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Abstract

This paper considers nonparametric identification and estimation of the re-

gression function when a covariate is mismeasured. The measurement error

need not be classical. Employing the small measurement error approximation,

we establish nonparametric identification under weak and easy-to-interpret con-

ditions on the instrumental variable. The paper also provides nonparametric

estimators of the regression function and derives their rates of convergence.
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1 Introduction

Regression is a fundamental tool for empirical analysis. Errors-in-Variables (EIV)

are a widespread problem in empirical applications. Mismeasurement of a covariate,

when not accounted for, may lead to biased estimates and invalid inferences.

The goal of this paper is to study the nonparametric identification and estima-

tion of the regression function when a covariate is mismeasured. Importantly, the

measurement error need not be classical and can be correlated with the mismea-

sured covariate. In this paper, we adopt the small measurement error approximation,

which allows us to provide a simple nonparametric characterization of the problem.

Then we provide transparent and constructive identification analysis under weak and

easy-to-interpret conditions on the instrumental variable.

First, we focus on the Weakly Classical Measurement Error (WCME) model,

where the measurement error is uncorrelated with the true covariate but generally is

not independent from it. We show that the skedastic function of the measurement

errors, together with its derivative, plays a key role in determining the bias of the naive

regression estimator. We also show how the EIV skedastic function can be recovered

from the distribution of the observables using a (possibly discrete) instrument, and

how one can construct a bias-corrected estimator of the regression function. We derive

its rate of convergence and provide conditions under which the approximation error

becomes negligible compared to the errors arising from the nonparametric estimation

of unknown functions in large samples.

Next, we consider the general Non-Classical Measurement Error (NCME) model,

which allows for a very broad form of EIV. In particular, the measurement error can

be correlated with the true covariate. Even though the NCME model is much more

general than the WCME model, we demonstrate how the results from our analysis

of the WCME model can be utilized to establish identification of the general NCME

model.

Importantly, our approach only requires an instrumental variable that can be

discrete. This allows for a broader range of applications compared to the methods

that require a continuously distributed instrument or the availability of repeated

(multiple) measurements of the true covariate. In Section 2, we discuss in detail the

exclusion and relevance conditions that the instrumental variable needs to satisfy,

and consider some examples.
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Our paper contributes to the large literature studying models with mismea-

sured data. Carroll, Ruppert, Stefanski, and Crainiceanu (2006); Chen, Hong, and

Nekipelov (2011); and Schennach (2020, 2022) provide excellent literature overviews.

Our main focus is on the settings where the distribution of measurement error

is unknown. Nonparametric analysis of the EIV problem in such settings requires

additional information to separate the true covariate from the measurement error. In

Economics, most commonly instrumental variables are used for this purpose (Haus-

man, Ichimura, Newey, and Powell, 1991; Hausman, Newey, and Powell, 1995; Newey,

2001; Schennach, 2007; Hu, 2008; Hu and Schennach, 2008; Wilhelm, 2019, among

others). Repeated measurements can also be utilized (Hausman et al., 1991; Li and

Vuong, 1998; Schennach, 2004, among others) but are less frequently available. Note

that repeated measurements can serve as valid instruments in our analysis.

Small measurement error (SME) approximation has been widely employed in

Statistics and Econometrics to study the effect of EIV on various estimators and to

bias-correct them (e.g., Wolter and Fuller, 1982; Carroll and Stefanski, 1990; Chesher,

1991, 2000; Carroll et al., 2006; Chesher and Schluter, 2002, among others). Bound,

Brown, and Mathiowetz (2001) document that the EIV in economic applications are

typically relatively small although are often non-classical, which suggests that our

analysis should be useful in many applied settings. This paper differs from the pre-

vious literature in two ways. First, it appears to be the first paper to study the

nonparametric SME approximation with non-classical EIV. Second, previously devel-

oped SME bias reduction techniques usually assume that the EIV variance is either

known or can be directly estimated from an available dataset, e.g., using repeated

measurements. In contrast, this paper demonstrates how the whole EIV skedastic

function can be identified and estimated using only a (possibly discrete) instrumental

variable.

The analysis of this paper complements the existing “large” measurement error

literature. By focusing on a narrower range of settings, the paper provides simpler

characterizations of the problem and estimators, which are valid under very weak and

easy-to-interpret conditions on the instrumental variable. In particular, our identi-

fication results do not rely on the completeness conditions, and estimation does not

involve solving ill-posed inverse problems or deconvolution.

The rest of this paper is organized as follows. Section 2 studies the Weakly Classi-

cal Measurement Error (WCME) model. Section 3 considers the general Non-Classical
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Measurement Error (NCME) model. The proofs are collected in the Appendix.

2 Weakly Classical Measurement Errors

We consider the regression model

ρ (x) ≡ E [Yi|X∗
i = x] , (1)

where Yi ∈ R is the outcome variable, and X∗
i ∈ R is the true value of the covariate

for individual i. The researcher observed a mismeasured version of X∗
i :

Xi = X∗
i + εi.

where εi is the measurement error. The researcher has a random sample of (Yi, Xi, Zi),

where Zi are instrumental variables that are used to identify the model and will be

discussed later. It is straightforward to also include correctly measured covariates

into the model, see Remark 4 for details.

In this section we consider the Weakly Classical Measurement Error (WCME)

model:

Assumption WCME. Xi = X∗
i + εi and E [εi|X∗

i ] = 0.

The measurement error εi is uncorrelated with the true covariate X∗
i . Assump-

tion WCME is significantly weaker than the (Strongly) Classical Measurement Error

(CME) assumption, since εi need not be independent from X∗
i . For example, the

measurement error can be conditionally heteroskedastic, i.e., its conditional variance

v (x) ≡ V [εi|X∗
i = x] .

may depend on x. Function v (x∗) is usually unknown.

Example (WCME-LIN-RC). Suppose Xi = ψi1 + ψi2X
∗
i , where (ψi1, ψi2) ⊥ X∗

i .

Assumption WCME is satisfied if E [(ψi1, ψi2)] = (0, 1). Here v(x) = σ2
ψ1

+ σ2
ψ2
x2 +

2σψ1ψ2
x.

In this paper we use the Small Measurement Error (SME) approximation (e.g.,

Wolter and Fuller, 1982) for the analysis, i.e., we will consider the approximations of

the model when v(x∗) and the higher conditional moments of εi are small.
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Specifically, we model the measurement error as εi = τξi where the distribution

of ξi is fixed, and τ is a non-stochastic parameter. Assumption WCME requires

E[ξi|X∗
i ] = 0. The conditional variance of εi is given by v(x) = τ 2V [ξi|X∗

i = x] =

O(τ 2).

We study the properties of the model when τ → 0. Under some smoothness

conditions,

E [Yi|Xi = x] = ρ (x) +O
(
τ 2
)
.

Thus, a naive regression estimator of ρ that ignores the presence of the measurement

errors in Xi has a bias of order O (τ 2), e.g., see Chesher (1991).

The goal of the small measurement error analysis is to provide a function ρ̃ (x)

that has a smaller bias, i.e., satisfies

ρ̃ (x) = ρ (x) +O (τ p) , (2)

for some p ≥ 3.

To identify the model we will rely on an observed instrumental variable (instru-

ment) Zi that satisfies the following exogeneity assumption.

Assumption 2.1. E [Yi|X∗
i , Zi] = E [Yi|X∗

i ].

This assumption states that Zi is an “excluded” variable: given X∗
i , instrument Zi

has no effect on the conditional mean of Yi. Without loss of generality, we can assume

that Zi is discrete. (The instrument also needs to satisfy a “relevance”condition: it

needs to affect the conditional distribution fX∗|Z (x|z). This condition will appear in

Theorem 1.)

Assumption 2.2. E [Yi|X∗
i , Zi, Xi] = E [Yi|X∗

i , Zi].

Assumption 2.2 says that the measurement error εi is nondifferential: conditional

on (X∗
i , Zi), Xi provides no additional information about (the conditional mean of)

Yi. This assumption can be equivalently stated as E [Yi|X∗
i , Zi, εi] = E [Yi|X∗

i , Zi] =

E [Yi|X∗
i ].

Assumption 2.3. εi = τξi, where τ ≥ 0 is non-random, E[ξi|X∗
i ] = 0, and

fξ|X∗Z (u|x, z) = fξ|X∗ (u|x) ∀u, x, z.

Assumption 2.3 and the smoothness conditions below are stated using the aux-

iliary variable ξi, whose variance does not shrink. This allows formulating the
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smoothness conditions in the conventional form. For example, we will assume

that the density fξ|X∗ (u|x) is bounded. In contrast, the density of εi = τξi is

fε|X∗ (e|x) = 1
τ
fξ|X∗

(
e
τ

∣∣x) and is not bounded as τ → 0. Assumption 2.3 also

implies that εi ⊥ Zi|X∗
i .

Finally, the following two assumptions are smoothness conditions.

Assumption 2.4. Function ρ (x) and the conditional densities fX∗|Z(x|z) and

fξ|X∗ (u|x) are bounded functions with m ≥ p bounded derivatives with respect to

x, for some integer p ≥ 3.

Assumption 2.5.
∫
|u|m supx̃∈SX

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣ du < ∞ for ℓ ∈ {0, . . . ,m} for

some closed convex set SX ⊆ R containing the supports of X∗
i and Xi.

Assumption 2.5 is a weak restriction imposed on the conditional moments of ξi.

Appendix B provides a set of primitive conditions that guarantee that Assumption

2.5 holds. Also notice that Assumption 2.5 would automatically hold if the support

of ξi is bounded, since fξ|X∗(u|x) and its derivatives are uniformly bounded under

Assumption 2.4.

We can now state the first main result of the paper. Let

q (x, z) ≡ E [Yi|Xi = x, Zi = z] , q (x) ≡ E [Yi|Xi = x] ,

sX|Z (x|z) ≡
f ′
X|Z (x|z)
fX|Z (x|z)

, sX∗|Z (x|z) ≡
f ′
X∗|Z (x|z)
fX∗|Z (x|z)

,

ṽ (x) ≡ q (x, z1)− q (x, z2)

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

] , (3)

ρ̃ (x, z) ≡ q (x, z)− ṽ (x)
[
q′ (x) sX|Z (x|z) + 1

2
q′′ (x)

]
− q′ (x) ṽ′ (x) . (4)

Let SX∗(z) denote the conditional support of X∗
i |Zi = z. Consider any two values z1

and z2 the instrument can take.

Theorem 1. Suppose that Assumptions WCME and 2.1-2.5 are satisfied. Suppose

either (i) p = 3, or (ii) E
[
ξ3i |X∗

i

]
= 0 and p = 4. Consider any point x ∈ SX∗(z1) ∩

SX∗(z2) such that

ρ′ (x)
[
sX∗|Z (x|z1)− sX∗|Z (x|z2)

]
̸= 0. (5)
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Then, as τ → 0,

ṽ (x) = v (x) +O (τ p) , and

ρ̃ (x, z1) = ρ (x) +O (τ p) .

Theorem 1 demonstrates that ρ̃(x, z1) identifies ρ(x) up to an error of order O(τ p)

when τ → 0. This is a substantial improvement over naive regression q(x) which

has a bias of order O(τ 2). The improvement in the magnitude of the approximation

error (from O(τ 2) to O(τ 4)) is especially noticeable when E[ξ3i |X∗
i ] = 0, e.g., when

the measurement error is symmetric.

To establish the desired result, we first characterize the bias of q(x, z) up to an

error of order O(τ p). The bias of q(x, z) is of order O(τ 2) and determined by the

conditional variance of the measurement error v(x) and its derivative v′(x), which are

unknown. Then, we show that ṽ(x) identifies v(x) up to an error of order O(τ p).1

This allows us to approximate the bias of q(x, z) with a sufficient precising using

ṽ(x) in place of v(x). Finally, we construct ρ̃(x, z1) by bias correcting q(x, z1) and

demonstrate that it approximates the true regression function ρ(x) up to an error of

order O(τ p).

The idea behind nonparametric identification is that although function

E [Yi|X∗
i = x, Zi = z] does not depend on z, function q (x, z) ≡ E [Yi|Xi = x, Zi = z]

does vary with z. The theorem shows how this variation allows recovering v (x).

Specifically, the proof of the Theorem shows that

q (x, z) = ρ (x) + v (x) ρ′ (x) sX∗|Z (x|z) +
1

2
v (x) ρ′′ (x) + ρ′ (x) v′ (x) +O (τ p) . (6)

Then it is shown that replacing the derivatives of ρ with those of q and sX∗|Z with

sX|Z on the right-hand side in the above equation does not increase the magnitude of

the approximation error, i.e., that

q (x, z) = ρ (x) + v (x) q′ (x) sX|Z (x|z) +
1

2
v (x) q′′ (x) + q′ (x) v′ (x) +O (τ p) . (7)

Note that only the second term on the right-hand side depends on z. Since q,

q′, and sX|Z are directly identified from the joint distribution of the observables,

considering the differences q (x, z1) − q (x, z2) then allows identification of v (x) by

1We also demonstrate that ṽ′(x) = v′(x) +O(τp). This is an important step of the proof.
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ṽ (x) up to an error of order O (τ p). This identification approach requires the rank

condition that sX|Z (x|z) depends on z, which is ensured by equation (5). In addition,

it is necessary that q′ (x) ̸= 0, which is also ensured by equation (5). The latter

condition is weak: ρ′ (x) = 0 for all x only if ρ (x) is a constant.2

Remark 1. It is easy to check that ρ̃ (x, z1) = ρ̃ (x, z2).

Corollary 2 (Classical Measurement Error). Suppose the hypotheses of Theorem 1

hold, and the measurement error is classical, i.e., εi ⊥ (X∗
i , Zi, Yi). Suppose con-

dition (5) holds for some point ẋ. Then for all x and z such that x ∈ SX ∗(z), as

τ → 0,

ρ̃CME (x, z) = ρ (x) +O (τ p) ,

where

ρ̃CME (x, z) ≡ q (x, z)− ṽ (ẋ)
[
q′ (x) sX|Z (x|z) + 1

2
q′′ (x)

]
.

When the measurement error is classical, v (x) is constant, and hence the term

containing v′ (x) is absent from equation (6). In addition, Corollary 2 requires only a

single point ẋ satisfying the rank condition (5) for identification of ρ (x) for all x, since

v (x) = v (ẋ) for all x.3 In contrast, in the general case of Theorem 1, nonparametric

identification of v (x) and ρ (x) for a given x requires condition (5) to hold at that

point x. Identification of the Classical Measurement Error model has been previously

established in Evdokimov and Zeleneev (2022).

Remark 2 (Examples of IVs). First, variable X∗
i can be caused by Zi; for example,

X∗
i = q (Zi, ηi) for some unobserved (vector) ηi and function q. Assumptions 2.1 and

2.2 will be satisfied if E [Ui|Zi, ηi, εi] = 0.

Second, variable Zi can be caused by X∗
i , for example be a second measurement

or proxy for X∗
i : Zi = χ (X∗

i , νi). For example, Zi can be a second measurement:

Zi = α1+α2X
∗
i +νi. Assumptions 2.1 and 2.2 will be satisfied if E [Ui|X∗

i , νi, εi] = 0.

Remark 3. If the skedastic function v (x) is known, there is no need in having the

instrumental variable Zi. In this case one can use ρ̃ (x) from equation (4) with q (x, z)

and ṽ (x) replaced by q (x) and v (x), and the conclusion of Theorem 1 will continue

to hold, i.e., ρ̃ (x) = ρ (x) +O (τ p).
2For an analysis of the role of the conditions such as ρ′ (x) ̸= 0 in the measurement error literature

see Evdokimov and Zeleneev (2018).
3For the result of Corollary 2 to hold, it is sufficient to require v(x) to be constant, i.e., to assume

that εi is homoskedastic, instead of requiring εi ⊥ (X∗
i , Zi, Yi).
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Remark 4. It is straightforward to include additional correctly measured co-

variates Wi into the model, and to consider regression function ρ (x,w) ≡
E [Yi|X∗

i = x,Wi = w]. The correctly measured covariates Wi play no special role,

and all of the analysis can be thought of as applying conditionally on Wi = w for

any given w, i.e., for the stratum with Wi = w. Thus, we omit Wi for simplicity of

exposition.

Nonparametric Estimation Theorem 1 suggests an analogue estimator of ρ̃ by

replacing functions that appear in equations (3)-(4) with their standard nonparamet-

ric estimators (e.g., kernel or sieve), with optimally chosen tuning parameters. Let

ρ̂ (x) denote this estimator. As an alternative to ρ̂ (x), we also consider ρ̂Naive (x),

a naive nonparametric estimator of ρ(x) ignoring the presence of the measurement

error.

To approximate the finite sample properties of the studied estimators when τ is

small, we consider a triangular asymptotic framework with drifting τ = τn converging

to zero as the sample size n→ ∞.

Lemma 3. Suppose the hypotheses of Theorem 1 hold and Zi is discrete. Also,

suppose τn = o(1), then

ρ̂ (x)− ρ (x) = Op

(
n− m−1

2m+1 + τ pn

)
,

ρ̂Naive (x)− ρ (x) = Op

(
n− m

2m+1 + τ 2n

)
.

Lemma 3 establishes the rates of convergence for the proposed and naive estima-

tors. For each estimator, the rate of convergence is determined by two components:

the standard nonparametric learning rate and the EIV (errors-in-variables) bias due

to the presence of the measurement error.

The nonparametric learning rate for ρ̂(x) is slower than for the naive estimator be-

cause it involves nonparametric estimation of derivatives such as q′(x) and sX|Z(x|z).
However, as Theorem 1 suggests, the EIV bias of the proposed estimator ρ̂(x) is of or-

der O(τ pn), whereas the naive estimator has a much larger bias of order O(τ 2n). Thus,

despite the slower nonparametric learning rate, ρ̂(x) has a faster rate of convergence

than ρ̂Naive (x) unless τn is very small, i.e., the measurement error is negligible.
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To illustrate this result, suppose the conditions of Theorem 1(ii) hold, m = p = 4,

and τn = O
(
n− 1

12

)
. Then ρ̂ (x) − ρ (x) = Op

(
n− 1

3

)
, but the naive estimator has a

much slower rate of convergence: ρ̂Naive (x) − ρ (x) = Op

(
n− 1

6

)
, because of the EIV

bias.

3 General Non-Classical Measurement Error

In this section, we will use notation X ∗
i for the true mismeasured covariate and con-

sider the general measurement model

Xi = m (X ∗
i , ψi) , (8)

where m is an unknown function and ψi is a random vector independent from

(Yi,X ∗
i , Zi). Function m need not be monotone in any of the arguments. The mea-

surement error is non-classical: Xi −X ∗
i and X ∗

i are generally correlated.

As before, we want to identify and estimate the regression function

ρX ∗ (κ) ≡ E [Yi|X ∗
i = κ] . (9)

We will assume that the measurement is sufficiently informative about the true

X ∗
i . Define

µ (κ∗) ≡ E [Xi| X ∗
i = κ∗] .

Assumption MONOT-MEAS. µ (κ∗) is a strictly increasing function.

Example (NCME-LIN-RC, continued). For Xi = ψi1 + ψi2X ∗
i , we have µ (κ∗) =

cψ1 + cψ2κ∗, and Assumption MONOT-MEAS is satisfied if cψ2 > 0. Note that ψi2 is

allowed to take negative values, which makes m a decreasing function of X ∗
i for such

observations.

Note that since functions m and ρX ∗ are unrestricted, the model (8)-(9) cannot

be identified without some normalization or additional information. Specifically, for

any strictly increasing function λ, we can define an observationally equivalent model

with X̃ ∗
i ≡ λ (X ∗

i ), ρX̃ ∗ (κ̃∗) ≡ ρX ∗

(
λ−1 (κ̃∗)

)
and mX̃ ∗

i
(κ̃∗, ψ) ≡ m

(
λ−1 (κ̃∗) , ψ

)
.
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Let us define random variable

X∗
i ≡ µ (X ∗

i ) . (10)

Then,

E [Xi|X∗
i ] = E [Xi|µ (X ∗

i )] = E [Xi|X ∗
i ] = µ (X ∗

i ) = X∗
i ,

where the first equality follows by (10), the second equality follows from the strict

monotonicity of µ(·), the third equality is the definition of µ (·), and the last equality

follows from (10).

Thus, for the general measurement error model we can consider an observationally

equivalent model that defines X∗
i as in equation (10):

ρX∗ (x) ≡ E [Yi|X∗
i = x] ,

Xi = X∗
i + εi, E[εi|X∗

i ] = 0.

Since in this model Assumption WCME holds, we can apply the result of Theorem 1

to identify ρX∗ (x) and v (x) ≡ E [ε2i |X∗
i = x] (up to an error of order O(τ p)) using

ṽ(x) and ρ̃(x) defined in equations (3) and (4), respectively. Notice that ρX ∗ (κ) =
ρX∗ (µ (κ)). However, since X ∗

i is not observed, one cannot identify µ (κ) and ρX ∗(κ)
without some sadditional information.

Suppose for a moment that the marginal distribution FX ∗ of X ∗
i is known (for

example, from a separate dataset, e.g., administrative records). In this case, we can

identify ρX ∗(κ) up to an error of order O(τ p) using

ρ̃X ∗(κ, z) ≡ ρ̃X∗

(
Q̃X∗(FX ∗(κ)), z

)
, (11)

where

Q̃X∗ (s) ≡ QX (s) +
1

2
{sX (QX (s)) ṽ (QX (s)) +∇xṽ (QX (s))} . (12)

Here FX ∗(·) denotes the CDF of X ∗
i , and QX(·) denotes the quantile function (QF)

of Xi. Note that all functions on the right-hand side of equation (12) are identified

directly from the observed data.

First, we demonstrate that Q̃X∗(s) = QX∗(s) + O(τ p), where QX∗(·) denotes the
quantile function of X∗

i . Combining this with the result of Theorem 1 allows us to

establish the desired result formalized by the theorem below.
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Assumption 3.1.
∫ ∣∣∇ℓ

xfX∗(x)
∣∣ dx <∞ for ℓ ∈ {1, . . . , p}.

Theorem 4. Suppose that the hypotheses of Theorem 1 are satisfied for x =

QX∗ (FX ∗(κ)). Also, suppose Assumptions MONOT-MEAS and 3.1 hold. Then, as

τ → 0,

ρ̃X ∗(κ, z1) = ρX ∗(κ) +O(τ p).

Theorem 4 demonstrates that, if the marginal distribution of X ∗
i is given, it is

possible to identify ρ(κ) up to an error of order O(τ p) in the general NCME model

(8) building on the identification results for the WCME model.

Note that obtaining (an estimate of) the marginal distribution FX ∗ is a much

simpler task than obtaining a validation sample, i.e., the data on (Xi,X ∗
i ) jointly.

For example, suppose X ∗
i are individual wages, and Xi are self-reported wages in

a survey. The marginal distribution FX ∗ can be provided by the Social Security

Administration or similar tax authorities in other countries. Providing such marginal

distribution does not pose any privacy risks. In contrast, obtaining a validation

sample that links individual’s responses Xi to the individual’s social security records

X ∗
i is a difficult task that in particular faces major challenges concerning privacy.

If the distribution of X ∗
i is unknown we can still apply Theorem 4 at κ = QX ∗(q)

for any quantile q ∈ (0, 1) to identify E[Yi|X ∗
i = QX ∗(q)] = ρX ∗(QX ∗(q)), where

QX ∗(·) is the (unknown) quantile function of X ∗
i :

Corollary 5. Suppose that the hypotheses of Theorem 4 are satisfied for x = QX∗(q).

Then, as τ → 0,

ρ̃X∗

(
Q̃X∗(q), z1

)
= ρ̃X ∗(QX ∗(q), z1) = ρX ∗(QX ∗(q)) +O(τ p).

Corollary 5 demonstrates that even if FX ∗ is unknown, we can still identify

the conditional expectation of Y ∗
i given the q’th quantile of X ∗

i . Notice that in

some applications, the unobserved variable X ∗
i , for example an individual’s ability,

might not even have well-defined economic units. In such settings, identification of

E[Yi|X ∗
i = QX ∗(q)] is fully exhaustive.
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A Proofs

A.1 Proof of Theorem 1

Before proving Theorem 1, we state and prove 3 auxiliary lemmas. Then we prove

the main result.

A.1.1 Auxiliary lemmas

Lemma A.1. Suppose that the hypotheses of Theorem 1 are satisfied. Then, for any

x and z such that x ∈ SX∗(z) (so, fX∗|Z(x|z) > 0 and fX∗(x) > 0), we have:

(i)

q (x, z) = ρ (x) + v (x)

(
ρ′ (x) sX∗|Z (x|z) +

1

2
ρ′′ (x)

)
+ ρ′ (x) v′ (x) +O (τ p) ,

(A.1)

(ii)

∣∣sX|Z(x|z)− sX∗|Z(x|z)
∣∣+ |q′(x)− ρ′(x)| = O(τ 2). (A.2)

Proof of Lemma A.1, Part (i). For concreteness, we establish the result for the case

p = 4. The proof for the case p = 3 is analogous (but simpler).

We have

fX∗X|Z (r, x|z) = fε|X∗ (x− r|r) fX∗|Z (r|z) ,

fX∗|XZ (r|x, z) =
fX∗X|Z (r, x|z)
fX|Z (x|z)

=
fε|X∗ (x− r|r) fX∗|Z (r|z)

fX|Z (x|z)
,

fX|Z (x|z) =

∫
fε|X∗ (x− r|r) fX∗|Z (r|z) dr.

Also, notice that

q (x, z) ≡ E [Yi|Xi = x, Zi = z] = E [E [Yi|X∗
i , Xi, Zi] |Xi = x, Zi = z]

= E [ρ(X∗
i )|Xi = x, Zi = z] ,

where the last equality follows from Assumptions 2.1 and 2.2.
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We want to compute

E [ρ (X∗) |X = x, Z = z] =

∫
ρ (r) fX∗|XZ (r|x, z) dr

fX|Z (x|z)
=

∫
ρ (r) fε|X∗ (x− r|r) fX∗|Z (r|z) dr

fX|Z (x|z)
.

Notice that on the RHS, the denominator is a special case of the numerator with

ρ (r) = 1 for all r. Thus, it is sufficient to focus on the numerator.

Next, we consider
∫
η (r) fε|X∗ (x− r|r) dr, where η(·) is a bounded function with

p bounded derivatives. Recall that we have ε = τξ, so fε|X∗ (ε|r) = 1
τ
fξ|X∗

(
ε
τ
|r
)
.

Then, ∫
η (r) fε|X∗ (x− r|r) dr =

∫
η (x− τu) τfε|X∗ (τu|x− τu) du

=

∫
η (x− τu) fξ|X∗ (u|x− τu) du,

where we used the substitution r = x − τu. Using Assumption 2.4, we have (for all

u)

η (x− τu) fξ|X∗ (u|x− τu) =η(x)fξ|X∗(u|x) +
p−1∑
ℓ=1

(−τ)ℓ

ℓ!
uℓ∇ℓ

x{η(x)fξ|X∗(u|x)}

+
(−τ)p

p!
up∇p

x

{
η(x)fξ|X∗(u|x)

} ∣∣
x=x−τ̃(u)u

for some τ̃(u) ∈ (0, τ). By boundedness of η(·) (and its derivatives) and Assumption

2.5, all the terms on the RHS of the equation above are integrable, and consequently

we have∫
η (x− τu) fξ|X∗ (u|x− τu) du

=

∫
η (x) fξ|X∗ (u|x) du− τ

∫
u
{
η′ (x) fξ|X∗ (u|x) + η (x)∇xfξ|X∗ (u|x)

}
du

+
τ 2

2

∫
u2
{
η′′ (x) fξ|X∗ (u|x) + 2η′ (x)∇xfξ|X∗ (u|x) + η (x)∇2

xfξ|X∗ (u|x)
}
du+Rη(τ)

= η (x)− τ {η′ (x)E [ξ|X∗ = x] + η (x)∇xE [ξ|X∗ = x]}

+
τ 2

2

{
η′′ (x)E

[
ξ2|X∗ = x

]
+ 2η′ (x)∇xE

[
ξ2|X∗ = x

]
+ η (x)∇2

xE
[
ξ2|X∗ = x

]}
+Rη(τ)

= η (x) +
1

2
{η′′ (x) v (x) + 2η′ (x)∇xv (x) + η (x)∇2

xv (x)}+Rη(τ),
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where (for p = 4)

Rη(τ) = −τ
3

6

∫
u3∇3

x{η(x)fξ|X∗(u|x)}du+ τ 4

24

∫
u4∇4

x

{
η(x̃)fξ|X∗(u|x̃)

} ∣∣
x=x−τ̃(u)udu.

In the derivation above, the second equality uses
∫
uℓ∇k

xfξ|X∗(u|x)du =

∇k
x

∫
uℓfξ|X∗(u|x)du = ∇k

xE[ξ
k|X∗ = x] (differentiation under the integral sign is

possible due to Assumptions 2.4 and 2.5 for non-negative integers k, ℓ ⩽ p), and the

last equality is due to E[ξ|X∗ = x] = 0 (as a function of x) and uses the notation

v(x) = E[ε2|X∗ = x] = τ 2E[ξ2|X∗ = x].

Next, we establish Rη(τ) = O(τ p). Notice that∫
u3∇3

x{η(x)fξ|X∗(u|x)}du

=

∫
u3{η′′′(x)fξ|X∗(u|x) + 3η′′(x)∇xfξ|X∗(u|x) + 3η′(x)∇2

xfξ|X∗(u|x) + η(x)∇3
xfξ|X∗(u|x)}du

= η′′′(x)E
[
ξ3|X∗ = x

]
+ 3η′′(x)∇xE

[
ξ3|X∗ = x

]
+ 3η′(x)∇2

xE
[
ξ3|X∗ = x

]
+ η(x)∇3

xE
[
ξ3|X∗ = x

]
= 0,

where the last equality uses E[ξ3|X∗ = x] = 0 (as a function of x). Finally,∫
u4∇4

x

{
η(x̃)fξ|X∗(u|x̃)

} ∣∣
x̃=x−τ̃(u)udu

=

∫
u4
{
η′′′′(x− τ̃(u)u)fξ|X∗(u|x− τ̃(u)u) + 4η′′′(x− τ̃(u)u)∇xfξ|X∗(u|x− τ̃(u)u)

+6η′′(x− τ̃(u)u)∇2
xfξ|X∗(u|x− τ̃(u)u) + 4η′(x− τ̃(u)u)∇3

xfξ|X∗(u|x− τ̃(u)u)

+η(x− τ̃(u)u)∇4
xfξ|X∗(u|x− τ̃(u)u)

}
du.

Since η and its derivatives are uniformly bounded, for some C > 0, we have

|Rη(τ)| ⩽ Cτ 4
∫
u4 sup

x̃∈SX

{
fξ|X∗(u|x̃) +

4∑
ℓ=1

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣} du = O(τ 4),

where the last equality uses Assumption 2.5. Hence, we conclude∫
η (r) fε|X∗ (x− r|r) dr = η (x) +

1

2
{η′′ (x) v (x) + 2η′ (x)∇xv (x) + η (x)∇2

xv (x)}+O(τ p).
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Note that this result also implies∫
η (r) fε|X∗ (x− r|r) dr = η(x) +O(τ 2). (A.3)

Next, we apply the derived result to

q (x, z) =

∫
ρ (r) fX∗|Z (r|z) fε|X∗ (x− r|r) dr∫
fX∗|Z (r|z) fε|X∗ (x− r|r) dr

.

For the numerator, we use η (x) = ρ (x) fX∗|Z (x|z), η′ (x) = ρ (x)′ fX∗|Z (x|z) +
ρ (x) f ′

X∗|Z (x|z), and η′′ (x) = ρ′′ (x) fX∗|Z (x|z)+2ρ′ (x) f ′
X∗|Z (x|z)+ρ (x) f ′′

X∗|Z (x|z).
Thus,∫

ρ (r) fX∗|Z (r|z) fε|X∗ (x− r|r) dr

=ρ(x)

(
fX∗|Z(x|z) +

1

2
{f ′′

X∗|Z (x|z) v (x) + 2f ′
X∗|Z (x|z)∇xv (x) + fX∗|Z (x|z)∇2

xv (x)}
)

+
1

2

(
ρ′′ (x) fX∗|Z (x|z) + 2ρ′ (x) f ′

X∗|Z (x|z)
)
v(x) + ρ (x)′ fX∗|Z (x|z)∇xv (x) +O(τ p).

Similarly,

fX|Z(x|z) =
∫
fX∗|Z (r|z) fε|X∗ (x− r|r) dr

= fX∗|Z(x|z) +
1

2
{f ′′

X∗|Z (x|z) v (x) + 2f ′
X∗|Z (x|z)∇xv (x) + fX∗|Z (x|z)∇2

xv (x)}+O(τ p).

Hence, using ∇ℓ
xv(x) = O(τ 2) for l ∈ {0, 1, 2}, we conclude

q (x, z) = ρ (x) +

1
2

(
ρ′′ (x) fX∗|Z (x|z) + 2ρ′ (x) f ′

X∗|Z (x|z)
)
v (x) + ρ (x)′ fX∗|Z (x|z)∇xv (x)

fX∗|Z (x|z) +O(τ 2)
+O (τ p)

= ρ (x) +

(
1

2
ρ′′ (x) + ρ′ (x) sX∗|Z (x|z)

)
v(x) + ρ′ (x) v′(x) +O (τ p) .
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Proof of Lemma A.1, Part (ii). First, we consider

∇x

∫
η(r)fε|X∗(x− r|r)dr = ∇x

∫
η(x− τu)fξ|X∗(u|x− τu)du

=

∫
∇x{η(x− τu)fξ|X∗(u|x− τu)}du,

where the second equality follows from Assumptions 2.4 and 2.5. Analogously to the

expansion of η(x− τu)fξ|X∗(u|x− τu) considered in the proof of Part (i), we have

∇x{η(x− τu)fξ|X∗(u|x− τu)} =η′(x)fξ|X∗(u|x) + η(x)∇xfξ|X∗(u|x)

− τu∇2
x{η(x)fξ|X∗(u|x)}

+
τ 2

2
u2∇3

x{η(x− τ̃(u)u)fξ|X∗(u|x− τ̃(u)u)},

for some τ̃(u) ∈ (0, τ). Hence,

∇x

∫
η(r)fε|X∗(x− r|r)dr =

∫ (
η′(x)fξ|X∗(u|x) + η(x)∇xfξ|X∗(u|x)

)
du+O(τ 2)

= η′(x) +O(τ 2).

Plugging ρ(x)fX∗(x), fX∗(x), and fX∗|Z(x|z) as η(x), we obtain

∇x

∫
ρ(r)fX∗(r)fε|X∗(x− r|r)dr = ∇x{ρ(x)fX∗(x)}+O(τ 2),

f ′
X(x) =∇x

∫
fX∗(r)fε|X∗(x− r|r)dr = f ′

X∗(x) +O(τ 2),

f ′
X|Z(x, z) =∇x

∫
fX∗|Z(r|z)fε|X∗(x− r|r)dr = f ′

X∗|Z(x|z) +O(τ 2).

Similarly, using equation (A.3) derived in the proof of Part (i),∫
ρ(r)fX∗(r)fε|X∗(x− r|r)dr = ρ(x)fX∗(x) +O(τ 2),

fX(x) =

∫
fX∗(r)fε|X∗(x− r|r)dr = fX∗(x) +O(τ 2),

fX|Z(x, z) =

∫
fX∗|Z(r|z)fε|X∗(x− r|r)dr = fX∗|Z(x|z) +O(τ 2).
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Using the results above, we establish

sX|Z(x|z)− sX∗|Z(x|z) =
f ′
X|Z(x|z)fX∗|Z(x|z)− f ′

X|Z(x|z)fX∗|Z(x|z)
fX|Z(x|z)fX∗|Z(x|z)

=
O(τ 2)

fX∗|Z(x|z)2 +O(τ 2)
= O(τ 2), (A.4)

Similarly,

q′(x) = ∇x

{∫
ρ(r)fX∗(r)fε|X∗(x− r|r)dr∫
fX∗(r)fε|X∗(x− r|r)dr

}
=

(ρ′(x)fX∗(x) + ρ(x)f ′
X∗(x) +O(τ 2)) (fX∗(x) +O(τ 2))− (f ′

X∗(x) +O(τ 2)) (ρ(x)fX∗(x) +O(τ 2))

(fX∗(x) +O(τ 2))2

= ρ′(x) +O(τ 2). (A.5)

which completes the proof.

Before proving additional auxiliary results we introduce an additional notation.

Definition. Consider a function g : X×R+ → R such that ∇xg(x, τ) exists (for every

τ ∈ R+). We say that g(x, τ) = Ox(τ
p) if g(x, τ) = O(τ p) and ∇xg(x, τ) = O(τ p) as

τ ↓ 0.

Lemma A.2. Suppose that the hypotheses of Theorem 1 are satisfied. Then, we have

fX|Z(x, z) = fX∗|Z(x|z) + Ox(τ
2), sX|Z(x|z) = sX∗|Z(x|z) + Ox(τ

p−2), and q′(x) =

ρ′(x) +Ox(τ
p−2).

Proof of Lemma A.2. For concreteness, we provide the proof for p = 4. The proof

for p = 3 is analogous (but simpler).

First, consider
∫
η(r)fε|X∗(x−r|r)dr =

∫
η(x−τu)fξ|X∗(u|x−τu)du, where η(·) is

a bounded function with p bounded derivatives. Considering an expansion analogous

to the one provided in the proof of Lemma A.1, Part (i), we obtain

η(x− τu)fξ|X∗(u|x− τu) =η(x)fξ|X∗(u|x)− τu∇x{η(x)fξ|X∗(u|x)}

+

∫ τ

0

u2∇2
x{η(x− tu)fξ|X∗(u|x− tu)}(τ − t)dt,
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where the remainder is given in the integral form. Then,∫
η(r)fε|X∗(x− r|r)dr =

∫
η(x− τu)fξ|X∗(u|x− τu)du

= η(x) +Rη(x; τ),

where

Rη(x; τ) =

∫ (∫ τ

0

u2∇2
x{η(x− tu)fε|X∗(u|x− tu)}(τ − t)dt

)
du.

Since η and its derivatives are bounded, for some C > 0, we have∣∣∣∣∫ τ

0

u2∇2
x{η(x− tu)fε|X∗(u|x− tu)}(τ − t)dt

∣∣∣∣ ⩽ τ 2

2
|u|2 sup

x̃∈SX

2∑
ℓ=0

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣ .
Combining this result with Assumption 2.5, we obtain Rη(x; τ) = O(τ 2). Similarly,

we conclude

∇xRη(x; τ) =

∫ (∫ τ

0

u2∇3
x{η(x− tu)fε|X∗(u|x− tu)}(τ − t)dt

)
du = O(τ 2).

Hence, we conclude ∫
η(r)fε|X∗(x− r|r)dr = η(x) +Ox(τ

2). (A.6)

Next, consider ∇x

∫
η(r)fε|X∗(x−r|r)dr = ∇x

∫
η(x−τu)fξ|X∗(u|x−τu)du, where

η(·) is a bounded function with p bounded derivatives. Considering an expansion

analogous to the one derived in the proof of Lemma A.1, Part (ii), we obtain

∇x

∫
η(r)fε|X∗(x− r|r)dr = ∇x

∫
η(x− τu)fξ|X∗(u|x− τu)du

= η′(x) + rη(x; τ),

where

rη(x, τ) =

∫ (∫ τ

0

u2∇3
x{η(x− tu)fξ|X∗(u|x− tu)}(τ − t)dt

)
du = ∇xRη(x; τ) = O(τ 2).
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Similarly,

∇xrη(x, τ) =

∫ (∫ τ

0

u2∇4
x{η(x− tu)fξ|X∗(u|x− tu)}(τ − t)dt

)
du = O(τ 2),

which demonstrates

∇x

∫
η(r)fε|X∗(x− r|r)dr = η′(x) +Ox(τ

2). (A.7)

Applying (A.6) and (A.7) with ρ(x)fX∗(x), fX∗(x), and fX∗|Z(x|z) as η(x) we

obtain ∫
ρ(r)fX∗(r)fε|X∗(x− r|r)dr = ρ(x)fX∗(x) +Ox(τ

2),

fX(x) =

∫
fX∗(r)fε|X∗(x− r|r)dr = fX∗(x) +Ox(τ

2),

fX|Z(x, z) =

∫
fX∗|Z(r|z)fε|X∗(x− r|r)dr = fX∗|Z(x|z) +Ox(τ

2),

and

∇x

∫
ρ(r)fX∗(r)fε|X∗(x− r|r)dr = ∇x{ρ(x)fX∗(x)}+Ox(τ

2),

f ′
X(x) =∇x

∫
fX∗(r)fε|X∗(x− r|r)dr = f ′

X∗(x) +Ox(τ
2),

f ′
X|Z(x, z) =∇x

∫
fX∗|Z(r|z)fε|X∗(x− r|r)dr = f ′

X∗|Z(x|z) +Ox(τ
2).

Combining the results above with derivations as in equations (A.4) and (A.5)

completes the proof.

Lemma A.3. Suppose that the hypotheses of Theorem 1 are satisfied. Then,

q (x, z1)− q (x, z2) = ρ′ (x) v (x)
(
s′X∗|Z (x|z1)− s′X∗|Z (x|z2)

)
+Ox (τ

p) .

Proof of Lemma A.3. For concreteness, we provide the proof for p = 4. The proof

for p = 3 is analogous (but simpler).

1. Note that by bringing the difference of ratios to the common denominator we can

write

q (x, z1)− q (x, z2) =
N (x, z1, z2, τ)

D (x, z1, z2, τ)
,
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where D (x, z1, z2, τ) = fX|Z (x|z1) fX|Z (x|z2). The numerator is

N (x, z1, z2, τ)

≡
∫
ρ (r) fX∗|Z (r|z1) fε|X∗ (x− r|r) dr ×

∫
fX∗|Z (r|z2) fε|X∗ (x− r|r) dr

−
∫
ρ (r) fX∗|Z (r|z2) fε|X∗ (x− r|r) dr ×

∫
fX∗|Z (r|z1) fε|X∗ (x− r|r) dr

=

∫∫ ∫
{ρ (x− τu1)− ρ (x− τu2)} fX∗|Z (x− τu1|z1) fX∗|Z (x− τu2|z2)

×fξ|X∗ (u1|x− τu1) fξ|X∗ (u2|x− τu2) du1du2

=

∫∫
{ρ (x− τu1)− ρ (x− τu2)} fξ,X∗|Z (u1, x− τu1|z1) fξ,X∗|Z (u2, x− τu2|z2) du1du2.

Note that for any q1, q2, Q1, Q2 we have

q1q2 = (q1 −Q1)Q2 +Q1 (q2 −Q2) + (q1 −Q1) (q2 −Q2) +Q1Q2,

and taking qj ≡ fξ,X∗|Z (uj, x− τuj|zj), Qj = fξ,X∗|Z (uj, x|zj) − f ′
ξ,X∗|Z (uj, x|zj) τuj

for j ∈ [2] we have

fξ,X∗|Z (u1, x− τu1|z1) fξX∗|Z (u2, x− τu2|z2)

= Tff,1 + Tff,2 + Tff,3 + Tff,4

Tff,1 ≡
(
fξ,X∗|Z (u1, x− τu1|z1) + f ′

ξ,X∗|Z (u1, x|z1) τu1 − fξ,X∗|Z (u1, x|z1)
)

×
(
−f ′

ξ,X∗|Z (u2, x|z2) τu2 + fξ,X∗|Z (u2, x|z2)
)

Tff,2 ≡
(
fξ,X∗|Z (u2, x− τu2|z2) + f ′

ξ,X∗|Z (u2, x|z2) τu2 − fξ,X∗|Z (u2, x|z2)
)

×
(
−f ′

ξ,X∗|Z (u1, x|z1) τu1 + fξ,X∗|Z (u1, x|z1)
)

Tff,3 ≡
(
fξ,X∗|Z (u1, x− τu1|z1) + f ′

ξ,X∗|Z (u1, x|z1) τu1 − fξ,X∗|Z (u1, x|z1)
)

×
(
fξX∗|Z (u2, x− τu2|z2) + f ′

ξ,X∗|Z (u2, x|z2) τu2 − fξ,X∗|Z (u2, x|z2)
)

Tff,4 ≡
(
−f ′

ξ,X∗|Z (u1, x|z1) τu1 + fξ,X∗|Z (u1, x|z1)
) (

−f ′
ξ,X∗|Z (u2, x|z2) τu2 + fξ,X∗|Z (u2, x|z2)

)
and let

Iff,j (x) ≡
∫∫

{ρ (x− τu1)− ρ (x− τu2)}Tff,j (. . .) du1du2, j ∈ [4] .
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2. Note that

fξ,X∗|Z (uj, x− τuj|zj) + f ′
ξ,X∗|Z (uj, x|zj) τuj − fξ,X∗|Z (uj, x|zj)

=

∫ τ

0

f ′′
ξ,X∗|Z (uj, x− tuj|zj)u2j (τ − t) dt (A.8a)

=
τ 2

2
f ′′
ξ,X∗|Z (uj, x|zj)u2j −

∫ τ

0

1

2
f ′′′
ξ,X∗|Z (uj, x− tuj|zj)u3j (τ − t)2 dt (A.8b)

and

ρ (x− τu1)− ρ (x− τu2)

=
2∑
j=1

(−1)j
∫ τ

0

ρ′(x− tuj)ujdt (A.9a)

= τρ′ (x) (u2 − u1) +
2∑
j=1

(−1)j−1

∫ τ

0

ρ′′ (x− tuj)u
2
j (τ − t) dt (A.9b)

= τρ′ (x) (u2 − u1) +
τ 2

2
ρ′′ (x)

(
u21 − u22

)
+

2∑
j=1

(−1)j
∫ τ

0

1

2
ρ′′′ (x− tuj)u

3
j (τ − t)2 dt. (A.9c)

We will use the notation

M|ζ1ζ2z1z2 [a (x, U1, U2)] ≡ E|ζ1ζ2z1z2 [a (x, U1, U2)] fX∗|Z (ζ1|z1) fX∗|Z (ζ2|z2) ,

E|ζ1ζ2z1z2 [a (x, U1, U2)] ≡
∫∫

a (x, u1, u2) fξ|X∗,Z (u1|ζ1, z1) fξ|X∗,Z (u2|ζ2, z2) du1du2,

i.e., E|ζ1ζ2z1z2 [·] is the expectation w.r.t. U1 and U2, where U1 and U2 are independent

and Uj ∼ fξ|X∗,Z

(
·|ζj, zj

)
= fξ|X∗(·|ζj) for j ∈ [2].

Let

∆ (x, q, s) ≡ {ρ (x− τu1)− ρ (x− τu2)} × ∇q
xfξ,X∗|Z (u1, x|z1)uq1 ×∇s

xfξ,X∗|Z (u2, x|z2)us2,

I∆(x,q,s) ≡
∫∫

∆(x, q, s) du1du2 = ∇q
ζ1
∇s
ζ2
M|ζ1ζ2z1z2 [(ρ (x− τU1)− ρ (x− τU2))U

q
1U

s
2 ]
∣∣∣
ζ1=ζ2=x

.
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Also, let

h (x, a, b, q, s) ≡ ua1u
b
2 ×∇q

xfξ,X∗|Z (u1, x|z1)uq1 ×∇s
xfξ,X∗|Z (u2, x|z2)us2

= ua+q1 ub+s2 ×∇q
xfξ,X∗|Z (u1, x|z1)∇s

xfξ,X∗|Z (u2, x|z2)

and

Ih(x,a,b,q,s) ≡
∫∫

h (x, a, b, q, s) du1du2 = ∇q
ζ1
∇s
ζ2
M|ζ1ζ2z1z2

[
Ua+q
1 U b+s

2

]∣∣∣
ζ1=ζ2=x

.

(A.10)

From equation (A.9c) we have

∆ (x, q, s)

=

{
τρ′ (x) (u2 − u1) +

τ 2

2
ρ′′ (x)

(
u21 − u22

)
+

2∑
j=1

(−1)j
∫ τ

0

1

2!
ρ′′′ (x− tuj)u

3
j (τ − t)2 dt

}
×h (x, 0, 0, q, s)

= τρ′ (x) {h (x, 0, 1, q, s)− h (x, 1, 0, q, s)}+ τ 2

2
ρ′′ (x) {h (x, 2, 0, q, s)− h (x, 0, 2, q, s)}

+
2∑
j=1

(−1)j
∫ τ

0

1

2
ρ′′′ (x− tuj)u

3
j (τ − t)2 dt× h (x, 0, 0, q, s) .

Thus, for q, s ∈ {0, 1}, we have

I∆(x,q,s) = τρ′ (x)
{
Ih(x,0,1,q,s) − Ih(x,1,0,q,s)

}
+
τ 2

2
ρ′′ (x)

{
Ih(x,2,0,q,s) − Ih(x,0,2,q,s)

}
+Ox

(
τ 3
)
. (A.11)

Notice that if q = 2 or s = 2, we use equation (A.9b) instead to obtain

∆ (x, q, s)

=

{
τρ′ (x) (u2 − u1) +

2∑
j=1

(−1)j−1

∫ τ

0

ρ′′ (x− tuj)u
2
j (τ − t) dt

}
h (x, 0, 0, q, s)

= τρ′ (x) {h (x, 0, 1, q, s)− h (x, 1, 0, q, s)}

+
2∑
j=1

(−1)j−1

∫ τ

0

ρ′′ (x− tuj)u
2
j (τ − t) dt× h (x, 0, 0, q, s) .
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Thus, for both q, s ∈ {0, 1, 2}, we have

I∆(x,q,s) = τρ′ (x)
{
Ih(x,0,1,q,s) − Ih(x,1,0,q,s)

}
+Ox

(
τ 2
)
. (A.12)

3.1. Using equation (A.8a) we have

Tff,3 (x) =

∫ τ

0

f ′′
ξ,X∗|Z (u1, x− t1u1|z1)u21 (τ − t1) dt1×

∫ τ

0

f ′′
ξ,X∗|Z (u2, x− t2u2|z2)u22 (τ − t2) dt2.

First,

|Tff,3(x)| ⩽ u21 sup
x̃∈SX

∣∣f ′′
ξ,X∗|Z(u1, x̃|z1)

∣∣u22 sup
x̃∈SX

∣∣f ′′
ξ,X∗|Z(u2, x̃|z2)

∣∣ τ 4
4
.

Next,

f ′′
ξ,X∗|Z(u, x|z) = ∇2

x{fξ|X∗(u|x)fX∗|Z(x|z)}

= f ′′
ξ|X∗(u|x)fX∗|Z(x|z) + 2f ′

ξ|X∗(u|x)f ′
X∗|Z(x|z) + fξ|X∗(u|x)f ′′

X∗|Z(x|z).

Hence, using Assumption 2.5 and boundedness of ρ and fξ|X∗ and its derivatives, we

conclude

Iff,3(x) = O(τ 4).

Similarly,

∣∣T ′
ff,3(x)

∣∣ ⩽ 1∑
j=0

sup
x̃∈SX

∣∣∇3−j
x fξ,X∗|Z(u1, x̃|z1)

∣∣ sup
x̃∈SX

∣∣∇2+j
x fξ,X∗|Z(u2, x̃|z2)

∣∣u21u22 τ 44 ,
and

I ′ff,3(x) =

∫∫ 1∑
j=0

{
∇1−j
x ρ (x− τu1)−∇1−j

x ρ (x− τu2)
}
∇j
xTff,3 (x) du1du2 = O(τ 4),

where the second inequality follows from Assumption 2.5, and boundedness of ρ and

fX∗|Z (and their derivatives). Hence we conclude Iff,3(x) = Ox(τ
4).

26



3.2.

Tff,1 ≡
(
fξ,X∗|Z (u1, x− τu1|z1) + f ′

ξ,X∗|Z (u1, x|z1) τu1 − fξ,X∗|Z (u1, x|z1)
)

×
(
−f ′

ξ,X∗|Z (u2, x|z2) τu2 + fξ,X∗|Z (u2, x|z2)
)
.

Thus,

Iff,1(x) =

∫∫
{ρ (x− τu1)− ρ (x− τu2)}

×
(
τ 2

2
f ′′
ξ,X∗|Z (u1, x|z1)u21 −

∫ τ

0

1

2
f ′′′
ξ,X∗|Z (u1, x− tu1|z1)u31 (τ − t)2 dt

)
×
(
−f ′

ξ,X∗|Z (u2, x|z2) τu2 + fξ,X∗|Z (u2, x|z2)
)
du1du2

=
τ 2

2

(
−τI∆(x,2,1) + I∆(x,2,0)

)
+ Iff,1,2(x),

where the remainder is

Iff,1,2(x) = −
∫∫

{ρ (x− τu1)− ρ (x− τu2)}
(∫ τ

0

1

2
f ′′′
ξ,X∗|Z (u1, x− tu1|z1)u31 (τ − t)2 dt

)
×
(
−f ′

ξ,X∗|Z (u2, x|z2) τu2 + fξ,X∗|Z (u2, x|z2)
)
du1du2.

By an argument similar to the one provided in part 3.1 above,

Iff,1,2,1(x) =

∫∫
{ρ (x− τu1)− ρ (x− τu2)}

(∫ τ

0

1

2
f ′′′
ξ,X∗|Z (u1, x− tu1|z1)u31 (τ − t)2 dt

)
×f ′

ξ,X∗|Z (u2, x|z2) τu2du1du2
= Ox

(
τ 4
)
.

Next,

Iff,1,2,2(x) = −
∫∫

{ρ (x− τu1)− ρ (x− τu2)}
(∫ τ

0

1

2
f ′′′
ξ,X∗|Z (u1, x− tu1|z1)u31 (τ − t)2 dt

)
×fξ,X∗|Z (u2, x|z2) du1du2

= −
∫∫ ( 2∑

j=1

(−1)j
∫ τ

0

ρ′(x− tuj)ujdt

)(∫ τ

0

1

2
f ′′′
ξ,X∗|Z (u1, x− tu1|z1)u31 (τ − t)2 dt

)
×fξ,X∗|Z (u2, x|z2) du1du2

= Ox

(
τ 4
)
,
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where the second equality follows from equation (A.9a), and the last follows from an

argument similar to the one provided in part 3.1. Then, we conclude

Iff,1,2(x) = Iff,1,2,1(x) + Iff,1,2,2(x) = Ox(τ
4).

Next, note that Ih(x,0,1,2,0) = 0 and Ih(x,1,0,2,0) = 0 since M|ζ1ζ2z1z2 [U
2
1U2] = 0 and

M|ζ1ζ2z1z2 [U
3
1 ] = 0, respectively. Thus, using equation (A.12)

Iff,1(x) =
τ 2

2

(
−τI∆(x,2,1) + I∆(x,2,0)

)
+Ox

(
τ 4
)
= τ 3Ox (τ) +

τ 2

2
I∆(x,2,0) +Ox

(
τ 4
)

=
τ 2

2

(
τρ′ (x)

{
Ih(x,0,1,2,0) − Ih(x,1,0,2,0)

}
+Ox

(
τ 2
))

+Ox

(
τ 4
)

= Ox

(
τ 4
)
.

Similarly,

Iff,2 (x) = Ox

(
τ 4
)
.

3.3 The main term is

Iff,4 (x) ≡
∫∫

{ρ (x− τu1)− ρ (x− τu2)}
(
−f ′

ξ,X∗|Z (u1, x|z1) τu1 + fξ,X∗|Z (u1, x|z1)
)

×
(
−f ′

ξ,X∗|Z (u2, x|z2) τu2 + fξ,X∗|Z (u2, x|z2)
)
du1du2

= τ 2I∆(x,1,1) − τI∆(x,1,0) − τI∆(x,0,1) + I∆(x,0,0)

= −τ
(
I∆(x,1,0) + I∆(x,0,1)

)
,

where the last equality holds because I∆(x,0,0) = I∆(x,1,1) = 0 due to the symmetry.

Using equation (A.11) we have

I∆(x,1,0) = τρ′ (x)
{
Ih(x,0,1,1,0) − Ih(x,1,0,1,0)

}
+
τ 2

2
ρ′′ (x)

{
Ih(x,2,0,1,0) − Ih(x,0,2,1,0)

}
+Ox

(
τ 3
)
.
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Using equation (A.10),

Ih(x,0,1,1,0) = ∇ζ1M|ζ1ζ2z1z2 [U1U2]
∣∣
ζ1=ζ2=x

= 0,

Ih(x,1,0,1,0) = ∇ζ1M|ζ1ζ2z1z2
[
U2
1

]∣∣
ζ1=ζ2=x

= ∇ζ1

(
E[ξ2i |X∗

i = ζ1]fX∗|Z (ζ1|z1) fX∗|Z (ζ2|z2)
)∣∣
ζ1=ζ2=x

=
[
E[ξ2i |X∗

i = x]f ′
X∗|Z (x|z1) +∇xE[ξ

2
i |X∗

i = x]fX∗|Z (x|z1)
]
fX∗|Z (x|z2) ,

Ih(x,2,0,1,0) = ∇ζ1M|ζ1ζ2z1z2
[
U3
1

]∣∣
ζ1=ζ2=x

= ∇ζ10
∣∣
ζ1=ζ2=x

= 0,

Ih(x,0,2,1,0) = ∇ζ1M|ζ1ζ2z1z2
[
U1U

2
2

]∣∣
ζ1=ζ2=x

= 0,

and hence

I∆(x,1,0) = −τρ′ (x)
[
E[ξ2i |X∗

i = x]f ′
X∗|Z (x|z1) +∇xE[ξ

2
i |X∗

i = x]fX∗|Z (x|z1)
]
fX∗|Z (x|z2)+Ox

(
τ 3
)
.

Similarly,

I∆(x,0,1) = τρ′ (x)
[
E[ξ2i |X∗

i = x]f ′
X∗|Z (x|z2) +∇xE[ξ

2
i |X∗

i = x]fX∗|Z (x|z2)
]
fX∗|Z (x|z1)+Ox

(
τ 3
)
,

and hence

Iff,4 (x) = −τ
(
I∆(x,1,0) + I∆(x,0,1)

)
= ρ′ (x) v (x)

(
f ′
X∗|Z (x|z1) fX∗|Z (x|z2)− fX∗|Z (x|z1) f ′

X∗|Z (x|z2)
)
+Ox

(
τ 4
)
,

where we used v(x) = τ 2E[ξ2i |X∗
i = x].

4. Putting all Iff,j (x) together we have

N (x, z1, z2, τ)

= ρ′ (x) v (x)
(
f ′
X∗|Z (x|z1) fX∗|Z (x|z2)− fX∗|Z (x|z1) f ′

X∗|Z (x|z2)
)
+Ox

(
τ 4
)

= ρ′ (x) v (x)
(
sX∗|Z (x|z1)− sX∗|Z (x|z2)

)
fX∗|Z (x|z1) fX∗|Z (x|z2) +Ox

(
τ 4
)
.

Moreover, Lemma A.2 establishes fX|Z(x, zj) = fX∗|Z(x|zj)+Ox(τ
2) for j ∈ {1, 2}.

Hence, the denominator D (x, z1, z2, τ) = fX|Z (x|z1) fX|Z (x|z2) satisfies

D (x, z1, z2, τ) = fX∗|Z (x|z1) fX∗|Z (x|z2) +Ox(τ
2).
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Thus,

N (x, z1, z2, τ)

D (x, z1, z2, τ)

=
ρ′ (x) v (x) fX∗|Z (x|z1) fX∗|Z (x|z2)

(
sX∗|Z (x|z1)− sX∗|Z (x|z2)

)
+Ox (τ

4)

fX∗|Z (x|z1) fX∗|Z (x|z2) +Ox (τ 2)

= ρ′ (x) v (x)
(
sX∗|Z (x|z1)− sX∗|Z (x|z2)

)
+Ox

(
τ 4
)
,

which completes the proof.

A.1.2 Proof of the main result

Equipped with Lemmas A.1-A.3, we are ready to prove Theorem 1.

Proof of Theorem 1. Using equation (A.1) we have

q (x, z1)− q (x, z2) = v (x) ρ′ (x)
[
sX∗|Z (x|z1)− sX∗|Z (x|z2)

]
+O (τ p) . (A.13)

Combined with (A.2), the above implies that

q (x, z1)− q (x, z2) = v (x) q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

]
+O (τ p) .

Hence, for any x with ρ′ (x)
[
sX∗|Z (x|z1)− sX∗|Z (x|z2)

]
̸= 0 (or x such that∣∣q′ (x) [sX|Z (x|z1)− sX|Z (x|z2)

]∣∣ > C > 0),

ṽ (x) = v (x) +O (τ p) , where ṽ (x) ≡ q (x, z1)− q (x, z2)

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

] . (A.14)

Next by Lemma A.3, we have

q (x, z1)− q (x, z2) = τ 2ρ′ (x) v (x)
(
sX∗|Z (x|z1)− sX∗|Z (x|z2)

)
+Ox (τ

p) .

By Lemma A.2, we also have q′(x) = ρ′(x) +Ox(τ
p−2) and sX|Z (x|z) = sX∗|Z (x|z) +

Ox(τ
p−2). Hence,

q (x, z1)− q (x, z2) = q′ (x) v (x)
(
sX|Z (x|z1)− sX|Z (x|z2)

)
+Ox (τ

p) .
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This implies that

q′ (x, z1)− q′ (x, z2) = ∇x [q
′ (x) v (x) (sX|Z (x|z1)− sX|Z (x|z2))] +O (τ p) .

Hence, v′(x) satisfies

v′(x) =
q′ (x, z1)− q′ (x, z2)

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

] − v (x)
∇x

(
q′ (x)

[
sX|Z (x|z1)− sX|Z (x|z2)

])
q′ (x)

[
sX|Z (x|z1)− sX|Z (x|z2)

] +O(τ p)

=
q′ (x, z1)− q′ (x, z2)

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

] − ṽ (x)
∇x

(
q′ (x)

[
sX|Z (x|z1)− sX|Z (x|z2)

])
q′ (x)

[
sX|Z (x|z1)− sX|Z (x|z2)

]︸ ︷︷ ︸
=ṽ′(x)

+O(τ p),

where the second equality uses equation (A.14). Hence, we conclude

ṽ′ (x) = v′ (x) +O (τ p) . (A.15)

Next, notice that since q′(x) = ρ′(x) +Ox(τ
p−2) (Lemma A.2), we also have

|q′′(x)− ρ′′(x)| = O(τ p−2). (A.16)

Finally, recall that (A.1) implies

ρ(x) = q(x, z1)− v (x)
[
ρ′ (x) sX∗|Z (x|z) + 1

2
ρ′′ (x)

]
− v′ (x) ρ′ (x) +O(τ p),

= q(x, z1)− v (x)
[
q′ (x) sX|Z (x|z) + 1

2
q′′ (x)

]
− v′ (x) q′ (x) +O(τ p)

= q(x, z1)− ṽ (x)
[
q′ (x) sX|Z (x|z) + 1

2
q′′ (x)

]
− ṽ′ (x) q′ (x) +O(τ p)

= ρ̃(x, z1) +O(τ p),

where the second equality uses v(x) = O(τ 2), v′(x) = O(τ 2), and equations (A.2) and

(A.16), and the third equality uses (A.14) and (A.15).

A.2 Proofs of Lemma 3

Proof of Lemma 3. First, consider
∫
η(r)fε|X∗(x − r|r)dr =

∫
η(x − τu)fξ|X∗(u|x −

τu)du where η(·) is a bounded function with m ≥ p bounded derivatives with

respect to x. Then, notice that Assumptions 2.4 and 2.5 ensure that
∫
η(x −

τu)fξ|X∗(u|x − τu)du has m bounded derivatives with respect to x. Hence,
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fX|Z(x|z) =
∫
fX∗|Z(r|z)fε|X∗(x− r|r)dr, fX(x) =

∫
fX∗(r)fε|X∗(x− r|r)dr, q(x, z) =∫

ρ(r)fX∗|Z(r|z)fε|X∗(x − r|r)dr/fX|Z(x|z), and q(x) =
∫
ρ(r)fX∗(r)fε|X∗(x −

r|r)dr/fX(x) have 4 bounded derivatives with respect to x (for q(x, z) and q(x),

at least, in a neighborhood of x where fX∗|Z(x|z) and fX∗(z) are bounded away from

zero).

If the tuning parameters are chosen optimally, under the usual regularity condi-

tions, the rates of convergence of these estimators are q̂ (x, z)−q (x, z) = Op

(
n− m

2m+1

)
,

q̂ (x) − q (x) = Op

(
n− m

2m+1

)
, q̂′ (x, z) − q′ (x, z) = Op

(
n− m−1

2m+1

)
, q̂′ (x) − q′ (x) =

Op

(
n− m−1

2m+1

)
, q̂′′ (x)− q′′ (x) = Op

(
n− m−2

2m+1

)
, ŝX|Z (x|z)− sX|Z (x|z) = Op

(
n− m−1

2m+1

)
,

and ŝ′X|Z (x|z) − s′X|Z (x|z) = Op

(
n− m−2

2m+1

)
for x ∈ SX∗ (z) where ŝX|Z (x|z) ≡

f̂ ′
X|Z (x|z)

/
f̂X|Z (x|z) (see, e.g., Stone, 1980).

First, note that

v̂ (x) =
q̂ (x, z1)− q̂ (x, z2)

q̂′ (x)
[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

]
=

q (x, z1)− q (x, z2)

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

]︸ ︷︷ ︸
=ṽ(x)

+Op

(
n− m

2m+1 + τ 2nn
− m−1

2m+1

)
(A.17)

Here the second equality follows from â/b̂−a/b = (â− a) /b̂+a(1/b̂−1/b), q (x, z1)−
q (x, z2) = O (τ 2n) (implied by (A.13)), and the rates of convergence listed above.

Next,

v̂′(x) =
q̂′ (x, z1)− q̂′ (x, z2)

q̂′ (x)
[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

] − v̂ (x)
∇x

(
q̂′ (x)

[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

])
q̂′ (x)

[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

] .

Analogously to the derivation provided above, we inspect that

q̂′ (x, z1)− q̂′ (x, z2)

q̂′ (x)
[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

] = q′ (x, z1)− q′ (x, z2)

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

] +Op

(
n− m−1

2m+1

)
,

and

∇x

(
q̂′ (x)

[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

])
q̂′ (x)

[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

] =
∇x

(
q′ (x)

[
sX|Z (x|z1)− sX|Z (x|z2)

])
q′ (x)

[
sX|Z (x|z1)− sX|Z (x|z2)

] +Op

(
n− m−2

2m+1

)
.
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Combining the latter with (A.17), we obtain

v̂ (x)
∇x

(
q̂′ (x)

[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

])
q̂′ (x)

[
ŝX|Z (x|z1)− ŝX|Z (x|z2)

] =ṽ (x)
∇x

(
q′ (x)

[
sX|Z (x|z1)− sX|Z (x|z2)

])
q′ (x)

[
sX|Z (x|z1)− sX|Z (x|z2)

]
+Op

(
n− m

2m+1 + τ 2nn
− m−2

2m+1

)
,

where we also used ṽ(x) = O(τ 2n). Hence, we conclude

v̂′(x) = ṽ′(x) +Op

(
n− m−1

2m+1 + τ 2nn
− m−2

2m+1

)
. (A.18)

Finally,

ρ̂(x) = q̂(x, z1)− v̂ (x)
[
q̂′ (x) ŝX|Z (x|z1) + 1

2
q̂′′ (x)

]
− v̂′ (x) q̂′ (x)

= ρ̃(x, z1) +Op

(
n− m−1

2m+1 + τ 2nn
− m−2

2m+1

)
= ρ(x) +Op

(
n− m−1

2m+1 + τ 2nn
− m−2

2m+1 + τ pn

)
,

= ρ(x) +Op

(
n− m−1

2m+1 + τ pn

)
.

Here, the second equality uses the definition of ρ̃(x, z1), and equations (A.17) and

(A.18). The third equality follow from Theorem 1. For the last equality, note that

τ 2nn
− m−2

2m+1 ≲ n− m−1
2m+1 for τn ≲ n− 1

2(2m+1) and τ 2nn
− m−2

2m+1 ≲ τ pn for τn ≳ n− m−2
(p−2)(2m+1) , and

n− 1
2(2m+1) > n− m−2

(p−2)(2m+1) since 2m− p− 2 > 0.

For the naive estimator, we have

ρ̂Naive (x) = q̂ (x) = ρ (x) +Op

(
n− m

2m+1 + τ 2n

)
,

where the second equality uses q̂(x) = q(x) + O
(
n− m

2m+1

)
and q(x) = ρ(x) + O(τ 2n)

(e.g., (A.1)).

A.3 Proof of Theorem 4

Before proving Theorem 4, in Section A.3.1, we first demonstrate that the CDF FX∗(·)
and the quantile function QX∗(·) of X∗

i are identified up to an error of order O(τ p).

The proof of Theorem 4 is then provided in Section A.3.2.
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A.3.1 Identification of FX∗(·) and QX∗(·)

Lemma A.4. Suppose that Assumptions 2.3-2.5 and 3.1 are satisfied. Suppose either

(i) p = 3, or (ii) E
[
ξ3i |X∗

i

]
= 0 and p = 4. Then, for any x ∈ supp (X∗

i ) and for any

s ∈ (0, 1) such that fX∗(QX∗(s)) > 0, as τ → 0,

FX∗ (x) = FX (x)− 1

2
∇x (fX(x)v (x)) +O (τ p) ,

QX∗ (s) = QX (s) +
1

2
{sX (QX (s)) v (QX (s)) +∇xv (QX (s))}+O (τ p) .

Remark A.1. Assumptions 2.3 and 2.4 are stronger than needed for the result of

Lemma A.4 to hold. For Assumption 2.3, the requirement ξ ⊥ Zi|X∗
i can be dropped.

Assumption 2.4 can be replaced by requiring the densities fX∗(x) and fξ|X∗(ξ|x) to be

bounded functions that have at least p ⩾ 3 bounded derivatives (all with respect to x).

Lemma A.4 extends the results obtained earlier for CME (e.g., Chesher, 1991) to

the WCME model. It also provides a way of recovering FX∗(x) and QX∗(s) up to an

error of order O(τ p) using

F̃X∗ (x) ≡ FX (x)− 1

2
∇x (fX(x)ṽ (x)) ,

Q̃X∗ (s) ≡ QX (s) +
1

2
{sX (QX (s)) ṽ (QX (s)) +∇xṽ (QX (s))} ,

where ṽ(·) is given by (3).

Proof of Lemma A.4. In the proof of Lemma A.1, we demonstrated that, for a

bounded function η(·) with p bounded derivatives, we have∫
η (r) fε|X∗ (x− r|r) dr =

∫
η (x− τu) fξ|X∗ (u|x− τu) du

= η (x) +
1

2
∇2
x {η (x) v (x)}+Rη(x; τ).

Here the remainder Rη(x; τ) can be represented in the integral form as

Rη(x; τ) =

∫ (∫ τ

0

(−1)p

(p− 1)!
up∇p

x{η(x− tu)fξ|X∗(u|x− tu)}(τ − t)p−1dt

)
du.
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Then, for fX (x) =
∫
fX∗ (r) fε|X∗ (x− r|r) dr with η(·) = fX∗(·), we have

fX (x) = fX∗ (x) +
1

2
∇2
x (fX∗ (x) v (x)) +RfX∗ (x; τ).

Then,

FX(x̄) =

∫ x̄

−∞
fX(x)dx

=

∫ x̄

−∞

(
fX∗ (x) +

1

2
∇2
x (fX∗ (x) v (x)) +RfX∗ (x; τ)

)
dx

= FX∗(x) +
1

2
∇x (fX∗ (x̄) v (x̄)) +

∫ x̄

−∞
RfX∗ (x; τ)dx.

Here we used ∫ x̄

−∞
∇2
x (fX∗ (x) v (x)) = ∇x (fX∗ (x̄) v (x̄))

since limx→−∞ ∇x (fX∗ (x) v (x)) = 0 because v(x) = τ 2E[ξ2|X∗
i = x], and E[ξ2|X∗

i =

x] and ∇xE[ξ
2|X∗

i = x] are bounded under Assumption 2.5. The remainder takes the

form ∫ x̄

−∞
RfX∗ (x; τ)dx =

∫ x̄

−∞

{∫ (∫ τ

0

φ(x, u, t)dt

)
du

}
dx,

where

φ(x, u, t) ≡ (−1)p

(p− 1)!
up∇p

x{fX∗(x− tu)fξ|X∗(u|x− tu)}(τ − t)p−1.

Next, note that, using Assumption 3.1, for all u and t ∈ [0, τ ]

∫
|φ(x, u, t)| dx ≤ C |u|p (τ − t)p−1 sup

x̃∈SX

p∑
ℓ=0

∣∣∇p
xfξ|X∗(u|x̃)

∣∣ ,
where C > 0 is a generic constant. Next, using Assumption 2.5,

∫ (∫ τ

0

|u|p (τ − t)p−1 sup
x̃∈SX

p∑
ℓ=0

∣∣∇p
xfξ|X∗(u|x̃)

∣∣ dt) du ≤ Cτ p.
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Hence, using Fubini–Tonelli’s theorem, we conclude that∫∫∫
(−∞,x̄]×R×[0,τ ]

|ϕ(x, u, t)| dxdudt ≤ Cτ p,

and the order of integration can be interchanged. Specifically, it also implies that∫ x̄

−∞
RfX∗ (x; τ)dx ≤ Cτ p.

Hence, we conclude

FX(x̄) = FX∗(x̄) +
1

2
∇x (fX∗ (x̄) v (x̄)) +O(τ p),

so

FX∗(x̄) = FX(x̄)−
1

2
∇x (fX∗ (x̄) v (x̄)) +O(τ p)

= FX(x̄)−
1

2
(f ′
X∗ (x̄) v (x̄) + fX∗ (x̄) v′ (x̄)) +O(τ p)

= FX(x̄)−
1

2
(f ′
X (x̄) v (x̄) + fX (x̄) v′ (x̄)) +O(τ p)

= FX(x̄)−
1

2
∇x (fX (x̄) v (x̄)) +O(τ p), (A.19)

where we used fX(x̄) = fX∗(x̄) +O(τ 2) and f ′
X(x̄) = f ′

X∗(x̄) +O(τ 2) (established the

the proof of Lemma A.2). This completes the proof of the first part.

Next, note that

QX∗(s)−QX(s) = QX∗(s)−QX∗ (FX∗ (QX(s)))

= Q′
X∗(s) (FX (QX(s))− FX∗ (QX(s))) +

1

2
Q′′
X∗(s̃) (FX (QX(s))− FX∗ (QX(s)))

2 ,

where Q′
X∗(s) = 1

f ′
X∗ (QX∗ (s))

and Q′′
X∗(s) = − f ′′

X∗ (QX∗ (s))

(f ′X∗ (QX∗ (s)))
3 , and s̃ lies between s =

FX(QX(s)) and FX∗ (QX(s)). Recall that (A.19) implies

FX(Qx(s))− FX∗(QX(s)) =
1

2
∇x {fX(x)v(x)}

∣∣
x=Qx(s)

+O(τ p)

= O(τ 2).
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Hence, we conclude QX∗(s)−QX(s) = O(τ 2). This implies

1

f ′
X∗(QX∗(s))

=
1

f ′
X∗(QX(s))

+O(τ 2)

=
1

f ′
X(QX(s))

+O(τ 2).

Thus, we obtain

QX∗(s)−QX(s) =
1

f ′
X (QX(s))

1

2
∇x {fX(x)v(x)}

∣∣
x=Qx(s)

+O(τ p)

=
1

2
{sX (QX (s)) v (QX (s)) +∇xv (QX (s))}+O(τ p).

A.3.2 Proof of Theorem 4

Proof of Theorem 4. First, in the proof of Theorem 1, we show that

ṽ (QX∗ (FX ∗(κ))) = v (QX∗ (FX ∗(κ))) +O(τ p),

ṽ′ (QX∗ (FX ∗(κ))) = v′ (QX∗ (FX ∗(κ))) +O(τ p).

Combining the above with the result of Lemma A.4, we establish

Q̃X∗(FX ∗(κ))−QX∗ (FX ∗(κ)) = O(τ p). (A.20)

Since ρ′(·) is bounded, we also have∣∣∣ρ(Q̃X∗(FX ∗(κ)))− ρ (QX∗ (FX ∗(κ)))
∣∣∣ = O(τ p). (A.21)

Second, there exists δ > 0 such that fX∗|Z(x|z1) and fX∗(x|z2) are bounded away

from zero for x ∈ Bδ (QX∗ (FX ∗(κ))). Since all the remainders such as O(·) and Ox(·)
are explicitly bounded in the proof of Theorem 1 and those bounds are uniform in

x ∈ Bδ(QX∗(FX ∗(κ))), we have

sup
x∈Bδ(QX∗ (FX∗ (κ)))

|ρ̃X∗(x, z1)− ρX∗(x)| = O(τ p). (A.22)
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Finally,

|ρ̃X ∗(κ, z1)− ρX ∗(κ)| =
∣∣∣ρ̃X∗(Q̃X∗ (FX ∗(κ)) , z1)− ρX∗ (QX∗ (FX ∗(κ)))

∣∣∣
≤ sup

x∈Bδ(QX∗ (FX∗ (κ)))
|ρ̃X∗(x, z1)− ρX∗(x)|

+
∣∣∣ρ(Q̃X∗(FX ∗(κ)))− ρ (QX∗ (FX ∗(κ)))

∣∣∣ ,
where the inequality holds for sufficiently small values of τ due to (A.20). Combining

(A.21) and (A.22) together completes the proof.

B Verification of Assumption 2.5

Lemma B.1. Suppose ξ = σ(X∗)ζ, where ζ is independent of X∗. Also, suppose that

the following conditions are satisfied:

(i) σ(·) and fζ(·) are bounded (non-negative) functions with m bounded derivatives,

and σ(·) is bounded away from 0;

(ii) for sufficiently large values of t, tm+k+1|f (k)
ζ (t)| and tm+k+1|f (k)

ζ (−t)|, for k ∈
{0, . . . ,m}, are decreasing functions;

(iii)
∫
|ζ|m+k

∣∣∣f (k)
ζ (ζ)

∣∣∣ dζ < C for k ∈ {0, . . . ,m}.

Then, Assumption 2.5 is satisfied.

Proof of Lemma B.1. First, notice that fξ|X∗(u|x) = 1
σ(x)

fζ

(
u

σ(x)

)
.

We want to show that∫
|u|m sup

x̃∈SX

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣ du < C

for ℓ ∈ {0, . . . ,m}, where C > 0 is a universal constant. Since the derivatives of

fξ|X∗(u|x) are uniformly bounded (by condition (i)), we just focus on showing∫ ∞

u

|u|m sup
x̃∈SX

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣ du < C

for some (generic) u > 0 (
∫ −u
−∞ |u|m supx̃∈SX

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣ du can be bounded using

a similar argument).
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Starting with ℓ = 0, we verify∫ ∞

u

|u|m sup
x̃∈SX

fξ|X∗(u|x̃)du < C.

Notice that

sup
x∈SX

fξ|X∗(u|x) = sup
s∈Σ

{
1

s
fζ

(u
s

)}
,

where Σ = {σ(x) : x ∈ SX} is bounded. Let s∗ = supx∈SX
σ(x). Condition (ii)

implies that there exists u > 0 such that for all |u| > u we have

sup
s∈Σ

{
1

s
fζ

(u
s

)}
=

1

s∗
fζ

( u
s∗

)
.

Then, ∫ ∞

u

|u|m sup
x̃∈SX

fξ|X∗(u|x̃)du =

∫ ∞

u

|u|m 1

s∗
fζ

( u
s∗

)
du < C,

where the last inequality is due to condition (iii).

Next, we verify that ∫ ∞

u

|u|m sup
x̃∈SX

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣ du < C

for ℓ ∈ {1, . . . ,m}. Since the derivatives of σ(·) are bounded, we have

sup
x̃∈SX

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣ ⩽ C

ℓ∑
k=1

sup
s∈Σ

∣∣∣∣∇k
s

{
1

s
fζ

(u
s

)}∣∣∣∣ ,
so it is sufficient to verify∫ ∞

u

|u|m sup
s∈Σ

∣∣∣∣∇ℓ
s

{
1

s
fζ

(u
s

)}∣∣∣∣ du < C,
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for ℓ ∈ {1, . . . ,m}. Next,

∇ℓ
s

{
1

s
fζ

(u
s

)}
=

ℓ∑
k=0

aℓk
uk

sℓ+k+1
f (k)

(u
s

)
for some constants aℓk. Then, condition (ii) implies that there exists u > 0 such that

for all |u| > u we have

sup
s∈Σ

∣∣∣∣∇ℓ
s

{
1

s
fζ

(u
s

)}∣∣∣∣ = ∣∣∣∣∇ℓ
s

{
1

s
fζ

(u
s

)}∣∣∣∣
s=s∗

=

∣∣∣∣∣
ℓ∑

k=0

aℓk
uk

(s∗)ℓ+k+1
f (k)

( u
s∗

)∣∣∣∣∣ .
Then,

∫ ∞

u

|u|m sup
x̃∈SX

∣∣∇ℓ
xfξ|X∗(u|x̃)

∣∣ du < C

∫ ∞

u

ℓ∑
k=0

|u|m+k

(s∗)ℓ+k+1

∣∣∣f (k)
ζ

( u
s∗

)∣∣∣ du
< C

ℓ∑
k=0

∫
|ζ|m+k

∣∣∣f (k)
ζ (ζ)

∣∣∣ dζ
< C,

where the last inequality is due to condition (iii).
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