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Abstract

We study the welfare implications of nonlinear pricing in supply chains. Using population-
level firm-to-firm transactions from Chile, we find indicative evidence that sellers engage in
quantity-dependent and buyer-specific pricing strategies. We develop a general equilibrium
model where firms pay and charge nonlinear prices. Under standard assumptions, we show
that the optimal pricing scheme takes the form of a two-part tariff—comprising a flat fee and
a marginal price—consistent with the price schedules observed in the data. Nonlinear pricing
increases output per firm but distorts firm entry because flat fees redistribute profits unevenly
across firms. Quantifying the model, we find that welfare under nonlinear prices reaches
about 75% of the efficient benchmark. In a counterfactual policy that bans all price discrim-
ination—constraining firms to uniform pricing, a single, quantity-invariant price for all buy-
ers—welfare falls to about 49% of the efficient benchmark. Firms constrained to uniform pric-
ing raise marginal prices that compound along supply chains, amplifying deadweight losses
through markup accumulation. When interpreting the same data as uniform pricing, rather
than nonlinear pricing, measured welfare is about 57% of the efficient benchmark. These re-
sults indicate that prohibiting price discrimination can be welfare-reducing and that the mea-
sured aggregate welfare impact of market power in supply chains depends meaningfully on
the extent to which firms use nonlinear pricing.
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thank Michael Rubens, John Asker, and Ariel Burstein for invaluable mentorship and support. David Baqaee, Federico
Huneeus, Yasutaka Koike-Mori, Lee Ohanian, Mounu Prem, and Jonathan Vogel provided valuable comments. The
views expressed are those of the authors and do not necessarily represent the views of the Central Bank of Chile or its
board members. Authors’ email: lucalorenzini@ucla.edu, amartner@ucla.edu
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1 Introduction

Price discrimination in supply chains is central to current debates on market power and antitrust
policy. While price discrimination has long been recognized as pervasive in firms’ pricing strate-
gies—”one of the most prevalent forms of marketing practices” (Varian, 1989)—renewed antitrust
scrutiny now targets these practices in firm-to-firm transactions.1 Despite recognition and policy
attention, population-scale evidence on price discrimination along supply chains and its implica-
tions for resource allocations, rent sharing, and aggregate welfare remains scarce.

Using population-level administrative data on firm-to-firm transactions in Chile, we find in-
dicative evidence of widespread price discrimination in supply chains: unit prices decrease with
quantity purchased and vary systematically across buyer sectors, consistent with buyer-sector-
specific nonlinear price schedules. These patterns depart from the uniform-pricing assumption
standard in the literature—a single, quantity-invariant price for all buyers—and point instead to
nonlinear pricing with buyer-sector-specific schedules as the prevalent pricing strategy in supply
chains.

Guided by these patterns, we develop a multisector general equilibrium model in which firms
simultaneously charge and pay nonlinear prices. We show that, under standard assumptions,
the optimal contract takes the form of a buyer-industry-specific two-part tariff: a flat fee and a
marginal price. Relative to uniform pricing, nonlinear pricing brings quantities closer to efficient
levels through lower marginal prices, mitigating markup accumulation along the supply chain
and attenuating double marginalization. While improving allocative efficiency, the flat fees intro-
duce new distortions through rent extraction, affecting profit distributions and entry decisions in
theoretically ambiguous ways.

We calibrate the model’s parameters and validate that it closely replicates the nonlinear price
schedules across buyer sectors observed in the data. We then quantify two questions. First, what
are the aggregate welfare implications of nonlinear pricing? Interpreting observed prices as non-
linear, we find that welfare attains about 75% of the efficient benchmark. When we study a coun-
terfactual policy banning all price discrimination—constraining firms to uniform pricing—welfare
falls to about 49% of the efficient benchmark. These losses arise primarily from worsened alloca-
tive efficiency: constrained to uniform pricing, firms cannot extract rents without distorting quan-
tities, so they raise marginal prices that compound along the supply chain, amplifying double
marginalization.

Second, how does the measurement of the aggregate welfare costs of market power depend on
the assumptions about firms’ pricing behavior? When the same data are interpreted as uniform
prices, measured welfare attains 57% of the efficient benchmark. The welfare gap mirrors that
from banning price discrimination—a methodological point with substantive implications: ignor-

1In FTC v. Southern Glazer’s Wine and Spirits (December 2024), the complaint alleges discriminatory quantity dis-
counts and rebates that are inaccessible to smaller rivals and not justified by cost.
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ing firms’ ability to price discriminate can substantially overstate the aggregate costs of market
power.

We start by studying the canonical screening framework in partial equilibrium, where a seller
faces buyers with privately observed scale types and offers a menu of contracts.2 We consider a
monopolist with a constant marginal cost selling to heterogeneous buyers.3 When buyer types are
Pareto-distributed and buyers’ revenue functions are homogeneous under isoelastic inverse de-
mand, the optimal nonlinear pricing schedule takes the form of a single two-part tariff: a constant
marginal price and a flat fee. The marginal price governs allocation while the flat fee extracts rents
(e.g., Wilson, 1993; Armstrong, 1996), reshaping profits across firms without affecting allocations.
While entry is held fixed in this partial-equilibrium framework, the same mechanism, if extended
to general equilibrium, would influence firms’ profitability and thereby their entry incentives.

We show that this structure brings marginal prices closer to marginal costs relative to uniform
pricing, improving allocative efficiency, while flat fees redistribute surplus without affecting input
choices. The two-part tariff yields a sharp empirical prediction: average unit prices decline with
purchase size and converge asymptotically to a common marginal price. Hence, observed unit
prices may not be entirely allocative, containing a redistributive component.

To test these theoretical predictions, we analyze Chile’s population of firm-to-firm invoices.
Within each seller-product pair, unit prices fall with quantity and flatten at higher quantities—a
pattern pervasive across seller industries that shifts systematically with buyer industries. This
evidence reveals a combined pricing scheme: buyer-sector-specific nonlinear prices that exhibit
curvature within sectors (second-degree price discrimination) while shifting in level across sec-
tors (third-degree price discrimination). The patterns align with our two-part tariff prediction,
where average unit prices decline with quantity and converge toward a common marginal price.
While we present evidence inconsistent with several alternative explanations, we maintain a con-
servative interpretation: the observed price–quantity relationships indicate price discrimination.
Rather than using them to discipline the model, we leave them as untargeted moments and assess
how much a model calibrated to the firm size distribution can account for the observed quantity
discounts.

To quantify the welfare implications of these price discrimination patterns, we build a mul-
tisector general equilibrium supply chain model where firms endogenously and simultaneously
charge and pay nonlinear prices. As in the partial equilibrium framework, we assume Pareto-
distributed firm productivity; through our technology specifications, we endogenously obtain
isoelastic demands and constant marginal costs. Although each assumption has antecedents in
prior work, their joint adoption is central to our contribution: together they replicate the empir-
ical patterns of quantity discounts while preserving tractability in a general-equilibrium supply-

2See Mirrlees, 1971; Mussa and Rosen, 1978; Maskin and Riley, 1984; Tirole, 1988, ch. 3.
3In canonical screening models, buyer surplus corresponds to utility. Because buyers in our setting are firms, their

surplus is instead represented by total revenues, which play an analogous role.
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chain setting where firms simultaneously charge and pay nonlinear prices. Sellers implement both
second-degree price discrimination (quantity-based menus within sectors) and third-degree price
discrimination (buyer-sector-specific schedules). We highlight two theoretical results. First, the
optimal contract remains a sector-specific two-part tariff with a constant marginal price and a flat
fee. Second, the framework accommodates arbitrary firm linkages with cycles, where each firm
simultaneously charges and pays nonlinear prices.

We benchmark the nonlinear pricing equilibrium against the planner’s first-best allocation—
this is achieved in a decentralized equilibrium through a ban on price discrimination combined
with an output subsidy that restores marginal-cost pricing conditional on entry (Baqaee and Farhi,
2020a). The model enables an exact welfare decomposition using sufficient statistics: sector-
specific final demand exposures, markups, and firm masses. We decompose welfare into an inten-
sive margin (allocative efficiency from quantity distortions) and an extensive margin (variety from
entry distortions). This decomposition reveals how sector-level markups translate into aggregate
welfare losses through both direct and indirect final-demand exposure via input-output linkages.
Crucially, under nonlinear pricing, the relevant markup for allocative efficiency is the marginal
price markup rather than the average markup, while flat fees affect welfare only through entry.

We calibrate the model using the population of firm-to-firm transactions in Chile, merged
with firms’ accounting balance sheets, and we estimate substitution elasticities from a quasi-
experimental price shock. We solve for equilibrium under three scenarios: (i) nonlinear pricing,
(ii) uniform pricing, and (iii) the planner’s first-best. Two parameterization strategies guide the
analysis. First, we estimate parameters under the nonlinear pricing interpretation and hold them
fixed in our policy counterfactual, assessing how welfare changes when price discrimination is
banned. Second, we fully recalibrate the model using the same data but interpreting observed
prices as uniform: quantity-invariant charges identical across buyers. This dual approach allows
us to address both our policy question (welfare effects of banning discrimination) and our mea-
surement question (how pricing interpretations affect estimated welfare costs of market power).

The model calibrated under nonlinear pricing replicates both the magnitude and curvature
of observed price-quantity relationships. Under price discrimination, welfare attains 75% of the
efficient benchmark, with the intensive margin accounting for 79% of the welfare gap. A pol-
icy banning all price discrimination reduces welfare from 75% to 49% of the efficient bench-
mark—equivalently, the efficiency shortfall widens from 25% to 51%, roughly doubling. The wel-
fare losses concentrate in upstream sectors with high final-demand exposure, particularly in the
Construction sector and in the Retail and Wholesale sector, and are driven primarily by the in-
tensive margin. When we recalibrate the model interpreting the same data as uniform pricing,
welfare attains 57% of the efficient benchmark, again driven mainly by the intensive margin.

Our results highlight three key messages. First, price discrimination is pervasive in firm-to-
firm transactions and has first-order implications for assessing the aggregate outcomes of market
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power. Second, prohibiting all forms of price discrimination can generate substantial welfare
losses. When firms are constrained to uniform prices and cannot extract rents without distorting
quantities, they raise marginal prices, which compounds allocative inefficiencies along the sup-
ply chain. A ban on price discrimination is therefore incomplete if not complemented by output
subsidies and may even be counterproductive. Third, aggregate welfare costs of market power in
supply chains may be substantially overstated when uniform pricing is assumed despite evidence
of pervasive nonlinear pricing.

Related Literature. This paper relates to three strands of literature. First, price discrimination
and screening. We provide population-scale evidence on quantity-dependent pricing and buyer-
specific schedules in firm-to-firm transactions, embedding these practices in a general equilibrium
framework to quantify their aggregate implications. Our empirical findings relate to documented
input price dispersion across buyers and its allocative consequences (Dhyne et al., 2023; Burstein
et al., 2024). Theoretically, our model builds on classic price discrimination and screening re-
sults (Dupuit, 1844; Mussa and Rosen, 1978; Maskin and Riley, 1984; Wilson, 1993) and price-
discrimination surveys under imperfect competition (Varian, 1989; Stole, 2007).

Our primary contribution is to generalize the classic partial-equilibrium screening setup with
one seller and multiple buyers to a general-equilibrium supply-chain model in which firms si-
multaneously charge and pay nonlinear prices (i.e., set and face price-discrimination contracts).
Relative to the existing literature, we adopt standard functional forms and prove conditions for the
optimality of nonlinear pricing in supply chains where firms both charge and pay nonlinear prices,
derive closed-form implications for effective marginal prices and layer-to-layer pass-through that
together determine markup accumulation along the supply chain, and show how nonlinear pric-
ing schemes reallocate profits across firms and distort entry.

Second, production networks and misallocation. We show how distortions propagate through
input-output structures and affect aggregate outcomes, building from Quesnay (1894)’s Tableau
économique to modern developments (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009;
Jones, 2011; Oberfield, 2018; Carvalho and Tahbaz-Salehi, 2019; Bigio and La’o, 2020; Baqaee and
Farhi, 2020b). While contracting frictions distort input choices and firm organization (Boehm and
Oberfield, 2020), and network topology amplifies wedges into macroeconomic outcomes (Jones,
2011), we reinterpret markup dispersion and buyer-specific pricing as endogenous outcomes of
price discrimination. Nonlinear pricing changes which margins are distorted—entry versus pro-
duction, average versus marginal prices—thus affecting how misallocation is measured in general
equilibrium. Our approach builds on aggregation and welfare accounting with heterogeneity and
linkages (Baqaee and Farhi, 2020b) and complements micro evidence on buyer-level price disper-
sion (Burstein et al., 2024).

Third, aggregate welfare costs of market power, starting from Harberger (1954) and extended
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by Hall (2018); Autor et al. (2020); Barkai (2020), and De Loecker et al. (2020). In dynamic hetero-
geneous firm models, markups entail large welfare costs and interact with entry (Edmond et al.,
2023). We show that observed price discrimination—pervasive in supply-chain data (Dhyne et al.,
2022; Burstein et al., 2024)—can mitigate allocative inefficiency relative to uniform pricing, even
as it raises surplus extraction.

This echoes general-equilibrium results showing that nonlinear pricing changes the interpre-
tation of markup heterogeneity and introduces buyer-side misallocation, as in Bornstein and Pe-
ter (2024). They study retail markets where firms offer a single nonlinear schedule to consumers,
showing that nonlinear pricing shifts quantities toward high-taste buyers and away from low-taste
ones, thereby amplifying consumer-firm wedges and reducing welfare relative to linear pricing.

Our analysis differs both in question and in framework. We study input-market contracts
within production networks with free entry, where firms simultaneously charge and pay nonlin-
ear prices. Modeling both sides of the supply chain requires a new structure, one in which sector-
specific nonlinear prices combine elements of second- and third-degree price discrimination. Our
quantitative exercise assumes uniform pricing and nonlinear pricing as alternative interpretations
of the same data: holding technology and demand primitives fixed, we reestimate pricing param-
eters conditional on that interpretation. This design enables commensurate welfare comparisons
and shows that measured losses from market power depend critically on the assumed pricing
conduct.

2 Optimal Nonlinear Price Characterization in Partial Equilibrium

We present a framework of optimal nonlinear pricing in partial equilibrium, deriving a result
that serves as the building block for a general equilibrium supply chain model, in which firms
charge and pay nonlinear prices. We find that under Pareto-distributed buyer types, homogenous
revenue functions, and constant marginal costs, the optimal price schedule takes the form of a
two-part tariff: a constant per-unit price and a flat fee as shown by Laffont and Tirole (1993),
building on Spence (1977) and Maskin and Riley (1984).

We use the canonical monopolistic screening problem (Tirole, 1988). A seller with constant
marginal cost c > 0 faces a continuum of buyers with privately observed productivity types z ∈
[z,∞), drawn from F(z) with density f (z). The seller chooses a menu, that is, a pair of measurable
functions (q,T) : [z,∞)→ R+ ×R, which jointly assign to each type z a quantity q(z) and a transfer
(i.e., total payment) T(z). Under nonlinear pricing, the transfer T(z) need not equal price times
quantity, as under uniform linear pricing, where it would be p q(z), and may include, for example,
a fixed fee and a per-unit component. Given q, buyer z generates revenue4 R(z, q) and obtains net

4This corresponds to the buyer’s utility in the canonical screening framework. Because our buyers are firms, we
interpret it as revenue rather than utility.
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surplus Π(z) = R(z, q(z)) − T(z). The seller’s problem is

max
(q,T)

Πseller =

∫
∞

z

[
T(z) − c q(z)

]
f (z) dz (1)

s.t. (IR) Π(z) ≡ R(z, q(z)) − T(z) ≥ 0,

(IC) Π(z) ≥ R
(
z, q(z̃)

)
− T(z̃), ∀ z, z̃ ∈ [z,∞)

Individual rationality (IR) and incentive compatibility (IC) ensure participation and truthful
revelation. We normalize the outside option to zero, so IR isΠ(z) ≥ 0. In the optimum, the lowest-
type IR binds (Π(z) = 0). Under standard single-crossing and concavity conditions, as shown in
Appendix A, the seller’s problem can be rewritten as a pointwise optimization5:

max
{q(z)}

Πseller =

∫
∞

z

[
ϕ(z, q(z)) − c q(z)

]
f (z) dz

with ϕ(z, q) = R(z, q) −
1

h(z)
∂R(z, q)
∂z

, h(z) =
f (z)

1 − F(z)

where ϕ(z, q) is the virtual surplus and h(z) is the hazard rate. The virtual surplus, which repre-
sents the seller’s effective revenue from serving type z, consists of two components. The first term,
R(z, q), is buyer z total revenue. If the monopolist could price-discriminate perfectly, this would
coincide with the seller’s revenue as well. The second term, − 1

h(z)
∂R(z,q)
∂z , captures the truth-telling

cost, i.e., the additional rents the seller must leave to higher types to prevent them from mimicking
type z.

The hazard rate summarizes how many buyers lie above z [i.e., 1− F(z)] relative to the density
at z [i.e., f (z)], and thus measures how easy it is to enforce truth-telling. Taking the FOC for buyer
type z,

∂
∂q

[
ϕ(z, q(z)) − c q(z)

]
= 0 =⇒ ϕq(z, q(z)) = c, hence:

Rq(z, q(z)) = c +
1

h(z)
Rzq(z, q(z)) (2)

Increasing q for type z yields direct marginal revenue Rq(z, q(z)), but it also raises the truth-
telling cost by 1

h(z) Rzq(z, q(z)) (the extra rents that must be left to higher types). The optimal contract
sets marginal virtual revenue equal to marginal cost.

In addition to constant marginal cost, we impose two further assumptions. First, buyer types
are distributed according to a Pareto distribution with tail parameter κ. Second, buyers’ revenue
functions are homogeneous on the quantity transacted with the seller, so buyer type shifts demand

5Assuming monotonicity in the allocation. Because of the latter functional form’s assumptions, ironing is unneces-
sary.
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for the seller’s good without altering its curvature. Specifically,

R(z, q) = z
σ−1
σ q

σ−1
σ , σ > 1 (3)

where σ is the curvature parameter (the demand elasticity faced by the seller). These two assump-
tions imply the tail condition κ > σ − 1, which guarantees that total sales are finite.

Lemma 1 (Optimal two-part tariff under homogeneous revenue function and Pareto types6). Con-
sider the screening in Equation 1. Suppose (i) revenue is homogeneous in quantity as in Equation 3, with
shape parameter σ > 1, and (ii) buyer types are Pareto-distributed with tail parameter κ > σ− 1 with lower
type z, so that h(z) = κ/z. Under these assumptions, the optimal nonlinear price schedule takes the form of
a two-part tariff {F, pNLP

}:

T(z) = F + pNLP q(z), where: pNLP =
ρ

ρ − 1
c, ρ ≡

κσ
σ − 1

> 1, F : Π(z) = 0

F is a flat fee chosen so that the lowest-served type’s participation constraint binds, Π(z) = 0. We refer
to pNLP as the marginal price, to distinguish it from the unit price, since it applies only to the incremental
quantity purchased.7

Three remarks follow. First, under the Pareto distribution of types, the virtual surplus at the
lower bound is strictly positive. Hence, the integrand [ϕ(z, q(z))− c q(z)] f (z) is positive in a neigh-
borhood of z, so excluding any mass of low types strictly reduces profit by the foregone positive
contribution (see Appendix A.1). Hypothetically, excluding the lowest type z would allow the mo-
nopolist to raise the flat fee, but at the cost of losing demand from z. Because a Pareto distribution
places a large mass of buyers near the bottom, each excluded buyer contributes little individually,
but many are lost at once, making the demand loss larger than any additional flat-fee revenue
from those who remain. Therefore, exclusion is never optimal.

Second, the quantities allocated q(zi) are determined by the marginal price pNLP; the flat fee F
only redistributes surplus but does not change q. Seller profit from transacting with type zi has
two components: a variable-profit rectangle (pNLP

−c) q(zi) and a flat-fee component F, which is set
by the lowest-type participation constraint (Figure 1a). The deadweight loss is the area between
the demand curve and marginal cost c, over the range of quantities from qNLP to the efficient level
q∗. Changing F does not affect this area, while changing the marginal price does.

Third, the flat fee F is identical across buyer types and purely redistributes surplus. Spreading
this fixed amount over more units makes the average unit price fall with quantity: T(z)/q(z) =

6We get to the same solution using the Wilson (1993) approach on demand profiles, as shown in Appendix A.
7Proof sketch. Substituting h(z) = κ/z and homogeneous R(z, q) into the first-order condition (Equation (2)) yields

a constant marginal price that solves Rq(z, q) = ρ
ρ−1 c with ρ = κσ/(σ − 1). The envelope condition and IC then pin down

transfers up to a constant; choosing F to satisfy Π(z) = 0 completes the two-part tariff. Full derivations are provided in
Appendix A.
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pNLP + F/q(z) (Figure 1b). For small purchases, the flat-fee share F/q(z) is large and the average
unit price sits well above the allocative marginal price; as quantity grows, F/q(z) becomes negli-
gible and the average unit price converges to the allocative marginal price pNLP, which governs
quantities.

We define the total markup as the ratio of the average unit price to marginal cost. We then
decompose this markup into two components. The first component, which we call the allocative
markup, is given by the ratio of the marginal price to marginal cost and equals ρ

ρ−1 . We refer
to it as allocative because it alters the quantity allocated, generating in this case a deadweight
loss (Figure 1a). The second component is the redistributive markup, which does not affect the
allocation but instead redistributes surplus from buyer to seller:

µtot︸︷︷︸
Total Markup

:=
T(z)/q(z)

c
=

ρ

ρ − 1︸︷︷︸
Allocative Markup

+
F

q(z)c︸︷︷︸
Redistributive Markup

It follows that the total markup paid decreases with the quantity purchased, q(z), as illustrated
in Figure 1b.

Figure 1: Surplus and Unit Average Prices

(a) Surplus Decomposition

q(z)

p

Flat fee

Variable profit DWL

Type zi > z demand

Type z demand

Buyer zi surplusSeller surplus

qz q∗qNLP

pNLP = ρ
ρ−1 c

c

(b) Average Unit Price Across Types

q(z)

T(z)
q(z)

Redistributive markup

Low type

High type

pNLP

T

Notes. Panel A: the per-unit price pins down quantity; the flat fee is a lump sum that redistributes surplus without
affecting q. Markup revenue is the rectangle (pNLP

− c)qNLP; efficient and two-part-tariff quantities are labeled q∗ and
qNLP. Panel B: the average unit price T(z)/q(z) = F/q(z) + pNLP is higher for low types and declines with z toward pNLP.
The per-unit flat fee is larger for low types and fades with type.

Implementability in supply chains and testable prediction. In Section 4, we build a multisector
general equilibrium framework. Each seller trades with buyers from multiple sectors, and buyers
within each sector are heterogeneous in productivity. Firms both pay nonlinear prices upstream
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and charge nonlinear prices downstream. As a result, revenue and marginal-cost functions—
which in the previous section we treated as primitive—become endogenous, general-equilibrium
objects shaped by nonlinear pricing. We assume that sellers can discriminate across sectors but
not across types within a sector. Our main result is that, when firm heterogeneity within a sector
follows a Pareto distribution, the equilibrium nonlinear contracts take the form of two-part tariffs,
as in Lemma 1. Specifically, we show that the allocative markup and flat fee are seller-sector
specific: they are identical across buyers within a sector but vary across sectors.

This characterization delivers a testable prediction: if pricing is equivalent to a two-part tariff,
total payment T = F + pq implies an average unit price T/q = F/q + p that is strictly decreasing
and convex in q, with a horizontal asymptote at p (Figure 1b). In the next section, using product-
level buyer-seller transaction records from Chile, we test for departures from uniform pricing by
examining whether average unit prices display this pattern.

3 Evidence on Nonlinear Pricing in Supply Chains

We document the presence and shape of nonlinear prices using the population of firm-to-firm
transactions in Chile. Three main findings emerge. First, unit prices vary with quantity trans-
acted and buyer characteristics, inconsistent with uniform pricing. Second, this variation is well-
approximated by two-part tariffs: average unit prices fall with quantity while marginal prices
converge to a constant. Third, the steepness of these schedules differs across seller and buyer
industries, indicating heterogeneity in the strength of nonlinear prices.

Data description. We use data from the population of Chilean firm-to-firm value-added tax in-
voices collected by the Chilean Internal Revenue Service.8 For each transaction-specific invoice,
we observe seller and buyer IDs, a free-text product “detail,” and the corresponding price and
quantity. These transaction records can be merged with firms’ accounting variables, including
total revenue, employee headcounts, labor costs, materials costs, and capital expenditure.

We work at the most granular level and keep the full economy-wide universe of transactions
available for 2024, without industry exclusions. Our unit of observation is each invoice line item
between two tax identifiers.9 The “detail” field is often seller-specific (e.g., blue paint, brand XX,

8This study was developed within the scope of the research agenda conducted by the Central Bank of Chile (CBC) in
economic and financial affairs of its competence. The CBC has access to anonymized information from various public
and private entities, by virtue of collaboration agreements signed with these institutions. To secure the privacy of
workers and firms, the CBC mandates that the development, extraction, and publication of the results should not allow
the identification, directly or indirectly, of natural or legal persons. Officials of the CBC processed the disaggregated
data. All the analysis was implemented by the authors and neither involved nor compromised the Chilean IRS. The
information contained in the databases of the Chilean IRS is of a tax nature originating in self-declarations of taxpayers
presented to the Service; therefore, the veracity of the data is not the responsibility of the Service.

9Not necessarily firms, as some tax IDs do not report hiring workers, purchasing intermediate inputs, or capital
expenditure.
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3 gallons), so we treat products as seller-product pairs. In most transactions, shipping appears
as a separate line, so unit prices exclude shipping.10 Our approach complements Burstein et al.
(2024), who use the same administrative source and document important price-dispersion facts in
a manufacturing subsample; here, we exploit the complete data available across all industries and
retain maximum granularity to study nonlinear pricing in supply chains.

We perform three minimal data-cleaning steps to limit measurement error. First, we keep
transactions with positive prices and quantities and nonmissing product detail. Second, we keep
firms that reported positive sales in at least one month during 2024. Third, to avoid spurious
variance, we drop products with at least two transactions where the same-day max-to-min price
ratio exceeds the 99th percentile of its daily distribution. These filters retain 98% of the transac-
tions. The final sample contains 537,521 seller IDs and 3,398,323 buyer IDs that traded 60,029,741
distinct products across 1.24 billion transactions in 2024.

Price determinants. We begin by quantifying within-seller-product price dispersion. None of
the exercises in this section aim to be causal, but rather they describe equilibrium objects observed
in the data and test which variables they correlate with in search of indicative evidence. We ob-
serve substantial price variations for a given seller i and product g (the “detail” variable in the
invoice) within a month. Following Burstein et al. (2024), we construct a price-dispersion measure
p̃igt for June 2024 (t =month), the month with the most transactions in 2024. We divide unit prices
observed for each product g transaction from seller i to buyer j by the mean price across seller
i and product g and month m. We repeat the same exercise for June 19, 2024, (t =day) the day
with the most transactions that month, to ensure that our results are not driven by month-specific
demand and supply shocks. The variance of ln p̃igt is 0.65 monthly and 0.61 daily, and around 30%
of transactions in both cases show no price dispersion.

Figure 2 displays p̃igt histograms. The histograms are similar when computed at daily versus
monthly frequency, suggesting that residual price variation is not primarily driven by supply or
demand shocks, nor by inflation. For 71% of transactions, we cannot reject that firms engage in
some form of price discrimination departing from uniform pricing.

These facts motivate a decomposition of the residual dispersion into quantity versus buyer
components. This approach will be nonparametrical where each different quantity transacted and
buyer firm ID is assigned a specific dummy variable that will be contained in the fixed effects. To
net out common shocks, we first estimate

ln pigjt = β0 +Ψigd + ϵi jgt

10Including shipping could generate declining average unit prices with quantity, which would reflect scale
economies in shipping rather than nonlinear pricing contracts. By excluding shipping charges, we ensure that vari-
ation in average unit prices reflects contractual form rather than transportation technology.
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Figure 2: Price Dispersion

Panel A. June 2024 Panel B. June 19, 2024

Notes: This figure reports the distribution of the log of demeaned price for the month of June 2024. We exclude seller-
product pairs with only one transaction.

where Ψigd are seller-product-day fixed effects and t indexes the time stamp during the day. The
residual ϵi jgt captures price differences across buyers of the same (i, g) on the same day. We then
project ϵi jgt using alternative fixed-effect sets S:

ϵi jgt = β0 +ΨS + νi jgt (4)

where ΨS includes (i) functions of transaction quantity, (ii) buyer-group fixed effects (sector-size-
region; 626 groups), and (iii) interactions of quantity with buyer-group to allow group-specific
discount schedules. This two-step procedure yields an R2-based horse race over residual price
variation. The results provide indicative evidence on the importance of second-degree (quantity)
and third-degree (buyer) components. Identification nuances in separating these mechanisms,
and additional robustness using monthly fixed effects and industry subsamples, are detailed in
Appendix B.1.

Table 1 reports the R2 across specifications. Quantity alone explains 34% of residual price vari-
ation (column 1), indicating that quantity discounts play an important role in explaining residual
price variation. Coarser buyer-group effects (sector-size-region) still account for 28% (column
2), indicating that most of the variance explained by buyer fixed effects is captured by observ-
able group characteristics. Allowing group-specific discount schedules (quantity-buyer-group)
explains 53% (column 3), consistent with hybrid second- and third-degree price discrimination
accounting for the lion’s share of price dispersion along supply chains.11

11We omitted buyer fixed effects alone because of absence of price variation by buyer and day for the same seller
and product. Appendix B.1 includes them at the monthly level, indicating stable heterogeneity across buyers, but never
generating a higher R2 relative to quantities and buyer groups interacted.

12



Table 1: Price Residual Determinants

(1) (2) (4)

R2 0.344 0.275 0.535

S = Quantity ✓

S = Buyer Group ✓

S = Quantity × Buyer group ✓

N 147M 147M 147M

Notes: This table reports R2 values from regressions of price residuals ϵi jgt on different specifications S, where residuals
are obtained from Equation 4 after controlling for seller-product-day fixed effects. Buyer groups are defined by combi-
nations of 11 sectors, 3 size categories, and 16 regions.

Nonlinear prices. We test for nonlinear pricing by examining whether observed unit prices
(which we interpret in equilibrium) covary systematically with transaction quantities. We esti-
mate

ln pigjt = β1 ln qigjt + Ψigd + ΨS + εigjt (5)

where pigjt and qigjt are the unit price and quantity for seller i, product g, buyer j, at transaction
day t on day d. Ψigd are seller-product-day fixed effects; ΨS varies by specification to add buyer
or buyer-group controls and their interactions (Table 2). A potential concern for interpreting β1

as evidence of price discrimination is that supply shocks could simultaneously reduce prices and
raise quantities, creating spurious correlation. Because we condition on seller-product-day fixed
effects, identification comes only from within-seller-product-day price variation, making this in-
terpretation unlikely. Another concern is that some buyers may systematically purchase larger
quantities and also obtain lower prices due to monopsony power; by including buyer or buyer-
group controls in ΨS, we assess how much of the observed variation can be explained by this
mechanism. We estimate (5) on the universe of 2024 transactions after dropping singletons.
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Table 2: Price-Quantity Coefficient Estimates

(1) (2) (3) (4)

ln qigjt -0.042 -0.084 -0.065 -0.037

(0.0001) (0.0001) (0.0001) (0.0001)

SBase = Seller × Product × Day ✓

S = SBase+ Buyer ✓

S = SBase+ Buyer Group ✓

S = SBase × Buyer Group ✓

N 430M 430M 430M 430M

R2 0.9646 0.9678 0.9659 0.9790

Notes: This table reports coefficients from regressions of log unit prices on log quantities with varying fixed-effect
specifications S. Base refers to seller-product-day fixed effects. Buyer groups are defined by combinations of 11 sectors,
3 size categories, and 16 regions. Standard errors are in parentheses. All regressions use the universe of Chilean firm-
to-firm transactions in 2024 after dropping singletons.

Column 1 conditions on seller-product-day and yields a quantity coefficient of −0.042 log
points, so doubling quantity is associated with a 2.9% (β1 ln 2) lower unit price. Adding buyer
fixed effects in column 2 strengthens the coefficient to −0.084, indicating that once persistent buyer
heterogeneity is absorbed, quantity discounts are even more pronounced. Replacing buyer FE
with buyer-group FE (sector-size-region) still gives a sizable −0.065 in column 3. Column 4 al-
lows fully flexible group-specific schedules by interacting Ψigd with buyer group; the coefficient
remains negative and significant at −0.037, about 90% of the column 1 magnitude, consistent with
systematic quantity discounts across buyer groups.12

We repeat the same exercise from column 1 for each 1-digit sector in the economy; we show the
results in Appendix B.2. We find that the smallest-quantity coefficient is around 0.00 in utilities,
while the largest is observed in construction, at 0.13.

Could buyer monopsony power drive the price-quantity correlation? Table 2 argues against
it: adding buyer fixed effects strengthens the coefficient from −0.042 to −0.084, whereas a buyer-
power story would predict attenuation once persistent buyer heterogeneity is absorbed. As a sec-
ond check, we proxy buyer power by the number of distinct suppliers a buyer transacts with and
interact ln qigjt with this proxy. The interaction is significant at an economically negligible magni-
tude; full results are in Appendix B.3. Taken together, the evidence points to seller-side nonlinear
pricing rather than buyer bargaining power as the primary driver of the observed patterns.

12We do not interact quantity with buyer fixed effects. Within a day for a given seller-product, the same buyer rarely
purchases multiple distinct quantities; moreover, such a specification would push toward buyer-specific nonlinearities
closer to first-degree discrimination, which we view as implausible in this setting.
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Nonlinear quantity discounts. Because products trade at different scales, we compare prices
across ranks in each product’s quantity distribution rather than raw quantities. For each product
g, let Fg(·) be the empirical CDF of transacted quantities qigjt using all 2024 observations of product
g, and define the within-product rank:

rigjt ≡ Fg
(
qigjt

)
We build a partition [0, 1] of 50 equal-probability intervals Ib ≡

(
(b − 1)/50, b/50

]
for b = 1, . . . , 50,

and we assign each transaction to a bin Bigjt = b whenever rigjt ∈ Ib.13 We then estimate

ln pigjt = β0 +

50∑
b=2

βb 1
{
Bigjt = b

}
+ Ψigd + εigjt (6)

where Ψigd are seller-product-day fixed effects and bin b=1 (smallest-quantity bin) is the omitted
category. By construction, bin b represents the same position in each product’s quantity distri-
bution, making the schedule comparable across heterogeneous products traded in heterogeneous
units while absorbing all (i, g, d) shocks. Thus, identification of the coefficient comes solely from
within-seller-product-day price variation.

Figure 3 summarizes the estimated schedule. Panel A plots the coefficients {βb} from (6) (with
bin b=1 omitted) and, for readability, reports discounts relative to the smallest-quantity bin as
∆b ≡ 1− exp(βb). Prices fall steeply over the lower ranks: by b=10, unit prices are about 15% lower
than in b=1. Discounts then continue to deepen but at a slower rate, stabilizing at around 17%
for mid-to-large purchases. The final bin shows an additional dip, consistent with products or
relationships concentrated in bulk trades.

Price discrimination through a two-part tariff with flat fee F and constant marginal price p, as
in Lemma 1, yields the average unit price p̄(q) = p + F/q. Hence unit prices fall steeply at small
q and flatten as q grows, approaching the constant marginal price p from above. The empirical
schedule—steep discounts at low quantities and flattening at higher quantities—matches the pre-
diction of Lemma 1, providing evidence consistent with a two-part tariff as the optimal nonlinear
pricing strategy.

Figure 3 Panel B reports results from the rank-binning procedure that places each transaction
by its position within that product’s own quantity distribution, rather than by raw units. This
lets us combine products that sell on very different scales while absorbing seller, buyer-group,
and date effects. Because many products have fewer than 50 distinct quantity levels, bins are not
uniform: common quantity “mass points” (e.g., single units or standard bulk packs) pile up at the
extremes and some intermediate bins are empty. When ties occur, we assign the entire tied mass

13With discrete quantities and mass points, we assign observations to the smallest b such that rigjt ∈ Ib;. Products
with fewer than 50 distinct ranks are handled by the empirical CDF.
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to the lower (earlier) bin, which mechanically pushes more observations into low-quantity bins.
Consequently, about 55% of transactions fall into the first ten bins, where quantity discounts move
the most; beyond roughly the 15th bin, the discount curve is comparatively flat.

Figure 3: Prices by Quantity Quantiles

Panel A. Quantity Discounts Panel B. Histogram of Quantiles

Notes: This figure summarizes the nonlinear relationship between quantity and price. Panel A plots the estimated
coefficients from Regression (6), where log unit prices are regressed on 50 product-level quantity quantile indicators,
controlling for seller-product-day fixed effects. The red line represents a fitted local polynomial of degree 5 of splines
approximations of the estimated fixed effects. Panel B shows the distribution of observations across the modified
quantiles, illustrating the rebinning strategy where each unique quantity is consistently mapped to a quantile across
products. The first and last bins are overrepresented due to mass points in single and bulk purchases.

Heterogeneity across seller industries. We reestimate Equation (6) separately by 1-digit seller
industry to compare price schedules across sectors. Figure 4 shows pronounced between-sector
heterogeneity in both steepness and curvature. The Business Services and Construction sectors
exhibit the largest declines—cumulative discounts approaching 30% by the top ranks—while the
Manufacturing and Retail and Wholesale sectors display moderate but clear discounts (roughly
15%). The Transport and ICTs sector is comparatively flat, and the Financial Services sector is
nearly flat across the entire rank distribution. Despite level differences, the qualitative shape (steep
at low ranks, flattening at high ranks) is common, consistent with two-part tariffs where the fixed
component is more salient for small purchases. In the model we develop in Section 4, this between-
sector heterogeneity arises endogenously from differences in industry competition and in sellers’
ability to appropriate buyer surplus.

Buyer-industry heterogeneity within seller sectors. We next fix a seller industry and reesti-
mate Equation (6) separately by 1-digit buyer industry, recovering buyer-sector-specific schedules
within each seller sector. Figure 5 illustrates the largest seller sectors by number of products trans-
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Figure 4: Prices by Quantity Quantiles, by Seller Industry

Notes: This figure plots quantity discount schedules estimated separately by 1-digit seller industry. Each line represents
a fifth-degree polynomial fit to splines approximations of the 50 fixed effects estimated from Equation (6), where the
dependent variable is log unit price and the main regressor is a quantile bin of quantity, with seller-product-day fixed
effects included. The y-axis measures the percentage discount per unit relative to the lowest-quantity transactions. The
x-axis denotes the quantity quantile bin, ranging from 1 (smallest purchases) to 50 (largest). Sector labels show each
industry’s share of total GDP (excluding exports) in parentheses.

acted in 2024, Retail and Wholesale. Buyers in the Manufacturing, Retail and Wholesale, and
Personal Services sectors exhibit sizable declines, whereas other buyer sectors display near-flat
profiles (at most ≈5%, even at the top ranks). Because all specifications include seller-product-day
fixed effects, these patterns reflect differential within-day, within-product price-rank relationships
by buyer type. The evidence is consistent with a hybrid of second- and third-degree price discrim-
ination: sellers deploy nonlinear schedules but tailor their menus to observable buyer character-
istics. Mapping these results to Lemma 1, the evidence is consistent with heterogeneity in flat fees
or marginal prices across buyer groups (i.e., from third-degree price discrimination), which shift
the curves vertically.

Taking stock. Within seller-product-day cells, unit prices decline with quantity ranks and flatten
at higher ranks. This curvature is pervasive across seller industries and shifts systematically with
buyer industries (Figures 4 and 5). Because all (i, g, d) shocks are absorbed, these patterns reflect
within-seller-product-day price differences inconsistent with uniform pricing and are consistent
with a hybrid of second- and third-degree price discrimination: second-degree screening drives
curvature, while observable buyer type shifts levels and steepness across industries. Guided by
these facts, in the next section we develop a multisector supply-chain general equilibrium model
with heterogeneous firms where endogenous contracts feature second- and third-degree price dis-
crimination.
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Figure 5: Prices by Quantity Quantiles: Retail and Wholesale Sellers, by Buyer Industry

Notes: We fix the seller industry and estimate Equation (6) separately for each 1-digit buyer industry. The fitted lines
represent a fifth-degree polynomial fit to splines approximations of the 50 fixed effects estimated. Each curve corre-
sponds to a specific buyer sector and traces the percentage discount per unit relative to the smallest purchases. The
x-axis represents quantity quantiles from 1 (smallest) to 50 (largest).

4 A Model of Nonlinear Pricing in Supply Chains

We develop and characterize a general-equilibrium supply-chain model in which firms simultane-
ously pay and charge nonlinear prices endogenously. We show that the optimal contract takes the
form of a two-part tariff; a constant marginal price combined with a flat fee, extending Lemma 1
a general-equilibrium setting in supply chains. This framework provides closed-form sufficient
statistics for welfare analysis under different pricing assumptions and counterfactual policies.

4.1 Environment and Notation

There are two firm types, ℓ ∈ {u, r}, defined by their position with respect to final demand. Up-
stream firms (type u) sell to retailers and other upstream firms, and source inputs from upstream
suppliers. Retailers (type r) purchase inputs from upstream firms and sell exclusively to the rep-
resentative final consumer.14 There is a finite set of sectors S, common to both firm types. We use
s ∈ S for buyer sectors and s′ ∈ S for seller sectors. In each (ℓ, s), there is a continuum of firms that
differ in their productivity z. Productivity z is Pareto-distributed within (ℓ, s) with lower bound
z ℓs > 0 and tail parameter κ ℓs > 0; the support is z ∈ [z ℓs ,∞).

When a firm appears as a buyer, we index it by i; when it appears as a seller, we index it by j.

14This two-type structure is motivated by Chilean administrative data showing that most firms sell either only to
final consumers or only to other firms, with minimal overlap; see Appendix B.4.
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The mass of firms in (ℓ, s) is Nℓ
s . We treat Nℓ

s as endogenous under free entry; details follow. We
evaluate the economy in steady state and omit time subscripts for brevity.

Market structure. Retailers sell to the representative consumer at uniform per-unit prices15 while
sourcing inputs from upstream firms at nonlinear prices. Upstream firms likewise purchase inputs
from other upstream firms at nonlinear prices and sell their own variety to both retailers and other
upstream firms. Consistent with the evidence we find for Chile, sellers j observe the buyer’s type
and sector pair (ℓ, s) but not the idiosyncratic buyer productivity zi; they know only its (Pareto)
distribution. They set type- and sector-specific tariff schedules but cannot condition on zi, imply-
ing third-degree price discrimination across (ℓ, s) and second-degree price discrimination within
each (ℓ, s).16

Preferences. The representative consumer owns all firms and inelastically supplies one unit of
labor (L=1). Let PY be the final-goods price index.17 Final demand is Cobb-Douglas across retail
sectors with a within-sector CES aggregator over retail varieties:

Y =
∏
s∈S

Yθs
s ,

∑
s∈S

θs = 1, (7)

Ys =

(∫
j∈Rs

y
φs−1
φs

j dνs( j)
) φs
φs−1

(8)

where θs ∈ (0, 1) are Cobb-Douglas output elasticities, φs > 1 is the within-sector elasticity of
substitution, and Rs is the set of active retail sellers in sector s. Here, dνs( j) denotes the equilibrium
measure over active retail sellers j ∈ Rs, with total mass Nr

s ≡ νs(Rs).

Technology. Firms (buyers i) produce with Cobb-Douglas technology in labor and a Cobb-Douglas
aggregator across seller sectors; we denote the buyer sector by s and the seller sector by s′:

Qi = zi lα
ℓ
s

i M 1−αℓs
i , 0 < αℓs < 1 (9)

Mi =
∏
s′∈S

M
θℓss′

is′ ,
∑
s′∈S

θℓss′ = 1 for each (ℓ, s) (10)

where Qi is output, zi is firm i’s productivity, li is firm-level labor input, αℓs is the labor output
elasticity for firms of type ℓ in sector s, and Mi is the composite materials bundle. Mis′ is the
materials bundle from upstream seller sector s′, and θℓss′ ≥ 0 are input elasticities for buyers in

15For welfare effects of nonlinear pricing on final demand, see Bornstein and Peter (2024).
16Sustaining type- and sector-specific tariff schedules requires the absence of zero-cost arbitrage or resale; secondary

markets may fail to emerge due to repackaging costs, regulation, or other frictions.
17If we normalize PY ≡ 1, welfare equals real final expenditure Y.
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(ℓ, s) across seller sectors s′ ∈ S.18 Within any seller sector s′, the materials bundle is CES across
firm varieties with elasticity σs′ > 1 for each s′ ∈ S:

Mis′ =

∫
j∈Us′

m
σs′ −1
σs′

i j dνs′( j)


σs′
σs′ −1

(11)

where mi j is buyer i’s input of seller variety j in seller sector s′, σs′ is the elasticity of substitution
across those varieties, and dνs′( j) is the equilibrium measure over active upstream sellersUs′ , with
total mass Nu

s′ ≡ νs′(Us′).

Input price-taking. Firms are atomistic in input markets and take the wage as given. They retain
market power in output markets due to product differentiation under CES demand.

Firm entry. Firm entry follows Hopenhayn (1992) and Melitz (2003), adapted to a supply-chain
environment. In each (ℓ, s), there is an unbounded pool of identical potential entrants. Entry
requires paying a sunk cost cE ℓ

s > 0 in units of labor, after which firms draw their productivity z.
Active firms exit exogenously at the end of the period with probability δℓs ∈ (0, 1], which serves as
the only source of time discounting.19 Let πℓs(z) denote a potential entrant’s per-period profit in
numeraire units. Free entry requires that the expected discounted value of profits equals the entry
cost in every (ℓ, s):

1
1 − δℓs

Ez
[
πℓs(z)

]
= cE ℓ

s w, ∀(ℓ, s)

where the expectation is taken over the postentry distribution of z in (ℓ, s).

Market clearing. All markets clear in equilibrium. Labor-market clearing requires that the total
demand for labor across all active firms equals the inelastic supply of one unit:∑

ℓ∈{u,r}

∑
s∈S

∫
i∈Fℓs

li dνℓs(i) = L = 1

where Fℓs is the set of active firms of type ℓ in sector s, and νℓs is the equilibrium measure over
these firms. For each upstream variety j ∈ Us′ , market clearing requires that output equals the
sum of inputs demanded by all buyers. For each retail variety j ∈ R j, market clearing requires that

18A zero weight θℓss′ = 0 means sector s as a buyer does not use inputs from sector s′. Under no price discrimination
and uniform prices, {θℓss′ } coincide with input-output expenditure shares for buyer sector s, as in Acemoglu et al. (2012).

19Because we focus on steady-state comparisons of macroeconomic outcomes and abstract from time discounting
aside from δ, the model is isomorphic to either a constant z over time or a stochastic process for z under the counterfac-
tual of interest.
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output equals final demand from the representative consumer:

Q j =
∑
ℓ∈{u,r}

∑
s∈S

∫
i∈Fℓs

mi j dνℓs(i), ∀ j ∈ Us′ , s′ ∈ S; Q j = y j ∀s ∈ S, ∀ j ∈ Rs

General equilibrium under nonlinear pricing. Within a period, (i) potential entrants in each
(ℓ, s) pay cE ℓ

s and then draw productivity z; (ii) each upstream seller j ∈ Us′ observes only the
buyer’s pair (ℓ, s) (not zi) and offers a pair-specific nonlinear contract menu {m ℓ,s

j , T ℓ,s
j }; retail sell-

ers j ∈ Rs post uniform prices to final consumers; (iii) buyers i = (ℓ, s, zi) observe the offered
menus and the wage w and choose labor li and input bundles {mi j} j to maximize profits; (iv) pro-
duction and trade occur, transfers {Ti j} j are realized, and final demand {y j} is met; and (v) firms
exit with probability δℓs . Contracts are enforceable, resale and arbitrage are ruled out, and beliefs
are rational; we consider a steady state so all aggregates are time-invariant.

A general equilibrium consists of allocations {Qi, li, {mi j} j}, transfers {Ti j} j, and consumer de-
mands {y j} for all buyers i = (ℓ, s, zi) with ℓ ∈ {u, r} and s ∈ S, such that (i) technologies (9)–(11)
hold for every firm; (ii) each upstream seller j ∈ Us′ chooses contracts {mi j,Ti j}i that solve its profit-
maximization problem (defined below), while each retail seller j ∈ Rs sets uniform prices to the
final consumer; (iii) each buyer chooses labor li and input bundles {mi j} j to maximize profits given
the wage w and the offered contracts or prices; (iv) retail market clearing: Q j = y j for all s ∈ S
and all j ∈ Rs; (v) upstream market clearing: Q j =

∑
ℓ∈{u,r}

∑
s∈S

∫
i∈Fℓs

mi j dνℓs(i) for all s′ ∈ S and all
j ∈ Us′ ; (vi) the labor market clears; and (vii) free entry holds in each (ℓ, s).20 A proof of existence
and uniqueness is provided in Appendix C.7.

4.2 Guesses: Contracts and Revenue Shapes

We characterize the equilibrium using a guess-and-verify approach. In a supply-chain setting,
firm costs and revenues are shaped by price discrimination. We begin by positing functional
forms for contracts that deliver a tractable marginal cost function, which allows us to analyze
the firm’s unrestricted price-discrimination problem. We then verify the conjecture by showing
that the resulting equilibrium coefficients are internally consistent. Motivated by Lemma 1, we
conjecture that optimal contracts are equivalent to a two-part tariff specific to (ℓ, s). Furthermore,
we conjecture that revenue functions are homogeneous of degree ψℓs in output.

Guess 1: Two-part tariffs by buyer type and sector (ℓ, s). For a buyer i = (ℓ, s, zi), the total
payment for purchasing seller variety j ∈ Us′ is conjectured to take the form of a two–part tariff,

20Policy counterfactual equilibrium is defined analogously, except that firm maximization problems are subject to
the additional constraints implied by the policy experiment (e.g., a ban on price discrimination or the introduction of
output subsidies).
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with the marginal price determined by an (ℓ, s)-specific markup µℓss′ :

Ti j = pℓjs mi j + Fℓjs′ = µℓss′ c j mi j + Fℓjs′

where mi j is the quantity purchased by buyer i from seller j, pℓjs = µ
ℓ
ss′ c j is the marginal (alloca-

tive) price, ℓ and s denote the buyer’s type and sector, and c j is the seller’s marginal cost. The
fixed component, flat fee Fℓjs′ varies with the seller identity j and with the buyer only through the
observable pair (ℓ, s′).

Guess 2: Equilibrium buyer revenue function. We conjecture that, in equilibrium, the revenue
function is homogeneous of degree ψℓs in output:

Ri = Aℓ
s

(
Qi

)ψℓs
for unknown coefficients Aℓ

s and ψℓs that are constant at the buyer’s type-sector (ℓ, s) level.

4.3 Preliminaries

To proceed, it is useful to derive input demand, price indices, and cost functions under the conjec-
tured contract structure. Since flat fees are inframarginal, they do not affect these objects but only
redistribute profits across firms. As a result, input demand, price indices, and cost functions coin-
cide with those in a uniform-pricing economy, except that prices vary at the (ℓ, s) level. We then
solve the unrestricted price-discrimination problem for a generic seller and verify the conjecture
by matching undetermined coefficients.

4.3.1 Costs and Price Indices

Using the guesses in Section 4.2, in particular, that marginal prices are quantity-invariant within a
buyer type–sector (ℓ, s) and a seller sector s′, we can define sectoral price indices and derive firm
costs. These objects will be verified once we solve for equilibrium prices.

CES sectoral price index. For any seller sector s′ ∈ S and buyer type–sector (ℓ, s), let pℓjs denote
the marginal price charged by seller variety j ∈ Us′ to buyers in (ℓ, s). With elasticity σs′ > 1, the
unit price of the s′-bundle faced by buyers in (ℓ, s) is

Pℓss′ =

(∫
j∈Us′

(
pℓjs

)1−σs′ dνs′( j)
) 1

1−σs′

(12)

where dνs′( j) is the equilibrium measure over sellers in s′, and Nu
s′ ≡ νs′(Us′) denotes their total

mass. Flat fees do not enter (12).
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Cobb-Douglas materials cost index. For firm i = (ℓ, s, zi), the unit price of its composite materials
bundle Mi in (10) is

PM
i =

∏
s′∈S

(
Pℓss′

)θℓss′ ,
∑
s′∈S

θℓss′ = 1, θℓss′ ≥ 0 (13)

Firm-level marginal cost. Only marginal prices {pℓjs} enter via (12) and (13); transfers Ti j are
inframarginal and do not affect marginal cost. Given technology, wage w > 0, and constant returns
to scale, the marginal cost of producing Qi units for firm i = (ℓ, s, zi) is

ci =
Θℓs
zi

wαℓs
(
PM

i

)1−αℓs
, where Θℓs ≡

(
αℓs

)−αℓs (1 − αℓs)−(1−αℓs ) ∏
s′∈S

(
θℓss′

)−(1−αℓs )θℓss′

Sectoral productivity index. Following Melitz (2003), define the CES sectoral productivity index
for upstream (seller) sector s′ and retail (seller) sector s as

z̃ u
s′ =

(∫
j∈Us′

z σs′−1
j

dνs′( j)
Nu

s′

) 1
σs′−1

, z̃ r
s =

(∫
j∈Rs

zφs−1
j

dνs( j)
Nr

s

) 1
φs−1

4.3.2 Buyer Input Demand

Given the guesses in Section 4.2 and the objects defined in Section 4.3.1, each buyer i = (ℓ, s, zi)
chooses labor and input quantities from upstream seller varieties to maximize profits. Flat fees
are inframarginal and do not affect marginal conditions; only marginal prices pis matter for input
choices. For notational simplicity, we therefore formulate the maximization problem in terms of
profits Π̃i, net of flat fees.

Let mi j denote the quantity of seller variety j ∈ Us′ purchased from seller sector s′. Using
Guess 2, buyer i = (ℓ, s, zi) solves

Π̃i = max
li, {mi j} j

{
Aℓ

s Qψℓs
i − w li −

∑
s′∈S

∫
j∈Us′

pℓjs mi j dνs′( j)
}

The total expenditure on inputs from seller sector s′ can be expressed as Pℓss′ Mis′ . The first-
order condition with respect to Mis′ equates the marginal revenue product of the materials bundle
to its sectoral price index, similarly for labor:

∂Ri(zi, {Mis′}, li)
∂Mis′

= Pℓss′ ,
∂Ri(zi, {Mis′}, li)

∂li
= w

which determines the labor-materials ratio given {Pℓss′}. This input demand implies that the marginal
revenue product of the materials bundle from sector s′ is equalized across firm varieties within
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(ℓ, s). For a given buyer i, demand for the materials bundle from upstream sector s′, denoted as
Mis′ , is allocated across varieties j ∈ Us′ according to the CES share rule. We have that pℓjs is the
price charged to buyers in (ℓ, s) and Pℓss′ is the sectoral price index in (12). Under the conjecture
that markups are (ℓ, s)-specific, it implies that relative input demands across varieties depend only
on a seller’s marginal cost relative to the sectoral price index. Buyer identity enters solely through
the scale term Mis′ :

mi j = Mis′

 pℓjs
Pℓss′


−σs′

= Mis′

 z̃ u
s′

z j (Nu
s′)

1
1−σs′


−σs′

, σs′ > 1

where z̃ u
s′ denotes the productivity index for sector s′ and Nu

s′ is the measure of active upstream
sellers in s′. Using this condition, together with market clearing, we can express total production
of variety j as a function of its relative productivity:

Q j =

(
z j

z̃ u
s′

)σs′

Qs′
(̃
z u

s′
)

(14)

where Qs′ (̃z u
s′) denotes the total production of the average firm in upstream sector s′.

Scaling of input demand with productivity. Input usage scales with firm productivity relative
to the sectoral average.21 For an upstream firm j ∈ Us′ with productivity z j, labor and material
demand satisfy

l j(z j) =
(

z j

z̃ u
s′

)σs′−1

l j

(̃
z u

s′
)
, M j(z j) =

(
z j

z̃ u
s′

)σs′−1

M j

(̃
z u

s′
)

Hence, if productivities are Pareto-distributed with tail parameter κs′ , input demand is also Pareto-
distributed with a different tail parameter for upstream firms and retailers based on their relevant
elasticity of substitution22:

ξu
s′ =

κu
s′

σs′ − 1
, ξ r

s =
κ r

s

φs − 1
> 1

4.4 The Optimal Nonlinear Price

Fix an upstream seller sector s′ and a buyer type–sector (ℓ, s). A seller j ∈ Us′ offers an unrestricted
menu {x,T} to buyers i = (ℓ, s, zi), where x denotes the allocated quantity and T the transfer.

21This follows from the homogeneity of the Cobb-Douglas technology: y(x1, . . .) = x1 · y(1, x2/x1, . . .) implies that
input ratios are pinned down by common input prices. Scaling by relative productivity yields l(z)

l(̃z) = ( z
z̃ )σ−1, so input

demand inherits a Pareto distribution with effective tail parameter ξ = κ/(σ − 1).
22Equilibrium feasibility requires that ξu

s′ > 1 and ξ r
s > 1. Aggregate labor demand is L =

∫
l(z) dν(z), which is finite

only if ξ > 1; hence, κu
s′ > σs′ − 1 upstream and κ r

s > φs − 1 in retail.
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To describe the buyer i surplus and the extractable rents by seller j when transacting with i,
let νs′ denote the equilibrium measure over upstream sellers in sector s′. Denote buyer i’s profit
(inclusive of transfers) by Πi. For buyer i, the total surplus from transacting with seller j of pro-
ductivity z j is defined as

TSis′(mi j) :=
dΠi

d
(
νs′(z j)

) ∣∣∣∣∣∣∣
arg maxΠi

namely, the marginal value to buyer i of access to an additional infinitesimal mass of sellers of
type z j within sector s′, evaluated at buyer i optimal input choices. This is the surplus that an
infinitesimal seller j seeks to appropriate through its contract. We can express this as surplus in
terms of the marginal revenue product. Under CES aggregation within sector u′ (elasticity σu′ > 1),
the extractable surplus from a purchase of a generic size m can be written as

TSis′(m) =
σs′

σs′ − 1
∂Ri(zi, {Mis′}, li)

∂Mis′
M

1
σs′

is′ m
σs′ −1
σs′ − T

where m is the quantity purchased and T the associated transfer. Since the individual seller is
infinitesimal, it treats the marginal revenue product as given. Using the first-order condition, this
simplifies to

TSis′(mi j) =
σs′

σs′ − 1
Pℓjs′ M

1
σs′

is′ m
σs′−1
σs′ − T

Valuation index and its distribution. For a seller in sector s′, the buyer i matters only through
the one-dimensional valuation index:

τis′ ≡ Pℓss′ M 1/σs′

is′

The valuation index, τis′ , combines the sector s′ price level Pℓss′ with the buyer’s scale Mis′ in the
exact way that determines the marginal revenue from a small purchase: from the CES share rule,
a seller’s marginal revenue is proportional to τis′ m(σs′−1)/σs′ for quantity m (up to the transfer T).
Hence, a seller’s problem can be written solely in terms of τis′ .

When buyer productivities zi in (ℓ, s) are Pareto, τis′ is Pareto as well. Let Mis′ be the buyer’s
materials demand from sector s′; under our technology, Mis′ is strictly increasing in zi and is dis-
tributed according to a Pareto with tail ξℓs . Therefore, τis′ inherits the Pareto law of the productivity
distribution z, with

τis′ ∼ Pareto
(
ρℓss′

)
, ρℓss′ = σs′ ξ

ℓ
s

Rescaling by Pℓss′ shifts only the scale (not the tail) of the distribution. Feasibility requires ξℓs > 1,
which implies ρℓss′ > σs′ for all (ℓ, s, s′).
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Seller’s problem. Applying the revelation principle, a seller in sector s′ chooses menus of allo-
cations x(τ) and transfers T(τ) for all buyers i = (ℓ, s, zi). The total profit-maximization problem
is

max
{x(·),T(·)}

∑
ℓ∈{u,r}

∑
s∈S

Nℓ
s Eτis′

[
T(τ) − c j x(τ)

]
(15)

subject to

(LIC) TSℓss′(τ) = TSℓss′(τ) +
σs′

σs′ − 1

∫ τ

τ
x(ω)

σs′−1
σs′ dω,

(IR) TSℓss′(τ) ≥ 0,

(Monotonicity) x(τ′) ≥ x(τ) for τ′ > τ

The local incentive-compatibility constraint (LIC) ensures that truth-telling is optimal for all buyer
types τ locally; (IR) is the individual-rationality constraint, binding for the lowest type τ; and
monotonicity requires that higher buyer types receive weakly larger allocations. Taken together,
(LIC) and monotonicity guarantee that the mechanism is incentive-compatible globally. Because
the objective and constraints are additively separable across (ℓ, s, s′) triples, the problem can be
solved independently for each partition.

Solution concept. The seller’s mechanism design problem is equivalent to the setting of Lemma 1,
and we solve it via the virtual-surplus approach. The sufficient conditions in Lemma 1 are satis-
fied: marginal cost is constant, the revenue function is homogeneous in output, and buyer types
are Pareto-distributed. With one-dimensional type τis′ and quasilinear transfers, expected rev-
enue equals expected virtual surplus. Under the regularity condition ρℓss′ > σs′ (increasing virtual
value), the problem separates across (ℓ, s) for a given seller sector s′ and is solved pointwise in τ;
transfers follow from the envelope formula with IR binding at τ.

Proposition 1 (Optimal Nonlinear Price for Upstream Sellers). In equilibrium, the optimal contract
offered by an upstream seller j ∈ Us′ to any buyer i = (ℓ, s, zi) is a two-part tariff:

Ti j = pℓjs mi j + Fℓjs

with marginal (allocative) price

pℓjs = µℓss′ c j, µℓss′ =
ρℓss′

ρℓss′ − 1
, ρℓss′ = ξℓs σs′

a constant markup over marginal cost within each buyer type–sector (ℓ, s) for a given seller sector s′.
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The fixed component Fℓjs is chosen so that the lowest buyer type obtains zero surplus:

Fℓjs =
1

σs′ − 1
τis′(z)

(
Mis′(z)

) σs′ −1
σs′

 pℓjs
Pℓss′


1−σs′

=

(
z j

z̃ u
s′

)σs′−1

F
ℓ
ss′ , τis′ = Pℓss′ M1/σs′

is′

Here, F
ℓ
ss′ denotes the average flat fee per seller in sector s′:

F
ℓ
ss′ ≡

1
Nu

s′

1
σs′ − 1

τis′(z)
(
Mis′(z)

)σs′−1
σs′

Proof sketch and verification of the guesses. For upstream sellers (virtual surplus), fix a seller
sector s′ and a seller j ∈ Us′ . Because the objective and constraints are additively separable across
buyer partitions (ℓ, s), the mechanism is solved partition-by-partition. By Lemma 1 with type τis′

(Pareto tail ρ ℓss′), the partition problem is

max
x(τ)

N ℓ
s Eτis′

[(
τ − g−1(τ)

) σs′

σs′ − 1
x(τ)

σs′ −1
σs′ − c j x(τ)

]
For Pareto, g−1(τ) = τ/ρ ℓss′ , so the virtual value is increasing when ρ ℓss′ > σs′ . The FOC yields a
constant markup within the partition:

p ℓjs = µ ℓss′ c j, µ ℓss′ =
ρ ℓss′

ρ ℓss′ − 1

and the fixed component is pinned down by IR at the lowest buyer type z ℓs :

F ℓjs =
1

σs′ − 1
τis′(z ℓs )

(
Mis′(z ℓs )

)σs′ −1
σs′

 p ℓjs
P ℓ

ss′


1−σs′

For upstream sellers (homogeneous revenue), constant allocative prices p ℓjs = µ ℓss′c j and the
CES share rule imply, after aggregating over buyers and partitions, that total output Q j is propor-
tional to c−σs′

j times an aggregate demand term that depends on buyer masses, price indices, and

materials bundles (see Appendix C.2). Equivalently, c 1−σs′

j is proportional to Q(σs′−1)/σs′

j . Both the
per-unit revenue and the fee component scale with the same CES share, so total revenue scales
as R j ∝ Q (σs′−1)/σs′

j , up to a sector-s′ constant that aggregates buyer-side objects. This verifies
Guess 1 (two-part tariffs) and Guess 2 (homogeneous revenues) for upstream sellers.

For retailers (ℓ = r), uniform pricing under within-sector CES demand yields revenue propor-
tional to Q(φs−1)/φs

j with a shifter depending on the retail price index Ps and expenditure θsY (with
PY ≡ 1), as shown in Appendix C.1. This completes the verification of Guess 2 for retailers and,
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together with the upstream case, confirms both guesses.

4.5 Other Pricing Regimes for Welfare Comparisons

We compare the nonlinear-pricing benchmark to two counterfactual policies: (i) monopolistic
competition with uniform prices, which corresponds to a complete ban on price discrimination;
and (ii) a planner-implemented allocation in a decentralized equilibrium, which is attained with a
ban on price discrimination and an output subsidy that restore marginal cost pricing conditional
on entry.

Monopolistic competition (uniform pricing). Under uniform pricing, each upstream seller j ∈
Us′ charges the same CES markup over marginal cost to all buyers, regardless of their partition
(ℓ, j):

p ℓ,Lin
js = µLin

s′ c j µLin
s′ ≡

σs′

σs′ − 1

where c j is the marginal cost of seller firm j. Thus, in contrast to nonlinear pricing, allocative
prices do not vary across buyer partitions.

Retailers in sector s sell to final demand at the CES markup,

µ r,Lin
s =

φs

φs − 1

For buyers of type ℓ in sector s, the CES price index for inputs from upstream sector q is

P ℓ,Lin
ss′ =

(∫
j∈Us′

(
p ℓ,Lin

js

) 1−σs′

dνs′( j)
) 1

1−σs′

= µLin
s′

(∫
j∈Us′

c 1−σs′

j dνs′( j)
) 1

1−σs′

where dνs′( j) integrates over active upstream firms in sector s′, with free entry in each (ℓ, s).

Lemma 2 (Efficiency with CES markups and per-unit output subsidies). Consider the economy under
a complete ban on price discrimination, so all sellers post uniform prices: each upstream seller sector s′ ∈ S
and retail sector s ∈ S sets the CES markup over marginal cost. The efficient allocation is achieved if the
government rebates a per-unit output subsidy that restores marginal-cost pricing conditional on entry:

p Lin
j = µLin

s′ c j, µLin
s′ =

σs′

σs′ − 1
, τu

s′ =

1 −
1
µLin

s′

 c j =
1
σs′

c j;

p r,Lin
i = µ r,Lin

s ci, µ r,Lin
s =

φs

φs − 1
, τ r

s =

1 −
1

µ r,Lin
s

 ci =
1
φs

ci

Then the resulting decentralized equilibrium is efficient.

28



This lemma is a special case of the general result in Theorem 1 of Baqaee and Farhi (2020a)
(details in Appendix C.3). Efficiency is obtained in a decentralized equilibrium when each variety
charges a markup equal to its consumer-surplus ratio and receives output subsidies that exactly
offset the induced within-period pricing wedge. In our CES setting, the consumer-surplus ratio
for an upstream variety coincides with µLin

s′ , and for a retail variety with µ r,Lin
s . Though charging

the CES markup delivers the correct expected profits and thereby ensures efficient entry, it distorts
input choices by acting as a tax on production. An output subsidy is therefore required to undo
this distortion and restore marginal-cost pricing conditional on entry.

4.6 Theoretical Results

We now collect the main equilibrium implications of nonlinear pricing in our supply-chain model.

Result 1: allocative markups under nonlinear pricing. For any buyer partition (ℓ, s) and seller
sector s′, the allocative markup under nonlinear pricing is strictly below the uniform-CES markup:

µ ℓss′ =
ρ ℓss′

ρ ℓss′ − 1
<

σs′

σs′ − 1
since ρ ℓss′ = ξ ℓs σs′ with ξ ℓs > 1

Under uniform pricing, the markup is determined by the elasticity of substitution. In nonlinear
pricing, it is instead determined by a combination of the elasticity of substitution and the Pareto-
tail distribution parameter. This aligns marginal revenue more closely with the shape of demand,
because price discrimination allows the seller to extract surplus through flat fees rather than dis-
torting marginal allocations. Consequently, nonlinear pricing reduces allocative distortions at the
margin relative to uniform pricing.

Result 2: Seller-identity invariance of the total unit markup. Fix a seller sector s′ and a buyer
partition (ℓ, s). For any seller j ∈ Us′ and buyer i = (ℓ, s, zi), the per-unit payment decomposes as

Ti j

mi j
= p ℓjs +

F ℓjs
mi j

The resulting total unit markup (unit price over marginal cost) satisfies

Ti j

mi j

c j
= µ ℓss′

(
1 + χ ℓss′(i)

)
, µ ℓss′ =

ρ ℓss′

ρ ℓss′ − 1

where χ ℓss′(i) is a buyer-specific scalar defined in Appendix C.4. It depends on (ℓ, s) objects (the
sectoral price index and the buyer’s sector–s′ bundle, including the lowest buyer type) but not on
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the seller j. Hence, within a given buyer partition, the total unit markup is invariant to the seller’s
identity.

Result 3: Average flat fee paid to seller sector s′ determinants. For any buyer partition (ℓ, s)
with lowest type z ℓs , the average flat fee paid to seller sector s′ is

F
ℓ
ss′ =

P ℓ
ss′ Mis′(z ℓs )

N u
s′ (σs′ − 1)

=
ψ ℓ

s

σs′ − 1
(1 − α ℓs )θ ℓss′

R ℓ
s (z ℓs )
N u

s′

Here, R ℓ
s (z ℓs ) denotes the revenue of the lowest–type buyer in (ℓ, s), Mis′(z ℓs ) the corresponding

sector-s′ materials bundle, P ℓ
ss′ the sectoral price index faced by (ℓ, s), and N u

s′ the mass of active
upstream sellers in s′.

Five forces shape flat fees from buyers in (ℓ, s) to seller sector s′: (i) lowest-type revenue R ℓ
s (z ℓs )

raises extractable rents; (ii) revenue curvature ψ ℓ
s (from Ri = A ℓ

s Qψ ℓs
i ) scales marginal surplus—

more concavity lowers fees; (iii) input importance (1 − α ℓs )θ ℓss′ increases the surplus a seller can
extract; (iv) a larger σs′ (greater substitutability) increases competition, reducing the market power
and thus the surplus a seller can extract through fees; and (v) a larger N u

s′ dilutes rents across more
sellers, lowering the average fee.

Result 4: Firm profits rely on flat fees. With two–part tariffs, profits decompose into a marginal
(per-unit) component and a fixed (flat-fee) component. This holds for upstream sellers and for
retailers. This decomposition highlights which forces move profits: allocative markups on the
margin, and the incidence of fixed transfers across buyer-seller pairs. For an upstream seller j ∈
Us′ ,

E
[
Πu

j

]
=

∑
ℓ∈{u,r}

∑
s∈S

∫
i∈Fℓs

(
p ℓjs − c j

)
mi j dνℓs(i)︸                                      ︷︷                                      ︸

allocative margin

+
∑
ℓ∈{u,r}

∑
s∈S

∫
i∈Fℓs

F ℓjs(i) dνℓs(i)︸                            ︷︷                            ︸
flat-fee revenue

−

∑
t∈S

∫
h∈Ut

F u
h s′( j) dνt(h)

︸                      ︷︷                      ︸
flat-fee payments

For a retailer i ∈ Rs,

E
[
Π r

i

]
=

(
1
φs

)
Ri︸ ︷︷ ︸

allocative margin

−

∑
s′∈S

∫
j∈Us′

F r
js(i) dνs′( j)

︸                      ︷︷                      ︸
fees to upstream

Realized profits depend on the specific network of trading partners (which sellers a buyer con-
tracts with, and which upstream tiers a seller sources from). For sector-level analysis, we therefore
work with expected profits; averages over the equilibrium measures νℓs (buyers in partition (ℓ, s))
and νs′ (sellers in sector s′), which collapse partner-specific parameters into sectoral aggregates.
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Here, p ℓjs is the allocative (marginal) price charged by seller j to buyers in (ℓ, s), c j is seller j’s
marginal cost, mi j is buyer i’s quantity purchased from j, and F ℓjs(i) is the flat fee paid by buyer i to
seller j. The set Fℓs collects active buyers in (ℓ, s) with measure νℓs;Ut is the set of upstream sellers
in sector t with measure νt. The payment F u

h s′( j) denotes the flat fee that seller j (as a buyer of type
u in buyer sector s′) pays to its upstream supplier h ∈ Ut.

The allocative margin captures the usual markup-cost wedge times purchased quantities; un-
der nonlinear pricing, Result 1 implies that these markups are lower than under uniform pricing,
shrinking this component. The flat-fee terms redistribute surplus based on each seller’s CES share
in a buyer’s materials bundle and on how important inputs are in production (via the θ’s). In
expectation, the network of bilateral contracts integrates out to sectoral objects, so expected up-
stream profits can be expressed as affine functions of sectoral labor expenditures (Appendix C.5),
and profits of lowest-productivity retailers hinge on input substitutability and input cost shares
(Appendix C.5). allocative markups.

The fact that profits need not vanish contrasts with the standard mechanism-design bench-
mark, in which the lowest type’s surplus is pinned to zero. Here, bilateral surplus is zero at the
margin of each input transaction, but integrating across all transactions leaves residual profits
(through labor, which is not price-discriminated) or, conversely, negative profits when interme-
diates are insufficiently substitutable. In the Leontief limit, each supplier’s marginal contribution
equals the buyer’s total surplus, so every supplier attempts to appropriate the full rent. This drives
the lowest type’s profit below zero and generates a hold-up problem that deters entry.

Flat fees are inframarginal: they do not affect first-order input choices or final demand, but
they do reallocate surplus along the chain. With a representative owner, these transfers net out at a
point in time; in general equilibrium, however, they shift free-entry conditions across (ℓ, s), altering
the mass of active varieties and sectoral price indices. Hence, welfare in the counterfactuals will
be shaped by two channels: (i) changes in allocative markups (marginal wedges), and (ii) the
reallocation of flat-fee income that tilts entry across sectors. In the next section, we formalize these
channels and map welfare changes to sufficient statistics tied to markups, price indices, and entry
margins.

4.7 Welfare Decomposition: Intensive vs. Extensive Margins

In this section, we represent changes in welfare as a function of sectoral markups and sectoral
firm masses. Under our Pareto-distributed firm types and CES aggregators (elasticities φ, σ > 1),
firm-level heterogeneity collapses to sectoral sufficient statistics, so the welfare decomposition can
be conducted with sector-level objects (markups, masses, elasticities) without requiring firm-level
microdata. We set the wage as numeraire and under free entry, aggregate welfare is the inverse of
the final-good price index, W ≡ 1/PY. The price index satisfies log PY =

∑
s∈S θs log Ps, where θs

are final-expenditure shares.
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To decompose welfare, we introduce input-output objects. We define the row vector of retail
final-demand shares as b := (θs)s∈S ∈ R

1×|S| and Ω as the cost-based input-output matrix stacking
retail and upstream sectors, of dimensions 2|S| × 2|S|. Each element of Ω captures the direct cost
exposure of buyers to their upstream input suppliers. We single out two |S| × |S| blocks:

Ωuu
∈ R|S|×|S|, Ωru

∈ R|S|×|S|

with elements, for buyer sector s and seller sector s′,

Ωuu
ss′ := (1 − αu

s )θu
ss′ , Ωru

ss′ := (1 − α r
s )θ r

ss′

The upstream cost-based Leontief inverse, which accounts for direct and indirect exposures through
the supply chain, is

Ψuu := (I −Ωuu)−1

Because the final-good aggregator is separable across retail sectors, the retail-consumer map
is the identity, so b already reflects direct retail exposure. We then define sectoral final-demand
exposures (in the style of Baqaee and Farhi (2020b)) as scalars, for each s ∈ S:

λ̃cr
s := bs, λ̃ru

s :=
∑
v∈S

λ̃cr
v Ω

ru
vs , λ̃uu

s :=
∑
v∈S

λ̃ru
v Ψ

uu
vs

and, in vector form,
λ̃cr = b, λ̃ru = bΩru, λ̃uu = bΩruΨuu

In our decomposition, each seller sector can charge distinct markups to different buyer sec-
tors. This structure allows us to capture welfare effects arising from buyer-specific (nonlinear
and buyer-sector-based) pricing observed in firm-to-firm data. To load buyer–seller markups, we
define matrix-valued exposures:

Λru := Diag(b)Ωru
∈ R|S|×|S|, Λuu := Diag(bΩru)Ψuu

∈ R|S|×|S|,

where Diag(b) denotes the diagonal matrix with the elements of b on its main diagonal, so that the
entry Λru

ss′ = bsΩ
ru
ss′ measures final-demand exposure of retail buyer s to the upstream seller s′, and

Λuu
us′ = (bΩru)uΨ

uu
us′ measures exposure of upstream buyer u to upstream seller s′ along indirect

paths. We retain the scalar/vector exposures λ̃cr = b, λ̃ru = bΩru, and λ̃uu = bΩruΨuu for objects
that remain sectoral.

Let 1 be the all-ones vector in R|S|. Define column-sum (per-seller) exposures as

λ̄ru := Λru⊤1 ∈ R|S|, λ̄uu := Λuu⊤1 ∈ R|S|,

32



so that λ̄ru
s′ =

∑
sΛ

ru
ss′ and λ̄uu

s′ =
∑

uΛ
uu
us′ . For each seller s′ with λ̄ru

s′ > 0, define normalized buyer
weights:

ωru
s|s′ :=

Λru
ss′

λ̄ru
s′
, ωuu

u|s′ :=
Λuu

us′

λ̄uu
s′

(if λ̄uu
s′ > 0),

and the exposure-weighted seller-level markup changes:23

∆ log µ̄ ru
s′ :=

∑
s
ωru

s|s′ ∆ logµ ru
ss′ , ∆ log µ̄uu

s′ :=
∑

u
ωuu

u|s′ ∆ logµuu
us′ .

Let µ r
s denote the retail–consumer markup in sector s, stacked as a vector µ r

∈ R|S|. To allow a
seller sector to charge different markups to different buyer sectors, define the buyer–seller markup
matrices:

µ ru
∈ R|S|×|S|, µuu

∈ R|S|×|S|,

with entries µ ru
ss′ (retail buyer s purchasing from upstream seller s′) and µuu

us′ (upstream buyer u
purchasing from upstream seller s′). Firm masses are N r

s for retail sector s and N u
s for upstream

sector s, stacked as vectors N r,N u
∈ R|S|. Elasticities are φs > 1 (retail) and σs > 1 (upstream),

stacked as φ, σ ∈ R|S|.

Proposition 2 (Exact welfare decomposition24). Fix the exposure objects λ̃cr,Λru,Λuu defined above and
sectoral/matrix objects {µ r

s }s∈S, µ ru
∈ R|S|×|S|, µuu

∈ R|S|×|S|, N r,N u
∈ R|S|, φ, σ ∈ R|S| with φs, σs > 1.

The change in welfare satisfies25

∆ log W = −
∑
s∈S

λ̃cr
s ∆ logµ r

s −

∑
s′∈S

λ̄ru
s′ ∆ log µ̄ ru

s′ −

∑
s′∈S

λ̄uu
s′ ∆ log µ̄uu

s′︸                                                                       ︷︷                                                                       ︸
Intensive margin (markups)

+
∑
s∈S

λ̃cr
s

φs − 1
∆ log N r

s +
∑
s′∈S

λ̃uu
s′

σs′ − 1
∆ log N u

s′︸                                                  ︷︷                                                  ︸
Extensive margin (firm masses)

The first brace (intensive margin) captures the allocative effect of markups on the final-good
price index. Changes in retail-consumer markups are weighted by λ̃cr

s ; buyer-specific retail-upstream
markups load with the components of λ̃ru; and upstream–upstream markups load with the com-
ponents of λ̃uu. Sectors with larger exposure to final demand therefore exert a disproportionately
large influence on log W: a given percentage change in a high-exposure sector’s markup moves
aggregate welfare more.

23If a λ̄ entry is zero, set the corresponding composite change to zero by convention.
24This proof comes from building a linear system linking sectoral price index changes to pairwise markup shocks

and changes in the mass of active firms via the input-output matrix Ω. Solving this system provides an exposure
map from (i) markups to prices (intensive margin) and (ii) variety/entry to prices (extensive margin), both with final-
demand weights. Full derivations are in Appendix C.6.

25Here, λ̃ru ∆ logµ r and λ̃uu (∆ log N u/(σ − 1)) denote row–column contractions; the division by (σ − 1) is element-
wise. All ∆ log(·) act componentwise across sectors. If composition (selection) effects were present, an additional term
involving CES selection objects would enter the identity; under our Pareto-type assumption, composition is invariant
and that term is zero.
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The second brace (extensive margin) captures how the masses of active varieties affect variety-
adjusted price indices. Retail entry loads with λ̃cr

s /(φs − 1), while upstream entry loads with λ̃uu
⊙

(σ−1)−1 (elementwise). The exposure vectors λ̃cr, λ̃ru, λ̃uu act as general-equilibrium multipliers—
closely analogous to cost-based Domar weights in more general production-network multipliers
models ((Baqaee and Farhi, 2020b))—that translate sectoral markups and entry responses into
aggregate welfare changes. Hence, losses from market power and from variety distortions are
weighted by position in the supply chain and exposure to final demand.

Comparing pricing regimes amounts to evaluating the same decomposition across different
equilibria. Nonlinear pricing weakens allocative markups relative to uniform pricing, unambigu-
ously raising the intensive margin of welfare, with gains scaled by the exposure vectors. Flat
fees are inframarginal and operate through participation and entry; the extensive component can
therefore amplify or offset the intensive gains depending on how firm masses adjust in highly
exposed sectors. Overall, the net welfare effect is governed by the exposure maps and the induced
general-equilibrium entry responses; we quantify these forces in the next section.

5 Model Calibration and Quantification

Using population-level data on firm-to-firm transactions and firm accounts from Chile, we con-
duct three quantitative exercises that address three distinct questions. The first question asks how
much of the quantity discounts observed in the data can be explained by the price-discrimination
model presented in Section 4. We do not calibrate parameters to match observed quantity dis-
counts directly. Instead, we calibrate the model to moments of the firm-size distribution and then
ask, given this calibration, how much of the observed quantity discounts the model can rational-
ize.

The second question examines the aggregate welfare implications of price discrimination:
what is the effect of allowing firms to set nonlinear prices, and how would welfare change un-
der a policy banning all forms of price discrimination? To answer this, we calibrate the model
developed in Section 4 under nonlinear pricing, then we perform a counterfactual experiment in
which we impose a ban on price discrimination while holding model parameters fixed and solving
for the new equilibrium.

The third question concerns the aggregate welfare implications of market power, which we ap-
proach as a measurement exercise. We estimate technology and demand primitives and calibrate
the model under two pricing regimes—nonlinear and uniform. Throughout, we refer to these two
model specifications as lenses, to emphasize that each represents a distinct way of interpreting
the same economic environment. In this sense, the model serves as an interpretive lens through
which we measure and compare the welfare consequences of observed market outcomes.

Quantitatively, the model provides a close fit to the quantity discounts observed in the data.
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Taking the nonlinear regime as the empirically relevant baseline, a ban on price discrimination
would reduce welfare from 0.75 to 0.49 of the efficient benchmark. From a measurement perspec-
tive, welfare under nonlinear pricing attains 0.75 of the efficient benchmark, compared with 0.57
under uniform pricing.

5.1 Parameter Estimation

We use Chilean administrative microdata (2005–2022), firm accounts (revenues, wage bill, head-
counts, profits, capital), and the universe of firm-to-firm transactions (quantities, prices, counter-
parties, locations). Parameters tied to technology are measured at fine granularity (6-digit sector
by firm type) and mapped to the model’s 11 sectors as needed.

Table 3 summarizes the parameters, methods, and granularities used.

Table 3: Estimated Parameters

Parameter Strategy Granularity

Labor output elasticity (αs) Calibrated from data 626 sectors × firm type

Final demand elasticity (θr) Calibrated from data 626 sectors

Input-output elasticity (θiu) Calibrated from data 626 sectors × firm type

Final demand-bundle elasticity (φ) Pin down by CES results and data 11 sectors

Material-bundle elasticity (σ) COVID-19 shock for Chile estimation 11 sectors

Exit rate(δ) Calibrated from data 626 sectors

Entry cost (ce) Pin down by free entry and data 626 sectors × firm type

Productivity Pareto tail (κ) MLE estimation 11 sectors × firm type

We calibrate the model under two lenses that interpret observed unit prices differently. Under
the nonlinear-pricing lens, two-part tariffs imply that average unit prices converge to marginal
prices as quantities rise; we therefore construct moments on a large-firm subsample, where flat-
fee dilution makes observed unit prices close to marginal (allocative) prices. Under the uniform-
pricing lens, per-unit prices are treated as marginal and quantity-invariant within seller-product-
time cells; moments are computed on the full firm population. Appendix D details each estimator
and reports results under both lenses.

Labor output elasticity (αs). This parameter is the Cobb-Douglas weight on primary inputs (la-
bor plus the user cost of capital) in production. We recover it from firm accounts as the nonmaterial
cost share at the 6-digit sector and firm-type level, restricting to large firms to align observed unit
prices with marginal prices and winsorizing extremes for stability. Because flat fees are small for
these firms, variable-cost shares are reliable proxies for total-cost shares. αs governs how sectoral
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output responds to wages relative to materials prices: higher αs amplifies labor-market impor-
tance on aggregate welfare relative to inputs from other other firms.

Final demand output elasticity (θr). For large firms, they can be interpreted as Cobb-Douglas
weights that allocate the representative consumer’s expenditure across retail sectors. With uni-
form pricing to final consumers, retailer revenues identify sectoral expenditure; we form each
sector’s share of aggregate retail sales using large firms and average across years. These shares
anchor the final-demand system and the welfare accounting used in counterfactuals.

Input-output elasticity (θiu). For large firms, they can be interpreted as buyer-facing expendi-
ture shares on upstream seller sectors within the materials bundle. Using transaction-level data,
we compute for each buyer the fraction of variable materials spending sourced from each up-
stream sector, aggregate to 6-digit industries within year, and average over time. The resulting
matrix provides the micro foundation of the input-output network, determining exposure pat-
terns and the scope for intensive-margin substitution when relative prices move.

Final demand-bundle elasticity of substitution (φ). This parameter is the elasticity of substitu-
tion across retail varieties within a sector and, under uniform pricing, coincides with the inverse
markup. We recover it from sectoral accounts implied by CES demand, linking pooled sectoral
sums of profits for large retailers and averaging across years. Higher φ indicates keener compe-
tition and smaller allocative distortions; lower φ sustains higher markups and larger deadweight
losses.

Material-bundle elasticity (σ). This parameter measures how easily buyers substitute across va-
rieties within an upstream seller sector in response to relative marginal price changes. We exploit
the quasi-experimental disruptions from Chile’s early COVID-19 lockdowns (March 2020) by in-
strumenting the main preshock supplier’s relative price change with that supplier’s lockdown ex-
posure, estimating sector-specific elasticities via two-stage least squares on 12-month differences,
focusing on large buyers, and excluding cases with potentially confounded exposure (buyer loca-
tion, buyer customers, or other inputs locked down).26 A higher value of σ implies greater sub-
stitutability across suppliers and therefore stronger intensive-margin reallocation. Conversely, a
lower σ indicates weaker substitutability, leading to more-persistent and less-flexible buyer–seller
relationships.

Exit rate ()δ). This parameter is the one-year hazard that an active firm ceases operations. We
compute it at the 6-digit sector interacted with firm-type level by tracking the share of firms

26For sectors with estimates below one, we conservatively adopt the smallest value above one from other sectors.
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present in a given year that are not observed in the following year, and then averaging over 2005–
2022. This object disciplines the expected lifespan of an entrant and, together with the discount
rate, determines how quickly future profits are attenuated. Higher δ raises the payoff required
to justify entry, thins steady-state firm mass for given fundamentals, and shifts the balance be-
tween churn and scale. Sectors with elevated exit rate display a larger role for extensive-margin
adjustments.

Entry cost (ce). Entry costs are the labor-measured sunk resources required to create an operating
firm. We combine sector-type averages of accounting profits and wages with the empirically esti-
mated exit rates and a standard discount rate to obtain the expected present value of a surviving
firm; free entry equates that value, scaled by the share of positive-profit firms, to the labor cost of
entry. We report both currency units and “wage-bill equivalents” for comparability across sectors.
Higher ce depresses equilibrium firm mass and raises average scale, sharpening how nonlinear
pricing interacts with the extensive margin and rent allocation across links.

Productivity Pareto tail (κ). This parameter governs the thickness of the upper tail of the firm
productivity distribution. The model implies a theoretical relationship between the productivity
tail parameter κ, the input tail parameter ξ, and the elasticity of substitution σ (or φ), given by

ξ =
κ

σ − 1

We estimate the input Pareto tail exponent for firm employment using maximum likelihood on the
upper tail of the firm size distribution, measured in terms of labor, then we map it to productivity
using the model’s monotonic link between productivity and input use. The parameter ξ plays a
central role in determining allocative efficiency under nonlinear pricing: it governs the extent to
which nonlinear contracts mitigate the allocative distortions that would arise under linear uniform
pricing. In particular, allocative markups in this model are given by ρ = ξσ, whereas under
uniform pricing they depend solely on σ.

Together, these objects pin down (i) how easily buyers and consumers reallocate across vari-
eties (σ, φ), (ii) how strongly sectors load on wages versus materials costs (α), (iii) who buys what
from whom and in what proportion (θ), (iv) how many firms enter and survive (ce and δ), and (v)
how dispersed productivity is within sectors (κ). This configuration determines the balance be-
tween intensive reallocation and extensive entry/exit in the quantification and the extent to which
nonlinear pricing redistributes surplus without distorting marginal allocations.
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5.2 Quantity Discounts: Model vs. Data

After calibration, we assess empirical validity by confronting the model’s quantity-dependent
unit prices with the data. Figure 6 contrasts the model-implied quantity discounts with our fixed-
effects estimates from the data section. Panel A plots unit prices charged by the average upstream
firm to retailers as a function of purchased quantity. We construct the quantity axis by evalu-
ating the model’s optimal schedule q(z) of the z distribution and rescaling q(z) monotonically to
the interval [1, 50]. The “average upstream firm” aggregates seller-product schedules using sector
final-demand weights and sales weights over seller-product-time cells. Panel B fixes the seller to
be in the Retail and Wholesale sector (the sector with the largest transaction counts) and plots the
model implied unit-price schedules to selected buyer sectors under the same quantity normaliza-
tion as in Panel A.

Figure 6: Calibrated Model Unit Prices

Panel A. Calibrated Model Unit Prices vs.
Data Fixed-Effects Regression

Panel B. Model Retail and Wholesale Sector
Unit Prices to Selected Buyer Sectors

Notes: Panel A contrasts model-implied quantity discounts with data-based estimates from a within-cell fixed-effects
regression (controlling for seller, buyer-group, product, and time). The model curve reports the average upstream firm’s
unit-price schedule to retailers; we rescale to 50 bins so that q ∈ [1, 50]. The y-axis shows the percentage deviation of
the unit price relative to q=1. Panel B fixes the seller to the Retail and Wholesale sector and plots model unit-price
schedules to selected buyer sectors under the same normalization.

Quantity-discount moments were not targeted in calibration; parameters were pinned down
by independent technology and market-share moments. Nevertheless, the model reproduces the
negative unit price–quantity gradient observed in the data. Across buyer sectors within the Retail
and Wholesale seller sector, the model captures level shifts in the schedule, consistent with the
heterogeneous nonlinear pricing across buyer sectors that we observed in the data.
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5.3 Counterfactual: Ban on Price Discrimination

Motivated by pervasive quantity-dependent and group-specific pricing in the data, we study a
regulatory counterfactual that bans price discrimination: upstream firms must charge a single,
quantity-invariant per-unit price to all buyers (no fixed fees, no buyer- or sector-specific prices,
no quantity schedules). We implement the ban by holding the primitives at the nonlinear price
calibration—technology, demand, and firm-type distributions fixed—and re-solving the general
equilibrium with the contract set restricted to uniform linear pricing. Retail-to-consumer margins
are held fixed to isolate the firm-to-firm transaction channel. All endogenous objects (upstream
markups to retailers and to upstream buyers, firm entry and masses, and price indices) adjust to
their new equilibrium values, yielding a comparison between the nonlinear-pricing benchmark,
the uniform-pricing counterfactual, and the efficient (marginal-cost) allocation. Selection is inac-
tive (full participation): with Pareto-distributed productivities and no operating fixed costs, every
type participates under both regimes; only equilibrium masses adjust.27

We organize the counterfactual analysis in three steps. First, we report the aggregate wel-
fare effect of a ban on price discrimination relative to the nonlinear-pricing baseline; that is,
WUni/WNLP. Second, we decompose this ratio into intensive and extensive components using
the accounting identity in Equation (16) that follows from Proposition 2. The intensive mar-
gin captures regime differences in upstream markups to retailers and to other upstream buyers,(
µur

s , µ
uu
s

)
, while the extensive margin captures equilibrium changes in the masses of retail and

upstream firms,
(
Nr

s,Nu
s

)
, both weighted by final-demand exposure weights. Third, we further

decompose each margin by sector and firm type (upstream vs. retail) to identify where welfare
gains and losses are concentrated.

In both regimes, labor allocated to entry must increase relative to the efficient benchmark,
since positive markups depress labor demand and thereby release labor for entry. By the same
logic, labor used for entry must decline under nonlinear pricing relative to the uniform-pricing
benchmark. Nonetheless, the overall extensive-margin effect on welfare is a priori ambiguous, as
final-demand exposure varies across sectors.
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=
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(16)

Aggregate welfare. If a ban on price discrimination forced upstream firms to charge a single,
quantity-invariant per-unit price, aggregate welfare would fall from 0.748 in the baseline (non-

27A natural variant bans second-degree (nonlinear) pricing while permitting third-degree (buyer-group–specific)
linear prices. We do not pursue it here because (i) antitrust practice typically targets both forms and (ii) both are
needed to rationalize the observed schedules.
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linear pricing) to 0.486 under the ban (Table 4), both relative to the efficient benchmark. This
corresponds to a 35% decline in welfare

(
1 − 0.486/0.748

)
. Equivalently, the efficiency shortfall

would widen from 25.2 to 51.4 percentage points, roughly doubling the distance from efficiency.

Table 4: Aggregate Welfare, Decomposition, and Firm Masses (relative to efficiency)

Price Regime W
·/WEff Intensive Extensive Upstream Mass Retail Mass W

Uni/WNLP

Nonlinear (NLP) 0.748 0.67 (79%) 1.12 (21%) 1.18 1.17
0.650

Uniform (Uni) 0.486 0.46 (93%) 1.06 (7%) 1.00 1.44

Notes: NLP uses two-part tariffs with buyer-specific pricing, Uni imposes a single per-unit price (no fixed fees; no
buyer-specific prices), and Eff implements marginal-cost pricing. Entry and firm masses are re-solved in each regime.
Intensive captures markup accumulation along supply chains; Extensive captures entry (variety) effects via free entry.
By construction, Intensive × Extensive =W·/WEff, and the shares in parentheses are fractions of absolute log contri-
butions: | log(Intensive)|/

(
| log(Intensive)|+ | log(Extensive)|

)
and analogously for the extensive component. Mass ratios

are Nu,R/Nu,Eff and Nr,R/Nr,Eff.

Aggregate intensive vs. extensive contributions and entry responses. We quantify how the ban
operates relative to efficiency through two margins: an intensive margin that summarizes alloca-
tive markups from upstream markups propagated by final-demand exposure along the supply
chain, and an extensive margin that summarizes general-equilibrium entry responses and the im-
plied masses of active firms. The factors and shares reported in Table 4 are computed from Propo-
sition 2 using the accounting identity in Equation (16); shares (in parentheses) are fractions of
absolute log contributions, since intensive and extensive forces can move in opposite directions.28

Two patterns stand out. First, intensive distortions dominate welfare losses relative to effi-
ciency in both pricing regimes: under nonlinear pricing, 79% of the absolute deviation is intensive,
and under uniform pricing it rises to 93%. Second, the extensive margin is welfare-improving in
both counterfactual but modest: factors exceed one in both regimes (Extensive = 1.12 under NLP
and 1.06 under Uni), yet they are quantitatively too small to offset the larger intensive losses,
especially under the ban.

Entry responses mirror these patterns. Under nonlinear pricing, firm masses rise relative to
efficiency on firm types (Upstream = 1.18, Retail = 1.17), reflecting higher equilibrium expected
profits when part of the rent extraction is collected via fixed fees that do not distort marginal
conditions. Under uniform pricing, upstream mass is essentially unchanged (Upstream = 1.00),
while retail mass expands sharply (Retail = 1.44), but this variety effect is insufficient to counteract
the stronger allocative distortion created by uniform per-unit markups.

28We proportionally scale the reported factors so that their product exactly matches the welfare ratio relative to
efficiency in each regime; the level residual is below 0.03.
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Nonlinear vs. uniform pricing: opening welfare ratios by sector. Table 5 reports multiplicative
sector-margin contributions to the aggregate ratio WNLP/WUni implied by Equation (16). Entries
above one indicate that nonlinear pricing yields higher welfare relative to the ban to revert to
uniform prices through that sector-margin; entries below one indicate the opposite. The first two
columns (“Intensive”) capture allocative effects from upstream markups to retail and upstream
to upstream links; the next two (“Extensive”) capture variety effects from changes in retail and
upstream firm masses. The last column is each sector’s net contribution, and the “Product over
sectors” row approximates the aggregate ratio (the tiny residual vs. Table 4 reflects rounding and
exposure normalization). Final-demand exposure weights λ̃ru

s and λ̃uu
s (stats in Appendix E.1)

pin down how strongly sector-s markups load into final-demand prices and thus how powerful
intensive relief will be.29

Table 5: Aggregate Welfare Decomposition by Sector: Nonlinear Relative to Uniform Pricing

Sector
Intensive (allocative) Extensive (variety)

Net NLP/Uni

Retailers Upstream Retailers Upstream

Agriculture 1.010 1.010 0.997 1.005 1.022

Mining 1.003 1.003 0.999 1.014 1.019

Manufacturing 1.024 1.029 0.991 1.002 1.047

Utilities 1.016 1.006 0.996 1.033 1.051

Construction 1.061 1.022 0.980 1.119 1.189

Retail and Wholesale 1.037 1.070 0.992 1.005 1.106

Transport and ICTs 1.007 1.023 0.981 1.000 1.011

Financial Services 1.012 1.008 0.943 0.998 0.960

Real Estate Services 1.009 1.004 0.996 1.023 1.033

Business Services 1.005 1.006 0.989 0.999 0.999

Personal Services 1.001 1.001 0.998 1.000 1.000

Product over sectors 1.197 1.198 0.870 1.207 1.507

Notes: Entries are multiplicative sector-margin contributions to the aggregate ratio WNLP/WUni per Equation (16). In-
tensive (Retailers) and Intensive (Upstream) correspond to exposure-weighted allocative components on upstream→retail
(Iur

s ) and upstream→upstream (Iuu
s ) links, respectively; Extensive (Retailers) and Extensive (Upstream) are variety com-

ponents from retail and upstream masses (Er
s,Eu

s ). Values > 1 indicate that nonlinear pricing raises welfare relative to
uniform pricing through that sector-margin; values < 1 indicate the opposite. The sectoral Net NLP/Uni equals the
product Iur

s · Iuu
s · Er

s · Eu
s . The Product over sectors row reports

∏
s Iur

s ,
∏

s Iuu
s ,

∏
s Er

s, and
∏

s Eu
s ; their product approximates

the aggregate ratio in Table 4, with small differences due to rounding and exposure normalization.

Two patterns are immediate on the intensive side. First, higher welfare under nonlinear prices
relative to the ban is broad-based: intensive factors exceed one in every sector; nonlinear prices
unambiguously improve welfare across all sectors relative to uniform prices on the intensive mar-

29In our data, these exposures are concentrated in Retail and Wholesale, Manufacturing, Transport and ICTs, and
Construction; consequently, attenuating double marginalization in these sectors delivers outsized intensive gains, while
extensive responses are smaller and mixed across sectors.
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gin due to attenuated double marginalization. Second, improvements are largest in sectors that
are highly exposed to final demand: Construction (Retailers = 1.061, Upstream = 1.022), Retail
and Wholesale (1.037, 1.070), Manufacturing (1.024, 1.029), and Utilities (1.016, 1.006). These sec-
tors account for the bulk of the markup-relief advantage of nonlinear pricing.

On the extensive side, the pattern is mixed but small in magnitude. Upstream variety gen-
erally expands under nonlinear pricing (e.g., Construction = 1.119, Utilities = 1.033, Real Estate
= 1.023, Mining = 1.014), while retail variety often contracts (e.g., Construction = 0.980, Manu-
facturing = 0.991, Retail and Wholesale = 0.992, Transport and ICTs = 0.981, Financial Services
= 0.943). This is consistent with fixed-fee rents shifting expected profits upstream: entry tilts to-
ward upstream sectors while retail entry is less favored. Quantitatively, these variety terms are
too small to overturn the intensive gains.

Netting all four columns, nonlinear pricing yields higher welfare relative to uniform pricing
in most sectors, with the largest contributions from Construction (1.189) and Retail and Wholesale
(1.106), followed by Utilities (1.051) and Manufacturing (1.047). Financial Services is the lone siz-
able exception (0.960), and Business Services is essentially neutral (0.999). These sectoral patterns
mirror the exposure weights emphasized in the decomposition: where final-demand exposure
is high, attenuating double marginalization under nonlinear pricing delivers the largest welfare
gains relative to uniform pricing.

Policy implications. An across-the-board prohibition of quantity discounts is not warranted un-
less accompanied by an output subsidy. The welfare gains from nonlinear pricing arise primarily
through reductions in intensive allocative distortions in upstream sectors with high final-demand
exposure; extensive (entry-variety) effects are positive but quantitatively secondary. Regulation
should first evaluate conduct using marginal (allocative) prices rather than average unit prices.
If nonlinear pricing is pervasive, regulators should target markup accumulation along highly ex-
posed supply-chain links and constrain rent extraction while preserving low marginal prices and
maintaining entry incentives.

5.4 Measurement: Aggregate Welfare, Nonlinear vs. Uniform Lens

We measure aggregate welfare under two pricing lenses, nonlinear and uniform. For the same
data, we use lens-specific pricing parameters conditional on the interpretation of observed unit
prices. Relative to the efficient (marginal-cost) benchmark, welfare equals 0.748 under the nonlin-
ear lens and 0.565 under the uniform lens (Table 6). The welfare shortfall is 25.2% under nonlinear
pricing versus 43.5% under uniform pricing; adopting the nonlinear lens closes 18.3 percentage
points, which is about 42% ( 0.183/0.435) of the uniform-lens efficiency gap. This suggests that
the aggregate costs of market power are lower if measured with a model that allows for price
discrimination.
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Table 6: Welfare: Nonlinear vs. Uniform Lenses (relative to efficiency)

Price Lens W
L/WEff Intensive Extensive

Nonlinear 0.748 0.68 (81%) 1.10 (19%)
Uniform 0.565 0.55 (97%) 1.02 (3%)

Notes: Intensive captures markup accumulation along supply chains; Extensive captures entry (variety) ef-
fects via free entry. By construction, Intensive × Extensive = W

L/WEff, and the shares are computed as
| log(Intensive)|/(| log(Intensive)| + | log(Extensive)|) and | log(Extensive)|/(| log(Intensive)| + | log(Extensive)|), respec-
tively.

Decomposing the welfare ratios, the nonlinear lens implies an intensive factor of 0.68 and an
extensive factor of 1.10, so roughly 81% of the log distance to efficiency comes from the intensive
margin and 19% from the extensive margin. Under the uniform lens, the intensive factor is 0.55
and the extensive factor is 1.02, with about 97% of the log distance accounted for by the inten-
sive margin. These accounting facts map directly into the mechanisms that differ across lenses,
clarifying why the nonlinear lens delivers higher welfare.

Relative to uniform pricing, under nonlinear pricing via two-part tariffs, surplus extraction
shifts toward a combination of a flat fee and per-unit markups: the marginal price moves closer
to marginal cost (smaller intensive loss). The induced change in expected profits (entering the
free-entry condition) is sign-ambiguous because flat fees reallocate surplus across firms and buyer
relationships; in our calibration, average equilibrium expected profits are higher, raising the mass
of entrants (Extensive > 1), expanding variety, and lowering sectoral CES price indices. By con-
trast, under uniform pricing the full rent extraction resides in per-unit markups, distorting all
marginal trades, raising price indices, and depressing variable profits; entry thus provides little
offset, consistent with the near-unit extensive factor in Table 6.

Taken together, measuring the aggregate welfare cost of market power under the nonlinear
lens attenuates allocative distortions at the margin and (in this calibration) strengthens the variety
offset, matching the 0.68 × 1.10 ≈ 0.748 vs. 0.55 × 1.02 ≈ 0.565 welfare levels under identical
technology. Motivated by this quantitative evidence, and given pervasive quantity-dependent
and group-specific pricing in the data, we adopt the nonlinear lens as the empirically grounded
baseline for policy counterfactuals.

6 Conclusion

Price discrimination in supply chains plays a central role in shaping both market efficiency and
the welfare effects of competition policy. Using population-level firm-to-firm transactions from
Chile, we document systematic departures from uniform pricing: unit prices decline with quan-
tity purchased and vary across buyer sectors, consistent with both second-degree (quantity dis-
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counts) and third-degree (buyer-specific schedules) price discrimination. Although these patterns
are consistent with price discrimination and we rule out several alternative explanations, we take a
conservative approach in asking how fully a model of price discrimination can account for the ob-
served—but untargeted—pricing behavior. We develop a multisector general equilibrium model
in which firms simultaneously charge and pay nonlinear prices, calibrated to match the firm-size
distribution.

Under standard assumptions—CES demand, Pareto-distributed productivity—optimal con-
tracts take the form of buyer-sector-specific two-part tariffs: a flat fee and a marginal price. Rel-
ative to uniform pricing, this structure brings marginal prices closer to marginal cost, mitigating
double marginalization along supply chains, while flat fees redistribute profits and affect entry.
Calibrating the model to Chilean data, we find that banning price discrimination reduces welfare
from 75% to 49% of the efficient benchmark, with losses arising primarily from worsened alloca-
tive efficiency in sectors with high final-demand exposure. Entry effects are quantitatively small.
When interpreting the same data as uniform pricing rather than nonlinear pricing, measured wel-
fare is 57% of the efficient benchmark—standard approaches that assume uniform pricing sub-
stantially overstate the welfare costs of market power.

These results carry two key implications. First, broad prohibitions on price discrimination
without output subsidies can reduce welfare by forcing firms to distort quantities rather than
redistribute rents. A policy that prohibits price discrimination is incomplete and may be coun-
terproductive if it is not accompanied with output subsidies. Second, incorporating nonlinear
pricing into models of market power is essential for accurate welfare measurement. Our frame-
work provides a practical methodology, separating allocative from entry channels and mapping
sector-level distortions to aggregate outcomes through input-output linkages.
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A Optimal Nonlinear Price Derivation

Primitives. Consider a screening problem in which a monopolist offers quantity–transfer bun-
dles to buyers with private productivity types z, drawn from distribution F(z) with density f (z)
and support [z,∞). The seller faces constant marginal cost c > 0. The buyer’s revenue function30

is R(z, q), increasing in both arguments and differentiable in z. A contract specifies (q(z),T(z)), so
type z earns net surplus

Π(z) = R(z, q(z)) − T(z).

Seller problem. The seller chooses a menu {q(z),T(z)} to maximize expected profit

max
{q(z),T(z)}

∫
∞

z

[
T(z) − cq(z)

]
f (z) dz,

subject to individual rationality (IR) and incentive compatibility (IC):

Π(z) ≥ 0, Π(z) ≥ R(z, q(z̃)) − T(z̃) ∀z, z̃ ≥ z.

We assume monotone allocations q′(z) ≥ 0, so higher types purchase weakly more.

Envelope and transfers. By the Envelope Theorem,

Π′(z) =
∂R(z, q(z))

∂z
, Π(z) = 0,

so

Π(z) =
∫ z

z

∂R(s, q(s))
∂s

ds, T(z) = R(z, q(z)) −Π(z).

Virtual surplus. Substituting T(z) into the seller’s objective and exchanging the order of integra-
tion yields

Πseller =

∫
∞

z

[
R(z, q(z)) − 1−F(z)

f (z)
∂R(z,q(z))

∂z − cq(z)
]

f (z) dz.

Define the virtual surplus

ϕ(z, q) = R(z, q) −
1

h(z)
∂R(z, q)
∂z

, h(z) =
f (z)

1 − F(z)
,

so that
Πseller =

∫
∞

z

[
ϕ(z, q(z)) − cq(z)

]
f (z) dz.

30If buyers are final consumers, R(z, q) can be interpreted as gross utility.
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Virtual surplus adjusts revenues for the information rents needed to preserve truthful revelation;
the inverse hazard rate 1/h(z) scales those rents.

Functional forms. We now impose the functional forms used in the main text. Let types be
Pareto with shape κ > 1 and, without loss, lower bound z = 1:

f (z) = κz−κ−1, F(z) = 1 − z−κ, h(z) =
κ
z
.

Let revenues be homogeneous and normalized:

R(z, q) = z
σ−1
σ q

σ−1
σ , σ > 1.

Then

ϕ(z, q) = z
σ−1
σ q

σ−1
σ

(
1 −

σ − 1
κσ

)
= z

σ−1
σ q

σ−1
σ

(
ρ − 1
ρ

)
, ρ ≡

σκ
σ − 1

.

Allocation. The integrand is pointwise concave in q, so the optimal q(z) solves

max
q(z)

{ρ − 1
ρ

z
σ−1
σ q

σ−1
σ − cq

}
.

The FOC yields

ρ − 1
ρ
·
σ − 1
σ

z
σ−1
σ q(z)−

1
σ = c ⇒ q(z) = K zσ−1, K =

[
1
c
ρ − 1
ρ

σ − 1
σ

]σ
.

Because κ > 1, then ρ > 1, the coefficient (ρ − 1)/ρ > 0 and the solution is interior for all z.
Moreover, if κ > σ − 1 the integrated objective is finite since the profit integrand scales like zσ−κ−2

under the Pareto tail.

Two-part tariff implementation. Consider an indirect mechanism with tariff T(q). A type z
chooses q to satisfy

T′(q) =
∂R
∂q

(z, q) =
σ − 1
σ

z
σ−1
σ q−

1
σ .

Evaluated at the target allocation q(z) = Kzσ−1,

∂R
∂q

(
z, q(z)

)
=
σ − 1
σ

z
σ−1
σ

(
Kzσ−1

)− 1
σ =

σ − 1
σ

K−
1
σ ,

which is independent of z. Hence T′(q) ≡ pNLP is constant on the implemented range and

T(q) = F + pNLPq.
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To pin down pNLP, note that under a linear marginal price p,

qBR(z; p) = arg max
q

{
z
σ−1
σ q

σ−1
σ − pq

}
=

(
σ − 1
σp

)σ
zσ−1.

Equating qBR(z; p) = Kzσ−1 gives pNLP = σ−1
σ K−1/σ. Using the expression for K,

pNLP =
ρ

ρ − 1
c.

Choose the flat fee to bind the lowest-type IR:

F = R
(
1, q(1)

)
− pNLP q(1), q(1) = K.

Equivalently, since q ∂R/∂q = σ−1
σ R, one can write F = pNLP

σ−1 q(1).

Result. With Pareto types and R(z, q) = z
σ−1
σ q

σ−1
σ , the Mirrlees-optimal allocation q(z) = Kzσ−1 is

implemented by a single two-part tariff

T(q) = F + pNLPq, pNLP =
ρ

ρ − 1
c, ρ =

σκ
σ − 1

,

with F chosen to satisfy the bottom-type IR. All types are served (since ρ > 1), IC and IR hold, and
the indirect mechanism coincides with the solution to the screening problem.

Information-adjusted revenue in closed form. Plugging the optimal q(z) into ϕ(z, q) and inte-
grating over types yields∫

∞

1
ϕ
(
z, q(z)

)
f (z) dz =

κ
κ − σ + 1

(
σκ − σ + 1

σκ

)σ (σ − 1
σ

)σ−1 1
cσ−1

,

which exists if and only if κ > σ − 1. This closed form shows the information-adjusted revenue is
homogeneous of degree 1 − σ in marginal cost and depends on primitives only through (σ, κ, c).

Seller revenue is homogeneous in q. The virtual surplus can also be rewritten as:

ϕ(z, q) = R(z, q) −
1

h(z)
∂R(z, q)
∂z

=
(
1 −

σ − 1
σκ

)
z
σ−1
σ q

σ−1
σ .

Hence, for any t > 0, ϕ(z, tq) = t
σ−1
σ ϕ(z, q): the seller-side revenue term is homogeneous in q with

degree (σ − 1)/σ.
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Aggregating over types (support [1,∞)), the seller’s revenue functional is

R[q] =
∫
∞

1
ϕ
(
z, q(z)

)
f (z) dz =

σκ − σ + 1
σ

∫
∞

1
z
σ−1
σ −κ−1 q(z)

σ−1
σ dz,

so for any t > 0 we have R[tq] = t
σ−1
σ R[q]. This gives the full expression for the seller’s revenue

and makes its homogeneity in q explicit.

Expected revenue by source. Aggregating across buyers, total revenue equals the sum of flat
fees and per-unit revenue:

Total Revenue = F
∫
∞

1
f (z) dz︸          ︷︷          ︸

flat fees

+
( ∫ ∞

1
q(z) f (z) dz

)
pNLP︸                       ︷︷                       ︸

per-unit revenue

.

With
∫
∞

1 f (z) dz = 1 and
∫
∞

1 zσ−1 f (z) dz = κ
κ−σ+1 (for κ > σ − 1), and using

q(1) =
[1

c
·
σ − 1
σ
·
σκ − σ + 1

σκ

]σ
, F = q(1)

σ−1
σ − pNLP q(1), pNLP =

σκ
σκ − σ + 1

c,

Let
B ≡ q(1) =

[1
c
·
σ − 1
σ
·
σκ − σ + 1

σκ

]σ
, pNLP =

σκ
σκ − σ + 1

c

Total revenue aggregates flat fees and per-unit revenue:

Total Revenue =
[
B
σ−1
σ − pNLP B

]
︸             ︷︷             ︸

flat fees

+ pNLP B
κ

κ − σ + 1︸               ︷︷               ︸
per-unit revenue

.

The first bracketed term is total flat-fee revenue, while the second term is per-unit markup
revenue proportional to the Pareto moment E[zσ−1] = κ/(κ − σ + 1); hence heterogeneity (κ) and
technology/costs (σ, c through B) shift levels but not the two-part structure.

A.1 Virtual Surplus and Full Participation

The monopolist optimally serves all buyer types, including the lowest type z = 1. The logic is
transparent in virtual-surplus form. With homogeneous revenue,

R(z, q) = z
σ−1
σ q

σ−1
σ , σ > 1,
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and Pareto types with hazard h(z) = κ/z, we have

∂R(z, q)
∂z

=
σ − 1
σ

z−
1
σ q

σ−1
σ , ϕ(z, q) = z

σ−1
σ q

σ−1
σ

(
1 −

σ − 1
κσ

)
= z

σ−1
σ q

σ−1
σ
ρ − 1
ρ

.

Hence the net contribution of type z at allocation q(z) is

VS(z) = ϕ(z, q(z)) − cq(z).

Evaluated at the lowest type,

VS(1) = q(1)
σ−1
σ
ρ − 1
ρ
− cq(1),

which is strictly positive whenever ρ > 1 (equivalently, κ > 1). Since low types are abundant
under Pareto, excluding them lowers profits: the mass of low types more than compensates their
low individual surplus. The exclusion trade-off therefore resolves in favor of full participation.

A.2 No Profitable Price Deviation

We show that the seller cannot profit by deviating from the optimal nonlinear schedule and charg-
ing a different per-unit price for a given quantity. This validates the two-part tariff with constant
unit price pNLP =

ρ
ρ−1 c as seller-optimal.

A buyer facing marginal price p(q) solves

max
q
{R(z, q) − T(q)}, T′(q) = p(q).

With R(z, q) = z
σ−1
σ q

σ−1
σ ,

∂R
∂q
=
σ − 1
σ

z
σ−1
σ q−

1
σ = p(q).

Solving for the type indifferent at (q, p) yields the inverse demand for the q-th unit:

z(q, p) =
(
σ

σ − 1
p
) σ
σ−1

q
1
σ−1 .

If the seller posts an alternative price p for quantity q, only types z ≥ z(q, p) purchase that unit, so
demand is

D(q, p) = 1 − F
(
z(q, p)

)
= z(q, p)−κ (Pareto).

Profit from this deviation is

π(q, p) = D(q, p) (p − c) =
[(

σ
σ − 1

p
) σ
σ−1

q
1
σ−1

]−κ
(p − c).
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Maximizing w.r.t. p yields the first-order condition whose solution is

p
c
=

ρ

ρ − 1
, ρ =

σκ
σ − 1

,

i.e., p = pNLP. Any unilateral price deviation reduces profit. Thus the nonlinear price is robust to
such deviations and coincides with the allocative price embedded in the mechanism (cf. Wilson
(1993)).

Figure A1: No Profitable Price Deviation

Q

P

qa

p

z z > z(qa, p)

D(qa, p) = 1 − F[z(qa, p)]

Figure A1 illustrates the logic: raising p at a given qa shrinks the set of buyers above the new cutoff
z(qa, p); the loss in volume offsets the price gain unless p = pNLP.

B Additional Descriptive Evidence

B.1 Residual Price Determinants by Selected Industries

To assess whether the pattern of nonlinear pricing driven by buyer observables generalizes across
sectors, we replicate the residual decomposition analysis for the two industries with the highest
volume of transactions: Manufacturing and Retail and Wholesale. For both sectors, we estimate
the following regression:

ln pigjt = β0 +ΨigmS + ϵi jgt, (17)

where pigjt is the unit price of a product g sold by seller i to buyer j at time t, and ΨigmS

represents seller-product-month fixed effects interacted with different sets of quantity and buyer-
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side controls S. Buyer groups B are defined based on 11 sectors, 3 firm-size categories, and 16
regions.

Table A1: Price residual determinants: Manufacturing

(1) (2) (3) (4)

R2 0.581 0.389 0.312 0.776

S = Quantity ✓

S = Buyer ✓

S = Buyer Group ✓

S = Quantity × Buyer Group ✓

N 136M 136M 136M 136M

Table A2: Price residual determinants: Retail and Wholesale

(1) (2) (3) (4)

R2 0.296 0.391 0.309 0.471

S = Quantity ✓

S = Buyer ✓

S = Buyer Group ✓

S = Quantity × Buyer Group ✓

N 180M 180M 180M 180M

In both sectors, the pattern remains unchanged: quantity discounts (second-degree price dis-
crimination) and buyer group-based pricing (third-degree) explain the majority of price dispersion
once product and time effects are controlled for. This reinforces our main finding that nonlinear
prices shaped by buyer-side observables are a pervasive feature of pricing in supply chains.
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B.2 Average Quantity Discount by Sector

Table A3: Average Quantity Discount by Sector

Sector Mean Q discount N transactions

All sectors -0.042 430M

Agriculture -0.042 2M

Mining -0.016 1M

Manufacturing -0.036 118M

Utilities 0.000 6M

Construction -0.129 1M

Retail and Wholesale -0.048 270M

Transport & ICTs -0.032 12M

Financial Services -0.002 49M

Real Estate Services -0.052 1M

Business Services -0.089 5M

Personal Services -0.053 1M

B.3 Test for Buyer Power Data Generation Process

To examine whether observed quantity discounts reflect buyer power rather than seller-driven
price discrimination, we exploit cross-sectional variation in the number of suppliers each buyer
transacts with during the sample period. The underlying idea is that buyers with access to a larger
number of sellers may possess stronger outside options, enhancing their bargaining position and
enabling them to negotiate better pricing terms. We define buyer power as the logarithm of the
total number of distinct sellers each buyer purchases from within the observed month. We then
test whether buyer power flattens quantity discounts by estimating the interaction between log
quantity and buyer power in a log-linear price regression. Specifically, we estimate:31

ln pigjt = β0 + β1 ln qigjt + β2

(
log qi jt × log NumProviders j

)
+Ψigm + ϵi jgt,

A positive coefficient on the interaction term (β2 > 0) would suggest that quantity discounts
become flatter as buyer power increases, consistent with buyers using their broader supplier base
to resist steep discounts or nonlinear price schedules.

31Standard errors are clustered at the buyer level to account for within-buyer correlation.
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We find that β1 = −0.0462 and β2 = −0.0098, both estimated with standard errors below 0.0001.
While the interaction term is statistically significant, the magnitude is economically negligible.
This suggests that buyer power, as measured by the number of suppliers, does not appear to be the
primary mechanism generating quantity discounts. If anything, the evidence is more consistent
with seller-driven price discrimination rather than buyer power shaping quantity discounts.

B.4 Firm Sales Partition

We find that firms in Chile have a clear partition on firms’ buyers: 79% of firms weighted by
sales sell all their output either to only other firms (67%) or to only final consumers (12%). As we
can combine firm-to-firm transaction data with firms’ accounting variables, we build an indicator
variable that takes the value of 0 if all firm sales go to final consumers and 1 if sales go only to
other firms, and we weigh the indicator by firm sales.

Table A4: Firms sales partition

Sector (Supply Chain Transactions Value Share) All to final consumer All to other firms

Firm population (100%) 0.12 0.67

Agriculture (2%) 0.05 0.60

Mining (1%) 0.27 0.08

Manufacturing (15%) 0.06 0.69

Utilities (3%) 0.20 0.52

Construction (8%) 0.02 0.89

Retail and Wholesale (32%) 0.09 0.69

Transport and ICTs (10%) 0.16 0.68

Financial Services (18%) 0.18 0.68

Real Estate Services (1%) 0.25 0.38

Business Services (7%) 0.09 0.81

Personal Services (2%) 0.69 0.10

Notes: Exports are excluded. The remaining 16% of sales shares for the firm population are firms that sell to both final
consumers and other firms. We observe firm-to-firm sales an fims total sales, we compute the sales to consumer as the
residual between both. For 2% of firms, we get negative sales to consumers and exclude them from this table.

As shown in Table A4, there is heterogeneity across sectors, though the partition between firms
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selling to final consumers and other firms is present across all sectors.

C Model Details and Derivations

C.1 Verification for Retailers

Within retail sector s, CES demand over differentiated varieties implies

y j = Ys

( p j

Ps

)−φs

, Ys = θsY, PY ≡ 1,

hence the inverse demand p j = Ps (y j/Ys)−1/φs . Revenue as a function of own output Q j is

R j = p jQ j = Ps (θsY)1/φs Q (φs−1)/φs
j .

Therefore, for retailers (ℓ = r) the revenue guess for retailers holds with

ψ r
s =

φs − 1
φs

, A r
s = Ps (θsY)1/φs .

C.2 Verification for Upstream Sellers (Homothetic Revenue)

Fix a seller sector s′ with elasticity σs′ > 1 and a seller j ∈ Us′ with marginal cost c j > 0 . For buyers
in partition (ℓ, s), the two–part tariff of Proposition 1 implies the allocative price p ℓjs = µ

ℓ
ss′c j with

µ ℓss′ = ρ
ℓ
ss′/(ρ

ℓ
ss′ − 1) and ρ ℓss′ = ξ

ℓ
s σs′ > σs′ .

Step 1: quantity aggregation. By the CES share rule, for buyer i = (ℓ, s, zi),

mi j = Mis′

 p ℓjs
P ℓ

ss′


−σs′

.

Let ν̃ℓs be the buyer distribution in (ℓ, s) normalized to one and define the average sector–s′ bundle
per buyer

D̂ ℓ
ss′ ≡

∫
Mis′ dν̃ℓs(i).

Total quantity sold by j to partition (ℓ, s) is then

Q ℓ,s
j = N ℓ

s D̂ ℓ
ss′

 p ℓjs
P ℓ

ss′


−σs′

.
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Summing over (ℓ, s) and substituting p ℓjs = µ
ℓ
ss′c j,

Q j =
∑
ℓ,s

N ℓ
s D̂ ℓ

ss′

µ ℓss′c j

P ℓ
ss′

−σs′

= c−σs′

j

∑
ℓ,s

N ℓ
s (µ ℓss′)

−σs′ (P ℓ
ss′)

σs′ D̂ ℓ
ss′︸                             ︷︷                             ︸

Ds′

. (18)

Hence

c 1−σs′

j =
( Q j

Ds′

) σs′ −1
σs′ . (19)

Step 2: variable (marginal–price) revenue. Revenue at the allocative margin from partition (ℓ, s)
is

R lin; ℓ,s
j =

∫
p ℓjsmi j dνℓs(i) = N ℓ

s D̂ ℓ
ss′ (µ ℓss′c j)1−σs′ (P ℓ

ss′)
σs′−1.

Summing across partitions and using (19),

R lin
j =

( Q j

Ds′

) σs′ −1
σs′

∑
ℓ,s

N ℓ
s (µ ℓss′)

1−σs′ (P ℓ
ss′)

σs′−1 D̂ ℓ
ss′︸                                 ︷︷                                 ︸

Ss′

. (20)

Step 3: flat–fee revenue. For partition (ℓ, s), the fee for the lowest buyer type z ℓs satisfies (cf.
Proposition)

F ℓjs(z
ℓ
s ) =

1
σs′ − 1

P ℓ
ss′ Mis′(z ℓs )

 p ℓjs
P ℓ

ss′


1−σs′

.

Aggregating over buyers in (ℓ, s) yields

R fee; ℓ,s
j = N ℓ

s
P ℓ

ss′Mis′(z ℓs )
σs′ − 1

(µ ℓss′c j)1−σs′ (P ℓ
ss′)

σs′−1.

Summing across partitions and using (19),

R fee
j =

( Q j

Ds′

) σs′ −1
σs′

∑
ℓ,s

N ℓ
s (µ ℓss′)

1−σs′ (P ℓ
ss′)

σs′−1 P ℓ
ss′Mis′(z ℓs )
σs′ − 1︸                                            ︷︷                                            ︸

Fs′

. (21)

Step 4: revenue representation (homotheticity) and closed–form scale. Adding (20) and (21),

R j =
( Q j

Ds′

) σs′ −1
σs′ (Ss′ + Fs′) = A u

s′ Q (σs′−1)/σs′

j , (22)
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with

A u
s′ = D

−
σs′ −1
σs′

s′ (Ss′ + Fs′),

Ds′ ≡
∑
ℓ,s

N ℓ
s (µ ℓss′)

−σs′ (P ℓ
ss′)

σs′ D̂ ℓ
ss′ ,

Ss′ ≡
∑
ℓ,s

N ℓ
s (µ ℓss′)

1−σs′ (P ℓ
ss′)

σs′−1 D̂ ℓ
ss′ ,

Fs′ ≡
∑
ℓ,s

N ℓ
s (µ ℓss′)

1−σs′ (P ℓ
ss′)

σs′−1 P ℓ
ss′Mis′(z ℓs )
σs′ − 1

.

(23)

Thus, upstream revenue is homogeneous of degree ψu
s′ = (σs′ − 1)/σs′ in own output, with shifter

A u
s′ comprising a variable (marginal–price) component Ss′ and a flat–fee component Fs′ , both at-

tenuated by the effective demand indexDs′ .

C.3 Kuhn–Tucker implementation of marginal–cost pricing

Following the logic of Theorem 1 in Baqaee and Farhi (2020a), consider a social planner who
chooses final consumption C, final demands {y j}, outputs {Q j}, intermediate allocations {mi j}, and
masses of active producers {N j} to maximize U(C) subject to (i) material balance for each variety
j, (ii) per–producer feasibility with mass Ni of active buyers/producers i, and (iii) entry costs Ki

paid in units of the final good:

Q j − y j −
∑

i

Ni mi j = 0, Qi ≤ Ni Fi(mi·), C ≥
∑

i

KiNi,
∑

j

y j = C.

Form the Lagrangian with Kuhn–Tucker multipliers υ j (material balance for good j), ηi (feasibility
for producer i), and ϑ (final–good/entry resource):

L = U(C) +
∑

j

υ j

Q j − y j −
∑

i

Nimi j

 +∑
i

ηi(NiFi(mi·) −Qi) + ϑ

C −
∑

i

KiNi

 .
FOCs and complementary slackness:

∂L
∂mi j

: −υ jNi + ηiNi
∂Fi

∂mi j
= 0 ⇒ υ j = ηi

∂Fi

∂mi j
(∀i, j).

∂L
∂Q j

: υ j − η j = 0 ⇒ υ j = η j (∀ j).

∂L
∂y j

: −υ j + λ = 0 ⇒ υ j = λ (∀ j), with λ the multiplier on
∑

j

y j = C.

∂L
∂C

: U′(C) − λ + ϑ = 0.
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∂L
∂Ni

: −

∑
j

υ jmi j + ηi Fi(mi·) − ϑKi ≤ 0, Ni ≥ 0, Ni

(
−

∑
j

υ jmi j + ηiFi − ϑKi

)
= 0.

Using υ j = η j, the input FOCs become

η j = ηi
∂Fi

∂mi j
(∀i, j),

which are the planner’s cost–minimizing conditions: effective prices (proportional to η j) equal
marginal costs along every input link. The entry condition states that, at the optimum, the surplus
created by an additional firm i (valued at ηiFi −

∑
j η jmi j) equals the entry cost valued at ϑKi

whenever Ni > 0.
Decentralized implementation with markups, rebates, and entry. Suppose in the decentralized

economy each seller j charges a constant markup µ j > 1 on intermediate sales, and retailers in
buyer sector s charge µ r

s > 1 to final consumers. Introduce ad valorem rebates on purchases so
buyers face effective marginal prices

p̃i j = (1 − t j) pi j, t j ≡ 1 −
1
µ j
, p̃s = (1 − t r

s ) ps, t r
s ≡ 1 −

1
µ r

s
.

Then p̃i j = c j for intermediates and p̃s =MCs for retail. Firm i’s cost minimization with p̃i j yields

p̃i j = η̃i
∂Fi

∂mi j
⇒ c j = η̃i

∂Fi

∂mi j
,

which coincides with the planner’s FOCs after a common normalization of shadow values (η̃i ∝

ηi). Hence the decentralized {mi j}, {Q j}, and C replicate the planner’s allocation. Two–part tariffs’
flat fees are infra–marginal and do not affect these FOCs.

Financing and entry. Let each active firm i pay a non–distortionary license Ti and let the
government rebate t jpi jmi j and t r

s psys to buyers. Setting Ti = ϑKi ensures that the decentralized
free–entry condition (operating profits net of input rebates minus the license equal zero) matches
the planner’s complementary slackness for Ni. Because licenses and flat fees are infra–marginal,
they do not alter marginal conditions, while markups can remain strictly positive to fund entry
costs. Government budget balance is achieved by choosing {Ti}i to equal the present value of
rebate outlays at the implemented allocation.

Therefore, the planner’s allocation can be implemented even when firms charge markups: pur-
chase–side rebates neutralize marginal wedges so that buyers face marginal costs in all nests, and
entry costs are financed by non–distortionary fixed charges, preserving the planner’s first–order
conditions and entry margins.
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C.4 Seller–identity invariance of the total unit markup

By the CES share rule within seller sector s′, buyer i’s demand for seller j’s variety is

mi j = Mis′

 p ℓjs
P ℓ

ss′


−σs′

.

From the optimal tariff characterization, the flat fee charged to buyer i in partition (ℓ, s) by seller
j ∈ Us′ (with σs′ > 1) is

F ℓjs =
1

σs′ − 1
τis′(z ℓs )

(
Mis′(z ℓs )

) σs′ −1
σs′

 p ℓjs
P ℓ

ss′


1−σs′

, τis′ ≡ P ℓ
ss′ M1/σs′

is′ .

Divide the fee by quantity using the share rule:

F ℓjs
mi j
=

p ℓjs
P ℓ

ss′
·

1
σs′−1 τis′(z ℓs )

(
Mis′(z ℓs )

) σs′ −1
σs′

Mis′
.

Total unit price is
Ti j

mi j
= p ℓjs +

F ℓjs
mi j

. Using p ℓjs = µ
ℓ
ss′ c j and dividing by c j yields

Ti j

mi j

c j
= µ ℓss′

1 + 1
P ℓ

ss′
·

1
σs′−1 τis′(z ℓs )

(
Mis′(z ℓs )

) σs′ −1
σs′

Mis′

 ≡ µ ℓss′
(
1 + χ ℓss′(i)

)
.

The term χ ℓss′(i) depends only on buyer–side objects within (ℓ, s) and on the sectoral index P ℓ
ss′ , but

not on seller j. Therefore the total unit markup is invariant to the seller’s identity within a given
buyer partition.

C.5 Profit Functions Results

Profits of the Lowest Type. For all retail sectors s, equilibrium profits of the lowest–productivity
firm i = (r, s, z r

s ) are not necessarily zero, nor necessarily positive. In particular,

Π(z r
s ) > 0 ⇐⇒

1
(1 − α r

s )(φs − 1)
≥ ζs, ζs :=

∑
s′∈S

θ r
ss′

σs′ − 1
.

Consider a retail firm i = (r, s, zi) with zi = z r
s . Denote by variable profits the component net of

flat fees. Since retailers charge a constant markup φs/(φs − 1), variable profits equal a fixed share

A15



of revenue:
VarProf(z r

s ) =
1
φs

Revenue(z r
s ).

Total profits subtract the flat fees paid to upstream suppliers,

Π(z r
s ) = VarProf(z r

s ) −
∑
s′∈S

F r
ss′ N u

s′ .

Substituting yields

Π(z r
s ) =

Revenue(z r
s )

φs

[
1 − (1 − α r

s )(φs − 1) ζs
]
.

Note that ζs is a weighted average of 1
σs′−1 across seller sectors, with weights given by the

Cobb–Douglas elasticities θ r
ss′ , which satisfy

∑
s′ θ

r
ss′ = 1. Thus, more important inputs in produc-

tion receive greater weight in ζs.

Average profits. It is useful to restate how revenue scales with productivity. For retail and up-
stream firms we have

Revenue(z r
s ) =

(
z r

s

z̃ r
s

)φs−1

Revenue(z r
s ), Revenue(z u

s′) =
(

z u
s′

z̃ u
s′

)σs′−1

Revenue(z u
s′).

This scaling implies that average profits can be expressed in closed form.
For retailers,

E
[
Π r

s
]
= Revenue(̃z r

s ) −
∑
s′∈S

F r
ss′ N u

s′

=
Revenue(z r

s )
φs

[ (
z̃ r

s

z r
s

)φs−1

− (1 − α r
s )(φs − 1)

∑
s′∈S

θ r
ss′

σs′ − 1

]
.

For j ∈ Us′ , expected profits decompose into (i) variable profits from the allocative margin, (ii)
flat fees collected from buyers, and (iii) flat fees paid upstream:

E
[
Πu

j

]
=

∑
ℓ∈{u,r}

∑
s∈S

∫
i∈Fℓs

(
p ℓjs − c j

)
mi j dνℓs(i)︸                                      ︷︷                                      ︸

variable profits from allocative margin

+
∑
ℓ∈{u,r}

∑
s∈S

∫
i∈Fℓs

F ℓjs(i) dνℓs(i)︸                            ︷︷                            ︸
flat–fee revenue collected

−

∑
t∈S

∫
h∈Ut

F u
hs′( j) dνt(h)

︸                      ︷︷                      ︸
flat–fee payments

.

Here p ℓjs is the allocative (marginal) price charged by seller j to buyers in partition (ℓ, s), c j is seller
j’s marginal cost, mi j is buyer i’s quantity purchased from j, F ℓjs(i) is the flat fee i pays to j, Fℓs is
the set of active buyers of type ℓ in sector s with measure νℓs, and the last term aggregates the flat
fees F u

hs′( j) that j pays to its own upstream suppliers h ∈ Ut.
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Average upstream profits depend only on sectoral labor allocation. Fix technology and de-
mand primitives {α, θ, σ} and the productivity distributions (so that {z, z̃} are fixed). Then the
expected profit of the average upstream firm in sector s′ depends only on sectoral labor allocation
according to:

E
[
Πu

s′
]
=

1
N u

s′

[∑
s∈S

w L r
s Λ

r
ss′ +

∑
t∈S

w L u
t Λ

u
ts′

]
− w l u

s′

∑
t∈S

Λu
s′t,

where L ℓs = l ℓs (̃z ℓs ) N ℓ
s is total labor used in sector (ℓ, s), and l ℓs (̃z ℓs ) denotes labor of the average

variety (productivity z̃ ℓs ). The coefficients are

Λ r
ss′ =

(1 − α r
s )θ r

ss′

α r
s

( 1
σs′ − 1

( z r
s

z̃ r
s

)φs−1
+ 1

)
, Λu

s′t =
(1 − αu

s′)θ
u
s′t

αu
s′

(
1 +

1
σt − 1

( z u
s′

z̃ u
s′

)σs′−1)
.

Hence, conditional on primitives, EΠu
s′ varies solely with the sectoral labor aggregates {w L ℓs } and

own w l u
s′

32.

C.6 Welfare decomposition

(1) Normalization and numeraire. We work in steady state and normalize the final consumer
labor endowment to one. Let δ ∈ (0, 1) be the per-period exit probability and m the mass of
entrants. The law of motion implies N = m/(1 − δ) at the sector level and in aggregate. Free entry
equates expected discounted profits to entry costs in wage units, so with entry cost ce,

E[π]
1 − δ

= w ce ⇒ E[π] = (1 − δ) w ce

Aggregate operating profits are Π = NE[π] = m
1−δ · (1 − δ) w ce = m w ce. Nominal income is

Y = w Lprod + Π = w
(
Lprod + m ce

)
. With unit labor endowment, Lprod + m ce = 1, hence Y = w.

Because indirect utility is homogeneous of degree zero in prices and income, measuring utility in
wage units yields W = Y

PY
= w

PY
= 1

PY
.

(2) Objects and dimensions. Let b := (θs)s∈S ∈ R
1×|S| be final-demand shares (row), and let the

cost-based input–output blocks be

Ωru, Ωuu
∈ R|S|×|S|, Ωru

ss′ = (1 − α r
s )θ r

ss′ , Ω
uu
ss′ = (1 − αu

s )θu
ss′

32Sketch. Start from the upstream profits decomposition . Use (i) p–P CES shares and the identity (Q u
s′/Ds′ )(σs′−1)/σs′ =

1/N u
s′ , (ii) the flat–fee formula F ℓ

ss′ =
P ℓ

ss′
M ℓ

ss′
(z ℓs )

N u
s′

(σs′−1) , and (iii) cost minimization P ℓ
ss′M

ℓ
ss′ = w l ℓs

(1−α ℓs )θ ℓ
ss′

α ℓs
to aggregate across

buyers and suppliers. Collecting terms yields the stated affine function of {w L ℓ
s } and w l u

s′ with coefficients Λ.

A17



The upstream Leontief inverse is

Ψuu := (I −Ωuu)−1 =
∑
n≥0

(Ωuu)n (well-defined if ρ(Ωuu) < 1).

With a separable final-good aggregator across retail sectors, the consumer–retail map is the iden-
tity, so b already captures direct exposure to retail prices.

Exposure (Domar-type) scalars. Define sectoral exposure numbers, for each s ∈ S,

λ̃cr
s := bs, λ̃ru

s :=
∑

v
λ̃cr

v Ω
ru
vs , λ̃uu

s :=
∑

v
λ̃ru

v Ψ
uu
vs

or, in vector form,
λ̃cr = b, λ̃ru = bΩru, λ̃uu = bΩruΨuu

These mirror the Baqaee–Farhi cost-based Domar weights bΨ, adapted to the consumer to retail
to upstream firm types.

(3) Sectoral indices and the upstream recursion. For retail sector s,

log Ps = logµ r
s +

∑
s′
Ωru

ss′
(

logµ ru
ss′ + log Cs′

)
−

1
φs − 1

log N r
s + const + logVs (24)

where µ ru
ss′ is the buyer-sector–specific markup applied by seller s′ to retail buyer s andVs is a firm

selection term for sector s, it captures the universe of firm types (firm productivity) active.
For upstream sector s′,

log Cs′ =
∑

v
Ωuu

s′v

(
logµuu

vs′ + log Cv
)
−

1
σs′ − 1

log N u
s′ + const + logV u

s′ (25)

Stacking (25) across s′ gives the linear recursion

log C u = Ωuu log C u + logµuu
−

log N u

σ − 1
+ logV u + const, (26)

where logµuu stacks seller–buyer markups µuu
vs′ across v, s′. Taking differences between equilibria

(technology and numeraire drop out) yields

∆ log C u = Ψuu
(
∆ logµuu

−
∆ log N u

σ − 1
+ ∆ logV u

)
(27)
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(4) From sectoral indices to the final index. Taking differences in (24) and substituting (27)
yields, for each s,

∆ log Ps = ∆ logµ r
s +

∑
s′
Ωru

ss′ ∆ logµ ru
ss′ +

∑
s′
Ωru

ss′ ∆ log Cs′ −
1

φs − 1
∆ log N r

s + ∆ logVs

with

∆ log C = Ψuu
(
∆ logµuu

−
∆ log N u

σ − 1
+ ∆ logV u

)
.

Aggregating across sectors gives

∆ log PY = b∆ logµ r + bΩru ∆ logµ ru + bΩruΨuu
(
∆ logµuu

−
∆ log N u

σ − 1
+ ∆ logV u

)
(28)

− b
∆ log N r

φ − 1
+ b∆ logV (29)

(5) Aggregating buyer-specific wedges and exposure maps. Buyer–seller markups µ ru
ss′ and µuu

us′

are not collapsed ex ante. Define seller-level exposure weights and compressions as in the main
text:

λ̄ru
s′ =

∑
s

bsΩ
ru
ss′ , λ̄uu

s′ =
∑

u
(bΩru)uΨ

uu
us′ , ωru

s|s′ =
bsΩ

ru
ss′

λ̄ru
s′

, ωuu
u|s′ =

(bΩru)uΨ
uu
us′

λ̄uu
s′

Then the exposure-weighted markup changes per seller are

∆ log µ̄ ru
s′ =

∑
s
ωru

s|s′ ∆ logµ ru
ss′ , ∆ log µ̄uu

s′ =
∑

u
ωuu

u|s′ ∆ logµuu
us′ .

Using these definitions, contractions in (28) can be rewritten compactly as

bΩru ∆ logµ ru =
∑

s′
λ̄ru

s′ ∆ log µ̄ ru
s′ , bΩruΨuu ∆ logµuu =

∑
s′
λ̄uu

s′ ∆ log µ̄uu
s′ .

(6) Conclusion (and selection). Using ∆ log W = −∆ log PY in (28) and the identities above gives

∆ log W = −
∑

s
λ̃cr

s ∆ logµ r
s −

∑
s′
λ̄ru

s′ ∆ log µ̄ ru
s′ −

∑
s′
λ̄uu

s′ ∆ log µ̄uu
s′︸                                                                    ︷︷                                                                    ︸

intensive (markups)

+
∑

s

λ̃cr
s

φs − 1
∆ log N r

s +
∑

s′

λ̃uu
s′

σs′ − 1
∆ log N u

s′︸                                                 ︷︷                                                 ︸
extensive (firm masses)

−

(
b∆ logV + λ̃uu ∆ logV u

)
︸                             ︷︷                             ︸

selection

(30)
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If the composition of active varieties is invariant (e.g., Pareto tails with unchanged truncation),
then ∆ logV = ∆ logV u = 0 and the selection term vanishes, yielding Proposition 2.

C.7 Equilibrium existence and uniqueness

Roadmap. The decentralized equilibrium with two–part tariffs is pinned in six linked steps. S1
fixes the composition of retail labor from final demand. S2 maps retail labor into upstream labor
through a linear network that depends on cost shares and buyer–specific µ markups. S3 stacks
upstream free entry in labor units, yielding a linear relation between sectoral labor and upstream
entry flows. S4 composes S2 and S3 and adds retail free entry, so entry flows on both layers are
linear in retail labor. S5 imposes aggregate labor clearing on the retail ray, reducing the prob-
lem to one scalar t with a unique solution. S6 solves the price–cost block (log indices and wage)
from linear CES/Cobb–Douglas relations; the coefficient matrix is a contraction. Under S1-S6, we
can show equilibrium existances and uniqueness, where, quantities, masses, and prices are all
uniquely determined.

Sectors are indexed by s,m ∈ {1, . . . ,S}. Layer ℓ ∈ {u, r} denotes upstream or retail. Labor
shares αℓs ∈ (0, 1); materials shares sum to one by buyer:

∑
m θu,m,· = 1 for upstream buyers and∑

m θr,·,m = 1 for retail buyers. Elasticities σm > 1 (upstream) and φs > 1 (retail). Final demand
across retail sectors is Cobb–Douglas with weights θc = (θc,1, . . . , θc,S), 1⊤θc = 1. Buyer–specific
per–unit markups are denoted by µ: µu→u

s,m (upstream buyer s from upstream seller m), µu→r
s,m (retail

buyer s from upstream seller m), and µr
s (retail to final consumer in sector s). Entry costs cℓe,s > 0; exit

rates δℓs ∈ [0, 1). Masses Nℓ
s , entry flows eℓs = (1 − δℓs)Nℓ

s . Stack vectors by sector: Lu,Lr, eu, er ∈ R
S
+.

Lower case denotes logs (e.g. w = ln W, p = ln P).

Equilibrium conditions

1. Retail free entry: E[Πr
s] =W cr

e,s(1 − δr
s) for all s.

2. Upstream free entry: E[Πu
m] =W cu

e,m(1 − δu
m) for all m.

3. Average firm output meets demand within sector:

z̃r,s yr,s(̃zr,s) = Yc,·,s N
φs

1−φs
r,s , z̃u,m yu,m(̃zu,m) = Du,m N

σm
1−σm
u,m .

4. CES unit–price indices for any buyer (b, s) from upstream seller m:

pb,s,m = lnµu→b
s,m +mcu,m +

1
1 − σm

nu,m.

Upstream marginal cost: mcu,m = (lnΘu,m − ln z̃u,m) + αu
mw + (1 − αu

m)
∑

j θu,m, j pu,m, j. Retail
marginal cost: mcr,s = (lnΘr,s − ln z̃r,s) + αr

sw + (1 − αr
s)

∑
m θr,s,m pr,s,m. Final–good index: pc,s =
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lnµr
s +mcr,s +

1
1−φs

nr,s,
∑

s θc,spc,s = 0.

5. Labor market clearing: 1 =
∑

s Lr
s +

∑
m Lu

m +
∑

s er
s +

∑
m eu

m.

S1. Final demand pins the retail composition (ray)

Cobb–Douglas final demand implies sectoral retail revenue shares equal preference weights. With
CRS, WLr

s = α
r
s Revenuer

s, so relative retail labor is fixed:

L̄r ∝
(
θc,s
αr

s

)S

s=1
≫ 0, Lr = t L̄r, t > 0.

Only the scalar t remains to be determined by aggregate labor clearing.

S2. Sectoral labor mapping with buyer–specific markups

At the sector level, CRS cost shares and CES demand under buyer–specific per–unit markups im-
ply a linear system that maps retail labor into upstream labor and propagates upstream feedback:

Lu = A Lu + B Lr,

with nonnegative S × S matrices

As,m = α
u
s

1 − αu
m

αu
m

θu,m,s

µu→u
m,s

, Bs,r = α
u
s

1 − αr
r

αr
r

θr,r,s

µu→r
r,s

.

Interpretation: a buyer in upstream sector s allocates the share (1−αu
m)θu,m,s of revenue to materials

from upstream seller m, scaled by the buyer–specific markup faced on that link; the labor anchor
αu

s converts revenue to labor. Likewise for retail exposure B. Assume the spectral condition

ρ(A) < 1 (sufficient: each row sum of A is < 1),

so the Neumann series converges and the total upstream requirements per unit of retail labor are

Ψ := (I − A)−1B ≥ 0, Lu = ΨLr.

Higher per–unit markups weaken links (prices are higher), reducing the corresponding entries of
A and B and, throughΨ, the upstream labor implied by a given Lr.

S3. Upstream free entry in labor units (stacked)

Two–part tariffs imply that an upstream entrant’s expected period profit equals a constant fraction
of buyer spending (variable margin) plus net flat–fee transfers (received from buyers minus paid
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to own suppliers). Dividing by W makes profits linear in buyer revenues expressed in labor units:

(Guu
−Πu) Lu + Gru Lr = Cu eu,

where Guu,Gru
≥ 0 are flow–weight matrices determined by cost shares and the tariff schedule,

Πu = diag((Guu)⊤1) nets out intra–upstream transfers, Cu = diag(cu
e,s), and eu stacks upstream entry

flows. The left side converts sectoral labor into expected upstream profits by sector; the right side
is entry cost (in labor units) times the entrant flow, as required by free entry.

S4. Entry maps as linear functions of retail labor

Compose S2 into S3:

eu = C−1
u

[
(Guu

−Πu)Ψ+ Gru
]

Lr = χu Lr, χu ≥ 0.

Retail free entry implies er
s = (1 − δr

s)Nr
s = (1 − δr

s)Lr
s/lrs. Let Γr = diag((1 − δr

s)/lrs) ≻ 0. Then

er = Γr Lr.

Thus, once the retail composition L̄r is fixed by S1, both upstream and retail entry flows move
linearly with the scale t along that ray.

S5. Labor clearing on the retail ray

Total labor equals production labor plus entry labor:

1 = 1⊤
(
Lr + Lu + er + eu

)
= 1⊤

[(
I +Ψ + Γr + χu

)
Lr

]
.

On the ray Lr = t L̄r, define
Ξ(t) := 1⊤

(
I +Ψ + Γr + χu

)
(t L̄r).

Because (I + Ψ + Γr + χu)L̄r ≫ 0, Ξ is continuous, strictly increasing, Ξ(0) = 0, and Ξ(t) → ∞ as
t→∞. There exists a unique t⋆ > 0 such that Ξ(t⋆) = 1. This pins

L⋆r = t⋆L̄r, L⋆u = ΨL⋆r , e⋆u = χu L⋆r , e⋆r = Γr L⋆r ,

and, hence, sectoral masses Nℓ
s = eℓs/(1 − δℓs).

S6. Price/cost block under wage normalization

The nominal wage is the numeraire. Write the nominal wage as ω and set ω = 1, so its log is
w = lnω = 0. This step solves for sectoral price indices conditional on the masses from S1–S5, and
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then computes welfare.
For each buyer layer–sector pair (b, s) ∈ {u, r} × {1, . . . ,S} and upstream seller m, the CES unit

price index satisfies

pb,s,m = lnµu→b
m,s + mcu,m +

1
1 − σm

nu,m, (P⋆)

where pb,s,m = ln Pb,s,m, nu,m = ln Nu
m, and µu→b

m,s is the buyer–specific markup applied by upstream
sector m when selling to buyer (b, s). Upstream marginal costs in logs are

mcu,m =
(

lnΘu,m − ln z̃u,m
)
+ (1 − αu

m)
S∑

j=1

θu,m, j pu,m, j (MC–U⋆)

and retail marginal costs are

mcr,s =
(

lnΘr,s − ln z̃r,s
)
+ (1 − αr

s)
S∑

m=1

θr,s,m pr,s,m (MC–R⋆)

Final–good price indices by retail sector are

pc,s = lnµ r
s + mcr,s +

1
1 − φs

nr,s, (PC⋆)

where nr,s = ln Nr
s and µ r

s is the retail–to–consumer markup in sector s. For notational economy
define the technology–selection constants

ξu,m := lnΘu,m − ln z̃u,m, ξr,s := lnΘr,s − ln z̃r,s.

Collect upstream–to–upstream indices by seller into the vector p u
u ∈ R

S and define the non-
negative matrix

Bu := diag(1 − αu)Θu ∈ R
S×S, ∥Bu∥∞ = max

m
(1 − αu

m) < 1.

Using (P⋆) and (MC–U⋆) in seller–stacked form,

(I − Bu) p u
u = lnµu→u + ξu +

1
1 − σ

nu, p r
u = p u

u + ln
(
µu→r

⊘ µu→u
)
, (U⋆)

where ⊘ denotes componentwise division and nu, ξu, lnµu→ℓ
∈ RS are the seller–indexed vectors.

Because ∥Bu∥∞ < 1, I − Bu is invertible and the upstream fixed point is unique.
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Retail sector indices follow from (P⋆) and (MC–R⋆) as

pr[s] = lnµ r
s + ξr,s + (1 − αr

s)
S∑

m=1

θr,s,m p r
u[m] +

1
1 − φs

nr,s. (R⋆)

With the wage fixed at one, real income equals the inverse final price index. Writing the fi-
nal–demand weights as θc = (θc,1, . . . , θc,S)⊤ and Ωc := θ⊤c , welfare is

W = −Ωc pc = −

S∑
s=1

θc,s pc,s, (W⋆)

with pc obtained from (PC⋆) using p u
u , p r

u, and pr computed above.

Existence and uniqueness of the price block under wage normalization. The upstream map
p u

u 7→ (I − Bu)−1
(

lnµu→u + ξu +
1

1−σnu
)

is well defined and single–valued because ∥Bu∥∞ < 1
implies ρ(Bu) < 1 and hence I − Bu is invertible. Given p u

u , the transformation to p r
u is an additive

constant shift governed by buyer–specific markup gaps, therefore also unique. Retail indices are
then affine in p r

u, and final–good indices are affine in mcr and nr, so both are uniquely pinned.
The entire price/cost block is linear in the unknown indices once masses nu,nr are taken from S1–
S5, and the numeraire has already fixed the absolute price level by setting ω = 1. No additional
normalization is required, and uniqueness follows from the upstream contraction and forward
substitution in the remaining equations.

Existence and uniqueness with alternative price regimes Nonlinear pricing with two–part tar-
iffs retains buyer–specific per–unit markups µu→b

m,s and permits flat fees that do not enter unit price
indices. Steps S1–S5 are unchanged, since they rely on constant–returns shares and free entry
in labor units. In S6, the only difference is in the constants of the upstream and retail equations
through lnµ; the upstream coefficient matrix I − Bu and the retail aggregation weights remain the
same. Because ∥Bu∥∞ < 1 still holds, the upstream fixed point is unique and the rest of the sys-
tem follows uniquely by forward substitution. Existence and uniqueness of the full equilibrium
therefore carry over under nonlinear pricing with wage normalization.

Planner–implemented marginal–cost pricing sets effective per–unit markups to one, µu→u
≡

µu→r
≡ 1. The price block strictly simplifies: equation (U⋆) becomes (I − Bu) p u

u = ξu +
1

1−σnu with
the same Bu, and p r

u = p u
u . Retail indices follow from (R⋆) with lnµ r set to zero if the planner elim-

inates retail markups. The contraction property is preserved, so prices are uniquely pinned under
ω = 1. Regarding the quantity side, either the planner chooses masses directly by appropriate
entry transfers, in which case S1–S5 run with masses treated as given, or the planner supports de-
centralized free entry with linear subsidies that preserve the linear mapping from labor to entry in
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labor units. In both implementations the one–dimensional labor–clearing step and the linear price
block continue to deliver a unique equilibrium under the same spectral condition on upstream
feedback, now in a system with strictly simpler coefficients.

D Parameter Calibration and Estimation

D.1 Labor Output Elasticity α

In the Chilean firm balance sheet accounts data, we observe expenditures on labor (wL), capi-
tal services (rK), and intermediate materials (M). Under cost minimization, the model’s labor
(non–material) output elasticity coincides with the variable-cost share of the non–material bun-
dle (labor + capital) in total variable cost. Since the model abstracts from capital as a separate
input, we bundle labor and capital into a single “non–material” composite measured in the data
as wL + rK, and define for firm i:

αi = 1 −

∑
j p jim ji

wiLi + riKi +
∑

j p jim ji
.

If upstream suppliers charge two–part tariffs, total payments satisfy TCi = Fi + VCi with VCi :=
wiLi + riKi +

∑
j p jim ji. The mapping above holds at the level of variable costs. Total–cost shares

equal variable–cost shares scaled by (1− esci), where esci := Fi/(Fi+VCi) is the flat–fee expenditure
share. For large buyers (high VCi), esci is small, so total–cost and variable–cost shares are close;
throughout we therefore use αi as the labor (non–material) output elasticity.

We keep firms above the 75th percentile of annual revenue, winsorize αi at the 1st and 99th
percentiles, compute αs,ℓ by 6–digit sector s and firm type ℓ ∈ {Retailers,Upstream} separately by
year (2005–2022), then average over time and aggregate to the model’s 11 sectors.

We report α under two evaluation lenses that interpret observed unit prices differently. Under
the nonlinear–pricing lens, we exploit that under two–part tariffs average unit prices converge to
the marginal price as quantity rises; hence, for large buyers, observed unit prices closely approx-
imate marginal (allocative) prices. Under the uniform-pricing lens, we re-parameterize treating
observed unit prices as marginal prices that are invariant to quantity and common across buyers
within seller–product–time cells; since uniform pricing implies no fixed fees (Fi = 0, total and
variable costs coincide, so we estimate α on the full firm population. Table A5 presents sectoral
means by firm type under both lenses.
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Table A5: Labor (non–material) shares by sector and firm type: nonlinear vs. uniform lenses

Nonlinear lens α Uniform lens α

Sector Retailers Upstream Retailers Upstream

Agriculture 0.43 0.41 0.53 0.50

Mining 0.25 0.32 0.38 0.43

Manufacturing 0.39 0.42 0.49 0.59

Utilities 0.37 0.58 0.53 0.51

Construction 0.48 0.42 0.63 0.51

Retail and Wholesale 0.37 0.31 0.50 0.50

Transport and ICTs 0.55 0.47 0.66 0.58

Financial Services 0.58 0.62 0.77 0.77

Real Estate Services 0.66 0.53 0.75 0.67

Business Services 0.62 0.65 0.76 0.69

Personal Services 0.71 0.57 0.74 0.62

Type mean 0.49 0.48 0.61 0.58

Notes: α is the non–material (labor + capital) variable–cost share. Sectoral means pool 2005–2022 firm–year estimates at
6–digit × firm type, aggregated to 11 sectors. The nonlinear lens relies on large–buyer moments so average unit prices
approximate marginal prices under two–part tariffs; the uniform lens treats per–unit prices as marginal and common
across buyers (quantity–invariant).

On average, the uniform-pricing lens yields higher α because it treats observed per-unit prices
as marginal across buyers and weights smaller, more labor-intensive firms more heavily, whereas
under the nonlinear-pricing lens large-buyer moments (with flat-fee dilution) lower the measured
non-material share.

D.2 Input–output and Output Elasticities

We recover buyer–facing variable expenditure shares (weights) on upstream seller sectors from
firm–to–firm transactions. For buyer firm i of type ℓ ∈ {r,u}, let Us′ denote the set of upstream
varieties in seller sector s′. Define the materials expenditure weight on sector s′ as:

θ ℓis′ :=

∑
j∈Us′

pi j mi j∑
s′′

∑
j∈Us′′

pi j mi j
,

∑
s′
θ ℓis′ = 1,

where pi j is the buyer–facing unit price and mi j the corresponding quantity. Under two–part tariffs,
total payments satisfy TCi = Fi + VCi with VCi := wiLi + riKi +

∑
j pi jmi j; the weights above are

defined on variable materials expenditure. For large buyers (high VCi), the flat–fee share Fi/TCi is
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small, so total–cost shares closely track variable–cost shares.
Construction follows the logic used for α. For the nonlinear–pricing lens, we compute firm–level

weights θ ℓis′ separately for retailers (ℓ = r) and upstream buyers (ℓ = u), retain firms above the
75th revenue percentile each year, aggregate from 6–digit industries to the buyer’s 1–digit sector
within year by simple averaging, and then average over 2005–2022. For the uniform–pricing lens,
we repeat the construction on the full firm population, treating per–unit prices as marginal and
common across buyers within seller–product–time cells. Rows sum to one up to rounding. The
four matrices below report retailers and upstream firms as buyers under each lens.

Table A6: Input–output weights by Retailers as buyers (nonlinear–pricing lens)

Buyer / Seller Agr. Min. Man. Uti. Cons. R. & W. T. & ICTs F. Serv. RE. Serv. B. Serv. P. Serv.

Agriculture 0.21 0.00 0.39 0.02 0.02 0.26 0.07 0.02 0.00 0.02 0.00

Mining 0.00 0.04 0.18 0.02 0.05 0.48 0.06 0.01 0.00 0.15 0.00

Manufacturing 0.10 0.01 0.42 0.02 0.01 0.32 0.08 0.01 0.00 0.04 0.00

Utilities 0.05 0.02 0.35 0.02 0.02 0.17 0.09 0.03 0.00 0.25 0.00

Construction 0.07 0.00 0.23 0.01 0.07 0.25 0.14 0.02 0.00 0.20 0.00

Retail and Wholesale 0.12 0.01 0.37 0.01 0.01 0.30 0.08 0.03 0.00 0.06 0.00

Transport and ICTs 0.05 0.01 0.26 0.02 0.02 0.16 0.24 0.02 0.00 0.22 0.00

Financial Services 0.06 0.00 0.21 0.01 0.01 0.23 0.06 0.12 0.00 0.30 0.00

Real Estate Services 0.03 0.00 0.24 0.01 0.01 0.25 0.03 0.04 0.03 0.35 0.00

Business Services 0.05 0.00 0.16 0.01 0.01 0.25 0.06 0.04 0.00 0.42 0.00

Personal Services 0.05 0.00 0.27 0.01 0.01 0.19 0.06 0.06 0.00 0.35 0.00

Table A7: Input–output weights by Retailers as buyers (uniform–pricing lens)

Buyer / Seller Agr. Min. Man. Uti. Cons. R. & W. T. & ICTs F. Serv. RE. Serv. B. Serv. P. Serv.

Agriculture 0.25 0.00 0.21 0.02 0.03 0.32 0.05 0.07 0.00 0.04 0.00

Mining 0.00 0.04 0.19 0.06 0.15 0.30 0.07 0.02 0.00 0.17 0.00

Manufacturing 0.13 0.02 0.35 0.02 0.03 0.25 0.11 0.03 0.00 0.06 0.00

Utilities 0.07 0.01 0.18 0.03 0.03 0.26 0.17 0.05 0.00 0.20 0.00

Construction 0.10 0.00 0.10 0.02 0.22 0.24 0.15 0.03 0.00 0.14 0.00

Retail and Wholesale 0.16 0.01 0.24 0.01 0.02 0.34 0.08 0.05 0.00 0.09 0.00

Transport and ICTs 0.07 0.01 0.14 0.02 0.03 0.24 0.19 0.04 0.00 0.26 0.00

Financial Services 0.08 0.00 0.12 0.01 0.01 0.22 0.06 0.15 0.01 0.33 0.00

Real Estate Services 0.03 0.00 0.12 0.01 0.02 0.30 0.04 0.06 0.05 0.37 0.00

Business Services 0.07 0.00 0.13 0.01 0.01 0.22 0.09 0.06 0.00 0.41 0.00

Personal Services 0.07 0.00 0.17 0.02 0.02 0.25 0.07 0.08 0.00 0.33 0.01
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Table A8: Input–output weights by Upstream firms as buyers (nonlinear–pricing lens)

Buyer / Seller Agr. Min. Man. Uti. Cons. R. & W. T. & ICTs F. Serv. RE. Serv. B. Serv. P. Serv.

Agriculture 0.26 0.00 0.12 0.02 0.04 0.29 0.10 0.06 0.00 0.10 0.00

Mining 0.01 0.07 0.39 0.05 0.06 0.13 0.11 0.03 0.00 0.15 0.00

Manufacturing 0.08 0.02 0.49 0.03 0.02 0.15 0.09 0.02 0.00 0.10 0.00

Utilities 0.06 0.02 0.18 0.07 0.03 0.18 0.15 0.04 0.00 0.27 0.00

Construction 0.07 0.00 0.14 0.03 0.30 0.18 0.12 0.03 0.00 0.13 0.00

Retail and Wholesale 0.12 0.01 0.27 0.01 0.02 0.38 0.07 0.03 0.00 0.10 0.00

Transport and ICTs 0.06 0.02 0.14 0.02 0.04 0.21 0.22 0.03 0.00 0.26 0.00

Financial Services 0.05 0.00 0.12 0.02 0.01 0.20 0.07 0.12 0.01 0.41 0.00

Real Estate Services 0.03 0.00 0.11 0.01 0.02 0.27 0.04 0.04 0.06 0.41 0.00

Business Services 0.07 0.00 0.13 0.01 0.01 0.23 0.09 0.05 0.00 0.40 0.00

Personal Services 0.06 0.00 0.15 0.03 0.02 0.21 0.07 0.11 0.00 0.33 0.01

Table A9: Input–output weights by Upstream firms as buyers (uniform–pricing lens)

Buyer / Seller Agr. Min. Man. Uti. Cons. R. & W. T. & ICTs F. Serv. RE. Serv. B. Serv. P. Serv.

Agriculture 0.26 0.00 0.12 0.02 0.04 0.29 0.10 0.06 0.00 0.10 0.00

Mining 0.01 0.07 0.39 0.05 0.06 0.13 0.11 0.03 0.00 0.15 0.00

Manufacturing 0.08 0.02 0.49 0.03 0.02 0.15 0.09 0.02 0.00 0.10 0.00

Utilities 0.06 0.02 0.18 0.07 0.03 0.18 0.15 0.04 0.00 0.27 0.00

Construction 0.07 0.00 0.14 0.03 0.30 0.18 0.12 0.03 0.00 0.13 0.00

Retail and Wholesale 0.12 0.01 0.27 0.01 0.02 0.38 0.07 0.03 0.00 0.10 0.00

Transport and ICTs 0.06 0.02 0.14 0.02 0.04 0.21 0.22 0.03 0.00 0.26 0.00

Financial Services 0.05 0.00 0.12 0.02 0.01 0.20 0.07 0.12 0.01 0.41 0.00

Real Estate Services 0.03 0.00 0.11 0.01 0.02 0.27 0.04 0.04 0.06 0.41 0.00

Business Services 0.07 0.00 0.13 0.01 0.01 0.23 0.09 0.05 0.00 0.40 0.00

Personal Services 0.06 0.00 0.15 0.03 0.02 0.21 0.07 0.11 0.00 0.33 0.01

We also estimate Cobb–Douglas output weights θs across retail sectors. Because retail–to–final
transactions are linear in prices, observed retail revenues identify sectoral expenditure shares.
Within each year we restrict to retailers above the 75th percentile of revenue (nonlinear–pricing
lens), compute firm–level revenue shares, average within sector, and then average over 2005–2022;
for the uniform–pricing lens, we repeat the construction on the full firm population. The table
below report θs under each lens.

A28



Table A10: Cobb–Douglas output weights by retail sector: nonlinear vs. uniform lenses

Sector Nonlinear lens θs Uniform lens θs

Agriculture 0.0398 0.0446

Mining 0.0119 0.0085

Manufacturing 0.1407 0.1318

Utilities 0.0681 0.0505

Construction 0.1210 0.1521

Retail and Wholesale 0.3289 0.2768

Transport and ICTs 0.0802 0.0979

Financial Services 0.0719 0.1132

Real Estate Services 0.0180 0.0152

Business Services 0.0897 0.0911

Personal Services 0.0300 0.0183

Differences across lenses are modest and reflect composition. The nonlinear–pricing lens em-
phasizes large–buyer moments (flat–fee dilution), while the uniform–pricing lens uses the full
firm population and treats per–unit prices as marginal across buyers; for output weights, this
shifts mass toward sectors dominated by large retailers under the nonlinear lens and toward sec-
tors with many smaller retailers under the uniform lens.

D.3 Upstream Materials Elasticity of Substitution

We estimate the upstream elasticity of substitution σu′ within seller sector u′, exploiting the one-
off, municipality-level cost shock from Chile’s March 2020 COVID-19 lockdowns. March 2020
marks the first registered COVID-19 cases in Chile, making the shock unexpected. Figure A2
maps the spatial heterogeneity of early lockdowns (municipalities in red were under lockdown in
March 2020).
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Figure A2: Distribution of early COVID-19 lockdowns in Chile

In our model, buyers aggregate upstream inputs from sector u′ with CES. For buyer (i, s), let
u∗ denote the largest pre-shock supplier (by 2019 expenditure). For any u ∈ Uu′ :

log
( misut

misu∗t

)
= −σu′ log

(
pisut

pisu∗t

)
,

where pisut and misut are the buyer-facing unit price and quantity for input u at time t.
Data come from the Chilean Internal Revenue Service (SII): monthly firm-to-firm transactions,

2019–2021, with product descriptions, quantities, prices, firm identifiers, and locations. We match
buyers to upstream suppliers, observe the universe of intermediate-input purchases, and track
geographic lockdown exposure. For each (i, s) we identify u∗ as the 2019 top supplier by value.

Define the instrument Zis = 1 if u∗ is located in a municipality under lockdown in March 2020,
and 0 otherwise. This delivers a plausibly exogenous increase in the marginal cost (and price)
of u∗ relative to other inputs, inducing substitution away from u∗. To ensure unit prices reflect
marginal prices, we restrict the estimation sample to large buyers (above the 75th percentile of
average annual sales in 2019–2021). The exclusion is that the shock affects the buyer only through
u∗’s relative cost. To mitigate alternative channels, we impose:

1. Buyer location: the buyer is not in a locked municipality.

2. Client base: the buyer’s customers are not in locked municipalities.

3. Input scope: no other input used by the buyer was sourced from a locked municipality.
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We use 12-month log differences in relative prices and quantities to remove time-invariant
buyer–supplier heterogeneity and seasonality, and include buyer 6-digit sector fixed effects γs to
absorb sector-level shocks common to all inputs. Standard errors are clustered at the buyer level.

Under the nonlinear-pricing lens, two-part tariffs imply that average unit prices converge to
the marginal price as quantity rises; we therefore identify σu′ from large-buyer moments where
flat-fee components are diluted, using the instrumented change in the top supplier’s relative price.
Under the uniform-pricing lens, per-unit prices are treated as marginal and common across buyers
within seller–product–time cells; we re-estimate the same 2SLS specification on the full firm pop-
ulation (subject to the three exclusion conditions above). The instrument is identical across lenses;
differences in estimates reflect sample composition (large-buyer restriction versus full population)
and the pricing interpretation (average-versus-marginal reconciliation under nonlinear pricing
versus direct marginal interpretation under uniform pricing).

For each seller sector u′, we estimate a separate 2SLS on pairs (i, s) × u ∈ Uu′ :

∆12 log
( pisut

pisu∗t

)
︸          ︷︷          ︸

relative price change

= β0 + β1Zis + γs + νisut, ∆12 log
(

misut
misu∗t

)
︸          ︷︷          ︸

relative quantity change

= βu′
̂

∆12 log
( pisut

pisu∗t

)
+ γs + εisut,

where βu′ = −σu′ . The 12-month horizon targets the medium-run substitution relevant for coun-
terfactuals.

Table A11 reports sector-specific estimates σ̂u′ with standard errors, first-stage F statistics, and
observation counts for both lenses. Three sectors (Mining, Utilities, Real Estate Services) have
insufficient post-restriction variation or yield σ̂u′ < 1; we set their elasticities to the minimum
estimated elasticity for other sectors, σ = 1.44 for nonlinear pricing lenses and σ = 1.71 for uni-
form price lenses. They are omitted from the table for brevity but included in all counterfactual
calculations.
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Table A11: Estimated elasticities of substitution by seller sector: nonlinear vs. uniform lenses

Nonlinear lens Uniform lens

Sector σ SE F Obs. σ SE F Obs.

Agriculture 4.14 1.57 9.38 3,129 2.59 1.35 10.24 4,387

Manufacturing 5.19 1.14 43.10 218,027 3.89 0.67 57.68 255,462

Construction 1.44 0.43 7.36 4,725 1.71 0.42 15.21 6,111

Retail and Wholesale 3.80 0.39 94.08 680,985 5.22 0.34 236.44 953,073

Transport and ICTs 5.07 2.22 25.19 24,054 4.35 1.59 58.22 46,637

Financial Services 3.09 1.56 12.35 3,631 2.56 0.37 19.44 4,374

Business Services 6.83 1.59 14.85 3,709 6.81 1.50 27.55 5,008

Personal Services 8.08 3.24 10.68 5,255 6.21 2.37 18.29 7,728

Notes: SE = standard error; F = first-stage F statistic; Obs. = observation count in the estimation sample. Sectors
omitted from the table (Mining, Utilities, Real Estate Services) are included in all counterfactuals with σ set to minimum
estimated elasticity for other sectors.

Across sectors, the estimated elasticities span 1.44–8.08 under the nonlinear lens and 1.71–6.81
under the uniform lens in this sample. The nonlinear lens yields higher σ in Agriculture (4.14 vs.
2.59), Manufacturing (5.19 vs. 3.89), Transport and ICTs (5.07 vs. 4.35), Financial Services (3.09 vs.
2.56), and Personal Services (8.08 vs. 6.21), implying greater scope for substitution across upstream
varieties in these sectors relative to the uniform lens. The uniform lens is higher in Construction
(1.71 vs. 1.44) and Retail and Wholesale (5.22 vs. 3.80), implying easier substitution there under
the uniform interpretation, while Business Services is essentially the same across lenses (6.83 vs.
6.81). In levels, the largest elasticities are in Personal Services and Business Services, indicating the
most scope for substitution among the sectors shown, and the smallest are in Construction under
both lenses.

D.4 Exit Rates

We estimate annual exit rates δsℓ from Chilean administrative microdata independently of any
pricing assumptions. Because exit is a demographic object (presence of firm i in t + 1), its mea-
surement does not rely on prices or markups; accordingly, we use the same calibration under
the nonlinear–pricing and uniform–pricing lenses. We consider a one–year period and a panel
of firms indexed by i, years by t, sectors by s (6–digit), and firm types ℓ ∈ {upstream, retail} over
T = {2005, . . . , 2022}. For each firm–year (i, t) define one–year survival:

survi,t := 1{∃ an observation of firm i in year t + 1}.
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At the sector–type–year level, let Nsℓ,t be the number of active firms and survivorssℓ,t =
∑

i∈(sℓ,t) survi,t.
The exit rate in year t is:

δsℓ,t = 1 −
survivorssℓ,t

Nsℓ,t
, δsℓ =

1
|T |

∑
t∈T

δsℓ,t.

We aggregate 6–digit estimates to the model’s 11 sectors by simple averaging within sector and
report 1–digit means by firm type in Table A12. These rates are held fixed across pricing lenses in
all counterfactuals.

Table A12: Exit rates (δ) by sector (means)

Sector Retailers Upstream Sector mean

Agriculture 0.090 0.086 0.088

Mining 0.084 0.093 0.088

Manufacturing 0.093 0.071 0.082

Utilities 0.070 0.064 0.067

Construction 0.140 0.110 0.125

Retail and Wholesale 0.103 0.076 0.089

Transport and ICTs 0.088 0.093 0.091

Financial Services 0.101 0.062 0.081

Real Estate Services 0.115 0.099 0.107

Business Services 0.099 0.077 0.088

Personal Services 0.093 0.090 0.092

Type mean 0.098 0.084 0.091

D.5 Entry Costs

The entry cost ce,sℓ measured in units of yearly firm-level wages. The calibration exploits the
availability of firm-level accounting profits and wages. We consider a one-year period and a panel
of firms indexed by i, years by t, sectors by s, and firm types by ℓ ∈ {upstream, retail}. We compute
ce,sℓ at 6-digit sector granularity (626 sectors). Let T = {2005, . . . , 2022} denote the estimation
window.

We have access to data on firm-level yearly revenue, labor headcounts, wage-bill expendi-
ture, material expenditure, and capital stock. We build the real user cost of capital using publicly
available data.33 Using these data, we construct yearly firm-level profits Πi,t for 2005–2022 and

33We use the 10-year government bond interest rate minus expected inflation plus the external financing premium.
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compute the average wage per worker-year:

wi,t ≡
wagebilli,t

employeesi,t
.

We define the per-active-firm annual profit in (sℓ, t) as:

Π̄sℓ,t =
1

Nsℓ,t

∑
i∈(sℓ,t)

Πi,t, Nsℓ,t = activesℓ,t.

Let the sector–firm type wage per worker-year be the headcount-weighted mean:

wsℓ,t =

∑
i∈(sℓ,t) wi,t · employeesi,t∑

i∈(sℓ,t) employeesi,t
.

We set wsℓ and Π̄sℓ as averages over T .
In our model, flat fees can redistribute profits across firm types. Calibration must therefore

use the profit that accrues to the owner of the firm that pays entry. Under steady state with i.i.d.
per-period profits and exogenous exit rate δsℓ , the expected present value (PV) of a surviving firm
is:

PVsℓ =
Π̄sℓ

1 − β(1 − δsℓ )
,

where β = 1/(1+r) is the annual real discount factor and r is the annual real rate. As only a fraction
psucc

sℓ ∈ (0, 1] of firms have positive profits, we set psucc
sℓ to the share of positive-profit firms in (sℓ).

The free-entry condition is:

wsℓ ce,sℓ = psucc
sℓ · PVsℓ =⇒ ce,sℓ =

psucc
sℓ

wsℓ
·

Π̄sℓ

1 − β(1 − δsℓ )
.

We implement this formula under both evaluation lenses. The exit rates δsℓ and wage measures
wsℓ are lens–invariant; differences across lenses arise from the lens–specific mapping of observed
prices into profits and the implied positive–profit share psucc

sℓ . Under the uniform–pricing lens,
per–unit prices are marginal and common across buyers within seller–product–time cells, so ob-
served accounting profits already reflect allocative margins with no fixed–fee component; hence
all firms are informative for estimating Π̄sℓ and psucc

sℓ . Under the nonlinear–pricing lens, observed
average unit prices bundle marginal prices with flat fees, so for small buyers the fee–per–unit Fi/Qi

is large and contaminates variable costs and revenues, biasing profits. Restricting to large buyers
makes Fi/Qi ≈ 0, bringing observed unit prices close to marginal and delivering lens–consistent

We use the capital depreciation rate from the LA-KLEMS database. For reference, the average government bond interest
rate over 2005–2022 is 5.74%, expected inflation is 4.6%, the external financing premium is 110 basis points, and the
average capital depreciation rate is 5%.
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profits for the entry–cost calculation.
We compute entry costs by firm type and 6-digit sector. Table A13 reports 1–digit sector av-

erages for retailers and upstream firms under both lenses. We also report wage bill equivalents
(multiples of the annual wage bill) defined as ce,sℓ divided by the average annual wage bill of the
sector–type (average wage per worker times average employment), averaged over 2005–2022. For
example, for retailers in Agriculture, the entry cost equals 3.60 annual wage bills for the average
firm in that sector.

Table A13: Entry costs and wage–bill equivalents by sector: nonlinear vs. uniform lenses

Nonlinear lens Uniform lens

Retailers Upstream Retailers Upstream

Sector ce Wage–bill eq. ce Wage–bill eq. ce Wage–bill eq. ce Wage–bill eq.

Agriculture 147 3.60 137 4.65 35 3.11 40 4.07

Mining 59769 33.87 384 7.38 13410 56.28 85 6.94

Manufacturing 238 4.51 218 4.11 39 4.01 66 5.00

Utilities 2012 16.31 723 6.04 251 12.87 139 5.75

Construction 223 7.78 192 3.78 47 6.53 57 4.35

Retail and Wholesale 113 5.92 141 4.71 31 5.52 46 5.55

Transport and ICTs 667 9.89 177 5.89 140 11.34 53 6.62

Financial Services 945 11.42 616 10.02 68 5.71 107 7.61

Real Estate Services 159 14.01 213 10.23 42 9.41 46 6.92

Business Services 138 5.05 224 2.63 49 6.58 69 3.74

Personal Services 253 4.31 204 4.68 67 4.57 48 4.65

Notes: “Wage–bill eq.” reports multiples of the annual wage bill for the corresponding sector–type. Sector classification
follows the model’s 11-sector aggregation. Exit rates and wage measures are common across lenses; profits and the
positive–profit share are lens–specific as described in the text.

The mapping from profits to entry costs we use is dimensionally consistent (output units into
labor units via wsℓ ) and directly comparable across sector–firm types. Compared to alternatives
(e.g., inferring ce from net-entry rates and size distributions or from structural Markov dynamics),
this method is empirically simple, requires fewer auxiliary moments, and allows clean sectoral
heterogeneity through the observed Π̄sℓ and wsℓ .

D.6 Pareto Productivity Tails

The Pareto productivity tail only applies for the nonlinear price lens model. Let ℓ ∈ {u, r} index the
firm type (upstream, retail) and s ∈ {1, . . . , 12} index 1-digit sectors within each firm type. For firm
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i in (ℓ, s), let Lℓsi be its number of workers. We assume a Pareto tail for Lℓs:

Pr
(
Lℓs > l

)
=

Lℓsmin

l

ν
ℓ
s

, l ≥ Lℓsmin, ν ℓs > 0,

equivalently, the density is fLℓs(l) = ν ℓs
(
Lℓsmin

)ν ℓs l−(ν ℓs +1). Given a threshold Lℓsmin (baseline: firms with
at least two employees), the closed-form MLE of the survival exponent is

ν̂ ℓs =
nℓs∑

i: Lℓsi ≥Lℓsmin

ln

 Lℓsi

Lℓsmin


, SE(̂ν ℓs ) ≈

ν̂ ℓs
√

nℓs
,

where nℓs is the number of tail observations; the number of firms in ℓ (upstream or retail) and
sector s with employment at or above the threshold. We estimate νℓs at the 1-digit sector for each
layer and then map to productivity tails via the model’s l(z).

The model implies labor demand at productivity z:

l(z) = l(z̃)
(z
z̃

)σ−1
, σ > 1,

which is strictly increasing in z. Fix a firm type–sector pair (ℓ, s). Suppose productivity Zℓs has a
Pareto upper tail with survival exponent κ ℓs > 0:

Pr
(
Zℓs > z

)
=

(zℓsmin

z

)κ ℓs
for z ≥ zℓsmin.

Let Lℓs = l(zℓs) with l(z) = l(z̃) (z/z̃)σ−1 and define Lℓsmin = l(zℓsmin). Then Lℓs has a Pareto upper tail
with survival exponent

ν ℓs =
κ ℓs
σ − 1

, ⇐⇒ κ ℓs = (σ − 1) ν ℓs .

Therefore, given a labor Pareto tail ν ℓs and the seller-sector elasticity of substitution σu′ for
sector s, the productivity Pareto tail is pinned down by κu

s = (σu′ − 1)νu
s for upstream firms and

κr
s = (φs′ − 1)ν r

s for retailers firms . We estimate labor Pareto tails using the MLE above and show
them in Table A14, together with the implied productivity tails using the estimated elasticities of
substitution by sector.
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Table A14: Labor and Implied Productivity Pareto Tails by Sector

Retailers Upstream

Sector νr κr = (φs−1)νr νu κu = (σu′−1)νu

Agriculture 2.49 8.82 2.63 4.18

Mining 1.43 2.40 2.20 0.99

Manufacturing 2.66 8.58 2.15 5.18

Utilities 2.17 6.38 1.94 0.87

Construction 3.23 5.13 2.19 0.99

Retail and Wholesale 3.45 24.74 2.40 6.72

Transport and ICTs 2.20 2.32 3.04 12.37

Financial Services 2.55 1.02 2.26 4.72

Real Estate Services 4.36 3.59 3.03 1.36

Business Services 2.45 4.25 1.93 8.13

Personal Services 2.03 3.17 2.58 14.69

Notes: κ = (σu′ − 1)ν uses seller-sector elasticities σu′ .

D.7 Final-Consumer Elasticities of Substitution

We recover the elasticity of substitution faced by the representative final consumer across retail
varieties within each retail sector sr, denoted φsr > 1. Under the CES aggregator, the representative
consumer allocates expenditure across differentiated retail varieties j ∈ Jsr via

Qsr =

 ∑
j∈Jsr

q
φsr−1
φsr

j


φsr
φsr−1

,

so the demand for variety j is isoelastic with elasticity φsr . With linear pricing and monopolistic
competition, the first-order condition yields the standard markup:

µsr ≡
p j

c j
=

φsr

φsr − 1
,

implying that the variable-profit share of revenue equals 1/φsr . Hence, for retailer j,

Πvar
j =

1
φsr

R j,
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where R j is sales revenue. Retailers also have to pay flat fees to upstream firms F j,t, so that ac-
counting profits are

Π j,t =
1
φsr

R j,t − F j,t.

Aggregating within sector sr and year t gives:∑
j∈Jsr

Π j,t =
1
φsr,t

∑
j

R j,t −
∑

j

F j,t,

which rearranges to the sector-year estimator:

φsr,t =

∑
j R j,t∑

j F j,t +
∑

jΠ j,t
.

Households face linear per–unit pricing, so the CES markup identity and the estimator hold
under both lenses, nonlinear and uniform prices. Differences arise from how sectoral profits and
flat fees aggregates are formed: under the nonlinear–pricing lens we compute moments on large
retailers (above the 75th percentile of annual sales within each sector–year) so upstream flat–fee
components do not contaminate variable cost and profits (average prices for large buyers approxi-
mate marginal prices); under the uniform–pricing lens per–unit prices are treated as marginal and
common within seller–product–time cells, so we use the full retailer population.

Table A15 presents the resulting estimates of yearly averages for the 205-2022 period of φsr by
1-digit retail sector.
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Table A15: Final–consumer elasticities of substitution by retail sector: nonlinear vs. uniform lenses

Sector Nonlinear lens φ Uniform lens φ

Agriculture 4.82 4.54

Mining 2.66 2.68

Manufacturing 4.17 4.22

Utilities 3.95 3.94

Construction 2.61 2.59

Retail and Wholesale 8.51 8.17

Transport and ICTs 2.04 2.05

Financial Services 1.39 1.40

Real Estate Services 1.85 1.82

Business Services 2.84 2.73

Personal Services 2.62 2.56

Type mean 3.41 3.34

Notes: φsr is computed from pooled sectoral sums of revenue, fixed costs (in labor units), and profits. The formula
follows directly from the CES markup identity under linear pricing.

This approach recovers consumer-side elasticities from sectoral accounting identities under
the structural model and requires no additional demand shifters or instruments.

E Quantification Material

E.1 Exposures to Final Consumption

This appendix reports the two exposure measures used to interpret the sectoral welfare opening.
“SC share” is the sector’s share in total supply–chain transaction value (not its share in final de-
mand). The retail to upstream exposure indicates how strongly a marginal dollar of consumer
spending reaches each upstream sector through retail purchases. The full upstream exposure lets
that dollar continue circulating as upstream sectors buy from one another, capturing the total
knock–on demand that ultimately lands in each upstream sector. For each measure we also report
a normalized “Share” that sums to one across sectors, making the entries directly comparable.
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Table A16: Final–consumption exposures by sector (levels and shares; three decimals)

Sector [SC share] retail Share full Share

to upstream Share(r to u) upstream (full upstream)

Retail and Wholesale [32%] 0.170 0.319 0.462 0.364

Manufacturing [15%] 0.099 0.186 0.222 0.175

Transport and ICTs [10%] 0.051 0.096 0.172 0.136

Construction [8%] 0.065 0.121 0.107 0.084

Financial Services [18%] 0.046 0.087 0.090 0.071

Business Services [7%] 0.036 0.067 0.083 0.065

Agriculture [2%] 0.028 0.053 0.064 0.050

Utilities [3%] 0.019 0.036 0.031 0.024

Real Estate Services [1%] 0.010 0.018 0.017 0.013

Personal Services [2%] 0.006 0.012 0.011 0.009

Notes: “SC share” is the sector’s share of supply–chain transaction value. The retail to upstream column tracks
the immediate flow of consumer spending to upstream sectors via retail; the full upstream column adds all up-
stream–to–upstream rounds. Each “Share” column normalizes its exposure vector to sum to one. The mining sector
(1%) has very small exposure in our data and is omitted for brevity.

The exposure map aligns closely with the sectoral welfare opening between nonlinear and
linear pricing. Retail & Wholesale, Manufacturing, Transport/ICTs, and Construction carry the
largest flows of final demand into the upstream network, so compressing markups where these
exposures are high has the biggest aggregate payoff. Sectors with low exposures, such as Real
Estate and Personal Services, contribute little to the aggregate gap even when their own wedges
or masses move.
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