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1 Introduction

How should we evaluate and compare the performance of policy institutions? How should

we evaluate and compare policy makers after their term in office? These questions are of

central importance to the good functioning of democratic and accountable institutions, but

there is little consensus on a method for evaluating and comparing performance.

A naive approach could consist in measuring performance based on realized macroeco-

nomic outcomes. For instance, we could assess a central banker based on average inflation

and unemployment outcomes over her term. Unfortunately, that approach suffers from three

types of confounding factors: (i) different policy makers may face different initial conditions,

e.g. a central banker can inherit a strong or weak economy from her predecessor, (ii) dif-

ferent policy makers may face different economic disturbances, e.g., a central banker may

experience a financial crisis or an energy price shock that will affect her ability to stabilize

inflation and unemployment, and (iii) different policy makers may live in different economic

environments, e.g., a steeper or flatter Phillips curve will affect a central banker’s ability to

control inflation.

This triplet of confounding factors coming from different initial conditions, different dis-

turbances and different economic environments severely limits our ability to evaluate policy

makers based on realized outcomes.1

To make progress it is instructive to consider an ideal, yet infeasible, approach for com-

paring policy makers: an experimental approach. Consider setting up a laboratory, in which

different policy makers are given the same mandate —minimizing a loss function involving

some policy objectives— and are subjected to the same initial conditions and the same eco-

nomic environment. The different policy makers are then exposed to the same sequence of

shocks, and they each make decisions that aim to achieve their mandate. Afterward, we can

compare performance from the realized losses and conclude which policy maker performed

better. Such comparison would be on equal grounds as the only source of variation would

come from the different ways each policy maker reacted to the same of sequence shocks, i.e.,

from the different reaction functions.

In this paper, we propose an empirical method that aims to mimic this ideal “reaction

function comparison” experiment while making minimal structural assumptions on the un-

derlying economic model and the underlying policy rule. Our approach exploits a simple

idea: while different policy makers are never exposed to the same sequences of non-policy

shocks, they are often exposed to the same types of shocks; for instance energy price shocks,

financial shocks, or even war shocks. By comparing how well different policy makers per-

formed in response to such common shocks, we can approach the ideal empirical setting

1See Fair (1978) for an early discussion of these points.
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sketched above: assessing and comparing performance from the different ways each policy

makers reacted to the same types of shocks.

Geometrically speaking, our strategy amounts to projecting realized macroeconomic out-

comes on a space spanned by well chosen non-policy shocks (common to the policy makers

under comparison) and to study policy performance in that space. In fact, in that subspace

policy evaluation reduces to a simple optimization problem that only involves two well-

known (and estimable) sufficient statistics: (i) the impulse responses of the policy objectives

to non-policy shocks, and (ii) the same impulse responses but to policy shocks.

The first set of impulse responses —the impulse responses to a specific non-policy shock—

capture the average effects of that non-policy shock under the policy maker’s reaction func-

tion and allow to compute a conditional loss; a loss conditional on that non-policy shock.

For instance, with a quadratic loss function the conditional loss is simply the sum-of-squares

of that impulse response. While it is tempting to assess and compare performance based on

that impulse response alone, this is not enough since other factors beyond a policy maker’s

reaction function could generate a lower conditional loss, i.e., a more stable impulse response.

For instance, a different economic environment could make the economy more stable inde-

pendently of the policy makers’ reaction function. To assess how well a policy maker reacted

to that specific non-policy shock, we need to know the outcome of a policy rule counter-

factual: how a different reaction would have affected the economy. That counter-factual

can be recovered by the second set of impulse responses —the impulse responses to policy

shocks—, which allow to compute how a different reaction function would have affected

the conditional loss —what the policy maker could have done to counteract the non-policy

shock—.

We show that for a large class of models and quadratic loss functions the distance to

the optimal reaction, or Optimal Reaction Adjustment (ORA), can be computed from a

simple regression in “impulse response space”: a regression of the impulse responses to the

non-policy shock on the impulse responses to policy shocks.

The ORA measures by how much more or less a policy maker should have responded to

a given non-policy shock, and it provides a direct measure of policy performance conditional

on a specific type of non-policy shock. Overall policy performance can then be assessed by

measuring the ORAs for different types of non-policy shocks. Moreover, ORAs are portable

moments in the sense of Nakamura and Steinsson (2018): when two policy makers were

exposed to common policy shocks and non-policy shocks, we can use the ORAs to compare

policy makers or policy institutions across time (say the Fed in 1930s vs the Fed in the 2000s)

or across space (say the Fed vs the ECB).

Using the ORA the evaluation and comparison of policy makers thus reduces to estimat-

ing structural impulse responses, and this realization opens a number of important avenues
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for policy evaluation, as one can draw on a large macro-econometric literature to evaluate

policy institutions. See e.g., Ramey (2016) for a recent discussion of structural shock identi-

fication and Stock and Watson (2016), Kilian and Lütkepohl (2017) and Li, Plagborg-Møller

and Wolf (2022) for recent work on impulse response estimation methods.

We then apply our methodology to study the performance of US monetary policy over

the past 150 years. Our method allows us to address and revisit many interesting questions

regarding the conduct of monetary policy. To name a few, (i) did the founding of the Federal

Reserve in 1913 led to superior macro outcomes than during the Gold standard period (e.g.,

Bordo and Kydland, 1995)? And if so, by how much? (ii) While many people would agree

that monetary policy was superior during the 2007-2009 financial crisis than during the

1929-1933 financial crisis (e.g., Wheelock et al., 2010), can we confirm and quantify this

improvement? (iii) To what extent is the stable and low inflation environment of 2000s

versus the 1970s the outcome of good policy or simply good luck (e.g., Clarida, Gaĺı and

Gertler, 2000; Gali and Gambetti, 2009a)?

To assess and compare monetary policy performance across historical periods, we evaluate

how monetary policy responded to five types of non-policy shocks that are common across

periods: (i) financial shocks, (ii) government spending shocks, (iii) energy price shocks, (iv)

inflation expectation shocks and (v) productivity shocks, and we evaluate US monetary

policy over four distinct periods: (a) 1879-1912 covering the Gold standard period until the

founding of the Federal Reserve, (b) 1913-1941 covering the early Fed years to the US entering

World War II, (c) 1954-1984 covering the post World War II period until the beginning of the

Great Moderation, and (d) 1990-2019 covering the Great Moderation period, the financial

crisis and up to the COVID crisis.

Over these historical periods US monetary policy was confronted with different sequences

of shocks and possibly very different economic environments, but our ORA-based policy

evaluation allows to compare policy performance over these four periods while by-passing the

many confounding factors that have plagued previous comparisons. The (still substantial)

empirical challenge is to consistently estimate the impulse responses to common monetary

and non-policy shocks over each sub-period. Fortunately, we can leverage on a large empirical

literature on structural shocks identification, and we will use as much as possible the state of

the art in each setting: Hamilton (2003) for energy price shocks, Ramey and Zubairy (2018)

for government spending shocks, Leduc, Sill and Stark (2007) for inflation expectation shocks,

Gali (1999) for productivity shocks and Reinhart and Rogoff (2009) for banking panics. As

monetary shocks common across periods, we identify shocks to the contemporaneous policy

rate. For the post WWII periods, we rely on Romer and Romer (2004b) and Gürkaynak, Sack

and Swanson (2005), and for the early Fed years we use the Friedman and Schwartz (1963)

narrative dates extended by Romer and Romer (1989). Identification is more challenging

4



(and less developed) for the pre WWII periods, and we propose a new identification strategy

for monetary shocks for the Gold Standard period. Specifically, we exploit the specificity of

the Gold Standard, in that the monetary base depends on the amount of gold in circulation,

and we use unanticipated large Gold mine discoveries (discoveries that led to Gold rushes)

as an instrument for movements in the monetary base and thereby the short-term rate.

Evaluating and comparing policy makers require to take a stand on a set of objectives,

i.e., on a loss function. In our empirical application, we consider a quadratic loss function

with equal weights on inflation and unemployment.2 Given that loss function, our results

point to overall improvements in the conduct of monetary policy. For instance, in response

to bank runs, we do find that the policy response is substantially better after 1990 than

during the Gold Standard or the early Fed period. During the Early Fed period the monetary

response was much too passive in the face of financial disturbances; not lowering the discount

rate enough, in fact running a contractionary monetary policy. In contrast, the monetary

response was much closer to optimal in the post Volcker period, though the zero-lower bound

did constrain partially the Fed’s response.

That said, improvements in the conduct of monetary policy have not been monotonic,

and the post WWII period saw the worst performance in response to inflationary shocks:

energy price shocks, inflation expectation shocks and TFP shocks. For all these shocks,

the Fed reaction was much too weak over 1951-1984, particularly in response to inflation

expectation shocks. This result echoes a large literature on the Fed’s failure to satisfy the

Taylor principle in the 1970s, but also goes further by allowing to compute the distance to the

optimal reaction —by how much more the Fed should have responded to supply shocks—.

In addition, we find that the Fed’s excess passivity carries to aggregate demand shocks. For

instance, the Fed’s interest rate reaction was too weak in the face of the military buildup

shocks of the Vietnam war.

Last, we find that performance is universally superior during the post Volcker period: the

distances to the optimal reaction coefficients are smallest (and non-significantly different from

zero) for all types of shocks that we considered. The only (mild) exception is the reaction

to the financial shock for which we find some evidence that the zero-lower bound may have

partially constrained the Fed’s response, though the distance to an optimal reaction is still

substantially smaller than during the early Fed period.

Related literature

Perhaps surprisingly, the literature has produced few methods for evaluating and comparing

policy makers over time or over space.

2Importantly, our approach could accommodate other loss functions, for instance different loss functions
across time periods, or even micro-founded welfare-based loss functions.
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An early contribution is Fair (1978) who highlights the distortions stemming from differ-

ent initial conditions and economic environments. His solution was to adopt optimal control

methods to compare policy makers. This approach amounts to specifying a structural model,

calculating what would have been the optimal policy based on the model and comparing the

loss under such optimal policy to the loss under the implemented policy. This general ap-

proach has been used within the context of other structural models, notably New Keynesian

models (e.g. Galı, López-Salido and Vallés, 2003; Gali and Gertler, 2007; Blanchard and

Gaĺı, 2007). Unfortunately, specifying the correct model for (i) the policy rule and (ii) the

macroeconomic non-policy block is a very difficult task (e.g., Svensson, 2003; Mishkin, 2010).

By assessing policy performance in response to specific non-policy shocks, we can break the

optimal policy assessment problem into smaller parts, which do not require a fully-fledged

structural model, and this allows us to greatly reduce the risk of model mis-specification

as impulse responses can be estimated with reduced form econometric methods that are

arguably more robust to model mis-specification. That said, compared to a model-based

assessment, our approach will only evaluate performance from the reaction to the identified

non-policy shocks that could be identified, a possible subset of all non-policy shocks. Simi-

larly, a comparison of policy makers will be only based on the subset of identified non-policy

shocks that were common across policy makers.

In the context of fiscal policy Blinder and Watson (2016) improve on the naive approach

of policy evaluation —measuring performance based on unconditional realized outcomes—

by projecting out specific macro shocks, i.e., by trying to control for good (or bad) luck. In

contrast, our approach projects on the space spanned by specific non-policy shocks and study

performance in that space: comparing policy makers by studying how well they reacted to

the same type of shock.

In the context of monetary policy, the literature has studied the performance of the Fed

pre- and post-Volcker;3 specifically by assessing whether the Taylor principle —a central

bank should react more than one-to-one to inflation movements— was satisfied.4 However,

beyond that Taylor principle, that literature can say little about the optimality of the reaction

function, whether the Fed was reacting too much or too little after 1984. Overall, that

approach can only provide a coarse evaluation of reaction functions.

Closer to our approach, Galı, López-Salido and Vallés (2003) and Blanchard and Gaĺı

(2007) study the effect of technology shocks or oil shocks to assess the performance of the

Fed pre- and post-Volcker. Different from our approach however, their assessment of good

3See Judd and Rudebusch (1998); Taylor (1999); Clarida, Gaĺı and Gertler (2000); Boivin (2005); Coibion
and Gorodnichenko (2011) for policy rules estimates.

4Based on Taylor rule estimates, these papers found that the parameters of the Taylor rule shifted around
1984 and that the Fed responded more vigorously to inflation variations after 1984, though this conclusion
has not gone unchallenged (e.g., Orphanides, 2003).

6



monetary policy focuses on the response of the real interest rate to a technology shock and

on its distance to a specific New-Keynesian model. In contrast, our approach allows to

evaluate the distance to optimality for the Fed’s reaction to technology or oil price shocks

without relying on any specific structural model. Instead, impulse responses are shown to

be sufficient statistics for a broad class of structural models.

A less structural literature has proposed ways to study policy rule counter-factuals (e.g.,

Sims and Zha, 2006; Bernanke et al., 1997; Leeper and Zha, 2003), though those approaches

are not fully robust to the Lucas critique. Instead, our approach builds on recent work that

shows how robustness to the Lucas critique is possible in a large class of macroeconomic

models (McKay and Wolf, 2023). The key underlying assumption in these works is that the

underlying (unknown) model has is structured such that the coefficients of the non-policy

block are independent of the coefficients of the policy block. The present paper builds on

these insights to evaluate policy institutions with minimal assumptions on the underlying

economic structure.

Last, our paper relates to the sufficient statistics approach to macro policy evaluation

expounded in Barnichon and Mesters (2023). The key difference is that they focus on a

different policy problem: the time t optimal policy problem —how to set the policy path

today given the state of the economy—, instead of the unconditional policy problem that we

consider here —how to set up the policy rule to minimize the unconditional loss—. Barnichon

and Mesters (2023) show that the characterization of the time t optimal policy path can be

reduced to the estimation of two sufficient statistics (i) forecasts for the policy objectives

conditional on some baseline policy choice, (ii) the impulse responses of the policy objectives

to policy shocks. However, these two statistics are not sufficient to evaluate the optimality of

the underlying policy rule. The present paper shows that a sufficient statistics approach to

rule evaluation is possible, but it requires a different set of statistics, and notably additional

identifying restrictions: the identification of (at least some) non-policy shocks.

The remainder of this paper is organized as follows. The next section illustrates our

method for a simple New Keynesian model. Section 3 presents the general environment.

Section 4 provide the results for evaluating and ranking policy makers. The results from the

empirical study for monetary policy are discussed in Section 5. Section 6 concludes.

2 Illustrative example

Before formally describing our general framework, we first illustrate how it is possible to

evaluate and compare policy makers’ reaction functions without having access to the under-

lying economic model nor the policy rule. To describe the economy, we take a baseline New

Keynesian (NK) model, which allows us to highlight the main mechanisms of our approach
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and relate to the broad NK literature (e.g. Gaĺı, 2015).

The log-linearized Phillips curve and intertemporal (IS) curve of the baseline New-

Keynesian model are given by

πt = Etπt+1 + κxt + ξt , (1)

xt = Etxt+1 −
1

σ
(it − Etπt+1) , (2)

with πt the inflation gap, xt the output gap, it the nominal interest rate set by the central

bank and ξt a cost-push shock.

The policy maker sets the interest rate by responding to the economy according to

it = ϕππt + ϕξξt + ϵt , (3)

where ϕ = (ϕπ, ϕξ) is a vector of reaction coefficients —for short, the “reaction function”—,

which captures the systematic response of the central bank, and ϵt is a policy shock. We

impose that the structural shocks are serially and mutually uncorrelated.5

For ϕπ > 1 we can solve the model and express the endogenous variables Yt = (πt, xt)
′ as

functions of the exogenous shocks:

Yt = Γ(ϕ)ξt +R(ϕ)ϵt , with Γ(ϕ) =

[
1−κϕξ/σ

1+κϕπ/σ
−ϕπ/σ−ϕξ/σ

1+κϕπ/σ

]
, R(ϕ) =

[
−κ/σ

1+κϕπ/σ
−1/σ

1+κϕπ/σ

]
. (4)

The vectors Γ(ϕ) and R(ϕ) capture the impulse responses of the policy objectives to the

structural shocks ξt and ϵt. Note that Γ(ϕ) and R(ϕ) also depend on other parameters

besides ϕ but we omit this from the notation for now.

In this example we will measure the performance of the central bank using the loss

function

Lt =
1

2
(π2

t + x2
t ) . (5)

More general forward looking loss functions are considered in the general treatment.

Given this loss function, an optimal reaction function is defined as any ϕ = (ϕπ, ϕξ)

that minimizes the expected loss given the underlying structure of the economy, i.e., given

equations (1)-(2). Formally, let Φ = {ϕ ∈ R2 : ϕπ > 1}, the set of optimal reaction functions

is given by

Φopt =

{
ϕ : ϕ ∈ argmin

ϕ∈Φ
ELt s.t. (1)− (3) with ϵt = 0

}
,

which is non-empty irrespective of the parameter values in (1)-(2) due to the inclusion of ξt

5In the web appendix, we show that this assumption is without loss of generality, as our approach can be
re-written to accommodate more general (notably serially correlated) exogenous processes for ξt and ϵt.
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in (3) (e.g. Gaĺı, 2015, page 133).

Reaction function evaluation

We will now illustrate how the impulse responses R(ϕ) and Γ(ϕ) are sufficient statistics to

evaluate a policy maker’s reaction function.

Let ϕ0 = (ϕ0
π, ϕ

0
ξ) ∈ Φ denote the central bank’s chosen reaction function. To evaluate

ϕ0, we consider a thought experiment where ϕ0
ξ —the reaction coefficient to the cost-push

shock— is adjusted by some amount τ . The adjusted policy rule becomes

it = ϕ0
ππt + (ϕ0

ξ + τ)ξt + ϵt . (6)

Following the same steps that led to (4), we can solve the model under that modified policy

rule and express the endogenous variables as a function of exogenous shocks to get

Yt = (Γ +Rτ)ξt +Rϵt , (7)

where Γ ≡ Γ(ϕ0) and R ≡ R(ϕ0) denote the impulse responses to the structural shocks

under the rule ϕ0 and are defined as in (4).

From expression (7), we can see that Γ+Rτ is the impulse response to cost-push shocks

after the reaction function adjustment τ . In other words, the adjustment τ modifies the

impulse response to cost-push shocks from Γ to Γ+Rτ , and the impulse response R contains

all the information needed to compute the effect of any adjustment to the rule coefficient

ϕξ. This insight, which holds more generally in a large class of dynamic models (see Section

4), is at the heart of our sufficient statistics approach to evaluating reaction function from

structural impulse responses.

To evaluate the reaction function, the idea is then to compute whether it is possible to

adjust ϕ0
ξ and lower the loss function. Mathematically, we will look for a τ ∗ that can best

lower the loss function, that is

τ ∗ = argmin
τ

ELt s.t. Yt = (Γ +Rτ)ξt +Rϵt

= argmin
τ

σ2
ξ (Γ +Rτ)′(Γ +Rτ) , (8)

where the second equality uses that the structural shocks have mean zero and are uncorre-

lated. A closed form solution for τ ∗ is given by

τ ∗ = −(R′R)−1R′Γ . (9)
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We refer to the statistic τ ∗ as the Optimal Reaction Adjustment, or ORA, as it measures

how much more (or less) the policy maker should have responded to the cost-push shock in

order to minimize the loss function. Specifically, τ ∗ has the property that6

(ϕ0
π, ϕ

0
ξ + τ ∗) ∈ Φopt . (10)

Adjusting the reaction function ϕ0 by τ ∗ makes the reaction function optimal. A number of

points are worth noting.

First, to evaluate a reaction function it is not necessary to know the model nor the policy

rule, as the impulse responses to policy and non-policy shocks (Γ and R) are sufficient

to evaluate a reaction function. If the reaction function ϕ0 was optimal, there should not

exist any alternative reaction to ξt that can reduce loss, and the optimal adjustment τ ∗ —a

function of the impulse responses Γ and R alone— should be zero. Further, because a τ ∗

adjustment makes the reaction function optimal, τ ∗ is a measure of policy performance, as

it measures the distance to the optimal reaction coefficient ϕ∗
ξ .

Second, the formula for the ORA has a geometric interpretation. If Γ —the impulse

responses to the cost-push shock— is orthogonal to R —the impulse responses to the policy

shock—, the ORA τ ∗ is zero and the reaction coefficient ϕξ is optimal. Intuitively, the impulse

response to cost-push shocks (Γ) captures what the policy maker did on average to counteract

cost-push shocks —how cost-push shocks affected the economy under the prevailing policy

rule—, while the impulse response to monetary shocks (R) captures what the policy maker

could have done to counteract these shocks —how adjusting the reaction coefficient ϕξ by

τ could have better stabilized the impulse response Γ—. If Γ and R are orthogonal, there

is nothing more that the policy maker could have done to stabilize Γ.7 Conversely, if the

reaction coefficient ϕ0
ξ is not optimal, a regression in impulse response space —regressing

one impulse response on another— can determine the optimal reaction to cost-push shocks.

Indeed, it is easy to see that the ORA τ ∗ is the coefficient of the projection of Γ on −R:

the goal of the ORA is to use the impulse responses to a monetary shock in order to best

6To see this, compute

ϕ0
ξ + τ∗ = ϕ0

ξ − (R′R)−1RΓ

= ϕ0
ξ −

−κ/σ(1− κϕ0
ξ/σ)− 1/σ(−ϕ0

π/σ − ϕ0
ξ/σ)

κ2/σ2 + 1/σ2

=
κ/σ − ϕ0

π/σ
2

κ2/σ2 + 1/σ2
=

κσ − ϕ0
π

κ2 + 1
,

and the adjusted reaction function is optimal as (ϕ0
π,

κσ−ϕ0
π

κ2+1 ) ∈ Φopt, see Gaĺı (2015, Page 133, equation
(10)).

7Optimal policy making does not mean that the policy maker succeeded at perfectly canceling the effects
of cost-push shocks (making Γ perfectly flat at zero). It means that a different reaction would not have done
any better.
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stabilize the impulse response to the non-policy shock. This is equivalent to best fitting the

vector Γ with the vector −R.

Third, τ ∗ measures the distance to an optimal reaction function in one specific direction —

the systematic policy response to cost-push shocks—, but this is sufficient to characterize the

entire optimal reaction function, as (ϕ0
π, ϕ

0
ξ+τ ∗) ∈ Φopt. Intuitively this result holds, because

cost-push shocks are the only non-policy shocks, so that optimally responding to cost-push

shocks is isomorphic to using an optimal reaction function. In the general treatment of

Section 4 where we allow for arbitrary many types of non-policy shocks, fully characterizing

the optimal reaction function will require the impulse responses to all the different non-

policy shocks.8 Conversely, focusing on a subset of these non-policy shocks will allow to

assess optimality in specific “directions”: how well a policy maker responded to specific

disturbances.

Finally, it may seem surprising to be able to assess a reaction function without specifying

or estimating any policy rule. This reason this is possible, and the key insight underlying our

approach, is that the effects of any reaction function are encoded in the impulse responses

Γ and R, see (4) with Γ and R depending on ϕπ and ϕξ. Thus, even if we do not know the

specific form of some past policy rule, that reaction function left a footprint on the effects

of policy and non-policy shocks, and that footprint is sufficient to evaluate the reaction

function. This is the essence of our sufficient statistics approach.

Comparing reaction functions

The ORA statistic can be used to compare the reaction functions of different policy makers,

i.e., to compare the performances of policy makers after their term. To avoid excessive

notation at this stage, consider comparing two policy makers that used reaction functions

ϕ0
1 and ϕ0

2, respectively, and let the economic environment that they faced be captured by

the parameter vectors θ1 and θ2, respectively, which include all coefficients in the Phillips

and IS curves.

For each policy maker we compute the ORA statistic:

τ ∗j = −(Rj′Rj)−1Rj′Γj for j = 1, 2 ,

where Rj ≡ R(ϕ0
j , θj) and Γj ≡ Γ(ϕ0

j , θj).

Since the ORA measures the distance to the optimal reaction to cost-push shocks, we

8Note that the ORA is not focused on evaluating the reaction coefficient to endogenous variables (for
instance, assessing the optimality of the reaction coefficient ϕπ). Evaluating the optimality of ϕπ is much
more difficult without a fully specified structural model, but an insight underlying our approach is that this
is also not necessary: to characterize the optimal reaction function, it is sufficient to assess the systematic
reaction to all non-policy shocks affecting the economy, see Section 4.
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can use the ORA to rank policy makers. For instance, we would rank policy maker 1 above

policy maker 2 if |τ ∗1 | < |τ ∗2 |.
The key insight is that while environments can be different across policy makers (and thus

the optimal reaction function), the ORA statistics τ ∗1 and τ ∗2 measure the same quantity: the

distance to the optimal reaction of the same policy instrument (here the contemporaneous

interest rate) to the same non-policy shock (here a cost-push shock). By evaluating the

performance of different policy makers in response to the same type of shock, we are able to

evaluate and compare policy makers (or more generally policy institutions) who were facing

different initial conditions, different shocks and different economic environments.

In sum, this example illustrates how we can (i) evaluate and (ii) compare policy makers

based on their reaction function without specifying an explicit reaction function nor a specific

structural macro model. Instead, the only requirement is to estimate two sufficient statistics:

the impulse responses Γ and R over a policy maker’s term. The next sections show that

these findings continue to hold for a general linear macro model and discuss the econometric

implementation.

3 Environment

We describe a general stationary macro environment for a single policy maker (or institution)

who faces an infinite horizon economy. To describe the economy we distinguish between two

types of observable variables: policy instruments pt ∈ RMp and non-policy variables yt ∈ RMy .

The policy instruments are different from the other variables as they are under the direct

control of the policy maker.

To describe a generic forward looking economy we use a sequence space representation

(e.g., Auclert et al., 2021). Let P = (p′0, p
′
1, . . .)

′ and Y = (y′0, y
′
1, . . .)

′ denote the paths

for the policy instruments and non-policy variables. For convenience we work under perfect

forecast and postulate that the paths for the endogenous variables are determined by the

generic model

AyyY −AypP = ByξΞ

AppP−ApyY = BpξΞ+ ϵ
, (11)

where ϵ = (ϵ′0, ϵ
′
1, . . .)

′ and Ξ = (ξ′0, ξ
′
1, · · · )′ are sequences of policy and non-policy shocks,

respectively. While we wrote the model under perfect foresight it is useful to think about ξ0

and ϵ0 as the contemporaneous policy shocks, whereas ξt and ϵt for t ≥ 1 are the sums of all

news shocks arriving from time zero onward, e.g. ξt =
∑t

j=0 νt,j, with νt,j the news arriving

at time j about period t.

We normalize all shocks, that is all elements of Ξ and ϵ, to have mean zero and unit

variance. Also, we assume that they are serially and mutually uncorrelated, consistent with
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the common definition of structural shocks (e.g. Bernanke, 1986; Ramey, 2016). It is useful

to note that if the elements of Ξ or ϵ are not serially uncorrelated it is always possible to

redefine Byξ,Bpξ and App such that the shocks satisfy this condition.

The structural maps A.. and B.. are conformable and may depend on underlying struc-

tural parameters. We conveniently split them in two parts: the economic environment

θ = {Ayy,Ayp,Byx,Byξ} which the policy maker takes as given, and the reaction function

ϕ = {App,Apy,Bpx,Bpξ}, which is under the control of the policy maker. We impose that

ϕ and θ are independent in the sense that ∂θi/∂ϕj = 0 for all entries i, j, i.e. changing the

reaction function does not directly change the coefficients θ and all effects of ϕ on Y go via

the policy path P.

We denote by Φ the set of all reaction functions ϕ for which the model (11) implies a

unique equilibrium, that is all ϕ for which

A =

(
Ayy Ayp

Apy App

)
is invertible.

Overall, model (11) is general and allows future policy decisions to affect current and future

outcomes. Many structural models found in the literature can be written in this form;

prominent examples include New Keynesian models and more modern heterogeneous agents

models, see McKay and Wolf (2023) for a more in dept discussion. We could include initial

conditions, stemming from before period zero, but since we will project on the non-policy

shocks anyway we avoid such additional notation.

Evaluation criteria

We consider a researcher who is interested in evaluating a policy maker based on her success

at stabilizing some subset of the non-policy variables yt around some desired targets y∗t for

some time periods t = 0, 1, 2, . . .. For ease of notation we will set the targets to zero.9

We measure performance using the unconditional loss function

L =
1

2
EY′WY , (12)

where W is a diagonal matrix, with non-negative entries, which selects and weights the

specific variables and horizons that are of interest to the researcher.

Importantly, the loss (12) is the researcher’s evaluation criterion for scoring policy maker

performance, and it may or may not correspond to the preferences of the policy maker herself

or of society.

9Alternatively we can think of yt as defined in deviation from the desired targets, either way this restriction
is only imposed for notation convenience.
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The actions of the policy maker are summarized by the reaction function ϕ. We define a

reaction function to be optimal (from the perspective of the researcher) if it minimizes the

loss function (12) subject to an economy where ϵ = 0. This imposes that we are interested

in evaluation criteria that are based on systematic performance. An alternative would be to

evaluate policy makers based on their idiosyncratic mistakes, which is not the objective of

our methodology.

Formally, the set of optimal reaction functions is given by

Φopt =

{
ϕ : ϕ ∈ argmin

ϕ∈Φ
L s.t (11) with ϵ = 0

}
. (13)

The definition implies that we only consider optimal reaction functions that lie in Φ, i.e. the

set of reaction functions which imply a unique equilibrium. Moreover, we emphasize that

optimality is defined with respect to the coefficients of the model (11) and not with respect

to the coefficients of any specific underlying structural model.10 The reason for this is that

model (11) is generic in the sense that it does not impose any a priori restrictions on the

actions of the policy maker.

4 Measuring reaction function optimality

We propose to evaluate and rank policy makers (or institutions) by measuring the distance

between their reaction function, denoted by ϕ0, and the set of optimal reaction functions

Φopt in (13). We postulate that each policy maker faces an economy that can be represented

by the generic model (11) where the parameters θ and ϕ may vary across policy makers. We

first develop the methodology for evaluating the reaction function of a single policy maker

in population. Subsequently we formalize how the methodology can be used to rank the

performance of multiple policy makers.

To start, it is useful to note that for any ϕ ∈ Φ we can write the expected path of the

non-policy variables as a linear function of the policy and non-policy shocks

Y = Γ(ϕ)Ξ+R(ϕ)ϵ , (14)

The maps Γ(ϕ) and R(ϕ) capture the causal effects of the structural shocks Ξ and ϵ on the

non-policy variables. It is useful to realize the similarity between (14) and (4) which was

obtained for the illustrative New Keynesian model. The static NK example is a special case

with only contemporaneous shocks.

10For instance, the NK model from the simple example can be written in the form of (11) and we could
define optimality with respect to the coefficients of such underlying model. It is clear that this would
compromise the generality of our approach.
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Clearly, the maps Γ(ϕ) and R(ϕ) in (14) also depend on the environment as summarized

by θ, but since θ is not under the control of the policy maker we omit this from the notation.

The precise mapping from the model coefficients A.. and B.. to Γ(ϕ) and R(ϕ) is provided

in the appendix, but we will not require knowledge of this mapping.

4.1 Optimal reaction adjustments

Consider a policy maker with reaction function ϕ0 ∈ Φ which is unknown to the researcher.

Following the same steps as the simple example of Section 2, we propose to measure the

distance between ϕ0 and Φopt by considering a thought experiment where we adjust the

policy maker’s reaction coefficients for non-policy shocks.

Specifically, consider the augmenting the policy rule under ϕ0 as follows

A0
ppP−A0

pyY = (B0
pξ + T )Ξ+ ϵ , (15)

where T adjusts the response to the non-policy shocks. Given that ϕ0 ∈ Φ we can follow the

same steps that led to (14) and compute the equilibrium. Specifically, we can combine this

augmented policy rule with the non-policy equation in model (11) to obtain the equilibrium

representation

Y = (Γ +RT )Ξ+Rϵ , (16)

where Γ ≡ Γ(ϕ0) and R ≡ R(ϕ0).

The equilibrium effect of T is found to be equal to RT Ξ on the non-policy variables

and is proportional to the effect of the policy shocks as captured by R. In other words,

as in the simple example, it is possible to compute the effect of a different policy rule —

changing the reaction to the non-policy shocks Ξ— from the impulse responses to policy

shocks. Such counter-factual analysis is fully robust to the Lucas critique provided that in

the (unspecified) underlying economic model, the coefficients of the macro block in (11), i.e.

θ, are invariant to changes in the coefficients of the policy rule, i.e. ϕ, see McKay and Wolf

(2023); Barnichon and Mesters (2023).

The Optimal Reaction Adjustment (ORA) is defined as the T that minimizes the loss

function.

T ∗ = argmin
T

L s.t. Y = (Γ +RT )Ξ+Rϵ , (17)

The ORA determines how the reaction coefficients in front of the non-policy shocks Ξ should

have been adjusted to minimize the loss.

Since the setting is linear-quadratic a closed form solution for T ∗ is given by

T ∗ = −(R′WR)−1R′WΓ , (18)
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which exists provided that the inverse exists. The expression shows that the ORA is equal

to the projection of the selected non-policy impulse responses W1/2Γ on the identifiable and

selected policy impulse responses W1/2R. Recall that the weighting matrix W is merely a

selection tool used to select the non-policy variables that are of interest to the researcher.

We summarize the result in the following proposition for which a more formal proof is

given in the appendix.

Proposition 1. Given the generic model (11), with Φ non-empty, we have that ϕ∗ ∈ Φopt

where ϕ∗ = {A0
pp,A0

py,B0
pξ + T ∗}.

The proposition shows that fully characterizing the optimal reaction function requires

identifying all the different non-policy shocks as well as all policy news shocks. The policy

maker’s choice for the maps App and Apy is irrelevant — as long as the invertibility require-

ment for A is satisfied—, all that is relevant for the researcher can be measured through Bpξ.

The result mimics the finding in equation (10) for the baseline NK model for a broad class

of macro models.

4.2 Subset optimal reaction adjustments

So far we showed that the optimal reaction function can be recovered from the impulse

responses to policy and non-policy shocks. Unfortunately in practice we will not be able to

identify all shocks, hence compromising the computation of T ∗. Therefore in this section we

discuss a policy rule evaluation statistic that requires only a subset of the impulse responses.

To set this up, let ϵa denote any subset or linear combination of ϵ which can be identified.

Similarly, let Xb denote a linear combination of Ξ. We proceed to derive a subset version of

the ORA statistic.

We consider the augmented subset of the policy rule

A0
papP−A0

payY = (B0
paξb

+ Tab)Ξb + B0
paξ−b

Ξ−b + ϵa , (19)

where Tab adjusts the ϕ0 response to the non-policy shocks Ξb and Ξ−b denotes all other

non-policy shocks. Note that all other policy equations, i.e. those corresponding to ϵ−a, are

unchanged and only the equations corresponding to ϵa are adjusted by Tab.

Following the same steps as above we can define the subset ORA as the Tab that minimizes

the expected loss function.

T ∗
ab = argmin

Tab
L s.t. Y = (Γb +RaTab)Ξb + Γ−bΞ−b +Rϵ , (20)

The ORA determines how the reaction coefficients in front of the non-policy shocks Ξb should
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have been adjusted to minimize the unconditional loss. A closed form solution for the subset

ORA is given by

T ∗
ab = −(R′

aWRa)
−1R′

aWΓb , (21)

which exists provided that the inverse exists.

Proposition 2. Given the generic model (11), with Φ non-empty, let ϕ∗
ab = {A0

pp,A0
py,B0

paξb
+

T ∗
ab,B0

−pa−ξb
}, we have that L(ϕ∗

ab) ≤ L(ϕ0) for all ϕ0 ∈ Φ.

The result is of great practical relevance as it shows that researchers never have to recover

the entire causal maps Γ0 and R0 to evaluate the reaction function. For instance, consider

a researcher interested in evaluating how a central bank is adjusting its contemporaneous

policy rate in reaction to contemporaneous oil price shocks. For a loss function involving the

inflation and unemployment gaps, the only requirements are to estimate two sets of impulse

responses for inflation and unemployment: the impulse responses to a contemporaneous

policy shock and the impulse response to an oil price shock.

The subset ORA statistic has an intuitive two-step interpretation. In a first step we

project Y on the specific non-policy shocks of interest, recalling that all policy shocks are

normalized to have unit variance we get

E[YΞ′
b] = Γb +RaTab .

This step effectively isolates our object of interest —the response to the specific non-policy

shocks Ξb—, and removes the confounding effects of the other shocks Ξ−b and ϵt (and the

not-modeled initial conditions). In the second step we then solve the policy problem in the

projected space, i.e. we solve

T ∗
ab = argmin

Tab
(Γb +RaTab)

′W(Γb +RaTab) ,

which defines the ORA statistic. In the web-appendix we discuss a few additional interpre-

tations for the ORA statistic.

4.3 Comparing policy institutions with ORAs

With the ORA and its properties established we now discuss how the ORA can be used

to compare policy institutions or policy makers. As examples we can think of evaluating

different central banks chairs based on their ability to control inflation and output gaps,

or different presidents of a country based on their ability to keep output close to potential.

Our comparisons are based on evaluating policy makers on their use of the same policy

instruments for offsetting the same non-policy shocks. As such we may generally compare
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policy makers from the same institution across different time periods or policy maker from

different but comparable institutions from different countries.

Suppose that there are p policy makers that the researcher aims to compare. Each policy

maker faces an economy that can be described by the general model (11), but the parameters

θ and ϕ that govern the model may vary across policy makers, say θj and ϕj, for j = 1, . . . , p.

Following the notation defined above, let ϕ0
j denote the chosen reaction function of policy

maker j. While here we treat the parameters as fixed within the term of each policy maker,

an extension with time-varying parameters is discussed in the appendix.

To compare policy makers using the ORA, the idea is to compare well they each responded

to same non-policy shocks. To do so, the key requirement is that we identify the same policy

and non-policy shocks across different policy makers. That is, ϵa and Ξb must pertain to the

same subset or linear combination of news shocks across policy makers. Going back to our

example of a researcher assessing a central bank’s reaction to contemporaneous oil shocks,

the ORA can allow us to compare different central bankers by comparing how well the

contemporaneous policy rate responded to a contemporaneous oil shock. This will require

estimating the impulses responses to the same policy shocks and the same oil shock.11

The ORA statistics for each policy maker are given by

T j∗
ab = −(Rj′

a WRj
a)

−1Rj′

a WΓj
b , j = 1, . . . , p .

We recall thatRj
a and Γj

b are the impulse responses of the objectives with respect to the policy

and non-policy shocks computed under the reaction function ϕ0
j and given the economic

environment θj.

The weighting by W implements the preferences of the researcher over the different

objectives or ranking criteria. As such if the researcher has no further preferences over the

types of shocks we may simply aggregate the entries of T j∗
ab to rank the policy makers, i.e.

tj∗ab = ∥T j∗
ab ∥ , (22)

where any desired norm ∥·∥ can be used. We rank policy makers based on tj∗ab, for j = 1, . . . , p,

where the smallest value corresponds to the best performing policy maker. For interpretation

purposes it is generally useful to present the ranking separately for each combination of

instrument and non-policy shocks as each ranking is informative about a specific dimension

of policy.

11This requirement is no different from any other study that compares impulse responses across time or
across countries (e.g., Gaĺı and Gambetti, 2009b): the same shocks needs to be identified to ensure that the
same objects are compared.
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4.4 Computing ORA statistics

We discuss the computation of the optimal reaction function adjustments using observational

data for a single policy maker. When computing ORAs for different policy makers the recipe

of this section can be obviously repeated, or it may be desirable to jointly compute the ORAs.

The starting point for computing the ORA statistic in practice is the equilibrium repre-

sentation (14) under ϕ0. Indeed, considering

Y = ΓbΞb + Γ−bΞ−b +Raϵa +R−aϵ−a ,

we can note that the entries of Ra and Γb are equal to projection of the variables Y on the

subset shocks ϵa or Ξb. For convenience we assume that the researcher is interested in a

finite number of variables such that W has a finite number of non-zero diagonal elements

and we let Yw be the finite collection of selected elements of W1/2Y. Further, let Rw
a and Γw

b

denote the subset causal effects corresponding to the selected rows of W1/2Ra and W1/2Γb.

To compute the subset impulse responses we rely on a sample of realizations of the

outcome variables Yw during the policy makers term, i.e. {Yw
t , t = ts, . . . , te} with ts the

starting period and te the ending period. The subset causal effects can be estimated by

considering

Yw
t = Γw

b Ξb,t +Rw
a ϵa,t +Vw

t , t = ts, . . . , te, (23)

where Ξb,t and ϵa,t are the linear combinations of news shocks that are realized at time t

and Vw
t includes all other structural shocks, both policy and non-policy inputs that are not

included in the selections a and b, respectively, as well as initial conditions and future errors.

We can recognize (23) as a system of stacked local projections (Jordà, 2005). This implies

that given (i) an appropriate identification strategy and (ii) an accompanying estimation

method, we can estimate the impulse responses Rw
a and Γw

b using standard local projection

methods. Any identification strategy — short run, long run, sign, external instruments,

etc — can be used, based on which an appropriate estimation method — OLS or IV, with

or without shrinkage, etc — can be selected, see Ramey (2016) and Stock and Watson

(2018) for different options. Moreover, we recall from Plagborg-Møller and Wolf (2021) that

in population local projections and structural VARs estimate the same impulse responses;

therefore all SVAR methods discussed in Kilian and Lütkepohl (2017), for instance, can

also be adopted for estimating the impulse responses Γw
b and Rw

a . Given such estimates we

compute the ORA noting that T ∗
ab = −(R′

aWRa)
−1R′

aWΓb = −(Rw′
a Rw

a )
−1Rw′

a Γw
b .

Here we will not discuss any specific approach but instead directly postulate that the

researcher is able to obtain estimates, say R̂w
a and Γ̂w

b , of which the distribution can be
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approximated by

vec

([
R̂w

a

Γ̂w
b

]
−

[
Rw

a

Γw
b

])
a∼ F ,

where F is some known distribution function that can be estimated consistently by F̂ . Such

approximation can be obtained for many impulse response estimators using both frequentist

(asymptotic and bootstrap) and Bayesian estimators.

Using the approximating distribution F̂ , we can simulate draws for Rw
a and Γw

b , and

compute T ∗
ab = −(Rw′

a Rw
a )

−1Rw′
a Γw

b for each draw. Given the sequence of draws we can

construct a confidence set for T ∗
ab, or any of its individual entries at any desired level of

confidence. We note that if the distribution F is normal we can use the delta method to

analytically compute the distribution of T ∗
ab, but we generally recommend using bootstrap

or Bayesian methods.

4.5 ORA-based counterfactuals

The ORA statistic measures directly how the reaction to the identified non-policy shocks

should be adjusted. The key benefit is that this metric is comparable across policy makers.

The price to pay for such invariance is that the statistic does not have a simple economic

interpretation in terms of percentage points adjustments to the policy instrument or im-

provements in the loss function.12

That said, the ORA statistics can be used as building blocks for computing various

policy counterfactuals. The first counterfactuals of interest are the adjusted non-policy

impulse responses Γw
b + Rw

a T ∗
ab, which measure how the average responses to the different

non-policy shock could have been adjusted. In practice, we recommend to report both Γw
b

and Γw
b + Rw

a T ∗
ab to highlight how the ORA would have changed the average effects of the

non-policy shocks.

Using the identified structural shocks we can also compute ORA-based historical de-

compositions which directly quantify how observed variables would be different after ORA.

Specifically, given the identified non-policy shocks Ξb,t, we compute

∆Yw
t = Rw

a T ∗
abΞb,t and ∆Pw

t = Rw
p,aT ∗

abΞb,t , for t = ts, . . . , te , (24)

where Rw
p,a are the impulse responses of the policy instruments to the subset of policy news

shock. Subsequently we can sum the changes to the same variables, that are caused by

shocks from different time periods, to get an overall measure of the consequences of the

12The ORA is an adjustment to the policy rule coefficients in front of non-policy shocks, but since the
policy rule also includes responses the endogenous variables (and thus feedback loops), the ORA changes
need not change one-for-one in changes in the policy rate.
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sub-optimal reaction.13 Also, we can compute change in the loss from

∆Lt = (∆Yw
t )

′(∆Yw
t ) , (25)

which when summed over the policy maker’s term, or over different shocks, can quantify the

overall economic consequences of the ORA adjustments.

We stress that the magnitudes of these counterfactuals ∆Yw
t and ∆Pw

t cannot be in-

terpreted as magnitudes of “policy failures” across periods, as these magnitudes are not

comparable across periods. The reason is that if the economic environments are differ-

ent across periods (as is most likely the case), a given Optimal Rule Adjustment can have

different effects on the endogenous variables: the effects can can be amplified or reduced

depending on the economic environment and on the other parameters of the policy rule.

In other words, while the ORAs are comparable across periods —depending only on how

well the policy maker reacted to a specific non-policy shock—, the counterfactuals ∆Yw
t and

∆Pw
t are not, because they are affected by other factors outside the policy maker’s control.

That said the counterfactuals are economically interesting as they allow to assess the costs

of the sub-optimal reaction. Alternatively put, they can be used to measure the good/bad

luck of a policy maker. For instance, consider two policy makers with identical ORAs, if

(25) implies much larger losses for one of the policy makers, we can conclude that this policy

maker was less lucky in that the same deviation from optimality had larger consequences

under her term.14

5 Evaluating US monetary policy, 1879-2019

In this section we use our methodology to evaluate the conduct of monetary policy in the

US over the 1876-2020 period using quarterly data. We consider four distinct periods: (i)

the Gold Standard period 1879-1912 before the creation of the Federal Reserve, (ii) the early

Fed years 1913-1941, (iii) the post World War II period 1954-1984 and (iv) the post-Volcker

period 1990-2020.

During the Gold Standard period, there was no active monetary policy (the Federal

Reserve did not exist yet), and we use this period as a benchmark to see what a fictional

policy institution could have done in this period. A Gold Standard monetary regime is now

generally considered a sub-optimal regime with excessive fluctuations in inflation and unem-

13To give a concrete example, let Yw
t = (πt, . . . , πt+H)′ such that in each period t the researcher is

interested in controlling inflation over H horizons. It follows that πt will enter in Yw
t ,Y

w
t−1, . . . ,Y

w
t−H and

the shocks Ξb,t, . . . ,Ξb,t−H all imply a different counterfactual for πt. We then sum the changes that the
different shocks imply on πt.

14This is a different interpretation of the good luck/bad luck hypothesis, which stipulates that a period of
macroeconomic stability could be the lucky result of small shocks, see e.g., Gaĺı and Gambetti (2009b).
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ployment (e.g. Friedman and Schwartz, 1963). In that context, this passive monetary policy

period is instructive as a benchmark against which we can compare later Fed performances.

The early Fed period starts with the founding of the Fed in 1913 and ends with the US enter-

ing the second world war. The post-war period starts in 1951 with the Fed regaining some

independence after the Treasury-Fed accord (e.g. Romer and Romer, 2004a).15 The post

Volcker period starts in 1984 —the beginning of the so-called Great Moderation period—

and ends right before the pandemic.

We evaluate the Fed as a policy institution based on the loss function

L =
1

2
E

H∑
h=0

βh(π2
t+h + λu2

t+h) , (26)

where πt denotes inflation, ut the unemployment rate, β the discount factor and λ the

preference parameter. Our baseline choice for the loss function sets β = λ = 1 and considers

H = 20 quarters.16 Inflation is measured as year-on-year inflation based on the output

deflator from Balke and Gordon (1986). The unemployment rate before 1948 is taken from

the NBERMacrohistory database over 1929-1948 and extended back to 1876 by interpolating

the annual series from Weir (1992) and Vernon (1994). The top panel in Figure 1 shows the

time series for inflation and unemployment.

5.1 Naive approach

To provide a benchmark for our results, we first evaluate the Fed based on realized outcomes

for inflation and unemployment, as shown in Figure 1. In terms of first moments (first two

rows of 1), the Early Fed period fares very poorly because of high average unemployment

(driven by the Great Depression), while the post WWII period fares poorly because of high

average inflation (driven by the Great Inflation of the 1970s). Instead, the Gold Standard

period appears (perhaps surprisingly given common wisdom) as the most successful monetary

regime, even better than the post Volcker period often referred to as the Great Moderation.

In terms of second moments however (last two rows of 1), the Pre Fed period now also fares

poorly out with very high inflation volatility, at least much higher than after World War II,

15We exclude the period covering World War II until the Treasury-Fed accord of 1951, as the Fed was
financing the war effort and had no independence. In April 1942, at the request of the Department of the
Treasury, the Fed formally committed to maintaining a low interest-rate peg on short-term Treasury bills
and also implicitly capped the rate on long-term Treasury bonds. The goal of the peg was to stabilize the
securities market and allow the federal government to engage in cheaper debt financing of World War II. This
system lasted until the 1951 Treasury-Fed accord separated government debt management from monetary
policy (Romero, 2013).

16The robustness of our findings with respect to these choices is assessed in the web-appendix. We stress
that the choice for the loss function is merely an evaluation criteria in our context what the true loss function
of the different Fed chairs was is irrelevant from our perspective.
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though again the worse period is the early Fed with very high volatility in both inflation

and unemployment. The post-Volcker period shows the most stable inflation by far, though

the volatility of unemployment is comparable to that found in the Pre Fed and post WWII

periods. Overall, the Post Volcker period appears as the most successful one, followed by

the Post WWII and the Pre Fed period roughly on a par, and with the Early Fed period

displaying the worse outcomes by far.

Unfortunately, these unconditional realized outcomes cannot be used to assess monetary

policy performance. While they could be due to poor monetary policy —an inadequate

reaction function—, many co-founding factors outside the Fed control could also explain

those results. For instance, the poor realizations in terms of inflation and unemployment over

1913-1941 could have been caused by bad luck (an unfortunate sequence of shocks), adverse

initial conditions or by a difficult economic environment. Similarly, the good performance of

the economy in the Post Volcker period could be the outcome of good luck instead of good

policy.

To assess policy performance across time, we thus turn to the ORAmethodology proposed

in this paper.

5.2 Econometric implementation for ORA

To evaluate policy performance, we will assess how well the monetary authorities adjusted

the contemporaneous policy rate in response to five separate non-policy shocks: financial

shocks, government spending shocks, energy price shocks, inflation expectation shocks and

TFP shocks.

This requires identifying six structural shocks: (i) shocks to the contemporaneous policy

rule —the traditional monetary shock—, and (ii) the five non-policy shocks listed above, as

we describe below.

To estimate the corresponding impulse responses, we rely on a Bayesian structural vector

autoregressive model (SVAR) that includes a proxy for the policy shock, the non-policy

shock, the outcome variables πt and ut, the growth rate of the monetary base, the policy

rate, as well as possibly additional control variables wt. During the 1879-1912 Gold Standard

period where there is no policy institution, we take the 3-months treasury rate as the “policy

rate” that a fictitious central bank could have controlled. For the 1913-1941 early Fed period,

we use the fed discount rate as the policy rate. To capture the policy stance during the post

WWII periods, we use the fed funds rate as the policy rate. The specific additional variables

wt and instruments zt are discussed in detail below. The historical monetary data are taken

from Balke and Gordon (1986).

The SVAR is specified for yt = (ξt, πt, ut, ϵt, pt, w
′
t)

′, where wt denotes additional control
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variables. We have

A0yt = A1yt−1 + . . .+ Apyt−p + et , (27)

where A0, . . . , Ap are the coefficient matrices and et captures the structural shocks. ϵt is

chosen as the conventional contemporaneous monetary policy shock, and ξt can correspond

to shock to energy prices, financial intermediation, productivity, government spending and

inflation expectations, see the discussion below.

We order the non-policy shock, but order the monetary shock after unemployment and

inflation (and before the federal funds rate), for “exogeneity insurance” as in Romer and

Romer (2004b).

We estimate the reduced form of the SVAR model using standard Bayesian methods,

which shrink the reduced form VAR coefficients using a Minnesota style prior. The prior

variance hyper-parameters follow the recommendations in Canova (2007). Importantly, while

we rely on a structural VAR for estimating the impulse responses, other estimation methods

could have been used, for instance local projections (Jordà, 2005; Stock and Watson, 2018).

We normalize all shocks such that they have unit variance which can be implemented

in practice by computing the conventional one standard deviation impulse responses. This

scaling is important to ensure comparability of the shocks across periods. With the draws of

the parameters from the posterior density we compute the impulse responses R0 and Γ0, and

the subset ORA statistic T ∗
0 using (20). Besides reporting Γ0 we also report the adjusted

Γ0 + R0T ∗
0 to assess how the impulse response to the non-policy shocks could have been

adjusted.

5.3 Shock identification

For each of our periods, we identify a contemporaneous monetary policy shock and five non-

policy shocks: financial shocks, government spending shocks, energy price shocks, inflation

expectation shocks and TFP shocks.

5.3.1 Monetary policy shocks

Since we want to compare policy makers based on their contemporaneous policy response

to exgenous shocks, we need to identify contemporaneous shocks to the policy rate, that is

shocks ϵt,t. We consider two main approaches for identifying such shocks. As our baseline

we use the state of the art in the literature, and as robustness we use a sign restriction

identification.

Post Volcker regime For the Post Volcker period we use the high-frequency identification

(HFI) approach, pioneered by Kuttner (2001) and Gürkaynak, Sack and Swanson (2005),
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and use surprises in fed funds futures prices around FOMC announcement as proxies for

monetary shocks. Since forward-guidance was used extensively during that period (at least

after 2007), time t monetary shocks could a priori mix different monetary news shocks:

shocks to the contemporaneous policy rate (our object of interest ϵt,t), news shocks about

future monetary policy (ϵt,t+h, h > 0), as well as news shocks to the contemporaneous policy

rate that were announced before time t (ϵt,t−j, j > 0). Fortunately, fed funds futures allow

us to isolate contemporaneous shocks (ϵt,t). First, to eliminate news shocks about future

monetary policy (ϵt,t+h, h > 0), we use surprises to fed funds futures at a short horizon,

here 3-months ahead fed funds futures (FF4). With quarterly data, this ensures that the

identified policy surprises do not include news shocks to the future path of policy. Second,

since fed funds futures at time t are based on the time t information set, they already includes

news shocks that were announced before time t (ϵt,t−j, j > 0). As a result, surprises to FF4

allow us to isolate surprises to the contemporaneous policy rate.17

Post World War II regime For the Post World War II period we use the Romer and

Romer (2004b) identified monetary policy shocks as instruments. Since there was no use of

forward guidance before 1990 —Fed policymakers’ views on the future policy path was closely

guarded before 1990 (Rudebusch and Williams, 2008)—, we consider that these monetary

shocks capture solely contemporaneous policy shocks (ϵt,t) and not news shocks to policy.

Early Fed regime During the Early Fed period we use the Friedman and Schwartz (1963)

dates extended by Romer and Romer (1989) as instruments to identify monetary policy

shocks. We include five episodes —1920Q1, 1931Q3, 1933Q1, 1937Q1 and 1941Q3— where

movements in money were “unusual given economic developments” (Romer and Romer,

1989). In the words of Romer and Romer (1989), these “unusual movements arose, in

Friedman and Schwartz’s view, from a conjunction of economic events, monetary institutions

and the doctrines and beliefs of the time and of particular individuals determining policy”.

The Friedman and Schwartz (1963) dates are also modeled using dummies. Again, since

the concept of forward guidance in policy did not exist, we consider that these monetary

shocks capture solely contemporaneous policy shocks (ϵt,t) and not news shocks to policy.

In addition, the narrative accounts underlying these dates do not point to any elements of

forward guidance: all dates capture shocks to monetary policy within the quarter (Romer

and Romer, 1989).

Pre Fed regime For the Pre Fed Gold Standard period, there is no clear baseline identi-

fication approach to identify monetary shocks, and we propose a new approach that exploits

17In other words, we have pt,t = Etpt + ϵt,t and HFI policy surprises measure ϵt,t = pt,t − Etpt.
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the unique feature of the Gold Standard. Under a Gold Standard, the monetary base depends

on the amount of gold in circulation, which can itself vary for exogenous reasons related to

the random nature of gold discoveries or development of new extraction techniques (e.g.,

Barsky and De Long, 1991). As such, we use unanticipated large gold mine discoveries (dis-

coveries that led to gold rushes) as an instrument for movements in the monetary base.18

To the extent that the timing of the discovery is unrelated to the state of the business cycle,

gold mine discovery will be a valid instrument. Mirroring Gold discovery, we will also use

peak mine extraction —the moment where the mine output reached its peak production—.

Figure 2 plots gold production along with our identified dates: the peak of the Comstock

Lode mine in Nevada in 1877-Q1, the discovery of Gold in Alaska in 1896-Q3 (which led to

the Alaska gold rush), the discovery of large Gold mines in Nevada in 1902-Q1 (which led

to the Nevada gold rush), the Nevada gold mine maximum in 1910-Q1.19 We code the Gold

shocks as one when a new mine was discovered and minus one when the peak was reached.

Alternative identification scheme One limitation of using the “state of the art” iden-

tification scheme in each period is that we rely on a different methodology to identify ϵt,t

over each period. Since each methodology has different strengths and weaknesses, this could

affect the results and the ORA comparison across periods.20 To guard ourselves against

this possibility, we will also use an identification of monetary shock that is consistent across

regimes, which will ensure that the monetary shocks are identified in the exact same way

across regimes. Specifically, we use sign restrictions, another popular method to identify

monetary shocks (e.g., Uhlig, 2005). This approach has the benefit that it can be imple-

mented over the entire sampling period. With the VAR including inflation, unemployment,

the policy rate and the growth rate of the monetary base, we impose the following sign

restrictions: a positive monetary shock raises the short-term rate in impact, lowers money

growth on impact, lowers inflation after four quarters and raises unemployment after four

quarter. Other than that, the responses are unconstrained. 21 As we will see the results

18Given the unpredictability of the amount of gold available in any given region (either at the onset of a
gold rush or at its zenith), we can consider these events as unanticipated.

19Another important date is the Alaska gold mine maximum in 1915, though it is not useful in this context
since the strict gold standard era stops in 1913 with the founding of the Fed.

20For instance, exogeneity and relevance may differ across instrumental variables, see e.g., Barnichon and
Mesters (2020) for a discussion of the different strengths and limits of the Romer and Romer (2004b) and
the Gürkaynak, Sack and Swanson (2005) shock proxies.

21One drawback of this approach is that a VAR sign-restriction approach need isolate solely contemporane-
ous monetary shocks. Since the VAR controls for the information set only through observed macro variables,
the VAR residuals —and thus our resulted identified monetary shocks— may mix contemporaneous shocks
(ϵt,t) with news shocks revealed before time t (ϵt,t−j , j > 0) and not entirely captured by the VAR. While this
is unlikely to be a problem before 1990 (see earlier discussions), it could be one in the post Volcker period
where forward guidance was actively used. As robustness check, we thus expanded the VAR information set
by adding SPF forecasts for the 3-month treasury bill rates to control for news shocks revealed before time
t. Results were very similar.
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from the sign restricted identification scheme are remarkably in line with the results obtained

with our baseline identification of monetary shocks.

5.3.2 Non-policy shocks

Financial shocks As financial shocks we use narratively identified bank panics. Each

included panic was triggered by either a run on a particular trust fund or by foreign de-

velopments. The dates for the banking panics are taken from Reinhart and Rogoff (2009),

Schularick and Taylor (2012) and Romer and Romer (2017). To capture the severity of the

bank run, each non-zero entry is rescaled by the change in the BAA-AAA spread at the time

of the run, similar to the re-scaling of Bernanke et al. (1997) and in the spirit of Romer and

Romer (2017)’s scaling of their financial distress index.22

Government spending shocks For government spending shocks we consider news shocks

to defense spending as constructed in Ramey and Zubairy (2018).

Productivity shocks To identify productivity shocks we use the identification scheme of

Gali (1999) and Barnichon (2010): we estimate bi-variate VARs with log output per hour

and unemployment over each policy regime, and we impose long-run identifying restrictions,

specifically that only productivity shocks can have permanent effects on productivity. The

quarterly time series for output per hour is taken from Petrosky-Nadeau and Zhang (2021)

and starts in 1890.

Energy shocks To identify energy shocks, we extend the approach of Hamilton (1996) and

Hamilton (2003) by identifying energy shocks as instances when energy price rises above its

3-year maximum or falls below its 3-year minimum. Since coal was the primary US energy

source until World War II and oil only became the pre-dominant energy source after World

War II, we measure energy price prices from the wholesale price index for fuel and lighting,

available over 1890-2020.

Inflation expectation shocks An important feature of a successful central bank is the

anchoring of inflation expectations. In this context, we aim to measure how well the Fed has

been responding to innovations to inflation expectations, with the clear example being the

de-anchoring of inflation expectations in the 1970s. To do so, we aim to identify inflation

expectation shocks, meant to capture threats to the anchoring of inflation expectations.

22Using bank runs as 0-1 dummies does not change conclusions drastically though it makes the estimates
a bit less precise. Since the time series for AAA yields only start in 1919, we backcasted AAA yields before
1919 with yields on 10-year maturity government bonds from the Macro History database (Jordà et al.,
2019).
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As measure of inflation expectations, we rely on the Livingston survey that has been

continuously run over 1946-2019.23 Of interest for us, the Livingston survey includes a

question about 8-months ahead inflation expectations. Prior to World War II, there are no

systematic inflation expectation survey , so we instead rely on Cecchetti (1992)’s measure

of 6-months ahead inflation expectations for the Early Fed period.24

To identify innovations to inflation expectations, we proceed similarly to Leduc, Sill

and Stark (2007) and project inflation expectations on a set of controls that include past

values of inflation expectation, inflation, unemployment, lags of the 3-month and 10-year

treasury rates. In addition, we also project on current and past values of the other identified

non-policy shocks: financial, government spending, energy price and TFP. The idea of this

exercise is to capture movements in inflation expectations that cannot be explained by the

other shocks, i.e., that go above and beyond the typical effect of the non-policy shocks on

inflation expectations.

5.4 Results

We split our results into two parts. First, we discuss the ORA statistics and compare the

Fed over time. Second, we zoom in on the specific sub-periods and assess the economic

magnitudes of the improvements in the reaction function.

ORA-based assessments of monetary policy over 1879-2019

Table 2 shows the baseline ORA statistics computed using our baseline monetary policy

shocks and baseline non-policy shocks. The key benefit of the ORA is that the distance

to the optimal reaction coefficient is comparable across periods —capturing how the policy

maker should have adjusted its reaction to the same non-policy shock—, so that elements

within the same columns are comparable and allow to compare policy performance (with

respect to a specific non-policy shock) across periods. Moreover, while the magnitude of

the reaction function adjustment is difficult to interpret economically,25 the sign is easy to

23The Livingston survey is conducted with a pool of professional forecasters from non-financial businesses,
investment banking firms, commercial banks, academic institutions, government, and insurance companies,
see (Leduc, Sill and Stark, 2007).

24Cecchetti (1992)’s measure of inflation expectations relies on Mishkin (1981)’s insight that the ex-
ante real interest rate can be recovered from a projection of the ex-post real interest rate on the time t
information set. The difference between the ex-ante and ex-post real interest rate provides a measure of
inflation expectations.

25Recall that the ORA is a reaction coefficient adjustment. For instance, an ORA of 0.5 means that in
response to a 1 standard deviation non-policy shock, the reaction coefficient should have been 0.5 point
larger in order to minimize the loss function., i.e., to best stabilize the impulse responses to that non-policy
shock. The ORA is difficult to interpret economically in terms of impulse responses because that coefficient
adjustment will also affect the equilibrium allocation indirectly through the feedback terms in the policy
rule.
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understand: a negative sign implies that the policy response was too weak (i.e., too passive

) in the face of a given type of shock.

Overall, we find strong improvements in the conduct of monetary policy, but only in the

last 30 years, i.e., after Volcker dis-inflation program. Before that, we repeatedly estimate

large and significant ORAs to non-policy shocks, particularly before World War II, but also

after 1951 with monetary policy being generally too passive in the face of both aggregate

demand type shocks and aggregate supply type shocks.

We first describe the general results, contrasting performance across the different periods,

before turning to the more specific results in the next section.

During the Gold Standard period, monetary policy is (unsurprisingly) too passive in the

face of adverse shocks: whether these are bank runs, military build ups or technological

progress: Faced with these adverse non-policy shocks, a monetary authority should have

lowered its discount rate.26

Interestingly, this excess passivity continues to hold (in fact worsens) after the creation

of the Fed. We find that the Early Fed not only responds much too little in the face of bank

runs —a result echoing previous findings in the literature (e.g., Friedman and Schwartz, 1963;

Hamilton, 1987)—, but also in the face of government spending shocks —letting government

spending shocks excessively affect unemployment and inflation— or inflation expectation

shocks, in particular not reacting enough to the negative inflation expectation shocks of

1931-1932.

US monetary policy during the 1970s has generally been considered poor (e.g., Romer

and Romer, 2004a), in particular not responding more than one-to-one with changes in

inflation (Clarida, Gaĺı and Gertler, 2000) and violating the so-called Taylor principle. Table

2 confirms and generalizes this assessment to most aggregate shocks: the reaction function is

too weak in the face of increasing government spending shocks, energy prices and especially

inflation expectations. This latter result extends the findings of Leduc, Sill and Stark (2007)

that the largest deviations from the Taylor principle —the failure to raise the real rate in

the face of rising inflation— were in terms of the response to inflation expectation shocks.

Importantly however, the ORA allows to go much further by measuring not just whether

the Taylor principle holds or not but also by how much the policy rule should have been

adjusted in order to minimize the loss function. We will come back to these important points

in the next section.

Last, the post Volcker shows improvements in monetary policy across all dimensions, with

ORA statistics much smaller than in the earlier regimes, and not statistically significant,

including the reaction to financial shocks.

26Interestingly, the response to energy price shocks is appropriate because energy price shocks only in-
creased inflation for a brief period; too fast for monetary policy (and its transmission lags) to have time to
materially prevent the inflation increase, see Figure S9 in the Appendix.
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In the appendix, we show robustness to our identification of monetary shocks. The

results are remarkably consistent with our baseline estimates, with ORAs generally of similar

magnitudes and same levels of statistical significance.27 The only notably exception is the

response to financial shocks in the post Volcker period, where the deviation from optimality

is small but negative and significantly different from zero. The presence of the zero lower

bound could thus have limited somewhat the Fed’s ability to best react to the 2007-2008

financial crisis, though again the deviation from optimality is substantially smaller than in

earlier periods, in line with our conclusion of substantial improvements in the conduct of

monetary policy.

ORA-based adjustments to monetary policy over 1879-2019

The ORAs reported in Table 2 capture how much the Fed should have adjusted the reaction

coefficient of the contemporaneous policy rate to a one standard-deviation non-policy shock

in order to minimize the unconditional loss function (26). While the ORAs are useful to

compare reaction functions across periods, the magnitudes can be hard to interpret. Thus, we

will show how the ORA affects the impulse responses to non-policy shocks, effectively showing

how these ORA adjustments translate into different policy path responses to non-policy

shocks and “improved” (i.e., more stable) impulse responses of inflation and unemployment.

The appendix display all the ORA-adjusted impulse responses, but we will discuss the

most interesting ones in the main text.

Responding to financial shocksThat’s it, let’s submit ... NOW For the early

Fed period, we estimate a particularly large ORA statistic in response to financial shocks,

and Figure 4 displays the corresponding impulse responses underlying this ORA estimated

over 1913-1940. For comparison, Figure 5 displays the same impulse responses but estimatd

over 1990-2019. In both figures, the top row shows the impulse responses of inflation, un-

employment and the interest rate to a monetary policy shock.28 The bottom rows show

the responses of the same variables to a financial shock: for both periods, inflation con-

tracts whereas unemployment increases, though the inflation response is more muted for the

post-Volcker period, consistent with the anchoring of inflation expectations.

The ORA adjusted impulse responses Γb + RaT ∗
ab in the bottom rows of Figures 4 and

5 (dashed green lines) show how adjusting the reaction coefficient to financial shocks would

have changed the impulse responses of inflation, unemployment and the policy rate. For

27The online appendix presents an additional robustness exercise: robustness to the definition of the
different monetary periods.

28Note that the magnitude of the response of inflation is very different across the periods; the responses
being much small in the post Volcker period, consistent with the anchoring of inflation expectations in the
recent period (e.g., Gürkaynak, Levin and Swanson, 2010).
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the early Fed period, we find that in response to an adverse shock, the Fed raised the

discount rate. In other words, the Fed was not only too passive, but in fact was following a

contractionary policy. Combined with the decline in inflation caused by the financial shock,

this means that the real policy rate increased substantially following financial shocks. This

finding echoes an earlier literature on the monetary factors behind the Great Depression

(e.g., Friedman and Schwartz, 1963; Hamilton, 1987). Instead, the ORA calls for lowering

the discount rate. Since this lower policy rate also mutes the inflation decline, this means

that the real policy rate now declines in response to a financial shock: an expansionary

monetary policy. In contrast, in the post Volcker period, the ORA calls for little adjustment

to the path of the fed funds rate.

Responding to energy price and inflation expectation shocks Figures 6 and 7 plot

impulse responses estimated over the post WWII period. The impulse response to monetary

shocks are in line with earlier evidence (e.g., Coibion, 2012). In response to an energy price

shock or an inflation expectation shock, inflation rises progressively, while the policy rate

response is relatively mild. In fact, in both cases the real interest rate declines following an

energy price shock or inflation expectation shock. In other words, the Taylor principle is not

satisfied, a finding echoing an earlier literature on the performance of the Fed during the

1970s (Clarida, Gaĺı and Gertler, 2000; Leduc, Sill and Stark, 2007). However, the ORA goes

further and allows us to compute how the policy rate should have responded to these shocks,

as displayed by the dashed green lines. The ORA adjustment restores the Taylor principle

and the real rate rises following both shocks. Most striking is the large response of the policy

rate to an inflation expectation shock (lower-right panel, Figure 7), which contrasts with the

absence of response before ORA adjustment.

Responding to government spending and TFP shocks While earlier studies of Fed

performance have generally focused on the (weak) response of the Fed to financial distress

in the early 1930s or to the (weak) response of the Fed to inflationary pressures during the

1970s, our approach allows to study and compare performance in response to many other

shocks. Figures 8 plots the impulse responses to negative government spending shocks in

the Early Fed period. We can see that the Fed’s excessive passivity extends to government

spending shocks as well. In fact, instead of lowering the discount rate to tame the rise in

unemployment following a decline in government spending, the Fed was actually raising the

discount rate, worsening the negative unemployment effect of the adverse shock to public

spending (green line, lower right panel).

In a similar vein, Figure S16 plots the impulse responses to negative TFP shocks for the

post WWII period. Again, the Fed response is too weak, leading to excessive inflation. The
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ORA adjustment restores a contractionary monetary policy by raising the real interest rate

following an adverse TFP shock (green line, lower right panel).

Counterfactual historical policy scenarios

With the ORA in hand, we can also create counter-factual historical policy scenarios using

(24) and (25). We use the median ORA estimates to compute the counterfactuals. Figure

10 plots the effects of the sum of the ORA adjustments (across the different non-policy

shocks) on the paths of the policy rate, the inflation rate and the unemployment rate. These

counter-factuals are interesting from a historical perspective, highlighting moments in time

where the consequences of the sub-optimal reactions.

In the pre Fed period, there were substantial deviations from an optimal reaction coeffi-

cients, calling for lower interest rates (about 3/4 ppt) in the aftermaths of the 1893 and 1907

bank runs, as well as higher interest rates in response to higher military spending following

the war against Spain in 1898, and the navy build-up of 1902-1904 (Figure 11, left column).

That said, over the per Fed period, our identified non-policy shocks explain only a small

share of the total variance of inflation and unemployment over 1879-1912, so that the ORA

corrections only have a moderate effect on the behavior of inflation and unemployment over

that period.

In the early Fed period, the ORA calls for large adjustments. First, the large increase in

military spending over 1918 is responsible for part of the inflation outburst in 1919-1920, and

the ORA calls for an almost 1ppt higher discount rate to tame that increase. Second, and

most strikingly, the ORA calls for large adjustments in the early stage of the Great Depression

(1931-1932). In response to the bank runs and the negative inflation expectation shocks of

1931 (Figure 11), the ORA cancels the discount rate increases observed in 1931 —hikes

often been blamed for turning the initial recession caused by the 1929 stock-market crash

into a full blown depression (e.g., Hamilton, 1987)— and subsequently lowers the discount

rate all the way to almost (but still above) zero in 1932. This would have avoided about

10 percentage points in unemployment —as much as half of the rise in unemployment over

1930-1932— as well as the deflation. The re-inflation shock following Roosevelt’s election

would have then been countered by a higher discount rate.29

Turning to the post world war II period, the ORA calls for substantially higher fed funds

rate throughout the 1960-1980 period. While the ORA does call for more tightening (about

1/2 ppt) in the face of large government programs related to US space program in the early

60s and the Vietnam war in the second half of the 60s, the largest adjustments by far occur

29Of course, had the US avoided the deflation and the large unemployment run-up, such a re-inflation
shock would not have happened, for instance because Roosevelt may not even have been elected. This
counter-factual exercise is based on an ex-post realization of shocks.
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during the 70s (as much as 6 ppt higher fed funds rate) in response to the oil price shocks

of 1974 and 1979 and the inflation expectation shocks occurring during that period. With

such strong response, as much as about 5 ppt of inflation could have been avoided (at the

cost of relatively mild extra unemployment), see Figure 10. In fact, one might argue that

the “trend” inflation of the 1970s could have been avoided.

In contrast, during the post Volcker period, the ORA policy rate adjustments are small

and never significantly different from zero.

6 Conclusion

In this paper, we showed that it is possible to evaluate and compare policy makers based

on the distance-to-optimality of their reaction function coefficients to well-chosen non-policy

shocks. We introduced ORA statistics to measure the distance and showed that these could

be computed from two sufficient statistics: (i) the impulse responses of the macro objectives

to non-policy shocks, and (ii) the same impulse responses to policy shocks. Importantly,

explicit knowledge of the policy maker’s reaction function is not necessary, because the

effect of an (unspecified) reaction function is already encoded in the impulse responses to

shocks, which are estimable.

Intuitively, our approach consists in projecting the policy objectives on the space spanned

by non-policy shocks and then studying the optimal policy problem in that sub-space.

Thanks to the projection, it is possible to evaluate the optimality of a specific reaction func-

tion coefficient: how “well” the policy maker or institution reacted to a specific non-policy

shock over a given period. The idea is then to compare policy makers by comparing their

distance to the optimal reaction coefficient to the same non-policy shock. Since computing

the distance to the optimal reaction coefficient only requires impulse response estimates, it

becomes possible to evaluate and compare policy makers or policy institutions across time

or even space.

While this paper studied the performance of US monetary policy over the past 150 years,

the methodology could be applied to many other important questions, such as comparing

the performance of different central banks over the same period, e.g., the Fed vs the ECB

during the Great Recession, or comparing the performances of policy makers over time, e.g.,

democrats vs republicans (Blinder and Watson, 2016).
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Appendix A: Details and Proofs

We first discuss how the general model (11) can be written as (14). Define

A =

[
Ayy Ayp

Apy App

]
, Bξ =

[
Byξ

Bpξ

]
, J =

[
0
I

]
and Z =

[
Y
P

]
. (28)

The model (11) is equivalent to
AZ = BξΞ+ Jϵ .

For any ϕ ∈ Φ we have that there exists unique equilibrium representation. This implies
that A is invertible and we obtain

Z = A−1Bξ︸ ︷︷ ︸
=D1

Ξ+A−1J︸ ︷︷ ︸
=D2

ϵ .

The block structure of D1 and D2 is given by

D1 =

[
Γ(ϕ)
Γp(ϕ)

]
and D1 =

[
R(ϕ)
Rp(ϕ)

]
,

where the maps Γ(ϕ) and R(ϕ) appear in the first position as they capture the effects of the
shocks on Y. The other maps capture the effects of the shocks on P. Explicit expression
can be obtained by by noting that A being invertible implies that App and Ayy−AypA−1

pp Apy

are invertible as Ayy is generally not invertible. We have

Γ(ϕ) = D(Byξ +AypA−1
pp Bpξ) and R(ϕ) = DAypA−1

pp ,

with D = (Ayy −AypA−1
pp Ayp)

−1. Recalling that ϕ = {App,Apy,Bpξ} is useful to note that

Γ(ϕ) = Γ({App,Apy,0}) +R(ϕ)Bpξ . (29)

Proof of Proposition 1. The proof proceeds in two steps: (a) we show the equivalence for
{minϕ L s.t. (11) with ϵ = 0} = {minBpξ

L s.t. (11) with ϵ = 0 ,App = A0
pp, Apy = A0

py} and
(b) we show that the value for Bpξ that solves the second problem is B0

pξ + T ∗. To show (a)
we note that under ϵ = 0 we have that Y can be written as

Y = DByξΞ+DAypA−1
pp BpξΞ = Γ(ϕ)Ξ
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Using that the entries of Ξ have mean zero, unit variance and are uncorrelated we have that

L =
1

2
E(Y′WY) = Tr((Byξ +AypA−1

pp Bpξ)
′D′WD(Byξ +AypA−1

pp Bpξ)) .

The derivative maps of L with respect to ϕ = {App,Apy,Bpξ} are given by

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)B′
pξA−1′

pp +

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)(Byξ +AypA−1
pp Bpξ)

′D′A′
pyA−1′

pp = 0

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)(Byξ +AypA−1
pp Bpξ)

′D′ = 0

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ) = 0

The last equation gives the derivative map with respect to Bpξ. Solving this expression for
Bpξ yields

B∗
pξ = −[A−1′

pp A′
ypD′WDAypA−1

pp ]
−1A−1′

pp A′
ypD′WDByξ .

Further, it is easy to see that if the last equation holds then the first two equations also
hold. This holds regardless of App and Apy as long as the invertibility conditions above are
satisfied.

To show part (b), note that R0 = D0A0
yp(A0

pp)
−1 and if B0

pξ = 0 we have that Γ0 =

Γ({A0
pp,A0

py,0}) = D0Byξ. This implies that B∗
pξ = T ∗ = −(R0′WR0)−1R0′WΓ0 and the

proof is complete. Now suppose that B0
pξ ̸= 0, using (29) we have B0

pξ + T ∗ = B0
pξ −

(R0′WR0)−1R0′WΓ0 = B0
pξ−(R0′WR0)−1R0′WΓ({A0

pp,A0
py,0})−(R0′WR0)−1R0′WR0B0

pξ =
B∗
pξ.

Proof of Proposition 2. We have that

L(ϕ0) = L(A0
pp,A0

py,B0
px,B0

paξb
+ Tab,B0

−pa−ξb
)
∣∣
Tab=0

≥ min
Tab

L(A0
pp,A0

py,B0
px,B0

paξb
+ Tab,B0

−pa−ξb
)

= ELt(ϕ
∗) .
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Table 1: Realized Outcomes

Pre Fed Early Fed Post WWII Post Volcker
1879-1912 1913-1941 1951-1984 1990-2019

π 0.4 1.9 4.3 2.0
u 5.3 10.2 5.6 5.9
Var(π) 19.4 90.1 7.7 0.5
Var(u) 3.5 48.6 3.2 2.6

Notes: π and u denote the sample means of inflation and unemployment, and Var(π) and Var(u) denote the

sample variances of inflation and unemployment, as computed over the different periods.

Figure 1: Inflation and unemployment, 1876–2020
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Notes: Year-on-year inflation based on the output deflator and the unemployment rate. The vertical lines

highlight the different periods: pre-Fed 1879-1912, early-Fed 1913-1941, post-WWII 1951-1984 and post-

Volcker 1990-2020.
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Table 2: ORA statistics for US monetary policy

Non-policy shock Bank panics G Energy πe TFP
Shock sign convention u ↑ u ↑ π ↑ π ↑ π ↑

Pre Fed
1879−1912

−0.9∗

(−1.5,−0.3)
−0.6∗

(−1.3,0)
−0.1

(−0.5,0.4)
— 0.6

(−0.2,1.1)

Early Fed
1913−1941

−1.2∗

(−1.9,−0.8)
−0.5∗

(−0.9,−0.1)
0.0

(−0.3,0.3)
0.7∗
(0.3,1.0)

0.1
(−0.2,0.5)

Post WWII
1951−1984

— −0.2
(−0.8,0.3)

0.8∗
(0.1,1.4)

1.2∗
(0.6,1.8)

0.5
(−0.2,1.2)

Post Volcker
1990−2019

−0.1
(−0.5,0.5)

0.1
(−0.7,1.0)

0.2
(−0.5,1.1)

−0.1
(−0.4,0.4)

−0.1
(−0.6,0.2)

Notes: Median ORA statistics together with 68% credible sets. The monetary policy shocks are identified

as described in main text: using gold rush discovery in the pre-Fed period, Romer and Romer (1989)’s

Friedman-Schwartz dates in the early Fed period, Romer and Romer (2004) monetary shocks for the post

WWII period and high-frequency surprises in the post Volcker period. The financial shocks are bank panics

or innovations to the BAA-AAA spread, the government spending shocks are from (Ramey and Zubairy,

2018, G), TFP shocks from (Gali, 1999, TFP), energy shocks are computed using the peak-over-threshold

approach of Hamilton (1996), and inflation expectation shocks (πe) are innovations to inflation expectations

as measured from Cecchetti (1992) for Early Fed period and from the Livingston survey (Post WWII and Post

Volcker periods). For the Pre Fed period the TFP, G and Energy ORAs are computed over the 1890-1913

period.
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Figure 2: US Gold Production, 1876–1930
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Figure 3: Pre Fed, 1879-1912, Reaction to Financial shocks
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43



Figure 4: Early Fed, 1913-1941, Reaction to Financial shocks
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shaded areas, respectively.
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Figure 5: Post Volcker Fed, 1990-2019, Reaction to Financial shocks
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Figure 6: Post WWII Fed, 1951-1984, Reaction to Energy shocks
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0 . The 95% and 67% credible sets are plotted as dark and light

shaded areas, respectively.
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Figure 7: Post WWII Fed, 1951-1984, Reaction to πe shocks
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Figure 8: Early Fed, 1913-1941, Reaction to G shocks
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Figure 9: Post WWII Fed, 1951-1984, Reaction to G shocks
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0 . The 95% and 67% credible sets are plotted as dark
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Figure 10: ORA corrections over 1879-2019
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