Cyclical Adjustment of Capital Requirements
A Simple Framework

Rafael Repullo
CEMFI
May 2012

Abstract
We present a simple model of an economy with heterogeneous banks that may be funded with uninsured deposits and equity capital. Capital serves to ameliorate a moral hazard problem in the choice of risk. There is a fixed aggregate supply of bank capital, so the cost of capital is endogenous. A regulator sets risk-sensitive capital requirements in order to maximize a social welfare function that incorporates a social cost of bank failure. We consider the effect of a negative shock to the supply of bank capital and show that optimal capital requirements should be lowered. Failure to do so would keep banks safer but produce a large reduction in aggregate investment. The result provides a rationale for the cyclical adjustment of risk-sensitive capital requirements.

Keywords: Banking regulation, Basel II, Capital requirements, Procyclicality.

JEL Classification: G21, G28, E44

This paper owes a lot to my previous work on the procyclicality of Basel II with Jesús Saurina, Carlos Trucharte, and especially Javier Suarez. I am very grateful to David Martinez-Miera for his help with the numerical analysis. Financial support from the Spanish Ministry of Science and Innovation (Grant No. ECO2011-26308) is gratefully acknowledged. Address: CEMFI, Casado del Alisal 5, 28014 Madrid, Spain. Phone: 34-914290551. E-mail: repullo@cemfi.es.
1 Introduction

Discussions on the potential business cycle amplification effects of Basel II started way before its approval in 2004 by the Basel Committee on Banking Supervision (BCBS, 2004). The argument whereby these effects may occur is well-known. In recessions, losses erode banks’ capital, while risk-sensitive capital requirements such as those in Basel II become higher. If banks cannot quickly raise sufficient new capital, they will be forced to reduce their lending, thereby contributing to the worsening of the downturn. However, a reduction in capital requirements makes banks riskier, so there is a trade-off.

The purpose of this paper is to construct a simple model of optimal bank capital regulation that illustrates this trade-off. The model has a continuum of banks that differ in an observable characteristic (their “risk type”) that is related to their incentives to take risk. Banks may fund their investments with uninsured deposits and equity capital. There is a moral hazard problem in the choice of risk that implies inefficient risk-shifting under debt finance, which capital serves to ameliorate. A regulator sets risk-sensitive capital requirements in order to maximize a social welfare function that incorporates a social cost of bank failure. This yields a capital charge curve that is increasing and concave in the parameter that characterizes banks’ risk type. We consider a short-run situation (or one with severe capital market frictions) in which bank capital is exogenously fixed, and study the effects of a negative shock to the supply of bank capital.\footnote{This is the same approach as in Holmström and Tirole (1996), which may also be found in recent macroeconomic models with financial frictions such as, for example, Gertler and Kiyotaki (2010).} We show that the optimal response to the shock is to lower capital requirements. Failure to do so would keep banks safer but produce a large reduction in aggregate investment. The result provides a rationale for the cyclical adjustment of risk-sensitive capital requirements.

The paper is closely related to Kashyap and Stein (2004). They present a framework (which is developed in the longer working paper version of their article) in which there is a regulator that cares about bank lending as well as the social cost of bank failure. They conclude that “instead of there being a single once-and-for-all curve that maps risk mea-
sures into capital charges, optimality requires a family of point-in-time curves, with each curve corresponding to (...) different macroeconomic conditions.” In their model there is a representative bank that maximizes the expected return of a portfolio of different types of risky loans. There is also a regulator that maximizes the expected return of the bank’s portfolio minus a reduced-form term that captures the social cost of bank failure. The regulator chooses capital requirements for each type of loan in order to maximize its objective function subject to a capital availability constraint. The shadow value of bank capital is the Lagrange multiplier associated to this constraint. They conclude that when bank capital is scarce, its shadow value will be high and the regulator should lower capital requirements.

Although their intuition is the same as ours, the models are very different. Kashyap and Stein do not consider the effect of limited liability, ignoring that the convexity of the bank’s objective function implies that it would want to specialize in only one type of loans (see Repullo and Suarez, 2004). They also take as exogenous the risk-adjusted discount rate for each type of loan, a variable that should in principle depend on the (endogenous) capital requirement for each type of loan. Finally, they model in a reduced-form manner the effect of capital on the probability of bank failure.

In contrast, our approach does not suffer from these shortcomings. Building on Repullo (2005), in our model a continuum of banks with different risk types have an investment opportunity of size one that may be funded by risk-neutral depositors and equity investors. There is an infinitely elastic supply of uninsured deposits at an expected return that is normalized to zero and a fixed aggregate supply of bank capital, so the cost of capital is endogenously determined in equilibrium. After raising the required funds, each bank chooses a risk parameter that, together with its type, determines its probability of failure. The bank’s choice of risk is not observed by depositors, so there is a (risk-shifting) moral hazard problem.

We first characterize the equilibrium of the model when banks are not regulated. Interestingly, banks will in general want to have capital in order to ameliorate the moral hazard problem. The trade-off is that capital helps on the moral hazard front, but it is in general more expensive than deposits. In fact, when the cost of capital equals the return required
by depositors there is no trade-off, and banks would only be funded with equity. We then introduce a risk-neutral regulator that faces the same informational constraints as the market, in particular the inability to observe the banks’ choice of risk. For this reason, the regulator will resort to using capital requirements to indirectly influence banks’ risk-taking. Unlike in the Basel II type of regulation, which is based on targeting an exogenous probability of failure for all banks, here the regulator maximizes the society’s welfare subject to the capital availability constraint. The social welfare function incorporates a term that captures the negative externalities associated with bank failures. Of course, if bank failures entailed no social cost, the market equilibrium would be efficient, and bank capital regulation would not be justified. In contrast, when there is a social cost of bank failure, the regulator requires banks to have more capital than they would choose in the absence of regulation. But there is a trade-off: although banks will be safer, aggregate investment will be lower. We show that the optimal regulation may be implemented as a risk-based schedule of minimum capital requirements, with banks of riskier types facing higher capital requirements.

Finally, we consider the effect of a negative shock to the aggregate supply of bank capital. This could be interpreted as the result of a downturn of the economy that produces losses that reduce banks’ capital. We show that the shock increases the shadow value of bank capital and consequently reduces optimal capital requirements. We also show that if capital requirements are kept unchanged, the reduction in the supply of bank capital will be accommodated by a significant reduction in bank lending and aggregate investment. However, the corresponding reduction in social welfare is mitigated by the fact that the operating banks will be safer than in the optimal regulation.

The literature on the procyclical effects of risk-sensitive bank capital regulation has grown in recent years. The closest paper is Repullo and Suarez (2012). In contrast with our static setup, they consider a dynamic model of relationship lending in which banks are unable to access the equity markets every period and the business cycle is modeled as a two-state Markov process that determines the loans’ probabilities of default. They compare the performance of several capital regulation regimes, including one that maximizes social welfare. The analysis is complicated by the fact that banks will in general choose to have
capital in excess of the minimum required by regulation. They show that the risk-based requirements of Basel II are more procyclical than the flat requirements of Basel I, but make banks safer. This implies that Basel II dominates Basel I in terms of social welfare except for very low levels of the social cost of bank failure. In contrast with our static model, in their dynamic model shocks to bank capital come from defaults of past loans. However, they do not have a cross-sectional distribution of bank risks, since all the loans granted in any period have the same probability of default.

Other related literature includes the early contributions of Daníelsson et al. (2001) and Gordy and Howells (2006), and the more recent of Brunnermeier et al. (2009), Hanson, Kashyap, and Stein (2011), and Shleifer and Vishny (2010), which note the potential importance of the procyclical effects of risk-sensitive capital requirements and elaborate on the pros and cons of the various policy options for their correction.

The procyclicality problem received considerable attention in statements of the G-20 following the failure of Lehman Brothers. The 2010 agreement of the Basel Committee (BCBS, 2010a), known as Basel III, refers to the following four key objectives: dampen any excess cyclicality of the minimum capital requirement, promote more forward looking provisions, conserve capital to build buffers that can be used in stress, and achieve the broader macroprudential goal of protecting the banking sector from periods of excess credit growth. However, there is essentially nothing in Basel III on the first two objectives. The third objective gave rise to the capital conservation buffer, and the fourth to the countercyclical capital buffer. While the capital conservation buffer is a reasonable proposal in the spirit of prompt corrective action provisions of the 1992 Federal Deposit Insurance Corporation Improvement Act (FDCIA), Repullo and Saurina (2012) argue that the proposed capital conservation buffer (see BCBS, 2010b) might actually exacerbate the procyclical effects of the regulation, because the variable on which it is based (the credit-to-GDP gap) tends to

2For example, in the November 2008 Washington Summit the G-20 instructed the International Monetary Fund (IMF), the Financial Stability Forum (FSF), and the Basel Committee “to develop recommendations to mitigate procyclicality, including the review of how valuation and leverage, bank capital, executive compensation, and provisioning practices may exacerbate cyclical trends.”

3To mitigate the excess cyclicality of the minimum capital requirement, Repullo, Saurina, and Trucharte (2011) propose to use a business cycle multiplier that would be an increasing function of GDP growth.
be negatively correlated with GDP growth.

The rest of the paper is organized as follows. Section 2 presents the model and characterizes the equilibrium in the absence of regulation. Section 3 introduces a social cost of bank failure and characterizes the optimal bank capital regulation. Section 4 provides a numerical illustration of the previous results. Section 5 discusses the effects of a negative shock to the aggregate supply of bank capital under optimally adjusted and fixed capital requirements. Section 6 concludes. The Appendix contains the proofs of the analytical results.

2 The Model

Consider an economy with two dates \((t = 0, 1)\), a continuum of risk-neutral banks described by their (observable) type \(\theta \in [0, 1]\), and a large set of risk-neutral investors that can fund the banks with either uninsured deposits or equity capital. The distribution of bank types is assumed to be uniform in the interval \([0, 1]\).

At \(t = 0\) a bank of type \(\theta\) can invest one unit of funds in a risky asset that yields a stochastic payoff at \(t = 1\) given by

\[
R = \begin{cases}
\max\{a(2\theta - p), 0\}, & \text{with probability } p, \\
0, & \text{with probability } 1 - p,
\end{cases}
\]

where \(a > 1\) is a parameter that characterizes the profitability of the banks’ investments, and \(p \in [0, 1]\) is a parameter privately chosen by the bank at \(t = 0\), which is the source of the (risk-shifting) moral hazard problem.\(^4\) Notice that higher risk (lower \(p\)) is associated with a higher success payoff.\(^5\)

The functional form in (1) implies

\[
\theta = \arg \max_p p \left[a(2\theta - p) \right].
\]

This means that in the absence of moral hazard, a bank of type \(\theta\) would choose \(p = \theta\), which is the (first-best) probability of success that maximizes the bank’s expected payoff. For this reason, we will refer to banks with high (low) \(\theta\)’s as safer (riskier) banks.

\(^4\)The \(\max\{\cdot, 0\}\) operator ensures that the success payoff is always nonnegative.

\(^5\)This setup is borrowed from Allen and Gale (2000) and is essentially the moral hazard model in Stiglitz and Weiss (1981).
Banks may fund their investment by raising funds from uninsured depositors, that require an expected return that is normalized to 0, and from outside equity investors, that require an expected (excess) return $\delta \geq 0$.\footnote{Notice that the maximum expected payoff of the investment of a bank of type θ is $\theta[a(2\theta - p)] = a\theta^2$. The assumption $a > 1$ implies that in the absence of moral hazard banks with type $\theta \in [1/\sqrt{a}, 1]$ would be able to fund their investments with deposits.} We assume that there is a fixed aggregate supply of bank capital \bar{K}, so the cost of capital δ will be endogenously determined.

In the absence of regulation, banks choose at $t = 0$ the amount of capital $k \in [0, 1]$ and deposits $1 - k$, as well the (gross) interest rate b offered to the depositors and the ownership share $\alpha \in [0, 1]$ offered to the outside equityholders (so an ownership share $1 - \alpha$ is retained by the inside equityholders who manage the bank). The pair (k, b) determines the probability of success p chosen by the bank.

For a given cost of capital δ, the optimal contract for a bank of type θ is a solution $(k(\theta, \delta), b(\theta, \delta), \alpha(\theta, \delta), p(\theta, \delta))$ to the following problem

\[
\max_{(k, b, \alpha, p)} (1 - \alpha)p \left[a(2\theta - p) - b(1 - k)\right] \tag{2}
\]

subject to the incentive compatibility constraint

\[
p(\theta, \delta) = \arg \max_p p \left[a(2\theta - p) - b(\theta, \delta)(1 - k(\theta, \delta))\right] , \tag{3}
\]

the depositors’ participation constraint

\[
p(\theta, \delta)b(\theta, \delta) = 1 , \tag{4}
\]

and the outside equityholders’ participation constraint

\[
\alpha(\theta, \delta)p(\theta, \delta) \left[a(2\theta - p(\theta, \delta)) - b(\theta, \delta)(1 - k(\theta, \delta))\right] = (1 + \delta)k(\theta, \delta) . \tag{5}
\]
constraints (4) and (5) ensure that they get the required expected return on their investments in the bank.

If this problem has a solution, the expected payoff of the inside equityholders will be nonnegative (since they could always set \(p = 0 \)), which using the outside equityholders’ participation constraint (5) implies

\[
[1 - \alpha(\theta, \delta)]p(\theta, \delta) [a(2\theta - p(\theta, \delta)) - b(\theta, \delta)(1 - k(\theta, \delta))]
= p(\theta, \delta) [a(2\theta - p(\theta, \delta)) - b(\theta, \delta)(1 - k(\theta, \delta))] - (1 + \delta)k(\theta, \delta) \geq 0.
\]

Given that the first-order condition that characterizes the solution to the bank’s incentive compatibility constraint (3) is

\[a(2\theta - p(\theta, \delta)) - b(\theta, \delta)(1 - k(\theta, \delta)) = ap(\theta, \delta),\]

the condition that the ownership share \(1 - \alpha(\theta, \delta) \) of the inside equityholders be nonnegative may simply be written as

\[a[p(\theta, \delta)]^2 - (1 + \delta)k(\theta, \delta) \geq 0.\]

(6)

The following result characterizes the banks’ capital and risk decisions for a given cost of capital \(\delta \).

Proposition 1 The capital and risk decisions of a bank of type \(\theta \) when the cost of capital is \(\delta \) are

\[
\begin{align*}
k(\theta, \delta) &= 1 - \frac{a\theta^2}{2} \left[1 - \frac{1}{(1 + 2\delta)^2} \right], \quad (7)
p(\theta, \delta) &= \frac{\theta}{2} \left[1 + \frac{1}{1 + 2\delta} \right]. \quad (8)
\end{align*}
\]

Only banks with types \(\theta \geq \theta(\delta) \), where

\[\theta(\delta) = \sqrt{\frac{1 + 2\delta}{a(1 + \delta)}},\]

(9)

will operate.

It is immediate to check that the level of capital \(k(\theta, \delta) \) chosen by the banks is decreasing in their type \(\theta \) (so safer banks have less capital) and in the cost of bank capital \(\delta \) (so banks
economize on capital when it becomes more expensive). In the limit case \(\delta = 0 \), where the cost of bank capital equals the expected return required by depositors, we have \(k(\theta, 0) = 1 \), that is all banks will be 100% equity financed. The intuition for this result is straightforward. Bank capital helps to ameliorate the risk-shifting problem. The trade-off is that capital helps on the moral hazard front but it is in general more expensive than deposits, except in the limit case \(\delta = 0 \) where there is no trade-off, and hence banks prefer to be fully funded with equity.

It is also immediate to check that the probability of success \(p(\theta, \delta) \) chosen by the banks is increasing in their type \(\theta \) (so banks with high \(\theta \)'s are indeed safer) and is decreasing in the cost of bank capital \(\delta \) (so when banks economize on capital they become riskier). In the limit case \(\delta = 0 \), where the cost of bank capital equals the expected return required by depositors, we have \(p(\theta, 0) = \theta \), which is the first-best probability of success. The depositors’ participation constraint (4) implies

\[
b(\theta, \delta) = \frac{1}{p(\theta, \delta)},
\]

which means that the effects of \(\theta \) and \(\delta \) on the deposit rate \(b(\theta, \delta) \) have the opposite sign of their effects on the probability of success \(p(\theta, \delta) \). In other words, safer banks either by nature (high \(\theta \)) or by choice (low \(\delta \)) pay lower deposit rates.

Finally, it can also be checked that the type \(\theta(\delta) \) of the marginal bank that is indifferent between operating and not operating is increasing in the cost of bank capital \(\delta \). Hence an increase in \(\delta \) reduces the set of banks that operate in the economy (with types \(\theta \in [\theta(\delta), 1] \)) and also reduces the demand for capital of those that operate. This means that the aggregate demand for bank capital

\[
K(\delta) = \int_{\theta(\delta)}^{1} k(\theta, \delta) \, d\theta
\]

will be decreasing in the cost of capital \(\delta \).

The equilibrium cost of bank capital \(\hat{\delta} \) is found by equating the aggregate demand for bank capital \(K(\delta) \) to the fixed supply \(\overline{K} \), that is by solving the equation

\[
K(\hat{\delta}) = \overline{K}.
\]

8
Since each operating bank invests a unit of funds, aggregate investment in this economy is equal to the mass of banks that operate in equilibrium, that is

$$\tilde{I} = 1 - \tilde{\theta},$$

where $\tilde{\theta} = \theta(\tilde{\delta})$. Given that $K(\delta)$ is decreasing and $\theta(\delta)$ is increasing in δ, it follows that a contraction in the supply of bank capital \tilde{K} will increase the equilibrium cost of bank capital $\tilde{\delta}$ and reduce aggregate investment \tilde{I} in the economy.

An interesting feature of this model, which contrasts with many models in the banking literature, is that in the absence of regulation banks will in general choose to have a positive capital buffer $k(\theta, \delta) > 0$. There are two reasons for this result. First, having capital k reduces the required amount of deposits $1 - k$, which ameliorates the risk-shifting problem generated by debt finance. Second, this effect reduces the interest rate b of uninsured deposits, and hence the face value $b(1 - k)$ of the debt to be repaid at $t = 1$, which further ameliorates the risk-shifting problem.

3 Optimal Bank Capital Regulation

To motivate bank capital regulation we are going to consider that bank failures entail a social cost. A convenient parameterization is to assume that for a bank of type θ this cost is equal to $ca\theta$, that is a proportion $c > 0$ of the success payoff of the bank’s investment under the first-best probability of success $p = \theta$, which is $a(2\theta - p) = a\theta$. Since this cost is not internalized by the banks, their choice of capital and risk will be socially inefficient.

To deal with this externality, we introduce a risk-neutral regulator whose objective function is to maximize social welfare. We assume that the regulator faces the same informational constraints as the market, in particular the inability to directly control banks’ risk-taking. Instead, the regulator will have to resort to using capital requirements to indirectly influence banks’ risk-taking.

In our risk-neutral economy, social welfare can be measured by the sum of the expected payoffs of the banks, the depositors, and the suppliers of equity capital, minus the expected
social cost associated with bank failures. However, depositors receive the required return on their contribution to banks’ financing, so we can ignore their payoff in the welfare calculations. And by focussing on banks’ profits we can also ignore the payoff of the suppliers of bank capital, since they will be compensated out of these profits.

The optimal capital requirements are obtained as a solution \((k^*(\theta), b^*(\theta), p^*(\theta), \theta^*)\) to the following problem

\[
\max_{(k(\theta), b(\theta), p(\theta), \theta^*)} \int_{\theta^*}^1 \left[p [a(2\theta - p) - b(1 - k)] - (1 - p)ca\theta \right] d\theta
\]

subject to the incentive compatibility constraint

\[
p^*(\theta) = \arg \max_p [a(2\theta - p) - b^*(\theta)(1 - k^*(\theta))] , \text{ for all } \theta,
\]

the depositors’ participation constraint

\[
p^*(\theta)b^*(\theta) = 1 , \text{ for all } \theta,
\]

and the capital availability constraint

\[
\int_{\theta^*}^1 k^*(\theta) \ d\theta = \bar{K}.
\]

In choosing the optimal capital requirement \(k^*(\theta)\) for each type \(\theta\) of bank, the regulator takes into account that the bank will be setting the deposit rate \(b^*(\theta)\) to raise the required deposits \(1 - k^*(\theta)\). This explains the incentive compatibility constraint (13) and the depositors’ participation constraint (14), which are identical to the constraints (3) and (4) in the case of the unregulated bank. The regulator also takes into account the overall availability of equity capital in constraint (15).

Notice that, as explained above, the integrand of the objective function (12) only has two components: the first one is the banks’ expected profits and the second one, with negative sign, is the expected social cost of bank failure. Since the first-order condition that characterizes the solution to the incentive compatibility constraint (13) is

\[
a(2\theta - p^*(\theta)) - b^*(\theta)(1 - k^*(\theta)) = ap^*(\theta),
\]
the objective function may simply be written as

\[\int_{\theta^*}^{1} [ap^2 - (1 - p)ca\theta] \, d\theta \]

(17)

The following result characterizes optimal capital requirements.

Proposition 2 The optimal capital requirements and corresponding risk decisions for a bank of type \(\theta \) are

\[k^*(\theta) = 1 - \frac{a\theta^2}{2} \left[1 - \left(\frac{1 + c}{2\lambda - 1} \right)^2 \right], \]

(18)

\[p^*(\theta) = \frac{\theta}{2} \left[1 + \frac{1 + c}{2\lambda - 1} \right], \]

(19)

where \(\lambda \) is the Lagrange multiplier associated with the capital availability constraint (15). Only banks with types \(\theta \geq \theta^* \) will be allowed to operate. The values of \(\lambda \) and \(\theta^* \) are obtained as the unique solution to the system formed by (15) and the condition

\[a[p^*(\theta^*)]^2 - (1 - p^*(\theta^*))ca\theta^* - \lambda k^*(\theta^*) = 0 \]

(20)

that states that the contribution to social welfare of the marginal bank of type \(\theta^* \) must be zero.

It is immediate to check that the optimal capital requirements \(k^*(\theta) \) set by the regulator are decreasing in the banks’ type \(\theta \) (so safer banks are required to have less capital) and the corresponding probabilities of success \(p^*(\theta) \) chosen by the banks are increasing in their type \(\theta \) (so banks with high \(\theta^* \)’s are indeed safer).

The Lagrange multiplier \(\lambda \) is the **shadow value of bank capital**, that is the increase in social welfare resulting from a marginal increase in the supply of bank capital. \(^7\) The optimal capital requirements \(k^*(\theta) \) are decreasing in \(\lambda \). This is the same result as in Kashyap and Stein (2004): “Instead of being a single once-and-for-all risk curve that maps risk measures into capital charges, optimality requires a family of point-in-time risk curves, with each curve corresponding to a different shadow value of bank capital.”

\(^7\) The shadow value of bank capital is defined in gross terms, ignoring the fact that an increase in equity capital reduces by the same amount banks’ deposits. Since depositors require an expected return that is normalized to zero, the net shadow value of bank capital is \(\lambda - 1 \).
As stated in Proposition 2, the Lagrange multiplier λ and the type θ^* of the marginal bank are obtained by solving a system of two equations: the capital availability constraint (15) and the condition (20) that states that the contribution of the marginal bank to social welfare must be zero. The first condition implies a downward sloping relationship between λ and θ^*: If bank capital becomes more valuable, then according to (18) the regulator will lower the capital requirements so more banks would be allowed to operate and the type of the marginal bank would be lower. The second condition implies an upward sloping relationship between λ and θ^*: If bank capital becomes more valuable, then the marginal bank must be of a higher type. Hence there is (at most) a unique intersection between the two functions that determines λ and θ^*.

Under the optimal regulation there will be a corresponding *equilibrium cost of bank capital* δ^* determined by the condition that the marginal bank must be indifferent between operating and not operating. Assuming that banks do not want to have more capital than the one required by regulation (this will be shown to be the case in Proposition 3 below), the equilibrium condition in the market for bank capital will coincide with the capital availability constraint (15) in the regulator’s problem, so the type of the marginal bank will be θ^*. Hence the equilibrium cost of bank capital δ^* under the optimal regulation will be determined by the condition

$$a[p^*(\theta^*)]^2 - (1 + \delta^*)k^*(\theta^*) = 0.$$

The first term in this expression is the expected profits of the marginal bank (using the first-order condition (16)), while the second is the required compensation of the outside equityholders. The equilibrium cost of bank capital δ^* must be such that the inside equityholders of the marginal bank of type θ^* must be indifferent between operating and not operating the bank.

The following result compares the equilibrium with and without capital regulation.

Proposition 3 When the social cost of bank failure $c = 0$ the optimal capital requirements and corresponding risk decisions are identical to those in the absence of regulation. When
$c > 0$ we have

\[
\begin{align*}
 k^*(\theta) &> k(\theta, \delta), \\
p^*(\theta) &> p(\theta, \delta), \\
I^* = 1 - \theta^* &< 1 - \hat{\theta} = \hat{I}.
\end{align*}
\]

Moreover, banks would not want to hold more capital than $k^*(\theta)$.

There are three separate results in Proposition 3. The first one states that when there are no externalities associated with bank failures, the market equilibrium is efficient, with banks privately choosing the optimal amount of capital. In this case we have $\lambda = 1 + \hat{\delta}$, so the shadow value of bank capital equals the equilibrium private cost of bank capital.\(^8\)

The second result states that when bank failures entail a social cost, the optimal regulation requires banks to have more capital than they would privately choose to have. But there is a trade-off: banks become safer, but with an exogenously given supply of bank capital fewer banks will be operating, and hence aggregate investment will fall.

The third result relates to the equilibrium cost of bank capital δ^* under the optimal regulation: For this value of the cost of capital, banks would not want to have more capital than the level required by the regulator. This implies that the optimal regulation may be implemented as a risk-based schedule of minimum capital requirements.

4 A Numerical Illustration

To illustrate our previous results, consider a numerical example in which we set the parameter that characterizes the profitability of the banks’ investments $a = 5$, and suppose that the supply of bank capital K is such that the equilibrium cost of bank capital in the absence of regulation is $\hat{\delta} = 12.5\%$.\(^9\)

\(^8\)It is worth noting that this result would not obtain if deposits were insured, because then banks would not want to have any capital.

\(^9\)It should be noted that these and the other parameter values below are not intended to provide a calibration of the model and they are simply chosen to facilitate the graphical representation of the qualitative results of the paper.
By Proposition 1 the equilibrium capital and risk decisions of a bank of type θ are

$$k(\theta, \hat{\delta}) = 1 - 0.9\theta^2, \quad (22)$$

$$p(\theta, \hat{\delta}) = 0.9\theta. \quad (23)$$

Thus the safest bank (of type $\theta = 1$) will choose a level of capital $k(1, \hat{\delta}) = 10\%$ and a probability of success $p(1, \hat{\delta}) = 90\%$. Riskier banks (with $\theta < 1$) will have more capital, but this will be insufficient to compensate the worsening of the moral hazard problem, and they will choose lower probabilities of success. Also by Proposition 1, the type of the marginal bank that is indifferent between operating and not operating will be $\hat{\theta} = \theta(\hat{\delta}) = 4.5^{-1/2} = 0.471$. Finally, the required supply of bank capital is given by

$$\overline{K} = \int_{\hat{\theta}}^{1} k(\theta, \hat{\delta}) \, d\theta = 1 - \hat{\theta} - 0.3(1 - \hat{\theta}^3) = 0.260.$$

To compute the optimal capital requirements we set the social cost of bank failure $c = 0.2$. Solving equations (15) and (20) gives a shadow value of bank capital $\lambda = 1.211$ and a marginal bank type $\theta^* = 0.538$. Hence by Proposition 2 the optimal capital requirements and the corresponding risk decisions for a bank of type θ are

$$k^*(\theta) = 1 - 0.718\theta^2, \quad (24)$$

$$p^*(\theta) = 0.922\theta. \quad (25)$$

Thus the safest bank (of type $\theta = 1$) will face a capital requirement $k^*(1) = 28.2\%$ and will choose a probability of success $p^*(1) = 92.2\%$. Note that, as stated in Proposition 3, $k^*(\theta) > k(\theta, \hat{\delta})$ and $p^*(\theta) > p(\theta, \hat{\delta})$, so banks will have more capital and will be safer than in the absence of regulation. However, given that there is a fixed aggregate supply of bank capital, requiring banks to have more capital will necessarily reduce the set of banks that operate. In particular, the type of the marginal bank will increase from $\hat{\theta} = 0.471$ to $\theta^* = 0.538$. Therefore aggregate investment will fall by 12.6\% from $\hat{I} = 1 - \hat{\theta} = 0.529$ to $I^* = 1 - \theta^* = 0.462$. Finally, the equilibrium cost of capital will jump from $\hat{\delta} = 12.5\%$ to $\delta^* = 55.3\%$, reflecting the increase in the demand for bank capital generated by the optimal regulation.
Figure 1. Equilibrium capital and optimal capital requirements for a fixed supply of bank capital

This figure depicts the equilibrium capital decisions in the absence of regulation and the optimal capital requirements for the different types of banks, with the corresponding levels of aggregate investment in the horizontal axis. The sum of the areas of regions A and B and the sum of the areas of regions B and C equals the aggregate supply of bank capital.

To illustrate the result, Figure 1 plots the functions \(k(\theta, \hat{\delta}) \) and \(k^*(\theta) \) in (22) and (24). To facilitate the comparison with the standard capital charge curves à la Basel II, the variable in the horizontal axis is \(1 - \theta \), which is a measure of banks’ risk. The two functions have a similar shape, with the gap between \(k(\theta, \hat{\delta}) \) and \(k^*(\theta) \) becoming smaller when \(\theta \) tends to zero. Figure 1 also shows the critical values \(I^* = 1 - \theta^* \) and \(\hat{I} = 1 - \hat{\theta} \) beyond which banks will not be operating with and without capital requirements, respectively. Note that the integral below the curve \(k(\theta, \hat{\delta}) \) between 0 and \(\hat{I} \) equals the aggregate supply of bank capital.
\(\bar{K} \), and similarly the integral below the curve \(k^*(\theta) \) between 0 and \(I^* \) also equals \(\bar{K} \). This means that the area of region \(A \) must be equal to the area of region \(C \).

Like in the case of risk-sensitive capital requirements à la Basel II, the optimal capital requirements \(k^*(\theta) \) are increasing in the measure of bank risk, \(1 - \theta \). However, our capital requirements are not based on a purely statistical value-at-risk calculation, with an arbitrary confidence level, but follow from the maximization of the relevant social welfare function.

5 **Cyclical Adjustment of Capital Requirements**

This section considers the effect of a negative shock to the aggregate supply of bank capital, which could be interpreted as the result of a downturn in the economy that produces losses to the banks’ investment portfolios and consequently reduces their capital. Obviously, our modelling approach implicitly assumes the existence of some capital market imperfections that make it impossible for banks to raise new capital.

Specifically, suppose that the aggregate supply of bank capital goes down from \(\bar{K} = \bar{K}_0 \) to \(\bar{K} = \bar{K}_1 < \bar{K}_0 \). Following the discussion after Proposition 2, we first derive the effect of the shock on the values the Lagrange multiplier \(\lambda \) and the type \(\theta^* \) of the marginal bank. A reduction in the supply of bank capital produces an upward shift in the downward sloping relationship between \(\lambda \) and \(\theta^* \) implied by the capital availability constraint (15). Since the relationship between \(\lambda \) and \(\theta^* \) implied by the condition (20) on the zero contribution of the marginal bank to social welfare is upward sloping, the effect of the shock will be to increase the value of the Lagrange multiplier \(\lambda \), reflecting the higher shadow value of bank capital, and the value of the type \(\theta^* \) of the marginal bank, reflecting the need to shrink the set of banks that will be allowed to operate in order to economize on scarce bank capital.

By the results in Proposition 2, the increase in \(\lambda \) will reduce the optimal capital requirements \(k^*(\theta) \) and the probability of success \(p^*(\theta) \) of the operating banks. The intuition for these results is clear: The optimal way to accommodate the shock in the aggregate supply of bank capital is to reduce capital requirements in order to avoid the sharp reduction in aggregate investment that otherwise would obtain. The reduction in bank capital in turn
explains the reduction in the probability of success of the operating banks. Finally, the increase in the type θ^* of the marginal bank means that aggregate investment will fall, but by less than without the reduction in capital requirements.

We may illustrate these results using our previous numerical example. In particular, suppose that the aggregate supply of bank capital goes down by 25% from $K_0 = 0.260$ (the value chosen in Section 4 to get an equilibrium cost of bank capital in the absence of regulation $\hat{\delta} = 12.5\%$) to $K_1 = 0.195$. Solving equations (15) and (20) now gives a shadow value of bank capital $\lambda_1 = 1.258$ and a marginal type $\theta_1^* = 0.544$. Hence by Proposition 2 the optimal capital requirements and the corresponding risk decisions for a bank of type θ are now given by

$$k_1^*(\theta) = 1 - 0.932\theta^2, \quad (26)$$
$$p_1^*(\theta) = 0.896\theta. \quad (27)$$

Comparing these results with (24) and (25), it follows that the reduction in capital requirements will be very significant, but the effect on bank risk will be relatively small. For example, the capital requirement for the safest bank (of type $\theta = 1$) will be reduced from $k_0^*(1) = 28.2\%$ to $k_1^*(1) = 6.8\%$, while the corresponding probability of success will go down from $p_0^*(1) = 92.2\%$ to $p_1^*(1) = 89.6\%$. The marginal bank will now be of type $\theta_1^* = 0.544$, which means that aggregate investment will only fall by 1.3% from $I_0^* = 1 - \theta_0^* = 0.462$ to $I_1^* = 1 - \theta_1^* = 0.456$. Finally, using (21) we conclude that the equilibrium cost of capital will increase from $\delta_0^* = 55.3\%$ to $\delta_1^* = 64.0\%$, reflecting the negative shock in the aggregate supply of bank capital which is not fully compensated by the reduction in capital requirements.

Figure 2 plots the optimal capital requirements before and after the shock in the aggregate supply of bank capital, as well as the critical values $I_0^* = 1 - \theta_0^*$ and $I_1^* = 1 - \theta_1^*$ beyond which banks will not be operating, respectively, before and after the shock. As noted above, the adjustment is made by reducing the set of banks that are allowed to operate and by lowering the capital requirements for the banks that remain in operation. In the numerical example, the second element the adjustment is much more important than the first.
Figure 2. Optimal capital requirements before and after the shock to the supply of bank capital

This figure depicts the optimal capital requirements for the different types of banks before and after the negative shock to the aggregate supply of bank capital, with the corresponding levels of aggregate investment in the horizontal axis.

We next consider what happens under a fixed capital requirements regime in which capital requirements are not optimally adjusted following the shock in the aggregate supply of bank capital, but kept fixed at $k_0^*(\theta)$. In this case, the reduction in the supply of bank capital can only be accommodated by a significant increase in the equilibrium cost of capital, so a sufficiently large number of banks find it optimal not to operate in the new environment. Specifically, the type $\tilde{\theta}_1$ of the marginal bank is found by solving the equation

$$\int_{\tilde{\theta}_1}^{1} k_0^*(\theta) \, d\theta = K_1,$$
which gives $\tilde{\theta}_1 = 0.624$. This implies that aggregate investment will fall by 18.6% from $I_0^* = 1 - \theta_0^* = 0.462$ to $\tilde{I}_1 = 1 - \tilde{\theta}_1 = 0.376$. Finally, to ensure that the marginal bank of type $\tilde{\theta}_1$ will be indifferent between operating and not operating the equilibrium cost of capital will jump from $\delta_0^* = 55.3\%$ to $\tilde{\delta}_1 = 145.3\%$.

Figure 3 shows the difference in the adjustment to the shock in the aggregate supply of bank capital when capital requirements are reduced from $k_0^*(\theta)$ to $k_1^*(\theta)$ and when they are kept fixed at $k_0^*(\theta)$. In the first case, aggregate investment goes down to $I_1^* = 1 - \theta_1^* = 0.456$, \[I_1^* = 1 - \theta_1^* = 0.456, \]
while in the second it goes down to $\tilde{I}_1 = 1 - \tilde{\theta}_1 = 0.376$, reflecting the fact that 100% of the reduction in the demand for bank capital is achieved by increasing cost of capital and consequently reducing the set of banks that want to operate in the new equilibrium. Under the assumption of a uniform distribution of types, the integral below the curve $k_1^*(\theta)$ between 0 and I_1^* equals the aggregate supply of bank capital \overline{K}_1, and similarly the integral below the curve $k_0^*(\theta)$ between 0 and \tilde{I}_1 also equals \overline{K}_1. This means that the area of region A must be equal to the area of region C. This clearly illustrates the difference in the two adjustment mechanisms: Under the optimal regulation the smaller supply of bank capital is distributed among a larger set of banks, so aggregate investment only falls to I_1^*, while under fixed capital requirements the supply of bank capital is allocated to a smaller set of banks, so aggregate investment falls to $\tilde{I}_1 < I_1^*$.

Table 1. Effect of a 25% reduction in the supply of bank capital under fixed and optimal capital requirements

<table>
<thead>
<tr>
<th></th>
<th>Initial optimal capital requirements</th>
<th>New optimal capital requirements</th>
<th>Fixed capital requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium cost of capital</td>
<td>55.3%</td>
<td>64.0%</td>
<td>145.3%</td>
</tr>
<tr>
<td>Aggregate investment</td>
<td>0.462</td>
<td>0.456</td>
<td>0.376</td>
</tr>
<tr>
<td>Social welfare</td>
<td>1.101</td>
<td>1.021</td>
<td>1.001</td>
</tr>
</tbody>
</table>

This table reports the equilibrium cost of bank capital, aggregate investment, and social welfare under optimal capital requirements for the initial aggregate supply of bank capital (column 1) and after a 25 percent reduction in this supply (column 2), as well as the results for the case in which the initial capital requirements are not adjusted (column 3).

Table 1 summarizes the effects of a 25% reduction in the supply of bank capital on the equilibrium cost of bank capital, aggregate investment, and social welfare under the optimal and the fixed capital requirements regimes. Under the optimal regulation the greater part of the adjustment to the new environment is achieved by lowering capital requirements, with only a relatively small increase in the cost of bank capital (which goes from 55.3% to 64.0%)
and hence a reduction of only 1.3% in aggregate investment (from 0.462 to 0.456). Social welfare falls by a greater extent (by 7.3% from 1.101 to 1.021) because the reduction in capital requirements makes banks riskier, and hence their expected profits go down and the expected social cost of bank failure goes up. In contrast, under fixed capital requirements all the adjustment to the new environment is achieved by increasing the cost of bank capital (which goes from 55.3% to 145.3%), so there is a very significant reduction in aggregate investment (of 18.6% from 0.462 to 0.376). Although the remaining banks are safer than in the optimal regulation, the reduction in investment leads to a greater fall in social welfare (by 9.1% from 1.101 to 1.001).

Summing up, our numerical results illustrate the qualitative results of our model, namely that a shock to the supply of bank capital should be partially accommodated by a reduction in capital requirements. Otherwise, banks would be safer but there would be an excessive reduction in the level of economic activity, which would lead to a greater reduction in social welfare.

6 Concluding Remarks

This paper presents a simple model of optimal bank capital regulation that provides a rationale for the cyclical adjustment of risk-sensitive capital requirements. Specifically, capital requirements should be lowered in situations where bank capital is scarce such as economic downturns. The trade-off behind the result is explained by Kashyap and Stain (2004) in the following terms: “When banks’ lending activities are more severely constrained it is socially desirable to accept a higher probability of bank default (...) It cannot make sense for bank lending to bear the entire brunt of the adjustment, while the expected costs of defaults remain constant.”

The results provide a balanced assessment of the costs and benefits of adjusting capital requirements to the state of the business cycle. In particular, from a social welfare perspective it is incorrect either to focus exclusively on the potential credit crunch effects of the regulation, if capital requirements are not lowered in recessions, or to focus exclusively on
the greater likelihood of a banking crisis, if they are. Thus, from a practical point of view, it seems important to integrate a macroprudential with a microprudential perspective. In this regard, the results of the paper are very much in line with those in Repullo and Suarez (2012), who provide “a call for caution against the simple claim that if regulation induces cyclicalit y it needs to be radically adjusted: the adjustment is not a free lunch.”

We would like to conclude with two caveats. First, the arrival of a recession may be accompanied by other changes in the variables of the model such as reducing the size of the banks’ investment opportunities, which was normalized to one, or its profitability, captured by parameter a, or shifting to the left the distribution of bank types, which was assumed to be uniform. The first effect would reduce the demand for capital, and hence the need for an adjustment of capital requirements, while the second would exacerbate the banks’ moral hazard problem, and hence called for higher rather than lower capital requirements. Finally, the third effect would go in the same direction, since it would reduce the left-hand side of the capital availability constraint (15).

The second caveat relates to the fact that our model focusses on optimal capital requirements, whereas the Basel II regulation is based on the value-at-risk criterion that capital must cover losses with a certain confidence level. Using the results in the proof of Proposition 1, we could easily compute the capital requirements for an arbitrary confidence level γ,\footnote{Setting $p(\theta, k) = \gamma$ in (29), and solving for k gives $k_\gamma(\theta) = 1 - 2a\gamma(\theta - \gamma)$. The operators $\max\{\cdot, 0\}$ and $\min\{\cdot, 1\}$ serve to bound the capital requirement between 0 and 1 (and they are in general binding for high and low values of θ, respectively).} which would be

$$k_\gamma(\theta) = \min\{\max\{1 - 2a\gamma(\theta - \gamma), 0\}, 1\}.$$

Providing a rationale for a cyclical adjustment of capital requirements would be more complicated in this setup because the safest banks will want to have more capital than the one prescribed by regulation. But the same logic would apply here: capital requirements designed for good times would be expected to be too high in bad times, so the confidence level γ targeted by the regulator should be adjusted according to the state of the business cycle.
Appendix

Proof of Proposition 1 The first-order condition that characterizes the solution to the bank’s incentive compatibility constraint (3) is

\[a(2\theta - p) - b(1 - k) = ap, \]
(28)

Substituting the depositors’ participation constraint \(pb = 1 \) into this expression gives a quadratic equation whose solution is

\[p(\theta, k) = \frac{1}{2} \left(\theta + \sqrt{\theta^2 - \frac{2(1-k)}{a}} \right), \]
(29)

where we have chosen the solution with the highest \(p \), which is closest to the first-best \(p = \theta \) and hence the one preferred by the bank.

To derive the optimal choice of capital, substitute the first-order condition (28) into the bank’s objective function (2) to get

\[a \left[p(\theta, k) \right]^2 - (1+\delta)k. \]
(30)

Substituting (29) into this expression and differentiating with respect to \(k \) gives the first-order condition

\[\frac{\theta + \sqrt{\theta^2 - \frac{2(1-k)}{a}}}{2\sqrt{\theta^2 - \frac{2(1-k)}{a}}} = 1 + \delta. \]

Solving for \(k \) in this condition gives \(k(\theta, \delta) \) in (7), and substituting this result into (29) and rearranging gives \(p(\theta, \delta) \) in (8).

Finally, we have to consider the inside equityholders’ participation constraint (6). Substituting \(p(\theta, \delta) \) and \(k(\theta, \delta) \) into (6) gives

\[a \left[p(\theta, \delta) \right]^2 - (1+\delta)k(\theta, \delta) = a \left(\frac{\theta(1+\delta)}{1+2\delta} \right)^2 - (1+\delta) \left[1 - \frac{a\theta^2}{2} \left(1 - \frac{1}{(1+2\delta)^2} \right) \right] \geq 0, \]

which simplifies to

\[\frac{a\theta^2(1+\delta)}{1+2\delta} \geq 1, \]

Hence the constraint will be satisfied for \(\theta \geq \theta(\delta) \), where \(\theta(\delta) \) is given by (9). □
Proof of Proposition 2 Following the same steps as in the proof of Proposition 1, we can solve the first-order condition that characterizes the solution to the bank’s incentive compatibility constraint (13) together with the depositors’ participation constraint (14) to get a quadratic equation in \(p \) whose solution is (29). Then we can write the regulator’s problem as

\[
\max_{(k(\theta), \theta^*)} \int_{\theta^*}^{1} \left[a \left[p(\theta, k) \right]^2 - [1 - p(\theta, k)]ca\theta - \lambda k \right] d\theta + \lambda K,
\]

where \(\lambda \) denotes the Lagrange multiplier associated with the capital availability constraint (15). Differentiating the integrand with respect to \(k \) gives the first-order condition

\[
\theta (1 + c) + \frac{\sqrt{\theta^2 - \frac{2(1-k)}{a}}}{2\sqrt{\theta^2 - \frac{2(1-k)}{a}}} = \lambda.
\]

Solving for \(k \) in this condition gives \(k^*(\theta) \) in (18), and substituting this result into (29) and rearranging gives \(p^*(\theta) \) in (19).

Differentiating the regulator’s objective function with respect to \(\theta^* \) gives the first-order condition

\[
F(\theta^*, \lambda) = a \left[p^*(\theta^*) \right]^2 - [1 - p^*(\theta^*)]ca\theta^* - \lambda k^*(\theta^*) = 0,
\]

which states that the contribution to social welfare of the riskiest bank that is allowed to operate is zero. The values of the Lagrange multiplier \(\lambda \) and the marginal type \(\theta^* \) are found by solving (31) together with the capital availability constraint

\[
G(\theta^*, \lambda) = \int_{\theta^*}^{1} k^*(\theta) d\theta - K = 0.
\]

To show that these two equations have at most a unique solution it suffices to show that

\[
\frac{\partial F(\theta^*, \lambda)}{\partial \theta^*} > 0 \quad \text{and} \quad \frac{\partial F(\theta^*, \lambda)}{\partial \lambda} < 0,
\]

so the relationship between \(\lambda \) and \(\theta^* \) implicit in (31) is increasing, and that

\[
\frac{\partial G(\theta^*, \lambda)}{\partial \theta^*} < 0 \quad \text{and} \quad \frac{\partial G(\theta^*, \lambda)}{\partial \lambda} < 0,
\]

so the relationship between \(\lambda \) and \(\theta^* \) implicit in (32) is decreasing. The latter results are immediate from (32) and the expression (18) for \(k^*(\theta) \), since

\[
\frac{\partial G(\theta^*, \lambda)}{\partial \theta^*} = -k^*(\theta^*) < 0 \quad \text{and} \quad \frac{\partial G(\theta^*, \lambda)}{\partial \lambda} = \int_{\theta^*}^{1} \frac{\partial k^*(\theta)}{\partial \lambda} d\theta < 0.
\]
Next differentiating (31) with respect to θ^* and using the expression (19) for $p^*(\theta)$, equation (31), and the expression (18) for $k^*(\theta)$ gives

$$\frac{\partial F(\theta^*, \lambda)}{\partial \theta^*} = 2ap^*(\theta^*) \frac{\partial p^*(\theta^*)}{\partial \theta^*} - \frac{\partial}{\partial \theta^*} [1-p^*(\theta^*)] ca\theta^* - \lambda \frac{\partial k^*(\theta^*)}{\partial \theta^*}$$

$$= \frac{2a}{\theta^*} [p^*(\theta^*)]^2 - [1-2p^*(\theta^*)]ca - \lambda \frac{\partial k^*(\theta^*)}{\partial \theta^*}$$

$$= \frac{2}{\theta^*} [a [p^*(\theta^*)]^2 - [1-p^*(\theta^*)]ca\theta^*] + ca - \lambda \frac{\partial k^*(\theta^*)}{\partial \theta^*}$$

Finally, differentiating (31) with respect to λ and using the expressions (19) for $p^*(\theta)$ and (18) for $k^*(\theta)$ gives

$$\frac{\partial F(\theta^*, \lambda)}{\partial \lambda} = [2ap^*(\theta^*) + ca\theta^*] \frac{\partial p^*(\theta^*)}{\partial \lambda} - \lambda \frac{\partial k^*(\theta^*)}{\partial \lambda} - k^*(\theta^*)$$

$$= - \left[\frac{a\theta^*(2\lambda + c)}{(2\lambda - 1)} + ca\theta^* \right] \theta^*(1+c) + 2\lambda a \frac{\theta^*}{(2\lambda - 1)^2} - k^*(\theta^*)$$

$$= -k^*(\theta^*) < 0. \, \square$$

Proof of Proposition 3 When the social cost of bank failure $c = 0$ it is immediate to check that the conditions $F(\theta^*, \lambda) = 0$ and $G(\theta^*, \lambda) = 0$ defined in (31) and (32) are satisfied for $\theta^* = \hat{\theta}$ and $\lambda = 1 + \hat{\delta}$. Hence comparing (7) and (8) with (18) and (19) we conclude that $k^*(\theta) = k(\theta, \hat{\delta})$ and $p^*(\theta) = p(\theta, \hat{\delta})$.

The analyze the effect of an increase in c we first compute

$$\frac{\partial F(\theta^*, \lambda)}{\partial c} = \int_{\theta^*}^{1} \frac{\partial k^*(\theta)}{\partial c} \, d\theta > 0,$$

and

$$\frac{\partial F(\theta^*, \lambda)}{\partial c} = [2ap^*(\theta^*) + ca\theta^*] \frac{\partial p^*(\theta^*)}{\partial c} - [1-p^*(\theta^*)]a\theta^* - \lambda \frac{\partial k^*(\theta^*)}{\partial c}$$

$$= \left[\frac{a\theta^*(2\lambda + c)}{(2\lambda - 1)} + ca\theta^* \right] \frac{\theta^*}{2(2\lambda - 1)} - \lambda \frac{a \theta^*(1 + c)^2}{(2\lambda - 1)^2} - [1-p^*(\theta^*)]a\theta^*$$

$$= -[1-p^*(\theta^*)]a\theta^* < 0.$$

Hence an increase in c produces an upward shift the relationship between λ and θ^* implicit in both (31) and (32) (putting λ in the horizontal axis), which implies $d\theta^*/dc > 0$ (and an
ambiguous effect on \(\lambda \). Since for \(c = 0 \) we have \(\theta^* = \hat{\theta} \), this implies \(1 - \theta^* < 1 - \hat{\theta} \) for \(c > 0 \), so aggregate investment will be lower under the optimal regulation.

Next using the condition that determines the equilibrium cost of capital in the absence of regulation (11) and the capital availability constraint (15) we have

\[
\int_0^1 k(\theta, \hat{\delta}) \, d\theta = \int_0^1 k^*(\theta) \, d\theta = K.
\]

Using the result \(\theta^* > \hat{\theta} \) we have

\[
\int_0^{\theta^*} k(\theta, \hat{\delta}) \, d\theta + \int_{\theta^*}^1 \left[k(\theta, \hat{\delta}) - k^*(\theta) \right] \, d\theta = 0,
\]

which implies

\[
\int_{\theta^*}^1 \left[k(\theta, \hat{\delta}) - k^*(\theta) \right] \, d\theta < 0.
\]

But by (7) and (18) we have

\[
k(\theta, \hat{\delta}) - k^*(\theta) = \frac{a\theta^2}{2} \left[\frac{1}{(1 + 2\hat{\theta})^2} - \left(\frac{1 + c}{2\lambda - 1} \right)^2 \right],
\]

so it must be the case that \(k(\theta, \hat{\delta}) < k^*(\theta) \) for all \(\theta \in [\theta^*, 1] \), which proves that the optimal regulation requires banks to have more capital than they would in the absence of regulation. By (29) this in turn implies \(p(\theta, \hat{\delta}) < p^*(\theta) \) for all \(\theta \in [\theta^*, 1] \), so banks are safer than in the absence of regulation.

Finally, to prove that the optimal capital requirements will be binding we first show that \(1 + \delta^* > \lambda \). By the proof of Proposition 2, the first-order condition that characterizes the marginal type \(\theta^* \) is

\[
a \left[p^*(\theta^*) \right]^2 - [1 - p^*(\theta^*)]ca\theta^* - \lambda k^*(\theta^*) = 0.
\]

This condition together the condition (21) that characterizes the equilibrium cost of bank capital \(\delta^* \) under the optimal regulation gives

\[
(1 + \delta^* - \lambda)k^*(\theta^*) = [1 - p^*(\theta^*)]ca\theta^* > 0,
\]

which implies \(1 + \delta^* > \lambda \). We want to show that the derivative with respect to \(k \) of the bank’s objective function (30) evaluated at the optimal capital requirement \(k^*(\theta) \) is negative, that
is
\[2a p(\theta, k) \frac{\partial p(\theta, k)}{\partial k} < 1 + \delta^*. \]

But the first-order condition in Proposition 2 that characterizes the optimal capital requirement \(k^*(\theta) \) is
\[2a p(\theta, k) \frac{\partial p(\theta, k)}{\partial k} + c a \frac{\partial p(\theta, k)}{\partial k} - \lambda = 0. \]

Using the fact that \(\frac{\partial p(\theta, k)}{\partial k} > 0 \) by (29) and the result \(\lambda < 1 + \delta^* \), this implies
\[2a p(\theta, k) \frac{\partial p(\theta, k)}{\partial k} = -c a \frac{\partial p(\theta, k)}{\partial k} + \lambda < 1 + \delta^*, \]
as required. □
References

