associated with entry and

reallocation rates.

I use the calibrated model to study the macroeconomic consequences of the observed rise in re-

turns to scale. This technological change explains 62-70% of the decline in business dynamism; 29%

of the increase in markups; and 14-45% of the growth in expenditures devoted to customer acquisi-

tion. Additionally, I show that this technological change is consistent with the phenomenon of the

aging of firms, as documented in the data by Hopenhayn, Neira, and Singhania (2018). It reproduces

the reallocation of economic activity toward high markup firms, which gives rise to the fattening

of the right tail of the markup distribution, as documented by Autor, Dorn, Katz, Patterson, and

Van Reenen (2020), De Loecker, Eeckhout, and Unger (2020), and Kehrig and Vincent (2021). It ex-

plains the decline in firm-level responsiveness to productivity shocks, which Decker, Haltiwanger,

Jarmin, and Miranda (2020) document as a central component of the decline in business dynamism.

Although the rise in returns to scale does not fully account for the markup increase, my investigation

suggests that they are an important factor.

Literature Review. This paper contributes to several strands of the literature. It first relates to the

search and matching literature on both the labor and the product market. Labor market papers that

first introduced some of the techniques used in this paper are Moen (1997), Menzio and Shi (2010),

and Menzio and Shi (2011). I build on the methodology developed by Schaal (2017), which, however,

focuses on the labor market. Closer to my focus are Gourio and Rudanko (2014), Paciello, Pozzi,

and Trachter (2019), and Roldan-Blanco and Gilbukh (2020), which all develop heterogeneous firms

models with search frictions in the product market.11 Relative to Gourio and Rudanko (2014) and

Roldan-Blanco and Gilbukh (2020), I allow incumbent customers to search, which is a feature of real-

ity and an important factor for firms’ pricing decisions. Moreover, compared to Gourio and Rudanko

(2014), I allow for commitment on the firm side, which enables firms to charge different prices, even

to their incumbent customers. In the absence of commitment, all firms would ask the same price to

the incumbent customers, equal to their marginal evaluation, which would make the model quantita-

tively unsuited to study dispersion in markups coming from different pricing strategies. Differently

from Paciello, Pozzi, and Trachter (2019) and Roldan-Blanco and Gilbukh (2020), I allow for increas-

ing returns production technology and firm-level expenditures for customer accumulation, which

are all fundamental features for the objective of this paper.

This paper also contributes to the empirical literature that has analyzed technological changes in

11Burdett and Coles (1997) study the role of firm size for pricing when firms use the price to attract new customers.
Dinlersoz and Yorukoglu (2012) provide a theoretical model of industry dynamics in the presence of information frictions.
Burdett and Judd (1983), Menzio and Trachter (2015), Burdett and Menzio (2018), and Menzio and Trachter (2018) study
equilibrium price dispersion without relying on firm heterogeneity.
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the firm-level production process. Chiavari and Goraya (2021) show that firms’ production technol-

ogy has become more intangible intensive, at the expense of labor, and that this has had significant

implications for the changes in the US factor shares. More closely related to this paper is the work

by Lashkari, Bauer, and Boussard (2021), using French data to show that firms employed ICT invest-

ment to increase their firm-level returns to scale; however, they do not analyze its implications for

markups. Relative to them, I focus on the US, documenting the within-sector increase in firm-level

returns to scale, showing that this has had sizeable consequences for the rise in markups. Despite

the focus on the evolution of markups, De Loecker, Eeckhout, and Unger (2020) also document a

rise in returns to scale. Yet, they do not focus on sector-level patterns, which I claim are essential in

understanding the source of this increase.

Furthermore, this paper complements the growing literature that studies the potential explana-

tions behind the rise in markups and the decline in business dynamism. A strand of this literature

emphasizes demographic changes as a relevant factor behind these trends. Papers of this kind are

Karahan, Pugsley, and Şahin (2019), Hopenhayn, Neira, and Singhania (2018), Peters and Walsh

(2019), and Bornstein (2018). Alternatively, Liu, Mian, and Sufi (2020) hypothesize that lower interest

rates can explain certain recent trends. Relative to this strand of the literature, this project emphasizes

technological factors as a potential force driving these trends.

Another strand of the literature, closer to this project, emphasizes the technological factors be-

hind the rise in markups and the decline in business dynamism. Papers in this vein are Akcigit and

Ates (2021), De Ridder (2019), Weiss (2019), and De Loecker, Eeckhout, and Mongey (2021).12 Akcigit

and Ates (2021) argue that a decline in productivity spillovers from leaders to laggards is a driver

of some recent trends. De Ridder (2019) emphasizes that the rise of firms that are better at using

intangibles (as intangibles make other factors more productive) is important for the rise in markups,

the decline in business dynamism, and productivity growth. Weiss (2019) shows how intangibles can

explain the rise in markups and concentration. De Loecker, Eeckhout, and Mongey (2021) document

that the rise in fixed costs and the decline in the number of potential entrants can jointly explain the

rise in markups and the decline in business dynamism. I contribute to this literature by studying

a different technological change—the rise of returns to scale in production—grounded outside the

model in a detailed micro-level analysis. Leveraging Industrial Organization techniques to estimate

the firm-level production function allows me to infer the strength of the technological change occur-

ring in the US, bringing extra discipline outside the model to the quantitative analysis. The analysis

12Korinek, Ng, and Hopkins (2018) and Martinez (2018) relate automation to the rise in concentration and to the labor
share decline. Crouzet and Eberly (2019) and Zhang (2019) relate the rise in intangibles with the rise in concentration.
Hsieh and Rossi-Hansberg (2019) suggest that the shift toward more productive technologies with higher fixed costs can
explain the divergence behind local and aggregate concentration. Aghion, Bergeaud, Boppart, Klenow, and Li (2019) and
Olmstead-Rumsey (2019) link the rise in concentration to the decline in productivity growth.
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of an alternative technological transformation also provides a new perspective to the ongoing debate

regarding the causes of these US trends. Moreover, using a novel quantitative framework, I study

additional implications compared to the previous literature. In particular, the model explains the rise

in firm-level expenditures devoted to customer accumulation as firms desire to increase their scale of

operation to take full advantage of the rise in scale economies.

Outline. Section 2 presents the empirical methodology and empirical findings of the paper. Sec-

tion 3 introduces the theoretical model. Section 4 calibrates the model and evaluates the performance

of the model using firm-level and cross-sectional facts. Section 5 analyzes and discusses the impact of

rising returns to scale before quantifying implications for the aggregate trends objective of this paper.

Section 6 concludes.

2 Empirical Evidence

In this section, I present the empirical analysis of this project: (i) I introduce the main dataset used

throughout the analysis; (ii) then, I introduce the main empirical methodology used to estimate firm-

level returns to scale; (iii) finally, I document a rise in returns to scale in production within the last

three decades.

2.1 Data

In this paper, I use two main data sources: Compustat and BDS data. The former is used to obtain in-

formation on US firms, while the latter is used to obtain representative measures for the US economy.

Compustat. The main data source is Compustat, a firm-level database with all US publicly traded

firms between 1977 to 2014.13 In this section, I discuss the strengths and limitations of this dataset. I

provide more details on the data-cleaning process in Appendix A.1.

The choice of data is driven solely by the ability of these data to cover the period of interest and

the largest number of sectors. These characteristics make these data an excellent source of firm-level

information to study technological changes in production undertaken by US firms.

Even though publicly traded firms are few relative to the total number of firms ()as they tend to

be the largest firms in the economy) they account for roughly 30% of US employment (see, Davis,

Haltiwanger, Jarmin, Miranda, Foote, and Nagypal (2006)). The Compustat data contain informa-

tion on firm-level financial statements, including measures of sales, input expenditures, capital stock

information, and a detailed industry activity classification.

13This is also the frame for which the BDS data are available.
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However, despite its many virtues, these data present two main limitations: (i) the fact that it is

impossible to distinguish quantity and prices, which makes measurement of the production function

elasticities significantly more challenging as extensively explained in the next section;14 and (ii) the

possible selection issues arising from using only publicly traded firms. To address the first concern,

I follow the methodologies explained in Section 2.2.1. Moreover, whenever possible, I compare my

results with additional data sources to isolate the potential bias of using only publicly traded firms.

BDS data. To obtain representative aggregate US measures of the firms’ size distribution and busi-

ness dynamism, I use the publicly available dataset from the Business Dynamics Statistics (BDS)

program of the Census Bureau.15

2.2 Production Function Estimation

To estimate firm-level returns to scale, I follow De Loecker, Eeckhout, and Unger (2020) and use two

main approaches: (i) the control function approach and (ii) an "augmented" cost shares approach.

Both of these approaches are popular methods used to estimate firm-level production functions. I

review here the two methodologies, emphasizing their virtues and their limitations.

2.2.1 Control Function Approach

The control function approach was pioneered by Olley and Pakes (1996), and developed further by

Levinsohn and Petrin (2003) and Ackerberg, Caves, and Frazer (2015). The main insight from this

literature is that firm-level unobservable productivity can be proxied by some variable expenditure.

To overcome some of the criticism emphasized in Gandhi, Navarro, and Rivers (2020), I work with

a structural value-added specification, as in Ackerberg, Caves, and Frazer (2015) and De Loecker and

Scott (2016), given by:

Qit = min
{

Kβk

it Lβ`

it exp(ωit + ε it), βm Mit

}
, (1)

where Qit is output, Kit is capital, Lit is labor, ωit is log-productivity, ε it is the error term, and

Mit is the materials. This structural value-added production function yields the following first-order

condition:

Qit = Kβk

it Lβ`

it exp(ωit + ε it), (2)

justifying the regression of Qit on capital and labor while ignoring materials. One caveat is that,

14This challenge is present in most of the production data.
15https://www.census.gov/programs-surveys/bds/data/data-tables.html.
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in theory, equation (2) may not be satisfied in certain situations. If capital and labor are quasi-fixed,

and the materials are a flexible input, then when output prices are sufficiently low relative to the

price of materials, it will be better to set Mit = 0 and not produce at all. However, given that my data

only include actively producing firms, I assume that equation (2) always holds.16 Therefore, under

the specification in equation (1), the estimation of the firm-level production function reduces to:

qit = βkkit + β``it + ωit + ε it, (3)

where qit = log(Qit), kit = log(Kit), and `it = log(Lit). As usual, the main identification chal-

lenge to the production function estimation is the simultaneity bias induced by the unobserved

time-varying firm-level productivity, ωit. I follow the control function literature, and in particular

Ackerberg, Caves, and Frazer (2015) and De Loecker, Eeckhout, and Unger (2020), to estimate the

production function in (3) using a two-step approach based on the use of a control function for the

productivity process. The identification relies on the observation that the firm’s labor demand is

given by a policy function of the form `it = `(kit, ωit). Then, providing that the policy function is

invertible, the productivity process can be proxied by a control function given by ωit = ω(kit, `it),

where ω(·) = `−1(·).17

Therefore, in the first stage of this estimation procedure, I clean the firm-level output value from

the measurement errors and unanticipated productivity shocks, regressing output on a polinomial of

capital, labor, and potential demand shifters, given by:

qit = P(kit, `it, dit) + ε it. (4)

Then, in the second stage, using the estimate P̂ from the previous stage, I can construct a measure

of productivity that does not depend on the measurement error ε it, given by:

ωit(βk, β`) = P̂(kit, `it, dit)− βkkit − β``it. (5)

Finally, taking advantage of the assumption that productivity follows an AR(1) process, it is pos-

sible to construct a measure of productivity innovations given by:

ξ(βk, β`, ρ) = ωit(βk, β`)− ρωit−1(βk, β`). (6)

Therefore, using the productivity innovations, I construct a set of moment conditions to estimated

16For a more detailed discussion on this issue, see Ackerberg, Caves, and Frazer (2015).
17The assumptions needed to ensure the invertibility of the policy functions associated with a wide class of production

functions have been discussed extensively by Pakes (1994), Olley and Pakes (1996), Levinsohn and Petrin (2003), and
Ackerberg, Caves, and Frazer (2015).
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the parameters of the production function, given by:

E(ξ(βk, β`, ρ)× zit) = 0Z×1, (7)

where Z ≥ 3 and, under the assumption that firms react to unanticipated productivity shocks

contemporaneously and that capital is predetermined, the set of admissible instruments is zit ∈

{kit, `it−1, kit−1, . . . }. Once the output elasticities are obtained, it is straightforward to recover the

returns to scale as:

α = βk + β`. (8)

Units. It is well known that most of the time, standard production data, such as Compustat, record

revenues and expenditures rather than the physical production and input used. In the presence of

product differentiation (be it through physical attributes or location), an additional source of en-

dogeneity presents itself through unobserved output and input prices.18 This implies that, when

bringing the model to the data, the structural value-added production function takes the following

form:

qit + pit = βk(kit + pk
t ) + β`(`it + p`it) + ωit + ε it, (9)

where pit is the output price, pk
t is the common user cost of capital, and p`it is the price of labor. This

empirical specification produces the following structural error term:

ωit + pit − βk pk
t − β`p`it. (10)

I follow De Loecker, Goldberg, Khandelwal, and Pavcnik (2016) and let the wedge between the

output and input price (scaled by the output elasticity) be a function of the demand shifters and

productivity difference.19 Including demand shifters dit in the control function, constructed using the

measures of market shares, as in De Loecker, Eeckhout, and Unger (2020), should therefore capture

the relevant output and input market forces that generate differences in the output and input price.20

As discussed in De Loecker, Goldberg, Khandelwal, and Pavcnik (2016), this is an exact control when

output prices, conditional on productivity, reflect input price variation, and when the demand is of

18See De Loecker, Goldberg, Khandelwal, and Pavcnik (2016) for a recent treatment of these issues.
19De Loecker, Eeckhout, and Unger (2020) note that not observing output prices perhaps has the unexpected benefit that

output price variation absorbs input price variation, thus eliminating part of the variation in the error term.
20I also use industry dummies to capture persistent variation in the demand across sectors.
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the (nested) logit form.

This is clearly a second-best solution to address the above challenge in estimating the production

function; however, it is impossible to go beyond this second-best solution to the problem without

more detailed data on the output quantities.

2.2.2 Cost Shares

The cost shares approach has been prominently adopted in Foster, Haltiwanger, and Syverson (2008),

and it exploits the first-order conditions of the firm. To make fruitful use of the firm’s first-order

conditions, two assumptions are needed: (i) there are constant returns to scale in production and

(ii) all inputs are variable. With these assumptions, we can calculate output elasticities from the cost

shares. The cost shares of both inputs are defined as:

θ` = median

{
wit`it

wit`it + rtkit

}
and θk = 1− θ`, (11)

where wit`it is the wage bill, and rtkit is the rental cost of capital. Therefore, an extra requirement in

this method involves the possibility of calculating the return on the physical capital, rt.

The assumptions required to apply this methodology seem to be incompatible with the objective

of this project, that is, the estimation of returns to scale in production. However, I explain how these

assumptions have been relaxed by the literature, rendering this methodology flexible for a wide

scope of applications.

First, following Foster, Haltiwanger, and Syverson (2008), one can use moving averages of the

cost shares to accommodate for slow adjustments of the inputs due, for example, to adjustment costs.

Second, following Syverson (2004), returns to scale can be calculated, even when using a cost shares

approach. In particular, he assumes the following functional form for the technology based on cost

shares but without constant returns:

qit = α
[
θkkit + θ``it

]
+ X ′itδ + ωit (12)

with all variables in logs, θk and θ` are given by (11), and X it is a vector of potential controls. There-

fore, while each cost share determines the output elasticity, the technology does not need to be con-

stant returns, and the curvature is captured by α, which can be estimated with a simple OLS.

2.3 The Rise in Returns to Scale

Here, I document the rise in returns to scale under both specifications. Then, I look into the sectoral

distribution of returns to scale, finding that this rise is due to an increase across all sectors.
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2.3.1 Average Returns to Scale in Production

To estimate the returns to scale for the US economy over a period spanning three decades, I need

to assume the particular level at which the production technology is shared across firms. I begin by

estimating the returns to scale under the assumption that all firms in the economy share the same

production technology. I relax this seemingly unrealistic assumption later on in the analysis. More-

over, to allow for time variation in the elasticities, I estimate equation (3) using a ten-year rolling

window around the year of interest.21 Finally, for the choice of variable input in the production, I

refer the interested reader to Appendix A.1.3.

Figure 1: Returns to Scale with Common Technology
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Note. The figure on the top shows the evolution of the returns to scale computed with the control function approach. The
figure on the bottom shows the evolution of the returns to scale computed with the cost shares approach. The dashed dark
blue line shows the point estimates, whereas the solid light blue line shows the 90% confidence interval. Output elasticities
are time-varying and calculated from 1980 to 2014.

Figure 1 shows the evolution of returns to scale for both the control function approach and cost

shares approach. The dashed dark blue lines show the point estimates of the returns to scale, whereas

the solid light blue lines show the 90% confidence interval. Despite some qualitative differences

between the two approaches, the overall quantitative message is similar. In 1980, returns to scale

were 1, that is, there were constant returns to scale that rose approximately by 5% by 2014. Therefore,

both estimation techniques suggest that, in recent years, US firms’ production technology exhibits

increasing returns to scale.

21Because of data scarcity, I choose a relatively long rolling window. However, the results do not depend on this assump-
tion and are robust to different rolling window schemes.
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Now I relax the previous assumption of common technology across sectors. To do so, I re-estimate

the production technology from equation (3) for each two-digit NAICS industry, again using a ten-

year rolling window around the year in which I estimate the technology.22 Therefore, as I estimate

a different production technology for each two-digit NAICS industry and year, I define the average

returns to scale in the US economy as:

αt = ∑
s

mst · αst, (13)

where mst is the weight of each sector, and αst is the sectoral returns to scale. In the main specification,

I use sales shares as weights.

Figure 2: Returns to Scale with Sector-Level Technology
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Note. The figure on the top shows the evolution of the returns to scale computed with the control function approach. The
figure on the bottom shows the evolution of the returns to scale computed with the cost shares approach. Output elasticities
are time varying and sector specific (two-digit). The average is sales-weighted. The figure illustrates the evolution of the
average returns to scale in production from 1980 to 2014.

The graph on the top in Figure 2 reports the evolution of the baseline measure—obtained with

the control function approach—of average returns to scale across the economy over time. At the

beginning of the sample, returns to scale are equal to 1 and remain constant until the end of the

1980s; then, they start to rise steeply and by the end of the sample, are around 1.05.23 In 2014, the

average returns to scale is 5% higher compared to the one in 1980.

22The assumption that firms within a two-digit NAICS industry share the same technology makes the results comparable
with those in De Loecker, Eeckhout, and Unger (2020).

23My estimates are consistent with those reported by Gao and Kehrig (2017) using census data; they find that production
technology in the US between 1982 and 1987 had constant returns to scale.
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To validate the robustness of the result from the benchmark measure, the graph on the bottom in

Figure 2 shows the evolution of the average returns to scale calculated with the cost shares approach.

The salient characteristics of this measure closely resemble the patterns of the benchmark measure.

From the beginning of the sample to the end of the 1980s, returns to scale are flat and close to 1; then

from the 1990s onward, they start to rise, reaching approximately 1.04 in 2014. Therefore, under the

cost shares approach, the average returns to scale is roughly 4% higher relative to 1980.

Overall, the rise in returns to scale does not seem to be driven by the specific methodology applied

and follows very close patterns across the different specifications. Appendix A.2 reports further

robustness exercises using an additional form of capital (such as intangible capital) and an alternative

specification of the functional form of the production function (for example, the translog production

function). The bottom line is that the finding for the benchmark measure of average returns to scale

is robust.

2.3.2 Sectoral Analysis of Rising Returns to Scale

Although the average returns to scale is a useful statistics, it does not fully capture the underlying

distributional changes in returns to scale. The advantage of estimating sector-specific production

functions is that I obtain a distribution of returns to scale. This allows me to study whether the

documented rise in returns to scale is due to a reallocation of economic activity across sectors or

whether it is due to a rise in all sectors.

To do so, I decompose the rise in the average returns to scale into the component that is at-

tributable to the rise in returns to scale at the sector level and the component that is attributable to

the reallocation of economic activity toward high-returns to scale sectors. Formally, the rise in the

average returns to scale can be decomposed as:

∆αt = ∑
s

mst−1∆αst︸ ︷︷ ︸
∆within

+∑
s

∆mstαst−1︸ ︷︷ ︸
∆between

+∑
s

∆mst∆αst︸ ︷︷ ︸
∆cross term

. (14)

Therefore, the change in average returns to scale can be exactly decomposed into three compo-

nents: (i) a within component, which captures the portion of the change in the average returns to

scale at the industry level; (ii) a between component, which captures the portion of the change in

the average returns to scale due to the reallocation of economic activity toward high-returns to scale

industries; and (iii) finally, a cross-term component, which captures the portion of the change in the

average returns to scale due to the joint change in returns to scale and in reallocation.

I perform this decomposition across sectors in the entire economy. To best present this decom-

position, Figure 3 plots the average returns to scale, calculated with both methodologies, as well as
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two counterfactual experiments, the within and between experiments, based on the decomposition

starting in 1980. I do not plot the cross-term experiment, as it is of little economic interest and sub-

stantially zero across the entire period. Finally, I set the initial level to 1980 and then cumulatively

add the changes of each component from equation (14).

The first experiment (dashed dark blue line with squares) shows the counterfactual evolution of

the average returns to scale as if there were only the ∆within component, and all the other com-

ponents were zero. This experiment shows that the within component tightly follows the average

returns to scale in the case of the control function approach and exceeds the average returns to scale

in the cost shares approach.24 The second experiment (dotted light blue line with circles) shows the

path of the counterfactual returns to scale if the only change had been due to ∆reallocation. This

shows a flat profile over the period for the control function approach and a decreasing profile for

the cost shares approach. From these two experiments, it is apparent that the rise in the average re-

turns to scale is indeed a within-sector phenomenon and, if anything, the cross-sectoral reallocation

of economic activity has slightly dampened its rise.

Figure 3: Decomposition of Returns to Scale Growth at Sector Level
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Note. The figure plots the counterfactual evolution implied by the decomposition from equation (14) for the control func-
tion approach (upper figure) and the cost shares approach (lower figure). The solid blue line with triangles shows the
(benchmark) average returns to scale. The dashed dark blue line with squares shows the evolution of the average returns
to scale only if the ∆within component is at play. The dotted light blue line with circles shows the evolution of the average
returns to scale only if the ∆between component is at play.

24With the cost shares approach, the within component exceeds the average returns to scale. Thus, in the absence of
reallocation of economic activity across sectors, the rise in returns to scale with this methodology would have been even
higher.
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Taking stock, returns to scale have risen substantially in the US economy, and this rise is occur-

ring across all sectors. This transformation in the firms’ production technology could stem from many

things. For instance, since the 1980s, and with an acceleration from the beginning of the 1990s, a digi-

tal revolution took place in the US. New technologies such as the internet, mobile phones, computers,

and software were developed. These new technologies brought forth an incredible transformation

in the way production and business models could be organized. All of a sudden, firms could share

internal information at a higher pace and could reach customers at a speed and on a scale previously

not possible. The ability of these new technologies to increase the scale at which firms can operate

has been the object of interest among researchers since the beginning of the aforementioned digital

revolution.25 I acknowledge that drawing a clear causal link between the digital revolution in in-

formation technology and the rise of returns scale requires better data than what I have. However,

in this project, I will nonetheless interpret the rise of returns to scale as a pervasive technological

transformation that US firms are experiencing across all sectors.

3 Model

To study the implications of the technological change outlined above for firms’ investment in their

customer base, business dynamism, and markups, I build a firm dynamics model with search fric-

tions in the product market. Search frictions are a natural choice to microfound (i) the presence of het-

erogeneous endogenous markups in equilibrium; (ii) firms’ expenditures to attract new customers;

and (iii) the empirical observation that firms grow over their life span mostly by accumulating new

customers.26 I refer the interested reader to Appendix B.1 for a discussion of the technical features of

the model.

3.1 Population and Technology

Time is discrete. The economy is populated by a representative household, comprising a continuum

of measure one of potential buyers and by a large number of workers, and by an endogenous mea-

sure of firms with free entry.27 The representative household discounts the future at a rate β. The

instantaneous utility of the household is:

25A particularly relevant paper is Lashkari, Bauer, and Boussard (2021), which documents, via rich firm-level data from
France that investment in ICT allowed French firms to increase their returns to scale in production in recent years. New-
man (2014), Agrawal, Gans, and Goldfarb (2018), Begenau, Farboodi, and Veldkamp (2018), Goldfarb and Trefler (2018),
Carriere-Swallow and Haksar (2019), and Jones and Tonetti (2020) emphasize the potential role of data, particularly gath-
ering information from the customer base, as a source of increasing returns to scale.

26Afrouzi et al. (2020) and Einav, Klenow, Levin, and Murciano-Goroff (2020) show that 70% of firm growth comes from
accumulating new customers over their life cycle.

27In the text, I refer to buyers and customers interchangeably.
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uC− v(L), (15)

where uC is the utility from the consumption of the frictional good, and v(L) is the disutility of

labor.28 The representative household aggregates consumption C is a bundle of the consumption of

each active buyer via the following CES aggregator:

C =
∫

i∈I
cidi, (16)

where ci is buyers’ consumption of the frictional good, and I ⊆ 1 is the set of active buyers. Equation

(16) assumes that the goods of the different firms are perfect substitutes, so we can interpret the

continuum of firms as effectively selling the same product. Moreover, I assume that buyers wish to

buy exactly one unit of the firm’s good, and hence, their shopping value will be equal to the marginal

utility of the household’s consumption, u ≥ 0.29

Firms differ in their idiosyncratic productivity z, independent across firms, that lies in the finite

set Z and follows a Markov process π(z′|z). A firm with a measure ` of workers operates with the

production technology:

y = ezF(`), (17)

where F is a strictly increasing production function with F(0) = 0. Upon entry, firms must pay a

sunk entry cost κ. Following Hopenhayn (1992), I assume that firms must pay a fixed operating cost

f ≥ 0 every period to use the production technology. This operating cost is crucial in generating

endogenous exit in the model. Finally, I also assume that firms exit exogenously with probability

δ ∈ (0, 1).

3.2 Frictional Product Market

The product market is frictional, and the search is directed on buyers’ and firms’ sides. Firms an-

nounce contracts to attract buyers. Because utility is transferable between buyers and firms, a suf-

ficient statistic for each contract is the utility x that it delivers to the buyer upon matching. Firms

offering identical contracts compete in the same market segment; therefore, I describe the product

28As a consequence, the labor supply of the household will be given by:

λBCw = v′(L),

where λBC is the Lagrange multiplier associated with the household budget constraint, w is the wage, and v′(L) is the
marginal disutility of labor. For convenience, I normalize λBC to 1 without loss of generality.

29The fact that buyers wish to purchase exactly one unit implies that only the extensive margin of demand matters in the
model, that is, to how many buyers I should sell. This assumption implies that ci = 1, ∀i ∈ I .
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market as a continuum of submarkets indexed by the utility x ∈ [x, x] that firms promise to buyers.

Firms must pay a cost c for each ad they post.30 Moreover, firms that change their customer base are

subject to a convex cost K(ni; n), where ni is the number of new customers that the firm wants to

acquire.31 Buyers can direct their search and choose in which submarket to look.

A standard matching function with constant returns to scale governs match creation in each mar-

ket segment. I denote by θ(x) the ads-buyers ratio or tightness of submarket x. In a submarket with

tightness θ, buyers find a firm with probability m(θ), while firms find potential customers with prob-

ability q(θ) = m(θ)/θ. As standard in the search literature, I assume that m is increasing, while q is

decreasing, and that m(0) = 0, q(0) = 1. Buyers and firms must solve a trade-off between the level

of utility of a given contract and the corresponding probability of being matched. The search process

takes time, and I assume that firms and buyers can only visit one submarket at a time.

Buyers are allowed to search while already being attached to a firm. The equilibrium market

tightness can be written as θ(x) = a/µ, where a stands for the number of ads posted in submarket x,

and µ stands for the corresponding efficiency-weighted number of searching buyers.32 The number

of ads a that a firm posts is not required to be discrete and should be interpreted as a mass. As a result,

the law of large numbers applies, and firms do not face uncertainty about the number of buyers they

recruit. In particular, a firm that posts a ads exactly meets a measure aq(θ) = ni of buyers.

3.3 Contractual Environment and Timing

Contracts specify various elements relevant to the firm and its customers. I assume that contracts

are state-contingent, and that there is full commitment from the firm side. A contract specifies

{pt+j, τt+j, dt+j}∞
j=0, where p is the price, τ is a separation probability, and d is an exit dummy. Each

element at time t + j is contingent on the entire history of shocks (zt+j). A more detailed exposition

of the contractual environment and its implications for the model is in Appendix B.1.

The contracts offered by firms are large objects but can be written in their recursive form. Con-

tracts are rewritten every period after matching occurs and when production takes place (stage B in

Figure 4). At this stage, the firm starts with some utility C, promised in the past to its incumbent

customers or new ones. A recursive contract ω = {p, τ, d, C ′} for the current period specifies the

current price p and the next period’s quantities {τ(z′; w), d(z′; w), C ′(z′; w)}, contingent on the next

period’s state, where C ′(z′; w) is some future promised utility. Because of commitment on the firm

30The term ad in the model is a stand-in for a broader notion of marketing and selling effort, and will be interpreted as
such later on.

31The convex cost slows down the adjustment of firms’ customer base and is pivotal in generating a realistic endogenous
firm life cycle. Moreover, this convex cost is the key friction, together with the exogenous exit shock, preventing the model
from settling on a degenerate distribution of firms.

32In particular, µ = µu + µa, where µu is the number of unattached buyers and, µa is the corresponding number of
attached customers searching on the market.
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Figure 4: Timing of the Model
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side, contract ω is required to deliver at least the promised utility C to the customers.

The timing of the model is illustrated in Figure 4. At the beginning of period t, firms decide

whether to enter or not. Immediately afterward, incumbent and entering firms learn their idiosyn-

cratic productivity z and their exogenous exit shock δ. Then, conditional on surviving, they decide

whether to exit (d = 1) or stay. In the following stage, separation occurs with probability τ. Search

and matching follow with new and incumbent firms on one side and unattached/attached customers

on the other side. Production takes place in the final stage of the period, and the markets clear.
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3.4 Customer’s Problem

As conventional in the search literature, the value functions below are expressed at stage B of the

period when production takes place. I write the value of an unattached buyer as follows:

U = max
xu

β[m(θ(xu))xu + (1−m(θ(xu)))U ′]. (18)

If a buyer is not attached to a firm, she does not enjoy any utility in that period. In the following

period, she chooses a market segment, xu, where to search. In doing so, she must solve a trade-off

between the offered utility, xu, and the likelihood of getting a job, m(θ(xu)). When successful, she

enjoys the promised utility xu, but she remains unattached otherwise.

In the case of a customer attached to a firm with productivity z under the contingent contract

ω = {p, τ(z′; w), d(z′; w), C ′(z′; w)}, the value can be written as:

C(z, ω; w) = u− p + βE{(δ + (1− δ)d + (1− δ)(1− d)τ)U ′

+ (1− δ)(1− d)(1− τ)max
x′

[m(θ(x′))x′ + (1−m(θ(x′)))C ′(z′; w)]}.
(19)

An attached customer buys one unit of the firm’s output at a price p and values it at the marginal

utility of the representative household, u ≥ 0. The following period may then lead to three different

outcomes, which correspond to the three terms in brackets: (i) in the case of exit, that is, exogenously

with δ ∈ (0, 1) or endogenously if d = 1, or in the case of destructing the relation, τ ∈ (0, 1), the

customer goes back to the potential buyers’ pool with value U ′; (ii) she moves to a different firm

under a contract with value x′ with probability m(θ(x′)); or (iii) she stays in the current firm and

receives a promised utility C ′(z′; w) in the following period. Notice that customers entering the pool

of potential buyers in the given period cannot search in the same period.

3.5 Firm’s Problem

Consider the problem of a firm at the production stage with a measure n of customers. Customers

within the same firm may differ in their level of promised utility. Each customer is identified by an

index j ∈ [0, n] and a corresponding level of promised utility C(j).

The problem of a firm consists of choosing a list of contracts for its customers:

ω(j) = {p(j), τ(z′; w, j), d(z′; w), C ′(z′; w, j)}, ∀j ∈ [0, n]. (20)

In addition, the firm must decide on a submarket xi(z′; w) in which to search for new potential

customers, and it must choose the number of new customers that it wants to acquire ni(z′; w). I

describe the problem faced by firms as follows:
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V(z, n,{C(j)}j∈[0,n]; w)

= max
n′i(z

′;w),x′i(z
′;w),{ω(j)}j∈[0,n]

∫ n

0
p(j)dj− w`− w f

+ (1− δ)βE

{
− n′i

wc
q(θ(x′i))

− wK(n′i; n) +V(z′, n′, {Ĉ(z′; w, j′)}j′∈[0,n′]; w)

}+

,

(21)

subject to:

n′(z′; w) =
∫ n

0
(1− τ(z′; w, j))(1−m(θ(x′(z′; w, j))))dj + n′i(z

′; w), (22)

Ĉ(z′; w, j′) =

 C(z′; w, j) for j′ ∈ [0, n′(z′; w)− n′i(z
′; w)] and j′ = Φ(z′; w, j),

xi(z′; w) for j′ ∈ [n′(z′; w)− n′i(z
′; w), n′(z′; w)],

(23)

y = ezF(`), (24)

y = n, (25)

where Φ(z′; w, j) =
∫ j

0 (1− τ(z′; w, k))(1−m(θ(x′(z′; w, k))))dk.

In the current period, the firm earns revenue,
∫ n

0 p(j)dj, minus the cost of labor, w`, and minus the

fixed operating cost, w f . In the following period, the firm survives with probability (1− δ) and then

it chooses whether to exit or not. The {.}+ notation, standing for max(., 0), captures this decision,

which I summarize in the dummy d(z′; w) ∈ {0, 1} (d = 1 for exit). Following this decision, the firm

then chooses a number of new customers to acquire n′i(z
′; w) and the submarket x′i(z

′; w) in which to

direct its selling effort. Because each ad has a probability q(θ(x′i)) of being successful, the total selling

cost incurred for these new customers is n′iwc/q(θ(x′i)). Additionally, to slow down the adjustment

pace of firms’ customer base, I introduce a convex cost, that is, wK(n′i; n), which each firm must pay

to change its customer base. This is one of the two fundamental assumptions that allows the model

to produce a realistic life cycle.33 Moreover, the constraint that this convex cost imposes on the firm’s

ability to expand its customer base is the key friction, together with the exogenous exit shock, that

prevents the economy from settling on a degenerate distribution of firms.

Constraint (22) is the law of motion of total customers. Customers n′ in the next period are the

sum of the new customers n′i(z
′; w) with the remaining customers after the departure of those sepa-

rated with probability τ(z′; w, j) and of those moving to other jobs with probability m(θ(x′(z′; w, j))).

Constraint (23) keeps track of the promised utilities across customers. Because the measure of cus-

33The second fundamental assumption, as explained later, is related to the fact that each firm enters with a predetermined
measure of initial customers. In the quantitative section of the paper, I will calibrate this to be lower than the average mass
of customers attached to incumbent firms.
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tomers evolves over time, I use the mapping Φ to re-index the customers that stay and make sure that

a customer with an original index j ∈ [0, n′(z′; w)− n′i(z
′; w)] is assigned a new index Φ(z′; w, j) ∈

[0, n′(z′; w)− n′i(z
′; w)] in the next period. Newly recruited customers with promised utility, x′i(z

′; w),

are assigned an index in [n′(z′; w)− n′i(z
′; w), n′(z′; w)]. Constraint (24) defines the technology with

which the firm operates; therefore, this determines the amount of labor ` that a firm will hire in

each period. Finally, constraint (25) states that the output must be equal to the number of available

customers n in the given period.

In addition to these constraints, and due to commitment on the firm side, the firm is subject to the

following promise-keeping constraint:

∀j ∈ [0, n], C(j) ≤ C(z, ω(j); w). (26)

Constraint (26) ensures that the contract ω(j), assigned to customer j, delivers at least the promised

lifetime utility C(j). Note that there is no non-negativity constraint on the firm’s profits, implying that

firms have deep pockets and no limited liability.

3.6 Firm’s Pricing

Until now, I have allowed firms to charge different prices to their customers, conditional on their past

histories. In this section, I present the optimal prices charged by the firms to their different customers.

Because firms have commitment but customers do not, when a firm designs a contract, it must

take into consideration two constraints. First, the contract must take into account a participation

constraint, given by:

m(θ(x′))x′ + (1−m(θ(x′)))C(z′) ≥ U , (27)

which states that the continuation value for a customer, conditional on remaining matched, given

by equation (19), must be higher than the value of being unmatched, given by equation (18). This

ensures that the customer does not prefer to be unmatched. Second, the contract must take into

account the following incentive constraint:

x′ = argmax
x̃

m(θ(x̃))x̃ + (1−m(θ(x̃)))C ′(z′; w), (28)

which states that the submarket in which the customer will search is the one that maximizes the

continuation value, conditional on remaining matched, given by equation 19. This verifies that the

submarket in which the customers search is the optimal submarket in which they would like to

search. A contract satisfying constraints (27) and (28) is said to be an incentive-compatible contract.
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It is now easy to derive prices from the promise-keeping constraint (26). The price for a customer j is

given by:

p(j) = C(z, {p = 0, τ, d, C ′}; w)−κ(j), (29)

where κ(j) ∈ {C(j), x(j), xu}, depending on the customer’s past history.

Notice that the price charged to each customer for the good is the difference between the present

value of being attached to a firm evaluated at today’s price equal to zero, that is, C(z, {p = 0, τ, d, C ′}; w),

minus the history-dependent promised utility κ(j). Therefore, the higher the value customers get

from the match, the higher the price charged by the firm. Conversely, the higher the utility a firm

promises, the lower the prices charged to its customers.

Equation (29) captures one of the main trade-offs for the firms in the model. In particular, firms

are always subject to two opposite tensions. On the one hand, firms that want to grow need to attract

customers; to do so, they must give a high promised utility, meaning low prices. On the other hand,

firms want to extract value from their matches, meaning that they want to charge high prices to their

customers. Therefore, the evolution of prices, and hence of markups, strictly follow the life cycle of

firms: young firms, being small, must invest in their customer base, and hence, charge low prices and

markups. On the contrary, old firms—which are on average bigger—want to harvest their customer

base, and hence, charge high prices and markups.

3.7 Free Entry and Equilibrium Definition

To close the model, I am left to specify the process of entry. Every period, before the idiosyncratic

shock z is realized, the potential entrants decide whether or not to enter. Upon entry, firms must

pay an entry cost κ, after which they draw their idiosyncratic productivity from a distribution gz.

Depending on the outcome, firms may decide to exit or stay, in which case they can start searching

for customers and producing as any normal firm.

I define the problem faced by an entering firm of type z as follows:

V e(z; w) = (1− δ)max
xe

{
− ne

wc
q(θ(xe))

+V(z, ne, {C(j)}j∈[0,ne]; w)

}+

. (30)

Having drawn the idiosyncratic productivity z and surviving the exit shock δ ∈ (0, 1), the poten-

tial entrant first decides whether or not to exit, a decision captured by the notation {.}+ and sum-

marized in the dummy de(z; w). If it stays, the firm searches ne ∈ R+ new customers, and chooses

a submarket, xe, to maximize its expected value of operating, minus the total ad cost newc/q(θ(xe)).

I do not allow the entering firms to choose ne optimally. This is the second necessary ingredient, to-
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gether with the convex adjustment cost that firms must pay to change their customer base, to obtain

a well-defined notion of life cycle within the model.34

Due to the presence of free entry, firms enter as long as expected profits exceed the entry cost

κ, driving these expected profits down to κ. Therefore, the expected surplus from entering must be

equal to κ in equilibrium:

wκ =
∫

V e(z; w)gz(dz). (31)

3.8 Firm Distribution Dynamics and Recursive Equilibrium

Using the optimal decision of firms, we may now describe the evolution of customers over time.

Let g(z, n; w) be the distribution of customers across firms in stage B of the current period when

production takes place. The dynamics of the distribution of customers across firms can be described

by:

g(z′, n′; w) = ∑
z,n

1{n′(z′; w, n) = n′}(1− d(z′; w, n))(1− δ)π(z′|z)g(z, n; w)

+ me1{ne(z′; w) = n′}(1− de(z′; w))(1− δ)gz(z′),
(32)

where 1{·} denotes an indicator function. Equation (32) defines the mass of firms with an individual

state (z′, n′) in the next period as the sum of surviving incumbent and entering firms that end up in

this state. The term me is the endogenous measure of new entrants, defined as the number of entering

firms required to reach the equilibrium market tightness on every market segment.

Finally, I define the stationary recursive equilibrium in this economy.

Definition 3.1 (Stationary recursive equilibrium). A stationary recursive competitive equilibrium con-

sists of value functions {U ,C,V ,V e}, policy functions {xu, x, p, τ, d, C ′, ni, xi, de, xe}, a wage {w}, an

invariant measure of incumbents g, and a measure of entrant firms me, such that: (i) U and xu solve

the unattached buyers’ problem (18); (ii) C and x solve the attached buyers’ problem (19); (iii) V ,

τ, d, ni, and xi solve the incumbent firms’ problem (21); (iv) V e, de, and xe solve the entrant firms’

problem (30); (v) p and C ′ solve (28) and (29); (vi) the labor market clears; and (vii) the invariant mea-

sure of incumbents g and the measure of entrants firms me satisfy the dynamics of the distribution of

customers across firms, given by (32) and the free-entry condition (31).
34I let entering firms enter with an ne lower than the average size. Together with the convex adjustment cost described

earlier, this implies that new firms start small and grow slowly to reach the average size in the economy.
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4 Model Parametrization and Validation

In this section, I bring the model presented in Section 3 to the data. Particularly, the model is es-

timated to replicate certain salient moments from the cross-section of firms around 1980. First, I

present the functional forms and the stochastic processes used in the quantitative analysis. Second,

the aforementioned salient moments are used to discipline some deep parameters that are not di-

rectly observable to the researcher. Third and finally, I validate the model on non-targeted moments

of both the cross-section and the life cycle of firms.

4.1 Functional Forms and Stochastic Processes

The household disutility of labor is given by:

v(L) = ϑ
L1+ 1

ψ

1 + 1
ψ

, (33)

where ϑ is a parameter governing the cost of supplying labor for the household, and ψ is the Frisch

elasticity.

The firm-level production function is given by:

F(`) = `α, (34)

where α governs the firm-level returns to scale of production. Given that time is discrete, I choose

a functional form for the probability that a customer finds a firm bounded between 0 and 1, which

rules out the Cobb-Douglas matching functions. In particular, I pick the following functional forms:

m(θ) = θ/(1 + θ)−1, and q(θ) = (1 + θ)−1. (35)

The convex cost of relaxing the customer base is given by:

K(ni; n) = χ1

(
ni

n

)2

nχ2 , (36)

with χ1, χ2 ≥ 0.The idiosyncratic productivity shock follows an AR(1) process, given by:

zt = ρzt−1 + σεt, εt ∼ N (0, 1), (37)

where zt is the time-varying idiosyncratic productivity, ρ ∈ (0, 1) is the parameter governing the

persistence of the process, and σ is the standard deviation of the innovation to the process.
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4.2 Parametrization

The model is parametrized in two steps. First, I fix a set of parameters to match the standard targets

in the steady state. Second, given the values of those parameters, I choose the remaining parameters

to match identifying moments from the data. A model period is one year, and the calibration targets

moments from the 1980s.

I set the discount rate β equal to 0.97 so that the annual interest rate is about 3%, a value standard

in the literature. The degree of firm-level returns to scale α is set equal to 1. This implies constant

returns to scale, a value consistent with the empirical estimates presented in Section 2.3. I set the

persistence of the productivity shock ρ equal to 0.8, the value found by Foster, Haltiwanger, and

Syverson (2008).35 The standard deviation of the innovations to the productivity process σ is set to

0.2, a value close to Foster, Haltiwanger, and Syverson (2008) and common in the firm dynamics

literature. The marginal utility from consumption u is set equal to 1, implying a unitary evaluation

of each extra unit of consumption. Finally, the Frisch elasticity ψ is set equal to 2.84, corresponding to

the average aggregate Frisch elasticity of hours reported by Chetty, Guren, Manoli, and Weber (2011).

The parameters left to be internally calibrated are {c, χ1, χ2, ne, f , κ, δ, ϑ}. All these parameters are

disciplined through cross-sectional and life-cycle moments. The linear cost c, paid by firms to search

for an extra customer, is disciplined by the average markup in 1980. This is identified because this

is a sunk cost that firms must recover—in the long run. Hence the higher this cost is, the higher the

markup that a firm must charge to operate. The convex cost of increasing the customer base χ1 is

deeply tight with respect to the life cycle of the firms. Particularly, it influences the speed at which

firms increase their size. Hence, I use the average size of firms that are five years old in 1980 to

identify this value. The initial mass of customers that each entering firm has, ne, together with the

aforementioned convex cost, completely informs the endogenous life cycle in the model. Specifically,

given χ1, the mass of customers upon entry informs us about the size of the entrant firms, which

is indeed used as the identifying moment for this parameter. The operating cost f is used to match

the average firm size in the period. This is so because if this cost increases, only relatively more

productive firms can operate, meaning that the average firm in the market becomes bigger. The

entry cost κ is identified with the entry rate in 1980, as it is standard in the literature. The exit shock

probability δ is identified with the aggregate excess reallocation rate, as the higher the exit probability

is, the higher the reallocation of labor in the model. The convex cost parameter χ2 is disciplined with

the share of firms that are greater or equal to eleven years. This is because the higher χ2 is, the more

costly it is to grow for larger firms. Hence, the more likely they will exit at a younger ages. Finally,

35Foster, Haltiwanger, and Syverson (2008) is an important reference, as they disentangle from firm-level sales the con-
tribution of prices from the contribution of true productivity. This is particularly important in our setting, given that the
model differentiates firm-level prices and firm-level productivity.
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the labor supply shifter ϑ is set such that the equilibrium wage in 1980 is equal to one.

The parameters are estimated using the following routine. For arbitrary values of the vector of

parameters, P = (c, χ1, χ2, ne, f , κ, δ, ϑ), the dynamic programming problem is solved, and the policy

functions are generated. Using these policy functions, the decision rules are simulated until the

distribution of firms over {n, z} is converged. I draw from this stationary distribution, simulating the

economy for many periods, and construct a panel of firms. I compute the aforementioned moments

of interest, which I denote asM(P), whereas the empirical moments are denoted as M̂. I estimate

the fitted parameters P̂ using a minimum distance criterion, given by:

L(P) = min
P

(
M̂ −M(P)

)′
W
(
M̂ −M(P)

)
. (38)

Following Asker, Collard-Wexler, and De Loecker (2014), I set the weighting matrix W = I and

use a grid search algorithm to find the vector P̂ that minimizes the objective function (38).

Table 1: Estimated Parameters and Moments

Fixed Value Description

β 0.97 Annual interest rate
α 1 Returns to scale
ρ 0.8 Autocorrelation idiosyncratic productivity
σ 0.2 Standard deviation idiosyncratic productivity
u 1 Marginal utility
ψ 2.84 Frisch elasticity

Fitted Value Description Moments Model Data

c 0.45·1e-3 Linear cost of searching Avg. markup 1.20 1.17
χ1 0.46 Convex cost of searching 1 Avg. size age 5 12.32 10.16
χ2 1.91 Convex cost of searching 2 Share of old firms 0.32 0.32
ne 6.79 Customers’ entrant firms Avg. entrant size 5.98 5.97
f 0.78 Fixed operating cost Avg. firm size 20.24 20.25
κ 6.92 Entry cost Entry rate 0.14 0.13
δ 0.98 Exit shock probability Reallocation rate 0.29 0.31
ϑ 0.985 Labor supply shifter Wage 1 −

Note. The table reports the values of the parameters and model-implied moments. All the moments have been calculated
from 1977 to 1985. I do this because BDS reports data only from 1977; by 1980, not all moments of interest can be computed
accurately. Firms size is measured by the total labor ` employed in a given period—which is consistent with the measure
reported by BDS. The average markup is calculated with cost weights, as in the data.

Table 1 summarizes the parameter values resulting from the calibration, along with the fit of the

model. The fit is, overall, quite satisfactory. In the calibration, I focus on the average cost-weighted

markup. However, the model-implied average sales-weights markup is 1.28, very close to the 1.25
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value from the data. Finally, the model implies a slope of selling-related activities on sales of 0.15,

close to the value of 0.49 documented by Afrouzi, Dernik, and Kim (2020).36 The next section vali-

dates the calibration in deeper detail.

4.3 Validation

To validate the model, I test the overall calibration against two different dimensions of interest. First,

I document the model’s performance on the cross-section and the life cycle of firms. Second, I test

the cross-sectional and life-cycle implications produced by the model for the markups and for the

selling ratio—the ratio of non-production to production costs. The reader interested only in the main

results can go directly to Section 5. Additional steady-state implications of the model are presented

in Appendix B.3.

4.3.1 Cross-Sectional and Life-Cycle Implications

The model is designed to capture some relevant aspects of the cross-sectional differences in the micro-

data. Part of this cross-sectional heterogeneity is inherently linked with the life cycle of firms. In

particular, firms enter small and, conditional on surviving, slowly expand their size when accumu-

lating new customers. This implies that firms of different cohorts have different sizes, with younger

firms exhibiting fewer employees—our measure of size, consistent with the BDS data. Moreover,

only a few firms survive and keep operating, making the mass of firms belonging to the old cohorts

a decreasing share of the total.

Figure 5 presents the aforementioned facts, both for the model and data. The figure on the left

shows the size of each cohort, measured as the average number of employees within each firm of a

given age, in the model and the data. It can be seen that the model and data track each other well; this

is not surprising, given that average employment for firms of age 0 and age 5 used as a target in the

calibration. Nonetheless, the model slightly understates the size of the oldest (11+) firms. Instead,

the figure on the right documents the distribution of firms across cohorts in the data and the model.

The model manages to track satisfactory data.

Empirical works on firm-level data have established many regularities about the life cycle of

firms. Since the seminal work by Dunne, Roberts, and Samuelson (1989), we know that in the

US manufacturing sector, establishment growth is unconditionally negatively correlated with age.37

36To obtain the slope of selling-related activities on sales, I follow the recent paper by Afrouzi, Dernik, and Kim (2020),
and I run the following regression specification:

sj = β1

∫ nj

0
pκdκ + β2w`j + ε j,

where, in the model, s, the selling-related expenditure, is computed as wcni/q(θ) + wχ1(ni/n)2nχ2 + w f , total sales are∫ n
0 pκdκ, and w` is the labor cost. Hence, the coefficient of interest is given by β1.

37This finding was confirmed for a variety of sectors and countries. See Coad (2009) for a recent survey of the literature.
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Figure 5: Model Cross-Section
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Note. The figure on the left shows the size of each cohort, measured as the number of employees within firms. The figure
on the right shows the distribution of firms across cohorts. The light blue bars represent BDS data; the light grey bars show
the model predictions.Data reported are between 1977-1985.

Moreover, Cabral and Mata (2003), using a comprehensive data set of Portuguese manufacturing

firms, show that the employment distribution shifts to the right and becomes less right-skewed as

cohorts age. Figure 6 shows the aforementioned life-cycle facts in the model.

Figure 6: Model Life Cycle
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Note. The figure on the left shows the employment growth rate by age, that is, g`it ≡ (`it − `it−1)/ 1
2 (`it + `it−1). The figure

on the right shows the employment distribution across cohorts. Both y-axes are in percentage points.

The model aptly captures the life-cycle facts. In the model, firms enter small, with few customers,

and grow only slowly, accumulating new customers. Moreover, the accumulation of customers is

less costly for young firms; hence, they experience higher growth relative to older firms. The same

mechanism explains the results presented in the right figure. In particular, while firms age, they
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expand their size, pushing the distribution of their cohort to the right. Overall, the model fits well

with many non-targeted moments of the cross-section and the life cycle of firms.

4.3.2 Implications for Markups and Selling-Related Activities

The model produces clear predictions about the evolution of markups and selling-related activities

over the life cycle of the firms. In particular, young firms charge lower markups and spend more

on selling-related activities (relative to production costs) to grow faster. Therefore, in the data, we

should expect to observe a growing profile for markups and a declining profile for selling-related

activities over production costs as firms age.

To map the model’s expenditures to an empirically meaningful empirical counterpart, I define

the selling ratio in the model as:

$ =
f + nic/q(θ) + χ1(ni/n)2nχ2

`
, (39)

where the numerator is composed of the total non-production costs (which, through the lens of the

model, I interpret as selling-related activities), whereas the denominator is composed of the total

production costs.38

Moreover, to test the aforementioned predictions of the model in the data, I exploit the following

regression specification, given by:

log yit = α +
10

∑
a=1

γa1{ageit = a}+ φst + ε it, (40)

where yit ∈ {µit, $it}, the firm-level markup µit is defined in Appendix A.1.5, the selling-ratio $it is

the ratio of selling-related expenditure to the cost of goods sold, where selling-related expenditure is

defined in Appendix A.1.4, ageit is the firm’s age, and φst are sector-year fixed effects. The coefficients

γa are the parameters of interest that measure the average log yit for each age group using within

sector-year variation.

Figure 7 shows the evolution of the average markup and average selling ratio for firms of different

ages.39 The model-implied markups over the life cycle satisfactorily follow the one in the data; if

anything, the model-implied one has a slightly flatter profile over the life cycle.40 The model-implied

selling ratio declines over the life cycle of the firm, as we also see in the data. However, in this case,

38Notice that both the numerator and the denominator should be multiplied by w, the wage, which however is not
reported, as it is canceled out.

39I plot the results for the initial part of firms’ life cycle; however, the patterns remain similar when the age is more
than ten. The selling ratio is plotted only when the age is greater than zero because in the model, entrant firms face a cost
composition that is different, as they do not pay the convex cost.

40Similar empirical findings have also been documented by Alati (2021) in Compustat and by Peters (2020) in Indonesian
data. They both find that markups increase over the firms’ life cycle.
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Figure 7: Life Cycle of Markups and Selling Ratio—Model and Data
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Note. The figure on the left shows the average markup across firms of different ages, both in the model (light grey line
with squares) and in the data (light blue line with triangles); the figure on the right shows the average selling ratio across
firms of different ages, both in the model (light grey line with squares) and in the data (light blue line with triangles). The
light blue areas are the 90% confidence interval. All variables are reported relative to the initial year, which is normalized
to zero.

the model performs quantitatively less well than in the markups case. In the data, the selling ratio

declines less compared to the model.

Figure 8: Distributions of Markups and Selling Ratio—Model and Data
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Note. The figure on the left shows the markup distribution in the data (light blue) and in the model (light grey). The figure
on the right shows the selling ratio distribution in the data (light blue) and in the model (light grey). The distributions in
the data are calculated within the period 1977-1985. The distributions of markups are showed within the [0.5, 2.5] range,
whereas, the distributions of the selling ratio are shown within the [0, 1] range.

As a final validation exercise, I compare the model-implied distribution of the markups and the

selling ratio with their empirical counterparts. Figure 8 shows the comparison. The figure on the

right shows the model-implied distribution of markups (light grey) and its empirical counterpart

(light blue); the figure on the left shows the model-implied distribution of the selling ratio (light
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grey) and its empirical counterpart (light blue). Overall, the qualitative fit is satisfactory.

The distribution of markups implied by the model is very close to the empirical counterpart.

This is a successful outcome of the model, as the only targeted moment of that distribution is its

cost-weighted average. Moreover, the model aptly captures the right skewness of the empirical dis-

tribution of the selling ratio. However, as none of the moments of this distribution has been used to

calibrate the model, there are some quantitative differences: (i) the data show a higher mass near zero;

and (ii) the empirical distribution of the selling ratio is less dispersed compared to the one implied by

the model. Without further data, is impossible to say where these differences come from; however,

in Appendix B.3.3, I show that by using an alternative measure of selling-related expenditure, the

overall qualitative features of the empirical distribution of the selling ratio remain unchanged.

5 Rising Returns to Scale and the Macroeconomics

Having calibrated and validated the model, in this section, I move forward to study the macroeco-

nomic implications of a rise in the returns to scale, as documented in Section 2.3. To this end, I will

analyze, within the model, the effect of rising returns to scale from 1 to 1.05, keeping all the other pa-

rameters fixed. First, to shed light on the main mechanism, I discuss the qualitative implications of

such a rise in returns to scale in the model. Second, I present suggestive evidence for the mechanism

inbuilt in the model. Third, I use the model to study the quantitative implications of this 5% rise in

returns to scale, as documented in section 2.3.

5.1 Inspecting the Mechanism

In this section, I explore the qualitative implications of a rise in returns to scale from 1 to 1.05, keeping

all the other parameters fixed to the 1980 calibration. First, I link the effect that rising returns to scale

have on the marginal costs of production at the firm level. Second, I explain how changes in the

marginal cost of production affect markups and business dynamism.41

Given the production structure of the model, as specified in Section 3, the firm-level marginal cost

of production is given by:

MC(z, n; w) ≡ 1
α

(
n
ez

) 1−α
α w

ez , (41)

where α is the firm-level returns to scale, n is the mass of customers, that is, the firm-level size, ez

is the idiosyncratic productivity, and w is the wage. Notice that, when α = 1—in the presence of

41Appendix B.2 extends the intuitions provided in this section to a more general case in which firms produce also using
capital.
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constant returns to scale—the marginal cost of production reduces to the more familiar w/ez; hence,

it is just the ratio of the wage to the idiosyncratic productivity.

However, when α > 1, the marginal cost of production not only depends on the firm’s size, but

also decreases in it—this is under the quantitative-relevant scenario in which n/ez ≥ 1.42 Therefore,

this model, once calibrated to the empirical findings presented in Section 2.3, implies that the bigger

a firm is, the better it becomes to produce, and hence, the lower its marginal cost of production is.

This link can be interpreted as the model microfoundation of a technological change biased toward

larger firms. In particular, the negative dependence of firm-level marginal costs of production with

size stems from the notions that bigger firms (with bigger economic activities) manage to gather more

information about their production processes (and potentially about their customers as well) and use

it, owing to new information and communication technologies (ICT), to improve production. This

mechanism creates a virtuous circle where bigger firms are better at producing; hence, become even

bigger and better at producing, and so on.43

Figure 9 on the left shows, for firms with a different number of customers n, that is, for firms of

different size, how the firm-level marginal cost of production changes as the returns to scale change—

the analysis is performed under the already stated quantitative-relevant scenario in which n/ez is big

enough, that is, is weakly greater than 1.

In the model, the firm-level marginal cost of production declines monotonically from the 1980

steady state to 2014 steady state, meaning that an increase in the returns to scale lowers the marginal

cost of production for all firms in the latter economy. Moreover, as shown by the graph, the marginal

cost of production, after an increase in the returns to scale above one (the green area), declines much

more for bigger firms. This is a well-known feature of increasing returns to scale in the production

function (which, as shown in Section 2.3, is the empirically relevant case), where an increase in the

input allows firms to produce more than proportionally, effectively lowering the quantity of input

needed to achieve a given level of outputs. Therefore, the increase in returns to scale has a differential

effect across firms, favoring bigger firms in the economy.

The decline in the marginal cost of production has three direct implications: (i) it increases the

willingness of firms to scale up, and hence, their expenditures devoted to customers acquisition; (ii)

it raises the firm-level markups; and (iii) it weakens the selection process in the model.

42In the model, I do not restrict this ratio to be greater than one, but when I calibrate it to match the firm size distribution,
as explained in Section 4.2, I indeed find that this is the case. In this sense, this should not be seen as an assumption but as
a quantitative result.

43Lashkari, Bauer, and Boussard (2021) document (using rich firm-level data from France) that investment in ICT has
allowed French firms to increase their returns to scale in production in recent years.

Newman (2014), Agrawal, Gans, and Goldfarb (2018), Begenau, Farboodi, and Veldkamp (2018), Goldfarb and Trefler
(2018), and Carriere-Swallow and Haksar (2019) provide additional microfoundations for the same concept. All of them
emphasize the potential role of data, particularly gathering information from the customer base, which can give rise to
increasing returns to scale.

32



Figure 9: Returns to Scale, Marginal Costs, and Selection
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Note. The figure on the left shows the relation between the firm-level marginal cost of production and the returns to scale,
α, for different levels of customers, that is, size. The dark blue line represents the marginal cost of a Big firm (high customer
firm), whereas the light blue line represents the marginal cost for a Small firm (low customer firm).
The figure on the right shows the exit threshold in the 1980 and 2014 steady state over the firms’ state space. The 2014
steady state has the same calibration as the 1980 one but with higher returns to scale, that is, α = 1.05, The dark light grey
line is the 1980 threshold, whereas, the dark grey line is the 2014 threshold.

First, with lower marginal costs of production, firms want to achieve a bigger size; as a con-

sequence, they devote more resources to activities related to accumulating new customers. This

implies that, in the 2014 steady state, firms will devote relatively more resources to non-production

costs compared to production costs. As a consequence, there will be a shift away from production

costs toward non-production costs, as observed in the Compustat data by De Loecker, Eeckhout, and

Unger (2020).

Second, the decline in the marginal cost of production increases the surplus generated by the

customer-firm relation, as firms are effectively better at producing. However, because there is an

incomplete pass-through of costs in the model, only a fraction of this increase in the surplus will

be passed on customers in the form of lower prices. Firms will retain the remaining fraction in the

form of higher markups. Therefore, due to the decline in the marginal cost of production, firms will

experience an increase in markups in the 2014 steady state.

Third, the decline in the marginal cost of production weakens, on average, the firms’ selection

process. This can be seen in Figure 9 on the right. The figure plots the exit threshold over the firms’

state space in the 1980 and 2014 steady state. It can be seen that, in the latter steady state, the exit

threshold moves, on average, to the left, implying that less productive firms will be able to operate

in the economy. This is because, in the 2014 economy, firms are better at producing, which increases

their resilience to adverse productivity shocks.

This decline in selection has two direct implications: (i) it lowers the entry rate of firms in the
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economy; and (ii) it decreases the churning of firms, which has as a consequence a decline in the

reallocation of labor. First, when the selection declines, the exit rate declines as well. In a stationary

equilibrium, where the exit rate must equal the entry rate, this translates into a one-to-one decline

in the entry rate. Second, the decline in the entry and exit rate translates into a firms’ lower attrition

rate. This implies that the reallocation of labor between entrant and exciters declines, and hence, the

overall labor reallocation declines. Thus, the aforementioned decline in the selection translates into a

decline in business dynamism.

As a final remark, I emphasize that, although selection weakens on average, it increases for the

smallest firms in the economy, that is, firms with few customers. This is because small firms have

to attract new customers. However, this is more costly in the 2014 steady state because these small

firms must compete with the biggest firms that can now exploit their scale economies to compete for

customers through very low prices.44 Therefore, only marginally more productive small firms can

do so, and consequently, this increases the selection process for small firms. Moreover, given that

small firms are mostly new entrant firms, this acts as an entry barrier, which ulteriorly exacerbates

the decline in the entry rate in the new economy.

5.2 Mechanism Validation

In this section, I test in the data the main qualitative predictions outlined above. The model predicts

that a rise in firm-level returns to scale should increase markups and selling-related expenditures and

decrease business dynamism. To this extent, I first show in the data that there has been a rise over

time in the firm-level selling-related expenditures relative to production costs.45 Then, exploiting

only cross-sectoral variation in the data, I document that, in sectors where returns to scale are higher,

selling expenditures and markups are higher, whereas business dynamism is lower.

5.2.1 The Rise in Selling-Related Expenditures

The model predicts that a rise in returns to scale increases firm-level expenditure in selling-related

activities at the expense of production costs. Therefore, it is natural to look at the evolution of this

ratio over time as a first test of the implications outlined above. To this extent, I look at the evolution

over time of the average selling ratio, as defined in Appendix A.1.4.46

44This kind of behavior has recently received a great deal of attention in the antitrust debate; see Khan (2016). The model
rationalizes this behavior as the outcome of the rise of scale economies that big firms, such as Amazon, can take advantage
of to set prices lower those of their smaller competitors.

45I focus my attention only on the rise over time in firm-level selling-related expenditures relative to production costs
because it is relatively less known. The rise in markups and the decline in business dynamism have been extensively
documented; see De Loecker, Eeckhout, and Unger (2020) and Decker, Haltiwanger, Jarmin, and Miranda (2014).

46The rise in non-production costs over time relative to total costs has already been documented by De Loecker, Eeckhout,
and Unger (2020). However, I focus on a different measure, that is, the ratio of selling-related costs (these are similar to
the non-production costs analyzed in De Loecker, Eeckhout, and Unger (2020); see Appendix A.1.4 for a more detailed
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Figure 10: Average Selling Ratio
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Note. The figure plots the evolution of the average selling ratio between 1980 and 2014. The measure is constructed using
a simple average.

Figure 10 shows the evolution of the average selling ratio. At the beginning of the sample, the

average selling ratio was approximately 0.4, then rose almost up to 0.7 around 2000, and then went

back roughly to 0.65 by the end of the period. Hence, the measure has experienced an increase slightly

above 62% over the period of analysis. Therefore, I conclude that, with higher returns to scale over

time, we should expect to observe higher firm-level expenditures in selling-related activities, relative

to production costs, from the data. In Appendix A.3, I show that using an alternative measure of

selling-related activities produces similar results.

I finish emphasizing that this is an aspect peculiar to the theory outlined in this paper. Only

a model in which the market power is a long-term investment would produce such an empirical

pattern in selling-related activities relative to production costs. Models in which the market power

is derived from the love for variety (see, for example, Dixit and Stiglitz (1977), Kimball (1995), and

Atkeson and Burstein (2008)) or from search frictions with only pricing strategies and no expenses

devoted to the acquisition of new customers (see, for example, Paciello, Pozzi, and Trachter (2019)

and Roldan-Blanco and Gilbukh (2020)), would not be able to produce an endogenous increase in

selling-related activities relative to production costs, as in the one documented above.

5.2.2 The Cross-Sectoral Implications of Higher Returns to Scale

Here, I test in the cross-section of sectors the qualitative predictions of the model outlined above. The

model would predict that, in sectors where returns to scale are higher, we should expect to observe

lower business dynamism (lower entry and reallocation rates), higher markups, and higher selling-

explanation) to production costs. This has two advantages: (i) it avoids the challenges of computing the costs of holding
capital, which requires additional assumptions; and (ii) it focuses directly on the shifts in those particular costs emphasized
by the theory in this paper. However, regarding the results, both measures show a clear rise over time.
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expenditures relative to production costs (selling ratio). To do so, I regress all these variables against

sector-level returns to scale, as estimated in Sections 2.3. The sector-level entry and reallocation

rates are from the BDS data; the sector-level cost-weighted markups are computed with the method

proposed by Hall (1988) and De Loecker and Warzynski (2012); and the sector-level selling ratio is

computed, as described in Appendix A.1.4.

Table 2: Returns to Scale and Cross-Sectoral Correlations

Business Dynamism

(1) (2) (3) (4)
Entry rate Reallocation rate Markups (log) Selling ratio

Returns to scale −0.047*** −0.145*** 0.354* 0.839***
(0.010) (0.020) (0.213) (0.113)

Observations 518 518 722 722
R-squared 0.602 0.764 0.144 0.687
Sector-Time FE X X X X

Notes. Fixed effects are at the sector-time level, where the sector is at the 1-digit level. Robust standard errors are in
parenthesis. *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1.

Table 2 shows the results.47 The coefficients are estimated using only within sector-time variation;

this is important because most of these variables have time trends, which could give rise to spurious

correlations. The regressions clearly show that in sectors where firms produce with higher returns to

scale, business dynamism is lower; that is, entry and reallocation rates are lower.48 All coefficients

are significant. In Appendix A.3, I show that using alternative measures of selling-related activities

produces similar results.

Although these correlations seem to propose a rise in returns to scale as an underlying factor

behind some recent firm-level trends, I should caution the reader from any causal interpretation of

these relations. However, the presence of these correlations indeed supports the economic forces

outlined by the model.

47It is worth noticing that the coefficient related to business dynamism is estimated over a smaller sample. This is because
the BDS data merge some sectors; for example, manufacturing, which normally is classified by NAICS codes 31-32-33, in
BDS is a unique sector.

48In related work, Gao and Kehrig (2017) use Census data to show that, where firms produce with higher returns to
scale, the average firm size and concentration are higher. This reinforces the correlations documented above, as it confirms
in a different dataset similar patterns compared to the analysis emphasized in this section.
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5.3 Quantitative Implications

This section explores the main quantitative implications of the rise in returns to scale. First, it ana-

lyzes the effect that rising returns to scale have on business dynamism, markups, and other aggregate

trends. Second, it studies the implication of this technological change on the distribution of markups.

Third, it examines the consequences of the rise in returns to scale for firm-level responsiveness of em-

ployment growth to productivity shocks. Appendix B.4 shows additional quantitative results.

5.3.1 Rising Returns to Scale and Aggregate Trends

Here, I study the quantitative implication of a 5% rise in returns to scale (from 1 to 1.05, as docu-

mented in Section 2.3) for the decline in business dynamism, the rise in markups, and the evolution

of other trends, such as the rise in concentration and the rise in firm-level selling-related activities. To

this end, I compare two steady states, the 1980 one, calibrated as documented in Section 4.2, and the

2014 one, where I only let the returns to scale α rise from 1 to 1.05, keeping all the other parameters

fixed.

Table 3: Effect of Rising Returns to Scale

Change

1980 S.S. 2014 S.S. Model BDS Compustat Model/Data

Business Dynamism
Entry rate 0.139 0.104 −25% −40% − 62%
Reallocation rate 0.294 0.237 −19% −27% − 70%
Share of old firms 0.322 0.467 +45% +50% − 90%
Employment

share of young firms 0.204 0.094 −69% −56% − 96%

Markups
Avg. markup (cost-weighted) 1.202 1.229 +2% − +7% 29%

Others
Avg. selling ratio 0.4 0.65 +9% − +62% 14%
Concentration (HHI) 7.003e-06 7.440e-06 +6% − +33% 18%

Notes. All variables are calculated coherently with their definitions, as used in the data. The average markup is calculated
using cost weights, whereas the average selling ratio is calculated using a simple average across firms. Concentration is
calculated as described in Grullon, Larkin, and Michaely (2019). The data sources are BDS and Compustat. To calculate the
empirical moments from the 1980s I use the time window 1977-1985, whereas for the empirical moments from the 2014, I
use simple the values in that year. The last column shows the fraction of the overall empirical variation explained by the
model.

Table 3 shows the quantitative implications of the rise in returns to scale for the aggregate trends.
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The model can explain an important share of the decline in business dynamism, as it explains 62%

of the decline in the entry rate and 70% of the decline in the reallocation rate. Moreover, because the

rise in returns to scale inherently favors the bigger and oldest firms in the economy, the model can

explain 90% of the rise in the share of the old firms (firms with 11+ years) and 96% of the decline in

the employment share of young firms (firms with less than 5 years).

Moreover, the model is able to explain 29% of the rise in the average cost-weighted markup.49 I

focus on the evolution of the cost-weighted measure, which is the welfare-relevant aggregate mea-

sure, as documented by Grassi (2017) and Edmond, Midrigan, and Xu (2018). However, in the next

session, I look at the evolution over time of the markup distribution to analyze the features of the rise

in the sales-weighted measures that are related to the reallocation of economic activity toward bigger

firms. Although the model explains a non-negligible fraction of the rise in the aggregate markups,

it cannot explain most of it. This shows that the rise in returns to scale does not seem to be the only

force behind the rise in the data, suggesting that there may be additional mechanisms at work in the

US economy that can account for the unexplained rise.

Finally, the model is also consistent with the rise in selling-related expenditures and product mar-

ket concentrations, as observed in the data. In particular, the model can explain 14% of the rise in

the benchmark measure of selling-related expenditures and 45% of the increase in the alternative

advertisement-based measure, as documented in Appendix A.3. Although the model explains only

a fraction of this rise, we can still define this as a success, given that this endogenous rise is a distinc-

tive feature of this model, where firms actively invest in their market power (see Section 5.2.1 for a

more detailed explanation of this point). The model also explains 18% of the rise in concentration,

which shows that the model captures the reallocation of economic activity toward bigger firms that

have been documented empirically by Kehrig and Vincent (2021), Autor, Dorn, Katz, Patterson, and

Van Reenen (2020), and De Loecker, Eeckhout, and Unger (2020).

5.3.2 Evolution of the Markup Distribution

Analyzing the rise in markups, De Loecker, Eeckhout, and Unger (2020) show that there has been

a substantial change in their distribution overall. In particular, they notice that much of the rise

in the average markup is due to reallocation of the economic activity toward the right tail of the

distribution—in their words, there has been a fattening of the right tail of the markup distribution.

In this section, I look at this prediction in the model. Hence, I compare the model-implied dis-

49I document a 7% increase in the cost-weighted markup; De Loecker, Eeckhout, and Unger (2020) report a rise of
approximately 10%. This difference is mainly due to the way I clean Compustat. In particular, I drop all firms that are not
incorporated in the US and all utilities and financial firms. Notice that these choices do not change the qualitative behavior
of markups compared to the paper above. However, they lower their rise. Therefore, readers should keep this caveat in
mind when interpreting the numbers.
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tribution of markups in both steady states, that is, in the 1980s and 2014, with the one in the data as

documented by De Loecker, Eeckhout, and Unger (2020).

Figure 11: Distributions of Markups—Model and Data
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Note. The figure on the left shows the empirical markup distribution in 1977-1985 (light blue) and in 2005-2014 (light grey).
The figure on the right shows the model-implied markup distribution in the 1980 calibration (light blue) and in the 2014
calibration (light grey). Both distributions are shown within the [0.5, 2.5] range.

Figure 11 presents the results. The figure on the left shows the empirical distribution of markups

in the 1980s, light blue, and in 2014, light grey. The figure on the right shows the model-implied

distribution of markups in the 1980s (light blue) and in 2014 (light grey). It can be seen that the

model qualitatively captures the overall change in the distribution of markups. Specifically, in the

2014 steady state, the model exhibits a considerable fattening of the right tail, compared to the 1980s

steady state, as the one portrayed in the data and emphasized in De Loecker, Eeckhout, and Unger

(2020).

This, in the model, happens because the rise in returns to scale reallocates the economic activity

toward bigger firms, which are also the ones the higher markups. This reallocation toward bigger

firms translates into a fatter right tail of the markup distribution. Therefore, the model produces the

rise in the average markup jointly with the distributional changes emphasized by the empirical works

of Kehrig and Vincent (2021), Autor, Dorn, Katz, Patterson, and Van Reenen (2020), and De Loecker,

Eeckhout, and Unger (2020).50

50Edmond, Midrigan, and Xu (2018) demonstrated with an exact decomposition that this rise in the variance of the
markups distribution is the main reason why the sales-weighted average markup rose by more compared to the cost-
weighted one. The model captures this qualitatively, as it produces a rise in sales-weighted markup of 3%, which is
approximately 17% of what I observe in my calculations, compared to a 2% rise in the cost-weighted markup.
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5.3.3 Declining Responsiveness

In this section, I look into additional facts highlighted by the empirical literature related to the decline

in business in the US. In particular, Decker, Haltiwanger, Jarmin, and Miranda (2020) show that an

important component of the decline in business dynamism is the fact that firms in recent decades

have responded less to productivity shocks, that is, conditional to a productivity shock, they expand

(or contract) less.

To analyze this feature in the model and in the Compustat data, I proceed in two steps: (i) I

replicate the spirit of their empirical investigation, both in the model and in the data; and (ii) I propose

an exact decomposition to shed light on the forces behind this decline in responsiveness.

Therefore, in the data, I implement the following regression:

g`it+1 = α + β ait ⊗F (t) + X ′itγ + φst + ε it, (42)

where g`it+1 ≡ 2 × (`it − `it−1)/(`it + `it−1) is the growth rate of employment, ait is the empirical

measure of total factor productivity revenue (TFPR), that is, the residual from the production function

in Section 2.3, F (t) is a flexible function of time, X it is a vector of controls, and φst are sector-time

fixed effects. The symbol ⊗ represents the full interaction between the two variables. Therefore,

the coefficient of interest will be the β associated with the interaction between ait and F (t), which

captures the evolution over time of the marginal effect of changes in productivity.51

Results are presented in Table 4. The first three columns show the decline in firm-level respon-

siveness in the data with three different specifications: (i) a linear trend; (ii) a dummy capturing

responsiveness after 2000; and (iii) a set of dummies that captures the responsiveness in each decade

having as a benchmark the first decade. Both the first (parametric) and last two (semi-parametric) re-

gressions show a statistically significant decline in firm-level responsiveness over time. In particular,

the first specification shows a decline in responsiveness, between 1980 and 2014, of 0.035, whereas

the last specification shows a decline of 0.011.

The last column shows the evolution of responsiveness in the model. In the model, firm-level

responsiveness also declines between the two steady states. In particular, we can see that this decline

of 0.027 lies in the empirical range reported above.

Finally, to understand which forces lie behind the above decline in the model, I define firm-level

51In the model, as I only have a simulated panel for the two distinct steady states, I have to run a different regression. In
particular, I run the following regression in both steady states:

g`it+1 = α + β ait + X ′itγ + φst + εit, (43)

where I do not allow for time-dependent functions. However, the regression follows the same spirit and allows for a very
similar interpretation. Therefore, to analyze the decline in responsiveness, within the model, I look at the difference of the
estimated coefficients in the two steady states, that is, β2014 − β1980.
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Table 4: Declining Firm-Level Responsiveness

(1) (2) (3) (4)
Compustat Compustat Compustat Model

β̂2014 − β̂1980 −0.027

ait ×Year −0.001∗∗∗

(0.000)
ait × It≥2000 −0.006∗∗

(0.002)
ait × It∈[1990,2000) −0.007∗∗

(0.003)
ait × It∈[2000,2010) −0.009∗∗∗

(0.003)
ait × It∈[2010,2015) −0.011∗∗∗

(0.004)

Controls X X X X

Sector-Time FE X X X

Observations 143, 771 143, 771 143, 771
R-squared 0.037 0.038 0.038

Note. The table reports the change in firm-level responsiveness to productivity shocks. The controls are size, the interaction
of employment with the time function, and past productivity. In column (1), I allow for a simple linear trend. In columns
(2) and (3), I instead allow for a more flexible set of dummies, where It∈T equals 1 when t ∈ T.

responsiveness as:

∆ log `it

∆zit
=

1
α
×
[

∆ log yit

∆zit
− 1

]
, (44)

where α is the returns to scale, and ∆ log yit/∆zit is the output growth associated with productivity

growth.52 Equation (44) shows that the rise in returns to scale translates directly into a decline in

firm-level responsiveness.53 Moreover, the rise in returns to scale can also affect responsiveness in-

directly through its effect on the output growth associated with productivity growth. Taking stocks,

in the model, the direct effect of rising returns to scale dominates, and hence, firm-level responsive-

ness declines after the aforementioned technological change, making the model consistent with the

52This definition of firm-level responsiveness is slightly different from the one implied by the regressions above. How-
ever, notice that controlling in the regressions for past productivity allows for a similar interpretation of firm-level respon-
siveness: the growth in employment associated with productivity growth. In light of this and consistent with Decker,
Haltiwanger, Jarmin, and Miranda (2020), I stick with the above regression analysis as the benchmark measure of firm-
level responsiveness. However, equation (44) is still useful in understanding which mechanism is behind the decline in the
model.

53The difference in the brackets is always positive. In particular, it can be shown that ∆ log yit/∆zit = 1+ α∆ log `it/∆zit,
where ∆ log `it/∆zit > 0.
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findings documented by Decker, Haltiwanger, Jarmin, and Miranda (2020).

6 Conclusion

In this paper, I documented empirically that US firms have undergone a technological change biased

toward higher returns to scale. In particular, leveraging the Compustat data and state-of-the-art pro-

duction function estimators, I document that firm-level returns to scale experienced a 5% increase,

going from 1 in 1980 to 1.05 in 2014. Moreover, I find that this rise is happening within all sectors—

suggesting a technological interpretation—and is not the outcome of a reallocation of economic ac-

tivity toward high returns to scale sectors.

To understand the implications of this technological change for some of the main trends in the

US economy, I propose a novel heterogeneous firms model grounded in search frictions in the prod-

uct market. Search frictions make the model consistent with several features of the microdata: (i)

they microfound endogenous heterogeneous markups; (ii) entail firms’ active expenditures to attract

customers, and (iii) imply that firms grow through the accumulation of new customers, which em-

pirically accounts for 70% of their life-cycle growth. In the model, because of the central role of prices

for attracting and retaining customers, changes in returns to scale, affecting firm-level marginal costs,

influence the firm-level ability to price, grow, and charge markups.

I calibrate the model with firm-level data and use it to quantify the effect of the 5% rise in returns

to scale. In the model, such a technological change can explain between 62-70% of the decline in busi-

ness dynamism, 29% of the increase in the average cost-weighted markup, and between 14-45% of

the rise in expenditures devoted to customer acquisition. The model captures all these, while being

consistent with additional micro-facts, such as the aging of US firms, the reallocation of economic ac-

tivity toward high-markup firms, and the decline in firm-level responsiveness to productivity shocks.

Several potential directions are left unexplored. It would be interesting to study the implications

of the increase in returns to scale for the increase in merger and acquisition activities, as witnessed

in recent decades. Moreover, it would be valuable to introduce in the model horizontal product

differentiation as an additional source of market power. I leave these questions to future research.
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A Empirical Analysis Appendix

A.1 Data

This section presents the construction of the main sample and main variables, providing summary

statistics for the final sample. Then, it shows how to construct the user cost of capital and explains

which variable is used in the production function estimation as labor (variable) input. Finally, it

shows the construction of the measures of selling-related activities and markups.

A.1.1 Main Sample, Variables, and Summary Statistics

I use Compustat from 1977 to 2014. I drop all firms whose Foreign Incorporation Code (FIC) is not

equal to USA. Then, I linearly interpolate when there is one missing between two available data

points SALE, COGS, XSGA, EMP, PPEGT, PPENT, XRD, XLR, XPR, XRENT, RECD, DP for data quality. I exclude

utilities (SIC codes between 4900-4999) because they are heavily price regulated, and I also exclude

financial firms (SIC codes between 6000-6999) because their balance sheets are dramatically different

from other firms.

To construct the firm-level total stock of capital, I use the perpetual inventory method (PIM). In

particular, with PIM, capital is defined as:

kit = (1− δ)kit−1 + xit, (45)

where xit − δkit−1 = PPENTi,t − PPENTit−1 is the net investment, and the initial capital stock, ki0, is

initialized using the first available entry of PPEGT.54

For data quality, I interpret as mistakes zero or negative in SALE, k, EMP, or XSGA, and I drop those

observations; moreover, if SALE, k, EMP are missing, I drop these observations too; however, if XSGA

is missing, I set it to zero. Finally, if XRD, XLR, XPR, XRENT, RECD, or DP are negative or missing, I treat

them as zeros. To obtain a real measure of the main variables, I deflate them with the GDP deflator;

I deflate investment and capital stock by the investment good deflator.55 The table below presents a

few basic summary statistics for a few leading variables used in the analysis.

A.1.2 User Cost of Capital

As mentioned in the main body of the paper, one of the challenges of using the cost shares approach

is that it requires a measure of the user cost of capital. To this end, I define the user cost of capital as:

54Given that a measure of real capital is needed for the analysis, I deflate the measure of net investment with the appro-
priate deflator.

55Deflators are taken from the NIPA tables.
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Table A.1: Summary Statistics (1977-2014)

Sales Cost of Employment Capital Stock Capital Stock Age
Goods Sold (Book Value) (PIM)

Mean 1,873,553 1,296,868 7,056 1,005,617 728,260 13
25th Percentile 22,553 13,896 115 5,756 3,552 5

Median 139,060 84,909 638 36,079 24,323 11
75th Percentile 751,619 483,007 3,500 241,352 169,204 19

No. Obs. 168,496 168,496 168,496 167,884 168,496 168,496

Note. Summary statistics of cleaned Compustat dataset between 1977 and 2014. All variables but Age are in thousands
US$. Sales and Costs of Goods Sold are deflated with the GDP deflator using the base year 2012, whereas both capital
stocks are deflated using the investment deflator with the base year 2012.

rt = it −Etπt+1 + δ, (46)

where it is equal to the nominal interest rate, Etπt+1 is expected inflation at time t, and δ is the depre-

ciation rate of capital. I take the annual Moody’s Seasoned Aaa Corporate Bond Yield as an empirical

proxy for the nominal interest rate, the annual growth rate of the Investment Nonresidencial Price

Deflator to calculate the expected inflation, and the depreciation rate is calibrated to δ = 0.1, as in the

rest of the paper.56,57,58

A.1.3 Variable Input in Production

Recent work based on Compustat, particularly since De Loecker, Eeckhout, and Unger (2020), has

used the item Cost of Goods Sold (COGS) as the preferred measure of variable input in production.

This choice was motivated by the need for a bundle of variable input expenditures to calculate firm-

level markups. However, despite being an unavoidable choice, using it as a measure of variable

input imposes an additional assumption in the estimation, as it assumes that labor and materials are

perfectly substitutable.

However, as the primary goal of this paper is to estimate the returns to scale, and hence output

elasticities, and not the markups, I favor a direct measure of the firm-level variable input. In particu-

lar, I use as a benchmark measure the variable EMP, which represents the number of employees in a

given firm, and show robustness exercises using COGS. Therefore, to be consistent with this approach,

when I calculate cost shares, I need to construct a measure of labor cost, wit`it. To do so, I use the

labor cost expenditure (XLR) reported by a subsample of firms. For the firms that report it, I calculate

56Moody’s Seasoned Aaa Corporate Bond Yield: https://fred.stlouisfed.org/series/AAA
57Investment Price Deflator: https://fred.stlouisfed.org/series/A008RD3Q086SBEA
58I estimate an AR(1) process on the annual growth rate of the Investment Nonresidential Price deflator and define the

contemporaneous expected inflation as Etπt+1 = µ + ρπt.
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the labor cost per worker defined as wit ≡ XLR/EMP, and then I calculate its within-sector median and

use it to impute the labor cost for the firms that do not report it as wit`it = ŵst · EMPit.

A.1.4 Selling-Related Expenditure

In this section, I present the two main approaches used to compute firm-level selling-related ac-

tivities. Unfortunately, in Compustat, there is no perfect way to compute firm-level selling-related

activities; therefore, while presenting the two approaches, I will emphasize their virtues and their

weaknesses.

Benchmark measure. To measure firm-level selling-related expenditures, I use Selling General

and Administrative (XSGA). This item in Compustat has been the focus of many recent studies such as:

Gourio and Rudanko (2014), Ptok, Jindal, and Reinartz (2018), Afrouzi, Dernik, and Kim (2020), and

Morlacco and Zeke (2021).59 However, despite the acknowledged ability of Selling General and Ad-

ministrative to capture firm-level selling-related expenditure, it is well known that this item reports

many expenditures that are not directly related to selling efforts, such as bad debt expenses, expendi-

ture in pensions and retirement, rents, and expenditure in research and development.60 Therefore, to

partially overcome the aforementioned limitations, my adjusted measure of selling-related expenditure

is defined as:

Sit = XSGAit − XRENTit − XPRit − RECDit − XRDit, (47)

where XSGA is an expenditure in Selling General and Administrative, XRENT is an expenditure in

Rents, XPR is an expenditure in Pensions and Retirement, RECD is an expenditure due to Bad Debts,

and XRD is an expenditure in Research and Development.

Alternative measure. As an alternative measure to the above measure, I use the Compustat vari-

able XAD, which reports the firm-level expenditure in advertisements. This is the only available item

in Compustat that measures only (and somehow cleanly) selling-related costs; however, this measure

suffers from two main drawbacks: (i) it reports the cost of advertising media (radio, television, news-

papers, periodicals) and promotional expenses but excludes selling and marketing expenses, and (ii)

half of the observations are missing.

59In particular, Ptok, Jindal, and Reinartz (2018) document that Selling General and Administrative is particularly good
at capturing firm-level sales force spending.

60For a more exhaustive discussion on how research and development are accounted for in Compustat, see Peters and
Taylor (2017). For an extensive list of items reported in Selling General and Administrative, see Afrouzi, Dernik, and Kim
(2020). In my list, I reported to the best of my knowledge only the items reported in Compustat that are accounted for in
Selling General and Administrative.
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A.1.5 Firm-Level Markups

Throughout the paper, markups are constructed following Hall (1988) and De Loecker and Warzynski

(2012); hence, the firm-level markup is given by:

µit = β̂
cogs
st ·

SALEit

COGSit
, (48)

where the β̂
cogs
st is the output elasticity to COGS. To ease the comparability between this paper and

the seminal work by De Loecker, Eeckhout, and Unger (2020), I use their measure of this elasticity.

However, the results are robust to using the alternative measure of β̂
cogs
st presented in Appendix A.2.

A.2 Additional Robustness Production Function

Here, I document the robustness of the results in Section 2.3. To this end, first, I present the alterna-

tive specification that I will use. Second, I present the results from these specifications, both for the

average returns to scale and for the within-between sectors decomposition.

Alternative Control Function: Investment. Here, I document the robustness of the rise in returns

to scale to alternative control functions such as investment. This particular control function has been

pioneered by Olley and Pakes (1996) and discussed extensively by Ackerberg, Caves, and Frazer

(2015).61 To apply the methodology presented in Section 2.2.1 to the case in which investment is used

as a control function, equation (4) has to be modified as:

qit = P(kit, `it, xit, dit) + ε it, (49)

where xit is now the firm’s investment. Given this new augmented equation, the rest of the procedure

is the same as the one outlined in Section 2.2.1.

Alternative Variable Input: Cost of Goods Sold. Here, I adopt an alternative specification of the

production function, as used in the recent paper by De Loecker, Eeckhout, and Unger (2020). To this

end, I use COGS instead of EMP as the variable input. This is a necessary shortcut to estimate firm-level

markups in Compustat. However, it imposes an alternative set of assumptions as the true estimated

production function is:

61A known drawback of using this alternative measure as a control function for the estimation is the presence of many
zeros in investment (see, Levinsohn and Petrin (2003)). However, in Compustat, this is a minor issue, as the number of
observations that are zero is particularly small relative to most of the dataset—this is due to the fact that Compustat is a
firm-level dataset containing mostly big firms.
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qit = βkkit + βcogs(`it + mit) + ωit + ε it, (50)

where mit is the firm’s materials. Equation (50) implicitly entails two additional assumptions: (i)

first, now the production function is defined as the gross output, and hence, is partially subject to

the identification criticisms laid out in Gandhi, Navarro, and Rivers (2020); and (ii) second and last,

given that COGS is the sum of all production costs (particularly labor and materials), its adoption as

an input in production implicitly assumes that labor and material are perfect substitutes within the

production process.

Additional Dynamic Input: Intangible Capital. Recently, there has been a particular emphasis on

the role played by the rise of intangible capital at the firm level.62 Therefore, this could generate

some concerns as that the rise in returns to scale could potentially be partially driven by the rise

in unmeasured intangible capital as input in production. To address this concern, I estimate a new

production function, augmented by intangible capital, given by:

qit = βkkit + βııit + β``it + ωit + ε it, (51)

where ıit is the intangible capital in production. This new specification entails an additional chal-

lenge: namely, the firm-level measurement of intangible capital. To this end, I take advantage of the

balance sheet intangible capital and capitalize firm-level knowledge capital, as done in Chiavari and

Goraya (2021). The balance sheet intangible capital is given by:

ıbalance sheet
it = INTANit + AMit − GDWLit, (52)

where INTAN is the net balance sheet intangible capital, AM is the ammortization of the balance sheet

intangible capital, and GDWL is goodwill. Knowledge capital is given by:

ıknowledge
it = (1− 0.30)ıknowledge

it−1 + XRDit, (53)

where the depreciation rate is set to 30%, close to the empirical estimates by Ewens, Peters, and

Wang (2019), XRD is the firm-level expenditure in research and development, and ıknowledge
i0 is set equal

to zero. Finally, the total firm-level intangible capital is given by:

ıit = ıbalance sheet
it + ıknowledge

it . (54)

62In particular, Chiavari and Goraya (2021) show that intangible capital is rising dramatically as an input in production.
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Alternative Production Function: Translog. Finally, I explore the robustness of the rise in returns

to scale to an alternative production function specification. In particular, in this section, I adopt the

following translog specification given by:

qit = θk
1kit + θ`1`it + θk

2k2
it + θ`2`

2
it + θk`

3 kit`it + ωit + ε it. (55)

To estimate the translog production function, I follow the methodology outlined in Section 2.2.1.

However, the output elasticities are now given by:

βk = median
{

θk
1 + 2θk

2kit + θk`
3 `it

}
, (56)

β` = median
{

θ`1 + 2θ`2`it + θk`
3 kit

}
. (57)

Therefore, the returns to scale implied by the production technology from equation (55) is given

by α = βk + β`.

Results from Alternative Specifications. The results from the above specifications are presented

in Figures A.1 and A.2. Figure A.1 shows the evolution of the sales-weighted average returns to scale

in production from 1980 to 2014 for the different alternative specifications. The first graph shows the

robustness exercise when we use investment as a proxy variable. The second graph shows the ro-

bustness exercise when we augment the production function with intangible capital as an additional

dynamic input. The third graph shows the robustness exercise when we use the cost of goods sold

(COGS) as the variable input. Finally, the fourth graph shows the robustness exercise when we adopt

a translog specification for the production function.

Figure A.2 plots the counterfactual evolution of the within and between components implied by

the decomposition from equation (14); that is, it shows the evolution of the average returns to scale

only if the ∆within component is at play and the evolution of the average returns to scale only if

the ∆between component is at play. The first graph shows the robustness exercise when we use

investment as a proxy variable. The second graph shows the robustness exercise when we augment

the production function with intangible capital as an additional dynamic input. The third graph

shows the robustness exercise when we use the cost of goods sold (COGS) as the variable input. The

fourth graph shows the robustness exercise when we adopt a translog specification for the production

function.
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Figure A.1: Alternative Specifications − Robustness 1
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Note. The figures above show the evolutions of the average returns to scale for all four robustness specifications. The first
figure shows the evolution of the average returns to scale when we use investment as a proxy variable. The second figure
shows the evolution of the average returns to scale when we augment the production function with intangible capital as
an additional dynamic input. The third figure shows the evolution of the average returns when we use the cost of goods
sold (COGS) as the variable input. The fourth figure shows the evolution of the average returns to scale when we adopt a
translog specification for the production function.

Overall, these robustness exercises show qualitative patterns that are similar to the benchmark

specification presented in Section 2.3. In the 1980s, the average returns to scale are very close to 1 in

all specifications, and by 2014, reaches a value between 1.02-1.06. This implies a rise in line with the

benchmark specification. Therefore, regardless of the preferred specification, returns to scale in recent
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Figure A.2: Alternative Specifications − Robustness 2
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Note. The figures above show the results of the decomposition (14) for all four robustness specifications. The first figure
shows the evolution of the average returns to scale, the within component, and the between component when we use
investment as a proxy variable. The second figure shows the evolution of the average returns to scale, the within com-
ponent, and the between component when we augment the production function with intangible capital as an additional
dynamic input. The third figure shows the evolution of the average returns, the within component, and the between com-
ponent when we use the cost of goods sold (COGS) as the variable input. The fourth figure shows the evolution of the
average returns to scale, the within component, and the between component when we adopt a translog specification for
the production function.

years exhibit an increasing trend. Moreover, when we look at the outcome of the decomposition for

all the alternative specifications, we can see that, in all cases, the total increase in the average returns

to scale is due to the within component. This reinforces the view that returns to scale are increasing
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within all sectors of the US economy, regardless of the specification at hand. Taking stocks, we can

see from these additional exercises that the main results are a solid feature of the data, suggesting a

technological change that is shaping firms’ production processes in all sectors of the US economy.

A.3 Selling-Related Activity Robustness

In this section, I explore the extent of the robustness of the results concerning the selling-related

expenditure measure. In particular, I check whether using an alternative measure based on the firm-

level advertisement expenditure, as reported in Appendix A.1.4, has any effect on the results and

the conclusions from the main text. To do so, first, I look at the evolution of this alternative measure

over time. Second, I look at the cross-sectoral correlation between this measure and the sector-level

measure of returns to scale.

A.3.1 Trend

One main prediction of the theory is that the rise in returns to scale implies that the firms spend

more on selling-related activities relative to production costs. Therefore, even using the alternative

measure of selling-related expenditure, we should observe a rise over time— although we should

expect to observe different levels, as explained in Appendix A.1.4. With this alternative specification,

the selling ratio becomes:

$i,t =
XADi,t

COGSi,t
. (58)

Figure A.3 shows the evolution of the selling ratio, as defined in equation (58), between 1980

and 2014. This alternative measure of the selling ratio shows a qualitative pattern that is reasonably

similar to the benchmark specification. In particular, it increases since 2000 and then declines slightly

until the end of the sample, but, overall, it shows an increase over time, as predicted by the theory.

However, the quantitative behavior is very different compared to the benchmark measure. This

is not surprising, as this alternative measure (as explained in Appendix A.1.4) reports only the costs

related to advertising media (radio, television, newspapers, periodicals) and promotional expenses,

but it excludes selling and marketing expenses. Therefore, despite being highly related to the firm’s

selling activities, it underrepresents the true costs incurred by the firm to attract and retain customers.

Overall, the main takeaway, regardless of the preferred measure to calculate the selling ratio, is that

in the US, over the last thirty years, there has been a sizeable increase in selling-related activities

relative to production costs.
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Figure A.3: Average Selling Ratio
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Note. The figure shows the evolution of the unweighted average selling ratio, as defined in equation (58), between 1980
and 2014.

A.3.2 Cross-Sectoral Correlation

Here, I show that using this alternative measure of firm-level selling-related expenditure yields a

similar sign in the correlation between returns to scale and the measure itself.

Table A.2: Effect of Rising Returns to Scale

Selling ratio − alternative

Returns to scale 0.086***
(0.025)

Observations 722
R-squared 0.361
Sector-Time FE X

Notes. Fixed effects are at the sector-time level, where the sector is at the 1-digit level. Robust standard errors are in
parenthesis. *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1.

Table A.2 shows the cross-sectional correlation between sector-level returns to scale and the sell-

ing ratio. The presence of sector-time-level fixed effects is necessary to ensure that the variation that

informs the coefficient estimate does not come from common time trends. The table shows a clear

positive correlation between the two variables. Therefore, I can conclude that, regardless of the pre-

ferred measure to calculate the selling ratio, the sectors in which firms operate with higher returns to

scale are correlated with a higher average selling ratio, as predicted by the theory.
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B Model Appendix

B.1 Model Details

In this section, I go through additional details of the model, emphasizing important concepts related

to its solution method. Most of the discussion follows the logic developed in Schaal (2017). First, I

present a less general contractual environment relative to the one presented in Section 3.3. In this

environment, I can solve the model without taking care of the distribution of promised utilities—

which is an infinite-dimensional object. This allows the characterization of the real allocation in the

economy with standard recursive methods. Second, I comment on how the prices from Section 3.6

implement the same allocation as the one characterized under the less realistic contractual environ-

ment.

B.1.1 Alternative Contractual Environment

Here, I assume that contracts are complete, state-contingent, and that there is full commitment on

both the customer and firm side. Relative to Section 3.3, the contracts are complete, and customers

also have commitment; this is a very convenient formulation of the contractual environment, despite

its lack of realism.

Therefore, in this case, the contract specifies {pt+j, τt+j, xt+j, dt+j}∞
j=0, where p is the price, x is the

submarket where the customer searches while being matched, τ is a separation probability, and d is

an exit dummy. Each element at time t + j is contingent on the entire history of shocks (zt+j). The

fact that the contract specifies x (the submarket in which a firm’s customer must search) is a feature

of completeness.

B.1.2 Joint Surplus

The additional assumptions embedded in the alternative contractual environment allow the simpli-

fication of the problem of the firm. The completeness of contracts, the commitment assumption, and

the transferability of utility guarantee that the optimal policies always maximize the joint surplus of a

firm and its customers. The model can thus be solved in two stages: a first stage in which I maximize

the surplus, and a second stage in which I design the contracts that implement the allocation. The

following Bellman equation gives the joint surplus maximization problem for a firm and its current

customers:
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S(z, n) = max
`,d,n′i ,x

′
i ,τ,x′

nu− w`− w f

+ βE

{
(δ + (1− δ)d)nU ′ + (1− δ)(1− d)

[
τnU ′

+ (1− τ)m(θ(x′))nx′ −
(

wc
q(θ(x′i))

+ x′i

)
n′i − wK(n′i; n) +S(z′, n′)

]}
,

(59)

subject to:

n′ = (1− τ)(1−m(θ(x′)))n + n′i, (60)

y = ezF(`), (61)

y = n. (62)

The surplus maximization problem characterizes the optimal allocation of physical resources

within a firm: the optimal amount of separations, firm-to-firm transitions, the number of new cus-

tomers, and the decision of whether to exit or not. Because the utility is transferable, transfers be-

tween the firms and their customers leave the surplus unchanged. Elements of the contracts de-

scribing the way profits are split, such as prices and continuation utilities, disappear in the surplus

maximization problem. In particular, the distribution of promised utilities, {C(j)}j∈[0,n], is not part of

the state space, and only the size of the customer base at the production stage n matters.

The first element in the surplus maximization problem is the total utility of the customers fol-

lowed by the wages and operating cost w f paid by the firm. In the next period, conditional on

surviving the exit shock δ, the firm chooses whether to exit or not, a decision captured by the exit

dummy d. If a firm chooses to exit, all the customers become unmatched while the firm’s value is

set to zero, yielding a total utility of nU ′. If it chooses not to exit, the firm may then proceed with

its separations. The total mass of separations is τn, which provides a total expected utility of τnU ′

to the customer-firm group. After searching, some customers move to other firms with value x′ and

contribute the amount (1 − τ)m(θ(x′))nx′ to the total surplus. Simultaneously, the firm proceeds

with its customer acquisitions. For each new customer acquisition in the product market segment

x′i , the firm incurs a cost of wc/q(θ(x′i)) and must offer on average a lifetime utility-price x′i to its

new customer, which appears as a cost to the current customer-firm group, and pays, to adjust its

customer base, the convex cost wK(n′i; n).

B.1.3 Free Entry

Under this different contractual environment, the free entry condition stated in (30) can be restated

in terms of joint surplus maximization. I redefine the problem faced by an entering firm of type z as
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follows:

Ve(z) = (1− δ)max
xe

[
S(z, ne)− ne

(
xe +

wc
q(θ(xe))

)]+
. (63)

Having drawn the idiosyncratic productivity z, the potential entrant first decides whether to exit,

a decision captured by the notation {·}+ and summarized in the dummy de. If it stays, the firms

acquire a measure of customers, ne ∈ R+, and choose a market xe in which to search, to maximize

the joint surplus minus the total advertisement cost newc/q(θ(xe)) and the total utility nexe that the

firm must deliver to its new customers.

An important feature of this economy is that the submarket in which customers are acquired, xe,

solely appears through the term wc/q(θ(xe))+ xe, which is an acquisition cost per customer common

to both entering and incumbent firms. The first term, wc/q(θ(xe)), captures the total advertisement

cost of acquiring exactly one customer. The second term, xe, is the utility price that firms offer to

their new customers. Firms choose submarkets that minimize the advertisement cost per customer.

Define the minimal advertisement cost as:

cost = min
x

[
x +

wc
q(θ(x))

]
. (64)

The optimal entry further requires that only the submarkets that minimize this advertisement cost

be open in equilibrium, which I summarize in the following complementarity slackness condition:

∀x, θ(x)
[

x +
wc

q(θ(x))
− cost

]
= 0. (65)

This condition means that submarkets wether minimize the advertisement cost, cost = x +

c/q(θ(x)), or remain unvisited, θ(x) = 0. In equilibrium, active submarkets will have the same

hiring cost, and firms will be indifferent between them. Therefore, the equilibrium market tightness

on every active market is:

θ(x) = q−1
(

wc
cost− x

)
. (66)

Notice that because q is a decreasing function, the equilibrium market tightness decreases with the

level of utility promised to the customers, as these offers succeed in attracting more customers, while

firms refrain from posting such expensive contracts. The probability of finding a firm for customers

thus declines with the attractiveness of the offer.
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B.1.4 Prices and the Main Model

Once the real allocation of the economy is solved under the contractual environment specified in Sec-

tion B.1.1, building on the results in Schaal (2017), one can solve equations (28) and (??) to construct

the prices (equation (29)) that implement the exact same allocation from (59).

B.2 Capital, Marginal Costs, and Labor Share

Here, I discuss a potentially useful extension that allows the meaningful disjoint analysis of both the

labor share and markups in the model. To do so, I augment the model with physical capital. For the

sake of exposition, I assume that firms do not own their own capital but borrow it in every period.

The firm’s problem would then be:

V(z, n,{C(j)}j∈[0,n]; w)

= max
n′i(z

′;w),x′i(z
′;w),{ω(j)}j∈[0,n]

∫ n

0
p(j)dj− w`− (r + δk)k− w f

+ (1− δ)βE

{
− n′i

c
q(θ(x′i))

− wK(n′i; n) +V(z′, n′, {Ĉ(z′; w, j)}j∈[0,n′]; w)

}+

,

(67)

subject to:

n′(z′; w) =
∫ n

0
(1− τ(z′; w, j))(1−m(θ(x′(z′; w, j))))dj + n′i(z

′; w), (68)

Ĉ(z′; w, j) =

 C(z′; w, j) for j′ ∈ [0, n′(z′; w)− n′i(z
′; w)] and j′ = Φ(z′; w, j),

xi(z′, w) for j′ ∈ [n′(z′; w)− n′i(z
′; w), n′(z′; w)],

(69)

y = ezkαω`(1−α)ω, (70)

y = n, (71)

where Φ(z′; w, j) =
∫ j

0 (1− τ)(1−m(θ(x′(z′; w, k))))dk.

The firm now borrows the capital at a rental rate given by r+ δk, where r is the interest rate, and δk

is the depreciation of physical capital. Therefore, the production function (70) takes both capital and

labor as inputs. Moreover, now the production functions directly distinguish the output elasticity

to labor from the returns to scale, which are given by ω. Therefore, the marginal product in this

augmented economy is given by:

MC =
(

1
ω

)(
1
α

)α( 1
ez

) 1
ω

n
1−ω

ω (r + δk)αw1−α. (72)
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As can be seen from the equation, the marginal cost is still decreasing in the returns to scale; that

is, it declines in ω. Therefore, the main mechanism described in the main text is preserved in this case

as well. Moreover, because the output elasticity to labor is now governed by a different parameter rel-

ative to the one that governs the returns to scale, one can accommodate both an increase in returns to

scale and a decline in the labor share. This is indeed consistent with the empirical evidence presented

in Section 2.3 and in Chiavari and Goraya (2021). Taking stocks, this model extension should be able

to obtain both an increase in markups—as in the main text—and a quantitative-relevant decline in

the labor share.

B.3 Additional Validation Exercises

B.3.1 Customer Base Policy at the Firm-Level

Firms, in the model, can use various margins—acquisitions, separations, or exit—to adjust employ-

ment. I examine here how the decision of firms to use these margins varies as a function of their

individual characteristics (z, n) at the beginning of a period.

Figure B.4: Firms’ Action Threshold in the Space (n, z)
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Note. The optimal policies depicted in this figure correspond to the baseline calibration. The areas corresponding to the
different margins of adjustment are distinct and do not overlap. Notice that customer acquisitions and separations never
occur at the same time because it is more costly for firms to acquire new customers than to retain the current ones.

Figure B.4 displays the optimal policy of firms as it appears in the baseline calibration. As ex-

pected, customer acquisitions take place in small productive firms, whose marginal value of adding

customers is high, while separations occur in unproductive firms. Interestingly, because search fric-

tions show up in the surplus (59) as a linear advertisement cost, cost = wc/q(θ(xi)) + xi, a wedge

57



appears in the adjustment cost faced by firms at n′ = n. More specifically, separating from a customer

earns a value of U to the customer-firm group, while acquiring new customers incurs the above cost,

strictly greater than the value of being an unattached customer in equilibrium. Arising from this kink

in adjustment costs, a band of inaction emerges between two thresholds: an expansion threshold, and

a separation threshold. Whenever a firm falls in the expansion region, its optimal strategy consists

of acquiring new customers until it slowly reaches the expansion threshold—a point at which the

marginal value of adding a customer equals the overall cost of acquiring extra customers. Similarly,

whenever a firm finds itself in the separation region, its optimal decision is to separate from its cus-

tomers until it slowly reaches the separation threshold. There, the marginal value of a customer

equals the marginal value of separation. The presence of an inaction region implies the existence of

a nonnegligible mass of firms that do not adjust their customer base within a period. Exit takes place

in unproductive firms. Indeed, due to the presence of a fixed operating cost w f , the decision to exit

mostly affects low productivity and low customer firms, as their current production and expected

future surplus fall short of the total operating costs.

B.3.2 Additional Life Cycle and Cross-Section Implications

Another implication of the model is that firms with higher productivity and customers are less likely

to exit the market; therefore, older firms are also less likely to exit. This feature of the model can be

seen from Figure B.4, which shows the exit threshold implied by the baseline calibration. Clearly, the

exit region, conditional on having low productivity, is wider when firms have fewer customers than

when they have many.

Figure B.5: Exit Rate by Age
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Note. The figure shows the exit rate by age group.

Figure B.5 shows the exit rate for different age groups. As expected, the model produces a neg-
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ative correlation between the exit rate and age, meaning that, on average, older firms are less likely

to exit the market than younger ones. In the model, this happens because the bigger a firm is, the

higher the demand it faces, and hence, the higher its ability to pay its fixed costs. This is an impor-

tant prediction of the model, as this negative correlation is an empirical finding documented in many

empirical papers, such as Haltiwanger, Jarmin, and Miranda (2013).

B.3.3 Robustness on Selling Ratio Implications

In this section, I test the robustness of the patterns documented in Section 4.3.2 regarding the selling

ratio. This is particularly important, as already explained in Appendix A.1.4, because Compustat

does not offer any ideal measure of selling-related expenditure at the firm level. Therefore, I review

the life cycle and distributional patterns of the selling ratio using the alternative measure of selling

expenditure defined in Section A.1.4.

Figure B.6: Selling Ratio Robustness
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Note. The figure on the left shows the estimated age profile of the selling ratio from equation (40) together with the 90%
confidence interval. The figure on the right shows the distribution of the selling ratio. The time frame is 1977-1985.

Figure B.6 shows the results of this robustness exercise. Overall, the main patterns highlighted

with the benchmark measure are robust to alternative definitions of selling expenditures. The life-

cycle profile of the selling ratio is very similar, aside from the obvious level difference, to the one

obtained with the benchmark measure. In the data, firms have a high selling ratio when they are

young, which declines with their age.

Moreover, the selling ratio distribution with the alternative measure is very similar to the one

obtained with the benchmark measure. In particular, both distributions are right-skewed with a long

right tail. Both graphs show that the model predictions regarding firm-level selling expenditures

(relative to production costs) are a robust feature of the microdata, regardless of the measure adopted
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in the data for this ratio.

B.3.4 Prices and Customers Implications

Prices are one of the main tools that firms have to attract, or retain, customers. In the model, firms

that want to grow will charge lower prices to attract and retain customers, and vice versa, firms that

are already big will charge higher prices to extract value from their existing customers. Moreover, in

the model, firms can discriminate across different customers, as explained in Section 3.6. Therefore,

the model has two main sources of price dispersion: first, different firms charge different average

prices, and second, within the same firm, customers are also charged different prices. Finally, it is

worth emphasizing that the model has clear predictions on the customer side as well. Customers, as

previously emphasized, will move from firms charging higher prices to firms charging lower prices.

Therefore, the model produces an endogenous turnover over customers in equilibrium.

To look at the price dispersion generated by the model, I compare the standard deviation of the

price distribution in the model with the one reported by Kaplan and Menzio (2015). This is partic-

ularly sensible, as they look at customer-level prices within a very narrow geography and product

category, which maps very close to the model setup where output is identical and homogeneous.

The model produces a standard deviation of 2.1e-4, which explains approximately 6% of what is ob-

served in the data by Kaplan and Menzio (2015). This is, of course, only a partial success, but should

not come as a surprise because it is well known from the work of Hornstein, Krusell, and Violante

(2011) that this class of models struggles in generating the empirically observed dispersion in prices.

Finally, the model produces an endogenous average customer turnover rate of around 11% a year.

This is in the range of the estimates from the previous literature. In particular, Gourio and Rudanko

(2014) find a customer depreciation rate of 0.15.63 Hence, the model is within the range found by the

literature.

B.3.5 Size and Markups

In the data, firms that have bigger sales within a sector tend to have also higher markups; for instance,

this has been documented in India by De Loecker, Goldberg, Khandelwal, and Pavcnik (2016). Here,

I look at this prediction in the Compustat data and the model. To do so, I run the following regression

specification:

log µit = α + β1 log sit + β2 log s2
it + φst + ε it, (73)

63Significant customer inertia has also been documented empirically by Dubé, Hitsch, and Rossi (2010) and Bronnenberg,
Dubé, and Gentzkow (2012).
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where log µit is the log-markup, log sit is the log-sale, and φst is the sector-time fixed effect. I allow

for a quadratic specification to permit a nonlinear relation between the two variables.

The regression estimates a positive relation, both in the model and in the data between the log-sale

and log-markups. In particular, in the model, the regression estimates a β1 = 0.43 and a β2 = −0.06,

whereas, in the data, the regression estimates a β1 = 0.30 and a β2 = −0.01. All coefficients are

statistically significant, and the time frame is 1977-1985.

The model’s estimates are close to the ones from the data. This is an important result as, in the

model, these elasticities have not been a target in the calibration strategy. The model is hence able to

replicate moments from the joint distribution of firms’ size and markups. This is the case because, in

the model, the biggest firms are the most productive, and hence, the ones that face a lower marginal

cost of production. In turn, this implies that they are the ones that charge the lowest prices, and hence,

are the ones that face a more inelastic demand, which allows them to charge the highest markups.

B.4 Additional Quantitative Exercises

B.4.1 Evolution of the Firms’ Distribution

The explored rise in returns to scale has direct implications for the distribution of firms across cus-

tomers and productivity levels, as explained in Section 5.1. In particular, a rise in returns to scale (i)

gives rise to some big firms that, exploiting their scale economies, can attract many customers and to

a lot of small firms with instead few customers facing the competition of these big firms; (ii) lower

the selection process in the economy, implying that more firms with lower productivity are indeed

able to operate in the new equilibrium.

Figure B.7: Firms’ Distribution Across Customers and Productivities

20 40 60 80
Customers, n

2

6

10

14

%

Distribution over n

1980

2014

-0.5 0 0.5
Productivity, z

1

2

3

Distribution over z

Note. The figure on the left shows the distribution of firms across customers, n. The figure on the right shows the distribu-
tion of firms across the productivity levels.
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Figure B.7 shows the distribution of firms across customers and productivity levels in the 1980

and 2014 steady states. The figure on the right shows the distribution of firms across customers;

it shows an increase in its right-skewness and a fattening of the right tail. This is the outcome of

the presence—in equilibrium—of big firms that can exploit their scale economies to attract new cus-

tomers. The fact that the distribution is more right-skewed speaks directly to the literature empha-

sizing the rise of superstar firms (see, for example, Autor, Dorn, Katz, Patterson, and Van Reenen

(2020)).

The figure on the left shows the distribution of firms across productivity levels; it shows lower

selection. In particular, in the new steady state, there is a fattening of the left tail, which is the

outcome of the presence of new firms that, exploiting their scale economies, can operate even after

adverse productivity shocks.

B.4.2 Aggregate Output and Welfare

In this final section of the Appendix, I look at the implications of the rise in returns to scale for

aggregate output and welfare. To study the effect of this technological change in aggregate output

and to highlight which factors are behind its changes, I present the following decomposition of its

rise over time:

∆ log Yt = ∆ logZt + ∆ log Lt/mt + ∆ log mt, (74)

where Y =
∫

i yidi is the aggregate output, Z =
∫

i(yi/`i)(`i/L)di is the aggregate productivity, L

is the total labor, and m is the mass of firms. This decomposition helps us understand when the

aggregate output changes because of a change in (i) the aggregate productivity, or (ii) the average

firm size, or (iii) the mass of firms in the economy.

Table B.3: Evolution of Aggregate Output

Productivity Avg. Firm Size Mass of Firms Output
logZ log L/m log m log Y

100× ∆2014−1980 −28.61 45.63 −15.23 1.79

Note. This table shows the percentage change in the aggregate output and its components, as highlighted in equation (74)
between the 1980 and 2014 steady states. The first column reports the percentage change in the aggregate productivity, the
second column reports the percentage change in the average firm size, the third column reports the change in the mass
of firms, and the fourth column reports the percentage change in the aggregate output. Notice that columns one to three
must sum up to column four by construction.

Table B.3 reports the results from the decomposition highlighted in equation (74). In the model,
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after a 5% rise in returns to scale, the output increases by almost to 2% relative to the trend.64 How-

ever, this moderate rise in the aggregate output masks sizeable changes in its different components:

in particular, I observe a decline in aggregate productivity of approximately 28%, a rise in the average

firm size of approximately 45%, and a decline in the mass of firms of approximately 15%.

The decline in labor productivity is the outcome of a rich set of forces. On the one hand, a rise

in returns to scale, all else being equal, increases the firm-level average product of labor, yi/`i; on

the other hand, it weakens the selection process in the economy, allowing less productive firms to

operate. Quantitatively this second force dominates and produces the decline in the aggregate pro-

ductivity documented above.65 The weakening of the selection process also produces the decline in

the mass of firms, as shown in Table B.3. As explained in Section 5.1, with lower selection, entry rates

and reallocation rated decline, leading to a steady state with fewer firms.

The rise in the average firm size follows from similar forces as the one outlined above: the re-

turns to scale rise increases the firm size and lowers the selection—that is, it allows smaller and less

productive firms to operate. However, in this case, the first effect dominates. Overall, the rise in the

average firm size dominates the other two factors, translating into an aggregate output rise.

I now turn my attention to the evolution of aggregate welfare. In this economy, aggregate welfare

is the representative household utility. Therefore, the change in welfare measured in consumption-

equivalent terms is given by:

U(C1980(1 + λ), L1980) = U(C2014, L2014), (75)

where λ measures how much more (or less) the consumption in percentage terms makes the repre-

sentative household indifferent between the 1980 and 2014 steady states. Given the specific functional

form of the representative household preferences, λ is given by:

λ =
C2014 − ϑ

(
1 + 1/ψ

)−1(L1+1/ψ
2014 − L1+1/ψ

1980

)
C1980

− 1. (76)

I find that welfare is approximately 37% below the trend. This decline is due to (i) the lower

selection and (ii) higher firm-level selling-related expenditure. Lower selection translates into lower

average productivity, which, together with the fact that the average firm becomes bigger, implies

64It is noteworthy to acknowledge that we cannot compare the two steady states, as we should view the model as a
detrended version of an underlying framework with balanced growth. Therefore, this 2% output rise is an increase relative
to a counterfactual experiment in which the output would have only increased due to balance growth, at a 3% rate, for
example.

65Interpreting the model outlined in this paper as a detrended version of a model featuring balanced growth, we can
think of the decline in the aggregate productivity as the model counterpart to the facts highlighted by Fernald (2015). This
proves that the technological change documented in the paper can be consistent with the recent US productivity decline.
Of course, one should exercise caution with such an interpretation. The model has not been designed to capture the growth
phenomena fully, and thus does not allow for a straightforward mapping with the data in this aspect.
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that the representative household must supply additional labor to sustain production. Higher firm-

level selling-related expenditure, devoted to firm size expansion, is a deadweight loss that must be

financed by the representative household with additional labor. These two forces together increase

labor, and hence, labor disutility, which being convex, dominates the moderate linear increase in

utility from consumption due to the rise in output.

I conclude with a few remarks related to the results on aggregate welfare. First, this does not

imply that welfare is lower relative to the 1980s, but only that it is below the trend due to this techno-

logical change. To see this, we can compute the level of welfare in 2014, assuming that the economy

has grown by 3% a year. In this case, welfare in 2014 would be about 27% higher than in 1980.66 Sec-

ond, in the model, consumer welfare, as measured by aggregate consumption and aggregate welfare,

moves in the opposite direction. This fact illustrates the tension associated with the common practice

of antitrust authorities of using aggregate consumer welfare as a shortcut for the overall welfare.67

66To see this, consider that absent any change, assuming a 3% growth, the aggregate welfare increased by 2014, which
is given by log(C1980(1.03)34)− log(C1980). Hence, the counterfactual level of welfare after the rise in returns to scale is
(1− 0.37)× (log(C1980(1.03)34)− log(C1980)).

67The inability of the consumer welfare paradigm to fully capture stakeholders’ interests has recently been a highly
debated topic among antitrust scholars (Hovenkamp (2019, 2020a,b) and Marinescu and Hovenkamp (2019)).

64



References

ACKERBERG, D. A., K. CAVES, AND G. FRAZER (2015): “Identification properties of recent production function
estimators,” Econometrica, 83, 2411–2451.

AFROUZI, H., A. DERNIK, AND R. KIM (2020): “Growing by the masses. Revisiting the link between firm size
and market power,” Working Paper.

AGHION, P., A. BERGEAUD, T. BOPPART, P. J. KLENOW, AND H. LI (2019): “A theory of falling growth and
rising rents,” NBER Working Paper.

AGRAWAL, A., J. GANS, AND A. GOLDFARB (2018): Prediction machines: the simple economics of artificial intelli-
gence, Harvard Business Press.

AKCIGIT, U. AND S. T. ATES (2021): “Ten facts on declining business dynamism and lessons from endogenous
growth theory,” American Economic Journal: Macroeconomics, 13, 257–98.

ALATI, A. (2021): “Initial aggregate conditions and heterogeneity infirm-level markups,” Working Paper.
ASKER, J., A. COLLARD-WEXLER, AND J. DE LOECKER (2014): “Dynamic inputs and resource (mis) alloca-

tion,” Journal of Political Economy, 122, 1013–1063.
ATKESON, A. AND A. BURSTEIN (2008): “Pricing-to-market, trade costs, and international relative prices,”

American Economic Review, 98, 1998–2031.
AUTOR, D., D. DORN, L. F. KATZ, C. PATTERSON, AND J. VAN REENEN (2020): “The fall of the labor share

and the rise of superstar firms,” The Quarterly Journal of Economics, 135, 645–709.
BEGENAU, J., M. FARBOODI, AND L. VELDKAMP (2018): “Big data in finance and the growth of large firms,”

Journal of Monetary Economics, 97, 71–87.
BLOOM, N., L. GARICANO, R. SADUN, AND J. VAN REENEN (2014): “The distinct effects of information tech-

nology and communication technology on firm organization,” Management Science, 60, 2859–2885.
BORNSTEIN, G. (2018): “Entry and profits in an aging economy: the role of consumer inertia,” Working Paper.
BRONNENBERG, B. J., J.-P. H. DUBÉ, AND M. GENTZKOW (2012): “The evolution of brand preferences: evi-

dence from consumer migration,” American Economic Review, 102, 2472–2508.
BURDETT, K. AND M. G. COLES (1997): “Steady state price distributions in a noisy search equilibrium,” Journal

of Economic Theory, 72, 1–32.
BURDETT, K. AND K. L. JUDD (1983): “Equilibrium price dispersion,” Econometrica: Journal of the Econometric

Society, 955–969.
BURDETT, K. AND G. MENZIO (2018): “The (q, s, s) pricing rule,” The Review of Economic Studies, 85, 892–928.
CABRAL, L. AND J. MATA (2003): “On the evolution of the firm size distribution: facts and theory,” The Ameri-

can Economic Review, 93, 1075–1090.
CARRIERE-SWALLOW, M. Y. AND M. V. HAKSAR (2019): The economics and implications of data: an integrated

perspective, International Monetary Fund.
CHETTY, R., A. GUREN, D. MANOLI, AND A. WEBER (2011): “Are micro and macro labor supply elasticities

consistent? A review of evidence on the intensive and extensive margins,” American Economic Review, 101,
471–75.

CHIAVARI, A. AND S. GORAYA (2021): “The rise of intangible capital and the macroeconomic implications,”
Working Paper.

COAD, A. (2009): The growth of firms: a survey of theories and empirical evidence, Edward Elgar Publishing.
CROUZET, N. AND J. C. EBERLY (2019): “Intangible capital and the investment-q relation,” Proceedings of the

2018 Jackson Hole Symposium, 87–148.
DAVIS, S. J., J. HALTIWANGER, R. JARMIN, J. MIRANDA, C. FOOTE, AND E. NAGYPAL (2006): “Volatility

and dispersion in business growth rates: publicly traded versus privately held firms,” NBER macroeconomics
annual, 21, 107–179.

DE LOECKER, J., J. EECKHOUT, AND S. MONGEY (2021): “Quantifying market power and business dynamism
in the macroeconomy,” NBER Working Paper.

DE LOECKER, J., J. EECKHOUT, AND G. UNGER (2020): “The rise of market power and the macroeconomic
implications,” The Quarterly Journal of Economics, 135, 561–644.

DE LOECKER, J., P. K. GOLDBERG, A. K. KHANDELWAL, AND N. PAVCNIK (2016): “Prices, markups, and
trade reform,” Econometrica, 84, 445–510.

DE LOECKER, J. AND P. T. SCOTT (2016): “Estimating market power evidence from the US brewing industry,”
NBER Working Paper.

DE LOECKER, J. AND F. WARZYNSKI (2012): “Markups and firm-level export status,” American Economic Re-
view, 102, 2437–71.

DE RIDDER, M. (2019): “Market power and innovation in the intangible economy,” Working Paper.
DECKER, R., J. HALTIWANGER, R. JARMIN, AND J. MIRANDA (2014): “The role of entrepreneurship in US job

65



creation and economic dynamism,” Journal of Economic Perspectives, 28, 3–24.
DECKER, R. A., J. HALTIWANGER, R. S. JARMIN, AND J. MIRANDA (2016): “Declining business dynamism:

what we know and the way forward,” American Economic Review, 106, 203–07.
——— (2020): “Changing business dynamism and productivity: shocks versus responsiveness,” American Eco-

nomic Review, 110, 3952–90.
DINLERSOZ, E. M. AND M. YORUKOGLU (2012): “Information and industry dynamics,” American Economic

Review, 102, 884–913.
DIXIT, A. K. AND J. E. STIGLITZ (1977): “Monopolistic competition and optimum product diversity,” The

American Economic Review, 67, 297–308.
DUBÉ, J.-P., G. J. HITSCH, AND P. E. ROSSI (2010): “State dependence and alternative explanations for con-

sumer inertia,” The RAND Journal of Economics, 41, 417–445.
DUNNE, T., M. J. ROBERTS, AND L. SAMUELSON (1989): “The growth and failure of US manufacturing plants,”

The Quarterly Journal of Economics, 104, 671–698.
EATON, J., M. ESLAVA, M. KUGLER, AND J. R. TYBOUT (2009): 8. Export dynamics in colombia: firm-level evidence,

Harvard University Press.
EDMOND, C., V. MIDRIGAN, AND D. Y. XU (2018): “How costly are markups?” NBER Working Paper.
EECKHOUT, J. (2021): The profit paradox: how thriving firms threaten the future of work, Princeton University Press.
EINAV, L., P. J. KLENOW, J. D. LEVIN, AND R. MURCIANO-GOROFF (2020): “Customers and retail growth,”

Working Paper.
EWENS, M., R. H. PETERS, AND S. WANG (2019): “Acquisition prices and the measurement of intangible

capital,” NBER Working Paper.
FERNALD, J. G. (2015): “Productivity and potential output before, during, and after the great recession,” NBER

macroeconomics annual, 29, 1–51.
FOSTER, L., J. HALTIWANGER, AND C. SYVERSON (2008): “Reallocation, firm turnover, and efficiency: selection

on productivity or profitability?” American Economic Review, 98, 394–425.
GANDHI, A., S. NAVARRO, AND D. A. RIVERS (2020): “On the identification of gross output production

functions,” Journal of Political Economy, 128, 2973–3016.
GAO, W. AND M. KEHRIG (2017): “Returns to scale, productivity and competition: empirical evidence from

US manufacturing and construction establishments,” Working Paper.
GOLDFARB, A. AND D. TREFLER (2018): “AI and international trade,” NBER Working Paper.
GOURIO, F. AND L. RUDANKO (2014): “Customer capital,” Review of Economic Studies, 81, 1102–1136.
GRASSI, B. (2017): “I-O in IO: size, industrial organization, and the input-output network make a firm struc-

turally important,” Working Paper.
GRULLON, G., Y. LARKIN, AND R. MICHAELY (2019): “Are US industries becoming more concentrated?”

Review of Finance, 23, 697–743.
HALL, R. E. (1988): “The relation between price and marginal cost in US industry,” Journal of Political Economy,

96, 921–947.
HALTIWANGER, J., R. S. JARMIN, AND J. MIRANDA (2013): “Who creates jobs? Small versus large versus

young,” Review of Economics and Statistics, 95, 347–361.
HASKEL, J. AND S. WESTLAKE (2018): Capitalism without capital: the rise of the intangible economy, Princeton

University Press.
HOPENHAYN, H., J. NEIRA, AND R. SINGHANIA (2018): “The rise and fall of labor force growth: implications

for firm demographics and aggregate trends,” NBER Working Paper.
HOPENHAYN, H. A. (1992): “Entry, exit, and firm dynamics in long run equilibrium,” Econometrica: Journal of

the Econometric Society, 1127–1150.
HORNSTEIN, A., P. KRUSELL, AND G. L. VIOLANTE (2011): “Frictional wage dispersion in search models: a

quantitative assessment,” American Economic Review, 101, 2873–98.
HOVENKAMP, H. (2019): “Is antitrust’s consumer welfare principle imperiled?” J. Corp. L., 45, 65.
——— (2020a): “Antitrust: what counts as consumer welfare,” Working Paper.
——— (2020b): “On the meaning of antitrust’s consumer welfare principle,” Revue Concurrentialiste (Jan. 17,

2020), U of Penn, Inst for Law & Econ Research Paper.
HSIEH, C.-T. AND E. ROSSI-HANSBERG (2019): “The industrial revolution in services,” NBER Working Papers.
JONES, C. I. AND C. TONETTI (2020): “Nonrivalry and the economics of data,” American Economic Review, 110,

2819–58.
KAPLAN, G. AND G. MENZIO (2015): “The morphology of price dispersion,” International Economic Review, 56,

1165–1206.
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