
Hansen-Jagannathan distance
with many assets

Marine Carrasco and Cheikh Nokho �

Université de Montréal

October 2024

Abstract

This paper examines the evaluation of asset pricing models with many test assets. The
models are speci�ed through a linear stochastic discount factor (SDF). We implement two
interpretable regularization schemes to extend the Hansen-Jagannathan distance in a frame-
work of a data-rich environment. These regularizations are shown to yield a relaxation of
the Fundamental Equation of Asset Pricing and, therefore, take into account the global
misspeci�ed nature of models in �nance. We derive the asymptotic properties of the SDF
parameter estimator and implement comparison tests of asset pricing models. All results are
obtained under the double asymptotic where the number of assets and the number of time
series increase to in�nity.

�Carrasco gratefully aknowledges partial �nancial support from FRQSC and SSHRC. Address: Université de
Montréal, Departement de Sciences Economiques, CP 6128, succ Centre Ville, Montreal, QC H3C3J7, Canada.
Email: marine.carrasco@umontreal.ca.



1 Introduction

Dynamic Asset Pricing Models mainly strive to understand the di¤erence in expected returns
among assets. Models di¤er according to the researcher�s systemic risk: for example, CAPM pro-
poses the market portfolio as the main relevant risk factor. Several alternative models (anomalies)
have been tested in the literature following the rejection of the CAPM. These models can always
be obtained by the relationship between the stochastic discount factor (SDF), pricing kernel, and
the proposed risk factors.
A well-known measure of model misspeci�cation is the Hansen-Jagannathan (HJ) distance,

which measures the distance between a proposed pricing kernel and the closest valid one (see
Hansen and Jagannathan (1997)). The distance is similar to the GMM one except for the weight-
ing matrix which is equal to the inverse of the second moment matrix of the returns. With this
distance, the speci�cation test of models (whether the HJ-distance is null) is often rejected (Ho-
drick and Zhang (2001); Ludvigson (2013)). Therefore, the misspeci�cation of models is usually
assumed. In addition, the distance is used to estimate a parameter of the SDF and evaluate
whether a risk factor is a priced source of risk.
Even when the models are considered misspeci�ed, one would like to compare the performance

of competing asset pricing models. This task is di¢ cult as many asset pricing models seem to
perform very well in explaining the well-known 25 portfolios sorted on size (S) and book-to-
market (B-M) of Fama and French (1992). As pointed out by Daniel and Titman (2012), this is
chie�y due to the characteristics of the formed portfolios which cover a restricted dimension of
the returns. Lewellen, Nagel, and Shanken (2010) mention the strong covariance structure of the
S/B-M portfolios and suggest increasing the number of test assets, among other recommendations.
Kan and Robotti (2009) augment the dataset with the 49 US industry portfolios and compare the
HJ distance of several asset pricing models. However, they could not di¤erentiate them due to
the high variability of the data.
With the HJ distance, test assets cannot be expanded in�nitely without worrying about the

weighting matrix. The latter�s estimation is quickly unreliable and unstable as the return covari-
ance is near singular or downright non-invertible when the number of assets exceeds the length
of the time-series. Cochrane (2005) advanced that a number of assets larger than 1/10 of the
time period frequently leads to a near singular covariance matrix. Using this weighting matrix is
equivalent to testing asset pricing models with a particular portfolio built from the original returns
or test assets. However, a near-singular matrix produces exceptionally leveraged portfolios that
are economically not reasonable. Therefore, one ends up focusing on uninteresting portfolios. The
situation is exacerbated when, for example, researchers use a considerable amount of individual
returns as test assets.
The same issue arises frequently, and the well-known generalized least-squares (GLS) is another

example as pointed out by Cochrane (2005). In the presence of heteroscedasticity, OLS estimates
are still consistent; however, GLS will be more e¢ cient. Nevertheless, inaccurate estimation or
modeling of the errors�covariance matrix leads to a deterioration of the GLS results. Therefore,
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it is sometimes even better to stop at the OLS level of estimation. Furthermore, standard GMM
presents the same issue as Jagannathan, Skoulakis, and Wang (2010) discussed. Therefore, the
�rst step GMM may be more robust than the one with the optimal matrix.
This paper examines the evaluation and comparison of asset pricing models with many test

assets, therefore an unstable covariance matrix. First, relying on the inverse problem literature
(see Carrasco, Florens, and Renault (2007)), we extend the HJ distance to account for many
test assets while assuming that all models are inherently misspeci�ed. Speci�cally, we implement
Tikhonov and Ridge regularizations of the inverse of the covariance matrix in the HJ distance.
We show that these regularizations relax the Fundamental Equation of Asset Pricing. In addition,
the new misspeci�cation measures can be interpreted as the distance between a proposed pricing
kernel and the closest valid SDF pricing returns with controlled errors. All these methods depend
on a regularization parameter that controls the level of misspeci�cation. Second, we provide the
asymptotic distribution of SDF parameters obtained by minimizing the regularized distance. This
permits to determine whether a particular factor is a priced source of risk in the returns and is
essential to compare models. In our setting, we allow the number of assets to be higher than the
number of time series data. Third, to compare models in the most general manner, we derive the
distribution of the regularized distance. All the results are derived under the double asymptotics
where the number of assets N and the number of observations T go to in�nity simultaneously.
Our work is related to several strands of the literature at the intersection of asset pricing model

evaluation and machine learning in �nance. Several papers proposed methods to examine asset
pricing misspeci�cation (Hansen and Jagannathan (1997); Almeida and Garcia (2012)). This
paper is close to Kan and Robotti (2008) and Kan and Robotti (2009) who derived asymptotic
distribution of the SDF parameter and model comparison methods using the HJ distance under
a misspeci�ed setting. As we are interested in estimating the parameters that minimize the HJ
distance under misspeci�cation (pseudo-true value), this paper is also related to Antoine, Proulx,
and Renault (2020). However, unlike their approach, we employ the unconditional version of the
HJ distance with many assets. Several papers also propose methods to either stabilize or improve
the estimation of covariance matrices (Carrasco and Rossi (2016); Carrasco, Kone, and Noumon
(2019); Ledoit and Wolf (2003); Ledoit and Wolf (2020)). Kozak, Nagel, and Santosh (2020)
consider a model where the factors serve simultaneously as the assets whose returns they are trying
to explain and the candidate factors that enter in the SDF. They suppose the number of factors
large and propose a Bayesian estimator which has an interpretation in terms of penalization on the
SDF coe¢ cients. Our paper has also strong connections with the work of Korsaye, Quaini, and
Trojani (2019). They propose a general method of �nding a Smart SDF (S-SDF), a strictly positive
SDF that tolerates pricing errors for dubious assets. Our method �nds the distance between the
empirical SDF of the researcher and the S-SDF, without the non-arbitrage constraint. Barillas
and Shanken (2018) put forth a method to compare asset pricing models. They also show that
returns of the test assets are irrelevant when comparing asset pricing models with just traded
factors. However, the test assets become essential when one deals with non-traded factors. In
this paper, we are dealing with both types of factors. Finally, as we evaluate models under a
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misspeci�ed setting, our paper is related to Hall and Inoue (2003) who established the distribution
of Generalized Method of Moments (GMM) estimators when moments are misspeci�ed.
The paper is organized as follows. Section 2 presents the framework under which we evaluate

models and the issues related to the weighting matrix. Section 3 introduces several regularization
methods as well as their interpretations. The section also presents the asymptotic properties of the
SDF parameter estimators. Section 4 treats model comparison using regularization, and section
5 contains the results of the simulations. Section 6 compares four empirical asset pricing models
using a dataset of 252 portfolios. Finally, section 7 concludes. The proofs are collected in the
appendix.

2 Asset pricing model under misspeci�cation

2.1 Pricing errors and model speci�cation using excess returns

Let rt be the excess returns of N assets. Given the availability of K factors ft, the estimation
of Asset Pricing Models can be summarized in �nding the expression of the relevant stochastic
discount factor yt. The latter must satisfy the fundamental equation of asset pricing: E[rt:yt] = 0.

De�ne Yt =
�
ft
rt

�
. Its mean and covariance matrix are given by � = E[Yt] =

�
�1
�2

�
and

V = V (Yt) =

�
V11 V12
V21 V22

�
. We de�ne also ~rt = rt � �2 and ~ft = ft � �1. In this paper, we focus

on linear candidate SDF, yt(�) = 1� ~f
0

t�: It is common to choose � by minimizing the aggregate
pricing errors e(�) = E[rt:yt(�)] = �2 � V21� via

QW = e(�)
0
We(�); (1)

where W is a positive-de�nite matrix.
The SDF prices correctly the returns, when one can �nd � such that QW (�) = 0. Otherwise,

the model is considered globally misspeci�ed.

Remark 1. The reason for demeaning the factors is the following. When models are misspeci�ed,
Proposition 1 of Kan and Robotti (2008) shows that the ranking of asset pricing models using QW
with raw factors can be altered by performing an a¢ ne transformation of the factors. To impose
invariance to a¢ ne transformations of the factors, one should demean the factors.

In the particular case, whereW = V �1
22 , the covariance of the returns, QW is a modi�ed Hansen

and Jagannathan (1997) distance, where the mean of the SDF is constrained to 1. Let

QV22 = �2 = (�2 � V21�)
0
V �1
22 (�2 � V21�): (2)
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We de�ne �HJ as the solution to the minimization of (2).

�HJ = argmin
�

�2 = (V12V
�1
22 V21)

�1V12V
�1
22 �2:

�HJ can also be written as V �1
11 (�

0V �1
22 �)

�1�0V �1
22 �2 = V �1

11 
 where � = V21V
�1
11 is the exposure

of the returns to the factors ft and 
 = (�0V �1
22 �)

�1�0V �1
22 �2 represents the risk premium. This

particular form shows that the SDF parameter can also be estimated via the �s. Such representa-
tion is not new as a well-known equivalence between SDF representation, beta-representation and
minimum-variance e¢ ciency has been already established (see (Cochrane, 2005, p. 261), chapter
7 of Ferson (2019) or Goyal (2012)). In this setting, the asset pricing model is misspeci�ed when
e = �2 � V21V

�1
11 
 = �2 � �
 6= 0:

We represent a misspeci�ed linear asset-pricing model with SDF yt = 1� ~f
0

t� by the following
formulation

rt = e+ �( ~ft + 
) + �t; (3)

where � is a matrix N �K, e 2 RN , 
 2 RK ; the N � 1 error terms �t are assumed uncorrelated
with the factors. In addition, the errors have mean 0 and variance V (�t j ft) = �� = [�i;j]i;j=1;��� ;N
of full rank where �i;j = E [�it�jt]. We note �2i = �i;i and � = [�1; :::; �T ]

0 : Remark that Equation
(3) does not impose a factor structure on rt because the error term �t is allowed to be serially
correlated (see Assumption 2 below). Moreover, the intercept ei may vary with the asset i:
Let R = [r1; � � � ; rT ]

0
and F = [f1; � � � ; fT ]

0
be respectively the T �N and T �K matrices of

returns and factors. The OLS estimates of � is given by

�̂ = ( �R
0 �F )( �F

0 �F )�1 = V̂21V̂
�1
11

where �R = R � 1T �̂
0

2 and �F = F � 1T �̂
0

1. �R =

264�r
0

1
...
�r
0

T

375 and �F =

264 �f
0
1
...
�f 0T

375 with �rt = rt � �̂2 and

�ft = ft � �̂1. �̂1 =
1

T

TX
t=1

ft and �̂2 =
1

T

TX
t=1

rt are respectively the estimators of �1 and �2.

The SDF parameter is estimated by

�̂HJ = V̂ �1
11 (�̂

0
V̂ �1
22 �̂)

�1�̂
0
V̂ �1
22 �̂2;

and
�̂
2
= �̂

0

2V̂
�1
22 �̂2 � �̂

0

2V̂
�1
22 V̂21(V̂12V̂

�1
22 V̂21)

�1V̂12V̂
�1
22 �̂2

= �̂
0

2V̂
�1
22 �̂2 � �̂

0

2V̂
�1
22 �̂(�̂

0

V̂ �1
22 �̂)

�1�̂
0

V̂ �1
22 �̂2:

Using excess returns, Lemma 4 of Kan and Robotti (2008) gives the asymptotic distribution
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of �̂HJ under a misspeci�ed setting and for N �xed. Speci�cally,

p
T (�̂HJ � �HJ)! N(0K ; V (�̂HJ));

where

V (�̂HJ) =

1X
j=�1

E[qtq
0

t+j]; (4)

qt = HV12V
�1
22 (rt � �2)yt + H[(ft � �1) � V12V

�1
22 (rt � �2)]ut + �HJ , H = (V12V

�1
22 V21)

�1 and
ut = e

0
V �1
22 (rt � �2).

2.2 Issues with the weighting matrix

When models are misspeci�ed, the SDF parameter, that minimizes (1), depends on the weighting
matrix. Therefore, its choice is paramount.
One possibility is to use the GMM framework. In this case, W = S�1, where

S =
1X

j=�1
E[(rt:yt) ; (rt�j:yt�j)

0
]:

However, using this weighting matrix to compare asset pricing models may be misleading for
several reasons.
First, in this case, the objective function (1) equates to the over-identi�cation test of Hansen

(1996). However, it has been shown that this diagnostic is model-dependent and tends to reward
models with volatile SDF and pricing errors as their over-identi�cation statistics tends to be lower
(Ludvigson (2013), p.810).
Second, from a perspective of looking at the GMM estimator as a portfolio optimization with

the inverse of the eigenvalues of S as weights, it tends to produce huge leverage portfolios as S is
near singular with many assets (Cochrane (1996), p. 592).
Other matrices can be used. For example, the inverse of V22 � V21V

�1
11 V12, the residuals of

the regression of r on f , is used in Shanken (1985) and Shanken and Zhou (2007) to estimate
the risk premium 
. One can also use the identity matrix to circumvent the invertibility issue.
Nonetheless, the models estimated will depend on the assets included. This setting is not preferable
for researchers looking for results independent of particular dataset.
As shown in Kan and Robotti (2008), the use of V �1

22 as weighting matrix enables the HJ
distance to be model-independent and suitable for asset pricing model comparison. However, V �1

22

is often near singular as securities are very correlated and N is often large. This singularity may
be even higher than that of S. Therefore, it brings forth the same issues as pointed out by p.216
of Cochrane (2005). In addition, near singularity deteriorates the small sample properties of the
SDF estimator or misspeci�cation test.
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3 Regularized SDF parameter estimator

As stated earlier, inference using the modi�ed HJ distance may not be robust to a large number
of correlated securities that makes the weighting matrix near singular. Relying on the literature
on inverse problems in an in�nite dimensional space (see Kress (2014) and Carrasco, Florens, and
Renault (2007)), we introduce two regularization methods to stabilize the weighting matrix and
improve the estimation of asset pricing models.

3.1 Types of regularization

Before introducing the regularization techniques, we introduce several objects to recast the prob-

lem as an inverse problem. � =
V22
N
= E

�
(rt � �2)(rt � �2)

0

N

�
= E

�
~rt~r

0
t

N

�
= E

"
~R
0 ~R

NT

#
is a N�N

matrix, where ~rt = rt � �2 and ~R =
�
(r1 � �2)

0 � � � (rT � �2)
0�0
is T � N matrix. We endow

RN with the norm k � k2N=
�
0

1�2
N

with associated inner product < �1; �2 >N=
�
0

1�2
N

, and RT

with norm k v k2T=
v
0
v

T
induced by inner product < v1; v2 >T=

v
0
1v2
T
. Let H be the operator

from RN to RT de�ned by H� =
�R�

N
and H�, the adjoint of H, i.e. H�v =

�R
0
v

T
, operator from

RT to RN . With that, we have the operator H�H� =
�R
0 �R

NT
� = �̂� which goes from RN to RN .

Let
�q

�̂j; �̂j; v̂j

�
j = 1; 2; ::: be the singular value decomposition of H such that H�j =

q
�̂j v̂j

and H�vj =

q
�̂j�̂j. Note that

n
�̂j; �̂j

o
, j = 1; 2; :::;min(N; T ) are the non zero eigenvalues and

eigenvectors of �̂:
In addition, we de�ne other norms that will be useful in the sequel.

De�nition 1.

1. For a vector v 2 RN , k v k is the euclidian norm.

2. For an arbitrary (K � N) matrix V; the operator norm of V is k V k= sup
k�k=1

k V � k.

Therefore, for any vector u 2 RN , k V u k�k V kk u k .

3. Let
�
�j
	
j=1;��� ;N be a complete orthonormal basis in R

N . For any � 2 RN , k � k2N=
NX
i=1

<

�; �j >
2
N and if V is a (N � N) symmetric matrix, we de�ne the following operator norm

k V kN= sup
k�kN=1

< V �; � >N .
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4. We de�ne the Frobenius norm as k V kF=
�
tr(V

0
V )
� 1
2
. We have k V k�k V kF and for

any vector u 2 RN , k V u k�k V kFk u k.

5. If k v kN<1 when N !1, we note k v k1 its limit value.

Assumption 1. (i)
rt = e+ �( ~ft + 
) + �t; (5)

where � is a matrix N � K, e 2 RN , 
 2 RK ; the N � 1 error terms �t are assumed
uncorrelated with the factors. In addition, the errors have mean 0 and variance V (�t j ft) =
�� = [�i;j]i;j=1;��� ;N of full rank where �i;j = E [�it�jt].

(ii)
1

N

NX
i=1

�
0

i�i ! ��; as N !1,where �� is positive-de�nite matrix.

(iii) k e kN= O(1).

Remark 2. The �rst part of Assumption 1 is the same as assumption 2 of Raponi, Robotti, and
Za¤aroni (2020). Positive-de�nite �� excludes spurious factors and cross sectionally constant �i.
Also, this assumption implies that k �k k1<1; k = 1; � � � ; K.
(ii) imposes that k e kN is bounded, this is a mild condition which is satis�ed as soon as each

element ei of e is bounded.

Assumption 2. (i) The process xt = (�it; fkt)t=1;2;��� ;T is stationary and strong mixing with
mixing coe¢ cients �x(l) verifying

1X
l=1

l�x(l)
�

2+� <1;

for some � > 0. �x(l) = sup
i;k�1

: sup
A;B

�
j P (A \B)� P (A)P (B) j: A 2 F0

�1; B 2 F1
l

�
, where

l � 1 and Fv
u = �(xt : u � t � v) is the �-�eld generated by the data from a time u to a

time v for v � u.

(ii) V11 is non singular.

(iii) E[�4+2�it ] < c, for i = 1; 2; � � � , where c is a constant and � is given in (i).

Remark 3. Assumption 2(i) speci�es the rate of decay for the mixing coe¢ cient in terms of a
parameter �: When the data are independent, �x = 0 and this condition is automatically satis�ed
for all � > 0: If xt is exponentially strong mixing, then A2(i) is also valid for any � > 0: Assumption
2(iii) implies that E[k �t k2N ] = O(1) as N !1.
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Lemma 1. Under Assumptions 1 and 2, for a linear asset pricing model, we have the following
results as N !1,
1. E[k rt k2N ] = O(1).
2. tr(�) = O(1).

Remark 4. Lemma 1 indicates that the expected norm of the returns is �nite when N is large.
In addition, � is trace class, i.e the sum of its eigenvalues is �nite. This implies that � is in the
family of Hilbert-Schmidt operators which are compact. The result has several implications. First,
the set of eigenvalues is countable and its largest one is bounded (see Theorem 2.39 of Carrasco,
Florens, and Renault (2007)). Second, as N !1, its smallest eigenvalue decreases to 0:

Let � > 0 be a regularization parameter. We consider two techniques which consist in replacing
the singular or nearly singular matrix �̂ by a well-conditioned matrix before inverting the matrix.
These two regularization schemes give the following inverses:

1. Ridge regularization

�̂�1� = (�̂ + �IN)
�1:

2. Tikhonov regularization
�̂�1� = (�̂2 + �IN)

�1�̂:

For � small, the regularized inverse will be close to the actual inverse while being much more
stable. In practice, the tuning parameter � is chosen to go to zero with the sample size. Its choice
is discussed later.

De�nition 2. 1. For an operator A : G! E that maps a Hilbert Space G (with norm k : kG)
into a Hilbert Space E (with norm k : kE), the range, R(A), is the set f 2 E :  = A� for

some � 2 G such that k � kH<1g.

2. For a positive self-adjoint compact operator with spectrum
�
�j; 'j; j = 1; � � �

	
� : G !

G that maps a Hilbert Space G (equipped with the inner product < : >G) into itself, the
!�regularity space of the operator � , for all ! > 0, is

�! =

(
� : � 2 G and

1X
j=1

j< �;'j >Gj2

�2!j
<1

)
:

3. The Reproducing Kernel Hilbert Space (RKHS) H(�) of the operator � corresponds to �!
with ! =

1

2
.

Remark 5. �! is a decreasing family of subspaces of RN as ! > 0 increases. The regularity space
parameter ! quali�es the smoothness of �. It also permits to characterize the regularization bias.
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Remark 6. Notice that as �̂ =
�R
0
PF
T

, where PF = �F (
�F
0 �F

T
)�1 =

�
P 1F � � � PKF

�
. Then, �̂

can be rewritten as �̂ =
�
H�P 1F � � � H�PKF

�
. Therefore, �̂k 2 R(H�); k = 1; � � � ; K. From

Proposition 6.2 of Carrasco, Florens, and Renault (2007), R(H�) = H(�̂) = R(�̂ 1
2 ) where H(�̂)

is the Reproducing Kernel Hilbert Space of �̂.

We make a stronger assumption on the �k and e.

Assumption 3. (i) �k; e 2 �!, with ! = 3.

(ii) As N !1, C� =
1

N
�
0
��1� =< ��

1
2�;��

1
2� >N! C, where C is positive-de�nite matrix.

Assumption 3(i) implies that �k and e belong to the range of �
! so that objects ��!�k and

��!e are well de�ned even when N goes to in�nity.

3.2 Regularization as penalization

This section aims to provide two interpretations of the regularized HJ-distance. One in terms of a
penalization on the norm of the pricing error, the other in terms of a penalization on the Lagrange
multipliers.
First, recall that as pointed out by Kan and Robotti (2008), �2 (not regularized) gives the

distance between the proposed SDF yt and the set of correct SDFs of mean 1 in M, the set of
square integrable random variables.

�2 = min
mt2M;E[mt]=1

E (mt � yt)
2 subject to E[mtrt] = 0: (6)

Below, we are going to show that the regularized �2� measures how far y is to the closest valid
SDF of mean 1 which prices returns with an error controlled by �. To prove it, we make the
following assumption.

Assumption 4. 9m0 2 L2 : E [m0] = 1 and k E[m0r] k2N<1.

Remark 7. Assumption 4 guarantees the existence of at least one SDF with �nite pricing error.

Proposition 1. Under assumption 4, we have the following results:
1. For ridge,

�2R = inf
m2M;E[m]=1

E[(m� y)2] +
1

�
k E[mr] k2N ; (7)

2. For Tikhonov,

�2K = inf
m2M;E[m]=1

E[(m� y)2] +
1

�
k E[mr] k2N;�; (8)
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where k x k2N;�=
x
0
�x

N
for any x 2 RN .

The previous proposition shows that regularization is equivalent to relaxing the constraint of
problem (6). Low values of � put the emphasis on the fundamental equation of asset pricing,
while high values allow for possible errors in the pricing of assets.
To get insights on the mecanism behind the penalization in (7), we consider the dual of the

optimization problem (7) (see the proof of Proposition 1 in Appendix):

�2R = max
�12RN ;�22R

E

�
2y�

0

1

r

N
� �

0
1rr

0
�1

N2
� �22 � 2

�
0
1r�2
N

� �

N
k �1 k2

�
; (9)

where �1 and �2 can be interpreted as Lagrange multipliers where �1 is associated with the
condition k E[mr] k2N< c for some constant c and �2 with the condition E (m) = 1. Equation
(9) is the penalized version of the dual of (6) with a penalization applied to �1. The �rst order
condition with respect to �1 gives

e� E (rr0)

N
�1 � �2 � ��1 = 0: (10)

The �rst order condition with respect to �2 gives �2 = �� 01�2=N . Replacing �2 in Equation (10)
gives

�1 = (� + �I)
�1e = ��1� e:

And the solution is the ridge regularized Hansen-Jagannathan distance

�2R =
e0��1� e

N
:

For Tikhonov regularization, the dual is given by

�2K = max
�12RN ;�22R

E

�
2y�

0

1

r

N
� �

0
1rr

0
�1

N2
� �22 � 2

�
0
1r�2
N

� �

N
� 01�

�1�1

�
:

Solving in �1 and �2 yields �1 = [�2 + �IN ]
�1�E[ry] = [�2 + �IN ]

�1�e and

�2K =
e
0
[�2 + �IN ]

�1�e

N
:

So for both regularizations, the penalization on kE (mr)k2N translates into a penalization on the
Lagrange multiplier �1 and hence relaxes the condition. In the extreme case where � ! 1;

�1 = 0 and no restriction on E (mr) is imposed. In the other extreme where � = 0, the condition
E (mr) = 0 is strictly enforced at the risk of getting an unstable solution involving ��1.
Now we investigate how Tikhonov regularization acts on the constraint. As assets with very low

eigenvalues tend to have abnormally bigger weights in the HJ-distance, the Tikhonov regularization

10



induces a rebalancing of the weights. Using the diagonalization of � = P
0
�P , where P is the

matrix of eigenvectors and �, the matrix of eigenvalues �j, we can rewrite the penalization as
follows:

1

�
k E[mr] k2N;� =

1

�
(E[mr])

0
P

0
�PE[mr])

=
1

�
(E[mPr])

0
�(E[mPr])

=

NX
j=1

!jE[m(Pr)j]
2;

where !j =
�j
�
: (Pr)j can be interpreted as the principal component of r: The Tikhonov penaliza-

tion entails the repackaging of the assets into N portfolios (Pr)j with weights given by !j. The
lower the eigenvalues �j is, the lower the contribution of asset (Pr)j to the minimization, and
vice-versa.
Korsaye, Quaini, and Trojani (2019) propose a Smart SDF (S-SDF), M . The latter is a non-

negative random variable that tolerates pricing errors for D 2 N dubious assets (Rd) while pricing
correctly S 2 N sure assets (Rs).

E[MRs]� qs = 0N and h(E[MRd]� qd) � � ;

where � > 0 and h : RD ! [0;+1] is a closed and convex pricing function. qs and qd are the prices
of the sure and dubious assets. Such SDF always exists in an arbitrage-free economy with frictions.
In the search of a minimum dispersion S-SDF, the latter materialized itself as a penalization of the
portfolio weights of the dubious assets in the dual portfolio problem. This penalization represents
transaction costs which equal to the minimum execution cost for buying the dubious assets.
Remark that it is equivalent to penalize the norm kE [mr]k2 in (7) or to impose a constraint

of the form kE [mr]k2 � � so our approach is very similar to that of Korsaye, Quaini, and Trojani
(2019). However, we do not impose M 2 L2+, i.e non-negative L

2 random variable and we allow
for a double asymptotic where both N and T go to in�nity.

3.3 Asymptotic distribution of the regularized SDF parameter of mis-
speci�ed models

For any regularization schemes, the estimator of �HJ is given by

�̂
�

HJ = argmin
�

(�̂2 � V̂21�)
0
�̂�1� (�̂2 � V̂21�): (11)

�̂
�

HJ = V̂ �1
11 (�̂

0
�̂�1� �̂)�1�̂

0
�̂�1� �̂2

11



and the regularized HJ-distance is

�̂
2

� =
�̂
0

2�̂
�1
� �̂2
N

� �̂
0

2�̂
�1
� V̂21
N

 
V̂12�̂

�1
� V̂21
N

!�1
V̂12�̂

�1
� �̂2
N

=
�̂
0

2�̂
�1
� �̂2
N

� �̂
0

2�̂
�1
� �̂

N

 
�̂
0

�̂�1� �̂

N

!�1
�̂
0

�̂�1� �̂2
N

:

�̂�1� is the regularized inverse of �̂ obtained either by Ridge or Tikhonov regularization.
Using the de�nition of the asset pricing model, the average of the excess return can be rewritten

as
�̂2 = �̂(�̂1 � �1 + 
) + (� � �̂)(�̂1 � �1 + 
) + e+��;

where �� =
1

T

TX
t=1

�t and �̂
�

HJ can be decomposed as such

�̂
�

HJ � �HJ = (V̂
�1
11 � V �1

11 )
 + V̂ �1
11 (�̂1 � �1) (12)

+ V̂ �1
11 (�̂

0
�̂�1� �̂)�1 [ �̂

0
�̂�1� (� � �̂)(
 + �̂1 � �1)

+ �̂
0

�̂�1� e+ �̂
0
�̂�1� �� ]:

Equivalence between Ridge and Tikhonov.
Because �̂ depends on r, it is possible to rewrite Ridge as Tikhonov regularization. Ridge

regularization gives

�̂�1� �̂ = (
R
0
R

NT
+ �IN)

�1R
0
F

T

=

min(N;T )X
j=1

q(�;
p
�j)q

�̂js
< F ; �j >N �j;

where q (�) =
�

�+ �
and

�
�j; �j

	
are the eigenvalues and eigenvectors of � (see Appendix for

more details). Tikhonov regularization gives the same formula but with q(�;
p
�j) replaced by

q(�; �j). So both regularizations give basically the same results (the only di¤erence is that the
optimal rate for � may be di¤erent). For this reason, we focus on Tikhonov regularization. From

now on, �̂
�

HJ and �̂
2

� correspond to the estimators obtained by Tikhonov regularization.
The following assumption is needed to derive the distribution of regularized SDF parameter

when N and T go to 1.

12



Assumption 5. For � > 0 de�ned in Assumption 2 (i), we assume:

(i) E[k ft k4+2�] <1.

(ii) lim
N!1

E[k �t k4+2�N ] <1.

(iii) lim
N!1

E[k rt k4+2�N ] <1.

(iv) 0 < lim
N;T!1

V ar(
1p
T

TX
t=1

< rt;�
�1e >N) <1.

(v) 0 < lim
N;T!1

V ar(
1p
T

TX
t=1

< ��1�; rt >N) <1.

(vi) 0 < lim
N;T!1

V ar(
1p
T

TX
t=1

< �t;�
�1e >N) <1.

Proposition 2. Suppose Assumptions 1-5 are satis�ed.
As T , N go to in�nity and � goes to zero, if � is chosen such that �T ! 1 and �2T ! 0 ,

we have the following results for Tikhonov regularization
1. �̂

�

HJ
P�! �HJ

2.
p
T (�̂

�

HJ � �HJ)
d! N (0K ; V �1

11 
V
�1
11 )

where 
 = lim
N;T!1

var

"
1p
T

TX
t=1

ht

#
. ht is de�ned as

ht = eftyt + 
 + C�1�
�
0
��1

N
(�tyt � ~rt~ut + e) + C�1� V �1

11
eft �0t��1e

N
, and ~ut =

~r
0
t�

�1e

N
.

Proposition 2 can also be used when the model is correctly speci�ed by setting e = 0. 
 can
be estimated using the HAC estimator of Andrews (1991). The results of Proposition 2 are keys
to compare competing asset pricing models.
The regularization parameter must be chosen in a way such that the bias vanishes as T !1.

In general, as T and N go to 1, if � � 1

T �
; � 2]1

2
; 1[, the rates of convergence of Proposition 2

are satis�ed. In practice, we let the data choose �.

3.4 Choice of the regularization parameter

We rely on a data-driven approach to choose the regularization parameter �. For a given sample
size T , we divide the historic data in two parts. We use the �rst part to estimate 
 and employ
it to predict returns in the second part. We choose a that maximizes the out-of-sample R-square,
R2oos.

R2oos = 1�
(�o2 � �o
̂�)

0
(�o2 � �o
̂�)

�o
0
2 �

o
2

; (13)

where quantity with :o are estimated from the withheld sample.
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4 Tests of equality of HJ distance of two asset pricing
models

We compare two competing models (Models 1 and 2) using their regularized HJ distances. Their
SDFs are de�ned as y1t(�) = 1� (x1t�E[x1t])

0
�1 and y2t(�) = 1� (x2t�E[x2t])

0
�2. x1t = [f

0

1t; f
0

2t]
0

and x2t = [f
0

1t; f
0

3t]
0
are two sets of factors, that are used in Model 1 and Model 2, respectively. fit

is of dimension Ki � 1; : i = 1; 2; 3. �1 = [�
0

11; �
0

12]
0
and �2 = [�

0

21; �
0

22]
0
.

The two corresponding pricing models are respectively

rt = e1 + �1(x1t � E[x1t] + 
1) + �1t; (14)

and

rt = e2 + �2(x2t � E[x2t] + 
2) + �2t;

with �1 = �1
1 and �2 = �2
2. em represents the vector of pricing errors of model m = 1; 2. We
note �2m;m = 1; 2 the HJ distances of the two models.

�2m = �
0

2V
�1
22 �2 � �

0

2V
�1
22 V21;m(V12;mV

�1
22 V21;m)

�1V12;mV
�1
22 �2

Model m is estimated using solely factors in xm.
When K1 = 0, the two models do not share factors. When K2 = 0 or K3 = 0, one of the

models nests the other one. Finally, when K1 > 0; K2 > 0; and K3 > 0, the two models are
non-nested with overlapping factors. We will treat the nested and nonnested cases separately.

4.1 Comparison of nested models

In this section, we assume without loss of generality that K2 = 0. When the models are nested,
the equality of HJ-distances is equivalent to the equality of the SDFs of two models as pointed
out by Kan and Robotti (2009). We de�ne C2 =

�
V12;2V

�1
22 V21;2

��1
and partition it as below

C2 =

�
C2;11 C2;12
C2;21 C2;22

�
:

We assume C�12;22 is a full rank matrix. Kan and Robotti (2009) shows that the di¤erence of HJ
distances (�21 � �22) between the two models is equal to

�21 � �22 = �
0

22C
�1
2;22�22: (15)

The following proposition can be viewed as a generalization of Kan and Robotti (2009) Propo-
sition 2 where N and T are allowed to go to 1 using regularization.
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Proposition 3. Suppose Assumption 1-5 are satis�ed. We have the following results:
1. �21 = �22 if and only if �22 = 0K3

2. Under the hypothesis �22 = 0K3, as T , N go to in�nity and � goes to zero, if � is chosen
such that �T !1 and �2T ! 0,

T (�̂
2

1;� � �̂
2

2;�)
d!

K3X
j=1

�j�
2
j(1)

where �2j(1) are independent chi-square random variables with 1 degree of freedom and �j are

the eigenvalues of V
�b��22�1=2C�12;22V �b��22�1=2 and V �b��22� is the asymptotic variance of b��22:

Remark 8. Proposition 3 implies that we can perform two kinds of tests to compare Model 1 with
factor f1 and Model 2 with factors f1 and f3. On the one hand, we can focus on the SDF parameter
�2 and test H0 : �2 = 0K3 using Proposition 2 in a framework where returns are governed by (14).
On the other hand, we can compute the HJ distance di¤erence of the two models using the same
level of penalization or (15) and use the statistics T (�̂

2

1;� � �̂
2

2;�) to compare them.
The coe¢ cients �j are all nonnegative, hence the test presented in Proposition 3 is a one-sided

test.

4.2 Comparison of non-nested models

In this section, we assume K1 > 0; K2 > 0; and K3 > 0. The two models are non-nested with
overlapping factors. In this case, equality of HJ-distance can be achieved in two cases. The �rst
case corresponds to the setting where the SDFs coincide. The second is when y1 6= y2 but �

2
1 = �22.

Both cases need to be treated separately.

4.2.1 Test of SDFs equality

In this section, we test the equality of the SDFs, y1 = y2. Given the models are non-nested,
the equality of SDFs can be achieved only if the both SDF depend on f1 only. Consider C1 =�
V12;1V

�1
22 V21;1

��1
, partition it as below

C1 =

�
C1;11 C1;12
C1;21 C1;22

�
;

and assume C1;22 is a full rank matrix. The di¤erence between the HJ distances is

�21 � �22 = ��
0

12C
�1
1;22�12 + �

0

22C
�1
2;22�22:

The following proposition outlines the main result.

Proposition 4. Suppose Assumption 1-5 are satis�ed. We have the following result:
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1. y1 = y2 if and only if �12 = 0K2 and �22 = 0K3 and
2. For Tikhonov, under the hypothesis �12 = 0K2 and �22 = 0K3 , as T , N go to in�nity and �

goes to zero, if � is such that �T !1 and �2T ! 0,

T (�̂
2

1;� � �̂
2

2;�)
d!

K3X
i=1

�i�
2
i (1) (16)

where �i are the eigenvalues of V

 "
�̂12
�̂22

#! 1
2 ��C�11;22 0K2�K3

0K3�K2 C�12;22

�
V

 "
�̂12
�̂22

#! 1
2

, and �2i (1) are inde-

pendent �2(1) random variables.

Remark 9. Proposition 4.1. shows that to compare asset pricing models with overlapping factors,
one can test the simultaneous nullity of the coe¢ cients of the common factors (�12 and �22).
In our regularized setting, each parameter can be estimated separately. Their variances given in
Proposition 2 can be used to construct a classic Wald test. This option does not directly test the
nullity of the di¤erence in HJ distances, but the equality of the SDFs of the two models. We
can also realize a test based on the HJ di¤erence using the result (16). The �i may be positive
or negative, hence this test is a two-sided test. Moreover, it may lack of power against certain
alternatives, contrarily to the Wald test which is a consistent test.

4.2.2 Comparison of non-nested models with distinct SDFs

To compare two non-nested models with distinct SDFs (y1 6= y2), one has to rely on the distribution
of the aggregate pricing errors or �2 under misspeci�cation. Hansen, Heaton, and Luttmer (1995)
and Kan and Robotti (2008) have already given the distribution of the HJ distance and the
modi�ed HJ distance when models are misspeci�ed.
Speci�cally Hansen, Heaton, and Luttmer (1995) showed, in the case of gross returns, that

when � 6= 0 p
T (�̂

2 � �2)
d�! N (0; v1)

where v1 = var(
1p
T

TX
t=1

qt), qt = y2t � (yt � � 0rgt )
2 � 2� 01N � �2, and rgt is a N � 1 vector of gross

returns. The term � is the Lagrange multiplier (� = E[rgt r
g0

t ]
�1(E[rgt yt]�1N)) of the unconstrained

HJ distance saddle problem of Hansen and Jagannathan (1997).
Kan and Robotti (2008) adapted the results for the case of excess returns. They showed that

the modi�ed HJ distance has the following distribution

p
T (�̂

2 � �2)
d�! N (0; v2)

where v2 = var(
1p
T

TX
t=1

qmt ) and q
m
t = y2t � (yt� �

0
(rt� �2))2+2�

0
�2� �2 with � is the Lagrange
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multiplier (� = V �1
22 E[rtyt]) of problem (6).

It is worth noticing that the distribution of the distance does not need to take into account
the uncertainty brought forth by the estimation of the Lagrange multiplier �.
Below, we give the distribution of the penalized HJ distance when models are misspeci�ed. To

do so, we exploit the following expression of the penalized HJ distance (�2p) derived from Section
3.2:

�2p = max
�12RN

E
�
qPt (�1)

�
;

where qPt (�1) = y2t � (yt � �
0

1(
rt
N
� �2
N
))2 + 2�

0

1

�2
N
+  (�1) and  : RN ! R is a concave function

representing the penalty, namely  (�1) = �� k �1 k2N for Ridge and  (�1) = �� k �1 k2N;��1 for
Tikhonov.

Assumption 6. For 0 < � <1, qPt (�1) is di¤erentiable on an open set N of �1� and

E

�
sup
�12N

k rqPt (�1) k<1
�
.

The previous assumption ensures the interchangeability between integration and di¤erentiation
for any 0 < � <1.

Proposition 5. Let �̂
2

� be the regularized Hansen-Jagannathan distance with Ridge or Tikhonov
regularization. Suppose Assumption 1-5 are satis�ed and � 6= 0. As T , N go to in�nity and � goes
to zero, �T !1; and �2T ! 0,

p
T
�
�̂
2

� � �2
�

d�! N (0; v4);

where

v4 = lim
N;T!1

1X
j=�1

E (ltlt�j) ;

and lt = 2yt�
0

1

~rt
N
� �1

~rt~r
0
t�1
N2

� E

�
2yt�

0

1

~rt
N
� �1

~rt~r
0
t�1
N2

�
= 2yt~ut � ~u2t � �2 + 2

�
0
1�2
N

+  (�1) ; ~ut =

~r
0
��1e=N; and �1 = ��1e:

Proposition 5 gives the distribution of the penalized HJ distance using the errors. The asymp-
totic variance v4 can be estimated using a HAC estimator and replacing lt by blt :

blt = 2ytbut � bu2t � �̂
2
+ 2

�̂
0

1�̂2
N

+  (�̂1)

where but = b� 01ert=N , �̂1 = ��1� be; and be =X
t

rtyt=T:

It can be used to compare two asset pricing models as presented in the following proposition.
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Proposition 6. Let �̂
2

� be the regularized Hansen-Jagannathan distance with Ridge or Tikhonov
regularization. Suppose Assumption 1-5 are satis�ed, y1 6= y2, and �

2
1; �

2
2 6= 0. As T , N go to

in�nity and � goes to zero, if � is chosen such that �T !1 and �2T ! 0,

p
T
�
(�̂
2

1� � �̂
2

2�)� (�21 � �22)
�

d�! N (0; v5);

where

v5 = lim
N;T!1

var

"
1p
T

TX
t=1

�
~l1t � ~l2t

�#
;

where ~lM;t = 2yM;t�
0

1

~rt
N
� �

0

M;1

~rt~r
0
t

N2
�M;1 � E

�
2yM;t�

0

1

~rt
N
� �

0

M;1

~rt~r
0
t

N2
�M;1

�
for M = 1; 2. yM;t is

the SDF of modelM and �M;1 = �
�1eM;where eM represents the pricing errors of modelM.

When using Proposition 6 to compare two asset pricing models, one should use the same value
of the regularization parameter. We can use Proposition 6 to construct a Wald test of H0 : �

2
1 = �22,

W = T
�
�̂
2

1� � �̂
2

2�

�2 bv�15 , where bv5 is a HAC estimator of v5:
4.3 Multiple comparison

In this section, we present a comparison test of multiple models. The test is based on the work
of Wolak (1989), see also Gospodinov, Kan, and Robotti (2013). Suppose we have p + 1 models
with HJ distance given by �i; i = 1; : : : ; p+1. We are interested in testing whether a benchmark
model (model 1) has an aggregate pricing errors as low as the other p models. Let di = �21��2i ; i =
2; : : : ; p+1 be the di¤erence between the HJ distance of the benchmark and the remaining models
and d =

�
d2 � � � dp+1

�
. The null hypothesis of the test is H0 : d � 0p. To have the same

framework as Wolak (1989), we rely on the fact that as N; T !1 and �! 0,

p
T (d̂� � d)

d! N (0p;
d)

using Proposition 6. The latter is valid only when the models are misspeci�ed, that is �i > 0; and
the models have distinct SDFs. The test uses the sample counterpart of d, d̂� =

�
d1� � � � dp+1�

�
for a given value of �. Let ~d� be the optimal solution of the following quadratic programming
problem

min
d
(d̂� � d)

0

̂�1d;�(d̂� � d) s:t: d � 0p;

where 
̂d;� is a consistent estimator of 
d when N; T ! 1 and � ! 0. The likelihood ratio
statistic of the null hypothesis is

LR� = T (d̂� � ~d�)
0

̂�1d;�(d̂� � ~d�): (17)

The distribution of the previous statistics is obtained under the least favorable value, i.e.
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d = 0. We have LR�
d!

pX
i=0

wp�i(
d)�
2(i), where the weights wi sum up to one1 and �2(i) are

independent Chi-square random variables with i degrees of freedom.

5 Monte Carlo Simulations

In this section, we run several Monte Carlo simulations to showcase the value of the regularization
schemes described previously. We describe the approach used to generate misspeci�ed linear asset
pricing model with parameters calibrated to data. We generate the excess returns and factors

from a multivariate normal distribution with mean � and covariance V , where � = E

�
ft
rt

�
=

�
�1
�2

�
and V = V ar

�
ft
rt

�
=

�
V11 V12
V21 V22

�
. Without loss of generality we set �1 = 0. We use the framework

of Gospodinov, Kan, and Robotti (2013) and choose �2 such that the model is misspeci�ed. The
pseudo-true SDF parameter �HJ associated with the SDF yt = 1� f

0

t� is given by

�HJ = (V
0

21V
�1
22 V21)

�1V
0

21V
�1
22 �2:

So, we have the following �rst-order condition V
0

21V
�1
22 (V21�HJ � �2) = 0: We set �2 = V21�HJ + z,

where z is N � 1 vector of constants. This implies that the �rst order condition is V 0

21V
�1
22 z = 0:

A convenient choice of z is ê = �̂2 � V̂
0

21(V̂
0

21V̂
�1
22 V̂21)

�1V̂
0

21V̂
�1
22 �̂2 because V̂

0

21V̂
�1
22 ê = 0:

Without loss of generality, assume that ft =
�
f1t
f2t

�
; where f1t and f2t are K1 � 1 and K2 � 1

vector with K1 +K2 = K. In order to verify the size of the test H0 : �HJ;1 = 0K1, where �HJ;1 is
the SDF parameter of the �rst K1 factors, we can choose

�HJ =

�
0K1

(V
0

21;cV
�1
22 V21;c)

�1V
0

21;cV
�1
22 �2

�
:

In the previous expression, V21;c = E[rtf
0

2t] is a N �K2 matrix.
The parameters of the generated returns �2 and V are calibrated using a monthly dataset of

252 combined portfolios going from 1964 to 2019 extracted from the Kenneth French�s Website.
We remove portfolios with missing values. The portfolios list is presented in Table 8 in Appendix.

5.1 SDF parameter estimates

In this section, we analyze the small sample properties of the SDF parameter test. In the latter,
we are interested in testing whether a particular factor is priced in the returns (similar to a t-test).

1Appendix C of Gospodinov, Kan, and Robotti (2013) gives the procedure to compute wi(
d) and the p-value
of the test.
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This corresponds to testing whether a SDF parameter is null. We compare the small-samples size
properties of our test with the one in Kan and Robotti (2008) using (4).
We simulate the three factor model of Fama and French (1993) (FF3), where the risk factors

are the market excess return (rmkt), the return di¤erence between portfolios of small and large
stocks (rSMB), and the return di¤erence between portfolios of high and low book-to-market ratios
(rHML). The SDF is written as below

y = 1� �mkt (rmkt � E [rmkt])� �SMB (rSMB � E [rSMB])� �HML (rHML � E [rHML]) :

We also simulate the durable consumption CAPM (DCCAPM) of Yogo (2006) with the excess
market return, the log consumption growth rate of non-durable goods (�cndur) and the log con-
sumption growth rate of the stock of durable goods (�cdur) as risk factors. The SDF of the model
is

y = 1� �mkt (rmkt � E [rmkt])� �ndur (�cndur � E [�cndur])� �dur (�cdur � E [�cdur]) :

Finally, we simulate a polynomial type of model used in Dittmar (2002). The SDF of the
model is given by

y = 1� �mkt (rmkt � E [rmkt])� �mkt;2
�
r2mkt � E

�
r2mkt

��
� �mkt;3

�
r3mkt � E

�
r3mkt

��
For each model, we ran the following simulation: we generate data with expected return such

that the model is misspeci�ed, and one of the factors is not priced and estimate a full model with
it. After running 10000 simulations, we compute the empirical level and power of the test. We
set N = 251 and T = 150, 350, and 650. For all the models, the theoretical HJ distance is around
1.02.
Table 1 reports the empirical size of the SDF parameter test using the approach of Kan and

Robotti (2008). We use the Moore-Penrose inverse of the covariance matrix when N > T . For the
FF3 model, we noticed that the SDF parameter of the factors keep their theoretical size. For the
durable consumption CAPM, the tests concerning the macroeconomic factors represented by the
durable and nondurable consumption growth rate are oversized for all values of T . The same size
distortion is observed for the polynomial model. The over-rejection of the macroeconomic variable
is pervasive (see Gospodinov, Kan, and Robotti (2014)). Therefore, we can conclude that taking
the generalized inverse does not guarantee appropriate test behavior when N is large.
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Table 1: Empirical size of Kan and Robotti (2008) test with 252 assets
T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Fama-French three factors model

�mkt �SMB �HML

150 0.101 0.048 0.010 0.102 0.050 0.010 0.104 0.051 0.010

350 0.094 0.048 0.009 0.098 0.048 0.009 0.098 0.048 0.009

650 0.095 0.049 0.009 0.097 0.048 0.009 0.097 0.048 0.009

Panel B: Linear durable consumption CAPM of Yogo (2006)

�mkt �ndur �dur

150 0.133 0.072 0.017 0.478 0.395 0.256 0.474 0.394 0.253

350 0.126 0.067 0.017 0.269 0.185 0.082 0.267 0.182 0.078

650 0.109 0.056 0.012 0.131 0.070 0.016 0.134 0.072 0.020

Panel C: Nonlinear model of Dittmar (2002)

�mkt �mkt;2 �mkt;3

150 0.371 0.28 0.154 0.458 0.373 0.235 0.453 0.371 0.229

350 0.241 0.16 0.06 0.248 0.172 0.069 0.255 0.175 0.075

650 0.151 0.087 0.021 0.132 0.069 0.017 0.136 0.072 0.019

We use the Tikhonov regularization, through Proposition 2, to implement our t-test. We
choose the value of alpha, between 0.001 and 0.1, which maximizes the out-of-sample R2 : we use
half of the sample as training data and the remaining as test data. Particularly, we choose the
smallest value of � for T = 650. Table 1 presents the empirical size of the t-test for the factors in
each simulated model. For FF3 (Panel A), we notice that the rejection rate is always close to their
theoretical level. In addition, the Tikhonov regularization is able to correct the over-rejection of
the t-test in the consumption (Panel B) and nonlinear model (Panel C).
We now turn our attention to the empirical power of our t-test. Table 2 presents the rejection

rate of the factors when their SDF parameter is non null. For the FF3 (Panel A), the rejection
rate of the market (rmkt) and HML factor reach more than 50% when T = 350. The power is
approaching 1 when T = 650. However, the SMB factor requires much more time series data
to reach an acceptable power level, still lower than the level seen with the market and the value
factor. For the durable consumption CAPM (Panel B), except for the market factor, power is
lower compared to the FF3. The market factor has a higher rejection rate than the macroeconomic
factors.
The low power can be attributed to the strength of the factor, i.e. the number of portfolios�

returns signi�cantly correlated with the factor. A low correlation between factor and returns
induces a low � and a bigger variance through the inverse of �

0
��1�. Using an average of 442

individual securities and 145 factors, Bailey, Kapetanios, and Pesaran (2021) show that more than
60 percent of the factors are not signi�cantly correlated to more than 55 percent of the securities.
This aspect needs to be taken into account in future work.
For the cubic model (panel C), the rejection rate of the t-test is better than in the consumption

21



model. The market has the highest power followed by its square and cubic counterpart.

Table 2: Empirical size of Tikhonov test under misspeci�cation with 252 assets
T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Fama-French three factors model

�mkt �SMB �HML

150 0.099 0.047 0.008 0.109 0.056 0.010 0.100 0.049 0.010

350 0.102 0.051 0.010 0.125 0.068 0.016 0.111 0.059 0.013

650 0.100 0.051 0.009 0.114 0.060 0.013 0.123 0.070 0.015

Panel B: Linear durable consumption CAPM of Yogo (2006)

�mkt �ndur �dur

150 0.084 0.037 0.006 0.053 0.021 0.002 0.056 0.022 0.002

350 0.095 0.044 0.008 0.087 0.041 0.007 0.084 0.039 0.007

650 0.111 0.059 0.011 0.078 0.036 0.005 0.081 0.038 0.006

Panel C: Nonlinear model of Dittmar (2002)

�mkt �mkt;2 �mkt;3

150 0.079 0.036 0.006 0.062 0.025 0.002 0.066 0.026 0.003

350 0.111 0.055 0.010 0.107 0.052 0.010 0.110 0.057 0.012

650 0.091 0.047 0.009 0.118 0.060 0.012 0.085 0.037 0.006

Table 3: Empirical power of Tikhonov test under misspeci�cation with 252 assets
T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Fama-French three factors model

�mkt �SMB �HML

150 0.518 0.385 0.168 0.122 0.064 0.015 0.448 0.323 0.133

350 0.822 0.729 0.493 0.163 0.097 0.025 0.763 0.651 0.403

650 0.968 0.936 0.814 0.301 0.195 0.071 0.957 0.915 0.775

Panel B: Linear durable consumption CAPM of Yogo (2006)

�mkt �ndur �dur

150 0.309 0.200 0.063 0.066 0.028 0.003 0.062 0.025 0.002

350 0.471 0.355 0.165 0.109 0.058 0.011 0.107 0.053 0.010

650 0.805 0.706 0.470 0.098 0.049 0.010 0.173 0.095 0.023

Panel C: Nonlinear model of Dittmar (2002)

�mkt �mkt;2 �mkt;3

150 0.441 0.351 0.190 0.091 0.044 0.006 0.086 0.039 0.007

350 0.482 0.406 0.259 0.185 0.105 0.027 0.188 0.108 0.026

650 0.896 0.829 0.636 0.484 0.347 0.147 0.224 0.138 0.042
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5.2 Model comparison tests

In this section, we investigate the �nite sample behavior of the pairwise and multiple comparison
tests. Table 4 presents the results.
Panel A presents the tests developed in Proposition 4. The latter tests the equality of two

non-nested SDFs. The simulated data are from FF3 and the nonlinear models. To evaluate
the size, we set the mean of the returns such that the non-overlapping factors have null SDF
parameters and the two models are misspeci�ed. Then, we estimate each model. The Wald test
uses the estimated parameters as well as the variance from Proposition 2 to see whether the non-
overlapping factors have null SDF parameter, while the Weighted �2 test uses (16). To analyze the
power, we set the SDF parameters of the non-overlapping factors to non-null values and repeat the
tests. The regularization parameter lies between 0:001 and 0:1. We choose � by running a single
model with all the factors and using (13). The results show that the two tests exhibit perfect size
control despite the squared and cubic market variable. This would not be the case if one uses
the approach of Kan and Robotti (2008) as the test overrejects for the polynomial factors. In
addition, the empirical power is high.
Panel B presents the test of equality of the HJ distances of two models when y1 6= y2. The test

uses the statistic of Proposition 6. To evaluate the size of the test, we simulate two misspeci�ed
models with three factors. The two models have rSMB and rHML. For each model, we add the
market factor rmkt plus a normally distributed error mean 0 and variance 20% of the market
variance. This guarantees that the models have di¤erent SDFs and the same HJ distance of 1.026.
To evaluate the power, we simulate a misspeci�ed model with the durable consumption factor
and a FF3 model. The durable consumption model has a HJ of 1.042. We observe that the
test is very conservative. This is not the case when N is small as shown in Gospodinov, Kan,
and Robotti (2013). On the other hand, it is able to detect the di¤erence between the durable
consumption and the FF3 model. One must keep in mind that when comparing models, it is
essential to use the same penalization value. A small value of penalization provides maximum
power without compromising size, while a larger value diminishes it. This comes from the fact
that as the penalization increases the regularized HJ of the compared models decreases.
Panel C shows the �nite sample behavior of the comparison test of multiple models. The test

uses the statistic (17). To evaluate the size, we repeat the same process as in Panel B. For p = 1,
we use two FF3s and for p = 2, three FF3s. To evaluate the power, we simulate a model with
the durable consumption factor (benchmark) and a FF3 for p = 1. For p = 2, we use the model
with durable consumption factor (benchmark), the FF3 and the nonlinear model. The latter has
a squared HJ distance of 1.029. We employ the � of the benchmark model to run the tests. The
results show that the Wolak test is conservative and exhibits high empirical power. Particularly,
the pairwise test (p = 1) has a higher empirical power than the Normal pairwise test of Panel B.
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Table 4. Model comparison tests
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Pairwise tests of equality of two SDFs

Wald test Weighted �2 test

Size Power Size Power

150 0.039 0.012 0.001 0.207 0.115 0.026 0.067 0.031 0.004 0.261 0.169 0.055

350 0.082 0.036 0.005 0.567 0.425 0.191 0.093 0.045 0.008 0.504 0.396 0.207

650 0.106 0.055 0.010 0.901 0.830 0.625 0.104 0.052 0.010 0.774 0.702 0.522

Panel B: Normal pairwise test of equality of two HJ distances

Size Power

150 0.002 0.000 0.000 0.146 0.042 0.002

350 0.009 0.001 0.000 0.473 0.251 0.029

650 0.032 0.008 0.000 0.828 0.675 0.260

Panel C: Multiple comparison test (Wolak test)

Wolak test (p=1) Wolak test (p=2)

Size Power Size Power

150 0.012 0.002 0.000 0.358 0.137 0.007 0.000 0.000 0.000 0.206 0.061 0.002

350 0.036 0.007 0.000 0.706 0.433 0.076 0.028 0.004 0.000 0.563 0.296 0.031

650 0.061 0.015 0.000 0.925 0.825 0.434 0.034 0.01 0.000 0.869 0.724 0.292

6 Empirical application

For the empirical application, we consider the Fama and French (1993) model (FF3), the durable
consumption CAPM of Yogo (2006), and the nonlinear model of Dittmar (2002) as before, plus
the Fama and French (2015) model (FF5). The latter add two new factors to the FF3: the
pro�tability and investment factors. These two factors are built similarly to the value factor
in FF3. The pro�tability factor (Robust Minus Weak) is the di¤erence between the return on
the robust operating pro�tability portfolios minus the return on the weak operating pro�tability
portfolios. The investment factor (Conservative Minus Aggressive) is the di¤erence between the
return on the low investment portfolios (conservative) minus the return on the high investment
portfolios (aggressive).
For this analysis, we combined 252 portfolios formed on the �rm characteristics such as size,

book-to-market, market beta, size, operational pro�tability, investment, earning/price ratio, cash-
�ow/price ratio, dividend yield, and industries. These portfolios are from Kenneth French�s web-
site. Table 8 of the appendix presents the details of these portfolios. We estimate the SDF
parameters of the four models and then compare their pricing performances. It is essential to keep
the same level of penalization to compare the models. We use a penalization level of 0.001 as the
simulations show it is adequate.
Table 5 presents the estimation of the SDF parameters of the four models. For the FF3, we
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note that the market and the value factors are the only priced variables. Their SDF parameters are
non-null with a con�dence of 5%. For the consumption model of Yogo, the consumption variables
are not priced in the SDF. This model has an aggregate pricing error higher than FF3. For the
nonlinear model, no factor exhibits signi�cant SDF parameters, and the level of pricing errors
is similar to that of Yogo. Finally, in the FF5 model, the size factor is signi�cant. In addition,
the pro�tability and investment patterns are priced. However, the value factor disappears. This
outcome is in line with the results of Fama and French (2015), who argue that the value factor is
redundant as the model with the �ve factors does not improve upon the model with just the four
factors without HML. The model exhibits the lowest pricing errors.

Table 5: SDF parameter estimates under a misspeci�ed setting
FF3 YOGO

Factors �mkt �SMB �HML �mkt �ndur �dur

SDF 0.034*** 0.016 0.051** 0.025*** 0.348 0.507

t-ratio 2.807 1.063 2.541 2.226 0.575 0.646

HJ 0.123 0.139

Nonlinear model

Factors �mkt �mkt;2 �mkt;3

SDF -0.033 0.066 0.273

t-ratio -0.263 0.243 1.063

HJ 0.138

FF5

Factors �mkt �SMB �HML �RMW �CMA

SDF 0.046*** 0.037** 0.009 0.086*** 0.077**

t-ratio 3.806 2.118 0.321 2.888 2.138

HJ 0.100

���,��,� indicate that the null hypothesis of unpriced source of risk is rejected at the 1%, 5%, and 10% levels.

We also examine whether the models exhibit di¤erent explanatory power, assessed through
the HJ distance. To achieve this, we initially perform pairwise comparison tests utilizing the
distribution of the squared HJ distance when N is large. Table 6 presents the results of the
tests. The results can be summarized as follows: FF3, YOGO, and the nonlinear model show no
statistically signi�cant di¤erences in pricing performance, as indicated by the high p-values for
the di¤erences in squared HJ distance. Meanwhile, FF5 outperforms all other models. We also
augment the basic cubic model with the return on human capital (rlt) as in Dittmar (2002). The
latter is a two-month moving average of the growth rate in labor income:

rlt =
Lt�1 + Lt�2
Lt�2 + Lt�3

� 1;
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where Lt is the per capita labor income (di¤erence between total personal income and dividend
payments divided by the total population). Speci�cally, we include cubic polynomial expressions
of rlt. This model does not outperform the others in pricing. FF5 dominates it, though the
evidence is now weaker, with a p-value of 0.07.

Table 6: Tests-of-RHJ-Pairwise HJ distance comparison tests
YOGO Nonlinear Nonlinear with FF5

human capital

FF3 -0.020 -0.015 -0.011 0.023

(0.280) (0.278) (0.537) (0.069)

YOGO 0.0010 0.0039 0.039

(0.920) (0.820) (0.019)

Nonlinear 0.003 0.038

(0.780) (0.040)

Nonlinear with -0.035

human capital (0.073)
P-values are in brackets.

Finally, we implement the multiple model comparison of Wolak (1989). The test compares the
squared HJ distance of a benchmark model against the squared HJ distance of two or more models.
In turn, we consider each model as a benchmark and compare it against the others. For each test,
we remove alternative models nested by the benchmark model as H0 is veri�ed by construction
(the benchmark has already lower pricing errors (HJ)). Within the remaining alternatives, we also
remove models nested by others. Finally, we remove alternative models that nest the benchmark
as the asymptotic normality assumption on di does not hold under the null of di = 0. For example,
to compare the FF3 against the other models, we remove FF5 from the alternative.
Table 7 presents the results of these comparisons. Each line represents the benchmark model.

For FF3, the p-value of 0.6 suggests that its pricing performance is not signi�cantly di¤erent from
the alternatives (YOGO and the nonlinear model). For YOGO and the nonlinear model, the low
p-values indicates that these models are dominated by one of the alternatives. Finally, the null
hypothesis cannot be rejected for FF5. In conclusion, the FF5 dominates FF3, YOGO and the
nonlinear models.

Table 7: Multiple model comparison tests
Benchmark p� 1 �̂

2

� LR p-value

FF3 2 0.123 0.399 0.601

YOGO 2 0.139 2.744 0.025

Nonlinear 2 0.138 2.105 0.042

Nonlinear with 2 0.135 1.608 0.077

human capital

FF5 2 0.100 0.4166 0.5834
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7 Conclusion

In this paper, we develop a measure of model misspeci�cation when many assets are involved.
Speci�cally, we use Tikhonov and Ridge regularizations to extend the HJ distance. Our approach
consists of �nding the distance between the empirical SDF proposed by the researcher and the clos-
est valid SDF that prices the returns with errors. The latter depends on a regularization parameter
that we choose using a data-driven technique through the out-of-sample R2. The regularization
permits to stabilize the inverse of the covariance matrix. Consequently, the SDF parameter can
always be estimated as the minimum of the regularized Hansen-Jagannathan distance even if N
is greater than T .
We also propose several comparison tests that used the regularized distance. These tests

compare the explanatory power of asset pricing models. As the paper focused on linear asset
pricing models, we have analytical formulas that can be simply implemented. We run extensive
Monte Carlo simulations to gauge the �nite sample behavior of the various tests. They show
that our regularization method corrects the oversized nature of the classical tests proposed in the
literature when the number of assets is large.
There is room for improvement. There is a need to develop tests adapted to factors that

tend to have a low correlation with the returns. In addition, the methods proposed here are
only applicable to linear asset pricing models. So, inference on nonlinear models represents an
interesting extension. HJ distance is based on the second moment, it would be interesting to
consider other discrepancy measures based on higher moments as in Almeida and Garcia (2012).

8 Appendix A: Short review on regularization

A regularization method replaces the explosive eigenvalues of ��1,
1

�j
; j = 1; � � � ; N by

q(�; �j)

�j
,

where q : (0;+1)� (0;max
j
�j)! R+ is a bounded damping function such that

1. j q(�; �)
�

j< c(�) for all �;

2. lim
�!0

: q(�; �)! 1 for any given �:

� is the regularization parameter and the expression of q(�; �j) depends on the regularization
scheme considered. Taking into account the damping function, the general expression of the
regularized weighting matrix noted (��1� ) is given by

��1� Y =
NX
j=1

q(�; �j)

�j
< Y; �j >N �j

where Y is a conformable vector.
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We consider two types of function q(�; �j).

1. Ridge regularization

In this regularization, �j = �j and the damping function is given by the following expression:

q(�; �j) =
�j

�j + �
:

This is the same as replacing the matrix ��1 by ��1� = (� + �IN)
�1.

2. Tikhonov regularization

It consists of replacing �j by �
2
j . In addition, the damping function is

q(�; �2j) =
�2j

�2j + �
:

The method consists in replacing ��1 by ��1� = (�2 + �IN)
�1�.

9 Appendix B: Proofs

9.1 Proof of lemma 1
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comes from the fact j tr(AB) j� trAtrB when A and B are positive semi-de�nite matrices (see

Bernstein (2009) ). As a result, tr(
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We can conclude that

tr(E[
rtr

0
t

N
]) = E[k rt kN ] = O(1):

For the mean of the returns , �2 = e+ �
. Therefore,

tr(�2�
0

2) = tr(ee
0
) + tr(�
e

0
) + tr(e


0
�
0
) + tr((�
)(�
)

0
):

Using the same arguments as before, we have tr(
�2�

0
2

N
) = O(1):

Therefore tr(�) = O(1). Hence the result.

9.2 Proof of Proposition 1

We transform the primal problem to be able to use the Fenchel-Rockafellar Duality. See Chapter
15 of Bauschke and Combettes (2017) or Borwein and Lewis (1992) as well as Korsaye, Quaini,
and Trojani (2019).

De�ne X =

242rN
2

35.
Let fy : L2 ! R be the function de�ned by fy(x) = E[(x � y)2] and A : L2 ! RN+1 be the

operator such that A(m) = E[mX].
Let g : RN+1 ! (�1;+1] be de�ned by g(x) = h(x1) + �f2g(x�1) where x = (x

0

1; x�1)
0 2

RN � R, �f2g is the characteristic function of the set f2g, i.e

�f2g(x) =

(
0 if x = 2

1 otherwise

and h(x) =
N

4�
k x k2.

Problem (7) can be rewritten as

�2R = inf
m2L2

ffy(m) + g(A(m))g :

It is straightforward to see that g is a convex function. Moreover, fy is convex as x 7! x2 is
convex and A is bounded. From Theorem 4.2 of Borwein and Lewis (1992), strong duality holds
if (ri dom(g))

\
(riA(dom(fy))) 6= ;.2

The previous condition is met when Assumption 4 is satis�ed. As 9m0 2 L2, E(m0�y)2 <1 ,
m0 2 dom(fy), and A(m0) 2 riA(dom(fy)). In addition, because E [2m0] = 2 and k E[m0r] k2N<

2For a convex set S � RN , ri S is its relative interior. The latter is the interior with respect

to the a¢ ne hull of S, aff S. Speci�cally, ri S =
n
x 2 S : B�(x)

\
aff S � S

o
; where aff S =

f�1x1 + � � �+ �kxk : x1; : : : ; xk 2 S; �1 + � � �+ �k = 1g and B�(x) =
�
y 2 RN :k y � x k< �

	
.
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1, g(A(m0)) =
N

4�
k E[m

2r

N
] k2= 1

�
k E[m0r] k2N< 1 and A(m0) 2 ri dom(g). Finally,

(ri dom(g))
\
(riA(dom(fy))) 6= ;.

The previous result implies that

�2R = � min
�2RN+1

�
f �y (�A�(�)) + g�(�)

	
;

where f �y and g
� are the conjugate functions of fy and g respectively and A� is the adjoint of A.

Let us determine the relevant conjugate functions.

f �y (z) = E

�
sup
w2L2

: zw � (w � y)2
�
= E

�
zy +

1

4
z2
�
3, A� : RN+1 ! L2 and A�(�) = X

0
�.

Finally g�(�) = h�(�1) +�
�
f2g(�2) as � and h are two independent functions. Their conjugates are

given by ��f2g(�2) = sup
x2f2g

x�2 = 2�2 and h�(�1) =
�

N
k �1 k2.4

So, g�(�) = 2�2 +
�

N
k �1 k2.

Therefore
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Now, we use the fact that E[y] = 1. As a result,
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�
0
1r�2
N

� �

N
k �1 k2

�
;

which is the penalized version of (9). The resulting �1 is given by

�1 = (� + �I)
�1e = ��1� e

and �2R = e0��1� e:

We can do the same for Tikhonov by setting h(x) =
N

4�
k x k2� . The latter can be rewritten as

h(x) =
N

2�
n(x), where n(x) =

1

2
k x k2�. Therefore the convex conjugate of h is h�(z) =

N

2�
n�(

z
N
2�

).

n�(z) = sup
w2RN

�
w
0
z � w

0
�w

2

�
:

3This comes from the de�nition of the functional conjugate of a convex function p.196 of Luenberger (1969) and
the use of Riesz Theorem in the L2 space equipped with the usual inner product.

4To determine the conjugate of h, note that the conjugate of
1

2
k x k2 is still 1

2
k x k2 . In addition, if

f(x) = ag(x) + b, then f�(x) = ag�(
x

a
) + b.
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The expression in brackets is maximized at w = ��1z. Therefore, n�(z) =
z
0
��1z

2
. As a result,

h�(z) =
�

N
k x k2��1 :

9.3 Proof of Proposition 2

The proof of Proposition 2 uses the following lemmas.

Lemma 2. Suppose Assumptions 2 and 5 are satis�ed. Then, k �0 �F k2F= Op(NT ); where � is a
T �N matrix with (t,i) element �ti.

Proof of Lemma 2.
We note Y�f;t = �t �f

0

t .
First,

E[k �
0 �F

T
k2F ] = E

24tr
8<:
 
1

T

TX
t=1

�t �f
0

t

!0  
1

T

TX
t=1

�t �f
0

t

!9=;
35

= E

"
tr

( 
1

T 2

TX
t=1

Y
0

�f;tY�f;t +
1

T 2

TX
t6=s

Y
0

�f;tY�f;s

!)#

=
1

T
E
h
tr(Y

0

�f;1Y�f;1)
i
+
2

T

TX
l=1

(1� l

T
)E
h
tr(Y

0

�f;1Y�f;1+l)
i

We have

trE[Y
0

�f;tY�f;t] = E[tr( �ft�
0

t�t
�f
0

t )]

= trE[ �f
0

t
�ft�

0

t�t]

From Cauchy-Schwarz, j E[ �f 0t �ft�
0

t�t] j�
q
E[k �ft k4]E[k �t k4] = O(N). Therefore,

1

T
E
h
tr(Y

0

�f;1Y�f;1)
i
= O(

N

T
).

Using Davydov�s inequality (Davydov (1968), Rio (1993)) 5 (with q = r = 2 + �),

5For any positive real numbers p, q, r such that
1

p
+
1

q
+
1

r
= 1, the covariance between two r.vs X and

Y is bounded as follows: cov(X;Y ) � 12�(�(X); �(Y ))
1
pE [j X jq]

1
q E [j Y jr]

1
r , where �(X) is the sigma algebra

generated by X and � is the strong mixing coe¢ cient.
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trE
h
(Y

0

�f;1Y�f;1+l)
i
=

NX
i=1

KX
k=1

E
��
�fk1�i1

� �
�fk1+l�i1+l

��
=

NX
i=1

KX
k=1

cov( �fk1�i1; �fk1+l�i1+l)

� 12
NX
i=1

KX
k=1

�x(l)
�

2+�E[( �fkt�it)
2+�]

2
2+� :

As a result,

2

T

TX
l=1

(1� l

T
)E
h
tr(Y

0

�f;1Y�f;1+l)
i
� 24

T

NX
i=1

KX
k=1

E[( �fkt�it)
2+�]

2
2+�

TX
l=1

(1� l

T
)�x(l)

�
2+�

� 24

T

NX
i=1

KX
k=1

E[( �fkt�it)
2+�]

2
2+�

TX
l=1

l�x(l)
�

2+� :

FromAssumption 22, and Cauchy-Schwarz, j E[( �fkt�it)2+�] j� E[ �f 4+2�kt ]
1
2E[�4+2�it ]

1
2 � c

1
2E[ �f 4+2�kt ]

1
2 .

So,
2

T

TX
l=1

(1� l

T
)E
h
tr(Y

0

�f;1Y�f;1+l)
i
= O(

N

T
):

Hence, E[k �
0 �F

T
k2F ] = O(

N

T
): In conclusion,

k �0 �F k2F= Op(NT ):

Lemma 3. Suppose Assumptions 2 and 5 are satis�ed. Then, k �̂ � � k2F= Op(
N

T
).

Proof of Lemma 3. Using the fact that k �0 �F k2F= Op(NT ), we have

k
�
�̂ � �

�
k2F = k �

0 �F

T
V̂ �1
11 k2F

= k �
0 �F

T
V �1
11 +

�
0 �F

T
(V̂ �1
11 � V �1

11 ) k2F

� k �
0 �F

T
V �1
11 k2F + k

�
0 �F

T
(V̂ �1
11 � V �1

11 ) k2F

� k �
0 �F

T
V �1
11 k2F + k

�
0 �F

T
k2F : k V̂ �1

11 � V �1
11 k2F

= Op(
NT

T 2
) +Op(

NT

T 2
:
1

T
)

= O(
N

T
):
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Therefore,

k
�
�̂ � �

�
k2F= Op(

N

T
)

Lemma 4. For k = 1; � � � ; K,



�̂k � �k





N
= Op(

1p
T
)

Proof As k �̂ � � k2F= Op(
N

T
), we have

1

N
tr
h
(�̂ � �)

0
(�̂ � �)

i
= Op(

1

T
).

(�̂ � �)
0
(�̂ � �) =

KX
k=1

((�̂k � �k)(�̂k � �k)
0
):

As a result,

1

N
tr

"
KX
k=1

((�̂k � �k)(�̂k � �k)
0
)

#
=

KX
k=1

k �̂k � �k k2N= Op(
1

T
)

In conclusion, k�̂k-�kkN = Op(
1p
T
).

Lemma 5. Under Assumption 3, we have the following result:

k �̂�1� �̂k � ��1�k k2N= Op(
1

�T
) +O(�2):

Proof of Lemma 5. We follow the proof of Lemma 3 of Carrasco (2012).
We have the following decomposition.

k �̂�1� �̂k � ��1�k k2N � 3 k �̂�1�
�
�̂k � �k

�
k2N (18)

+ 3 k
�
�̂�1� � ��1�

�
�k k2N

+ 3 k
�
��1� � ��1

�
�k k2N (19)

So,

k ��1� � k2N =

1X
j=1

q(�; �2j)
2

�2j
(�j; �)

2
N

� sup
j

q(�; �2j)
2

�2j
k � k2N

� sup
j

q(�; �2j)

�2j
� 1

�
:

Therefore, (18) is OP (
1

�T
).
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Let � = ��1� �k. For (19), we have

k
�
�̂�1� � ��1�

�
�k k2N = k �̂�1�

�
�̂� � ��

�
� k2N

� k �̂�1� k2opk
�
�̂� � ��

�
� k2N ;

where k ��1� kop= sup
k�kN�1

k ��1� � kN and

��Y =
X
j=q 6=0

�j

q(�; �2j)



�j; Y

�
N
�j

is the generalized inverse of ��1� .

We rewrite
�
�̂� � ��

�
� as follows

(�̂� � ��)� = (�̂� �)�+ (�̂� � �̂)�+ (�� ��)�

= (�̂� �)�+
X
j=q 6=0

�̂j

 
1� q(�; �̂

2

j)

q(�; �̂
2

j)

!D
�̂j; �

E
N
�̂j

+
X
j=q 6=0

�j

 
q(�; �2j)� 1
q(�; �2j)

!

�j; �

�
N
�j:

Therefore,

k (�̂� � ��)� k2N � 3 k (�̂� �)� k2N

+3
X
j=q 6=0

�̂
2

j

 
1� q(�; �̂

2

j)

q(�; �̂
2

j)

!2 D
�̂j; �

E2
N

+3
X
j=q 6=0

�2j

 
q(�; �2j)� 1
q(�; �2j)

!2 

�j; �

�2
N
:

We have

X
j=q 6=0

�2j

 
q(�; �2j)� 1
q(�; �2j)

!2 

�j; �

�2
N

= �2
X
j=q 6=0

1

�2j



�j; �

�2
N
:

= O(�2)

as �k 2 �3. As a result, k (�̂� � ��)� k2N= OP (
1

T
) + OP (�

2) and k
�
�̂�1� � ��1�

�
�k k2N=

Op(
1

�T
) +O(�)
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Finally, the term (19) satis�es

k
�
��1� � ��1

�
�k k2N =

X
j

 
q(�; �2j)� 1

�j

!2 

�j; �k

�2
N

= �2
X
j

1

�2j(�
2
j + �)2



�j; �k

�2
N

� �2
X
j

1

�6j



�j; �k

�2
N
= O(�2)

as �k 2 �3.

Lemma 6. Let

XT;N =
1p
T

TX
t=1

< ~rt; u >N=
1p
T

TX
t=1

Yt;T;N ;

where u 2 RN isnot random and k u kN= O(1): If Assumptions 2(i) and 5(iii) hold, then

XT;N
d! N (0; �2)

when T;N go simultaneously to 1.

Proof of Lemma 6.
First, consider the case when frtgt=1;��� ;T are independent. FromAssumptions 5 5, E

�
k rt k2+�N

�
=

O(1) when N goes to in�nity for � > 0. To establish the central limit theorem, we need to ver-
ify the Lindeberg condition for a double indexed process of Phillips and Moon (1999)(see their
Theorem 2). In our setting, this condition can be rewritten as

lim
N;T!1

1

�2T;N

TX
t=1

E
�
Y 2
t;T;N1jYt;T;N j>�T;N"

�
! 0

for every " > 0, with �2T;N = T:var(
1p
T

TX
t=1

Yt;T;N) = T:
u
0
�u

N
� T�2N > 0 .

To see that this condition is satis�ed, observe that when j Yt;T;N
�T;N"

j> 1,

"�
Y 2
t;T;N

�2T;N
�
Y 2+�
t;T;N

�2+�T;N

:

Therefore,

"�E

"
Y 2
t;T;N

�2T;N
1jYt;T;N j>�T;N"

#
� E

"
Y 2+�
t;T;N

�2+�T;N

1jYt;T;N j>�T;N"

#
� E

"
Y 2+�
t;T;N

�2+�T;N

#
:

35



Moreover

lim
N;T!1

TX
t=1

E

"
Y 2+�
t;T;N

�2+�T;N

#
= lim

N;T!1

1

T �=2
1

�2+�N

E
�
< ~rt; u >N

2+�
�
= 0

as �N = O(1), E
�
j< ~rt; u >N j2+�

�
� E

�
k ~rt k2+�N

�
k u k2+�N = O(1)by Assumption 5(iii).

For the dependent case, by Davydov�s inequality (Davydov (1968), Rio (1993)) (with q = r =

2 + �), we have

var(
1p
T

TX
t=1

Yt;T;N) = E[Y 2
1;T;N ] + 2

TX
l=1

(1� l

T
)E [Y1;T;NY1+l;T;N ]

� E[Y 2
1;T;N ] + 24

�
E[j Yt;T;N j2+�]

� 2
2+�

TX
l=1

(1� l

T
)�x(l)

�
2+�

� E[Y 2
1;T;N ] + 24

�
E[j Yt;T;N j2+�]

� 2
2+�

TX
l=1

l�x(l)
�

2+� :

As a result, 0 < lim
N;T!1

var(
1p
T

TX
t=1

Yt;T;N) <1: In addition, the central limit theorem of Francq

and Zakoïan (2005) applies because the Lindeberg condition (iii) of Page 1168 still applies when
N goes to in�nity, see also Chang, Chen, and Chen (2015) for a similar application of this result.
Hence, XT;N asymptotically converges to a normal distribution when T;N go to 1.

Lemma 7. Suppose Assumption 5 is satis�ed. For any u; v 2 RN with k u k1<1 and k v k1<
1, as N and T go to 1, if

0 < �2u;v = lim
N;T!1

var

"
1p
T

TX
t=1

(< ~rt; v >N< ~rt; u >N �E (< ~rt; v >N< ~rt; u >N))
#
;

then
p
T <

�
�̂� �

�
v; u >N converges to a gaussian distribution of mean 0 and variance �2u;v.
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Proof of Lemma 7.We have the following decomposition of �̂� �:

�̂� � =
1

NT

TX
t=1

(rt � �̂2) (rt � �̂2)
0
� 1

N
E[~rt~r

0

t]

=
1

NT

TX
t=1

(rt � �2 + �2 � �̂2) (rt � �2 + �2 � �̂2)
0
� 1

N
E[~rt~r

0

t]

=
1

NT

TX
t=1

�
~rt~r

0

t � E[~rt~r
0

t]
�
+ (�2 � �̂2)

1

NT

TX
t=1

(rt � �2)
0

+
1

NT

TX
t=1

(rt � �2) (�2 � �̂2)
0

+
1

N
(�2 � �̂2) (�2 � �̂2)

0
:

Therefore,

<
p
T
h
�̂� �

i
v; u >N=

1p
T

TX
t=1

f< v; ~rt >N< ~rt; u >N �E [< v; ~rt >N< ~rt; u >N ]g

+ < v; (�2 � �̂2) >N
1p
T

TX
t=1

< ~rt; u >N

+
1p
T

TX
t=1

< v; ~rt >N< (�2 � �̂2) ; u >N

+
p
T < v; (�2 � �̂2) >N< (�2 � �̂2) ; u >N :

Following Lemma 6, < v; (�2 � �̂2) >N
1p
T

TX
t=1

< ~rt; u >N= Op(
1p
T
),

1p
T

TX
t=1

< v; ~rt >N<

(�2 � �̂2) ; u >N= Op(
1p
T
), and

p
T < v; (�2 � �̂2) >N< (�2 � �̂2) ; u >N= Op(

1p
T
). As a result,

<
p
T
h
�̂� �

i
v; u >N=

1p
T

TX
t=1

f< v; ~rt >N< ~rt; u >N �E [< v; ~rt >N< ~rt; u >N ]g+Op(
1p
T
)

From here on, the proof is similar to that of Lemma 6. To apply the central limit theorem of
Francq and Zakoïan (2005), we need

lim
N!1

: sup
t
E[(< v; ~rt >N< ~rt; u >N)

2+�] <1

for some � > 0. This condition is met because of Assumption 5 5.
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Proof of Proposition 2
Consistency:

Recall that by Equation (3), we have

�̂2 =
1

T

X
t

rt = e+ � (
 + �̂1 � �1) + ��;

�2 = e+ �
:

This yields the following decomposition of the �̂HJ :

�̂
�

HJ � �HJ = (V̂
�1
11 � V �1

11 )
 (20)

+ V̂ �1
11 (�̂1 � �1)

+ V̂ �1
11 (

�̂
0
�̂�1� �̂

N
)�1

"
�̂
0
�̂�1� (� � �̂)

N
(
 + �̂1 � �1)

+
�̂
0
�̂�1� e

N
+
�̂
0
�̂�1� ��

N

#
:

For the �rst two rows, (V̂ �1
11 �V �1

11 )
 and V̂
�1
11 (�̂1��1) converge to 0 in probability by the law

of large numbers and Assumption 2 (i).

�̂
0
�̂�1� �̂

N
=

"
�̂
0
k1
�̂�1� �̂k2
N

#
k1;k2=1;��� ;K

=< �̂k1 ; �̂
�1
� �̂k2 >N ;k1;k2=1;��� ;K :

We have

< �̂k1 ; �̂
�1
� �̂k2 >N = < �̂k1 � �k1 ; �̂

�1
� �̂k2 � �

�1�k2 >N + (21)

< �̂k1 � �k1 ;�
�1�k2 >N + (22)

< �k1 ; �̂
�1
� �̂k2 � �

�1�k2 >N + (23)

< �k1 ;�
�1�k2 >N �C (24)

+C: (25)

where C was de�ned in Assumption 3. |(21)|�k �̂k1 � �k1 kNk �̂
�1
� �̂k1 � �

�1�k1 kN! 0 as
N; T !1, and �T !1 using Lemma 5.
For (22), we have

j< �̂k1 � �k1 ;�
�1�k2 >N j�k �̂k1 � �k1 kNk �

� 1
2�k2 kN! 0
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as N; T !1, using Lemma 4.
The same is true for (23).
Finally, using assumption 3, (24) goes to 0 as N goes to 1.

In conclusion,
�̂
0
�̂�1� �̂

N
! C as N; T !1, �T !1, and �! 0.

Using the same argument as before, we have
�̂
0
�̂�1� (� � �̂)

N
=

�̂
0
�̂�1� �

N
� �̂

0
�̂�1� �̂

N

P! 0 as

N; T !1, �T !1, and �! 0.

For
�̂
0
�̂�1� e

N
, we have �̂�1� �̂

P! ��1� when as N; T !1, and �T !1. Moreover, �0��1e = 0

as the �rst order condition of (2). Therefore when as N; T !1, and �T !1, �̂
0
�̂�1� e

N

P! 0.

The same is true for �̂
0
�̂�1� ��, which converges in probability to 0 as N; T !1, and �T !1.

Distribution:
We detail the proof of the asymptotic normality proof for Tikhonov estimator. The result for

ridge could be shown similarly. We analyze the decomposition (20) using the following results:

� �̂ � � =
1

T

TX
t=1

�t �ft
0
V̂ �1
11

� Note that Ĉ� =
�̂
0
�̂�1� �̂

N
and we already have shown that Ĉ� � C�

P! 0K;K .

� �̂
0
�̂�1� e = (�̂ � �)0�̂�1� e+ �

0
(�̂�1� ���1)e+ � 0��1e. The last term is 0K;1 as the population

�rst order condition of (2).

� We have

�
0
(�̂�1� � ��1)e = �� 0�̂�1� (�̂� � �)��1e

= �� 0�̂�1� (�̂� � �� �̂ + �̂)��1e
�� 0�̂�1� (�̂� �)��1e� �

0
�̂�1� (�̂� � �̂)��1e:
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Therefore,

p
T
�
�̂
�

HJ � �HJ

�
+
p
T V̂ �1

11 Ĉ
�1
� �

0
�̂�1� (�̂� � �̂)��1

e

N
(26)

= V̂ �1
11

(
�
p
T (V̂11 � V11)V

�1
11 


+
1p
T

TX
t=1

(ft � �1)

+ Ĉ�1�

"
� 1p

T

TX
t=1

�̂
0
�̂�1� �t �f

0
t

N
V̂ �1
11 (
 + �̂1 � �1)

�
p
T�

0
�̂�1� (�̂� �)��1

e

N

+
1p
T

TX
t=1

V̂ �1
11

�ft�
0
t�̂

�1
� e

N

+
1p
T

TX
t=1

�̂
0
�̂�1� �t
N

#)
:

We need prove the asymptotic normality of each component of (26) to get the result of Propo-
sition 2.

� Note that

p
T (V̂11 � V11)V

�1
11 
 =

1p
T

TX
t=1

�
~ft ~f

0

t�HJ � 

�
+ (�1 � �̂1)

1p
T

TX
t=1

(rt � �2)
0
�HJ

+
1p
T

TX
t=1

(rt � �2) (�2 � �̂2)
0
�HJ

+
p
T (�2 � �̂2) (�2 � �̂2)

0
�HJ

=
1p
T

TX
t=1

�
~ft ~f

0

t�HJ � 

�
+ op(1):

� Normality of the second row comes from assumption 2.

� For the third row, �̂1
P! �1 and

1p
T

TX
t=1

�t �f
0

t V̂
�1
11 (
 + �̂1 � �1) has a gaussian distribution.
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To see this, we have

1p
T

TX
t=1

�̂
0
�̂�1� �t �f

0
t

N
V̂ �1
11 (
 + �̂1 � �1) =

�̂
0
�̂�1�
N

[
1p
T

TX
t=1

�t ~f
0

tV
�1
11 
 (27)

+
1p
T

TX
t=1

�t �f
0

t (V̂
�1
11 � V �1

11 )
 (28)

� 1p
T

TX
t=1

�t(�̂1 � �1)
0
V �1
11 
 (29)

+
1p
T

TX
t=1

�t �f
0

t V̂
�1
11 (�̂1 � �1)] (30)

The term (28) can be rewritten as T�
1
2 �̂

0
�̂�1�

�
0 �F

N
(V̂ �1
11 � V �1

11 )
. From Lemma 2, k �0 �F k2F=
Op(NT ). So k �

0 �F k2= Op(NT ). From Lemma 5, k �̂�1� �̂k � ��1�k kN! 0; as : N; T !1; and :

�T ! 1: In addition, k (V̂ �1
11 � V �1

11 )
 k2= Op(
1

T
). Therefore, (28) is op(1) when N; T ! 1

and�T !1.
Using the fact that �HJ = V �1

11 
, we can rewrite (29) as

(�̂
0
�̂�1� � �

0
��1)

1

N
p
T
�
0
�(�̂1 � �1) +

 
1p
T

TX
t=1

< ��1�; �t >N

!
(�̂1 � �1)

0
V �1
11 
;

with � =

264�
0

HJ
...

�
0

HJ

375 is a T � K matrix. We have k �0� k2= OP (N), k �̂1 � �1 k2= OP (
1

T
). As a

result, (�̂
0
�̂�1� � �

0
��1)

1

N
p
T
�
0
�(�̂1 � �1) is op(1) when N; T !1; and : �T !1:

Using Lemma 6,
1p
T

TX
t=1

< ��1�; �t >N is Op(1) as k ��1� kN< 1 and �t has the same

characteristics as ~rt. Then the second term is op(1) when N; T !1. Therefore, (29) is op(1).
For (30), we can rewrite it as

T�
1
2

N
(�̂
0
�̂�1� � �

0
��1)(� � �̂)(�̂1 � �1):

From Lemma 3 and 5, the expression is op(1) as N; T !1; and�T !1.
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Finally, (27) is equal to

1

N
p
T

�
�̂
0
�̂�1� � �

0
��1

�
�
0 ~FV �1

11 
 +
1p
T

TX
t=1

< ��1�; �t ~f
0

tV
�1
11 
 >N :

The �rst part is oP (1) when N; T !1; and �T !1: For the second part, 8m 2 RK ,

1p
T

TX
t=1

< ��1�m; �t ~f
0

tV
�1
11 
 >N

converges to a normal distribution by virtue of Lemma 6. Therefore,
1p
T

TX
t=1

< ��1�; �t ~f
0

tV
�1
11 
 >N

has a gaussian distribution when N; T !1 by the Cramer Wold device.

� 1p
T

TX
t=1

V̂ �1
11

�ft�
0
t�̂

�1
� e

N
has a gaussian distribution by using the following decomposition

1p
T

TX
t=1

V̂ �1
11

�ft�
0
t�̂

�1
� e

N
= V �1

11

1p
T

TX
t=1

~ft�
0
t�̂

�1
� e

N
(31)

+
1

N
p
T

�
V̂ �1
11 � V �1

11

�
�F
0
��̂�1� e (32)

+
1

N
p
T
V �1
11 (�1 � �̂1)

TX
t=1

�
0

t�̂
�1
� e: (33)

By Lemma 6 and the Cramer Wold device, (31) converges to a gaussian distribution. Using
Lemmas 2 and 5, (32) and (33) are op(1) when N; T !1, and �T !1.

� As as N , T ! 1, � ! 0 and �T ! 1, the normality of
p
T�

0
�̂�1� (�̂ � �)��1

e

N
comes

from Lemma 7. Indeed,

p
T �̂

0

�̂�1� (�̂� �)��1
e

N
=
p
T�

0
��1(�̂� �)�

�1e

N
+ op(1):

Using the proof of Lemma 7 , we can rewrite < ��1�;
p
T (�̂� �)��1e >N as

< ��1�;
p
T
h
�̂� �

i
��1e >N =

1p
T

TX
t=1

[< ~rt;�
�1e >N< ~rt;�

�1� >N

�E[< ~rt;��1e >N< ~rt;��1� >]] + op(1):

This term is asymptotically gaussian.
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� For the term
p
T�

0
�̂�1� (�̂� � �̂)��1

e

N
, notice that

�
0

k�̂
�1
� (�̂� � �̂)��1

e

N
=
X
j=q 6=0

�̂j

 
1� q(�; �̂

2

j)

q(�; �̂
2

j)

!
< �̂j;�

�1e >N< �̂j; �̂
�1
� �k >N :

So j � 0k�̂�1� (�̂� � �̂)��1
e

N
j= � j

X
j=q 6=0

1

�̂j
< �̂j;�

�1e >N< �̂j; �̂
�1
� �k >N j : We have

j
X
j=q 6=0

1

�̂j
< �̂j;�

�1e >N< �̂j; �̂
�1
� �k >N j �

0@X
j=q 6=0

1

�̂j
< �̂j;�

�1e >2N

1A 1
2
0@X
j=q 6=0

1

�̂j
< �̂j;�

�1e >2N

1A 1
2

< 1

as �k; e 2 �3. So, k
p
T�

0
�̂�1� (�̂� � �̂)��1

e

N
k2= Op(�

2T ).

In conclusion, the term
p
T�

0
�̂�1� (�̂� � �̂)��1

e

N
is op(1) as N; T; �T !1 and �2T ! 0.

Using the previous results, we have

p
T
�
�̂
�

HJ � �HJ

�
� V̂ �1

11 :A
p! op(1);

where

A =

 
� 1p

T

TX
t=1

~ft ~f
0

t�HJ + 


!
+

1p
T

TX
t=1

~ft + C�1�

"
� 1p

T

TX
t=1

�
0
��1

�t ~f
0
t�HJ
N

+
1p
T

TX
t=1

V �1
11
~ft
�
0
t�

�1e

N
� �

0
��1(

1p
T

TX
t=1

(
~rt~r

0
t

N2
� �

N
))��1e+

1p
T

TX
t=1

�
0
��1�t
N

#
:

=
1p
T

TX
t=1

ht

and

ht = � ~ft ~f
0

t�HJ + 
 + ~ft � C�1� �
0
��1

�t ~f
0
t�

N
+ C�1� V �1

11
~ft
�
0
t�

�1e

N

� C�1� �
0
��1

~rt~r
0
t

N2
��1e+ C�1�

�
0
��1e

N
+ C�1�

�
0
��1�t
N

:

As all the components of A are normally distributed, we have

p
T
�
�̂
�

HJ � �HJ

�
d! N (0K ; V �1

11 
V
�1
11 );
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where 
 = lim
N;T!1

var

"
1p
T

TX
t=1

ht

#
:

Using the fact that yt = 1� ~f
0

t�HJ and noting ~ut =
~r
0
t�

�1e

N
, ht can be rewritten as follows

ht = ~ftyt + 
 +
C�1� �

0
��1

N
(�tyt � ~rt~ut + e) + C�1� V �1

11
eft �0t��1e

N
:

9.4 Proof of Proposition 3

The proof follows closely that of Proposition 3 of Kan and Robotti (2009).

�21 � �22 =
�
0
2�

�1�2
N

� �
0
2�

�1V21;1
N

�
V12;1�

�1V21;1
N

��1
V12;1�

�1�2
N

�

��
0
2�

�1�2
N

+
�
0
2�

�1V21;2
N

�
V12;2�

�1V21;2
N

��1
V12;2�

�1�2
N

:

The population SDF parameter of models 1 and 2 are respectively

�1 = (V12;1�
�1V21;1)

�1V12�
�1�2

and
�2 = (V12;2�

�1V21;2)
�1V12;2�

�1�2:

Therefore
(V12;2�

�1V21;2)

N
�2 =

V12;2�
�1�2

N
:

Noting that V21;2 =
�
V21;1 V21;r

�
where V21;r is the remaining of the matrix V21;2 and

V21;1 =
�
V21;1 V21;r

� � IK1

0K3;K1

�
= V21;2

�
IK1

0K3;K1

�
;
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we have

�21 � �22 = �
0

2

�
V12;2�

�1V21;2
N

�
�2

��
0
2�

�1

N
V21;2

24�V12;1��1V21;1N

��1
0K1;K3

0K3;K1 0K3;K3

35V12;2��1�2
N

= �
0

2

�
V12;2�

�1V21;2
N

�
�2

��02
�
V12;2�

�1V21;2
N

�24�V12;1��1V21;1N

��1
0K1;K3

0K3;K1 0K3;K3

35�V12;2��1V21;2
N

�
�2

= �
0

2

�
V12;2�

�1V21;2
N

�
�2

��02

2664
�
V12;1�

�1V21;1
N

� �
V12;1�

�1V21;r
N

�
�
V12;1�

�1V21;r
N

�0 �
V12;1�

�1V21;r
N

�0 �
V12;1�

�1V21;1
N

��1�
V12;1�

�1V21;r
N

�
3775 �2

= �
0

22

"
V12;r�

�1V21;r
N

�
�
V12;1�

�1V21;r
N

�0 �
V12;1�

�1V21;1
N

��1�
V12;1�

�1V21;r
N

�#
�22

= �
0

22C
�1
2;22�22:

If C�12;22 is full rank, �
2
1 � �22 = 0 if and only if �22 = 0. This is the �rst result of Proposition 3.

For Tikhonov, under the hypothesis �22 = 0, z =
p
TV (�̂

�

22)
� 1
2 �̂
�

22
d! N (0; IK3) as T , N and

�T go to in�nity and �2T goes to zero.

T (�̂
2

1;� � �̂
2

2;�) = T �̂
�0

22Ĉ
�1
2;22;��̂

�

22 = z
0
V (�̂

�

22)
1
2 Ĉ�12;22;�V (�̂

�

22)
1
2 z. Ĉ�12;22;� converges in probability to

C�12;22 as Ĉ
�1
2;22 , a function of Ĉ2 which converges to C2 when N; T and �T ! 1 and � ! 0 (see

the proof of the consistency of �̂
�

HJ). Therefore

T (�21;� � �22;�)
d! z

0
V (�̂

�

22)
1
2C�12;22V (�̂

�

22)
1
2 z:

The results follows from the singular value decomposition of V (�̂
�

22)
� 1
2C�12;22V (�̂

�

22)
� 1
2 .

9.5 Proof of Proposition 4

The proof of Point 1 follows from Lemma 3 in Kan and Robotti (2009).

Now, consider Point 2. For Tikhonov, under the hypothesis
�
�12
�22

�
= 0, z =

p
TV

 "
�̂
�

12

�̂
�

22

#!� 1
2
"
�̂
�

12

�̂
�

22

#
d!

N (0; IK3) as T , N and �T !1, �2T ! 0, and � goes to zero. Moreover,
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T (�̂
2

1;� � �̂
2

2;�) = T

"
�̂
�

12

�̂
�

22

#0 "
�Ĉ�11;22;� 0K2�K3

0K3�K2 Ĉ�12;22;�

#"
�̂
�

12

�̂
�

22

#

= z
0
V

 "
�̂
�

12

�̂
�

22

#! 1
2
"
�Ĉ�11;22;� 0K2�K3

0K3�K2 Ĉ�12;22;�

#
V

 "
�̂
�

12

�̂
�

22

#! 1
2

z:

The results follows from the singular value decomposition of

V

 "
�̂
�

12

�̂
�

22

#! 1
2
"
�Ĉ�11;22;� 0K2�K3

0K3�K2 Ĉ�12;22;�

#
V

 "
�̂
�

12

�̂
�

22

#! 1
2

:

9.6 Proof of Proposition 5

For Ridge, qPt (�1�) = 2yt
� 01�~rt
N

� � 01�~rt~r
0
t�1�

N2
+ 2

� 01��2
N

� �
� 01��1�
N

.

For Tikhonov, qPt (�1�) = 2yt
� 01�~rt
N

� � 01�~rt~r
0
t�1�

N2
+ 2

� 01��2
N

� �
� 0�11� �1�
N

.

We use the following decomposition of
p
T
�
�̂
2

� � �2
�
:

p
T
�
�̂
2

� � �2
�
=

p
T
�
�̂
2

� � �2�

�
+
p
T
�
�2� � �2

�
=

p
T
�
Ê
�
qPt (�̂1�)

�
� Ê

�
qPt (�1�)

��
(34)

+
p
T
�
Ê
�
qPt (�1�)

�
� E

�
qPt (�1�)

��
(35)

+
p
T
�
�2� � �2

�
(36)

As Ê
�
qPt (�̂1�)

�
is concave, we have

p
T
�
Ê
�
qPt (�̂1�)

�
� Ê

�
qPt (�1�)

��
�
p
TrÊ

�
qPt (�1�)

�
(�̂1� �

�1�). The term rÊ
�
qPt (�1�)

�
is the Fr chet derivative of Ê

�
qPt (�1�)

�
at �1� and is an operator

from RN to R de�ned by

rÊ
�
qPt (�1�)

�
h =

1

T

TX
t=1

�
2yt < ~rt; h >N �2 <

~rt~r
0
t

N
�1�; h >N

�
+ 2 < �2; h >N �2� < �1�; h >N :

As rE
�
qPt (�1�)

�
= 0, Assumption 6 implies E

�
2yt
~rt
N
� 2~rt~r

0
t�1�
N2

+ 2
�2
N
� 2 �

N
�1�

�
= 0 and

�2
N
� �

N
�1� = �E

�
yt
~rt
N
� ~rt~r

0
t�1�
N2

�
for Ridge, while a similar formula holds for Tikhonov
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Therefore, for Ridge and Tikhonov,

p
TrÊ

�
qPt (�

�
1�)
�
(�̂1� � �1�)

=
2p
T

TX
t=1

"
yt
~rt
N
� E[yt

~rt
N

0

]

#0
(�̂1� � �1�) (37)

� 2p
T

TX
t=1

�
�
0

1�

~rt~r
0
t

N2
� E[�

0

1�

~rt~r
0
t

N2
]

�
(�̂1� � �1�): (38)

We have

k �̂1� � �1� kN = k �̂�1� ê� ��1� e kN
= k �̂�1� ê� ��1e+ ��1e� ��1� e kN
� k �̂�1� ê� ��1e kN

+ k ��1e� ��1� e kN= op(1)

when N , T , �T !1 and �! 0. So, (37) is equal to

j 2p
T

TX
t=1

�
yt
~rt
N
� E

�
yt
~rt
N

��0

(�̂1� � �1�) j � k 2p
T

TX
t=1

�
yt
~rt
N
� E

�
yt
~rt
N

��0

kNk �̂1� � �1� kN

= op(1):

while (38) is bounded by

j<
p
T (�̂� �)�1�; �̂1� � �1� >N j � k

p
T (�̂� �) kNk �1� kNk �̂1� � �1� kN

� k
p
T (�̂� �) kNk �1 kNk �̂1� � �1� kN

= op(1);

when N , T , �T !1 and �! 0.
Therefore, as N , T , �T ! 1 and � ! 0 ,

p
TrÊ

�
qPt (�1�)

�
(�̂1� � �1�) = op(1) and hence

(34)= op (1) :
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Term (35) can be rewritten as

1p
T

TX
t=1

�
2yt�

0

1�

~rt
N
� �

0

1�

~rt~r
0
t

N2
�1� � E

�
2yt�

0

1�

~rt
N
� �

0

1�

~rt~r
0
t

N2
�1�

��
=

1p
T

TX
t=1

2yt�
0

1

~rt
N
+

1p
T

TX
t=1

2yt
~r
0
t

N
(�1� � �1) �

<
p
T (�̂� �)(�1� � �1); �1� � �1 >N �
2 <

p
T (�̂� �)�1; �1� � �1 >N �
<
p
T (�̂� �)�1; �1 >N :

As N , T ! 1 and � ! 0 , <
p
T (�̂ � �)(�1� � �1); �1� � �1 >N�k

p
T (�̂ � �) kNk

�1�� �1 k2N! 0 and <
p
T (�̂��)�1; �1�� �1 >N�k

p
T (�̂��)�1 kNk �1�� �1 kN! 0. So (35)

is equivalent to
1p
T

TX
t=1

2yt�
0

1

~rt
N
+ <

p
T (�̂��)�1; �1 >N which converges to a normal distribution

using Lemma 6 and 7.
Therefore, Equation (35) converges to a normal distribution with variance

lim
N;T!1

var

"
1p
T

TX
t=1

2yt�
0

1

~rt
N
� �1

~rt~r
0
t�1
N2

� E

�
2yt�

0

1

~rt
N
� �1

~rt~r
0
t�1
N2

�#
:

Finally, we have

j
p
T
�
�2� � �2

�
j2 = T < e;

�
��1� � ��1

�
e >2N :

� T < ��1� e; (�� ��) ��1e >2N :

For Ridge, we have T < ��1� e; (�� ��) ��1e >2N= �2T < ��1� e;��1e >2N� �2T k ��1e k2N=
O(�2T ):

For Tikhonov, we have

< ��1� e; (�� ��) ��1e >N =
X
j

 
�j �

�2j + �

�j

!
(�j;�

�1
� e)N(�j;�

�1e)N

= ��
X
j

1

�j
(�j;�

�1
� e)N(�j;�

�1e)N

j< ��1� e; (�� ��) ��1e >N j2 � �2
X
j

1

�2j
(�j;�

�1e)2N
X
j

(�j;�
�1
� e)2N = O(�2)

as e 2 �3. Therefore, j
p
T
�
�2� � �2

�
j2= O(�2T ).
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9.7 Proof of Proposition 6

The distribution of the di¤erence of HJ distances follows from Proposition 5, which gives the
distribution for each model.

10 Appendix C: List of the Portfolios used in the simula-
tions

Table 8: List of portfolios
25 Portfolios Formed on Size and Book-to-Market

49 Portfolios Formed Industry

25 Portfolios Formed on Size and market beta

10 Portfolios formed on Industry

Portfolios Formed on Operating Pro�tability

Portfolios Formed on Investment

Portfolios Formed on Size

Portfolios Formed on market beta

Portfolios Formed on Book-to-Market

Portfolios Formed on Earnings/Price

Portfolios Formed on Cash�ow/Price

Portfolios Formed on Dividend Yield
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