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Abstract

The onset of the COVID-19 and the great lockdown caused macroeconomic
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1 Introduction

The onset of the COVID-19 pandemic and the subsequent great lockdown affected our

lives and our jobs in an unprecedented way. Macroeconomic variables, which are quanti-

tative mirrors of these effects, displayed complex patterns that hardly follow any historical

behavior. Figure 1 exemplifies this unique situation. The variations in the U.S. industrial

production and unemployment rate from March 2020 to August 2020 were the largest

by far since at least 1976. From an empirical perspective, this episode poses a challenge

on how to deal with such unusual behavior and still be able to retain historical relation-

ships, produce reliable forecasts, and provide correct interpretations of economic shocks.

I propose an easy and straightforward solution to this challenge, by allowing for irregular

relationships of macroeconomic variables in extreme episodes, but conceding that there

is uncertainty about these estimations.

Figure 1 Industrial production and unemployment rate variation over time

Note: Scatter plot of historical monthly changes of industrial production and unemployment rate. Blue
dots correspond to the entire sample (February 1976 to December 2022), and red dots to the most
extreme periods of the COVID-19 pandemic March to August 2020).

Bayesian vector autoregressions (VAR) are at the core of the macroeconomic empiri-

cal literature and are widely used by researchers, market participants, and policymakers

for forecasting and the understanding of economic shocks. The seminal work of Litter-

man (1986) introducing the Minnesota Prior and future implementation developments
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(Bańbura, Giannone, and Reichlin, 2010, Del Negro and Schorfheide, 2011, Carriero,

Clark, and Marcellino, 2015, among others) allowed for computationally feasible estima-

tions of large information sets that overcome the curse of dimensionality. I propose an

extension of such procedure to allow for time dummies, namely Pandemic Priors, which

are able to correctly adjust the historical relationship among the variables for the ex-

treme values observed in specific periods.1 Importantly, the econometrician can choose

how much signal to take from the pandemic period through a single parameter, nesting

the boundary cases of time dummies soaking all the pandemic variance and of full signal

as in a conventional Minnesota prior. While this choice can be arbitrary and to the taste

of the econometrician, I propose a method to define an optimal choice for how much

signal to take from these extreme values, and a test to verify if indeed downplaying these

observations through shrinkage is advisable.

With an off-the-shelf empirical example, I show that a very low number of extreme

observations during the onset of the pandemic imply distorted autoregressive coefficients,

affecting the estimated historical relationship among the variables, forecasts, and giving

a myopic view of the economic effects after a structural shock. The Pandemic Priors, in

turn, succeed in recovering these historical relationships, as confirmed by a Monte Carlo

exercise, and the proper identification and propagation of structural shocks. Importantly,

the simplicity of the method allows it to be adapted to any conventional or state-of-the-

art structural identification procedure, enabling pre-pandemic conclusions to be extended

and replicated going forward.

The procedure is akin to other methods that can be nested by the Pandemic Priors.

Schorfheide and Song (2020), for example, highlight that forecasts performed after the

extreme period around the onset of the pandemic are on par to the ones produced before

the pandemic. As such, the authors suggest excluding the observations from March

through June 2020 from the information set. This setup is equivalent to estimating

the boundary case of the Pandemic Priors where the econometrician arbitrarily chooses a

prior where the time dummies soak all the variance of those observations. In an empirical

1MATLAB and Julia implementations of the Pandemic Priors are available at
www.danilocascaldigarcia.com.
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exercise, I show that the optimal choice for the prior is one that downplays most, but not

all, the signal from the pandemic period.

Lenza and Primiceri (2021) propose a method of estimating VARs by modeling a

common shift and persistence of the volatility of the shocks during the extreme periods

of the pandemic. The method takes the assumption that the volatilities of all shocks

were scaled up by exactly the same constant and decay by exactly the same rate, so it is

possible to establish priors and estimate these scale parameters. I propose a simpler and

more parsimonious approach: allowing direct intercept shifts during the pandemic period,

which removes the need to assume common volatility scale shifters and persistence. In

fact, under the Pandemic Priors, each variable can potentially present different shifts

and persistence during the pandemic period, captured by the individual time dummies.

In an empirical exercise, the Pandemic Priors recover similar impulse responses to those

found when using the Lenza and Primiceri (2021) method. In other words, the Lenza

and Primiceri (2021) method is no different than a setup where little signal is taken from

the pandemic period, and the results can be nested by the Pandemic Priors.

The procedure I propose is also an easy linear closed-form alternative to complex se-

tups such as modeling extreme observations as random shifts in the stochastic volatility of

the VAR, as in Carriero, Clark, Marcellino, and Mertens (2022), through non-parametric

methods, as in Huber, Koop, Onorante, Pfarrhofer, and Schreiner (2023), or to estimat-

ing the VAR with t-distributed errors, as in Bobeica and Hartwig (2023). The Pandemic

Priors approach is also related to Ng (2021), who proposes augmenting the VAR with an

exogenous variable constructed as the log-differences of the information set during the

pandemic period, and to Antolin-Diaz, Drechsel, and Petrella (2021), who model outliers

in the context of dynamic factor models.

The outline of the paper is as follows. I discuss the technical implementation of the

Pandemic Priors, how to select the optimal shrinkage from the marginal density stand-

point, and a test for the applicability of the Pandemic Priors in section 2. Section 3

shows how the Pandemic Priors successfully recover the coefficients of the data generat-

ing process through a Monte Carlo simulation. Section 4 presents the implications of the
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Pandemic Priors in an empirical example of estimating a medium-scale Bayesian VAR

and identifying excess bond premium shocks. Section 5 discusses how sensitive the iden-

tification of shocks is to the shrinkage selection. Section 6 compares the Pandemic Priors

with alternative methods available in the literature. Section 7 summarizes the findings

of this paper.

2 Implementation

The Pandemic Priors build on Bańbura et al. (2010), who implements the traditional

Minnesota Prior (Litterman, 1986) through dummy observations, by extending it to allow

for time dummies on extreme observations. The method has the advantage of easy

implementation, and avoiding the curse of dimensionality by allowing for large vector

autoregression models through Bayesian shrinkage.

Following the notation from Bańbura et al. (2010), I take a VAR model with n vari-

ables, T periods, and p lags as in:

Yt = c+ 1t=ada + ...+ 1t=a+hda+h +A1Yt−1 + ...+ApYt−p + ut, (1)

where ut are innovations with E[utu
′
t] = Ψ, c is a vector of n intercepts, da through da+h

are h vectors with n time dummies for a pre-defined number of h periods from t = a

through t = a+ h (which can be the COVID-19 crisis), and 1t=i is an indicator function

that takes value 1t=i = 1 for the period set i = a, ..., a+ h, and 0 otherwise.

As in Litterman (1986) and Bańbura et al. (2010), I impose the prior that the variables

are centered around the random walk with a drift, but now extending the concept to the

idea that the pandemic is an abnormal period where the relationship between the variables

may diverge from history. As such, the prior can be represented as

Yt = c+ 1t=ada + ...+ 1t=a+hda+h +Yt−1 + ut, (2)

which is equivalent to shrinking the coefficient matrix A1 to the identity and the matrices
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A2, ...,Ap to zero. The moments for the prior distribution of the coefficients are set as

E
[
(Ak)ij

]
=

 δi, j = i, k = 1

0, otherwise
V
[
(Ak)ij

]
=


λ2

k2
, j = i

υ λ2

k2
σ2
i

σ2
j
, otherwise

. (3)

The coefficients A1, ..., Ap are assumed to be independent and normally distributed,

the covariance matrix of the residuals to be diagonal defined as Σ = diag(σ2
1, ..., σ

2
n), and

the prior on the intercept is diffuse.

Choices for σi, the overall prior tightness λ, the factor 1/k2, and the coefficient υ are

standard following good practices described in Bańbura et al. (2010), and flexible enough

to accommodate beliefs about persistence, shrinkage toward the prior, variance decrease

over lags, and the importance of own lags. By taking υ = 1, it is possible to impose a

normal inverse Wishart as in the Minnesota Prior under the form

vec(B)|Ψ ∼ N (vec(B0),Ψ⊗Ω0) and Ψ ∼ iW (S0, α0) (4)

where B is the matrix that collects the reduced-form coefficients of the Yt = XtB +Ut

vector autoregressive system with Xt = (Y
′
t−1, ...,Y

′
t−p,1,1t=a, ...,1t=a+h)

′
, B0, Ω0, S0,

and α0 are prior expectations and variance that make B matching the priors defined in

equation 3, and E[Ψ] = Σ, or the residual covariance.

In practice, these priors can be easily implemented through a series of dummy obser-

vations. The simplicity of the procedure makes it computationally efficient, allowing for

the estimation of VARs with a large number of variables. I extend the procedure to allow

for priors for the h time dummies described in equation 1. Formally, the left-hand and
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right-hand side dummy observations (Yd and Xd, respectively) are defined as

Yd =



diag(δ1σ1, ..., δnσn)/λ

0n(p−1)×n

...

diag(σ1, ..., σn)

...

0n(p−1)×n


Xd =



Jp ⊗ diag(σ1, ..., σn)/λ 0np×1 0np×h

... ... ...

0n×np 0n×1 0n×h

... ... ...

01×np ϵ 01×h

0h×np 0h×1 diag(ϕ1, ..., ϕh)


(5)

where Jp = diag(1, 2, ..., p), and ϵ imposes an uninformative prior for the intercept. In

comparison to the Bańbura et al. (2010) implementation, the innovation here is on the last

column of Xd, which imposes priors also for the h time dummies through ϕ1, ..., ϕh = ϕ

(ordered last in Xt). Following common practice from Litterman (1986), Sims and Zha

(1998), and Bańbura et al. (2010), σj can be calibrated from the variance of residuals of

univariate autoregressive models with p lags for each variable in the information set, and

setting ϵ as a very small number makes the prior for the intercept fairly uninformative.

The parameter ϕ plays an important role for the Pandemic Priors, governing the

prior associated with the time dummies. When ϕ → 0, the prior for the time dummies

is fairly uninformative, and the time dummies soak the variance of the pandemic period.

In other words, little signal is taken from those observations, teasing out the (estimated)

reduced-form coefficients from that information. When ϕ → ∞, full signal is taken

from the pandemic period, and that information is treated as any other observation.

In other words, the setup converges to a conventional Minnesota Prior. It follows that

the Pandemic Priors nest the boundary cases of no-to-full signal from the pandemic

observations through the parameter ϕ.2 While the selection of ϕ can be arbitrary and up

to the econometrician’s taste of how much information to take from the extreme values

from the pandemic period, I propose a method of selecting an optimal level of ϕ by finding

the one that maximizes the marginal density of the model, or the optimal shrinkage level

2Carriero et al. (2022), in a robustness exercise, evaluate the forecasts stemming from uninformative
time dummies for the pandemic period, which can also be nested by the Pandemic Priors.
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of the pandemic observations, detailed in Section 2.1. Section 5 discusses the implications

of different ϕ values for the identification of shocks.

Combining the original left-hand side data collected on Yt with the dummy obser-

vations Yd as in Y∗
t = [Y

′
t,Y

′

d], and the original right-hand side data collected on Xt

with the dummy observations Xd as in X∗
t = [X

′
t,X

′

d], and adding the improper prior

Ψ ∼ |Ψ|−(n+3)/2, leads to the posterior

vec(B)|Ψ,Yt ∼ N
(
vec(B̃),Ψ⊗

(
X∗′

t X
∗
t

)−1
)

and Ψ|Yt ∼ iW
(
Σ̃, Td + 2 + T −m

)
,

(6)

where T is the sample size, Td is the length of dummy observations, m = np + 1 + h,

B̃ =
(
X∗′

t X
∗
t

)−1 (
X∗′

t Y
∗
t

)
, and Σ̃ =

(
Y∗

t −X∗
t B̃
)′ (

Y∗
t −X∗

t B̃
)
, or the reduced-form

coefficients and estimated residual variance of the OLS estimation of Y∗
t on X∗

t .

If the objective of the econometrician is increased forecast performance, it is possible to

also adapt the dummy observations that impose a no-cointegration prior by constraining

the sum of the coefficients described in Bańbura et al. (2010) to take into account the

time dummies proposed here. In this case, it suffices to add an extra set of dummy

observations, as in

Ysc = diag(δ1µ1, ..., δnµn)/τ Xsc =

(
11×p ⊗ diag(δ1µ1, ..., δnµn)/τ 0n×1 0n×h

)
,

(7)

where τ sets the degree of shrinkage and µj represents the average level of each j variable

in the information set. The data can then be combined as Y∗
t = [Y

′
t,Y

′

d,Y
′
sc] and

X∗
t = [X

′
t,X

′

d,X
′
sc].

2.1 Optimal selection for ϕ

The selection of ϕ can be arbitrary and defines how much signal to take from the extreme

observations in the system. I propose here a method to select an optimal level of ϕ, as the

one that maximizes the marginal density of the model. The procedure is an adaptation

of the optimal overall prior tightness described in Carriero, Kapetanios, and Marcellino
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(2012) and Carriero et al. (2015), and can be defined as

ϕ∗ = argmax
ϕ

ln pϕ(Y ), (8)

where pϕ(Y ) is the marginal density, or marginal likelihood, obtained by integrating the

set Θ of coefficients of the model, defined as

pϕ(Y ) = p(Y |ϕ) =
∫

p(Y |Θ, ϕ)p(Θ|ϕ)dΘ. (9)

Under the normal inverse Wishart prior, pϕ(Y ) can be calculated in closed-form3 as

pϕ(Y ) = π−Tn
2 ×

∣∣∣∣(I+XtΩ0(ϕ)X
′

t

)(−1)
∣∣∣∣n2 × |S0|

α0
2 ×

(
Γn

α0+T
2

Γn
α0

2

)
× ...

...×
∣∣∣∣S0 + (Yt −XtB0)

′
(
I+XtΩ0(ϕ)X

′

t

)(−1)

(Yt −XtB0)

∣∣∣∣−
α0+T

2

,

(10)

where α0 = n+2, Γn is the n-variate gamma function, and the prior variance expectation

Ω0(ϕ) is now a function of ϕ. From equation 8, the optimal ϕ∗ is the one that maximizes

the marginal density over a discrete grid of values for ϕ.

2.2 A test for the applicability of the Pandemic Priors

Evaluating the marginal density of the model through different levels of ϕ is also an

agnostic way of checking if, indeed, the observations for the selected period should be

treated differently or not, and if so, how much should the econometrician take signal from

them. If the optimal ϕ∗ → ∞, data favors a model with a conventional Minnesota Prior,

the observations from the selected period will be treated as usual, and the time dummies

from the Pandemic Priors will be ineffective. If, however, the optimal ϕ∗ → 0, data favors

a model in which the observations from the selected period are downplayed up to some

degree governed by ϕ∗, and the time dummies from the Pandemic Priors become active.

In this section, I propose a test for the applicability of the Pandemic Priors, by

3See Bauwens, Lubrano, and Richard (2000) for details.
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evaluating the marginal density of the two boundary cases: a Minnesota Prior model

(ϕ∗ → ∞) and an uninformative Pandemic Priors model (ϕ∗ → 0). The idea is to

calculate, over the entire sample T , the ratio Rt,w between the marginal density (equation

10) of the boundary cases for every possible sub-sample of time periods with a defined

length w, as

Rt,w =
ln pϕ→∞(Y )t,w
ln pϕ→0(Y )t,w

. (11)

The Rt,w ratio test can be read as follows. At any point in time t, if the model favors

treating the observations from t to t+w−1 as extreme values that should be downplayed

by some degree, the marginal density associated to the uninformative Pandemic Priors

(ln pϕ→0(Y )t,w) will be higher than the marginal density associated to the Minnesota Prior

(ln pϕ→∞(Y )t,w). Rt,w will then be lower than 1 and the application of the Pandemic Priors

is advisable for the time period t to t + w − 1. If, in turn, Rt,w is higher than 1, then

the model favors a conventional Minnesota Prior, and the application of the Pandemic

Priors over the time period t to t+w− 1 will be ineffective. Sections 3 and 4 present the

application of the Rt,w ratio test described in equation 11 for simulated and real data,

respectively.

3 Monte Carlo simulation

The Pandemic Priors are able to recover posterior distributions that encompass the true

coefficients from simulated data. I evaluate the method through a Monte Carlo simulation

with four variables, for 600 periods, and emulating large and simultaneous shocks to each

of them happening at t = 501, but with different size (5 to 20 standard deviations) and

persistence (0.3 to 0.9), mimicking the behavior of economic variables at the onset of the

COVID-19 pandemic. The full experiment is detailed on Appendix B.

First, I evaluate the Rt,w ratio test over the 600 observations, with a defined length of

w = 24 periods, following procedure described in Section 2.2. I assign ϕ = 0.001 as the

uninformative Pandemic Priors, where the time dummies soak all the variance of the w

observations, and ϕ = 5 for the Minnesota Prior, where the time dummies bring no signal
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Figure 2 Marginal density ratio (Minnesota Prior / uninformative Pandemic Priors)

Note: Rt,w ratio test of the marginal density of a Minnesota Prior, where ϕ = 5, and the marginal
density of uninformative Pandemic Priors, where ϕ = 0.001, for simulated data. The test is conducted
at each point in time t with time dummies for the period t to t+w−1, where w is defined as 24 periods.

to the model. Figure 2 presents the evolution of the Rt,w ratio test with the simulated

data. The ratio stays consistently above 1 up until observation 477, indicating that the

observations of any time window of w = 24 periods between t = 1 and t = 477 + w − 1,

or t = 500, should not be downplayed as extreme values. The ratio, however, starts to

drop and becomes substantially below 1 from observations 478 to 501, indicating that

the model favors a system where the w = 24 observations between t and t + w − 1 are

downplayed by some degree. Indeed, applying w = 24 time dummies with the Pandemic

Priors starting at any point from t = 478 to t = 501 would cover the simultaneous

simulated shocks happening at t∗ = 501. Finally, the Rt,w ratio test reaches its lowest

point exactly at t = 501.

Following, I estimate two Bayesian VARs in levels with these four series: with the

standard Minnesota Prior (baseline), where I do not take into account the large shock

observed at t∗ = 501, and with the Pandemic Priors, treating the first 24 periods when

the shock happens with the time dummies (t = 501, ..., 524).4 I set ϕ = 0.075 as the

4The results are robust to extending the period covered by the time dummies to the whole 60 obser-
vations with unusually high levels, but 24 periods are sufficient to recover the original data generating
process. I estimate both the baseline Minnesota Prior and the Pandemic Priors with fairly loose overall
prior tightness (λ = 5), but the results are also robust to tighter priors.
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Figure 3 Posterior draws for the autoregressive coefficients

Note: Histograms of the (reduced-form) autoregressive coefficient of the baseline Minnesota Prior (blue
bars) and the Pandemic Priors (pink bars) estimations, for each variable in the information set, compared
with the data generating process (D.G.P.). ϕ = 0.075 as the optimal ϕ∗ found over a discrete grid search.
Distributions constructed after 10,000 draws from the posterior distribution. The VAR is estimated for
600 simulated periods.

optimal ϕ∗ found over a discrete grid search5 following procedure described in Section

2.1. In Figure 3, I compare the baseline (blue bars) and the Pandemic Priors (pink bars)

posterior distributions of the estimated reduced-form autoregressive coefficients with the

true coefficients known from the data generating process. Three results stand out from

this exercise. First, the larger and more persistent the shock is, the further away the

estimated baseline coefficient will be from the true value. For y4,t, for example, the true

coefficient is not even on the support estimated by the baseline Minnesota Prior. The

Pandemic Priors, in turn, successfully incorporate the true coefficient within its posterior

support. For y1,t, where the shock was considerably smaller and less persistent, both

methods manage to have the true coefficient within their supports.

The second result is that, when facing such unusually large shocks, there is consid-

erably more uncertainty on the autoregressive coefficients with the baseline Minnesota

Prior than with the Pandemic Priors. The distributions of the baseline posterior coef-

ficients are wider than the Pandemic Priors, indicating that the baseline method had a

harder time finding coefficients that fit well with the data.

5Grid values of [0.001, 0.01, 0.025, 0.050, 0.075, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.75, 1, 2, 5].
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Third, the choice of an optimal ϕ∗ matters for achieving a posterior distribution in

which the true parameters lie within, particularly for series that experience larger jumps.

In this simulation, the optimal ϕ∗ was found at 0.075, relatively far from the purely

uninformative boundary level of 0.001 in the grid search. It follows that the model took

some, albeit small, signal from the extreme values of the simulated shocked period. In

fact, when arbitrarily setting ϕ to an uninformative prior at 0.001, the true parameter

of the simulated series y4,t is almost outside of the support of the Pandemic Priors, as

shown in Figure A.1 in the Appendix.

4 An empirical example

In this section I present an empirical example of how a few pandemic observations can

markedly change the estimated relationship among macroeconomic variables and the in-

terpretation of structural shocks. I estimate a monthly Bayesian VAR in levels, where

the information set includes eight endogenous variables,6 namely the excess bond pre-

mium (EBP, Gilchrist and Zakraǰsek, 2012), (log) S&P 500 index, Federal Funds shadow

rate (Wu and Xia, 2016), (log) personal consumption expenditures (PCE), (log) PCE

price index, (log) employment, (log) industrial production, and unemployment rate. The

estimation sample runs from January 1975 through December 2022. I include 12 lags,

set ϕ = 0.05 as the optimal ϕ∗ found over a discrete grid search, overall prior tightness

λ = 0.2, and τ = 10× λ.7

The Rt,w ratio test favors treating the onset of the COVID-19 pandemic as extreme

values that should be downplayed by some degree. Figure 4 presents the evolution of the

Rt,w ratio test with the empirical exercise, setting the window w to six months. Three

results stand out from the test. First, there is no evidence of the need of treating any

time window prior to the COVID-19 pandemic onset as an extreme value. The ratio stays

consistently above 1 up until 2020. Second, there is overwhelming evidence that the onset

of the COVID-19 pandemic is an erratic historical episode, and the model favors a system

6Table A.1 in the Appendix presents the full description of the dataset.
7Results are robust to different lag selections, and λ and τ specifications, and are available upon

request.
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Figure 4 Marginal density ratio (Minnesota Prior / uninformative Pandemic Priors)

Note: Rt,w ratio test of the marginal density of a Minnesota Prior, where ϕ = 5, and the marginal
density of uninformative Pandemic Priors, where ϕ = 0.001, for empirical data. The test is conducted
at each point in time t with time dummies for the period t to t+w− 1, where w is defined as 6 months.
Shaded areas are recessions identified by the NBER.

where these observations are downplayed by some degree. The ratio drops below 1 from

November 2019 to April 2020, with its lowest value in March 2020, indicating that a

model where that month and its following five months are treated with time dummies

from the Pandemic Priors is preferable over a conventional Minnesota Prior. Finally, the

ratio seems to drop near recessions (as identified by the NBER), especially the ones in

1980, 2008, and 2020, indicating that recessions are periods where data does not seem to

follow usual historical patterns.

For the results in this Section, I explicitly model the COVID-19 crisis by applying the

Pandemic Priors with six individual time dummies for the period of March 2020 through

August 2020, as this window coincides with the onset of the pandemic, represents the

very extreme observations in unemployment rate and industrial production (as illustrated

by Figure 1), and is the lowest point evidenced by the Rt,w ratio test.
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4.1 Pandemic Priors matter for estimation, ...

The estimated time dummies build on the assumption that we should potentially observe

intercept shifts for the macroeconomic variables in the selected periods. The Pandemic

Priors imply that, while we observe the outcome of each variable, there is uncertainty

about this shift. Indeed, there is substantial heterogeneity across variables about the

size of the intercept shift, the timing of such shifts, and persistence. Figure 5 presents

the (reduced-form) posterior distributions from 10,000 draws of the intercept, and the

intercept shift (intercept plus time dummy) for the period March 2020 to August 2020.8

Some variables show quite stable intercepts (e.g., shadow rate and PCE price index),

but others show large shifts, with more pronounced examples in March 2020 for PCE,

industrial production, employment, and unemployment rate. While the coefficient for the

S&P 500 shows a large shift in March 2020 that reverts to the intercept in other periods,

the employment variables show a substantial persistence of abnormal intercept shifts over

the period March 2020 through August 2020. The Pandemic Priors succeed on capturing

these heterogeneous shifts and persistence.

While these six extreme months of the pandemic period correspond to only about 1%

of the total sample, not treating them as outliers has direct implications on the (reduced-

form) coefficients of the Bayesian VAR. I evaluate this effect by comparing two exercises.

First, as a baseline, I estimate the Bayesian VAR without any pandemic time dummy, as

in the off-the-shelf Minnesota Prior procedure from Bańbura et al. (2010). The assump-

tion of such a method is that the historical relationship among the endogenous variables

have not changed during the pandemic. The second exercise applies the Pandemic Priors.

Figure 6 presents the posterior distributions from 10,000 draws of the first lag (reduced-

form) autoregressive coefficient of each variable in the information set, for the baseline

and the Pandemic Priors setups.9

The distributions of posterior draws are substantially different between the baseline

and the Pandemic Priors, and there is heterogeneity across variables. While the estimated

8Figure A.2 in the Appendix shows the posterior distributions for the time dummies, evidencing the
uncertainty around the estimations.

9The posterior distribution is truncated to stable coefficient sets, discarding non-stationary draws.
Results are also robust to the non-truncated posterior distribution.
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Figure 5 Posterior draws for the intercept and pandemic time dummies

Note: Histograms of the (reduced-form) intercept and the intercept plus the time dummies for the
pandemic period (March 2020 to August 2020), of each variable in the information set. Distributions
constructed after 10,000 draws from the posterior distribution. The VAR is estimated from January 1975
to December 2022.

coefficients are essentially unchanged for EBP, S&P 500, shadow rate, and PCE price

index, the variables with more extreme pandemic observations are also the ones with more

disparate coefficients. Not treating the pandemic observations with the time dummies

would imply a higher autoregressive coefficient for PCE, and the distributions almost

do not overlap. The industrial production coefficient distribution is shifted to the left

with the Pandemic Priors. The employment and unemployment rate variables, which

have more extreme outliers, present opposite effect, with lower autoregressive coefficients

in the baseline setup. Also, there is substantially more parameter uncertainty for the
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Figure 6 Posterior draws for the autoregressive coefficients

Note: Histograms of the (reduced-form) autoregressive coefficient of the baseline Minnesota Prior (blue
bars) and the Pandemic Priors (pink bars) estimations, for each variable in the information set. Dis-
tributions constructed after 10,000 draws from the posterior distribution. The VAR is estimated from
January 1975 to December 2022.

employment and unemployment rate when using the baseline compared to the Pandemic

Priors.

4.2 ..., for forecasts, ...

With distinct autoregressive and lagged coefficients between the baseline and the Pan-

demic Priors, the persistence of each variable is affected, generating direct implications

for forecasting. I evaluate the effect on the forecasts by estimating the unconditional

12-month ahead path for each variable implied by the baseline Minnesota Prior method
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Figure 7 Unconditional forecasts as of December 2022

Note: Solid lines are estimated unconditional forecasts and correspond to the posterior median estimates
(red with Pandemic Priors, and black as the baseline). The VAR is estimated from January 1975 to
December 2022. The gray shaded area and the dashed red lines represent the one standard deviation
coverage bands of the forecasts obtained with 10,000 draws from the posterior distribution.

and by the Pandemic Priors, as of December 2022, presented in Figure 7.10 Red solid

lines are the (posterior median) forecasts using the Pandemic Priors and solid black lines

using the baseline Minnesota Prior.

As expected, variables where the autoregressive coefficients are essentially unchanged

between the baseline and the Pandemic Priors, such as the EBP, the S&P 500, the shadow

rate, and the PCE price index, present very similar unconditional forecasts no matter

which model is estimated. However, variables that are markedly affected by extreme val-

ues during the pandemic, such as employment and unemployment rate, present different

unconditional forecasts, implying different economic interpretations. While the baseline

model indicates that employment would systematically decrease throughout 2023, espe-

cially in the first trimester, the Pandemic Priors provide a picture where employment is

essentially unchanged over the forecast horizon. The unemployment rate is forecasted to

quickly increase over 2023 under the baseline setup, reaching about 4.5% at the end of

the year, while the Pandemic Priors show much slower but steady increase in the unem-

10Figure A.3 in the Appendix reports the unconditional forecasts over a longer horizon.
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ployment rate to about 4%. The forecast uncertainty for these variables is substantially

smaller under the Pandemic Priors than under the baseline. Finally, PCE and industrial

production forecasts are also distinct between the methods, with a faster growth of PCE

and slower decrease of industrial production with the Pandemic Priors when compared

to the foreseen by the baseline.

4.3 ..., and for the identification of structural shocks

The extreme observations also impose a tilted view of the economic effects stemming from

structural shocks. I evaluate this stance by identifying an excess bond premium shock, in

the spirit of Gilchrist and Zakraǰsek (2012) and Caldara, Fuentes-Albero, Gilchrist, and

Zakraǰsek (2016), with the baseline Minnesota Prior estimation and with the Pandemic

Priors. For simplicity, I identify the excess bond premium shock recursively, as the first

shock in the Bayesian VAR where EBP is ordered first. Of note, the Pandemic Priors

are flexible enough to accommodate any other conventional or state-of-the-art identifica-

tion procedures, such as Proxy VARs, sign restrictions, or maximization of the variance

decomposition. Figure 8 presents the 12 months ahead impulse response functions of the

EBP shock, with solid red lines for the (posterior median) responses using the Pandemic

Priors and solid black lines for the baseline Minnesota Prior.11

The economic effects of an EBP shock using the baseline and the Pandemic Priors

estimation differ both in size and propagation, and it is heterogeneous over the variables.

While the effects on the S&P 500 and PCE price index are almost indistinguishable if one

uses the Pandemic Priors or not, there are crucial differences for the other variables. For

example, simply ignoring the particular behavior of these six observations would steer

an economist to expect a large and sharp short-term effect reduction in employment in

response to the increased risk. While in the baseline model employment drops by about

0.15 percent after only two months of the shock, the Pandemic Priors imply a smoother

and more delayed employment deterioration, reaching negative 0.15 percent only about

nine months after the shock. Similar interpretation applies to the unemployment rate,

11Figure A.5 in the Appendix reports the impulse response functions over a longer horizon.
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Figure 8 Impulse responses to a 1 s.d. EBP shock

Note: Solid lines are estimated impulse responses to a standard deviation EBP shock and correspond
to the posterior median estimates (red with Pandemic Priors, and black as the baseline). The VAR
is estimated from January 1975 to December 2022. The gray shaded area and the dashed red lines
represent the one standard deviation coverage bands of the EBP shock obtained with 10,000 draws from
the posterior distribution.

which sharply increases by 0.1 percentage point in the baseline, but only smoothly reaches

that level with the Pandemic Priors. PCE and industrial production also show abnormally

sharp short-term deterioration when the pandemic observations are not properly treated.

5 Sensitivity to different levels of ϕ

The parameter ϕ governs how informative the data from the pandemic period are for

the overall estimation. With ϕ → 0, the prior is fairly uninformative and time dummies

soak all the variance of the pandemic period, while with ϕ → ∞ the time dummies are

treated as usual observations and we have the traditional Minnesota Prior. Here I revisit

the identification of the EBP shock presented in the previous section, but evaluating the

sensitivity to different levels of ϕ.

Figure 9 presents the the posterior median of impulse responses of an EBP shock.

Black solid lines are the impulse responses using a Minnesota Prior, and colored lines are
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Figure 9 Impulse responses to a 1 s.d. EBP shock under different ϕ levels

Note: Lines are estimated impulse responses to a standard deviation EBP shock and correspond to
the posterior median estimates (black with Minnesota Prior, and colored with Pandemic Priors under
different ϕ). The VAR is estimated from January 1975 to December 2022. Posterior median of the EBP
shock obtained with 10,000 draws from the posterior distribution.

the Pandemic Priors with ϕ ranging from ϕ = 0.001, or uninformative, to ϕ = 5, close

to the Minnesota Prior.12 As before, the posterior median of the impulse responses of

variables that did not observe large swings during the pandemic period are quite similar

no matter which ϕ level is used. This is the case for EBP and the PCE price index,

for example. However, employment and unemployment rate show substantially different

paths for the impulse responses conditional on how much information the estimation

takes from the pandemic observations, bounded by the uninformative Pandemic Priors

(ϕ = 0.001) and the Minnesota Prior (ϕ = 5).

It follows that the Pandemic Priors nest any setup for the prior belief the econometri-

cian may have on how much information she wants to be stemmed from the pandemic pe-

riod. If the econometrician would want to have the time dummies soaking up completely

the variance, a fairly uninformative prior can be implemented by making ϕ substantially

small. If the econometrician would want to take a downplayed signal from those obser-

vations, that is also possible with a larger ϕ. In this setup, ϕ = 5 is already sufficiently

12Figure A.4 in the Appendix reports the impulse response functions over a longer horizon.

20



large to make it indistinguishable from the Minnesota Prior, and levels between 0.001

and 5 represent a mix of diffuse and rigid priors over the pandemic period.

6 Comparison to alternative methods

In this section, I compare the Pandemic Priors estimated with an optimal ϕ∗ with the

alternative methods proposed by Schorfheide and Song (2020) and by Lenza and Primiceri

(2021). According to Schorfheide and Song (2020), there are two main options for dealing

with the COVID-19 observations: either by increasing the complexity of the VAR by

directly modeling the outliers, or by simply excluding the extreme observations of that

period. The authors show that VAR forecasts perform well from July 2020 onward, on par

with pre-pandemic performance. As such, the authors propose excluding the observations

from March through June 2020. In essence, such alternative would be similar to imposing

time dummies with fully uninformative priors (ϕ → 0) on those months, which is not

necessarily the optimal choice from the perspective of the marginal density of the model.

The Pandemic Priors, by allowing the econometrician to choose how much signal to

draw from the pandemic observations, nest the approach proposed by Schorfheide and

Song (2020), on one extreme, the Minnesota Prior on the other, and any combination in

between, including the optimal that maximizes the marginal density.

The Lenza and Primiceri (2021) procedure conjectures that the shocks observed at

the onset of the pandemic presented substantially larger volatility. If the volatility of all

shocks were scaled up by exactly the same constant, with exactly the same persistence

thereafter (the commonality assumption),13 it is possible to establish priors and estimate

these parameters. In practice, the procedure estimates common scale parameters for

the volatility of all shocks observed in March, April, and May 2020, and assumes that

the residual variance decays at a fixed rate after May 2020. As pointed out by the

authors, the commonality assumption is an approximation that works well in a period

in which all variables experienced record variation. However, several aggregate variables

commonly used in monthly VARs to characterize U.S. macroeconomic relationships did

13Also present in the stochastic volatility model of Carriero, Clark, and Marcellino (2016).
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not show unreasonably large variance shocks during the onset of the COVID-19 pandemic

in comparison to historical standards. For example, the S&P 500 index fell by 19% in

March 2020, which is on par with the global financial crisis (-20% in October 2008), and

with 10 other events with monthly double-digit variations since 1975. Indeed, as in the

Bayesian VAR example shown on Figures 5 and 6, not all variables seem to be reactive

to potentially extreme values during the March 2020 to August 2020 period. The EBP

and the S&P 500, for example, showed relatively stable intercepts and autoregressive

coefficients throughout the most acute period of the pandemic.

In summary, assuming a common scalar shifter and a common decay parameter for

the variance of all shocks is a good step to avoid that extreme values contaminate the

stochastic process of the variables in the VAR, but may not be the most appropriate

when there is heterogeneity on the size and persistence of the volatility shift. The Pan-

demic Priors, by assigning individual time dummies for each variable and at each unusual

period, allow for heterogeneous shifts (both in timing and size) and rate of decay over

the information set.

I compare the Schorfheide and Song (2020) and the Lenza and Primiceri (2021) pro-

cedures with the Pandemic Priors by estimating the empirical exercise of the previous

sections and identifying the EBP shock. I employ the optimal ϕ∗ = 0.05 for the Pandemic

Prior, meaning that the time dummies will soak most of the variance of the pandemic

period, but not all of it, as a pure uninformative prior would suggest. I exclude the March

through June 2020 observations for the Schorfheide and Song (2020) procedure, as sug-

gested by the authors. I estimate the Lenza and Primiceri (2021) procedure using the

prior selection proposed by Giannone, Lenza, and Primiceri (2015). Figure 10 presents

the posterior median impulse responses for the EBP shock, with the Pandemic Priors

depicted with red lines, the Schorfheide and Song (2020) procedure with yellow dashed

lines, the Lenza and Primiceri (2021) procedure with blue dashed lines, and the baseline

Minnesota Prior with black lines.14 All three methods present very similar results, and

quite different from the baseline (black lines), with no controls for the pandemic.

14Figure A.6 in the Appendix reports the impulse response functions over a longer horizon.
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Figure 10 Comparison of impulse responses to a 1 s.d. EBP shock

Note: Solid lines are estimated impulse responses to a standard deviation EBP shock and correspond
to the posterior median estimates (red with Pandemic Priors, blue with the Lenza and Primiceri (2021)
method, yellow with the Schorfheide and Song (2020) method, and black as the baseline). The VAR
is estimated from January 1975 to December 2022. Posterior median of the EBP shock obtained with
10,000 draws from the posterior distribution.

Three results can be drawn from these comparisons. First, the similarity of the

impulse responses indicates that most of the information distorting the reduced-form

autoregressive coefficients must be coming from the earlier months of the onset of the

pandemic, or March and April 2020. Those dates are the ones that have a common special

treatment among the three methods: excluded in Schorfheide and Song (2020), dummy

shifter on the volatility in Lenza and Primiceri (2021), and downplayed signal in the

Pandemic Priors. Second, while the impulse responses are similar, they are not the same.

Excluding the observations, as proposed by Schorfheide and Song (2020), means making

an active choice of taking no signal from the pandemic observations, while the Pandemic

Priors show that downplaying most, but not all, of the signal from those observations

would be optimal. The similarity of the Lenza and Primiceri (2021) procedure with the

other two indicates that the method is essentially no different than a setup where no

signal (or downplayed signal) is taken from the pandemic period, and the results can be

nested by the Pandemic Priors.
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7 Conclusion

Extreme observations, such as the ones observed during the most acute periods of the

COVID-19 pandemic, blur our interpretation of historical relationships among macroe-

conomic variables and the economic effects of shocks. In this paper, I show an easy and

straightforward way of dealing with such episodes in empirical macroeconomics by propos-

ing Pandemic Priors for Bayesian VAR estimations. The assumption is that macroeco-

nomic variables present an abnormal behavior in extreme episodes such as the pandemic,

but resume their historical relationship once conditions normalize. I propose time dum-

mies for these extreme events that capture such unusual behavior, but accept that there

is uncertainty about its potential outcome. Importantly, the method is flexible enough

to indicate the optimal level of shrinkage of the pandemic period, or to let the econo-

metrician choose how much signal to take from these extreme observations, nesting the

boundary cases of an uninformative prior that soaks all the variance of the period and a

traditional Minnesota Prior. While the COVID-19 pandemic is a natural candidate for

such modeling, the method presented here can also be applied to other periods where the

macroeconomic relationship among the variables is potentially (and temporarily) unusual,

such as the zero lower bound of interest rates.

The empirical example of estimating and identifying an excess bond premium shock

confirms the substantial intercept shifts during the period of March 2020 to August

2020, affecting the estimated historical coefficients, unconditional forecasts, and structural

identification. The Pandemic Priors recover historical relationships, as confirmed by a

Monte Carlo exercise, and the proper identification and propagation of structural shocks,

allowing for estimating Bayesian VARs without having to restrict the sample to pre-

pandemic periods, dropping observations, or resorting on more complex methods, such

as volatility changes or t-distributed shocks. As the Pandemic Priors are flexible enough

to accommodate any sort of structural identification, they also allow policymakers to

make well-informed decisions about responses to economic shocks going forward.
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A Appendix: Tables and figures

Table A.1 Description of variables

Name Description Source

1 EBP Excess bond premium as computed by Gilchrist and Za-
kraǰsek (2012).

Zakrajsek, Lewis,
and Favara (2016)

2 S&P 500 S&P 500 stock index in log levels. Nasdaq Data Link
3 Shadow Rate Fed funds rate shadow rate. Wu and Xia (2016)

and Fred
4 Consumption (PCE) Real consumption in log levels. Fred
5 Price index PCE Price Index in log levels. Fred
6 Employment PCE Total nonfarm payroll in log levels. Fred
7 Ind. production Real industrial output in log levels. Fred
8 Unemployment rate Number of unemployed as a percentage of the labor force. Fred

Note: All for the January 1975 to December 2022 period, retrieved on February 2023.

Figure A.1 Posterior draws for the autoregressive coefficients with uninformative ϕ prior

Note: Histograms of the (reduced-form) autoregressive coefficient of the baseline Minnesota Prior (blue
bars) and the Pandemic Priors (pink bars) estimations, for each variable in the information set, com-
pared with the data generating process (D.G.P.). ϕ set arbitrarily to 0.001 to make it uninformative.
Distributions constructed after 10,000 draws from the posterior distribution. The VAR is estimated for
600 simulated periods.
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Figure A.2 Posterior draws for the pandemic time dummies

Note: Histograms of the (reduced-form) time dummies for the pandemic period (March 2020 to August
2020), of each variable in the information set. Distributions constructed after 10,000 draws from the
posterior distribution. The VAR is estimated from January 1975 to December 2022.

Figure A.3 Unconditional forecasts as of December 2022

Note: Solid lines are estimated unconditional forecasts and correspond to the posterior median estimates
(red with Pandemic Priors, and black as the baseline). The VAR is estimated from January 1975 to
December 2022. The gray shaded area and the dashed red lines represent the one standard deviation
coverage bands of the forecasts obtained with 10,000 draws from the posterior distribution.
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Figure A.4 Impulse responses to a 1 s.d. EBP shock under different ϕ levels

Note: Lines are estimated impulse responses to a standard deviation EBP shock and correspond to
the posterior median estimates (black with Minnesota Prior, and colored with Pandemic Priors under
different ϕ). The VAR is estimated from January 1975 to December 2022. Posterior median of the EBP
shock obtained with 10,000 draws from the posterior distribution.

Figure A.5 Impulse responses to a 1 s.d. EBP shock

Note: Solid lines are estimated impulse responses to a standard deviation EBP shock and correspond
to the posterior median estimates (red with Pandemic Priors, and black as the baseline). The VAR
is estimated from January 1975 to December 2022. The gray shaded area and the dashed red lines
represent the one standard deviation coverage bands of the EBP shock obtained with 10,000 draws from
the posterior distribution.
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Figure A.6 Comparison of impulse responses to a 1 s.d. EBP shock

Note: Solid lines are estimated impulse responses to a standard deviation EBP shock and correspond
to the posterior median estimates (red with Pandemic Priors, blue with the Lenza and Primiceri (2021)
method, yellow with the Schorfheide and Song (2020) method, and black as the baseline). The VAR
is estimated from January 1975 to December 2022. Posterior median of the EBP shock obtained with
10,000 draws from the posterior distribution.
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B Appendix: Monte Carlo simulation

I test the ability of the Pandemic Priors to recover the true (reduced-form) coefficients

by employing the method on simulated data, with a known data generating process. I

produce “abnormal” shocks, affecting all variables simultaneously at a pre-defined time,

but with different size and persistence, emulating the environment observed during the

COVID-19 pandemic. I simulate a stationary system of four variables and two lags, as in

D0



y1,t

y2,t

y3,t

y4,t


= C+D1


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y2,t−1
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+D2
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+


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e3,t

e4,t


+
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e∗3,t

e∗4,t


, (B.1)

where ei,t are i.i.d. innovations with mean 0 and standard deviation 1, and e∗i,t are abnor-

mal shocks that happen simultaneously to all variables at a specific time t = t∗, as

e∗i,t =


0, t < t∗

e∗i,t∗ , t = t∗

ρie
∗
i,t−1, t > t∗

. (B.2)

I simulate data for 600 periods, with structural coefficients defined as

C =
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(B.3)

and abnormal shocks happening at t∗ = 501 with different size (measured in standard
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deviations) and persistence for each variable, defined as
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. (B.4)

Since these shocks are substantially larger than observed in normally distributed series

of 600 periods, varying from 5 to 20 standard deviations, the series all jump at t∗ = 501,

and stay at unusually high levels for about 60 periods. Figure B.1 presents the time series

of the simulated variables y1,t to y4,t.

Figure B.1 Simulated series

Note: Simulated series with pre-defined data generating process for 600 periods. All series receive a
simultaneous shock at t = 501, with different magnitudes and persistence.
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