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Abstract

Measuring accurately heterogeneous effects is key for the design of efficient public

policies. This paper focuses on predicting unobserved individual-level causal effects

in linear random coefficients models, conditional on all the available data. In the

application I consider, these “posterior effects” are the average effects of teachers’

knowledge on their students’ performance, conditional on both variables. I derive

two nonparametric strategies for recovering these posterior effects, assuming inde-

pendence between the effects and the covariates. The first strategy recovers the

distribution of the random coefficients by a minimum distance approach, and then

obtains the posterior effects from this distribution. The corresponding estimator can

be computed using an optimal transport algorithm. The second approach, which

is valid only for continuous regressors, directly expresses the posterior effects as a

function of the data. The corresponding estimator is rate optimal. I discuss several

extensions, in particular the relaxation of the independence condition. Finally, the

application reveals large heterogeneity in the effect of teachers’ knowledge, suggest-

ing that we could substantially improve the cost-effectiveness of their training.

JEL codes: C14, H75, J24

Keywords: Empirical Bayes, teacher’s value-added, random coefficients, optimal

transport, generalized Tweedie’s formula, voting analysis, inverse problem.

*Email: christophe.gaillac@economics.ox.ac.uk. Website: www.cgaillac.com. I am very grateful to

Xavier D’Haultfœuille, Eric Gautier, Arnaud Maurel, Martin Weidner, and Bruno Crépon for their

invaluable guidance and support. I also thank Steve Bond, Christian Bontemps, James Duffy, Jean-

Pierre Florens, Emmanuel Guerre, Vishal Kamat, Maximilian Kasy, Pascal Lavergne, Michel Le Breton,

Thierry Magnac, Sophocles Mavroeidis, Nour Meddahi, Vincent Pons and Karine Van der Straeten as well

as seminar participants at Duke University, the University of Oxford, the Toulouse School of Economics,

Queen Mary University of London, and at the Nuffield Postdoctoral seminar. The author acknowledges

financial support from the grant ERC POEMH 337665. All errors are mine.

mailto:christophe.gaillac@economics.ox.ac.uk
www.cgaillac.com


1 Introduction

Accurately estimating the impact of specific factors at the individual level is key to

efficient microeconomic decision making. However, this heterogeneity is often unob-

served. This paper therefore focuses on predicting the unobserved individual-level

causal effects of specific covariates on an outcome within a linear random coefficients

model, conditional on all available data. The latter includes the covariates but also

the outcome. In the application I consider, these “posterior effects” (PE) are the

average effects of teachers’ knowledge of the program on their students’ performance,

conditional on both variables. The PE can be used to reveal important features of

the heterogeneity of these effects. Importantly, they provide sufficient information to

design efficient policies, such as identifying teachers who should be offered a training

to improve their knowledge in order to maximize its impact on student scores.

My analysis focuses on the context in which covariates Xi are available to explain

a (possibly noisy) measure of an outcome of interest Yi. For example, among other

teacher characteristics, their knowledge of the program might explain their value-

added Y i, measured with noise from the average of student test scores Yi. Leaving

aside the noisy measurement problem for the moment, using a linear regression of Yi

on Xi will miss important heterogeneity in the effects. This paper therefore focuses on

modeling the latter. It assumes that individual outcomes Yi are explained by observed

characteristics Xi ∈ Rp and a random vector Γi of unobserved heterogeneity, within

the following linear random coefficients (RC) model,

Yi = Γ1,i +X⊤
i Γ−1,i, (1)

Γi and Xi are independent, (2)

where Γ1,i ∈ R is a random intercept and Γ−1,i ∈ Rp is a random slope, which is the

subvector of Γi without the first coordinate. In this context, there is little hope of

recovering the individual heterogeneity Γi. However, the prediction of these effects

conditional on the observed sample can be achieved using the posterior effects, which

in the model (1)-(2) are defined as

PE(x, y) := E[Γ|(X, Y ) = (x, y)]. (3)

These are closely related to the Empirical Bayes (EB) framework, as Γ̂∗
i := PE(Xi, Yi)
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can be interpreted as the mean squared error optimal estimates of the individual-level

causal effects Γi.

Under nonparametric restrictions on the distribution of the effects, this paper intro-

duces provides tractable estimators for predicting these unobserved individual-level

effects. The first method recovers the distribution of the coefficients and then uses

Bayes’ theorem to compute the posterior effects. Similar to Beran and Millar (1994),

my method characterizes the RC distribution using minimum distance, but suggests

the Wasserstein distance (see also Arellano and Bonhomme, 2023). This insight al-

lows the reformulation of the target distribution as a barycenter of some observed

distributions and the use of recent tools from optimal transport theory to solve this

problem, known as the Generalized Wasserstein Barycenter (see Delon et al., 2022)

(GWB hereafter). The second formulation, more efficiently expresses the PE directly

as a function of the data, but it is only applicable when the covariates are continuous.

I call this a Generalized Tweedie’s formula (GT, hereafter), as it extends the original

correction (see Robbins, 1956; Efron, 2011) to this context with covariates.

In addition to its relevance in this context, model (1)-(2) serves as a foundation for

more complex panel data models used in the literature on Teachers’ Value Added

(TVA) or economic mobility. Importantly, it also provides a new perspective and

solution to the ecological inference problem (see, e.g., King, 1997), one simple but

striking illustration being the prediction of the probability of voting by race for a

given precinct or county, using only census and election results data.

I explore alternatives to the independence assumption (2) that provide some robust-

ness to it. When additional covariates are available, a middle ground between the

model (1)-(2) and the one describing the heterogeneity of the effects using only co-

variates (see, e.g, Athey and Imbens, 2016; Athey et al., 2019), is to assume that

the effects are determined by nonlinear functions of these observed covariates and

additively separable unobservables (see, e.g, Breunig, 2021). An alternative is to use

additional known controls, conditioning on which the independence between RCs and

regressors holds. When instruments are available, an alternative is to identify a con-

trol variable (Florens et al., 2008; Masten and Torgovitsky, 2016; Newey and Stouli,

2020), conditioning on which this independence holds. The final extension relaxes

the baseline assumption to allow for distributions that are in a neighborhood of the
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independent joint distribution, using the conditional partial independence introduced

in Masten and Poirier (2018), and provide bounds on the PE.

The identification results are constructive, providing practical estimators for the PE in

both the GWB and GT formulations. Under classical assumptions on the smoothness

of the underlying RCs distribution, I show that the latter estimator is optimal in the

minimax sense, up to logarithmic factors in the rates of convergence, and its tuning

parameters are selected from the data (see, e.g., Tsybakov, 2008; Giné and Nickl,

2016). I also show asymptotic normality. I provide a simple estimator for the GWB

formulation and prove its consistency. Using discretization, it is possible to use this

estimator even when the distribution of the regressors is continuous.

I apply these methods to study the sensitivity of TVA to the teachers’ knowledge of the

program using data from Pakistan, extending the analysis of Bau and Das (2020). In

this panel data context, explaining TVA in terms of its time-invariant characteristics

is usually done in a second step using linear regression of the fixed effects. They show

that teachers’ program knowledge is predictive of their performance, but this analysis

lacks a description of the heterogeneity of these effects. In particular, my methods

show that those teachers who have less to gain from increasing their knowledge are

also those who have relatively important value added from other sources. Importantly,

my method also identifies teachers with low knowledge and for whom an increase in

knowledge is predicted to have a large impact on performance. As a consequence,

I illustrate that a personal development policy that takes this heterogeneity into

account and targets this latter population would yield important efficiency gains

relative to one that neglects it (up to about 31% when treating 10% of the sample),

which is all the more important because school systems typically allocate 3% to 5%

of their total budget to support training programs.

Related literature

The EB literature (see, e.g., Robbins, 1964; Efron, 2012) is now large on settings

without covariates (see, e.g., James and Stein, 1992; Jiang and Zhang, 2009; Brown

and Greenshtein, 2009; Johnstone and Silverman, 2004; Efron, 2011; Ignatiadis and

Wager, 2022). This has found many policy-relevant applications in economics, where

my methods also apply: on the value added of teachers, schools, and services (Rock-
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off, 2004; Jacob and Lefgren, 2008; Rothstein, 2010; Chetty et al., 2014a; Angrist

et al., 2017; Gilraine et al., 2020), neighborhood effects on intergenerational mobility

or mortality (Chetty and Hendren, 2018; Finkelstein et al., 2021; Bonhomme and

Weidner, 2022), or the study of discrimination (Kline et al., 2022). However, EB

analysis of the case with covariates has been less explored (see, e.g., Fay and Herriot,

1979; Cohen et al., 2013; Ignatiadis and Wager, 2019; Montiel Olea et al., 2021; Arm-

strong et al., 2022). Both Ignatiadis and Wager (2019) and Armstrong et al. (2022)

focus on posterior estimation of the individual parameters Yi in a setting with noise,

but do not consider the heterogeneous individual effects of the covariates. Ignatiadis

and Wager (2019) use covariates that enter flexibly and nonlinearly, at the cost of

imposing strong restrictions on the unobserved heterogeneity which I do not make.

This paper thus takes a complementary view, where I rely on the linear structure but

focus on the complex heterogeneity and dependence between the different RCs. This

paper is also related to Bonhomme and Weidner (2022), as they consider the average

of these posterior effects, although not in a RCs model, allowing for misspecification

and searching for estimators that have the least amount of bias.

We can think of the setup associated to (1)-(2) as repeatedly sampling the RCs

from an unknown distribution FΓ. Each them, combined with Xi, then generates an

observation Yi following a distribution FY |X . We then want to make inference that

would be direct if FΓ were known. In this context, the EB literature distinguishes

between strategies based on modeling FΓ, called G-modeling (Jiang and Zhang, 2009;

Koenker and Mizera, 2014; Gu and Koenker, 2017; Gilraine et al., 2020), and those

based on directly modeling the observed distribution FY |X , called F-modeling (Brown

and Greenshtein, 2009; Efron, 2011, 2014). On the one hand, my GWB approach

innovates by bringing tools from the optimal transport literature into the G-modeling

strategy when covariates are available. On the other hand, my GT formulation uses

F-modeling and relates it to the literature on RC models in econometrics.

RCs models and specifically linear ones have a long tradition in econometrics (see,

e.g., Beran and Hall, 1992; Beran and Millar, 1994; Beran et al., 1996; Masten, 2017;

Hoderlein et al., 2017; Newey and Stouli, 2018; Dunker et al., 2019; Breunig, 2021;

Gaillac and Gautier, 2022). Hoderlein and Mammen (2007, 2009); Hoderlein and

Sasaki (2013); Chernozhukov et al. (2015) are the closest in terms of object interest,
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providing identification and estimation for posterior marginal effects in nonseparable

models when X is continuous and for individuals with X = x and Y being a con-

ditional quantile of Y given X = x, which are the derivatives of this quantile. An

important feature of RCs models like (1)-(2), is that the variation of the regressors

Xi is key, as it limits the size of the class and type of distributions Γi that can be

identified (see, e.g., Gaillac and Gautier, 2021b). In Gaillac and Gautier (2022), we

study the minimax rates of convergence for estimating the density of the coefficients,

in the difficult case where the regressors are bounded but continuous. Estimating PE

is simpler but yields faster rates of convergence. Appendix G.3 studies identification

in the linear system of RCs equations model (see Masten, 2017; Kasy, 2022).

Given the importance of the variation of the regressors in RC models, an important

point is thus that the GWB formulation also allows more generally to estimate the

distribution FΓ with discrete covariates. I exploit advances in the so-called Wasser-

stein barycenters (Agueh and Carlier, 2011; Cuturi and Doucet, 2014; Delon et al.,

2022; Carlier et al., 2022) by linking them to the inverse problem implied by model

(1)-(2). The optimal transport literature has now found many applications in eco-

nomics and econometrics (see, e.g., Galichon and Henry, 2011; Chernozhukov et al.,

2017; Galichon, 2018; D’Haultfoeuille et al., 2021; D’Haultfœuille et al., 2022; Gunsil-

ius, 2023). Recent advances have made optimal transport problems computationally

tractable (see, e.g., Cuturi, 2013; Peyré et al., 2019).

Finally, my approach allows to revisit the description of the impact of covariates on

the population of interest in the applications. Extending the analysis of the impact

of teachers’ knowledge of the program on their performance in developing countries

(see, e.g., Bold et al., 2017; Bau and Das, 2020), my study of the heterogeneity of

these effects shows how to gain efficiency in the allocation of on-the-job training.

This makes it a possible alternative to the dismissal and retention policies discussed

in the literature (see, e.g., Hanushek et al., 2009; Chetty et al., 2014b; Gilraine et al.,

2020). It also provides new fully nonparametric tools to perform ecological inference,

extending a large literature in political science (see, e.g., Goodman, 1959; King, 1997;

Rosen et al., 2001; Imai et al., 2008; Frogner and Poggio, 2019). Our robustness

analyses also provide some new answers to the criticisms that have been formulated

(Gelman et al., 2001; Tam Cho, 1998; Tam Cho and Gaines, 2004; Wakefield, 2004).
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Organization of the paper

The rest of the paper is organized as follows. In Section 2, I first describe contexts

where posterior effects provide useful and sufficient information for the decision mak-

ing. Then, in Section 3, I show how to identify these effects, considering various

extensions. Section 4 details the different inference results for the two estimators

and describes implementation. Section 5 then shows that my methods are empiri-

cally relevant for estimating the heterogeneity of TVAs with respect to teachers’ own

knowledge, and discusses the implications for policy learning. Section 6 concludes.

The Appendix contains the main proofs, additional Monte Carlo simulation results,

and the Tweedie’s formula slightly extended for completeness. Specifically, Section G

extends identification and estimation to the ecological inference. Section G.7 provides

a real dataset validation of my method using a comparison with ground truth, focus-

ing on the estimation of turnout by race. Finally, my methods will soon be compiled

into a companion R package, RegPE, interfacing the Python library POT Flamary et al.

(2021) for the optimal transport part, and will be available on CRAN-R.

2 Why considering posterior effects?

The posterior effects are only one feature of the unobserved heterogeneity in the

model. However, there are relevant frameworks where the PE are sufficient to derive

optimal decisions. All variables in this section are individual i specific, hence the

index i is omitted hereafter.

2.1 Estimation under mean squared error

The simplest framework is the estimation of individual Γ effects. Consider sampling

a Γ from the true unknown distribution of unobserved effects FΓ. Combined with

X, it generates the outcome Y according to the model (1)-(2). A standard goal

in prediction is to find an estimator p(X, Y ) that depends on the data (X, Y ) and

minimizes the mean squared error:

R(p,Γ) = EΓ

[
(Γ− p(X, Y ))2

]
.
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Since Γ is actually random, it is more relevant to find p∗ that minimizes the expected

average (Bayes) risk under FΓ,

R(p, FΓ) =

∫
Eg[(g − p(X, Y ))2]dFΓ(g). (4)

In a Bayesian context, FΓ would be the prior distribution. With this standard mean-

squared error objective (4), the posterior effects p∗(X, Y ) = PE(X, Y ) = E[Γ|(X, Y )]

are optimal decisions, i.e., minimizing R(p, FΓ).

This motivates the analysis of the MSE in Section 4. For this inference part, the goal

is then to find a procedure p̂ that comes as close as possible to the oracle estimator

p∗ when n → ∞, while being robust to the worst possible case of the distribution FΓ.

This is the minimax approach that I follow in Section 4.

2.2 Treatment allocation on X but targeting Y

In the second framework, I consider two time periods. In the first one, t, the policy

maker collects some data (Xt, Yt) about how a scalar variable X affects an outcome

of interest Y . In the second period t + 1, the policy maker can assign individuals to

a treatment D that directly affects the variable X. However, this treatment is only

one way of indirectly affecting the outcome of interest Yt+1. In this context, the goal

is to ex-ante design this allocation D to maximize the average impact on Yt+1, under

some capacity constraints.1

The planner’s problem is then to find a function of the data p(x, y) = E(D|(Xt, Yt) =

(x, y)) which is the probability that an individual with the characteristics (Xt, Yt) =

(x, y) is assigned to the treatment D = 1. Let Xt+1(1) and Xt+1(0) (respectively

Yt+1(Xt+1(1)) and Yt+1(Xt+1(0))) denote the potential outcomes X (resp. Y ) with

and without the treatment: Xt+1 = DXt+1(1) + (1−D)Xt+1(0).

This problem can be rewritten

max
r.v. D

E(Yt+1(Xt+1(D))) s.t. c = E(D),

1By ex-ante, I mean before observing the outcome Yt+1 of this experiment performed on Xt+1,

otherwise the optimal policy rule could be obtained using the literature on optimal policy learning

with Yt+1 (see, e.g., Manski, 2004; Stoye, 2009; Kitagawa and Tetenov, 2018).
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where c is a capacity constraint that limits the number of people treated. This

is equivalent to finding a measurable function p : Supp(Xt, Yt) → [0, 1], where

Supp(Xt, Yt) is the support of (Xt, Yt), that maximizes

max
p(·)

E [Yt+1(Xt+1(0)) + p(Xt, Yt) (Yt+1(Xt+1(1))− Yt+1(Xt+1(0)))]

s.t. c = E(p(Xt, Yt)), (5)

Let precise the model in this context.

Assumption 1 Consider the model

Yt = Γ1,t + Γ2,tXt,

where Γt and Xt are independent, and

1. the individual-level causal effects of Xt+1 on Yt+1 are independent of the treat-

ment effects on Xt+1, conditionally on the past values of Xt and Yt, i.e,

Γt+1 ⊥⊥ (Xt+1(1)−Xt+1(0)) | Xt, Yt,

2. the individual-level causal effects Γ2,t is mean time invariant conditional on the

data E(Γ2,t+1|Xt, Yt) = E(Γ2,t|Xt, Yt).

Under this Assumption 1, where the assumptions 1.1 and 1.2 seem reasonable in

some contexts,2 the problem (5) can be rewritten as a function of the conditional

average treatment effect on Xt+1, CATE(Xt, Yt) = E(Xt+1(1) −Xt+1(0)|Xt, Yt), and

the posterior effects

max
p(·)

E [p(Xt, Yt) PE(Xt, Yt) CATE(Xt, Yt)]

s.t. c = E(p(Xt, Yt)). (6)

The optimal decision rule thus takes the form

p(Xt, Yt) = 1l {PE(Xt, Yt) CATE(Xt, Yt) ≥ γ} , (7)

2Note that if additional variables Z are available, these independence restrictions can be relaxed,

in the spirit of conditional unconfoundedness, see Section 3.3.
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where γ is such that c = E(p(Xt, Yt)).

In words and given a sample, this optimal rule simply translates into assigning to the

treatment the c% of individuals with the best predicted effects on Y using past data:

PE(Xt, Yt) CATE(Xt, Yt) in our sample.

In this decision, CATE(Xt, Yt) can be estimated from an auxiliary experiment using

standard techniques, e.g., from the machine learning literature for estimating het-

erogeneous treatment effects (see, e.g., Athey et al., 2019), where Yt is potentially

included in the set of covariates. Importantly, equation (7) shows that the PE are

necessary but also sufficient for the decision making in this context. This important

motivation is further developed in the application in Section 5.3.

Other decisions where my characterization of FΓ can be used. Of course,

there are other decision problems where PE are not sufficient. However, in this paper

I impose assumptions such as the distribution FΓ is identified and my characterization

of it in Proposition 1 and Theorem 1 using the Wasserstein minimum distance can

then be used in these more general contexts to compute other functionals.

Specifically, this is the case for analogues of all the compound decision problems de-

scribed in Gilraine et al. (2020); Gu and Koenker (2023) that require more than the

PE. My strategy based on Wasserstein barycenter computation and optimal trans-

port tools is an alternative to NPMLE estimation (see, e.g., Jiang and Zhang, 2009;

Koenker and Mizera, 2014). In the multivariate case, which is my context by defini-

tion, the latter might not be a priori as tractable (see Soloff et al., 2021), even if in

some cases the geometry of the problem can be used to gain tractability, as done in

Gu and Koenker (2022) for the binary outcome case. This allows to consider different

objectives other than average welfare in the second decision framework above.

3 Identification of posterior effects

Before presenting my main identification results, I introduce some notation that will

be used throughout the paper. Let ·, ⋆ denote a variable in a function. For two

random vectors X and Y , PY |X=x, fY |X=x, and FY |X=x denote respectively the con-

ditional probability, density, and cumulative distributions. For a random vector X,
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I let φX : t 7→ E(eit
⊤X) denote its characteristic function and Supp(X) its sup-

port. For a measurable set S ⊂ Rp and a function µ from S to [0,∞], L2(µ) is the

space of complex-valued square integrable functions equipped with the scalar product

⟨f, g⟩L2(µ) =
∫
S f(x)g(x)µ(x)dx. This is denoted by L2(S) when µ = 1. For d ≥ 1,

denote the Fourier transform of f ∈ L1
(
Rd
)
∩L2

(
Rd
)
by F [f ] (x) =

∫
Rd e

ib⊤xf(b)db.

Let ⊗ denote the product of functions (e.g., W⊗d(b) =
∏d

j=1W (bj)) or measures. I

also denote by Pd(S) the set of Borel probability measures on S with finite d first

moments, and by Pa.c.(S) the one that are absolutely continuous with respect to the

Lebesgue measure. I assimilate hereafter probability measures on Rp with their cdf,

so I may write for instance F ∈ Pd(S). For two distribution F,G ∈ P(R), denote by

W2 the 2-Wasserstein distance:

W 2
2 (F,G) =

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣2 dt.

3.1 In the baseline cross-section linear RC model

I first consider the baseline equation

Yi = Γ1,i +X⊤
i Γ−1,i, (8)

and maintain the following assumption, discussing relaxations in Section 3.3.

Assumption 2 Γi ⊥⊥ Xi.

In this context, the objects of interest are the posterior effects defined in (3), which

are specific nonparametric regression functions of an unobserved variable Γi. I provide

conditions under which the distribution of FΓ is identified, which are stronger than

necessary for the identification of the posterior effects, but which allow to compute

more general posterior moments or functional that I also discuss, as well as to obtain

an expression valid for discrete X.

The identification of the distribution FΓ relies on a trade-off between the assumptions

made about the support of the regressors X and those made about the distribution

of Γ. I provide two constructive characterizations depending on these assumptions,

and refer to Gaillac and Gautier (2021b) for sharper conditions than these ones under

which FΓ is identified.
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Assumption 3 Assume either that

(A) the distribution of Γ belongs to a parametric class D ⊂ Pd(Rp+1) of distributions

which are identified from the knowledge of their first d < ∞ moments, while the

support of X contains the product
∏p

k=1 Vk, where Vk contains κk ≥ d+1 points;

(B) or the distribution of Γ belongs to the class D of distributions admitting a density

f ∈ L2(W⊗(p+1)), where W := e|·|/R, R > 0, while the support of X contains a

nonempty interior.

The case (A) includes the empirically relevant case where fΓ is continuous but para-

metric and identified from its first d moments. Common examples are finite Gaussian

mixtures (see, e.g., Améndola et al., 2015, for precise values of d ensuring identifi-

cation). The case (B) means that the tails of fΓ are not heavier than those of the

exponential distribution. Indeed, we have, for all ϵ ∈ (0, 1) and k = 1, . . . , p + 1, for

λ = (1− ϵ)/(2R), by the Cauchy-Schwarz inequality,

E(eλΓk) ≤ E(eλ|Γk|) ≤ ∥fΓ∥L2(W⊗(p+1))(2R/ϵ)(p+1)/2 < ∞. (9)

Our first characterization in Theorem 1.2 below is based on two intuitions: 1) re-

covering FΓ, 2) using Bayes’ Theorem, which expresses the PE directly as a function

of this distribution, as in (10). In fact, as described in the Figure 1, the problem

can be viewed as recovering the multivariate distribution FΓ from its one-dimensional

projections F(1,x⊤)Γ, one for each point x of the support of X.3

Assumption 4 The conditional density fY |X exists and, for all l = 1, . . . , p and

x in the support of X, its partial derivatives ∂xl
fY |X(·|x) are integrable and square

integrable on R.

I need the Assumption (4) only for the second characterization. In Section 4, I

give sufficient conditions for Assumption 4 in terms of minimal smoothness of the

density of Γ directly, rather than the one of (Y,X). Note that Assumption 4 holds

for many classical parametric distributions of Γ. Let SΓ denote a possible a priori

on the support of Γ, i.e., be such that Supp(Γ) ⊆ SΓ ⊆ Rp+1. I also denote by

I(x, y) := {g ∈ SΓ : y = (1, x⊤)g}.
3See also the operator formulation of this inverse problem using the Radon transform in Hoderlein

et al. (2010), or using the partial Fourier transform in Gaillac and Gautier (2022).
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Notes: Following the model Y = Γ1 + Γ2X = (1, X)Γ, with Γ ⊥⊥ X. The red contour

plot represents the unobserved density fΓ. Let us fix a value of X = x. For a fixed

value of y, the green line is the set of values that satisfy the model {g : y = g⊤(1, x)}.

Making y vary, we thus identify one observed projection of this probability distribution fΓ,

as fY |X=x(·) = f(1,x)Γ(·), pictured in green on the right. Then, from observing different

values of X yielding several observed one-dimensional projections of fΓ, our aim with the

first estimator is to recover the latter, then build a estimate of the functional E(Γ|X,Y )

of fΓ using Bayes’ theorem.

Figure 1: Illustration of the inverse problem with a bimodal density fΓ

Proposition 1 In equation (8) together with Assumption 2, and

1. under Assumption 3, the distribution FΓ is identified, hence also the PEk for

k = 1, . . . , p+ 1;

2. under assumption 3-(A), we have, for all (x, y) ∈ Supp(X, Y ),

E[Γd
k|(X, Y ) = (x, y)] =

∫
I(x,y) g

d
kdF

∗
Γ(g)∫

I(x,y) dF
∗
Γ(g)

, k = 1, . . . , p+ 1, d ∈ N, (10)
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where F ∗
Γ is the unique solution of

min
FΓ∈D

∫
W 2

2 (F(1,x)Γ, FY |X=x) dFX(x). (11)

3. under assumptions 3-(B) and 4, we have, for all (x, y) ∈ Supp(X, Y ),

PE−1(x, y) =
−∂xFY |X(y|x)
fY |X(y|x)

, (12)

PE1(x, y) = y − x⊤PE−1(x, y). (13)

Since PEk is a linear functional of FΓ in the linear RC model (8), Proposition 1.1 is

a direct consequence of the results in Gaillac and Gautier (2021b).

Similar to Beran and Millar (1994); Arellano and Bonhomme (2023), Proposition 1.2

proposes a type of minimum distance formulation, using the Wasserstein distance.

This simply consists in restating that for each value x of the support of X, the true

distribution FΓ minimizes the mean squared error between a variable distributed as

the projection F(1,x)Γ and one distributed according to the observed FY |X=x. The

new important point is that it can also be seen as a reformulation of the problem

of finding the Generalized Wasserstein Barycenter introduced in Delon et al. (2022).

This constructive reformulation opens the way to handle discrete support of the re-

gressors in a nonparametric framework more generally for estimating the density fΓ

or handling varying coefficients as in Breunig (2021). This approach is closer in spirit

to the Empirical Bayes modeling developed in Gu and Koenker (2017); Gilraine et al.

(2020). Note that Proposition 1.2 holds even if we use a uniform measure on Supp(X)

instead of PX in (11), and it seems to give empirically better results.

Proposition 1.3 is a constructive identification result, key to generalize the so-called

Tweedie formula (see Robbins, 1956; Efron, 2011) in Section 3.2. Indeed, it allows one

to estimate the individual effects directly, using features of the conditional distribu-

tion of the outcome Y on the regressors X. This simple closed-form expression allows

nonparametric frequentist estimation of PEk. This result is close to Hoderlein and

Mammen (2007, 2009), where they consider more general nonseparable models than

(8), but express the average effects as a function of the quantiles. Proposition 1.3

might also be deduced under different assumptions from Lemma 1 in Chernozhukov

et al. (2015) and, under some conditions, holds for posterior marginal effects in more
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general models than the linear one. However, when particularized to the linear model,

I provide a complete alternative proof based on Fourier analysis, allowing to compute

other posterior moments as in Proposition 2, as well as the extensions to more elabo-

rate models developed in Section 3.2 or Appendix G.3 (the latter being also related to

the multivariate outcome extension of Hoderlein and Mammen, 2007 in Kasy, 2022).

On the posterior variance. As discussed in Section 2, it may be also useful to

recover higher moments of Γ. Specifically the posterior variance is a important feature

to assess the information provided by the PE. If this is straightforward for the first

characterization, as done in (10), this is less so for the second one. I can prove the

following proposition.

Proposition 2 Consider (8), Assumptions 2-3-(B), 4, and assume that the partial

derivatives ∂xk
∂xl

fY |X(·|x) are integrable and square integrable on R. Then we have,

for all (x, y) ∈ Supp(X, Y ) and k, l ∈ {1, . . . , p},

E[Γk+1Γl+1|(X, Y ) = (x, y)] =
∂xk

∂xl

∫ y

−∞ FY |X(v|x)dv
fY |X(y|x)

. (14)

3.2 Extension to a panel data model with individual effects

One important extension of the baseline model that I consider is

Ỹi,t = Γ1,i +X⊤
i Γ−1,i +W⊤

i,tδ + ε̃i,t, (15)

where Y i := Γ1,i + X⊤
i Γ−1,i is the usual individual effect, Xi is a time-invariant

covariate, Γi being an individual heterogeneity in the effect of Xi, while ε̃i,t is an

error term. I allow Γi to be correlated with time varying regressors Wi,t.

A standard approach is to start from a regression, removing out the effect of observed

covariates W⊤
i,tδ (see, e.g., Gilraine et al., 2020). Thus, I consider hereafter (15) with

δ = 0,

Yi = (1, X⊤
i )Γi + εi, (16)

under Assumption 2, where Yi =
∑

t Ỹi,t/ni and εi =
∑

t ε̃i,t/ni, ni being the num-

ber of observations associated with individual i, considered as fixed. I consider the

following assumption on the noise εi.
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Assumption 5 Assume that εi is independent of (Γi, Xi) and has a known distribu-

tion with density fε and characteristic function φε which is nonvanishing on R.

Note that I maintain the Assumption 5 for simplicity. Assuming that fε is known can

be relaxed using the Kotlarski lemma (see Kotlarski, 1967; Evdokimov and White,

2012; or Theorem 3 in Gaillac and Gautier (2021b) for weaker assumptions that do

not require analyticity). The independence assumption could also be relaxed in this

panel setting using Arellano and Bonhomme (2012). A last relaxation of Assumption

5 can be deduced from deconvolution results in Gaillac and Gautier (2021b), allowing

φε to have zeros on an open set at the cost of stronger assumptions on PΓ.

Motivated by the central limit theorem, the common assumption ε̃i,t ∼iid N (0, σ2
ε)

satisfies Assumption 5 and yields that the noisy measure of the outcome is distributed

as

Yi ∼ N
(
Y i,

σ2
ε

ni

)
, Y i = (1, X⊤

i )Γi, (17)

where we are interested in decomposing the individual mean. I denote by I(x, y) =
{(g, e) ∈ SΓ × R : y = (1, x⊤)g + e}.

Theorem 1 In model (15), under Assumption 5, and for all (x, y) ∈ Supp(X, Y ),

1. under Assumption 3, the distribution FΓ is identified;

2. [Generalized Wasserstein barycenter formulation, GWB] under Assumption 3-

(A), we have

E[Γd
k|(X, Y ) = (x, y)] =

∫
I(x,y) g

d
kfε(e)dF

∗
Γ(g)de∫

I(x,y) fε(e)dF
∗
Γ(g)de

, k = 1, . . . , p+ 1, d ∈ N (18)

where F ∗
Γ is the unique solution of

min
FΓ∈D

∫
W 2

2 (F(1,x)Γ, h(PY |X=x))dFX(x). (19)

where

h(PY |X=x)(·) := F−1

[
φY |X(⋆|x)
φε(⋆)

]
(·). (20)
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3. [Generalized Tweedie formula, GT] under assumptions 3-(B), 4, and when fε ∈
L2(W ), we have

PE−1(x, y) =
−∂xFY |X(y|x)
fY |X(y|x)

,

PE1(x, y) = y +
x⊤∂xFY |X(y|x)

fY |X(y|x)
+

F−1
[
iφY |X(·, x)φ′

ε/φε

]
(y)

fY |X(y|x)
.

Importantly, in the specific case where Fε ∼ N (0, σ2
ε/ni), this simplifies

PE1(x, y) = y +
x⊤∂xFY |X(y|x)

fY |X(y|x)
+

σ2
ε

ni

∂yfY |X(y|x)
fY |X(y|x)

. (21)

Compared to Proposition 1.2, Theorem 1.2 contains an additional preliminary decon-

volution step before considering the generalized Wasserstein barycenter.

Theorem 1.3 is a Generalized Tweedie formula to this context with covariates, and

combines insights from the classical Tweedie formula, which I first present under an

extended form in Appendix E for completeness, with those of Theorem 1. Equation

(21) clearly shows that in this context what would correspond to the usual correc-

tion in the parametric context is complemented by the predicted effect of X on the

outcome.

3.3 Identification with additional variables or instruments

Let us focus on the baseline model of Section 3.1, as the relaxations of the baseline

independence assumption developed below extend directly to the other contexts.

Using a varying coefficients approach. Without efficiently extending the tools

developed in Breunig (2021) here, let us describe how available covariates can be com-

bined with the previous approach to obtain a better description of the heterogeneity

and to relax the independence assumption in one direction.

Suppose that additional covariates Z are available, where Z and X can have elements

in common without X being a subset of Z. Consider the following model, which

specifies the previous random coefficients as the sum of a nonlinear function g(Z)

and an unobserved random vector, denoted Γ for simplicity:

Y = (g1(Z) + Γ1) + (g−1(Z) + Γ−1)
⊤X, (22)

Γ ⊥⊥ X, E(Γ|X,Z) = 0. (23)
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Under the conditional mean independence assumption (23), this implies that the

function g is identified through the regression

E(Y |X,Z) = g1(Z) + g⊤−1(Z)X. (24)

Then, with the knowledge of g, we are back to the baseline model, using for the

G-modeling strategy, that for (x, y, z) ∈ Supp(X, Y, Z),

FY |X,Z(y|x, z) = F(1,X)Γ(y − (1, x)g(z)),

and for the F-modeling one, that for t ∈ R and (x, z) ∈ Supp(X,Z),

φỸ |X,Z(t|x, z) = F [fΓ](t, tx), Ỹ := Y − (1, X)g(Z).

I am not going to develop inference in this context, but one way is to use 1) sample-

splitting for the estimation of g with well chosen machine learning estimators, then

2) my estimators of Section 4. This is implemented in the package RegPE.

Using conditioning. Additional variables Z of dimension pZ can be used to relax

the baseline independence assumption, performing the analysis conditional on Z.

Assumption 6 Γ ⊥⊥ X|Z.

Under Assumption 6, the parameter of interest becomes the expectation of Γ con-

ditional on the observed quantities, i.e., given values of the margins X, Y and the

additional variables Z:

PEk : (x, y, z) 7→ E [Γk|(X, Y, Z) = (x, y, z)] , k = 1, . . . , p+ 1. (25)

Identification under Assumption 6 is the parallel of Proposition 1 and states that the

same type of formula can be obtained for (25), simply conditioning on Z.

Proposition 3 In equation (8) together with Assumption 6, and

1. under Assumption 3-(A) we have, for all (x, y, z) ∈ Supp(X, Y, Z),

E[Γd
k|(X, Y, Z) = (x, y, z)] =

∫
I(x,y) g

d
kdF

∗,z
Γ (g)∫

I(x,y) dF
∗,z
Γ (g)

, k = 1, . . . , p+ 1, d ∈ N (26)

where F ∗,z
Γ is the unique solution of

min
F z
Γ∈D

∫
W 2

2

(
F z
(1,x)Γ, FY |X=x,Z=z

)
dFX,Z(x, z).
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2. under Assumptions 3-(B) and 4, we have, for all (x, y, z) ∈ Supp(X, Y, Z),

PE−1(x, y, z) =
−∂xFY |X,Z(y|x, z)
fY |X,Z(y|x, z)

, (27)

PE1(x, y, z) = y − x⊤PE−1(x, y, z). (28)

Using the control function approach. An alternative is to use the control func-

tion approach used in e.g., Florens et al. (2008); Imbens and Newey (2009); Masten

and Torgovitsky (2016), when an instrument W is available.

Assumption 7 1. (First stage equation) For each k = 1, . . . , p, there exists a

scalar random variable Vk and a possibly unknown function hk that is strictly

increasing in its second argument, for which Xk = hk(W,Vk). The vector V =

(V1, . . . , Vp) is continuously distributed.

2. (Instrument exogeneity) (Γ, V ) ⊥⊥ W .

Assumption 7 is another alternative to the independence Assumption 2. It restricts

the dependence between X and Γ. Namely, it implies that most of the correlation

between X and Γ occurs through V . This can be structurally motivated in some

applications. Define Zk := FXk|W (Xk|W ) for k = 1, . . . , p. Proposition 1 in Masten

and Torgovitsky (2016) ensures that (Z,Γ) ⊥⊥ W and that X ⊥⊥ Γ|Z, which gives

identification in Proposition 3 under Assumption 7 rather than Assumption 2.

Proposition 4 (Identification using the control function) Let the distribution

of (Γ, X, Y, V,W ) satisfy the assumptions 3-(B) and 7. The identified set of

PE : (x, y, z) 7→ E [Γ|(X, Y, Z) = (x, y, z)]

is the same as in Proposition 3 conditioning on Z.

3.4 Assessing the sensitivity to the independence assumption

Finally, I provide tools for assessing sensitivity to the assumption 2. This section

follows the findings from Masten and Poirier (2018); Masten et al. (2019). Let us

define conditional δ-dependence (or conditional partial independence):
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Definition 1 Let δ be a nonnegative scalar. Say that Γ is conditional δ-dependent

with X if

sup
(x,y,z)∈Supp(X,Y,Z)

sup
g∈I(x,y)

|fΓ|X,Z(g|x, z)− fΓ|Z(g|z)| ≤ δ

holds for all z ∈ Supp(Z).

For δ = 0, conditional δ dependence is equivalent to conditional Z independence and

the independent joint distribution of (Γ, X) ensures point identification. For δ > 0,

I allow some deviations from the latter assumption, in a nonparametric neighbor-

hood of this independent joint distribution of (Γ, X). Thus, I replace the conditional

independence assumption by Assumption 8.

Assumption 8 Let δ be a nonnegative scalar. Γ is conditional δ-dependent with X

given Z.

Under this assumption, the following theorem gives bounds on the PE, which can

easily be computed.

Proposition 5 Let the distribution of (Γ, X, Y, Z) satisfy (8) and make assumptions

3, 4 and 8. Then, for all k = 1, . . . , p+ 1 and (x, y, z) ∈ Supp(X, Y, Z),

PEk(x, y, z) ∈

[
PE∗

k(x, y, z)−
δ
∫
I(x,y) |gk|dg

fY |X,Z(y|x, z)
,PE∗

k(x, y, z) +
δ
∫
I(x,y) |gk|dg

fY |X,Z(y|x, z)

]
,

where PE∗ is the PE defined in (13)-(12) or (10) under Assumption 6.

4 Estimation of posterior effects

4.1 Using the generalized Tweedie formula (GT)

Asymptotic analysis with the minimax risk. This section characterizes the

asymptotic properties of estimators of the PE in the minimax context, which I explain

here. Based on a sample (Xi, Yi)
n
i=1, let us define the expected error of an estimator

P̃Ek of PEk, for k = 1, . . . , p+ 1,

R
(
P̃Ek,PEk

)
:= E

[∥∥∥P̃Ek − PEk

∥∥∥
L2
µ(S)

]
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in L2
µ (S), which is a L2 norm on S possibly weighted by µ, S being a subset of Rp+1

defined later in Assumption (Est.3).

First, for a specific estimator P̃E
j0

k , where j0 is the tuning parameter, I show an

upper bound on the maximum risk, which the worst error estimating PE associated

to a density fΓ – assuming that it exists – in the space Hσ(l) defined later, for

k = 1, . . . , p+ 1,
1

r(n)
sup

fΓ∈Hσ(l)

R
(
P̃E

j0

k ,PEk

)
︸ ︷︷ ︸

Maximum risk

= O(1), (29)

where r(n) is thus a rate of convergence for this estimator. Hσ(l) characterizes the

smoothness of the distributions fΓ and is indexed by two parameters σ and l. Thus,

controlling the maximum risk for an estimator shows the uniformity of its performance

with respect to all distributions in the class Hσ(l).

Second, I turn to the question of the optimality of this estimator. The performance

measure I consider is the minimax risk, i.e., the minimum of the maximum risk that

an estimator P̃Ek can achieve,

R∗
n := inf

P̃Ek

sup
fΓ∈Hσ(l)

R
(
P̃Ek,PEk

)
. (30)

I show a lower bound r(n) on the latter which takes the form, for all k = 1, . . . , p+1,

∃ν > 0 : limn→∞
1

r(n)
R∗

n ≥ ν. (31)

Obviously, the goal is to get as sharp a lower bound as possible, and to get a rate

for my estimator in (29) that is as close as possible to the rate achievable for this

statistical problem in (31). Note that (29) also gives an upper bound on the minimax

risk (30), since we are considering a specific estimator. Our estimator in this paper is

based on Legendre polynomials, and Proposition 6 below shows that it achieves the

best rate.

However, the tuning parameter j0 must be chosen as a function of the smoothness

parameter σ, which is unobserved. Therefore, the last step is to choose the tuning

parameter ĵ0 using only the data, while keeping a rate close to the case where the

smoothness parameter is known. In fact, I show that my estimator is adaptive, namely
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satisfies

1

r(n)
sup

fΓ∈Hσ(l)

R
(
P̃E

ĵ0

k ,PEk

)
= O(1), (32)

where the rate r(n) is the one in (29) up to a logarithmic term. Table (1) below

presents a summary of the rates obtained with my estimator in L2
µ norm. Data-

driven rule for selecting the tuning parameters is given in the Appendix B and the

asymptotic normality results in Section C.

Smoothness and sampling assumptions.

Assumption 9 (Assumption on the supports) Assume

1. Supp(X) :=
∏p

l=1[x̃l − x0, x̃l + x0] ⊆ Supp(X), where x̃ ∈ Rp and x0 > 0;

2. Supp(Γ) ⊆ SΓ :=
∏p+1

l=1 [−g0, g0], where g0 > 0.

I denote by ω := x0g0e/2 and assume that ωeω(p−1)/e < 1.4

I maintain Assumption 9 for simplicity. Assumption 9-1 can be relaxed considering

SX :=
∏p

l=1[x̃l − x0, x̃l + x0] ⊆ Supp(X). In the following and similarly to what is

done in Gaillac and Gautier (2022), this would imply conditioning all the estimated

quantities by X ∈ SX , in particular using the truncated densities fX|SX
and fY |X,SX

.

This would weaken Assumption 11-(Est.3) below. One can remove the condition

ωeω(p−1)/e < 1 at the cost of a slightly sub optimal rate with the estimator I consider.

Assumption 10 (Smoothness assumption, Sobolev ellipsoid) Let l ∈ (0,∞),

σ > p/2, and assume that fΓ exists and belongs to

Hσ(l) :=

{
fΓ :

∫
Rp+1

(1 ∨ |ξ|2)
2σ |F [fΓ](ξ)|2 dξ ≤ l2

}
.

The key proposition linking this Sobolev-type smoothness to the regularity of ∂FY |X

is Proposition 8, which is of independent interest. Note that, contrary to Assumption

3, the uniform distribution or truncated normal used by King (1997) does not satisfy

Assumption 10. This is due to the discontinuity at the boundary of the support.

4For p > 1, this means ω < W((p− 1)/e)e/(p− 1), where W is the Lambert W function leading

to a bound of 0.75, 0.62, 0.33 for p = 2, 3, and 10.
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Therefore, smooth approximations of the uniform distribution or the truncated nor-

mal at the boundary satisfy the Assumption 10. More importantly, the beta and

Dirichlet distributions with parameter strictly greater than one, or the logit-normal

distribution, which are common parametric distributions to represent probabilities

hence used for ecological inference (see, e.g., Katz and King, 1999; Imai et al., 2008),

satisfy the Assumption 10.

The following assumptions are introduced to be able to derive convergence rates.

Assumption 11 Assume that:

(Est.1 ) we observe an i.i.d sample (Xi, Yi)
n
i=1;

(Est.2 ) there exist densities fX and fY |X which are considered known for simplicity

in the body of this paper and estimated under Assumption 12 in the Appendix;

(Est.3 ) For cX , cX,Y ∈ (0,∞), ∥1/fX∥L∞(Supp(X)) ≤ cX , ∥fX∥L∞(Supp(X)) ≤ CX , and

there exists a bounded subset S = SY × Supp(X) of Supp(X, Y ) such that

∥1/fY |X∥L∞(S) ≤ cX,Y .

I denote by µ = 1 ⊗p
l=1 µ̃

2
l , where µ̃l(·) = (1 − ((· − x̃l)/x0)

2)1/2. The use of weight

µ means that we do not weight loss on the boundaries of Supp(X) in the asymptotic

analysis when using the L2
µ(S) risk. I refer to Gaillac (2021) for a more complicated

approach baesd on vaguelets-wavelets, but with uniform weight.

Table 1: Minimax L2
µ(S) risk rates of convergence in Hσ(l), σ = s+ 1− p/2

Lower bound, “best” est. Est. (36), s known Est. (36)-(96), data-driven

Rate, r(n) n− 2s
2s+p+2

n− 2s
2s+p+2

(
n

ln(n)

)− 2s
2s+p+2

This paper (31), Proposition 7 (29), Proposition 6 (32), Proposition 10

Notes: The asymptotic is in n, “est.” means estimator.

4.1.1 Series estimator.

The proof of Theorem 1 is constructive and my estimator P̃E
j0

k is based on a plug-

in approach of an estimator of
(
∂xl

FY |X
)p
l=1

. Let y ∈ SY . I focus here on the
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estimation of the derivatives ∂xFY |X(y|·), which are key elements entering the PE

formulation (12). I use a truncation of its decomposition on normalized Legendre

polynomials (Lk)k∈Np
0
in L2(Supp(X)). The complete strategy implies also having

first-step estimators of fY |X and fX , which I describe in the Appendix for simplicity

of exposition.

Assuming that FY |X(y|·) ∈ L2(Supp(X)), we have the expansion

FY |X(y|·) =
∑
k∈Np

0

dk(y)Lk(·), (33)

where dk(y) := ⟨E [1l{Y ≤ y}|X = ·] , Lk⟩L2(Supp(X)). When FY |X(y|·) also admits a

square integrable derivative with respect to the l ∈ {1, . . . , p} variable such that

µ̃(·)∂lFY |X(y|·) ∈ L2(Supp(X)), a valid decomposition of ∂lFY |X(y|·) in the space

L2
µ̃2(Supp(X)) is simply5

∂lFY |X(y|·) =
∑
k∈Np

0

dk(y)∂lLk(·). (34)

Let j0 ≥ 0 be a parameter chosen a posteriori as a function of the sample size n. To

deal with the approximation and statistical problems, I use

∂̃lFY |X
j0
(⋆|·) :=

∑
|k|∞≤j0

d̃k(⋆)∂lLk(·), (35)

where, for all y ∈ SY ,

d̃k(y) :=
1

n

n∑
i=1

1l{Yi ≤ y}
fX(Xi)

Lk (Xi) , (36)

5This holds because the functions Ωk,l(·) = ∂lLk(·)µ̃(·)/
√

kl(kl + 1) are tensor products of as-

sociated Legendre functions and Legendre polynomials. (Ωk,l)k∈Np
0
constitute also an orthonormal

basis of L2(Supp(X)) using, e.g., 14.17.6 in Olver et al. (2010) and as they are solutions of the

Sturm-Liouville equation 14.2.2 in Olver et al. (2010). Note that we have

µ̃l(·)∂lFY |X(y|·) =
∑
k∈Np

0

dk(y)
√

kl(kl + 1)Ωk,l(·),

hence the link with the vaguelet-wavelet formulation of this inverse problem in Cai (2002) and that

I use in Appendix. The vaguelet-wavelet formulation is more complex but allows to handle more

general geometry of Supp(X) and without the weight µ. This approach is similar in spirit to the

vaguelet-wavelet decomposition (see, e.g., Section 2.2 in Cai, 2002).
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and replace ∂lFY |X by ∂̃lFY |X
j0

in (13)-(12) to obtain the estimator P̃E
j0,GT

k . Note

that there is no regularization with respect to the first variable Y . An intuitive

explanation is that the estimation of the unconditional cdf can be done at parametric

rate (see, e.g., Brunel et al., 2010, for more details).

4.1.2 Upper and lower bounds

Proposition 6 (L2
µ convergence rate) Let σ = s + 1 − p/2, s > p − 1/2, and

j0 = ⌊j̃⌋, j̃ = n1/(2s+p+2). Make assumptions 2, 3-(B), 9 and 11, then (29) holds with

r(n) = n−s/(2s+p+2) for the estimator P̃E
j0,GT

k .

Proposition 6 shows that my main estimator based on Legendre polynomials admits

a polynomial-weighted L2 convergence rate.

Proposition 7 (Minimax lower bounds) Make assumption 2. Let σ = s+1−p/2

and for 0 < l < ∞, assume s ≥ p − 1/2, ∥fX∥L∞(Supp(X)) ≤ CX < ∞. Then (31)

holds with r(n) = n−s/(2s+p+2).

To comment on Propositions 7 and 6, let us give more background and compare two

related inverse problems where regressors have limited variation, in the case p = 1:

1. estimation of the density fΓ,

2. estimation of the PE, which are functionals of fΓ.

Estimating the density fΓ when the regressors have compact support is an inverse

problem treated in Gaillac and Gautier (2022). There, we decompose the problem

using the truncated Fourier operator Fc : L
2
(
W[−1,1]

)
→ L2 ([−1, 1]), where W[−1,1] =

1l {[−1, 1]} + ∞ 1l {[−1, 1]c} and L2
(
W[−1,1]

)
=
{
f ∈ L2

(
Rd
)
: Supp(f) ⊆ [−1, 1]

}
,

Fc[f ] = F [f ] (c ·) and show that for all t ∈ R, in L2 ([−1, 1]),

Ftx0 [F1st [fΓ] (t, ·2)] (⋆) = E
[
eitY |X = x0⋆

]
,

where F1st is the Fourier transform with respect to the first variable. We show

that the operator Fc admits a singular value decomposition, and that the singular

values decay sub-exponentially with k as e−2k ln(7eπ(k+1)/c) (see, e.g., Lemma B.5. in

Gaillac and Gautier, 2022). This is a severely ill-posed problem and lower bounds
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for the L2 risk in Theorem 1 in Gaillac and Gautier (2022) give logarithmic rates of

convergence (ln(n)/ ln2(n))
−σ, where σ is a Sobolev-type regularity of the same type

as the Assumption 10 (see, e.g., Appendix B.5. in Gaillac and Gautier, 2022). A

plug-in approach of this density to estimate the PE leads to slower convergence rates

than my direct approach in this paper.

Estimating the posterior effects PE is a simpler problem and thus achieves faster

rates. Minimax convergence rates for the L2 risk in nonparametric estimation of the

k-th derivative of a regression function with p dimensional covariates, assuming it

belongs to a classical Sobolev space indexed by s, are (n/ ln(n))−s/(2s+d+2k) (see, e.

g., Theorem 6.3.7 in Giné and Nickl, 2016). The difficulty of the problem amounts to

estimating a first derivative ∂lFY |X , hence k = 1 in Table 1. Since Γ is not observed,

Proposition 8 importantly relates the regularity of ∂lFY |X (indexed by s) to that of

fΓ (indexed by σ).

4.1.3 Practical implementation in the panel context

I focus here on inference in the context of Section 3.2 under the normality assumption

of the error term, which yields (21). In addition to the estimation procedure developed

in the previous sections, we first need a preliminary nonparametric estimator σ̂2
ε of

σ2
ε , which, similarly to Gilraine et al. (2020), is taken as

σ̂2
ε =

∑
j

∑
i(Ỹi,j − Ỹj)

2∑
j(nj − 1)

. (37)

Then, we also need an estimator of ∂yfY |X(y|x) for (x, y) ∈ Supp(X, Y ). I use that

∂yfY |X(y|x) = ∂yfY,X(y, x)/fX(x) and one approach is to use the same preliminary

estimator as when estimating fY |X(y|x), based on series estimators using Legendre

polynomials and their first derivative (see Section A.2.1 and Ullah and Pagan, 1999;

Giné and Nickl, 2016 for many other examples of such estimators).

4.2 Using the optimal transport based estimator (GWB)

In this section, I assume that X has discrete support Supp(X) := {xj}κj=1 and that

assumptions for identification are satisfied. I denote by pj := P(X = xj) and the

p-simplex by Σp. Assume we have n =
∑κ

j=1 nj i.i.d. observations (Yi,j)i=1,...,nj ;j=1,...,κ
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from the marginals {FY |X=xj
}j=1,...,κ, used in empirical estimators of the conditional

distributions of Y |X = xj, namely F̂Y |X=xj
.

In this section, I maintain Assumption 3-(A), so that there indeed exists a unique

solution to the Wasserstein barycenter problem if at least one the marginals is abso-

lutely continuous (see Proposition 6 in Le Gouic and Loubes, 2017).

4.2.1 Estimator in the cross-section linear RC model

Introducing, for k ∈ {1, . . . , p+1} and (x, y) ∈ Supp(X, Y ), the function mk,x,y which

to (p,G) ∈ Σp × Pa.c.(S)κ associates the solution of

min
FΓ∈D

κ∑
j=1

pjW
2
2

(
F(1,x)Γ, Gj

)
,

we can write the posterior as

PEk(x, y) = mk,x,y(p, FY |X=x1 , . . . , FY |X=xκ).

Then, let us introduce an estimator P̂Ek(x, y) of PEk(x, y) based on the plug-in

P̂E
GWB

k (x, y) = mk,x,y

(
p̂, F̂Y |X=x1,n1 , . . . , F̂Y |X=xκ,nκ

)
. (38)

4.2.2 Consistency

I show a consistency result for P̂E
GWB

k .

Theorem 2 (Consistency of P̂E
GWB

) Make Assumption 3-(A). Then, for k =

1, . . . , p+ 1 and (x, y) ∈ Supp(X, Y ), we have

P̂E
GWB

k (x, y)
P→ PEk(x, y)

as n goes to infinity.

In order to prove consistency, I actually decompose the function mk,x,y in the proof,

and rewrite the problem as a classical Wasserstein barycenter problem, using Propo-

sition 3.1 in Delon et al. (2022). Theorem 2 builds on results from Le Gouic and

Loubes (2017) that ensure the continuity of the Wasserstein barycenter map and the
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consistency of the empirical conditional cdf F̂Y |X=x. This result is similar in spirit to

the consistency results of Arellano and Bonhomme (2023) for deconvolution models,

but focuses on the consistency of the conditional expectations.

Unfortunately, in general the estimator P̂E
GWB

k introduced above is not a smooth

function of the conditional distributions Y |Xj (see, e.g., Agueh and Carlier, 2017).

Similar to what is done in the literature related to the classical OT problem (see, e.g.,

Goldfeld et al., 2022), one solution is to regularize the problem to obtain confidence

bounds for the predictions, at the cost of having to deal with a bias term. As this

would introduce additional complications, I leave this for further research.

4.2.3 Practical implementation

I implement this estimator adapting the algorithm of Delon et al. (2022), leveraging

the free support approach of Cuturi and Doucet (2014). The output of this algorithm

is a discrete uniform distribution with a prespecified Ng number of points of support

that I denote ĝ, which can be considered as an approximation parameter. In order

to compute the estimator P̂E
GWB

in (10), (18), and (26), we then have to integrate

this distribution and a type of smoothing of the indicator function 1l{g ∈ I(x, y)} or

1l{(g, e) ∈ I(x, y)} is thus needed. More precisely, in the case (10), I use

P̂E
GWB

k (x, y) =

∑Ng

l=1 ĝk,lϕ
(

y−(ĝ1,l+ĝ⊤−1,lx)

h

)
∑Ng

l=1 ϕ
(

y−(ĝ1,l+ĝ⊤−1,lx)

h

) , (39)

where h := 10/Ng is a smoothing parameter, ϕ is the standard normal density kernel,

and proceed similarly for (18) and (26).

4.2.4 Estimator in the panel data model with individual effects

In the case of Section 3.2, we first need a nonparametric estimator of fε. Under the

assumption of normality, Fε ∼ N (0, σ2
ε/ni), I use (37). The second step is to estimate

the marginals h(PY |X=x) in (20). This requires a Gaussian error deconvolution step.

This problem of recovering a density when it is measured with additive noise of known

density is a classical problem in the statistical literature (see, e.g., Carroll and Hall,

1988; Delaigle and Meister, 2008; Comte and Lacour, 2013; Giné and Nickl, 2016, and
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references therein). I opt for the kernel-type density estimator of Delaigle and Meister

(2008), which allows for heteroscedastic errors, which is empirically relevant in our

case. It uses the bootstrap bandwidth selector without resampling as implemented

in the R package decon by Wang and Wang (2011). I then sample N observations

with estimated measures h(PY |X=x), where N = 300 is an approximation parameter.

The results do not appear to be sensitive to taking larger values of N .

4.2.5 Case where X is continuous

If X is continuous, one strategy is to use optimal quantization (see, e.g., Graf and

Luschgy, 2007; Pagès, 2015; Mérigot et al., 2021), which is the problem of finding

a discrete distribution that is as close as possible to the target distribution with

respect to the 2-Wasserstein distance. Thus, we search for a point cloud Xd =

(xd
1, . . . , x

d
K) ∈ (Rp)K such that the uniform measure with support Supp(Xd), denoted

by δXd , minimizes the 2-Wasserstein distance between δXd and FX . If this problem is

non-convex, in practice and for well chosen initial supports, simple algorithms exist

for solving it. There are also guarantees for the quality of the approximation in terms

of Wasserstein distance, which decays at a rate of K−1/p.

In practice, I use the stochastic gradient algorithm called Competitive Learning Vector

Quantization, implemented in the R package QuantifQuantile by Charlier et al.

(2015). An alternative strategy when p = 1 is to first discretize X using a grid of K

empirical quantiles X⌊l/n⌋,1 for l = 0, n/K, . . . , n, whereK → ∞ as n → ∞. I take the

rule K = max(3, ⌊1.5(n/p)0.25⌋). I provide robustness checks for this discretization in

the relevant cases and leave a theoretical discussion of this choice and its implications

for further research.

4.3 Monte-Carlo simulations

I provide several validations of my methods in finite samples. This section presents

Monte-Carlo simulations with the baseline independence assumption (Section 4.3.1)

and with conditional independence with a discrete covariate Z (Section 4.3.2). The

appendix collects additional Monte Carlo simulations when Z is continuous in the

latter case (Section F.1), or in the panel data model (Section F.2). Finally, Section G.7
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considers an application to ecological inference where the true value of the parameters

is known using specific register data.

An alternative to the series estimator theoretically analyzed in Section 4.1.1 is to use

a kernel-based estimator for both ∂lFY |X and fY |X , then similarly plug in (13)-(12).

(see Chapter 4 in Ullah and Pagan, 1999). I consider the estimators of Hall et al.

(2004), where the bands are selected based on cross-validation. Both the Legendre

and kernel-based GT estimators are implemented in my R package RegPE, using the

package np for the latter, but the kernel-based estimator seems to be much more

stable in practice to the different distributions of the regressors X. The results below

for the GT estimator are thus based on this kernel-based implementation.

4.3.1 With independence

Consider the baseline model of Section 3.1, when p = 1 and in two setups where the

independence assumption 2 holds. I want to compare to Bayesian estimators now

standard in the ecological inference literature, see Section G, hence the choice of a

setup where a direct comparison is possible, namely Γ = (Γ∗
2,Γ

∗
1 − Γ∗

2) where Γ∗ is

compactly supported in [0, 1]2. More precisely, I take:

1. Γ∗ is distributed according to C(FΓ∗
1
, FΓ∗

2
) where C is a Gaussian copula of

parameter Σ and the marginals FΓ∗
1
, FΓ∗

2
follow a Beta(4, 1.5) distribution. I

take Σ11 = 0.2, Σ2,2 = 0.1, and Σ2,1 = 0.1. X ∼ U(0, 1) is uniformly distributed.

2. Γ∗ is a logit mixture of normal distributions with mixing probability (0.6, 0.4).

The first distribution is normal with mean (−0.4, 1.4), variance (0.2, 0.1), and

covariance 0. The second is normal with mean (−0.4,−1.4) and same covariance

matrix.6 I take X following a truncated normal to [0, 1] with untruncated mean

0.6 and variance 0.05.

I compare the estimators with the true value of PE(Xi, Yi) rather than the value of

Γi. Indeed, the other part of the error is not varying with the type of estimator

of the PE, only reflecting the information contained in the PE. Table 2 shows the

results. It compares my two estimators with the Bayesian parametric method of

King (1997) which has a multivariate truncated normal prior, implemented in the R

6This is similar to Simulation II in Imai et al. (2008).
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package ei. Using the Bayesian parametric method with a different prior developed in

Imai et al. (2011) and implemented in the R package eco gives very similar results as

King (1997) (see also Appendix G.7 for a comparison with the hierarchical Dirichlet

model of Rosen et al., 2001, when p = 2).7

The results are presented in Table 2. A first point is that the error of the Bayesian

method in these two particular contexts does not really shrink with the sample size,

probably due to the misspecification. On the contrary, the errors for my two non-

parametric methods are well reduced when the sample size goes from 1000 to 5000

(e.g. from 0.06 to 0.04 – respectively 0.045 to 0.026 – for the l1 error on Γ1 of the GT

methods in case 1). However, it is interesting to note that for the smallest sample

sizes (1000), the Bayesian method performs well: it is the best in case 1 with a uni-

form regressor, and better than the GT method in Case 2, despite being dominated

by the GWB estimator.

Importantly, my methods seem to be more robust to the type of regressor, as they

both perform well in the two different contexts. A final point to emphasize is that even

in this context, with a continuous regressor X which discretized to fit its theoretical

setting, the GWB method performs dramatically well in the two scenarios: it is the

best performing method for all sample sizes in Case 2, and very close to being the

best for all sample sizes in Case 1.

7The computational cost of the nonparametric Bayesian method of Imai et al. (2011) with the R

package eco for these simulations with sample sizes 1000 and 5000 is prohibitive.
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Table 2: In-sample errors with independence

Case 1 (Γ Beta distribution, X Uniform)

l1 error l2 error

Γ1 Γ2 Γ1 Γ2

Sample size 1000 5000 1000 5000 1000 5000 1000 5000

Bayesian parametric 0.038 0.038 0.083 0.084 0.058 0.059 0.116 0.118

GT 0.04 0.033 0.096 0.079 0.061 0.052 0.136 0.114

GWB (disc. X) 0.043 0.036 0.084 0.073 0.068 0.056 0.119 0.105

Case 2 (Γ logit-mixture of normals, X truncated normal)

l1 error l2 error

Γ1 Γ2 Γ1 Γ2

Sample size 1000 5000 1000 5000 1000 5000 1000 5000

Bayesian parametric 0.051 0.05 0.091 0.089 0.064 0.063 0.117 0.116

GT 0.06 0.041 0.106 0.071 0.081 0.058 0.145 0.106

GWB (disc. X) 0.045 0.026 0.075 0.046 0.062 0.038 0.098 0.064

Notes: in this 2 dimensional case, the in-sampled l1 error is computed as
∑n

i=1 |P̂Ek(Xi, Yi) −
PE(Xi, Yi)|/n and the l2 error as (

∑n
i=1(P̂Ek(Xi, Yi) − PE(Xi, Yi))

2/n)1/2, where P̂Ek(Xi, Yi) are the

different estimators.“GWB (disc. X)” refers to the GWB estimator where the distribution of X has

been discretized using the rule of Section 4.2.5. “Bayesian parametric” refers to King (1997) method

with bivariate truncated normal prior, implemented in the R package ei. The Monte-Carlo experiment

uses 250 simulations.

4.3.2 With conditional independence

I consider a DGP that allows us to demonstrate the use of the various ways to relax

the independence assumption with my estimators. Consider a DGP where Γ and X

are related by an additional variable Z. Here I take Z as the discretized version with

3 points of support of a variable Z∗ that is Beta(2, 1.3) distributed (cutoffs at 0.3 and

0.8). Then I consider ϵ distributed as Γ∗ in Case 1 of Section 4.3 and

Γ∗ = ( 0.2Z∗
0.1Z∗ ) +

(
0.6ϵ1
0.7ϵ2

)
X∗ = 0.2(Z∗)2 + 0.8η, η ∼ Beta(4, 2).
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Table 3: In-sample errors with conditional independence

l1 error l2 error

Γ1 Γ2 Γ1 Γ2

1000 5000 1000 5000 1000 5000 1000 5000

Without Z

Bayesian parametric 0.09 0.09 0.143 0.142 0.103 0.104 0.16 0.16

GT 0.099 0.094 0.149 0.138 0.137 0.133 0.197 0.183

GWB (disc. (X)) 0.085 0.078 0.087 0.087 0.102 0.094 0.132 0.132

With Z

Bayesian parametric 0.047 0.049 0.073 0.076 0.062 0.065 0.095 0.099

GT varying 0.062 0.042 0.098 0.066 0.099 0.07 0.156 0.106

GT 0.048 0.036 0.075 0.055 0.07 0.056 0.105 0.082

GWB (disc. (X,Z)) 0.075 0.059 0.148 0.124 0.104 0.081 0.208 0.173

Notes: in this 2 dimensional case, the in-sampled l1 error is computed as
∑n

i=1 |P̂Ek(Xi, Yi, Zi)−
PE(Xi, Yi, Zi)|/n and the l2 error as (

∑n
i=1(P̂Ek(Xi, Yi, Zi) − PE(Xi, Yi, Zi))

2/n)1/2, where

P̂Ek(Xi, Yi, Zi) are the different estimators. See the Appendix for non-sampled results and com-

parison to the true value of Γ. “Bayesian parametric” refers to King (1997) method with bivariate

truncated normal prior, implemented in the R package ei. “GWB (disc. (X,Z))” refers to the

GWB estimator where the distribution of (X,Z) has been discretized using the rule of Section

4.2.5. “GT varying” corresponds to the varying coefficients approach described in (23). The

Monte-Carlo experiment uses 250 simulations.

The results are shown in Table 3. A first point is that without using the variable Z, the

GWBmethod again performs better than the Bayesian method of King (1997) and my

GT method for all sample sizes. The latter two remain close. Due to misspecification,

errors for all methods without Z do not really shrink with the sample size.

Then, I compare different estimators with this additional variable Z: 1) the same

Bayesian method of where Z can be introduced, 2) the GT method with varying

coefficients (“GT varying”) corresponding to (23), 3) the GT method where Z enters

fully nonparametrically as in (27)-(28), and finally 4) the GWB method where both

(X,Z) are discretized. Again, an important point is that although the parametric

Bayesian method actually performs better for a sample size of 1000 when Z is used, its

errors remain nearly constant. On the contrary, the errors shrink for all my methods.

Specifically, the GT method without constraint on Z performs best at sample size

5000 and is really close to the Bayesian method for n = 1000 (0.048 and 0.075 (0.047
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and 0.073, respectively) for the l1 norm of Γ1 and Γ2). Finally, if including Z in the

GWB method helps reducing the errors, it does not compete well with the others

in this setting, probably due to the discretization. One might prefer to use a GWB

method with varying random coefficients approach.

5 Individual level effect of teachers’ knowledge on

their performance

I apply my method to predict how each teacher’s value added is affected by his or her

knowledge, extending the work of Bau and Das (2020). Similarly, I focus not only on

estimating the TVA using data from Pakistan, but also on explaining its variation

with respect to observed teacher characteristics. The innovation is that my method

allows to describe the heterogeneity of this variation and to use it for policy design.

Our estimates are based on the same data collected between 2003 and 2007 from

112 villages in Punjab province, Pakistan, as part of the Learning and Educational

Achievement in Pakistan Schools (LEAPS) project.

5.1 Context and OLS/IV estimations

Importantly, these data include test scores for matched student-teacher pairs as well as

a rich set of teacher characteristics that can explain the TVA. Test scores are estimated

with item response theory (IRT, see e.g., Das and Zajonc, 2010) and measured in

standard deviations. Bau and Das (2020) perform this analysis by first estimating

the TVA using a teacher-year fixed effects model of student test scores. Then, in a

second step, they regress this estimated TVA on several characteristics listed below.

There are a few peculiarities that we need to take into account when replicating the

analysis of Bau and Das (2020). The first is that estimating teacher effects with ob-

servational data requires controlling for sorting between students and teachers. They

use lagged test scores, which may affect students differently in different grades, as

well as year-specific and grade-specific shocks as controls.8 Therefore, I first consider

8Bau and Das (2020) performs several checks that I do not replicate here as they are not the

focus of this paper. These suggest that there is little systematic sorting here. Similar to Chetty

et al. (2014a), one of them is the use of students who change schools.
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a similar model for estimating the TVA (40) and then use linear regression to explain

it using the characteristics (41),

Ỹj,i,g,t = δ0 +
∑
a

δaỸj,t−11l{grade = a}+ µg + αt + Y i + ε̃j,i,g,t (40)

Y i = ν1,i + γ1X1,i +X⊤
−1,iγ−1, (41)

where Ỹj,t−1 are past students’ tests scores, µg are the grades fixed effects, αt is a

fixed effect for round t, Xi = (X1,i, X−1,i) contains mean teacher’s knowledge X1,i

as well as X−1,i which includes district fixed effects, gender, being a local, whether

teachers received some training, have at least a bachelor’s degree, more than 3 years of

experience, whether the school is public or private, and having a temporary contract,

and ν1,i is teacher-specific error term in the value added, containing the unobserved

effects and independent of the noise ε̃j,i,g,t. Similar to Bau and Das (2020), I also

consider an IV strategy and instrument for the teacher’s mean score in the first year

tested, X1,i, with the mean score of the second year, denoted by Wi.

The results are presented in Table 5. The first important finding is that higher teacher

knowledge of the program, as measured by the same average test scores on the same

tests as students, is significantly associated with higher TVA. These effects are similar

in magnitude to those estimated in other developing countries (see Bau and Das, 2020,

for more details). The results in column (3) indicate that a 1 SD increase in teacher

knowledge increases TVA by 0.27 SD on average. The second result is that these

observed teacher characteristics explain only a small percentage of the variation in

TVA, highlighting the importance of modeling the unobserved heterogeneity.

5.2 Estimation of the individual-level causal effect of knowl-

edge on performance

Let’s take the analysis a step further and consider the heterogeneity of this effect of

knowledge on performance. Thus, instead of the main equation (41), I consider

Y i = Γ1,i + Γ2,iX1,i +X⊤
−1,iγ, (42)

where Γ2,i is the individual causal effect of knowledge on TVA, Y i, while Γ1,i captures

the unobserved effects not explained by Xi. We are only interested in the homoge-
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neous effect with respect to X−1,i, so γ is kept as a deterministic vector.9 Tests of the

linearity of (42) with respect to teachers’ knowledge do not reject this assumption.10

Hereafter, I denote by Ỹj,i,t the average tests scores across grades where the effects

of past tests scores and grade fixed effects have been removed using (40). I keep the

normality assumption of ε̃j,i,t and denote by hit = ni,t/σ
2
ε , Ỹi,t =

∑nj,t

j=1 Ỹj,i,t/ni,t, and

Yi =
∑

t hi,tỸi,t/
∑

t hi,t, which yields the analog of (17) in this context:

Yi ∼ N
(
Γ1,i + Γ2,iX1,i +X⊤

−1,iγ,
σ2
ε∑

t ni,t

)
.

To handle the potential endogeneity ofX1,i arising from measurement error in a simple

way, I consider an additional first-stage homogeneous equation X1,i = a0+ a1Wi+ ηi,

where ηi is independent of second tests scores for teachers Wi.
11 I present results for

this IV specification below. Finally, I assume either:

A1. Independence Γi ⊥⊥ Wi,

A2. Independence in a varying coefficients approach (22)-(23) with a linear specifica-

tion for g(Z), where Zi is either i) some teacher’s training, or ii) some teacher’s

training, public school, and experience.

A3. Conditional independence Γi ⊥⊥ Wi|Zi, where Zi is experience.

This allows us to check the robustness to the baseline assumption of full independence

in A1. The use of teacher training or experience in A2 and A3 is motivated by the

fact that it can strengthen pedagogy and thus the transfer of knowledge to students.

I also use a dummy for public school in A2, as differences in funding may affect both

the effect of knowledge on performance and the knowledge of teachers through greater

access to personal development.

I proceed according to the following steps:

9See Breunig and Hoderlein (2018) for a test of wheter a coefficient is fixed or random in the

context without noise.
10Specifically, the Ramsey RESET test (see, e.g., Wooldridge, 2010) does not reject the OLS model

(p-values 0.54 and 0.72 with 4th and 3rd order polynomials, respectively).
11Being less parsimonious and considering a full triangular model with random coefficients ap-

proach like Hoderlein et al. (2017) is possible but complicated in this context with somewhat limited

sample size. Alternatively, one can use the control function approach of Section 3.3.
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1. I first estimate the parameters in (40) using linear regression with fixed effects,

then form the quantities Ỹj,i,t.

2. I then use the following nonparametric estimator σ̂2
ε of σ2

ε :

σ̂2
ε =

∑
i

∑
t

∑
j(Ỹj,i,t − Ỹi,t)

2∑
j

∑
t(ni,t − 1)

. (43)

3. The third step uses linear regression to estimate the coefficients γ in (42) and

bring the model back to (16), using p = 1 regressor.

4. I then either use:

- the P̂E
GT

estimator; Under the normality assumption for the distribution

of ε, (21) bypasses the need to perform a deconvolution step. I choose the

adaptive choice (96) for the tuning parameters.

- the P̂E
GWB

estimator; Since mean teacher knowledge can be considered as

a continuous random variable, I use the discretization procedure described

in Section 4.2.4. The results are not sensitive to taking large values of

N , and I provide a robustness result with respect to the discretization

parameter K in the Appendix.

My preferred specification is the varying coefficients one A2 (ii), and the results for

the GT estimator are shown in Figure 2, while Figure 5 in appendix presents the one

for GWB. Appendix D gathers the alternative estimation procedures with A1 and

A3, and I discuss robustness below.

Specifically, Figure 2(a) shows the joint individual-level distribution in the sample

of the predicted fraction of TVA that is not explained by teacher knowledge (i.e.,

Γ1 +X⊤
−1γ) and the estimated effect of teacher knowledge on TVA (Γ2), conditional

on the observed information about TVA and knowledge. Figure 2(b) shows the joint

individual-level distribution in the sample of the estimated TVA (Ŷ ) and the esti-

mated effect of teacher knowledge on TVA (Γ2).

A first conclusion from Figure 2(a) is that there is important heterogeneity in the

sample, with the effect of teacher knowledge on student test scores ranging from

barely positive to 0.75 SD. This can be compared to the average annual test score gain
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of 0.33 SD for the student cohort over all four years of the sample. The distribution

appears to be unimodal. A second interesting fact is that on Figure 2(b), we can

see a positive correlation between the predicted individual effect of knowledge on

performance and that performance. This also shows some important heterogeneity,

with a significant proportion of individuals having average value added, but also with

a very weak predicted effect of knowledge on the latter.

On the technical side, it is reassuring that both the GT and the GWB reach similar

conclusions. The predictions of Γ1 and Γ2 are also strongly correlated (0.45 and 0.57

for the varying coefficients specification, respectively). Both estimators are fast to

compute at these sample sizes, with the GWB and GT estimators taking 2 min and 1

min, respectively, to perform the estimation and generate the predictions.12 Finally,

I check the sensitivity of the different relaxations of independence assumption A1.

Table 6 in the appendix presents characteristics of the individual level differences

in the predictions between the different specifications, for both GT and GW. If the

GT estimator seems to be only slightly affected by the use of additional variables Z

(median change of -0.01), this is less true for the GWB estimator (0.07). However,

compared to the case of A2 (ii), the other two specifications using Z yield only limited

differences. This motivates the choice of A2 (ii) as my preferred specification.

5.3 Using PE matters empirically for policy design

Because of the potential heterogeneity in Γ, there could be important gains from

targeting some on-the-job training policies to the population that would benefit the

most in terms of performance. This is an application of the motivation developed in

Section 2.2.

Specifically, consider the assignment to an on-the-job training program D based on

initially available data on teacher knowledge and performance (Xi,t, Yi,t), and with a

conditional average treatment effect CATE(Xi,t, Yi,t) on the average content knowl-

edge of teachers Xi,t+1 in t+ 1, under capacity constraints.

The decision problem is then to select teachers into this training so as to maximize

average utility, taken as TVA. According to Section 2.2 and under Assumption 1, this

12These CPU times are obtained using R and Python code, parallelized on 4 CPUs on an Intel(R)

Core i7-9850H CPU 2.60GHz with 16Gb of RAM.
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yields the optimal allocation decision rule p as the product of the CATE and the PE

given in equation (7). A natural alternative empirical policy without considering this

heterogeneity, given that the effect of teacher knowledge on performance (E(Γ2,i)) is

significantly positive (0.239), would be to allocate individuals to D to maximize the

increase in knowledge, i.e., based only on the CATE:

p(Xi,t, Yi,t) = 1l{E(Γ2,i) CATE(Xi,t, Yi,t) ≥ γ}. (44)

such that γ = E(p(Xi,t, Yi,t)). I now compare the effects of such policies.

Unfortunately, to my knowledge, there is no randomized experiment evaluating the

effect of such a policy in Pakistan. The closest I have found is that of Jakob et al.

(2023) in Tanzania, where the estimated heterogeneous treatment effect in SD of

standardized test scores measuring teacher knowledge is of the form13

CATE(Xi,t) = max(0, 0.131− 0.475Xi,t).

This policy thus has an effect on teachers who know less.14 Here, the treatment is

most effective on those with little prior knowledge and has no effect on those who

know more.

However, this might affect the teachers’ performance Yi,t+1 differently among them,

since the individual effects Γ2 are very heterogeneous. To illustrate this while com-

pleting my estimation analysis, Figure 3 is the analog of Figure 2(b), showing the

estimated effect (with GWB A2 (ii)) of teacher knowledge on TVA as a function

of the latter, but only for the 20% of individuals at the bottom of the knowledge

distribution, i.e., those where Xi,t+1 will be more affected by the treatment. It also

presents confidence intervals that identify the individuals in this population for whom

an increase in their knowledge following the treatment on X is predicted to have a

significant impact on Y . This appears to be the case for individuals with very different

estimated TVA.

Finally, Figure 4 compares the allocation based on E(Γ2,i)CATE(Xi,t) (x-axis) with

the one based on PE(Xi,t, Yi,t) CATE(Xi,t) (y-axis), as in (44). It represents the joint

13For simplicity, I keep the same notation for standardized and nonstandardized test scores, but

treat this in the estimation.
14Unfortunately, I cannot also model the heterogeneity of the treatment effect onXt+1 with respect

to past values of students’ test scores Yi,t. It is reasonable to think that this heterogeneity is limited.
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distribution of these predicted effects, where both scales can be interpreted directly

as the impact of this personal development program on the student’s test scores in

SD. The two plain black lines represent the thresholds above which teachers would be

assigned to such a program when treating 20% of the population. In this experiment,

individuals shown in green (or red) would be treated (or not treated) by both selection

rules. However, the optimal policy would treat those individuals shown in blue, as

they have a strong predicted effect of knowledge on their performance. It would not

treat those individuals shown in purple, who have low levels of knowledge but for

whom such treatment would also be inefficient.

Table 4 summarizes the estimated welfare gains associated with Figure 4. It shows

that the average gains from informing the decision with the PE would vary up to

31.1% (resp. 22.4%) treating 10% (resp. 20%) of the population. Table 4 also shows

that the policy based on PE tends to select less systematically individuals with less

knowledge (average of 2.16 compared to 2.02 when selecting 20%).
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(a) Joint distribution of posterior estimates of (Γ1,i +X⊤
−1,iγ,Γ2,i)

(b) Joint distribution of estimates of TVAi and posterior estimates of Γ2,i

Notes: These results pool teachers from private and public schools. Figure 2(a) (resp.

2(b)) presents the estimated individual-level joint distribution of the part of the TVA that

is explained by teacher knowledge (resp. the estimated TVA) and the estimated effect

of teacher knowledge on TVA (Γ2). This is done using the GT estimator with varying

coefficients A2 (ii), when we instrument for the teacher’s mean score in the first tested

year with the mean score of the second year, which reduces the sample size to 834. The

dots represent the individual predictions P̂E(Xi, Yi) and the contour lines the levels of

the associated fitted density. The dotted red line represents the IV estimates with an

homogeneous specification. Teachers’ tests scores are winsorized at a 1% level.

Figure 2: Distributions of the estimates of coefficients characterizing the TVA
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Notes: These results pool teachers from private and public schools. It presents the esti-

mated individual-level joint distribution the estimated TVA and the estimated effect of

teacher knowledge on TVA (Γ2). Estimation is performed using the GWB estimator with

varying coefficients (A2 (ii)) and 95% confidence intervals (displayed in dotted black lines)

are computed using subsampling. Teachers’ tests scores are winsorized at a 1% level.

Figure 3: Estimated PE of knowledge on TVA for the 20% teachers’ with

less content knowledge

42



Notes: These results present the predicted effects in SD of students’ tests scores based

on the CATE only E(Γ2,i)CATE(Xi,t) (x-axis) versus the predicted effects based on PE

also PE(Xi,t, Yi,t) CATE(Xi,t) (y-axis), which forms the optimal decision rule. The two

plain black lines (resp. dotted and dashed) represent the threshold above which teachers

would be allocated to such a program when treating 20% (resp. 10% and 30%) of the

population. In this experiment, individuals represented in green (resp. in red) would be

treated (resp. not treated) by both selection rules. However, the optimal policy would treat

the individuals with strong predicted effect of knowledge on their performances displayed

in blue, and does not treat individuals displayed in purple. Estimation is performed using

the GT estimator with varying coefficients A2 (ii)).

Figure 4: Comparison of the rules based on CATE or PE× CATE
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% of treated population 10% 20% 30% 50%

Estimated average welfare 0.20 0.14 0.11 0.07

Estimated gains from using PE (in SD) 0.05 0.03 0.01 0.00

In % 31.1 22.4 9.5 0.8

Average knowledge on treated with PE 1.94 2.16 2.29 2.47

Average knowledge on treated without PE 1.72 2.02 2.19 2.44

Notes: “Estimated average welfare” is the average teachers’ value added

E(Yt+1(Xt+1(D))) under the policy with PE. “Estimated welfare gains from us-

ing PE (in SD)” are the estimated gains compared to the policy not using PE,

given in percentage in “In %”. “Average knowledge on treated” is the mean of

Xi,t in our population under the different policies. Estimation is performed using

the GT estimator with varying coefficients A2 (ii).

Table 4: Table of estimated gains from using PE

6 Conclusion

I study the identification and inference of posterior effects in linear models. My

baseline model is a stepping stone to predicting the heterogeneity of the effect of

some covariates in many more complicated and empirically relevant situations, such

as the analysis of the determinants of teachers’ value added. A major difficulty with

this model is providing estimators that allow for realistic variation in the regressors,

either discrete or continuous. My approaches break new ground by providing tools to

predict these effects nonparametrically in these two different contexts. My application

illustrates that these are tractable estimators that provide more accurate descriptions

and allow for more fine-tuning of policies by informing them of the heterogeneity of

the effects. One valuable extension would be performing bias-aware inference in this

context (see Armstrong and Kolesár, 2020; Armstrong et al., 2020). Finally, my

second method shows the potential of optimal transport tools to allow the estimation

of posterior effects in other models than those considered here.
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Améndola, C., J.-C. Faugere, and B. Sturmfels (2015). Moment varieties of Gaussian

mixtures. arXiv preprint arXiv:1510.04654 .

Angrist, J. D., P. D. Hull, P. A. Pathak, and C. R. Walters (2017). Leveraging

lotteries for school value-added: Testing and estimation. The Quarterly Journal of

Economics 132 (2), 871–919.

Arellano, M. and S. Bonhomme (2012). Identifying distributional characteristics in

random coefficients panel data models. The Review of Economic Studies 79 (3),

987–1020.

Arellano, M. and S. Bonhomme (2023). Recovering latent variables by matching.

Journal of the American Statistical Association 118 (541), 693–706.

Armstrong, T. B. and M. Kolesár (2020). Simple and honest confidence intervals in

nonparametric regression. Quantitative Economics 11 (1), 1–39.

Armstrong, T. B., M. Kolesár, and S. Kwon (2020). Bias-aware inference in regular-

ized regression models. arXiv preprint arXiv:2012.14823 .

Armstrong, T. B., M. Kolesár, and M. Plagborg-Møller (2022). Robust empirical

Bayes confidence intervals. Econometrica 90 (6), 2567–2602.

Athey, S. and G. Imbens (2016). Recursive partitioning for heterogeneous causal

effects. Proceedings of the National Academy of Sciences 113 (27), 7353–7360.

Athey, S., J. Tibshrani, and S. Wager (2019). Generalized random forests. The Annals

of Statistics 47 (2), 1148–1178.

Bau, N. and J. Das (2020). Teacher value added in a low-income country. American

Economic Journal: Economic Policy 12 (1), 62–96.

45



Beran, R., A. Feuerverger, and P. Hall (1996). On nonparametric estimation of

intercept and slope distributions in random coefficient regression. Annals of Statis-

tics 24, 2569–2592.

Beran, R. and P. Hall (1992). Estimating coefficient distributions in random coefficient

regressions. Annals of Statistics 20, 1970–1984.

Beran, R. and W. Millar (1994). Minimum distance estimation in random coefficient

regression models. Annals of Statistics 22, 1976–1992.

Bold, T., D. Filmer, G. Martin, E. Molina, B. Stacy, C. Rockmore, J. Svensson, and

W. Wane (2017). Enrollment without learning: Teacher effort, knowledge, and skill

in primary schools in africa. Journal of Economic Perspectives 31 (4), 185–204.

Bonhomme, S. and M. Weidner (2022). Posterior average effects. Journal of Business

& Economic Statistics 40 (4), 1849–1862.
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A Main proofs

Notations

I use that for all k, l > 0, N ≥ 1,

(N + l)k ≤ ((l + 1)N)k, (45)

|{k ∈ Np
0 : |k|∞ ≤ j0}| = (j0 + 1)p. (46)

I endow P2(S) with the Wasserstein distance W2, defined for any ρ, µ ∈ P2(S) by

W2(ρ, µ) =

(
min

FX,Y :FX∼ρ,FY ∼µ
E(∥X − Y ∥2)

)1/2

,

where the minimum is taken over the set of joint distributions satisfying the marginal

constraints. For a measure µ, a vector u and a linear projection Pu onto the vector

space generated by u, I denote by Pu,#µ the pushforward of µ by Pu, i.e., the measure

on R such that for any Borelian A ⊂ R, (Pu,#µ)(A) = µ(P−1
u (A)).

A.1 Identification

Proof of Proposition 1. Using Bayes’ theorem for the second equality, we have for

a.e. (x, y) ∈ Supp(X, Y ) and for all k = 1, . . . , p+ 1,

E(Γk|X = x, Y = y) =

∫
Rp+1

gkdPΓ|X,Y (g|x, y)

=

∫
Rp+1

gk
PY |Γ,X(y|g, x)
PY |X(y|x)

dPΓ|X(g|x) (47)

=

∫
g∈I(x,y)

gk
PY |X(y|x)

dPΓ(g) (using Assumption 2).

This yields for all (x, y) ∈ Supp(X, Y ) and k = 1, . . . , p+ 1,

E(Γk|X = x, Y = y)PY |X(y|x) =
∫
g∈I(x,y)

gkdPΓ(g). (48)

Using Theorem 1 in Gaillac and Gautier (2021b), PΓ is identified under assumption

3-(A) and 3-(B), which yields the result for PEk for k = 1, . . . , p+ 1.

Let us prove statement 2. We obtain equation (10) using directly Bayes theorem as

in (48). Then, using statement 1, PΓ is the unique distribution Q ∈ D such that

2



P(1,x),#Q = PY |X=x for all x ∈ Supp(X). Thus, it is the unique minimizer of (11).

This yields the result.

We know turn to the proof of statement 3. Denote by φY |X : (t, x) ∈ R×Supp(X) 7→
E(eitY |X = x) = F [PΓ] (t, tx). Using (48) and Lemma 1, the Fourier transform of

y 7→
∫
g∈I(x,y) gkdPΓ(g) is well defined (see, e.g., Theorem 9.13 in Rudin, 1973). Using

the definition of I(x, y) for the second equality which yields that g ∈ I(x, y) if and
only if y = g⊤(1, x), and using the definition of the Fourier transform we have,

F
[∫

g∈I(x,·)
gkdPΓ(g)

]
(t) =

∫
eity
∫

1l{g ∈ I(x, y)}gkdPΓ(g)dy

=

∫
eit(g

⊤(1,x))gkdPΓ(g)

= F [⋆kPΓ(⋆)] (t, tx). (49)

Then, we conclude using Theorem 9.13 d) in Rudin (1973) and taking the Fourier

inverse that, for all (x, y) ∈ Supp(X, Y ) and k = 1, . . . , p+ 1,

E(Γk|X = x, Y = y)PY |X(y|x) = F−1 [F [⋆kPΓ(⋆)] (·, ·x)] (y).

We denote by

Mk : (x, y) 7→ F−1 [F [⋆kPΓ(⋆)] (·, ·x)] (y). (50)

Using Assumption 4 and the dominated convergence theorem, for all k = 1, . . . , p+1,

the function φY |X admits partial derivatives with respect to t and xk. Moreover,

using that Supp(X) has a nonempty interior, the latter derivatives are identified on

Supp(X), and we obtain, for all t ∈ R and x ∈ Supp(X),

∂xk
φY |X(t, x) = itF [⋆k+1PΓ(⋆)] (t, tx), k = 1, . . . , p. (51)

We have, using (51) for the last equality, for k = 1, . . . , p,

∂yMk+1(x, y) = ∂yF−1 [F [⋆k+1PΓ(⋆)] (·, ·x)] (y)

= −iF−1 [·F [⋆k+1PΓ(⋆)] (·, ·x)] (y)

= −F−1
[
∂xk

φY |X(·, x)
]
(y) (52)

Finally, we obtain for k = 1, . . . , p,

∂yMk+1(x, y) = −F−1
[
∂xk

F
[
fY |X(·|x)

]]
(y)

= −∂xk
fY |X(y|x). (53)
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Integrating and using that assumption 3-(B) yields limy→−∞ Mk(x, y) = 0, we obtain

statement (12). Equation (13) can directly be deduced from the model’s equation,

taking conditional expectation with respect to (X, Y ) □

Lemma 1 Under Assumption 3-(B), then the function y 7→ E(Γk|X = x, Y =

y)PY |X(y|x) belongs to L1(R) ∩ L2(R).

Proof of Lemma 1. Let ϵ ∈ (0, 1) and λ = (1− ϵ)/(2R). We have, using that if g

s.t. g⊤(1, x) = y then ∥g∥ ≥ |y|/∥(1, x)∥,∫
Supp(Y )

∣∣∣∣∫
Rp+1

1l{g ∈ I(x, y)}gkfΓ(g)dg
∣∣∣∣ dy

≤
∫
Supp(Y )

∫
Rp+1

1l{∥g∥ ≥ |y|
∥(1, x)∥

}|gk|fΓ(g)dgdy

≤
∫
Supp(Y )

e−λy/∥(1,x)∥dy

∫
Rp+1

eλ∥g∥|gk|fΓ(g)dg

which is finite reasoning similarly to (9). We also have, using λ = (1 − ϵ)/(4R) and

the Cauchy-Schwarz inequality,∫
Supp(Y )

∣∣∣∣∫
Rp+1

1l{g ∈ I(x, y)}gkfΓ(g)dg
∣∣∣∣2 dy

≤
∫
Supp(Y )

e−λy/∥(1,x)∥dy

∫
Rp+1

eλ∥g∥|gk|2|fΓ(g)|2dg

which is finite as fΓ ∈ L2(W⊗(p+1)). □

Proof of Proposition 2. We keep the notations of Proposition 1. Additionally, for

all k, l = 1, . . . , p, we denote by

Mk,k′ : (x, y) 7→ F−1 [F [⋆k ⋆k′ PΓ(⋆)] (·, ·x)] (y), (54)

a quantity which is finite using (48) and a direct adaptation of Lemma 1.

Using the integrability assumptions of the partial derivatives ∂xk
∂xl

fY |X(·|x) and the

dominated convergence theorem, for all k, l = 1, . . . , p+ 1, the function φY |X admits

partial derivatives with respect to t and xk, xl. Moreover, using that Supp(X) has a

nonempty interior, the latter derivatives are identified on Supp(X), and we obtain,

for all t ∈ R and x ∈ Supp(X),

∂xk
∂xl

φY |X(t, x) = −t2F [⋆k+1 ⋆l+1 PΓ(⋆)] (t, tx), k, l = 1, . . . , p. (55)
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We have, using (51) for the last equality, for k, l = 1, . . . , p,

∂2
yMk+1,l+1(x, y) = ∂2

yF−1 [F [⋆k+1 ⋆l+1 PΓ(⋆)] (·, ·x)] (y)

= −F−1
[
·2F [⋆k+1 ⋆l+1 PΓ(⋆)] (·, ·x)

]
(y)

= F−1
[
∂xk

∂xl
φY |X(·, x)

]
(y) (56)

Finally, we obtain for k, l = 1, . . . , p,

∂2
yMk+1,l+1(x, y) = −F−1

[
∂xk

∂xl
F
[
fY |X(·|x)

]]
(y)

= −∂xk
∂xl

fY |X(y|x). (57)

Integrating and using that assumption 3-(B) yields limy′→−∞ ∂yMk+1,l+1(x, y
′) = 0,

limy→−∞ Mk+1,l+1(x, y) = 0, we obtain the result. □

Proof of Theorem 1. Let us start with the proof of case 3. Using the model (15),

we have, for all (t, x) ∈ R× Supp(X),

φY |X(t, x) = E(eitY |X = x) = F [PΓ] (t, tx)φε(t). (58)

Denote by φ̃(t, x) := φY |X(t, x)/φε(t). Using Bayes’ theorem and Assumption 2, we

first have, for all (x, y) ∈ Supp(X, Y ),

E(Γk|X = x, Y = y)PY |X(y|x) =
∫
(g,u)∈I(x,y)

gkfε(u)dPΓ(b)du.

Using (58) and a direct adaptation of Lemma 1 when fε ∈ L2(W ), the Fourier trans-

form of y 7→
∫
(g,u)∈I(x,y) gkfε(u)dPΓ(g)du is well defined (see, e.g., Theorem 9.13 in

Rudin, 1973). Using the definition of I(x, y) for the second equality which yields that

(g, u) ∈ I(x, y) if and only if y = g⊤(1, x) + u, and using the definition of the Fourier

transform we have,

F
[∫

(g,u)∈I(x,·)
gkfε(u)dPΓ(g)du

]
(t) =

∫
eit(g

′(1,x))eitugkfε(u)dudPΓ(g)

= φε(t)F [⋆kPΓ(⋆)] (t, tx). (59)

Then, we conclude using Theorem 9.13 d) in Rudin (1973) and taking the Fourier

inverse that, for all (x, y) ∈ Supp(X, Y ) and k = 1, . . . , p+ 1,

E(Γk|X = x, Y = y)PY |X(y|x) = F−1 [φε(·)F [⋆kPΓ(⋆)] (·, ·x)] (y).

5



We denote by

M̃k : (x, y) 7→ F−1 [φε(·)F [⋆kPΓ(⋆)] (·, ·x)] (y). (60)

Using Assumption 4 and the dominated convergence theorem, for all k = 1, . . . , p +

1, the function φ̃ admits partial derivatives with respect to t and xk. Moreover,

using that Supp(X) has a nonempty interior, the latter derivatives are identified on

Supp(X), and we obtain, for all t ∈ R and x ∈ Supp(X),

∂tφ̃(t, x) = i(1, x)′F
[
⋆1:(p+1)PΓ(⋆)

]
(t, tx) (61)

∂xk
φ̃(t, x) = itF [⋆k+1PΓ(⋆)] (t, tx), k = 1, . . . , p. (62)

We also have, for k = 1, . . . , p,

∂yM̃k+1(x, y) = −F−1 [∂xk
φ(·, x)] (y),

hence

∂yM̃k+1(x, y) = −∂xk
fY |X(y|x). (63)

Finally, using that for all (t, x) ∈ R× Supp(X),

∂tφ̃(t, x) =
∂tφ(t, x)φε(t)− φ′

ε(t)φ(t, x)

φε(t)2
,

we have

∂tφ(t, x) = ∂tφ̃(t, x)φε(t) +
φ′
ε(t)

φε(t)
φ(t, x)

= iF
[
(1, x)′M̃

]
+

φ′
ε(t)

φε(t)
φ(t, x).

Finally, using that ρ(x, y) = F−1 [∂tφ(t, x)] (y)/i, we obtain

ρ(x, y) = (1, x)′M̃(x, y) + F−1

[
φ′
ε

iφε

φ(·, x)
]
(y),

hence the result.

Let us continue with the proof of case 2. Equation (18) results directly from Bayes’

theorem. Then, using Assumption 5, the distribution of Ỹi = (1, X⊤
i )Γi conditional

on Xi = x is given by f(PY |X=x). PΓ is the unique distribution Q ∈ D such that

P(1,x),#Q = PỸ |X=x for all x ∈ Supp(X). Thus, it is the unique minimizer of (19).

This yields the result. □

6



Proof of Proposition 13. This can be seen as a corollary of Theorem 1-3, or as a

particular case of propositions 15 or 16, see Remark 3. □

Proof of Proposition 5 This is a direct consequence of including Assumption (8)

in (47). □

A.2 Inference

A.2.1 F-modeling

Formulation of the estimator with unknown fX and fY |X

Assumption 12 (On the rates of convergence of the preliminary estimators)

Assume that:

(Est.1 ) We have estimators f̂X based on a preliminary sample Pn0 = (Xi)
0
i=−n0+1

independent of (Xi, Yi)
n
i=1 and f̂Y |X based on a second preliminary sample

Pn1 = (Xi)
−n0

i=−(n1+n0)+1 independent of (Xi, Yi)
n
i=−n0

;

(Est.2 ) E and E ′ are sets of densities and conditional densities on Supp(X) and

Supp(X, Y ) such that, for cX , cX,Y ∈ (0,∞), for all fX ∈ E, ∥1/fX∥L∞(Supp(X)) ≤
cX , ∥fX∥L∞(Supp(X)) ≤ CX , and there exists a strict subset S of Supp(X, Y )

such that, for all fY |X ∈ E ′, ∥1/fY |X∥L∞(S) ≤ cX,Y ; For (v(n0, E))n0∈N ∈
(0, 1)N and (v(n1, E ′))n1∈N ∈ (0, 1)N which tend to 0, we have

1

v(n0, E)
sup
fX∈E

∥∥∥f̂X − fX

∥∥∥2
L∞(Supp(X))

= Op (1) , (64)

1

v(n1, E ′)
sup

fY |X∈E ′

∥∥∥f̂Y |X − fY |X

∥∥∥2
L∞(S)

= Op (1) . (65)

Giné and Nickl (2016); Tsybakov (2008) give examples of estimators for fX and fY |X ,

E , E ′ rates (64) and (65). Define f̂ δ
X := f̂X ∨

√
δ(n0) and f̂ δ

Y |X := f̂Y |X ∨
√

δ(n1),

where δ is a trimming factor converging to zero. To deal with the statistical problem,

I use

∂̂lFY |X
j0
(⋆|·) :=

∑
|k|∞≤j0

d̂k(⋆)∂lLk(·), (66)

7



where, for all y ∈ SY ,

d̂k(y) :=
1

n

n∑
i=1

1l{Yi ≤ y}
f̂ δ
X(Xi)

Lk (Xi) (67)

and replace fY |X by f̂ δ
Y |X in (13)-(12).

L2
µ risk. In this context where fX and fY |X are estimated, I use the L2

µ risk on S,
which is defined in Assumption (Est.3), for k = 1, . . . , p+ 1,

Rn0,n1

(
P̂Ek, PEk

)
:= E

[∥∥∥P̂Ek − PEk

∥∥∥
L2(S)

∣∣∣∣Pn0 ,Pn1

]
and we use ne = n ∧ ⌊(δ(n0)/v(n0, E))⌋ ∧ ⌊(δ(n1)δ(n0)/v(n1, E ′))⌋ for the sample size

required for an ideal estimator where fX and fY |X are known to achieve the rate of

the plug-in estimator. Instead of (29), the upper bounds of Proposition 6 in this

context take the form, for k = 1, . . . , p+ 1,

1

r(ne)
sup

fΓ∈Hσ(l)
fX∈E, fY |X∈E′

Rn0,n1

(
P̂E

j0

k ,PEk

)
= Op(1), (68)

and in Propostion 6, n is replaced by ne.

Proposition 8 There exists a constant C0 such that for all f ∈ L2(Rp+1) compactly

supported in [−g0, g0]
p+1 and with σ > (p+ 1)/2,∫

Supp(X)

∫
R
(1 ∨ |t|)2σ+p |F [f ](t(1, x))|2 dtdx ≤ C0

∫
Rp+1

(1 ∨ |ξ|2)
2σ |F [f ](ξ)|2 dξ.

Proof of Proposition 8. I borrow arguments from the proof of Theorem 4.6 in

Hahn and Quinto (1985), without using the Radon transform. On the set Supp(X)×
R \ [−1, 1], we use the bijective change of variable F (t, x) = (1, tx1, . . . , txp) = ξ ∈ V

with V a truncated cone in Rp+1 and that for |t| ≥ 1, (1 ∨ |t|)p ≤ 2p/2|t|p for the first

equality∫
Supp(X)

∫
R
(1 ∨ |t|)2σ+p |F [f ] (t(1, x))|2 dtdx ≤ 2p/2

∫
V

(1 ∨ |ξp|)2σ |F [f ] (ξ)|2 dξ

≤ 2p/2
∫
Rp+1

(1 ∨ |ξ|)2σ |F [f ] (ξ)|2 dξ.

8



Then, for all (x, t) ∈ Supp(X)×[−1, 1], using the compact support of f and Parseval’s

identity for the second equality,

|F [f ](t(x, 1))|

=

∣∣∣∣∫
Rp+1

1l{g ∈ SΓ}ei(t(1,x))
⊤gf(g)dg

∣∣∣∣
=

∣∣∣∣∫
Rp+1

F
[
1l{· ∈ SΓ}ei(t(1,x))

⊤·
]
(ξ)F [f ](ξ)dξ

∣∣∣∣
≤
∫
Rp+1

∣∣∣F [1l{· ∈ SΓ}ei(t(1,x))
⊤·
]
(ξ)
∣∣∣2 (1 ∨ |ξ|)−2σdξ

∫
Rp+1

(1 ∨ |ξ|)2σ |F [f ](ξ)|2 dξ.

I conclude using that∫
Rp+1

∣∣F [1l{· ∈ SΓ}ei(t(1,x))·
]
(ξ)
∣∣2 (1 ∨ |ξ|)−2σdξ

= |g0|p+1

∫
Rp+1

∏p+1
i=2 |sinc (ξi + tg0xi)|2 |sinc (ξ1 + tg0)|2

2−2(p+1)(1 ∨ |ξ|)2σ
dξ,

which is finite for σ > (p + 1)/2 ≥ 1 and that Supp(X)× [−1, 1] has finite measure.

□

Use that, for all m ∈ N0, from (1) in Lohöfer (1998) and (21.4.3) in Poularikas (2018)

∀x ∈ (−1, 1), |Lm(x)| ≤
2

π

1

(1− x2)1/4
and |L′

m(x)| ≤
2√
π

√
m(m+ 1/2)

1− x2
, (69)

and from (21.1.7) in Poularikas (2018) and Markov’s inequality for polynomials (see,

e.g., Theorem 5.1.8 in Borwein and Erdélyi, 1995)

∀x ∈ [−1, 1], |Lm(x)| ≤
√

m+
1

2
and |L′

m(x)| ≤ m2

√
m+

1

2
. (70)

In the remaining, E and E ′ are classes of densities and conditional densities, fX ∈ E ,
fY |X ∈ E ′, and η,M > 0. Denote also by ∆f,0 := 1/f̂ δ

X − 1/fX , ∆f,1 := 1/f̂ δ
Y |X −

1/fY |X ,

Zn0 := sup
fX∈E

∥∆f,0fX∥2L∞(Supp(X)) , Zn1 := sup
fY |X∈E ′

∥∥∆f,1fY |X
∥∥2
L∞(SY,X)

.

By Lemma A.3 in Gaillac and Gautier (2022), there exists ME,η,0 and ME ′,η,1 such

that, for all n0, n1 ∈ N, P (E (Pn1 , E ′, η)) ≥ 1 − η/2 and P (E (Pn1 , E , η)) ≥ 1 − η/2

where

E (Pn0 , E , η) :=
{
Zn0 ≤

ME,η,0v(n0, E)
δ(n0)

}
9



and E (Pn1 , E ′, η) := {Zn1 ≤ ME ′,η,1v(n1, E ′)/δ(n1)}. I work onE (Pn0 ,Pn1 , E , E ′, η) :=

E (Pn0 , E , η) ∩ E (Pn1 , E ′, η), hence using independence P (E (Pn0 ,Pn1 , E , E ′, η)) ≥
1− η, and use ME,E ′,η := ME,η,0 ∨ME ′,η,1.

All expectations are conditional on Pn0 and Pn1 when fX and fY |X are unknown and

we rely on Pn0 and Pn1 to estimate it. We remove the conditioning in the notations

for simplicity. Denote, for all k ∈ Np
0, by d̃k the quantities defined as in (36) replacing

f̂ δ
X by fX . Denote by ∂̃xl

F
j0

Y |X the estimator ∂̂xl
F

j0

Y |X where d̂k is replaced by d̃k.

Denote also by P̃E
j0

the estimator P̂E
j0

where f̂ δ
Y |X is replaced by fY |X .

Lemma 2 For all k ∈ Np+1
0 , and y ∈ SY , we have E

[
d̃k(y)

]
= dk(y), and

E
[∣∣∣d̃k(y)− dk(y)

∣∣∣2] ≤ cX
n
.

Proof of Lemma 2. Let k ∈ Np+1
0 , and y ∈ SY . We have, using integration by part

and that Lk is compactly supported,

E
[
d̃k(y)

]
= E

[
1l{Yi ≤ y}
fX(Xi)

Lk (Xi)

]
=

∫
Supp(X)

E [1l{Y ≤ y}|X = x]Lk (x) dx

and, using that B is an orthonormal basis of L2(Supp(X)), this yields

E
[∣∣∣d̃k(y)− dk(y)

∣∣∣2] ≤ 1

n

∫
Supp(X)

1

fX(x)
|Lk (x)|2 dx ≤ cX

n
. □ (71)

Proof of Proposition 6. Let (x, y) ∈ S, we use

Rj0
0,l :(x, y) 7→

(
∂̂xl

F
j0

Y |X − ∂̃xl
F

j0

Y |X

)
(x, y) (72)

Rj0
1,l :(x, y) 7→

(
∂̃xl

F
j0

Y |X − ∂xl
F j0
Y |X

)
(x, y) (73)

Rj0
2,l :(x, y) 7→

(
∂xl

F j0
Y |X − ∂xl

FY |X

)
(x, y). (74)

In the following I prove the result for m1, as the cases PEk k ≥ 1 can be directly

deduced from it. Using the triangular inequality and the convexity of x 7→ x2, we

obtain∥∥∥P̂Ej0

1 − PE1

∥∥∥2
L2
µ(S)

≤
∥∥∥P̂Ej0

1 − P̃E
j0

1

∥∥∥2
L2
µ(S)

+
∥∥∥P̃Ej0

1 − PE1

∥∥∥2
L2
µ(S)

≤ p

p∑
l=1

∥xl∥2L∞(Supp(X))

(
Zn1

∥∥∥∂̂xl
F

j0

Y |X

∥∥∥2
L2
µ(S)

+ c2X,Y

∥∥∥∂̂xl
F

j0

Y |X − ∂xl
FY |X

∥∥∥2
L2
µ(S)

)
.
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Then, using the convexity of x 7→ x2, the Cauchy-Schwarz inequality and that (Ωl,k)

is an orthonormal system of L2(Supp(X)) for the first inequality, that (Lk) is an

orthonormal system of L2(Supp(X)) for the second one, and (46) for the last one, we

obtain

E
[∥∥∥∂̂xl

F
j0

Y |X

∥∥∥2
L2
µ(S)

]
≤

∑
|k|∞≤j0

kl(kl + 1)

∫
SY

E
[∣∣∣d̂k(y)∣∣∣2] dy

≤
∑

|k|∞≤j0

kl(kl + 1)
|SY |CX

δ(n0)

≤ |SY |(j0 + 1)p+2CX

δ(n0)
. (75)

Using C1,l := 3pc2X,Y ∥xl∥2L∞(Supp(X)) and the convexity of x 7→ x2 thus yield

∥∥∥P̂Ej0

1 − PE1

∥∥∥2
L2
µ(S)

≤C̃0
Zn1(j0 + 1)p+2

δ(n0)
+

p∑
l=1

C1,l

2∑
j=0

∫
S

∣∣Rj0
j,l (x, y)

∣∣2 µ(x, y)dydx,
(76)

where C̃0 := |SY |pCX

∑p
l=1 ∥xl∥2L∞(Supp(X)).

Term R0,l. We obtain, using the Cauchy-Schwarz inequality and that (Ωl,k)k∈Np
0
is

an orthonormal system of L2(Supp(X)) for the first display and (46) for the second

display, for all l = 1, . . . , p,

E
[
∥Rj0

0,l∥
2
L2
µ(S)

]
≤ sup

y∈SY

∑
|k|∞≤j0

E
[∣∣∣d̂k(y)− d̃k(y)

∣∣∣2] kl(kl + 1)

≤ Zn0CX(j0 + 1)p+2. (77)

Term R1,l. We obtain, for all l = 1, . . . , p, using the Cauchy-Schwarz inequality, that

(Ωl,k) is an orthonormal system of L2(Supp(X)) for the first display, Lemma 2 and

(46) for the third display,∫
S
E
[∣∣Rj0

1,l (x, y)
∣∣2]µ(x)dydx ≤

∫
SY

∑
|k|∞≤j0

E
[∣∣∣d̃k(y)− dk(y)

∣∣∣2] kl(kl + 1)dy

≤ |SY |cX(j0 + 1)p+2

n
(78)

Term R2,l. We have, using that (Ωl,k)k∈Np
0
is an orthonormal system of L2(Supp(X))

11



for the second display,

∫
S

∣∣Rj0
2,l (x, y)

∣∣2 µ(x)dydx ≤
∫
S

∣∣∣∣∣∣
∞∑

j=j0+1

∑
|k|∞=j

dk(y)
√

kl(kl + 1)Ωl,k (x)

∣∣∣∣∣∣
2

dxdy

≤
∫
SY

∞∑
j=j0+1

∑
|k|∞=j

|dk(y)|2 kl(kl + 1)dy.

Using SY ⊆ [y,∞), and for the second equality that under Assumption 3,

FY |X(y|x) =
∫ y

y

F−1 [F [fΓ] (·(1, x))] (v)dv, (79)

and using the Cauchy-Schwarz inequality for the third display, we obtain

|dk(y)| =
∣∣∣∣∫

Supp(X)

FY |X(y|x)Lk(x)dx

∣∣∣∣
=

1

2π

∣∣∣∣∣
∫
Supp(X)

∫ y

y

∫
R
e−itvF [fΓ] (t(1, x))Lk(x)dxdvdt

∣∣∣∣∣
≤

|y − y|
2π

∫
R

∣∣∣∣sinc(t(y − y)

2

)∣∣∣∣ ∣∣∣∣∫
Supp(X)

F [fΓ] (t(1, x))Lk(x)dx

∣∣∣∣ dt
≤

√
2|y − y|

π

(∫
R
|ck(t)|2 dt

)1/2

, (80)

where ck(t) :=
∫
Supp(X)

F [fΓ] (t(1, x))Lk(x)dx. Thus, we have

∥∥Rj0
2,l

∥∥2
L2
µ(S)

≤ 2

∫
SY

∑
j≥j0+1

∑
|k|∞=j

|dk(y)|2k2
l dy

≤
∫
SY

4|y − y|
π2

dy
∑

j≥j0+1

∑
|k|∞=j

∫
R
|ck(t)|2 k2

l dt

≤
8∥y2∥L∞(SY )Hl

π2(j0 + 1)2s
(81)

where

Hl =
∑
j∈N

∑
|k|∞=j

∫
R
|ck(t)|2 (j + 1)2sk2

l dt.

Let us now prove that Hl is finite under the smoothness assumption. For all j ∈ N0,

k ∈ Np
0, denote byH1,l(j, k) :=

∫
|t|>j

|ck(t)|2 j2sk2
l dt andH2,l(j, k) :=

∫
|t|≤j

|ck(t)|2 j2sk2
l dt.

12



Using that (Lk)k∈Np
0
are orthonormal on L2(Supp(X)) for the second inequality and

Assumption 10 and Proposition 8 for the third one∑
j∈N

∑
|k|∞=j

H1,l(j, k)j
2sk2

l ≤
∑
j∈N

∑
|k|∞=j

∫
|t|>j

|ck(t)|2 (|t| ∨ 1)2s+2dt

≤
∫
R

∫
Supp(X)

|F [fΓ] (t(1, x))|2(|t| ∨ 1)2s+2dxdt

≤ l2C0. (82)

Then, using for the fourth equality that Ext [Lk] has compact support in Supp(X),∣∣∣∣∫
Supp(X)

F [fΓ] (t(1, x))Lk(x)dx

∣∣∣∣ = ∣∣∣∣∫
Supp(X)

∫
SΓ

eit(1,x)
⊤gfΓ(g)Lk(x)dgdx

∣∣∣∣
=

∣∣∣∣∫
SΓ

fΓ(g)e−itg1

∫
Supp(X)

e−itx⊤g−1Lk(x)dxdg

∣∣∣∣
= 2π

∣∣∣∣∫
SΓ

fΓ(g)e−itg1F−1 [Ext [Lk]] (tg−1)dg

∣∣∣∣
≤ 2π sup

g∈[−g0,g0]p

∣∣F−1 [Ext [Lk]] (tg)
∣∣ . (83)

Denote by L̃k the normalised Legendre polynomials on L2([−1, 1]). Using that, for

all c ̸= 0 and g ∈ [−g0, g0]
p,

|F−1 [Ext (Lk)] (cg)| = xp
0|F−1

[
Ext

(
L̃k

)]
(cx0g) |

≤
(ex0

2

)p p∏
r=1

(
ex0|c|

2(kr + 1/2)

)kr

|gr|kr ,

(see p15 in Gaillac and Gautier (2021a)), we obtain, for all |t| ≤ j, |k|∞ ≥ j0 +1 and

g ∈ [−g0, g0]
p,

|F−1 [Ext (Lk)] (tg)| ≤
(
ω

g0

)p p∏
l=1

(
ωj

kl + 1/2

)kl

. (84)

Then, up to re-indexing we have

p∏
r=1

(
ωj

kr + 1/2

)kl

≤ ωj

p−1∏
r=1

(
ωj

kr + 1/2

)
≤
(
ωeω(p−1)/e

)j
.
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Then, we have for all k such that |k|∞ = j and using (46),

∑
|k|∞=j

H2,l(j, k)j
2sk2

l ≤

(√
2ω

g0

)2p (
ωeω(p−1)/e

)2j
j2s+2+p. (85)

Thus, using that ωeω(p−1)/e < 1, we obtain that H2,l is bounded, thus Hl is finite.

Hence, using C8 :=
∑p

l=1C1,l and

C10 :=
8∥y2∥L∞(SY )Hl

π2
,

we obtain,

E
[∥∥∥P̂E

j0

1 − PE1

∥∥∥2
L2(S)

]
≤ C̃0

Zn1(j0 + 1)p+2

δ(n0)
+ C8

(
2Zn0CX(j0 + 1)p+2 + 2cX

(j0 + 1)p+2

n
+

C10

(j0 + 1)2s

)
≤ C̃0ME ′,η,1

v(n1, E ′)(j0 + 1)p+2

δ(n0)δ(n1)
+ C82Zn0CXME,η,0

v(n0, E)(j0 + 1)p+2

δ(n0)

+ C8

(
2cX

(j0 + 1)p+2

n
+

C10

(j0 + 1)2s

)
.

Using j̃ = n
1/(2s+p+2)
e and j0 ≥ j̃ − 1 yields the result. □

Proofs of Proposition 7 Let us focus on the proof for k = 1 are the other ones

can be deduced directly from it. Denoting by PΓ,j the law of PΓ, PE1,j(x, y) =

E [Γ1|X = x, Y = y], the associated functions of interest, and by Pj,G the law of an

i.i.d (Xi, Yi)
n
i=1 sample of size n, for j = 0, . . . , K, K ≥ 1, and use

inf
P̂E1

sup
PΓ∈Hs+1(l)

E
[∥∥∥P̂E1 − PE1

∥∥∥
L2(S)

]
≥ inf

P̂E1

sup
PΓ,j∈Hs(l),j=0,...,K

E
[∥∥∥P̂E1 − PE1,j

∥∥∥
L2(S)

]
and Theorem 2.6 , (2.5), and (2.9) in Tsybakov (2000) that we now recall.

Proposition 9 (Theorem 2.6 in Tsybakov (2000)) Assume that Hs+1(l) contains

{PΓ,j, j = 0, . . . , K}, K ≥ 1, which satisfy:

1. ∥PE1,j − PE1,k∥L2(S) ≥ 2r(n), for all 0 ≤ j < k ≤ K;

2. for all j = 1, . . . , K,

1

K

K∑
j=1

χ2 (PΓ,j,PΓ,0) ≤ ξK; (86)
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Then, we have

1

r(n)
inf
P̂E1

sup
PΓ∈Hs+1(l)

E
[∥∥∥P̂E1 − PE1

∥∥∥
L2(S)

]
≥ 1

2

(
1− ξ − 1

K

)
.

Before proceeding with the proof, we need to introduce some vaguelets, I refer to

Gaillac (2021) for more details.

Consider here the case where Supp(X) is a square Supp(X) =
∏p

l=1[x̃l, x̃l + x0],

where x̃ ∈ Rp and x0 > 0. In this case, I use the boundary corrected wavelets

introduced in Cohen et al. (1993) (see, e.g., Section 4.3.5 in Giné and Nickl, 2016).

Let J,N ∈ N, 2J ≥ N and consider the standard 2J −2N Daubechies wavelets ϕJ,k =

2J/2ϕ(2J ·−k), k ∈ Z supported in the interior of [0, 1], the N left-edge basis functions

ϕleft
J,k , and the right-edge basis functions ϕright

J,k introduced in Cohen et al. (1993) that

are obtained from transformations (e.g. Gram-Schmidt orthonormalisation) of the

standard wavelets. Together, they form an orthonormal system of L2([0, 1]) which I

denote by
{
ϕbc
J,k, k = 0, . . . , 2J − 1

}
. Then using the construction of Section 4.3.6 in

Giné and Nickl (2016), I introduce, for the purpose of this proof, for k ∈ Λj := {k :

|k|∞ ≤ 2J − 1},

Φ1,J,k :=
1

x
p/2
0

ϕbc
J,k1

(
·1 − x̃1

x0

)
and Ω1,J,k = ∂1Φ1,J,k/2

J .

A direct consequence of the vaguelets theory in Section 5 and condition (C) in Cai

(2002), is that there exist constants A > a > 0, which depend on Supp(X), such that,

for every sequence (dj,k),

a ∥(dj,k)∥l2 ≤

∥∥∥∥∥∥
∑
j≥J

∑
k∈Λj

dj,kΩ1,j,k

∥∥∥∥∥∥
L2(Supp(X))

≤ A ∥(dj,k)∥l2 . (87)

I consider here the following distributions:

- PΓ,0 =
⊗p+1

l=1 PΓl,0, PΓ1,0 = P0, and PΓ2,0 = · · · = PΓp+1,0 = 0. This yields for all

PY = P0 hence PE1,0(x, y) = y;

- K = 2 and PΓ,1 is the compactly supported function in [0, 1]p+1 such that, for

all t ∈ R, x ∈ Supp(X),

F [PΓ,1] (t(1, x)) = γ(t)
∑
k∈Λj0

Φ1,j0,k (x) + F [P0] (t), (88)
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where γ(0) = 0, Λj0 ⊂ Λj0 such that the support of all functions (Φ1,j0,k)k∈Λj0

is a subset of SX1 . We have, using (13), on S,

PE1(x, y) = y +
x1

fY |X(y|x)

∫ y

−∞
F−1 [γ(·)] (v)dv

∑
k∈Λj0

2j0Ω1,j0,k (x) . (89)

From the end of page 724 in Rullg̊ard and Quinto (2010) and arguments from Propo-

sition 8, there exists a constant C̃0 depending only on p such that for all f ∈ L2(Rp+1)

compactly supported in [−1, 1]p+1 and with σ > (p+ 1)/2,∫
Supp(X)

∫
R
(1 ∨ |t|)2s+2 |F [f ](t(1, x))|2 dtdx ≥ 1

C̃0

∫
Rp+1

(1 ∨ |ξ|2)
2σ |F [f ](ξ)|2 dξ.

Thus, using that (Φj,k)j≥J,k∈Λj
is an orthonormal system of L2(Supp(X)), Hσ(l) con-

tains {PΓ,j, j = 0, 1}, if∫
R
(1 ∨ |t|)2s+2 γ(t)2dt+

∫
Supp(X)

∫
R
(1 ∨ |t|)2s+2 |F [P0] (t)|2 dt ≤

l2

C̃0

. (90)

Then, using (89) and |Λj0 | ≥ c02
j0p, for r = 1, 2,

∥m1,1 −m1,0∥2L2(Supp(X,Y )) (91)

=

∥∥∥∥∥∥ x1

f 1
Y |X(y|x)

∫ y

−∞
F−1 [γ(·)] (v)dv

∑
k∈Λj0

2j0Ω1,j0,k (x)

∥∥∥∥∥∥
2

L2(Supp(X,Y ))

≥ ac02
j0(p+2) inf

(x,y)∈Supp(X,Y )

∣∣∣∣ x1

fY |X(y|x)

∣∣∣∣2 ∫
Supp(Y )

∣∣∣∣∫ y

−∞
F−1 [γ(·)] (v)dv

∣∣∣∣2 dy. (92)

Using Step 3. in Gaillac and Gautier (2022): χ2(Pk,n,P0,n) ≤ enχ2 (Pk,P0), where

χ2 (Pk,P0) =

∫
Supp(X,Y )

fX(x)
(
f 0
Y |X(y|x)− fk

Y |X(y|x)
)2

f 0
Y |X(y|x)

dxdy.

Using that f 0
Y |X(y|x) = f 0

Y (y) ≥ infy∈Supp(Y ) f
0
Y (y) =: 1/cY > 0 on Supp(Y ), we have

χ2 (P1,P0) ≤ CXcY

∫
Supp(X,Y )

(
f 0
Y |X(y|x)− fk

Y |X(y|x)
)2

dxdy

≤ CXcY

∫
Supp(X)

∫
R
|F [PΓ,k] (t(1, x))|2 dxdt

≤ CXcY

∫
Supp(X)

|Φj0,k (x) |2dx
∫
R
γ(t)2dt

= CXcY

∫
R
γ(t)2dt.

16



Hence, (86) is satisfied if

n

∫
R
γ(t)2dt ≤ ξ|Λj0|

CXcY e
. (93)

Take, for all t ∈ R,

γ(t) =
ϵ(1 ∧ |t/τ |ν)

(1 + (t/τ)s+1)τ s+p/2+3/2(e ∨ |t/τ |)1/2(ln(e ∨ t/τ))1/2
,

with ν ≥ 1/2,

- τ = 2j0 and j0 such that 2j0 ∼ n1/(2s+p+2)

- ϵ such that

ϵ

∫
R

(1 ∧ |t|2ν)
(e ∨ |t|) ln(e ∨ (t/τ))

dt+

∫
Supp(X)

∫
R
(1 ∨ |t|)2s+2 |F [P0] (t)|2 dt ≤

l2

C̃0

;

and ϵ2 ≤ ξ/(CXcY e (1 + 1/(2s+ p+ 2))) which ensures that

G

∫
R
γ(t)2dt ≤

∫
R

nϵ2

τ 2s+p+3(1 + (t/τ)s+2)2
dt

≤
(
1 +

1

2s+ 2

)
n2−j0(2s+p+2)ϵ2

≤ ξ ln(n)

CXcY e

hence with ln(n) ≤ K = |Λj0| that (93) is satisfied.

Finally, we have,∣∣∣∣∣
∫ y

y

F−1 [γ(·)] (v)dv

∣∣∣∣∣ = ϵ(y − y)

2j0(s+(p+2)/2)

∫
R

sinc
(
τt(y − y)/2

)
(1 ∧ |t|ν)

(1 + |t|s+1)(e ∨ |t|)1/2 ln(e ∨ |t|)1/2
dt,

hence, using (92), we obtain

∥PE1,1 − PE1,0∥2L2(S) ≥ C2−2j0s,

where C is a constant independent of n, which yields the result using Proposition 9.

We deduce the rate in L2
µ(S) norm using that µ < 1 hence ∥PE1,1 − PE1,0∥L2(S) ≥

∥PE1,1 − PE1,0∥L2
µ(S)

. □
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A.2.2 G-modeling

Denote by A =
∑κ

j=1 P
⊤
(1,xj)

P(1,xj), where P(1,xj) ∈ Mp+1,1(R) is a projection matrix

onto span(1, xj). As the support points are distinct, the matrix A is invertible. I

introduce, for every F ∈ P2(Rp+1) and (p,G) ∈ Σp × P2(S)κ,

G(F, p,G) =
κ∑

j=1

pjW
2
2 (F, (A

−1/2P⊤
(1,xj)

)#Gj).

For every (x, y) ∈ Supp(X, Y ) and k ∈ {1, . . . , p+1}, we introduce the three functions:

Rk,x,y : F ∈ P(Supp(Γ)) 7→

∫
I(x,y) gkdF (g)∫
I(x,y) dF (g)

Φ : Σp × Pa.c.(S)κ → P2(Rp+1)

(p,G) 7→ argmin
F∈P2(Rp+1)

G (F, p,G) ,

mk,x,y : (p,G) ∈ Σp × Pa.c.(S)κ 7→ Rk,x,y(A
−1/2
# Φ(p,G)).

Note that with the above restriction of Φ to Pa.c.(S), then it is well defined as there

exists a unique solution to the Wasserstein barycenter problem if at least one the

marginals is absolutely continuous (see Proposition 6 in Le Gouic and Loubes, 2017).

In order to prove consistency, I rewrite the problem as a Wasserstein barycenter

problem. Because A is invertible, using Proposition 3.1 in Delon et al. (2022), F ∗
Γ is

solution of (11) if and only if F ∗ = A
1/2
# F ∗

Γ minimizes

inf
F∈P2(Rp+1)

κ∑
j=1

p
j
W 2

2 (F,Gxj
),

where Gxj
= (A−1/2P⊤

(1,xj)
)#FY |X=xj

. We thus have, for every (x, y) ∈ Supp(X, Y )

and k ∈ {1, . . . , p+ 1},

PEk(x, y) = mk,x,y(p, FY |X=x1 , . . . , FY |X=xκ).

Proof of Theorem 2. Let k = 1, . . . , p+ 1 and (x, y) ∈ Supp(X, Y ). Lemma 3 en-

suring the continuity of the map Rx,y,k(A
−1/2
# ·) and the Proposition 6 in Le Gouic and

Loubes (2017) ensuring the continuity of the unregularized Wasserstein barycenter

map Φ, then the function mk,x,y is continuous on Σp × Pa.c.(S)κ. Using Glivenko-

Cantelli’s theorem we have that

(p̂, F̂Y |X=x1,n1 , . . . , F̂Y |X=xκ,nκ)
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converges in probability to (p, FY |X=x1 , . . . , FY |X=xκ) as n goes to infinity (see, e.g.,

Van der Vaart, 2000). Using the continuous mapping theorem yields the result. □

Lemma 3 Let k = 1, . . . , p + 1 and (x, y) ∈ Supp(X, Y ), then the function Rk,x,y is

Lipschitz on P1(Supp(Γ)) ∩ {F :
∫
I(x,y) dF ≥ 1/c > 0}.

Proof of Lemma 3. Let k = 1, . . . , p + 1 and (x, y) ∈ Supp(X, Y ). Consider two

distributions F1, F2 ∈ P2(Supp(Γ)), then

|Rk,x,y(F1)−Rk,x,y(F2)|

=

∣∣∣∣∣
∫
I(x,y) gkdF1∫
I(x,y) dF1

−

∫
I(x,y) gkdF2∫
I(x,y) dF2

∣∣∣∣∣
=

∣∣∣∣∣
∫
I(x,y) gkd(F1 − F2)∫

I(x,y) dF1

−
∫
I(x,y)

gkdF2

(
1∫

I(x,y) dF2

− 1∫
I(x,y) dF1

)∣∣∣∣∣
≤ c

∣∣∣∣∫
I(x,y)

gkd(F1 − F2)

∣∣∣∣+ c2EF2(|Γ|)
∣∣∣∣∫

I(x,y)
d(F1 − F2)

∣∣∣∣
≤ c(1 + cEF2(|Γ|))W1(F1, F2), (94)

using that by duality W1(F1, F2) = max
{∫

ϕd(F1 − F2), ϕ ∈ Lip1(Supp(Γ))
}
, where

Lip1(Supp(Γ)) is the set of functions which are 1-Lipschitz on Supp(Γ), which is

compact. This yields the result. □

B Data-driven rule for selecting the tuning param-

eters

For simplicty of exposition, I first present the method when fY |X and fX are known,

then turn to the general case. I use the Goldenshluger-Lepski method (see, e.g.,

Goldenshluger and Lepski, 2014; Lacour and Massart, 2016) for the data-driven choice

of j0. Let pn := θ ln(n), θ > 6 and, for all j0 ∈ NR, j ∈ N, jmax = ⌊ǰ⌋, where ǰ is

solution of (ǰ + 1)p+2 = n,

βl (y, j0) := max
j0+1≤j′≤jmax

 ∑
|k|∞≤j′

kl(kl + 1)
∣∣∣d̃k(y)∣∣∣2 − Σ (j′)


+

,

Σ (j0) :=
24(1 + 2pn)(j0 + 1)p+2cX

n
, (95)
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and j̃0 is defined as

∀y ∈ SY , j̃0,l(y) ∈ argmin
0≤j≤jmax

(βl(y, j) + Σ(j)) . (96)

Proposition 10 (Data-driven convergence rates for the L2 risk) Let σ = s+

1− p/2, l > 0, and s > p− 1/2. Make assumptions 2, 3-(B), 9 and 11, then we have

that, for k = 1, . . . , p+ 1,

1

r(n)
sup

fΓ∈Hσ(l)

Rn

(
P̃E

j̃0,GT

k ,PEk

)
= O(1), (97)

where r(n) = (n/ ln(n))−s/(2s+p+2).

Proposition 10 shows that choosing adaptively the parameter j0 only yields a logarith-

mic penalty in the convergence rates compared to the optimal choice. Note that to

establish these rates the upper bounds (95) on the variance does not need to depend

on y. However, in practice keeping the term E(1l{Yi ≤ y}) allows to obtain better

performances in practice. As standard in the literature (see, e.g., Comte et al., 2013;

Dion, 2014), the multiplicative constant appearing in (95) is in practice calibrated

from a simulation study.

Let us now precise the statement when fY |X and fX are also estimated. Define ĵ0

similarly to j̃0 replacing d̃k by d̂k:

βl (y, j0) := max
j0+1≤j′≤jmax

 ∑
|k|∞≤j′

kl(kl + 1)
∣∣∣d̂k(y)∣∣∣2 − Σ (j′)


+

,

∀y ∈ SY , ĵ0,l(y) ∈ argmin
0≤j≤jmax

(βl(y, j) + Σ(j)) .

Proposition 11 (Data-driven convergence rates for the L2 risk, complete)

Let σ = s + 1 − p/2, l > 0, N ∈ N. Make assumptions 2, 3-(B), 9 and 11, then we

have that, for k = 1, . . . , p,

1

r(ne)
sup

PΓ∈Hσ(l)
fX∈E, fY |X∈E′

R2
n0,n1

(
P̂E

ĵ0

k , PEk

)
= Op

On0,n1,n

(1), (98)

where On0,n1,n = {v(n0, E)/δ(n0) ≤ n−2, v(n1, E ′)/(δ(n0)δ(n1)) ≤ n−2}, and r(ne) =

(ne/ ln(ne))
−s/(2s+p+2).
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Proof in the general case. Let Jn be the set of functions j ∈ NR
0 such that

for all y ∈ SY , j(y) ∈ {0, . . . , jmax}. I use, for all k ∈ Np+1
0 , ∆k := d̂k(y) − d̃k(y),

∆̃k := d̃k(y)− dk(y),

W j0
l : (y, x) 7→

(
∂̂lF

j0

Y |X − ∂lFY |X

)
(y, x) .

I also use

Ξl (y, j0) :=
∑

|k|∞>j0

kl(kl + 1) |dk(y)|2 , S1,l (y, j0) :=
∑

|k|∞≤j0

kl(kl + 1) |∆k(y)|2 ,

S2,l (y, j0) :=

∫
Supp(X)

∣∣∣(∂̃lF j0

Y |X − ∂lF
j0
Y |X

)
(y, x)

∣∣∣2 µ̃2(x)dx, L :=

√
2

42|SY |
,

Ψ0,n := exp
(
−pn

6

)
+

294

n
exp (−L

√
npn) .

Lemma 4 For all y ∈ Supp(Y ), l = 1, . . . , p, and j0 ∈ {0, . . . , jmax}, we have

E
[
S1,l

(
y, ĵ0(y)

)]
≤ Zn0CX(jmax + 1)p+2, (99)

E
[(

S2,l(y, j0)−
Σ(j0)

6

)
+

]
≤ 48

|SY |2cX(j0 + 1)p+2

n
Ψ0,n. (100)

Proof of Lemma 4. Let the parameters in the for all statement be given and

l ∈ 1, . . . , p.

Proof of (99). Using

E
[
|∆k(y)|2

]
≤ E

Zn0

n2

∣∣∣∣∣
n∑

i=1

|Lk(Xi)|

∣∣∣∣∣
2
 ≤ Zn0CX

(46), we obtain

E
[
S1,l

(
y, ĵ0(y)

)]
≤

∑
|k|∞≤jmax

kl(kl + 1)E
[
|∆k(y)|2

]
≤ Zn0CX(jmax + 1)p+2.

Proof of (100). We use

S2,l(y, j0) = sup
v∈U

|νy
n(v)|

2 ,

νy
n(v) :=

〈(
∂lF̃

j0
Y |X − ∂lF

j0
Y |X

)
(y, ·) , v(·)

〉
L2
µ(Supp(X))

=
1

n

n∑
i=1

(f y
v (Xi, Yi)− E [f y

v (Xi, Yi)]) ,

f y
v (·, ⋆) :=

1l{⋆ ≤ y}
fX(·)

∫
Supp(X)

∑
|k|∞≤j0

√
kl(kl + 1)Lk(·)Ωl,k(x)v(x)dx,
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where U is a countable dense set of measurable functions of
{
v : ∥v∥L2

µ(Supp(X)) = 1
}

and check the conditions of the Talagrand inequality given in Lemma B.15 in Gaillac

and Gautier (2022) with η = pn and Λ(pn) = 1. For all u ∈ U , using the Cauchy-

Schwarz inequality for the first display, (70) for the third, and (46) for the fourth one,

we obtain

∥f y
v ∥L∞(S) ≤

√
cX |SY |

∥∥∥∥∥∥∥
 ∑

|k|∞≤j0

kl(kl + 1) |Lk(·)|2
∫
Supp(X)

|Ωl,k(x)|2 dx

1/2
∥∥∥∥∥∥∥
L∞(Supp(X))

≤
√
cX |SY |

∥∥∥∥∥∥∥
 ∑

|k|∞≤j0

kl(kl + 1) |Lk(·)|2
1/2

∥∥∥∥∥∥∥
L∞(Supp(X))

≤
√
cX |SY |

 ∑
|k|∞≤j0

kl(kl + 1)p+1

1/2

≤
√
cX |SY |(j0 + 1)(p+2)/2. (101)

By the Cauchy-Schwarz inequality, Lemma 2, and (46), we have

E
[
sup
v∈U

|νy
n(v)|

]2
≤ E

[
sup
v∈U

|νy
n(v)|

2

]
≤ E

[∥∥∥(∂̃lF j0

Y |X − ∂lF
j0
Y |X

)
(y, ·)

∥∥∥2
L2
µ(Supp(X))

]
≤ cX

n

∑
|k|∞≤j0

kl(kl + 1)

≤ cX
n
(j0 + 1)p+2 =

Σ(j0)

24(1 + 2pn)
.

Finally, by the Cauchy-Schwarz inequality and (101), we have

Var (R(f y
v (Yi, Xi))) ∨ Var (I(f y

v (Yi, Xi))) ≤
∫
SX,Y

|f y
v (y

′, x)|2 fY,X(y′, x)dy′dx

≤ cX |SY |2(j0 + 1)p+2.

□

Denote by

R2
n0,n1

(
P̂E

ĵ0

k ,PEk

)
:= E

[∥∥∥∥P̂E
ĵ0

k − PEk

∥∥∥∥2
L2
µ(SX,Y )

]
.
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Lemma 5 For all j0 ∈ Jn,

R2
n0,n1

(
P̂E

ĵ0

1 ,PE1

)
≤

p∑
l=1

21C1,lE
[∥∥W j0

l

∥∥2
L2
µ(SX,Y )

]
+ 36C1p

∫
y∈Supp(Y )

Σ(y, j0(y))dy

+ C̃0
Zn1(jmax + 1)p+2

δ(n0)
+ (jmax + 1)p+236C1pΠ(n, Zn0),

where C1 := maxl=1,...,p C1,l and Π(n, Zn0) := 96|SY |2cXΨ0,n/n+ 2Zn0CX .

Proof of Lemma 5. Let j0 ∈ {0, . . . , jmax}. We have, using (76)

R2
n0,n1

(
P̂E

ĵ0

1 ,PE1

)
≤C̃0

Zn1(jmax + 1)p+2

δ(n0)
+ C1

p∑
l=1

E
[∥∥∥W ĵ0,l

l

∥∥∥2
L2
µ(SX,Y )

]
. (102)

Using, for all j1, j2 ∈ N and y ∈ SY ,

Řj2
j1,l

(y, ·) :=
(
∂̂lF

j2∨j1
Y |X − ∂̂lF

j1

Y |X

)
(y, ·) ,

we have W ĵ0
l = Řj0

ĵ0(y),l
− Ř

ĵ0(y)
j0,l

+ Lj0
l . We obtain, using the convexity of x 7→ x2,

E
[∥∥∥W ĵ0

l

∥∥∥2
L2
µ(SX,Y )

]
≤3E

[∥∥∥Řj0
ĵ0,l

∥∥∥2
L2
µ(SX,Y )

]
+ 3E

[∥∥∥Řĵ0
j0,l

∥∥∥2
L2
µ(SX,Y )

]
+ 3E

[∥∥W j0
l

∥∥2
L2
µ(SX,Y )

]
.

Because

βl (y, j0) = max
j0+1≤j′≤jmax

 ∑
|k|∞≤j′

kl(kl + 1)
∣∣∣d̂k(y)∣∣∣2 − Σ (j′)


+

,

we have, for all l = 1, . . . , p,

E
[∥∥∥R̃j2

j1,l

∥∥∥2
L2
µ(SX,Y )

]
≤
∫
SY

(E [βl (y, j1)] + E [Σ (j2)]) dy

for possibly random j1 and j2. Using (96) yields

E
[∥∥∥Lĵ0,l

l

∥∥∥2
L2
µ(SX,Y )

]
≤6

∫
SY

(E [βl (y, j0)] + Σ (j0)) dy + 3E
[∥∥W j0

l

∥∥2
L2
µ(SX,Y )

]
.

Using the convexity of x 7→ x2 and, for all j′ ∈ {0, . . . , jmax},

K̃j′

j0,a
(y) :=

∑
|k|∞≤j0∨j′

kl(kl + 1)
∣∣∣d̂k(y)− dk(y)

∣∣∣2
K̃j′

j0,b
(y) :=

∑
|k|∞≤j0

kl(kl + 1)
∣∣∣d̂k(y)− dk(y)

∣∣∣2
K̃j′

j0,c
(y) :=

∑
j0≤|k|∞≤j0∨j′

kl(kl + 1) |dk(y)|2 ,
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we have

βl(y, j0) ≤ max
0≤j′≤jmax

j′∈N

3
∑

m∈{a,b,c}

K̃j′

j0,m
(y)− Σ(j′)


+

.

We obtain, for all y ∈ SY and l ∈ {1, . . . , p},

K̃j′

j0,c
(y) ≤

∑
|k|∞≥j0

kl(kl + 1)|dk(y)|2 ≤
∥∥W j0

l (y, ·1)
∥∥2
L2
µ(Supp(X))

hence

βl(y, j0) ≤ max
0≤j′≤jmax

j′∈N

6
∑

j0≤|k|∞≤j′

kl(kl + 1) |∆k(y)|2 − Σ(j′)


+

+ 3
∥∥W j0

l (y, ·1)
∥∥2
L2
µ(Supp(X))

.

Finally, denoting by

β̃l(y, j0) := max
0≤j′≤jmax

j′∈N

 ∑
j0≤|k|∞≤j′

kl(kl + 1) |∆k(y)|2 −
Σ(j′)

6


+

we have

E
[∥∥∥W ĵ0

l

∥∥∥2
L2
µ(SX,Y )

]
≤36

∫
SY

(
β̃l(y, j0) + Σ (j0)

)
dy + 21E

[∥∥W j0
l

∥∥2
L2
µ(SX,Y )

]
.

Using Lemma 4 for the second inequality, we obtain

β̃l(y, j0) ≤ 2E
[
max

j′≤jmax

(
S2,l(y, j

′)− Σ(j′)

6

)
+

]
+ 2E

[
max

j′≤jmax

S1,l(y, j
′)

]
≤ 96

|SY |2cX(jmax + 1)p+2

n
Ψ0,n + 2Zn0CX(jmax + 1)p+2,

Hence the result. □

Proof of propositions 10 and 11.

Let n0, n1, n such that v(n0, E)/δ(n0) ≤ n−2 ln(n)−1, v(n1, E ′)/(δ(n0)δ(n1)) ≤ n−2 ln(n)−1,

and ne ≥ 3. Consider the case k = 1, and take j0 ∈ Jn. Start from Lemma 5 and use

(76), (77) and (81), which yield

R2
n0,n1

(
P̂E

ĵ0

1 ,PE1

)
≤21C8

(
2Zn0CX(j0 + 1)p+2 + 2cX

(j0 + 1)p+2

n
+

C10

(j0 + 1)2s

)
+

864C1p|SY |(1 + 2pn)(j0 + 1)p+2cX
n

+ C̃0
Zn1(jmax + 1)p+2

δ(n0)

+ (jmax + 1)p+236C1pΠ(n, Zn0).
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Then, we have

exp (−pn/6) (jmax + 1)p+2 ≤ 1

Zn0(jmax + 1)p+2 ≤ ME,η,0v(n0, E)n
δ(n0)

≤ ME,η,0

n
,

Zn1(jmax + 1)p+2

δ(n0)
≤ ME ′,η,1nv(n1, E ′)

δ(n1)δ(n0)
≤ ME ′,η,1

n

(jmax + 1)p+2 exp(−L
√
npn)

n
≤ exp(−L

√
θn ln(n)) ≤ 1.

We conclude using j∗ = (ne/ ln(ne))
1/(2s+p+2) satisfy (j∗ + 1)p+2 ≤ ne hence belongs

to Jn, which yields the result as

R2
n0,n1

(
P̂E

ĵ0

1 , PE1

)
≤42C8ME,η,0CX + C̃0ME ′,η,1

n

+ 2cX (21C8 + 432C1p|SY |)
(1 + 2pn)(j

∗ + 1)p+2

n
+

21C8C10

(j∗ + 1)2s

+
36C1p

n

(
96|SY |2cX

(
1 +

294

n

)
+

2CXME,η,0

n

)
. □

C Asymptotic normality for the GT estimator

Let us state asymptotic normality of the GT estimator P̂E
j0
defined in Section 4.1.1.

For the sake of simplicity in the presentation here, I consider the case where fY |X and

fX are known, but the proof in this section shows that the effect of estimating fY |X

and fX under further standard assumptions 13 is negligible.

Assumption 13 Assume (Asn.1) (j0+1)3p+2/n −→ 0; (Asn.2) infv∈Supp(Y ) fY |X(v|x) >
0; (Asn.3) n/(j0 + 1)2s−p −→

n→∞
0.

Let (x, y) ∈ Supp(X, Y ). We have, when fY |X and fX are known,

P̂E
j0

k (x, y)− y1l{k = 1} =
1

n

n∑
i=1

ζj0k,i(x, y), (103)

where

ζj0k,i(x, y) :=

p∑
l=1

xl(1l{k = 1}+ δk−1,l)1l{Yi ≤ y}
fY |X(y|x)fX(Xi)

∑
|j|∞≤j0

Lj (Xi) ∂lLj (x) .
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Proposition 12 (Asymptotic normality) Let (x, y) be in the interior of Supp(X, Y ),

σ = s+1−p, s > p+1, and ω < 1. Let k = 1, . . . , p+1 and vj0l (x, y) := Var
(
ζj0l,i(x, y)

)
.

Make assumptions 2, 3-(B), 11 and 9, then we have,√
n

vj0k (x, y)

(
P̂E

j0,GT

k (x, y)− PEk(x, y)
)

L−→ N (0, 1).

It involves undersmoothing since the optimal choice of the parameter j0 in Proposition

6 does not satisfy (Asn.2) and should be taken lower than this optimal value to

obtain Proposition 12. One can further extend Proposition 12 to (x, y) belonging to

the boundary of Supp(X, Y ) at the cost of strengthening the Assumption C. In this

case, weaker conditions could be obtained using vaguelets instead of the Legendre

polynomials. However, as usual in the literature, Proposition 12 does not apply to

data-driven selected parameters as in Section B, since these are random quantities.

Proof. I consider the context of Section A.2.1, where fX and fY |X are estimated. I

add the following assumption.

Assumption 14 (Asn.4) nv(n1, E ′)/(δ(n0)δ(n1)) −→
n,n0,n1→∞

0;

(Asn.5) nv(n0, E)/δ(n0) −→
n,n0→∞

0.

Under these assumptions 14 and 12, Proposition 12 holds with fX and fY |X replaced

by their respective trimmed estimators. I consider this context for the proof hereafter.

I use the notation

Kl,j0 (Xi, x) :=
∑

|k|∞≤j0

Lk (Xi)
√

kl(kl + 1)Ωl,k (x) .

Proof of Proposition 12. I consider k = 1 as the other cases can directly be

deduced from it. Using the notation (130) we have

√
n
(
P̂E

j0

1 (x, y)− PE1(x, y)
)
=

√
n

p∑
l=1

xl

 ∂̂lF
j0

Y |X(y|x)
f̂ δ
Y |X(y|x)

−
∂lFY |X(y|x)
fY |X(y|x)


=

√
n

4∑
j=1

Rj(x, y),
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where

R1(x, y) :=

p∑
l=1

xl

(
1

f̂ δ
Y |X(y|x)

− 1

fY |X(y|x)

)
∂̂lF

j0

Y |X(y|x)

R2(x, y) :=
1

fY |X(y|x)

p∑
l=1

xl

(
∂̂lF

j0

Y |X(y|x)− ∂̃lF
j0

Y |X(y|x)
)

R3(x, y) :=
1

fY |X(y|x)

p∑
l=1

xl

(
∂̃lF

j0

Y |X(y|x)− ∂lF
j0
Y |X(y|x)

)
R4(x, y) :=

1

fY |X(y|x)

p∑
l=1

xl

(
∂lF

j0
Y |X(y|x)− ∂lFY |X(y|x)

)
.

We have

√
n

fY |X(y|x)

p∑
l=1

xl∂̃lF
j0

Y |X(y|x) = n−1/2

n∑
i=1

ζj01,i(x, y),

and E
[
∂̃lF

j0

Y |X(y|x)
]
= ∂lF

j0
Y |X(y|x). Using (103), we show below that ζj01,i(x, y) satis-

fies the Lyapounov condition, for ν > 0,

E
[∣∣ζj01,i(x, y)− E

[
ζj01,i(x, y)

]∣∣2+ν
]

nν/2Var(ζj01,i(x, y))
1+ν/2

−→ 0.

Lower bound on Var(ζj01,i(x, y))
1+ν/2. Because E

[
ζj01,i(x, y)

]
converges to PE1(x, y),

it is sufficient to get a lower bound on E
[∣∣ζj01,i(x, y)∣∣2]. We have, using that (Lk) are

orthonormal on L2(Supp(X)) for the last display,

E
[∣∣ζj01,i(x, y)∣∣2] = ∫

Supp(X,Y )

∣∣∣∣∣
p∑

l=1

xlKl (v, x)

∣∣∣∣∣
2
1l{z ≤ y}fX,Y (v, z)

fY |X(y|x)2fX(v)2
dzdv

=

∫
Supp(X)

∣∣∣∣∣
p∑

l=1

xlKl (v, x)

∣∣∣∣∣
2

FY |X(y|v)
fY |X(y|x)2fX(v)

dv

≥ c̃Y,X(y)

fY |X(y|x)2

∫
Supp(X)

∣∣∣∣∣∣
∑

|k|∞≤j0

(
p∑

l=1

xl∂lLk (x)

)
Lk (v)

∣∣∣∣∣∣
2

dv

≥ c̃Y,X(y)

fY |X(y|x)2
∑

|k|∞≤j0

∣∣∣∣∣
p∑

l=1

xl∂lLk (x)

∣∣∣∣∣
2

, (104)
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where c̃Y,X(y) := infv∈Supp(X) FY |X(y|v)/fX(v).
Upper bound on the Lyapounov condition. We have,

E
[∣∣ζj01,i(x, y)∣∣2+ν

]
=

∫
Supp(X,Y )

∣∣∣∣∣
p∑

l=1

xlKl (v, x)

fY |X(y|x)fX(v)

∣∣∣∣∣
2+ν

fX,Y (v, z)dzdv

≤ c1+ν
X

fY |X(y|x)2+ν

∫
Supp(X,Y )

∣∣∣∣∣∣
∑

|k|∞≤j0

(
p∑

l=1

xl∂lLk (x)

)
Lk (v)

∣∣∣∣∣∣
2+ν

fY |X(z|v)dzdv,

≤ c1+ν
X

fY |X(y|x)2+ν
sup

v∈Supp(X)

∣∣∣∣∣∣
∑

|k|∞≤j0

(
p∑

l=1

xl∂lLk (x)

)
Lk (v)

∣∣∣∣∣∣
ν

B(x),

where, using that (Lk) are orthonormal on L2(Supp(X)),

B(x) :=

∫
Supp(X)

∣∣∣∣∣∣
∑

|k|∞≤j0

(
p∑

l=1

xl∂lLk (x)

)
Lk (v)

∣∣∣∣∣∣
2

dv

=
∑

|k|∞≤j0

∣∣∣∣∣
p∑

l=1

xl∂lLk (x)

∣∣∣∣∣
2

.

This yields, using (69) for the second and third inequalities,

E
[∣∣ζj01,i(x, y)− E

[
ζj01,i(x, y)

]∣∣2+ν
]

nν/2Var(ζj01,i(x, y))
1+ν/2

≤ c1+ν
X

c̃Y,X(y)1+ν/2nν/2
sup

v∈Supp(X)

∣∣∣∣∣∣
∑

|k|∞≤j0

(
p∑

l=1

xl∂lLk (x)

)
Lk (v)

∣∣∣∣∣∣
ν

≤ (j0 + 1)pν/2

nν/2

c1+ν
X

c̃Y,X(y)1+ν/2

 p∑
l=1

|xl|
∑

|k|∞≤j0

|∂lLk (x)|

ν

≤ (j0 + 1)ν(3p/2+1)

nν/2

c1+ν
X

c̃Y,X(y)1+ν/2
Φ(x)ν ,

where Φ(x) := (2/
√
π)(2/π)p

∑p
l=1 |xl| /((1− (xl/x0)

2)
∏p

k=1(1− (xk/x0)
2)1/4).

Thus, under condition (Asn.1), the Lyapounov condition is satisfied and we have√
n/vj01 (x, y)R3(x, y)

d−→ N (0, 1).

We now need to prove that the remaining terms
√
n/vj01 (x, y)Rj(x, y), j = 1, 2, 4 are
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op(1). Using the lower bound (104), it suffices to show for k ∈ {1, 2, 4}√
n

(j0 + 1)p+2
Rk(x, y) = op(1). (105)

Term
√

n/vj01 (x, y)R1(x, y). We have, using (69),

|R1(x, y)| ≤
p∑

l=1

|xl|

∣∣∣∣∣ 1

f̂Y |X(y|x)
− 1

fY |X(y|x)

∣∣∣∣∣ ∣∣∣∂̂lF j0

Y |X(y|x)
∣∣∣

≤
(2/π)Φ(x)

√
Zn1(j0 + 1)p+1√

δ0(n0)
∏p

k=1(1− (xk/x0)2)1/4
.

Thus, using Zn1 = Op(v(n1, E ′)/δ(n1)) and under (Asn.4) we have (105) for k = 1.

Term
√
n/vj0(x, y)R2(x, y). Using (69), we have,

|R2(x, y)| ≤
(2/π)pcY,X

√
Zn0∏p

k=1(1− (xk/x0)2)1/4

p∑
l=1

|xl|
∑

|k|∞≤j0

|∂lLk(x)|

≤ cY,X(2/π)
pΦ(x)∏p

k=1(1− (xk/x0)2)1/4

√
Zn0(j0 + 1)p+1.

Thus, under condition (Asn.5) we have (105) for k = 2.

Term
√

n/vj0(x, y)R4(x, y). Using (80) for the first inequality, then (69), (82) and

(85) for the second, we have

|R4(x, y)| ≤
cY,X

√
4|y − y|

π2
Φ(x)

∑
j≥j0

∑
|k|∞=j

1

(j + 1)s

(∫
R
|ck(t)|2(j + 1)2sk2

l dt

)1/2

≤
cY,X

√
4|y − y|Hl

π2
Φ(x)

∑
j≥j0

1

(j + 1)s−p

≤
cY,X

√
4|y − y|Hl

π2(s− p− 1)
Φ(x)

1

(j0 + 1)s−(p+1)
,

using that
∑

j≥j0
(j+1)p−s ≤

∫∞
j0
(j+1)p−sdj = (j+1)p+1−s/(s− p− 1) for s > p+1.

This yields (105) for k = 4 using condition (Asn.3). This yields the result. □

D Additional material on the application
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OLS (1) OLS (2) IV (3)

Female 0.057 0.045 0.073

(0.018)** (0.024) (0.026)**

Local -0.011 0.008 -0.005

(0.018) (0.025) (0.027)

Some teacher training -0.021 -0.028 -0.032

(0.031) (0.049) (0.053)

Has bachelor’s degree or better 0.019 0.006 -0.047

(0.020) (0.028) (0.033)

Had > 3 years of exp. in 2007 0.006 0.026 0.009

(0.023) (0.045) (0.048)

Temporary contract 0.009 0.027 0.026

(0.023) (0.031) (0.034)

Public school -0.120 -0.058 -0.055

(0.030)*** (0.049) (0.052)

Mean teacher knowledge 0.043 0.053 0.266

(0.014)** (0.018)** (0.052)***

Fixed effects District District District

Num.Obs. 1509 834 834

F-statistic 149.63

Adj. R2 0.168 0.179 0.048

Notes: Significance levels < 0.1% ∗∗∗, 1% ∗∗, 5% ∗. In columns (3), I instrument for the

teacher’s mean score in the first tested year with the mean score in the second year. The

sample size is reduced from column (1) to columns (2) and (3) because not all teachers were

tested in multiple years. Teachers’ knwoledge measured via tests scores is winsorized at a

1% level.

Table 5: First step regression results and IV
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Diff. with Diff. with Diff with

Est. with A1 A2 (ii) Est. with A2 (ii) A2 (i) A3

GT estimator

First Quartile 0.191 -0.018 0.185 -0.006 -0.047

Median 0.259 -0.010 0.256 -0.002 0.000

Third Quartile 0.357 0.013 0.361 0.007 0.055

GWB estimator

First Quartile 0.244 -0.020 0.142 -0.019 -0.095

Median 0.301 0.074 0.219 -0.002 0.018

Third Quartile 0.389 0.172 0.329 0.018 0.112

Notes: These results pool teachers from private and public schools. I instrument for the teacher’s mean

score in the first tested year with the mean score of the second year, which reduces the sample size to

834. Both panels present the quartiles of the distributions either of the estimate values (“Est. with A1”

and “Est. with A2 (ii)”) or of the differences with respect either to the estimator with A1 (2nd column)

or with the estimator with A2 (ii) (5th and 6th columns).

Table 6: Sensitivity of the individual-level estimates to the independence

assumption
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(a) Joint distribution of posterior estimates of (Γ1,i +X⊤
−1,iγ,Γ2,i)

(b) Joint distribution of estimates of TVAi and posterior estimates of Γ2,i

Notes: These results pool teachers from private and public schools. Figure 5(a) (resp.

5(b)) present the estimated joint distribution of the part of the TVA which can not be

explained by teacher’s knowledge (resp. the estimated TVA) and the estimated effect of

teacher knowledge on TVA (Γ2). This is using the GWB estimator with varying coefficients

A2 (ii), when I instrument for the teacher’s mean score in the first tested year with the

mean score of the second year, which reduces the sample size to 834. The dots represent

the individual predictions P̂E(Xi, Yi) and the contour lines the levels of the associated

fitted density. The dotted red line represents the IV estimates with an homogeneous

specification. Teachers’ tests scores are winsorized at a 1% level.

Figure 5: Joint distributions of the coefficients characterizing the TVA
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(a) Joint distribution of posterior estimates of (Γ1,i +X⊤
−1,iγ,Γ2,i)

(b) Joint distribution of estimates of TVAi and posterior estimates of Γ2,i

Notes: These results pool teachers from private and public schools. Figure 6(a) (resp. 2(b))

present the estimated joint distribution of the part of the TVA which can not be explained

by teacher’s knowledge (resp. the estimated TVA) and the estimated effect of teacher

knowledge on TVA (Γ2). This is using the GT estimator with varying coefficients A3,

when I instrument for the teacher’s mean score in the first tested year with the mean score

of the second year, which reduces the sample size to 834. The dots represent the individual

predictions P̂E(Xi, Yi) and the contour lines the levels of the associated fitted density. The

dotted red line represents the IV estimates with an homogeneous specification. Teachers’

tests scores are winsorized at a 1% level.

Figure 6: Joint distributions of the coefficients characterizing the TVA
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(a) Joint distribution of posterior estimates of (Γ1,i +X⊤
−1,iγ,Γ2,i)

(b) Joint distribution of estimates of TVAi and posterior estimates of Γ2,i

Notes: These results pool teachers from private and public schools. Figure 7(a) (resp.

7(b)) present the estimated joint distribution of the part of the TVA which can not be

explained by teacher’s knowledge (resp. the estimated TVA) and the estimated effect

of teacher knowledge on TVA (Γ2). This is using the GWB estimator with A2, when I

instrument for the teacher’s mean score in the first tested year with the mean score of

the second year, which reduces the sample size to 834. The dots represent the individual

predictions P̂E(Xi, Yi) and the contour lines the levels of the associated fitted density. The

dotted red line represents the IV estimates with an homogeneous specification. Teachers’

tests scores are winsorized at a 1% level.

Figure 7: Joint distributions of the coefficients characterizing the TVA
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Notes: These results present the predicted effects based on the CATE

only E(Γ2,i)CATE(Xi,t) versus the predicted effects based on PE also

PE(Xi,t, Yi,t) CATE(Xi,t), which forms the optimal decision rule. The two plain

black lines (resp. dotted and dashed) represent the threshold above which teachers

would be allocated to such a program when treating 20% (resp. 10% and 30%) of the

population. In this experiment, individuals represented in green (resp. in red) would be

treated (resp. not treated) by both selection rules. However, the optimal policy would

treat the individuals with strong predicted effect of knowledge on their performances

displayed in blue, and does not treat individuals displayed in purple. Estimation is

performed using the GT estimator under the independence assumption 1.

Figure 8: Comparison of the two decisions rules based on CATE, or the

PE× CATE
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(a) Using the GT estimator

(b) Using the GT estimator and IV

Notes: These results present the predicted effects based on the CATE

only E(Γ2,i)CATE(Xi,t) versus the predicted effects based on PE also

PE(Xi,t, Yi,t) CATE(Xi,t), which forms the optimal decision rule. The two plain

black lines (resp. dotted and dashed) represent the threshold above which teachers would

be allocated to such a program when treating 20% (resp. 10% and 30%) of the population.

In this experiment, individuals represented in green (resp. in red) would be treated

(resp. not treated) by both selection rules. However, the optimal policy would treat the

individuals with strong predicted effect of knowledge on their performances displayed in

blue, and does not treat individuals displayed in purple. Estimation is performed using

the GWB estimator with varying coefficients A2 (ii) in 9(a) and independence A1 in 9(b).

Figure 9: Comparison of the two decisions rules based on CATE, or the

PE× CATE 36



E The Tweedie formula and extension

Consider the model

Yj = αj + εj, (106)

αj being independent from εj, αj ∼ Fα, εj ∼ Fε being known. G can be either the

true distribution of αj in a frequentist setting where I assume “random effects”, or a

prior on the distribution in a Bayesian setting.

Assumption 15 The distributions Fα and Fε admit densities fα and fε. Both fα

and t 7→ tfε(t) are square integrable on R. φε only vanishes on sets of null measure.

Theorem 3 Under assumption 15, the estimator of αj that minimizes the Bayes risk

under L2 loss, i.e the posterior mean of αj conditional on Yj takes the following form

PE(y) = y +
F−1 [iφY φ

′
ε/φε] (y)

fY (y)
. (107)

First note that this estimator extends the so called “Tweedie formula” in the Empir-

ical Bayes context, which for Fε normal N (0, σ2
ε) yields that

PE(y) = y + σ2
ε

f ′
Y (y)

fY (y)
,

which we also directly gets from (107) as φ′
ε/φε = −σ2

εt and F−1 [iφY (⋆)⋆] (y) =

−f ′
Y (y). If Robbins (1956) shows this results holds for Fε belonging to an exponen-

tial family, (107) allows for more general error terms.

Proof of Theorem 3. Applying Bayes theorem yields

E(α|Y = y) =

∫
ap(y|a)dFα(a)∫
p(y|a)dFα(a)

,

where p(y|a) is the conditional distribution of Y given α, hence, using p(y|a) =

fε(y − a) and fα(y) =
∫
p(y|a)dFα(a),

PE(y) = y −
∫
(y − a)fε(y − a)dFα(a)

fY (y)
.

We now rewrite
∫
(y−a)fε(y−a)dFα(a) as a function of the observables. Consider now

the characteristic function of the data, where using independence and Assumption

15, we have

φY (t) = φα(t)φε(t). (108)
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We have under Assumption 15,∫
(y − a)fε(y − a)dFα(a) =− i

(
fα ⋆ F−1 [φ′

ε]
)
(y)

= −iF−1 [φαφ
′
ε] (y)

hence with (108), assuming that φε only vanishes on sets of null measure,∫
(y − a)fε(y − a)dFα(a) = F−1

[
φY

φ′
ε

iφε

]
(y),

which concludes the proof. □

F Additional Monte-Carlo simulations

F.1 With conditional independence and continuous Z

I consider the same DGP as in Section 4.3.2 but using a continuous control variable

Z∗ that is Beta(2, 1.3) instead of a discretized version of it. The results are shown

in Table 7. They reaching very similar conclusions as in the discrete case of Section

4.3.2. Important differences are that the GWB method with and without using Z

performs relatively less well that in the discrete case. This is probably due to the fact

that we have to discretize the variables to use it, which is more difficult in this context.

Again, an important point is that although the Bayesian method actually performs

better for a sample size of 1000 when Z is used, its errors remain nearly constant.

On the contrary, the errors shrink for all my methods when using Z. In particular,

even if Z is continuous, which yields theoretically slower rates of convergence for the

nonparametric estimation, the GT method without constraint on Z (“GT”) performs

best at sample size 5000 and is really close to the Bayesian method for n = 1000

(0.047 and 0.076 (0.04 and 0.063, respectively) for the l1 norm of Γ1 and Γ2).

38



Table 7: In-sample errors with conditional independence

l1 error l2 error

Γ1 Γ2 Γ1 Γ2

1000 5000 1000 5000 1000 5000 1000 5000

Without Z

Bayesian parametric 0.076 0.077 0.124 0.126 0.088 0.09 0.141 0.143

GT 0.081 0.085 0.126 0.129 0.115 0.123 0.169 0.173

GWB (disc. (X)) 0.081 0.082 0.087 0.129 0.099 0.123 0.132 0.173

With Z

Bayesian parametric 0.04 0.039 0.064 0.063 0.053 0.053 0.085 0.083

GT varying 0.06 0.042 0.097 0.067 0.095 0.068 0.152 0.104

GT 0.047 0.033 0.076 0.053 0.068 0.051 0.106 0.078

GWB (disc. (X,Z)) 0.076 0.056 0.151 0.116 0.105 0.076 0.21 0.16

Notes: in this 2 dimensional case, the in-sampled l1 error is computed as
∑n

i=1 |P̂Ek(Xi, Yi, Zi)−
PE(Xi, Yi, Zi)|/n and the l2 error as (

∑n
i=1(P̂Ek(Xi, Yi, Zi) − PE(Xi, Yi, Zi))

2/n)1/2, where

P̂Ek(Xi, Yi, Zi) are the different estimators. See the Appendix for non-sampled results and com-

parison to the true value of Γ. “Bayesian parametric” refers to King (1997) method with bivariate

truncated normal prior, implemented in the R package ei. “GWB (disc. (X,Z))” refers to the

GWB estimator where the distribution of (X,Z) has been discretized using the rule of Section

4.2.5. “GT varying” corresponds to the varying coefficients approach described in (23). The

Monte-Carlo experiment uses 250 simulations.

F.2 Monte-Carlo simulations in the panel model

I consider simulations following the model of Section 3.2. More precisely, I consider

the same DGP for X and Γ as the first one in Section 4.3.1, adding a standard normal

random noise with σ2
ϵ = 0.01. I compare my two estimators.
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Table 8: In-sample errors in the panel model

l1 error l2 error

Γ1 Γ2 Γ1 Γ2 Comp. time

1000 5000 1000 5000 1000 5000 1000 5000 1000 5000

GT 0.084 0.062 0.137 0.105 0.109 0.083 0.184 0.139 9.47 10.23

GWB (disc. X) 0.059 0.057 0.084 0.082 0.078 0.076 0.098 0.096 30 51

Notes: in this 2 × 2 case, the in-sampled l1 error is computed as
∑n

i=1 |P̂Ek(Xi, Yi, Zi) −
E [Γk|(X,Y, Z) = (Xi, Yi, Zi)] |/n and the l2 error as (

∑n
i=1(P̂Ek(Xi, Yi, Zi)−E [Γk|(X,Y, Z) = (Xi, Yi, Zi)])

2/n)1/2,

where P̂Ek(Xi, Yi, Zi) are the different estimators. “Comp. time” refers to computational time for estimation for

one simulation. The Monte-Carlo experiment uses 250 simulations.

G Nonparametric Ecological inference

For a vector x of size d, denote by x the vector of size d− 1, containing the first d− 1

entries of x.

G.1 Application to the ecological inference model

A common and related empirical problem is to observe a sample of marginal distri-

butions of two individual discrete variables Cj ∈ {1, 2} and Rj ∈ {1, . . . , dR} over the

same groups of individuals i, while the distributions of Cj conditional on Rj for the

different groups remain unknown. I consider a binary variable Cj here for simplicity,

but the more general case is treated in the Appendix G.3. A simple but striking

illustration is the probability of voting by race Rj for given precincts i. In this ex-

ample, the precincts correspond to the groups, and the conditional probabilities are

usually unobserved. Nevertheless, one can combine the margins over the precincts.

Here, the margins are the turnout rates and the racial composition of each precinct,

respectively.

Yi :=

(
Pi (Cj = 1)

Pi (Cj = 2)

)
∈ [0, 1]2 and Xi :=


Pi (Rj = 1)

:

Pi (Rj = dR)

 ∈ [0, 1]dR .

The former is provided by the election returns while the later is provided from the

census. The conditional distributions Γi, or equivalently – as the margins are known

– the contingency tables, are matrices with dR rows and 2 columns whose coefficients
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are the outcome probabilities conditional on the covariate for group g, namely Γr,c,i :=

Pi(Cj = c|Rj = r).

A common point of view used in political economy and statistics (see, e.g., King, 1997;

Wakefield, 2004; Imai et al., 2008), is to treat the observed sample of margins for the

groups, together with the unobserved and heterogeneous conditional distributions, as

random vectors and matrices drawn from a sampling distribution

(Γi, Xi, Yi) ∼ PΓ,X,Y .

As shown in King (1997), the law of total probability (8) yield that (Γ, X, Y ) satisfies

exactly a system of 2 linear RCs equations, which together with the constraints on

the margins X⊤1 = Y ⊤1 = 1, yields that we can focus on the first component Y1,i:

Y1,i =

dR∑
r=1

Γr,1,iXr,i, ∀r = 1, . . . , dR, Γr,1,i ≥ 0, Xr,1,i ≥ 0,

dR∑
r=1

Xr,i = 1. (109)

In this context, it is first simply a matter of rewriting to obtain similar expressions

for the posterior effects than the ones in Proposition 1. For the sake of completeness,

this is done in Appendix G.2. I refer to Appendix G.3 for the more general case of

nonbinary variable C.

Remark 1 (Identification with more than two possible outcomes) Appendix

G.3 studies partial identification with more than two possible outcomes. Proposition

15 shows that the elements of m are solutions of a system of coupled transport partial

differential equations. If one limits the dimension of the unobserved heterogeneity,

Appendix G.5 then provides a way to solve this system and recover point identifica-

tion with 3 outcomes, which can be extended to more. In particular, I assume that

some random coefficients are linearly dependent on the others. I show that here also

the posterior effects can be expressed directly as function of the data.

G.2 Results completing Section G.1 with 2 choices

I consider the context of Section G.1.

Assumption 16 Assume that

1. the heterogeneous conditional probabilities are independent of the shares of the

different categories across groups, namely Γ ⊥⊥ X;
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2. The support of X has nonempty interior;

3. The conditional density fY1|X exists and, for all l = 1, . . . , dR − 1 and x ∈
Supp(X), its partial derivatives ∂xl

fY1|X(·|x) are integrable and square integrable

on R.

Proposition 13 gives the counterpart of the GT formulation in this context of ecolog-

ical inference, precising explicitly how results of Section 3.1 apply here.

Proposition 13 Let the distribution of (Γ, X, Y ) satisfy (109) and make Assumption

16. Then, the prediction m is point identified and satisfies, for all r = 1, . . . , dR and

(x, y) ∈ Supp(X, Y1),

PEr(x, y) = y +

dR−1∑
l=1

(xl − 1l{l = r})
∂xl

FY1|X(y|x)
fY1|X(y|x)

. (110)

Assumption 16-1 is called the no contextual effects assumption in the ecological in-

ference literature (NCE hereafter).

G.3 Extension to identification in Ecological inference with

more than two choices

As shown in King (1997), the law of total probability (8), together with the constraints

on the margins, yield that (Γ, X, Y ) satisfies exactly the linear system of random

coefficients equations

∀c = 1, . . . , dC , Yc =

dR∑
r=1

Γr,cXr, ∀r = 1, . . . , dR,

dC∑
c=1

Γr,c = 1 (111)

∀c = 1, . . . , dC ,∀r = 1, . . . , dR, Γr,c ≥ 0, Xr,c ≥ 0,

dR∑
r=1

Xr = 1 . (112)

The system (111) is a particular type of seemingly unrelated regressions (SUR) with

random coefficients which contain a common regressor, with additional constraints

X⊤1 = Y ⊤1 = 1. I now consider the following exogeneity assumption which con-

strains the dependence between the regressor and the random coefficients.
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Assumption 17 (“No contextual effects” (NCE)) Assume that the heterogeneous

conditional probabilities are independent of the shares of the different categories across

groups, namely:

Γ ⊥⊥ X.

Assumption 17 is classical both in the random coefficients and in the ecological in-

ference litteratures. This nonparametric assumption is however strong for some ap-

plications (see, e.g., Tam Cho, 1998) hence the need to perform sensitivity analysis

to the predictions obtained under this assumption. In assumptions 6 or 7, I consider

alternative assumptions when other covariates are available. For a vector r of size d,

denote by r the vector of size d− 1, containing the first d− 1 entries of r.

Assumption 18 The support of X has nonempty interior.

I maintain Assumption 18 for simplicity. Note that, because r are probabilities, this

latter assumption is not restrictive in most applications. Support conditions on the

regressors in this context are relaxed in Theorem 5 in Gaillac and Gautier (2022) and

I could allow for discrete regressors whose support is countably infinite.

Definition of the identified set for the PE. I explicit here useful elements

of nonparametric identification (see, e.g., Matzkin, 2007). The distribution of the

observables is PX,Y , while the distribution of the observables generated by PΓ,X and

the system (111)-(112) is Pgen(PΓ,X). R is a set of restrictions defined accordingly,

like satisfying the independence restriction PΓ,X = PΓ⊗PX . The functional of interest

is

PEr,c : (x, y) 7→ E[Γr,c|(X, Y ) = (x, y)], r = 1, . . . , dR, c = 1, . . . , dC ,

and satisfies m = Λ(PΓ,X ,PX,Y ) for a certain deterministic function Λ.15 The identi-

fied set for m is the set of matrix valued functionals such that there exists a unob-

served associated distribution PΓ,X which generates observations compatible with the

distribution of the data,

JX,Y (Λ,R) := {PE : ∃ PΓ,X ∈ R, Pgen(PΓ,X) = PX,Y , Γ(PΓ,X ,PX,Y ) = PE} .
15It is detailed in the proofs, using Bayes’ theorem and that the conditional distribution of Y

given Γ, X is fixed by (111)-(112).
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It is shown in Corollary 1 in Masten (2017) in the context of SUR that the joint

distribution of Γ is necessarily not point identified (see Proposition (P14.a) below).

Proposition (P14.b) below is new and shows that, with more than two choices, even

the conditional expectation of the random coefficients is not identified without ad-

ditional assumptions on the random matrix. When dC = 2, because in my model

the distribution of Γ is compactly supported Supp(Γ·,1) ⊆ [0, 1]dR , then Proposition

(P14.2) below is Proposition 2.2 in Beran and Millar (1994) and (P14.1) is a direct

consequence of it.

Proposition 14 (Identification without contextual effects) Let the distribution

of (Γ, X, Y ) satisfy (8) and Assumption 17. I have, for all dR ≥ 2, when dC = 2,

(P2.1 ) PE is identified under Assumption 18;

(P2.2 ) the distributions of Γ and of Γ conditional on (X, Y ) are identified under

Assumption 18;

and, when dC > 2,

(P2.a) the distribution of Γ is not identified under Assumption 18;

(P2.b) PE is not identified under Assumption 18.

In Proposition 14 and under Assumption 18, I use the fact that the support of Γ is

compact, hence the distribution is determined by its moments. Theorem 13 below

goes further than the nonidentification result of (P2.b) with partial identification

results and also showsn nonparametric constructive point identification in the case

dC = 2. Note that many classical parametric distributions of Γ yield that Assumption

3 holds, such as the uniform distribution, the truncated normal used by King (1997),

the beta or the Dirichlet distributions with parameter strictly greater than one or the

logit-normal distribution.

G.4 Partial identification when dC > 2

Proposition 15 (Partial identification, dC > 2) Let the distribution of (Γ, X, Y )

satisfy (8) and define the restriction R0 corresponding to assumptions 17, 18, and

3. Let dC > 2, then JX,Y (Λ,R0) is included into the set of functions of the form
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PE = M/fY |X , where Mr,c : Supp(X, Y ) 7→ [0, 1] for r = 1, . . . , dR and c = 1, . . . , dC

are continuous functions which admit a continuous derivative with respect to yc, for

c = 1, . . . , dC−1, Mr,C = 1−
∑dC−1

c=1 Mr,c, and, for all r = 1, . . . , dR, c = 1, . . . , dC−1,

and (x, y) ∈ Supp(X, Y ),

dR−1∑
r=1

xrMr,c(x, y) + (1− x′1)MdR,c(x, y) = ρc(x, y), (113)

dC−1∑
c=1

∂ycMr,c(x, y) =

dC−1∑
c=1

∂ycρc(x, y) +

dR−1∑
l=1

(xl − 1l{l = r})∂xl
fY |X(y|x), (114)

where ρc(x, y) := fY |X(y|x)yc. Moreover, for all c = 1, . . . , dC − 1 and (x, y) ∈
Supp(Y ,X), Mr,c(x, y1, . . . , yc = 0, . . . , ydC−1) = 0.

Proposition 15 shows that, when dC > 2, the parameter of interest satisfies a system

of coupled partial differential equations. However, the solutions are in general not

unique nor explicit.

G.5 Identification when dC = 3 when restricting the dimen-

sion of the unobserved heterogeneity

I consider the case where the researcher assumes that some random coefficients are

linearly dependent of the others. This reduces the dimension of the unobserved het-

erogeneity, hence reducing the size of the identified set when we have more than two

choices. I consider the case dC = 3 and describe in Remark 4 the set of assumptions

that one would make to handle higher dimensional cases.

Assumption 19 (Restricted heterogeneity, dC = 3) Let ω be a sequence of length

d := dR + dC − 2 = dR + 1 of indexes, ω :=
(
(r, 1)r∈{1,...,dR}, (dR, 2)

)
. Let the

d coefficients (Γωk
)k=1,...,d be the latent unobserved heterogeneity, that I denote by

U := (U1, . . . , Ud), hence

Ul := Γωl
, l = 1, . . . , d.

The (dR − 1) other random coefficients can be expressed as

Γr,2 =
d∑

k=1

ar,kUk, r = 1, . . . , dR − 1,

where a ∈ MdR−1,d(R) are fixed coefficients.
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Remark 2 (More general formulation) A slightly more general formulation would

assume instead of Assumption 19 that these are d latent sources of random unobserved

heterogeneity U , and that the coefficients Γr,c depend linearly of U . However, the sim-

plified set up that I consider is more transparent, facilitates testing and estimation of

a, and amounts to the same type of assumptions.

Note that in the case of dC = 2, Assumption 19 is not a restriction as (dR−1)(dC−2) =

0, which is in line with Theorem 13. This yields for dC = 3,

Y1 =

dR∑
r=1

UrXr (115)

Y2 =

dR−1∑
r=1

D∑
k=1

ar,2,kUkXr + UdR+1XdR . (116)

Assumption 17 yields the system of equations

E [Y1|X = x] =

dR−1∑
r=1

(E [Ur]− E [UdR ])xr + E [UdR ]

E [Y2|X = x] =

dR−1∑
r=1

(
dR+1∑
k=1

ar,kE [Uk]− E [UdR+1]

)
xr + E [UdR+1] .

This yields using Assumption 18 with d = dR + 1 that E [Uk] for k = 1, . . . , dR + 1

and vr :=
∑dR+1

k=1 ar,kE [Uk] and r = 1, . . . , dR − 1 are identified. Thus, I obtain a

system of dR − 1 equations and (dR − 1)(dR + 1) unknowns coefficients ar,k. If a is

known, then Proposition 16 below shows point identification in a constructive way.

Otherwise, Proposition 16 describes the identified set.

Let me introduce some notations. Under Assumption 19 and (115)-(116) I obtain,

for c = 1, 2, (c = 3 being redondant with the others due to the constraint Y ⊤1 = 1, I

suppress it),

yc =
d∑

k=1

Wc,k(x)E [Uk|X = x, Y = y] , (117)

where W1,k(x) := xk1l{k ≤ dR} for k = 1, . . . , d and

W2,k(x) :=

dR−1∑
r=1

ar,kxr + 1l{k = dR + 1}xdR . (118)

For convenience, I use Vk : (x, y) 7→ E [Uk|(X, Y ) = (x, y)] fY |X(y|x), for k = 1, . . . , d

and Mr,c : (x, y) 7→ E
[
Γr,c|X = x, Y = y

]
fY |X(y|x), for r = 1, . . . , dR, c = 1, 2.
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Identification strategy. Let me explain the steps of the identification strategy:

(Step 1) I can express the coefficients of M in terms of V through

Mr,1(x, y) = Vr(x, y)

Mr,2(x, y) =

dR+1∑
k=1

ar,kVk(x, y), (119)

for r = 1, . . . , dR. Hence the aim is to recover V .

(Step 2) I express Vl for l = dR, dR+1 as function of Vl for l = 1, . . . , dR−1. Denote

by ρc(x, y) := fY |X(y|x)yc, for c = 1, 2. Under Assumption 20.1 below and

using (117), the system with d−dR+1 = 2 unknowns, VR(x, y), VdR+1(x, y),

xdRVdR(x, y) = ρ1(x, y)−
dR−1∑
k=1

xkVk(x, y) (120)

W2,dR(x)VdR(x, y) +W2,dR+1(x)VdR+1(x, y)

= ρ2(x, y)−
dR−1∑
k=1

W2,k(x)Vk(x, y), (121)

has a unique solution, for l = dR, dR + 1,

Vl(x, y) = σl−dR+1(x, y) +

dR−1∑
k=1

Ql−dR+1,k(x)Vk(x, y), (122)

where, for k = 1, . . . , dR − 1,

σ1(x, y) =
ρ1(x, y)

xdR

, Q1,k(x) = − xk

xdR

, (123)

σ2(x, y) =
xdRρ2(x, y)−W2,dR(x)ρ1(x, y)

xdRW2,dR+1(x)
, (124)

Q2,k(x) =
xdRW2,k(x)− xkW2,dR(x)

xdRW2,dR+1(x)
. (125)

(Step 3) Then, I identify Vl for r = 1, . . . , dR − 1 as solution of a system of coupled

partial transport differential equations, see the proof of Proposition 16 for

details.

Denote by Q̃ ∈ MdR−1,dR−1(R) with coefficients Q̃r,k(x) := ar,k+
∑dR+1

l=dR
ar,lQl−dR+1,k(x),

for r = 1, . . . , dR − 1 and k = 1, . . . , dR − 1.
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Assumption 20 When dC = 3, for all x ∈ Supp(X),

1. xdRW2,dR+1(x) ̸= 0;

2. Q̃(x) ∈ MdR−1,dR−1(R) is diagonalisable: Q̃(x) = P−1(x)diag (Λ(x))P (x), where

diag (Λ(x)) is a diagonal matrix and P (x) is an orthogonal matrix.

Proposition 16 Consider dC = 3. Let the distribution of (Γ, x, y) satisfy (8) and

define the restriction R1 corresponding to assumptions 17, 18, 3, 19, and 20. Then

Jx,y(Λ,R1), the identified set for PE is included into the set of functions taking the

form, for all r = 1, . . . , dR, c = 1, 2, and (x, y) ∈ Supp(X, Y ),

PEr,c(x, y) = Πr,c [ζ, σ] (x, y), (126)

Π is a linear operator from Md×(dR−1) (l
∞ (Supp(X, Y ))) ×M2×1 (l

∞ (Supp(X, Y )))

to MdR,dC (l
∞ (Supp(X, Y ))),

Πr,1 [ζ, σ] =P−1Diag (PKζ) , r = 1, . . . , dR − 1 (127)

ΠdR,1 [ζ, σ] =Q⊤
1,·P

−1Diag (PKζ) + σ1, (128)

Πr,2 [ζ, σ] =Q̃⊤
r,·P

−1Diag (PKζ) + ar,dRσ1 + ar,dR+1σ2, r = 1, . . . , dR, (129)

where, σ is defined via (123)-(125),

K(x) =


x1 − 1 . . . xdR−1 1 1

x1 x2 − 1 xdR−1 1 1

:
. . . 1 1

x1 xdR−1 − 1 1 1

 (130)

and where ζ ∈ Md×(dR−1) (l
∞ (Supp(X, Y ))) with ζ(x, y)/fY |X(y|x) equals to

∫ y1

0
∂x1

fY |X(v, y2 − Λ1(x)(y1 − v)|x)dv . . . . . .

: :∫ y1

0
∂xR−1

fY |X(v, y2 − Λ1(x)(y1 − v)|x)dv :

fY |X(y|x)y1 . . . fY |X(y|x)y1∫ y1

0
∂y2

ρ2(x, v, y2 − Λ1(x)(y1 − v))dv . . .
∫ y1

0
∂y2

ρ2(x, v, y2 − ΛR−1(x)(y1 − v))dv


,

(131)

where, ρc(x, y) := fY |X(y|x)yc.When a ∈ MdR−1,d(R) in Assumption 19 is known,

then this set is reduced to one element.
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Remark 3 (dC = 2 as particular case) Using Proposition 13, the case dC = 2 ap-

pears as a particular case where no further assumption has to be made on the random

coefficients to obtain point identification. When dC = 2, (110) can be rewritten as

PEk = Πr,1 [ζ] :=(Kζ)r,

Π is a linear operator from Md×(dR−1) (l
∞ (Supp(X, Y ))) to MdR,dC (l

∞ (Supp(X, Y ))),

and K is defined like (130) with only one column of 1 and, for all (x, y) ∈ Supp(X, Y ),

ζ(x, y) :=

(
∂x1FY |X(y1|x)
fY |X(y|x)

, . . . ,
∂xdR−1

FY |X(y1|x)
fY |X(y1|x)

, y1

)⊤

(132)

and (126) is (110), hence this set is also reduced to one element. Proposition 16

shows that cases dC = 2 and dC = 3 share a similar structure, where the components

needing to be estimated nonparametrically are all the elements of ζ.

The proof of Proposition 16 is constructive and one can directly employ a plug-in

approach using an estimator of ζ defined in (132) for dC = 2, estimating (131) for

dC = 3. Indeed, Proposition 16 and Remark 3 underline that in cases dC = 2 and dC =

3, one has to nonparametrically estimate the elements of ζ, as my parameter of interest

is the image by the linear operator Π (which is also bounded under Assumption 20)

of ζ and σ. This assume estimation of

(x, y) 7→
∫ y1

0

∂xl
fY |X(v, y2 − Λr(x)(y1 − v))dv

for r = 1, . . . , dR − 1 and l = 1, . . . , dR − 1, while the other components of ζ in

Proposition 16 imply estimating also fY |X , fX , and ∂ycfY |X (for dC = 3 only), when

these quantities exist.

Remark 4 (Cases dC > 3) Using a similar reasoning as in the proof of Proposition

16, one could handle nonparametrically the cases dC > 3, assuming that the matrices

Q̃c(x) which appear in the system of coupled differential equations all commute by

pairs for c = 1, . . . , dC − 1 (or equivalently that they are diagonalisable in the same

basis), which puts more restrictions on the coefficients a. I left this for future research.
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G.6 Proofs of Appendix G.3

Notations and Preliminaries. For notational simplicity, we denote the multivari-

ate Fourier transform of measures on the set of matrices M(MdR,dC (R)) by

F [µ] (x) =

∫
MdR,dC

(R)
ei<g,x>dµ(g), (133)

where < g, x >= Tr(g⊤x) =
∑dR

r=1

∑dC
c=1 gr,cxr,c is the inner product between matrices

and Tr is the trace operator. This notation is simply a compact way to denote the

multivariate Fourier transform, but one could also fix a way to vectorise the matrix

and use the usual multivariate Fourier transform. I denote by Γ the submatrix of Γ

keeping only the (dC − 1) first columns, hence of dimension dR × (dC − 1).

Proof of Proposition 14. Start with the proof of (P2.2). Using Y1 + Y2 = 1, the

first part of the proof is Proposition 2.2 in Beran and Millar (1994). The second part

of (P2.2) can be deduced from the first one using the Bayes’ theorem, (111)-(112), and

Assumption 17 which yield, for all (g, x, y) ∈ MdR×(dC−1)([0, 1])×Supp(X)×Supp(Y ),

PΓ|X,Y (g|x, y) = 1l{y = g⊤x}PΓ(g)/PY |X(y|x).
The proof of (P2.a) is a consequence of Corollary 1 in Masten (2017) once we have

used Y ⊤1 = 1 to consider only equations related to c = 1, . . . , dC − 1 in (111)-(112).

Let us now prove (P2.1) and (P2.b). Let dC , dR ≥ 2. Using the constraint Y 1 = 1, we

consider the first dC −1 equations in (111)-(112) because the last one can be deduced

from the others. Hereafter Γ is thus a dR × (dC − 1) random matrix with the dC − 1

first columns of Γ. We have, using Bayes’ theorem for the second equality, for a.e.

(x, y) ∈ Supp(X, Y ) and for all r = 1, . . . , dR, c = 1, . . . , dC − 1,

E
[
Γr,c|X = x, Y = y

]
=

∫
MdR×(dC−1)(R)

gr,cdPΓ|X,Y (g|x, y)

=

∫
MdR×(dC−1)(R)

gr,c
PY |Γ,X(y|g, x)
PY |X(y|x)

dPΓ|X(g|x)

=

∫
g∈I(x,y)

gr,c
PY |X(y|x)

dPΓ(g) (using Assumption 17), (134)

where I(x, y). When dC = 2, under assumptions 17 and 18, using (P2.2), PΓ is

identified. Thus, we directly have from (134) that (x, y) 7→ E [Γ|X = x, Y = y] is also

identified.
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Consider now the case dC > 2. For simplicity, we condider the case dC = 3 and

dR = 2, as the other cases can be adapted from it. Take f 1
Γ as, for all g ∈ M2,2([0, 1]),

f 1
Γ(g) =

1

Z

2∏
r=1

2∏
c=1

1l{gr,c ∈ [0, 1]}gr,c,

where Z is a normalisation constant. Consider a second distribution, for all g ∈
M2,2([0, 1]),

f 2
Γ(g) := f 1

Γ(g) + δ1l{g ∈ M2,2([0, 1])} (∂11∂22 − ∂12∂21) f
1
Γ(g),

where δ is such that f 2
Γ(g) ≥ 0 for all g ∈ M2,2([0, 1]). Note that we have

1

Z

∫
MdR×(dC−1)([0,1])

(g2,1g1,2 − g1,1g2,2) dg = 0

hence
∫
MdR×(dC−1)([0,1])

f 2
Γ(g)dg = 1. This yields, for all z ∈ M2,2(R),

F
[
f 2
Γ

]
(z) = (1− δ(z11z22 − z12z21))F

[
f 1
Γ

]
(z),

hence for all t ∈ R2, x ∈ Supp(X), F
[
f 2
Γ

]
(tx⊤) = F

[
f 1
Γ

]
(tx⊤). Using Assumption

17, we have,

E
[
eit

⊤Y |X = x
]
= F [fΓ]

(
tx⊤)

hence f 1
Γ and f 2

Γ yield the same observables, while being distinct a.e., on M2,2([0, 1]).

Consider, for example, the coefficient (1, 1) of Γ. Then, using (134), we have, for all

(x, y) ∈ Supp(X, Y ),

EP1 [Γ1,1|X = x, Y = y]− EP2 [Γ1,1|X = x, Y = y]

=

∫
g∈I(x,y)

g1,1
PY |X(y|x)

(
f 1
Γ − f 2

Γ

)
(g)dg,

=
δ

ZPY |X(y|x)

∫
g∈I(x,y)

g1,1 (g2,1g1,2 − g1,1g2,2) dg

=
δ

ZPY |X(y|x)

(∫ 1

0

b
y1 − bx1

x2

db

∫ 1

0

y2 − bx2

x1

db−
∫ 1

0

(
y1 − bx2

x1

)2

db

∫ 1

0

y2 − bx1

x2

db

)

=
δ

ZPY |X(y|x)(x1x2)2

(
x1x2

(y1
2

− x1

3

)(
y2 −

x2

2

)
− 1

3

(
y31 − (y1 − x2)

3
) (

y2 −
x1

2

))
and using Assumption 18, there exists a subset S of Supp(X, Y ) with nonempty

interior such that the right-hand-side is different from zero a.e. (x, y) ∈ S, which
yields the result (P4.b). □
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Lemma 6 Let PΓ be a measure on MdR,dC (R) satisfying (111)-(112). Then we have,

for all (x, y) ∈ Supp(X, Y ),∫
g∈I(x,y)

gdPΓ(g) = F−1
[
F [⋆PΓ(⋆)]

(
·x⊤)] (y),

where the Fourier transform is defined in (133).

Proof of Lemma 6. First, using (134) we have, for all (x, y) ∈ Supp(X, Y ),

E
[
Γ|X = x, Y = y

]
PY |X(y|x) =

∫
g∈I(x,y)

gdPΓ(g), (135)

and that, for all x ∈ Supp(X), y ∈ RdC−1 7→ E [Γ|X = x, Y = y]PY |X(y|x) is com-

pactly supported in [0, 1]dC−1. This yields that y ∈ RdC−1 7→
∫
g∈I(x,y) gdPΓ(g) belongs

to L1(RdC−1) ∩ L2(RdC−1) hence its Fourier transform is well defined (see, e.g., The-

orem 9.13 in Rudin, 1973). Using the definition of I(x, y) for the second equality

which yields that g ∈ I(x, y) if and only if y = (x⊤g)⊤ where g ∈ MdR×(dC−1)([0, 1]),

that t⊤(x⊤g)⊤ =
∑dC−1

c=1 tc(x
⊤g)c =

∑dC−1
c=1 tc

∑dR
r=1 xrgr,c =

∑dC−1
c=1

∑dR
r=1(tcxr)gr,c =<

tx⊤, g > for the third equality, and using the definition (133) of the Fourier transform,

we have, for all t ∈ RdC−1,

F
[∫

g∈I(x,(·,1−·⊤1))

gdPΓ(g)

]
(t) =

∫
RdC−1

eit
⊤y

∫
MdR×(dC−1)([0,1])

1l{g ∈ I(x, y)}gdPΓ(g)dy

=

∫
MdR×(dC−1)([0,1])

eit
⊤(x⊤g)⊤gdPΓ(g)

=

∫
MdR×(dC−1)([0,1])

ei<tx⊤,g>gdPΓ(g)

= F [⋆PΓ(⋆)] (tx
⊤).

Then, we conclude using Theorem 9.13 d) in Rudin (1973) and taking the Fourier

inverse. □

Proof of Proposition 15 and Theorem 13. Let me start with the proof of

Proposition 15, then particularize the result to prove Theorem 13. Consider PΓ,x,y

satisfying (8) and assumptions 17 and 18. (134) and Lemma 6 brings the identification

to recovering, for r = 1, . . . , dR and c = 1, . . . , dC − 1, the function t ∈ RdC−1 7→
F [⋆r,cPΓ(⋆)]

(
tx⊤), for all x ∈ Supp(X). For all x ∈ Supp(X), I use the notation

ẋ :=
(
x⊤, 1− x⊤1

)⊤ ∈ Supp(X).

52



Using Assumption 17, we have, for all x ∈ Supp(X) and t ∈ RdC−1,

φ(x, t) := E
[
eit

⊤Y |X = x
]
= F [PΓ] (tẋ

⊤). (136)

Using the dominated convergence theorem, for all c = 1, . . . , dC−1, r = 1, . . . , dR−1,

the function φ admits partial derivatives with respect to tc and xr. Moreover, using

that Supp(X) has a nonempty interior, the latter derivatives are identified on SX ,

and we have, for all t ∈ RdC−1 and x ∈ Supp(X),

∂tcφ(x, t) =iẋ⊤F [⋆1:dR,cPΓ(⋆)]
(
tẋ⊤) , (137)

∂xrφ(x, t) =it⊤F [⋆r,1:dC−1PΓ(⋆)]
(
tẋ⊤)− it⊤F [⋆dR,1:dC−1PΓ(⋆)]

(
tẋ⊤) . (138)

This brings back identification to solving, for all t ∈ RdC−1, a system of dR× (dC − 1)

unknowns F [⋆r,cPΓ(⋆)]
(
tẋ⊤), r = 1 . . . , dR, c = 1, . . . , dC − 1, and dR + dC − 2

equations. Hence, E [Γ|X = x, Y = y] is identified under Assumption 18 when dC = 2.

Using Assumption 18 and the dominated convergence theorem, for all (t, x) ∈ RdC−1×
Supp(X), we have

∂tcφ(x, t) =

∫
Supp(Y−C)

iyce
it⊤yfY |X(y|x)dy = iF

[
·fY |X(·|x)

]
(t).

Thus, we obtain, for all y ∈ Supp(Y ),

F−1 [∂tcφ(x, ·)] (y) = iycfY |X(y|x) = iρc(x, y). (139)

Using Assumption 3, which yields that ∂xrφ(x, ·) ∈ L2(R) and (137)-(138), we obtain

ρc(x, y) =ẋ⊤F−1
[
F [⋆1:dR,cPΓ(⋆)]

(
·ẋ⊤)] (y) (140)

F−1 [∂xrφ(x, ·)] (y) =iF−1
[
·⊤F [(⋆r,1:dC−1 − ⋆dR,1:dC−1)PΓ(⋆)]

(
·ẋ⊤)] (y).

Then, using that

dC−1∑
c=1

∂ycF−1
[
F [⋆r,cPΓ(⋆)]

(
·ẋ⊤)] (y) = −iF−1

[
·⊤F [⋆r,1:dC−1PΓ(⋆)]

(
·ẋ⊤)] (y) (141)

we obtain, for all c = 1, . . . , dC − 1, r = 1, . . . , dR − 1,

−F−1 [∂xrφ(x, ·)] (y) =
dC−1∑
c=1

∂ycF−1
[
F [⋆r,cPΓ(⋆)]

(
·ẋ⊤)] (y)

−
dC−1∑
c=1

∂ycF−1
[
F [⋆dR,cPΓ(⋆)]

(
·ẋ⊤)] (y). (142)
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Denote by Mr,c : (x, y) ∈ Supp(X, Y ) 7→ F−1
[
F [⋆r,cPΓ(⋆)]

(
tẋ⊤)] (y), for r =

1, . . . , dR and c = 1, . . . , dC −1, which are continuous functions which admit a contin-

uous derivative with respect to yc. Moreover, from (138), we have PE = M/fY |X and

the constraint, for all (x, y) ∈ Supp(X, Y ), Mr,c(x, y1, . . . , yc = 0, ydC−1) = 0 holds.

Then, using (140), we obtain, for all (x, y) ∈ Supp(X, Y ),

∂ycρc(x, y) =

dR−1∑
r=1

xr∂ycMr,c(x, y) + ∂ycMdR,c(x, y)−
dR−1∑
r=1

xr∂ycMdR,c(x, y) (143)

and summing (142) over r = 1, . . . , dR − 1,

−
dR−1∑
r=1

xrF−1 [∂xrφ(x, ·)] (y) =
dC−1∑
c=1

(
dR−1∑
r=1

xr∂ycMr,c(x, y)−
dR−1∑
r=1

xr∂ycMdR,c(x, y)

)

=

dC−1∑
c=1

(∂ycρc(x, y)− ∂ycMdR,c(x, y)) .

This yields

dC−1∑
c=1

∂ycMdR,c(x, y) =

dC−1∑
c=1

∂ycρc(x, y) +

dR−1∑
r=1

xrF−1 [∂xrφ(x, ·)] (y).

Then, using Assumption 3 and the dominated convergence theorem for the first equal-

ity, then Theorem 9.13 d) in Rudin (1973) for the second, we have

F−1 [∂xrφ(x, ·)] (y) = F−1
[
∂xrF

[
fY |X(·|x)

]]
(y)

= ∂xrfY |X(y|x). (144)

Using (142), we obtain (114). This yields that m takes the form described in the

statement of Proposition 15.

When dC = 2, integrating (114), using Mr,c(x, 0) = 0, and ρ1(x, 0) = 0 for the first

equality, and Assumption 3 and the dominated convergence theorem for the second

one, we obtain, for all r = 1, . . . , dR and (x, y) ∈ Supp(X, Y ),

Mr,1(x, y) = ρ1(x, y) +

dR−1∑
l=1

(xl − 1l{l = r})
∫ y

0

∂xl
fY |X(v|x)dv

= ρ1(x, y) +

dR−1∑
l=1

(xl − 1l{l = r})∂xl
FY |X(y|x).
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Using ρ1(x, y) = yfY |X(y|x) yields the result of Theorem 13. □

Proof of Proposition 16. Denote the right hand side of (114) by, for (x, y) ∈
Supp(X, Y ),

Θr(x, y) :=
2∑

c=1

∂ycρc(x, y) +

dR−1∑
l=1

(xl − 1l{l = r})∂xl
fY |X(y|x). (145)

Then, (114) can we rewritten as, for r = 1, . . . , dR − 1,

∂y1Vr(x, y) +

dC−1∑
c=2

∂ycMr,c(x, y) = Θr(x, y). (146)

Using (119), we have, for r = 1, . . . , dR − 1

Mr,2(x, y) =

dR−1∑
k=1

Q̃r,k(x)Vk(x, y) +

dR+1∑
k=dR

ar,kσk−dR+1(x, y) (147)

which yields the system of coupled partial differential equations, for r = 1, . . . , dR−1:

∂y1Vr(x, y) +

dR−1∑
k=1

Q̃r,k(x)∂y2Vk(x, y) = Θr(x, y), (148)

with boundary constraints given by Vr(0, y2, x) = 0 for r = 1, . . . , dR − 1. (148) is a

system of coupled (dR−1)× (dR−1) transport partial differential equations that can

be put into matrix form

∂y1V (x, y) + Q̃(x)∂y2V (x, y) = Θ(x, y). (149)

When dC = 3, using assumption (20.2) yields in (149),

∂y1Ṽ (x, y) + diag (Λ(x)) ∂y2Ṽ (x, y) = PΘ(x, y),

where Ṽ := PV . Hence we can solve separately these dR − 1 transport differential

equations, for r = 1, . . . , dR − 1,

Ṽr(x, y) =

dR−1∑
k=1

Pr,k(x)

∫ y1

0

Θk(x, v, y2 − Λr(x)(y1 − v))dv, (150)
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using that V r(0, y2, x) = 0 for r = 1, . . . , dR − 1. Thus, using (145), we obtain

V r(x, y)

=

dR−1∑
k=1

Pr,k(x)

∫ y1

0

∂y1ρ1(x, v, y2 − Λr(x)(y1 − v))dv

+

dR−1∑
k=1

Pr,k(x)

∫ y1

0

∂y2ρ2(x, v, y2 − Λr(x)(y1 − v))dv

+

dR−1∑
k=1

Pr,k(x)

dR−1∑
l=1

(xl − 1l{l = k})
∫ y1

0

F−1 [∂xl
φ(x, ·)] (v, y2 − Λr(x)(y1 − v))dv

= Diag(PKζ)r(x, y) (using (144)).

This yields the result using (122). □

G.7 Comparison with ground truth in an election dataset:

turnout by race

I provide several validations of my methods in finite samples. Monte-Carlo simu-

lations with the baseline independence assumption (Section 4.3.1) and in the panel

data model (Section F.2) are given in appendix. Here, I consider an application to

ecological inference where the true value of the parameters is known using specific

register data.

This empirical illustration thus concerns the estimation of turnout by race and elec-

toral precinct. This has important political implications, since racially homogeneous

voting patterns are precluded by law. This falls into the context of ecological in-

ference described in section G.1. More specifically, I focus on the case of studying

the binary decision to vote according to dR = 3 racial categories: White, Black, and

Other, in the 2008 United States presidential election. I perform the analysis at the

precinct level (8,843 observations), where the turnout by race is observed, allowing

us to assess the performance of my method.

Several estimators emerge in this context, in particular that of Rosen et al. (2001),

which relies on a Bayesian framework to make predictions. The independence as-

sumption (2) has been the focus of some literature (see, e.g., Tam Cho, 1998). Note,

however, that since I am considering a national election, aggregation bias due to local
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stakes is less likely.16 Nevertheless, I consider three types of assumptions:

1. Assumption 16-1 (assuming NCE);

2. Assumption 6 conditioning the share of individuals registered as Democrat at

the district level (Z1);

3. Assumption 6 conditioning on the share of individuals registered as Other (Z2).

In the case of 2, I thus control for local activism that could create aggregation effects

at the precinct level. Despite the fact that the regressors here can be considered

continuous as they represent the minority shares of the precinct population, I want

to use my GWB estimator as a benchmark. To do so, I consider my discretization

rule for each covariate (see section 4.2.4) before computing the estimator.

Table 9 shows the results, and Figure 10 shows contour plots, as well as a sample

of the predictions and the actual realizations. First, note that in this example the

computational time is actually reduced by using my nonparametric GT and GWB

estimators rather than the Bayesian method based on simulations. Second, there does

not seem to be much difference in this case between estimators using the additional

variable Z or not, so there is some robustness of the independence assumption here

16-1. Third, my nonparametric GT estimator seems to have the best predictive per-

formance, especially when using Z2. It is closely followed by my GWB, which also

performs well without controls, although it is not perfectly adapted to this context

since the regressors are continuous. The GWB estimator, however, suffers an impor-

tant loss when using the controls Z, mainly due to the fact that the sample is split

according to the values of Z to be discretized (here in 3).

Finally and more importantly, the Bayesian estimator seems to miss the positive

correlation that is observed in the true data, simply meaning that in some precinct

people vote more independently of race. This important feature of the problem is

well captured by my two estimators.

16However, due to the joint vote in the House and for the presidential election, individuals could

decide to participate based on unobservable district-level stakes for the House election.
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Table 9: In-sample errors in turnout by race in Florida

MAE RMSE Time (s.)

Γ1,1 Γ2,1 Γ3,1 Γ1,1 Γ2,1 Γ3,1

Rosen et al. (2001), without controls 0.048 0.132 0.097 0.099 0.174 0.133 >3600

Rosen et al. (2001), with Z1 0.044 0.196 0.088 0.102 0.230 0.130 >3600

Rosen et al. (2001), with Z2 0.057 0.193 0.090 0.122 0.231 0.136 >3600

GT, without controls 0.024 0.100 0.085 0.152 0.156 0.206 12.0

GT, with Z1 0.026 0.104 0.076 0.070 0.159 0.119 13.3

GT, with Z2 0.022 0.102 0.072 0.056 0.162 0.114 41.6

GWB, without controls 0.029 0.117 0.072 0.069 0.163 0.114 150

GWB, with Z1 0.054 0.246 0.101 0.092 0.328 0.139 155

GWB, with Z2 0.043 0.166 0.087 0.082 0.220 0.132 161

Notes: in this 3×2 case, the in-sampled MAE is computed as
∑n

i=1 |P̂Er,1(Xi, Yi, Zi)−Γr,1,i|/n and the

RMSE as (
∑n

i=1(P̂Er,1(Xi, Yi, Zi)−Γr,1,i)
2/n)1/2, where P̂Er,1(Xi, Yi, Zi) are the different estimators.

B1,1 is probability to vote conditional on being White, Γ2,1 is probability to vote conditional on being

Black, and Γ3,1 is probability to vote conditional on being neither White nor Black. I use as Z1 the

share of individuals registered as democrats in the precinct and Z2 the share of individuals whose party

is neither Democrat nor Republican. “Comp. time” refers to computational time for estimation for one

simulation. I use the implementation of Rosen et al. (2001) provided in the R package eiPack.
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(a) Using the GT estimator (b) Using the GWB estimator

(c) Rosen et al. (2001) param. Bayesian (d) True values

Notes: These results represent the joint predictions for all Florida’s 2008 electoral precincts

of the probabilities to vote conditionally on being White (Γ1) or Black (Γ2), conditional

on the observed values of the aggregate turnout rates and the racial composition of each

precinct. The dots represent the individual predictions P̂E(Xj , Yj) and the contour lines

the levels of the associated fitted density.

Figure 10: Joint distributions of the probabilities to vote conditionally on

being White (Γ1) or Black (Γ2) for all Florida’s 2008 electoral precincts
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