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Abstract

Aggregate shocks affect most households’ and firms’ decisions. Using three stylized models

we show that inference based on cross-sectional data alone generally fails to correctly account

for decision making of rational agents facing aggregate uncertainty. We propose an econo-

metric framework that overcomes these problems by explicitly parameterizing the agents’

decision problem relative to aggregate shocks. Our framework and examples illustrate that

the cross-sectional and time-series aspects of the model are often interdependent. Therefore,

estimation of model parameters in the presence of aggregate shocks requires the combined

use of cross-sectional and time-series data. We provide easy-to-use formulas for test statis-

tics and confidence intervals that account for the interaction between the cross-sectional and

time-series variation. Lastly, we perform Monte Carlo simulations that highlight the prop-

erties of the proposed method and the risks of not properly accounting for the presence of

aggregate shocks.
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1 Introduction

An extensive body of economic research suggests that aggregate shocks have important effects on

households’ and firms’ decisions. Consider for instance the oil shocks that hit developed countries

in the seventies. Economists have argued that these aggregate shocks were responsible for reces-

sions, periods of high inflation, low productivity, and reduced economic growth (Barsky and Lutz

(2004)).

The profession has generally adopted one of the following three strategies to deal with ag-

gregate shocks. The most common strategy is to assume that aggregate shocks have no effect

on households’ and firms’ decisions, and hence that aggregate shocks can be ignored. Almost all

papers estimating discrete choice dynamic models or dynamic games are based on this premise.

Examples include Keane and Wolpin (1997), Bajari, Bankard, and Levin (2007), and Eckstein

and Lifshitz (2011). The second approach is to add time dummies to the model in an attempt to

capture the effect of aggregate shocks on the estimation of the parameters of interest, as was done

for instance in Altug and Miller (1990), Runkle, (1991) and Shea (1995). The third strategy is to

fully specify how aggregate shocks affect individual decisions within the structure of the economic

problem. We are aware of only two papers that use this strategy, Lee and Wolpin (2010) and

Dix-Carneiro (2014).

The previous discussion reveals that there is no generally agreed upon econometric framework

for estimation and statistical inference in models where aggregate shocks affect individual decisions.

This paper makes two main contributions related to this deficiency. We first develop three examples

and use them to evaluate the effect of ignoring aggregate shocks on parameter estimation and the

corresponding statistical inference. The examples provide important insights on what econometric

approaches can be employed for the estimation of model parameters when aggregate shocks are

present. Using these insights, we propose a method based on combining cross-sectional data with

a long time series of aggregate variables. There are no available formulas for standard errors

that can be used for statistical inference when these two data sources are combined. The second

contribution is to provide simple-to-use test statistics and confidence intervals that are valid when

our proposed method of combining cross-sectional and time-series data is used.

We proceed in four steps. In Section 2, we present a general class of models for which the
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presence of aggregate shocks generates the estimation and inferential issues studied in this paper.

The models have two main features. First, each model in this class can be decomposed into two

submodels. One submodel consists of all variables and parameters that can be studied using

cross-sectional data. The other submodel includes all the variables and parameters that can be

examined using time-series data. Second, each model in our class is based on decision making that

depends on aggregate shocks and the parameters that govern their law of motion.

In our class of models the interactions between the two submodels and, hence, the effects of

aggregate shocks on parameter estimation and inference can be complicated. To better under-

stand these effects, in the second step, we present three examples that illustrate the complexities

generated by the presence of aggregate shocks.

In Section 3, we consider as a first example a simple model of portfolio choice with aggregate

shocks. The simplicity of the model enables us to clearly illustrate the effect of aggregates shocks

on the estimation of model parameters and on their asymptotic distribution. Using the example,

we first show that, if the econometrician does not properly account for the uncertainty generated

by aggregate shocks, the estimates of model parameters are inconsistent. This result is noteworthy

because, if the econometrician uses only cross-sectional data, it holds even if the model is correctly

specified. The main implication of this result is that the inclusion of time dummies generally does

not solve the issues introduced by the presence of aggregate shocks.1 We then show that a method

based on a combination of cross-sectional and time-series variables produces consistent estimates

of the model parameters.

In Section 4, as a second example, we study the estimation of firms’ production functions

when aggregate shocks affect firms’ decisions. This example shows that there are special cases

where model parameters can be consistently estimated using only repeated cross-sections if time

dummies are skillfully used rather than simply added as time intercepts. Specifically, our analysis

indicates that the method proposed by Olley and Pakes (1996) fails to produce consistent estimates

if aggregate shocks are present. It also indicates that the production functions can be consistently

estimated if their method is modified with the proper inclusion of time dummies. The results of

1In the Euler equation context, Chamberlain (1984) considers a special example characterized by a nonstationary
aggregate environment and time-varying nonstochastic preference shocks. Under this special environment, he shows
that, when aggregate shocks are present but disregarded, the estimated parameters can be inconsistent even when
time dummies are included. In this paper, we show that the presence of aggregate shocks produces such problems
even in more general and realistic contexts.
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Section 4 are of independent interest since aggregate shocks have significant effects in most markets

and the estimation of firms’ production functions is an important topic in industrial organization

(Levinsohn and Petrin (2003) and Ackerberg, Caves, and Frazer (2015)).

In Section 5, we present as our last example a general equilibrium model of education and

labor supply decisions. The portfolio example has the quality of being simple. But, because of

its simplicity, it generates a unidirectional relationship between the time-series and cross-sectional

submodels: the parameters of the cross-sectional submodel can be consistently estimated only

if the parameters of the time-series submodel are known, but the time-series parameters can be

consistently estimated without knowledge of cross-sectional parameters. However, this is not gen-

erally the case. In many situations, such as in Lee and Wolpin’s (2010) paper, the link between the

two submodels is bi-directional. The general-equilibrium example illustrates how a bi-directional

relationship can arise. We use it for two purposes: to document, in a general setting, the complex-

ity of the effects that aggregate shocks can have on estimation of model parameters and on their

asymptotic distribution; and to explain how our method based on cross-sectional and time-series

variables can be extended when the link between the two sub-models is bi-directional.

The examples make clear that, in general, consistent estimation of parameters in models with

aggregate shocks requires the combined use of cross-sectional and time series data. There are no

existing formulas for standard errors when these two data sources are combined. As the third

step, in Section 6 we provide easy-to-use algorithms for test statistics and confidence intervals

when parameter estimates are based on combined cross-sectional and time series data. The un-

derlying asymptotic theory, which is presented in our companion paper Hahn, Kuersteiner, and

Mazzocco (2016), is highly technical due to the complicated interactions that exists between the

two submodels. Yet the resulting test statistics and confidence intervals take simple forms that

are easy to apply. We conclude the section by discussing, using the portfolio choice model and the

general equilibrium model, how standard errors can be computed in specific cases.

Finally, to evaluate our econometric framework, we perform a Monte Carlo experiment for the

general equilibrium model. The Monte Carlo results indicate that our method performs well when

the length of the time-series is sufficiently large. In that case, the parameter estimates are statis-

tically close to the true values and the coverage probabilities are statistically close to the nominal

levels. To document the effect of using only cross-sectional variation, we also compute coverage
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probabilities using the correct model, but under the assumption that the parameters that govern

the law of motion of the aggregate shocks are known and not estimated. In this scenario, the

coverage probabilities are computed without taking into account the variation of the time series

estimates. We find that the difference between the true and erroneous coverage probabilities is

generally large. Lastly, to evaluate the effect of ignoring aggregate shocks, we estimate the model’s

parameters under the incorrect assumption that the economy is not affected by aggregate shocks

using cross-sectional data alone. Our results show that this form of misspecification can generate

extremely large biases for the parameters that require both cross-sectional and longitudinal vari-

ation to be consistently estimated. For instance, we find that a parameter that is of considerable

interest to economists, the coefficient of risk aversion, is between five and six times larger than

the true value if aggregate shocks are ignored.

In addition to the econometric literature that deals with inferential issues, our paper also

contributes to a growing literature whose objective is to estimate general equilibrium models.

Some examples are Heckman and Sedlacek (1985), Heckman, Lochner, and Taber (1998), Lee

(2005), Lee and Wolpin (2006), Gemici and Wiswall (2011), and Gillingham, Iskhakov, Munk-

Nielsen, Rust, and Schjerning (2015). Aggregate shocks are an important feature of most general

equilibrium models. Without those shocks, these models have the unpleasant implication that

all aggregate variables can be fully explained by observables and, hence, that errors have no

effect on those aggregate variables. Our general econometric framework makes this point clear by

highlighting the impact of aggregate shocks on parameter estimation and the variation required

in the data to estimate those models. More importantly, our results provide easy-to-use formulas

that can be employed to perform statistical inference in a general equilibrium context.

A separate discussion is required for the papers by Lee and Wolpin (2006) and Dix-Carneiro

(2014). These are the only papers we are aware of that estimate a model that fully specifies

the effects of aggregate shocks on individual decision making. This allows the authors to obtain

consistent estimates of the parameters of interest. These two papers are primarily focused on

the estimation of a specific empirical model. They do not address the broader question of which

statistical procedures and what type of data are needed to obtain consistent estimators when

aggregate shocks are present. The focus of this paper is to answer these questions in the context

of a general class of models.
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2 A General Class of Models

This section presents a class of models for which the presence of aggregate shocks introduces

the estimation and inferential issues that can be addressed by the approach we develop. Each

model in the class has two main features. First, the model can be divided into two parts. One

part encompasses all the variables and parameters of the model that can be analyzed using cross-

sectional data and will be denoted with the term cross-sectional submodel. The other part includes

the variables and parameters whose examination requires time-series data and will be denoted

with the term time-series submodel. Second, the parameters of our models, which include the

law of motion of the aggregate shocks, can be consistently estimated only if a combination of

cross-sectional and time-series data are available.

Formally, each model consists of two distinct vectors of variables yi and zs. The first vector

yi includes all the variables that characterize the cross-sectional submodel. We allow for the

possibility that the variables in yi are collected from a short panel, in which case the vector yi

consists of several yi,t’s, where the subscript t denotes the period in which yi,t is observed. Even

when yi is collected from a single cross section and hence yi = yi,t, it is sometimes useful to

explicitly report the time period in which yi is collected and write the cross-sectional vector as yi,t.

An example of a variable that belongs to yi,t is provided in the portfolio model that we present

in Section 3. There, the share of resources invested in the risk-free asset by household i in period

t is included in yi,t. The second vector zs is composed of all the variables associated with the

time-series submodel. In the portfolio model of Section 3, the only variable in zs is the aggregate

return on the risky asset in period s.

We use two distinct time indices for the cross-sections (t) and time-series (s), because the

periods in which the short panel is observed may differ from the periods in which the time series

is observed. Specifically, we assume that our cross-sectional data consist of {yi,t, i = 1, . . . , n,

t = T0 + 1, . . . , T0 + T}, and our time-series data consist of {zs, s = τ0 + 1, . . . , τ0 + τ}, where the

interval T0 + 1, . . . , T0 + T may differ from the interval τ0 + 1, . . . , τ0 + τ . Situations in which the

cross-sections and time-series cover distinct time intervals occur frequently. For example, the share

of household resources invested in a risk-free asset, which is part of yi,t in the portfolio model, is

observed in the Panel Studies of Income Dynamics (PSID) from 2001 to 2015 every two years.
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But the aggregate return on the risky asset, measured as the return on the Standard & Poor’s 500

index, which is included in zs, is available every year from its inception in 1928. To simplify the

notation, we adopt the normalization T0 = 0.

The parameters of the general model can also be divided into two sets, β and ρ. The first set of

parameters β characterizes the cross-sectional submodel, in the sense that, if the second set ρ was

known, β and the vector of aggregate shocks νt could be consistently estimated using exclusively

variation in the cross-sectional variables yi,t. Similarly, the vector ρ characterizes the time-series

submodel in the sense that, if β were known, the parameters ρ could be consistently estimated

using exclusively the time series variables zs. In many cases, ρ parametrizes the law of motion of

the aggregate shocks.

There are two functions that relate the cross-sectional and time-series variables to the parame-

ters. The function f (yi,t| β, ν, ρ) restricts the behavior of the cross-sectional variables conditional

on a particular value of the parameters. Analogously, the function g (zs| β, ρ) describes the behav-

ior of the time-series variables for a given value of the parameters. The portfolio model discussed

in Section 3 provides examples of such functions. In that model, (i) the variables yi,t are i.i.d.

given the aggregate shock νt, (ii) the variables zs correspond to (νs, νs−1), where νs denotes the re-

alization of the aggregate shock in the s-th period, (iii) the cross-sectional function f (yi,t| β, νt, ρ)

denotes the log likelihood of yi,t given the aggregate shock νt, and (iv) the time-series function

g (zs| β, ρ) = g (νs| νs−1, ρ) is the log of the conditional probability density function of the aggre-

gate shock νs given νs−1. In this special case, the time-series function g does not depend on the

cross-sectional parameters β.

The parameters of the general model can be estimated by maximizing a well-specified ob-

jective function. Since our framework consists of two submodels, a natural approach is to es-

timate the parameters of interest by maximizing two separate objective functions, one for the

cross-sectional submodel and one for the time-series submodel. We denote these criterion func-

tions by Fn (β, ν, ρ) and Gτ (β, ρ). In the case of maximum likelihood, the criterion functions are

simply Fn (β, ν, ρ) = 1
nT

∑n
i=1

∑T
t=1 f (yi,t| β, νt, ρ) and Gτ (β, ρ) = 1

τ

∑τ0+τ
s=τ0+1 g (zs| β, ρ) ,where

ν = (ν1, ..., νT ). Another scenario where separate criterion functions arise naturally is when f

and g represent moment conditions. The use of two separate objective functions is helpful in our

context because it enables us to discuss which issues arise if only cross-sectional or only time-series
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variables are used in the estimation. More importantly from a practical viewpoint, considering

the two components separately adds flexibility to the parameter estimation since, in some periods,

data may be required to construct the variables of only one of the submodels.

In our class of models, the cross-sectional submodel suffers from a source of identification failure

that has received little or no attention in the literature: because νt does not vary in the cross-

section, Fn (β, ν, ρ) does not separately identify ρ and converges to

F (β, ν, ρ) = T−1
∑T

t=1 E [f (yi,t| β, νt, ρ) |ν0,t], where ν0,t is used to denote the true realization

of the shock. Namely, the limit F (β, ν, ρ) of the criterion function remains random, as it depends

on the random variables ν0,t. The main implication is that, generally, estimators obtained from

maximizing F (β, ν, ρ) are functions of the aggregate shock and, therefore, are not consistent since

they vary with these shocks. Because of this, the class of models we study in this paper requires

both cross-sectional and time-series data for the identification of the parameters.

The portfolio model of Section 3 and the general equilibrium model of Section 5 represent

examples where this identification problem arises. They consider two different situations. In

the portfolio model, the relationship between the cross-sectional and time-series submodels is

unidirectional since, as we indicate above, the time-series function g does not depend on the

cross-sectional parameters β, but the cross-sectional function f does depend on the time-series

parameters ρ. Moreover, ρ cannot be identified using cross-sectional data alone, because the

maximum of the cross-sectional objective function F over the parameters β and the aggregate

variables ν does not change with the value of ρ. However, ρ can be identified using time-series

data. Therefore, the cross-sectional submodel suffers from the identification problem, as β can be

consistently estimated only if time-series data are first used to identify ρ. In this case, we propose

an empirical strategy based on a two-step procedure that first identifies ρ from time series data

and then uses the estimated ρ in combination with cross-sectional data to identify β. The general

equilibrium model describes a situation in which the two-step procedure fails, as the time-series

function g depends on the cross-sectional parameters β and the cross-sectional function f depends

on the time-series parameters ρ. In this situation, we propose a procedure that simultaneously

identifies β and ρ, by combining cross-sectional and time-series data.
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3 Example 1: Portfolio Choice

We start with a simple portfolio choice example that clearly illustrates the perils of ignoring

aggregate shocks. Using this example, we make the following points. First, the presence of

aggregate shocks generally produces inconsistent parameter estimates unless the econometrician

properly accounts for the uncertainty generated by the aggregate shocks. In fact, many parameters

cannot be identified using cross-sectional data alone, even if the model is correctly specified.

Second, the use of time dummies generally does not solve the problems generated by the existence

of aggregate shocks. Third, if the researcher does not account for the aggregate shocks, the

parameter estimates will adjust to make the model consistent with the aggregate uncertainty that

is present in the data but not modeled, hence the inconsistency. For instance, in a model with risk

averse agents such as our portfolio example, ignoring the aggregate shocks produces estimates of

the risk aversion parameter that are upward biased.

Consider an economy that, in each period t, is populated by n households. These households

are born at the beginning of period t, live for one period, and are replaced in the next period by

n new families. The households living in consecutive periods do not overlap and, hence, make

independent decisions. Each household is endowed with deterministic income and has preferences

over a non-durable consumption good ci,t. The preferences can be represented by Constant Ab-

solute Risk Aversion (CARA) utility functions which take the following form: U (ci,t) = −e−δci,t .

For simplicity, we normalize income to be equal to 1.

During the period in which households are alive, they can invest a share of their income in a

risky asset with return ui,t. The remaining share is automatically invested in a risk-free asset with

a return r that does not change over time. At the end of the period, the return on the investment

is realized and households consume the quantity of the non-durable good they can purchase with

their realized income. The return on the risky asset depends on aggregate shocks. Specifically,

it takes the following form: ui,t = νt + εi,t, where νt is the aggregate shock and εi,t is an i.i.d.

idiosyncratic shock. The idiosyncratic shock, and hence the heterogeneity in the return on the

risky asset, can be interpreted as differences across households in transaction costs, in information

on the profitability of different stocks, or in marginal tax rates. We assume that νt ∼ N (µ, σ2
ν),

εi,t ∼ N (0, σ2
ε ), and hence that ui,t ∼ N (µ, σ2), where σ2 = σ2

ν + σ2
ε .
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Household i living in period t chooses the fraction of income to be allocated to the risk-free

asset αi,t by maximizing its life-time expected utility2:

max
αi,t

E
[
−e−δci,t

]
s.t. ci,t = αi,t (1 + r) + (1− αi,t) (1 + ui,t) , (1)

where the expectation is taken with respect to the return on the risky asset. It can be shown3

that the household’s optimal choice of αi,t is given by

α∗i,t = α =
δσ2 + r − µ

δσ2
. (2)

We assume that the econometrician is mainly interested in estimating the risk aversion parameter

δ.

We now consider an estimator that takes the form of a sample analog of (2), and study the

impact of aggregate shocks on the estimator’s consistency when an econometrician ignores the

aggregate shocks and works only with cross-sectional data. Our analysis reveals that such an

estimator is inconsistent because cross-sectional data do not contain information about aggregate

uncertainty. It also makes explicit the dependence of the estimator on the probability distribution

of the aggregate shock and thus points to the following method for consistently estimating δ. First,

using time series variation, the parameters pertaining to aggregate uncertainty are consistently

estimated. Second, those estimates are plugged into the cross-sectional model to estimate the

remaining parameters.4

Without loss of generality, we assume that the cross-sectional data are observed in period

t = 1. The econometrician observes data on the return of the risky asset ui,t and on the return of

2Our models assume rational expectations. We do not consider examples that incorporate model uncertainty,
i.e., the possibility that agents need to learn or estimate model parameters when making decisions. We restrict
our attention to rational expectation models because there is only a limited number of papers that consider self-
confirming equilibria or robust control. See Cho, Sargent, and Williams (2002) or Hansen, Sargent, and Tallarini
(1999). This is, however, an important topic that we leave for future research.

3This is shown in the on-line Appendix.
4Our model is a stylized version of many models considered in a large literature interested in estimating the

parameter δ using cross-sectional variation. Estimators are often based on moment conditions derived from first
order conditions (FOC) related to optimal investment and consumption decisions. Such estimators have similar
problems, which we discuss in the on-line Appendix A.2.
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the risk-free asset r. We assume that they also observe a noisy measure of the share of resources

invested in the risk-free asset αi,t = α+ ei,t, where ei,t is a measurement error with zero mean and

variance σ2
e . The vector of cross-sectional variables yi is therefore composed of ui1 and αi1 and

the vector of cross-sectional parameters β is composed of δ, σ2
ε , and σ2

e . The vector of time-series

variables includes only the aggregate shock, i.e. zt = νt, and the vector of time-series variables

parameters is composed of µ and σ2
ν . Since, νt corresponds to the aggregate return of the risky

asset, we assume that νt is observed.

Suppose that the econometrician ignores the existence of the aggregate shocks, by assuming

that the aggregate return is fixed at µ for all t, and uses only cross-sectional variation. Recall that

µ = E [ui1], σ2 = Var (ui1), and α = E [αi1]. The econometrician will therefore estimate those

parameters using the following method-of-moments estimators:

µ̂ =
1

n

n∑
i=1

ui1 = ū, σ̂2 =
1

n

n∑
i=1

(ui1 − ū)2 , and α̂ =
1

n

n∑
i=1

αi1.

The econometrician can then use equation (2) to write the risk aversion parameter as

δ = (µ− r)/ (σ2 (1− α)) and estimate it with the sample analog δ̂ = (µ̂− r)/ (σ̂2 (1− α̂)).

In the presence of the aggregate shocks νt, however, the method-of-moments estimators take

the following form:

µ̂ =
1

n

n∑
i=1

ui1 = ν1 +
1

n

n∑
i=1

εi1 = ν1 + op (1) ,

σ̂2 =
1

n

n∑
i=1

(ui1 − ū)2 =
1

n

n∑
i=1

(εi1 − ε̄)2 = σ2
ε + op (1) ,

α̂ = α +
1

n

n∑
i=1

ei1 = α + op (1) ,

which implies that δ will be estimated to be

δ̂ =
ν1 + op (1)− r

(σ2
ε + op (1)) (1− α + op (1))

=
ν1 − r

σ2
ε (1− α)

+ op (1) . (3)

Using equation (3), we can study the properties of estimator δ̂. Without aggregate shocks,

we would have ν1 = µ, σ2
ν = 0, σ2

ε = σ2 and, therefore, δ̂ would converge to δ, a nonstochastic
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constant, as n grows to infinity. It is therefore a consistent estimator of the risk aversion parameter.

However, in the presence of the aggregate shock, the proposed estimator has different properties.

We consider first the case in which econometricians condition on the realization of the aggregate

shock ν or, equivalently, assume that the realization of the aggregate shock is known. In this case,

the estimator δ̂ is inconsistent with probability 1, since it converges to ν1−r
σ2
ε (1−α)

and not to the true

value µ−r
(σ2
ν+σ2

ε )(1−α)
.

As discussed in the introduction, a common practice to account for the effect of aggregate

shocks is to include time dummies in the model. The portfolio example clarifies that the addition

of time dummies does not solve the problem generated by the presence of aggregate shocks. The

inclusion of time dummies is equivalent to the assumption that the realization of the aggregate

shock is known or that econometricians condition on the realization of ν. But the previous result

indicates that, using exclusively cross-sectional data, the estimator δ̂ is inconsistent even if the

realizations of the aggregate shocks are known. To provide the intuition behind this result, note

that, if aggregate shocks affect individual behavior, the decisions recorded in the data account

for the uncertainty generated by the variation in ν. Even if econometricians assume that the

realizations of the aggregate shocks are known, the only way the portfolio model can rationalize

the degree of uncertainty displayed by the data is by making the agents more risk averse than

they actually are. Hence, the inconsistency described above.

We now consider the case in which econometricians do not condition on the realization of

the aggregate shock. As n grows to infinity, δ̂ converges to a random variable with a mean that

is different from the true value of the risk aversion parameter. The estimator will therefore be

inconsistent. To see this, remember that ν1 ∼ N (µ, σ2
ν). As a consequence, the unconditional

asymptotic distribution of δ̂ takes the following form:

δ̂ →d N

(
µ− r

σ2
ε (1− α)

,

(
1

σ2
ε (1− α)

)2

σ2
ν

)
= N

(
δ + δ

σ2
ν

σ2
ε

,
σ2
ν

(σ2
ε (α− 1))2

)
,

which is centered at δ + δ
σ2
ν

σ2
ε

and not at δ, hence the asymptotic bias. The intuition behind

the asymptotic bias is the same as for the case in which the realization of the aggregate shock

is known. But when econometricians do not condition on ν, it is straightforward to sign the
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asymptotic bias. The asymptotic bias is equal to δ
σ2
ν

σ2
ε

and always positive, which is consistent with

the intuition described above according to which ignoring aggregate shocks generates estimates of

the risk aversion parameter that are too high. The formula of the asymptotic bias also enables

one to reach the intuitive conclusion that its size increases when the magnitude of the aggregate

uncertainty (σ2
ν) is large relative to the magnitude of the micro-level uncertainty (σ2

ε ).
5

In our example, the statistical uncertainty, captured by the variance of the estimator, does not

vanish with the sample size and, hence, δ̂ converges to a random variable. We are not the first to

consider a case in which common factors affect the limiting distribution of an estimator. Andrews

(2005) and more recently Kuersteiner and Prucha (2013) discuss similar scenarios. However, in

their case the common factor enters in a more restrictive way essentially only affecting the variance

but not the mean of a regression error. In our example on the other hand aggregate variables have

a profound effect on model specification. As a result the nature of the asymptotic randomness is

such that the estimator is not even consistent or asymptotically unbiased. This is not the case in

Andrews (2005) or Kuersteiner and Prucha (2013), where the asymptotic randomness affects the

variance of the limiting distribution of the estimator but not the asymptotic bias or its consistency.6

As mentioned above, there is a simple statistical explanation for our result: cross-sectional

variation is not sufficient for the consistent estimation of the risk aversion parameter if aggregate

shocks affect individual decisions. To make this point transparent, observe that, conditional

on the aggregate shock, the assumptions of this section imply that the cross-sectional variable

yi = (ui1, αi1) has the following distribution:

yi| ν1 ∼ N


 ν1

δ (σ2
ν + σ2

ε ) + r − µ
δ (σ2

ν + σ2
ε )

 ,
 σ2

ε 0

0 σ2
e


 . (4)

Using (4), it is straightforward to see that any arbitrary choice of the time-series parameters

ρ = (µ, σ2
ν) maximize the cross-sectional likelihood, as long as one chooses δ that satisfies the

5When the realization of ν is assumed to be known, one can only sign the expected bias, where the expectation
is taken over the realization of the aggregate shock, since the bias depends on the actual realization of the shock.
The expected bias is always positive and increasing in σ2

ν as our intuition indicates.
6Kuersteiner and Prucha (2013) also consider cases where the estimator is random and inconsistent. However,

in their case this happens for different reasons: the endogeneity of the factors. The inconsistency considered here
occurs even when the factors are strictly exogenous.
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following equation:
δ (σ2

ν + σ2
ε ) + r − µ

δ (σ2
ν + σ2

ε )
= α.

Consequently, the cross-sectional parameters µ and σ2
ν cannot be consistently estimated by max-

imizing the cross-sectional likelihood and, hence, δ cannot be consistently estimated using only

cross-sectional data.

We can now describe the method we propose in this paper as a general solution to the issues

introduced by the presence of aggregate shocks. The method, which generates consistent estimates

of the model parameters, relies on the combined use of cross-sectional and time-series variables.

Specifically, under the assumption that the realizations of the aggregate shocks are observed, the

researcher can consistently estimate the parameters that characterize the distribution of those

shocks µ and σ2
ν using a time-series of aggregate data {zs}.7 The risk aversion parameter δ and

the remaining two parameters σ2
ε and σ2

e can then be consistently estimated using cross-sectional

variables, by replacing the consistent estimators of µ and σ2
ν in the correctly specified cross-sectional

likelihood derived in equation (4).

The application of the method we propose to the estimation of the portfolio model can also

be illustrated using the general notation introduced in Section 2. The cross-sectional function

f ( ·| β, νt, ρ) corresponds to the log of the density of the variable yi,t defined in (4), and the time-

series function g ( ·| β, ρ) corresponds to the conditional density of the aggregate shock vs given

vs−1, where β = (δ, σ2
ε , σ

2
e) and ρ = (µ, σ2

ν).

The general model of Section 2 applied to the portfolio example can also be used to il-

lustrate how the use of cross-sectional data alone generates an asymptotic bias, whether the

model is correctly or incorrectly specified. Denote by φ the standard normal density. Then the

limit of the correctly specified cross-sectional log likelihood is E [log (φ ((yi1 − µ) /σ) /σ) |ν1] +

E [log (φ ((αi1 − α) /σe) /σe)], which is maximized at the inconsistent values µ = ν1 and σ = σε.

Now imagine that the fictitious econometrician, relying solely on cross-sectional variation, mis-

specifies the function f ( ·| β, νt, ρ) by setting µ = ν1 and σ2
ν = 0. In the context of the model

considered in this section, this leads to the same inconsistent cross-sectional estimator as under

7The assumption that the realizations of aggregate shocks are observed is made to simplify the discussion and
can be easily relaxed. In Section 5, we apply the proposed estimation method to a general equilibrium example in
which the realizations of the aggregate shocks are not observed.
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the correct specification.

The example presented in this section is a simplified version of the general class of models intro-

duced in Section 2. The variables and parameters of the time-series model affect the cross-sectional

model, but the cross-sectional variables and parameters have no impact on the time-series model.

As a consequence, the time-series parameters can be consistently estimated without knowing the

cross-sectional parameters. The recursive feature of the example is due to the exogenously speci-

fied price process and the partial equilibrium nature of the model. In more complicated situations,

such as general equilibrium models, where aggregate shocks are a natural feature, the relationship

between the two models is generally bi-directional. But before considering an example of the

general case, we study a situation in which the effect of aggregate shocks can be accounted for

with the proper use of time dummies.

4 Example 2: Estimation of Production Functions

In the previous section, we presented an example that illustrates the complicated nature of iden-

tification in the presence of aggregate shocks. The example highlights that generally there is no

simple method for estimating the class of models considered in this paper. Estimation requires a

careful examination of the interplay between the cross-sectional and time-series models. In this

section, we consider an example showing that there are exceptions to this general rule. In the case

we analyze, the researcher is interested in only a subset of the parameters, and its identification

can be achieved using only cross-sectional data even if aggregate shocks affect individual decisions,

provided that time dummies are skillfully employed. We show that the naive practice of introduc-

ing additive time dummies is not sufficient to deal with the effects generated by aggregate shocks.

But the solution is simpler than the general approach we adopted to identify the parameters of

the portfolio model.8

The example we consider here is a simplified version of the problem studied by Olley and

Pakes (1996) and deals with an important topic in industrial organization: the estimation of firms’

production functions. A profit-maximizing firm j produces a product Yj,t in period t, employing a

8Altug and Miller (1990) represents another example where the skillfull use of time dummies, economic assump-
tions, and functional form assumptions enables the researcher to consistently estimate the model parameters using
cross-sectional data alone, even in the presence of aggregate shocks.
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production function that depends on the logarithm of labor lj,t, the logarithm of capital kj,t, and

a productivity shock ωj,t. By denoting the logarithm of Yj,t by yj,t, the production function takes

the following form:

yj,t = β0 + βllj,t + βkkj,t + ωj,t + ηj,t, (5)

where ηi,t is a measurement error. The firm chooses the amount of labor to use in production

and the new investment in capital ij,t by maximizing a dynamic profit function subject to the

constraints that in each period capital accumulates according to the following equation:9

kj,t+1 = (1− δ) kj,t + ij,t,

where δ is the rate at which capital depreciates. In the model proposed by Olley and Pakes (1996),

firms are heterogeneous in their age and can choose to exit the market. In this section, we abstract

from age heterogeneity and exit decisions because they make the model more complicated without

adding more insight on the effect of aggregate shocks on the estimation of production functions.

A crucial feature of the model proposed by Olley and Pakes (1996) and of our example is that

the optimal investment decision in period t is a function of the current stock of capital and of the

productivity shock, i.e.

ij,t = it (ωj,t, kj,t) . (6)

Olley and Pakes (1996) do not allow for aggregate shocks, but in this example we consider a

situation in which the productivity shock at t is the sum of an aggregate shock νt drawn from a

distribution F (ν |ρ) and of an idiosyncratic shock εj,t independent of νt, i.e.

ωj,t = νt + εj,t.

One example of aggregate shocks affecting the productivity of a firm is the arrival of technological

innovations in the economy. We assume that νt and εj,t are both Markov processes and that the

firm observes the realization of the aggregate shock and, separately, of the idiosyncratic shock.

We first review the estimation method proposed by Olley and Pakes (1996) for the production

function (5) when aggregate shocks are not present. We then discuss how that method can be

9For details of the profit function, see Olley and Pakes (1996).
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modified with the appropriate use of time dummies if aggregate shocks affect firms’ decisions.

The main problem in the estimation of the production function (5) is that the productivity

shock is correlated with labor and capital, but not observed by the econometrician. To deal

with that issue, Olley and Pakes (1996) use the result that the investment decision (6) is strictly

increasing in the productivity shock for every value of capital to invert the corresponding function,

solve for the productivity shock, and obtain

ωj,t = ht (ij,t, kj,t) . (7)

One can then replace the productivity shock in the production function using equation (7) to

obtain

yj,t = βllj,t + φt (ij,t, kj,t) + ηj,t, (8)

where

φt (ij,t, kj,t) = β0 + βkkj,t + ht (ij,t, kj,t) . (9)

The parameter βl and the function φt can then be estimated by regressing, period by period, yj,t

on lj,t and a flexible polynomial (i.e., a nonparametric approximation) in ij,t and kj,t or, similarly,

by interacting time dummies with the polynomial in ij,t and kj,t.
10 The parameter βl is therefore

identified by11

βl =
E [(lj,t − E [ lj,t| ij,t, kj,t]) (yj,t − E [yj,t| ij,t, kj,t])]

E
[
(lj,t − E [ lj,t| ij,t, kj,t])2] . (10)

To identify the parameter on the logarithm of capital βk observe that the production function

10Given our simplifying assumptions that there are no exit decisions and age heterogeneity, without aggregate
shocks, the functions φ and h are independent of time. We use the more general notation that allows for time
dependence to highlight that the estimation approach developed in Olley and Pakes (1996) generally fails when
aggregate shocks are present, even if φ and h are allowed to depend on time.

11As noted by Ackerberg, Caves, and Frazer (2015) and Gandhi, Navarro, and Rivers (2011), the Olley and
Pakes’s procedure is potentially subject to the functional dependence problem, i.e. without additional assumptions
labor is a deterministic function of investment and capital and, hence, the denominator of (10) is equal to zero. To
address this issue, we assume that lj,t is a function of some other exogenous variable in addition to (ij,t, kj,t). One
possibility is to assume that the investment decision is made before the labor decision and that an unanticipated
firm-specific shock to the price of labor is realized between the time of the investment and labor decisions. See
Ackerberg, Caves, and Frazer (2015, pp. 2424-2427) for a detailed discussion.
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(5) implies the following:

E [yi,t+1 − βllj,t+1| kj,t+1] = β0 + βkkj,t+1 + E [ωj,t+1|ωj,t] = β0 + βkkj,t+1 + g (ωj,t) , (11)

where the first equality follows from kj,t+1 being determined conditional on ωj,t. Note that, in the

absence of aggregate shocks, the function g (·) is independent of time. The shock ωj,t = ht (ij,t, kj,t)

is not observed, but using equations (7) and (9), it can be written in the following form:

ωj,t = φt (ij,t, kj,t)− β0 − βkkj,t, (12)

where φt is known from the first-step estimation. Substituting for ωj,t into the function g (·) in

equation (11) and letting ξj,t+1 = ωj,t+1 − E [ωj,t+1|ωj,t], equation (11) can be written as follows:

yi,t+1 − βllj,t+1 = βkkj,t+1 + g (φt − βkkj,t) + ξj,t+1 + ηj,t, (13)

where β0 has been included in the function g (·). The parameter βk can then be estimated by

using the estimates of βl and φt obtained in the first step and by minimizing the sum of squared

residuals in the previous equation, employing a kernel or a series estimator for the function g.

We now consider the case in which aggregate shocks affect the firm’s decisions and analyze how

the model parameters can be identified using only cross-sectional variation. The introduction of

aggregate shocks changes the estimation method in two main ways. First, the investment decision

is affected by the aggregate shock and takes the following form:

ij,t = it (νt, εj,t, kj,t) .

Second, all expectations are conditional on the realization of the aggregate shock since in the

cross-section there is no variation in that shock and only its realization is relevant.

The shocks νt and εj,t enter as independent arguments in the investment function to maintain

the assumption made in Olley and Pakes that the problem solved by the firm is Markovian. To

understand why, consider a case in which νt and εj,t are both AR(1) processes. If we only use

their sum as a state variable, the Markovian assumption is generally violated, because the sum of
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AR(1) processes is in general not an AR(1) but an ARMA(2,1) process. However, if we include

νt and εj,t as separate state variables – both observed by the firm – the Markovian structure is

preserved.

If the investment function is strictly increasing in the productivity shock ωj,t for all capital

levels, it is also strictly increasing in νt and εj,t for all kj,t, because ωj,t = νt + εj,t. Using this

result, we can invert it (·) to derive εj,t as a function of the aggregate shock, investment, and the

stock of capital, i.e.

εj,t = ht (νt, ij,t, kj,t) .

The production function can therefore be rewritten in the following form:

yj,t = β0 + βllj,t + βkkj,t + νt + εj,t + ηj,t (14)

= βllj,t + [β0 + βkkj,t + νt + ht (νt, ij,t, kj,t)] + ηj,t

= βllj,t + φ̄t (νt, ij,t, kj,t) + ηj,t

= βllj,t + φt (ij,t, kj,t) + ηj,t,

where we have included the aggregate shock in the function φt. Analogously to the case of no

aggregate shocks, βl can be consistently estimated by regressing period by period yj,t on lj,t and a

polynomial in ij,t and kj,t or, similarly, by interacting the polynomial with time dummies.

Note that estimation of βl is not affected by uncertainty generated by the aggregate shocks since

that uncertainty is captured by the time subscript in the function φt and the method developed by

Olley and Pakes (1996) already requires the estimation of a different function φ for each period.

The parameter βl is therefore identified by12

βl =
E [(lj,t − E [ lj,t| ij,t, kj,t, νt]) (yj,t − E [yj,t| ij,t, kj,t, νt]) |νt]

E
[
(lj,t − E [ lj,t| ij,t, kj,t, νt])2 |νt

] . (15)

Observe that the expectation operator in the previous equation is in principle defined with respect

to a probability distribution function that includes the randomness of the aggregate shock νt. But,

12We note that the expectations in (15) are conditional on νt. The reason is that νt is invariant in the cross-
section. Convergence of cross-sectional averages to conditional expectations then is a consequence of the Ergodic
Theorem.
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when one uses cross-sectional variation, νt is fixed at its realized value. As a consequence, the

distribution is only affected by the randomness of εit.

For the estimation of βk, note that, under the assumption that the νt’s are independent of the

εj,t’s,

E [yi,t+1 − βllj,t+1| kj,t+1, ij,t, kj,t, νt+1, νt, εj,t] (16)

= β0 + βkkj,t+1 + E [νt+1 + εj,t+1| kj,t, νt+1, νt, εj,t]

= β0 + βkkj,t+1 + νt+1 + E [εj,t+1| εj,t]

= β0 + βkkj,t+1 + νt+1 + g (εj,t) ,

where the first equality follows from kj,t+1 being known if ij,t, kj,t, νt, and εj,t are known.

The only variable of equation (16) that is not observed is εj,t. But remember that

εj,t = ht (νt, ij,t, kj,t) = φt (νt, ij,t, kj,t)− β0 − βkkj,t − νt.

We can therefore use the above expression to substitute for εj,t in equation (16) and obtain

E [yi,t+1 − βllj,t+1| kj,t+1, ij,t, kj,t, νt+1, νt]

= β0 + βkkj,t+1 + νt+1 + gt (φt (νt, ij,t, kj,t)− β0 − βkkj,t − νt)

= βkkj,t+1 + gt,t+1 (φt − βkkj,t) ,

where in the last equality β0, νt, and νt+1 have been included in the function gt,t+1 (·). Hence, if

one defines ξj,t+1 = εj,t+1−E [εj,t+1| νt, εj,t], the previous equation can be written in the following

form:

yi,t+1 − βllj,t+1 = βkkj,t+1 + gt,t+1 (φt − βkkj,t) + ξj,t+1 + ηj,t+1. (17)

The inclusion of the aggregate shocks in the function g (·) implies that that function varies with

time when aggregate shocks are present. This is in contrast with the case considered in Olley and

Pakes (1996) where aggregate shocks are ignored and, hence, the function g (·) is independent of

time.

Given equation (17), if one attempts to estimate βk using equation (13), repeated cross-sections
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and the method developed for the case with no aggregate shocks, the estimated coefficient will

generally be inconsistent because the econometrician does not account for the aggregate shocks

and their correlation with the firm’s choice of capital. There is, however, a small variation of the

method proposed earlier that produces consistent estimates of βk, as long as εj,t is independent of

ηj,t. The econometrician should regress period by period yj,t on lj,t and a nonparametric function

of ij,t and kj,t or, in practice, on a flexible polynomial of ij,t and kj,t interacted with time dummies.

It is this atypical use of time dummies that enables the econometrician to account for the effect

of aggregate shocks on firms’ decisions.

We conclude by drawing attention to two features of the production function example that

make it possible to use time dummies to deal with the effect of the aggregate shocks. To do

that, it is useful to cast the example in terms of the cross-sectional and time-series models. The

cross-sectional model includes the variables yj, lj, kj, and ij, the parameters β0, βl, and βk, and

the non-parametric functions φt and gt,t+1. The time-series model includes the aggregate shocks

νt and the parameters ρ that define their distribution function. The decomposition in the two

models highlights two features of the example. First, the time-series model affects the cross-

sectional counterpart only through the functions φt and gt,t+1. Second, to consistently estimate

the production function parameters βl and βk, the functions φt and gt,t+1 must be known to

control for the correlation between labor and capital on one side and the productivity shocks

on the other. But it is irrelevant how the aggregate shocks and the corresponding parameters

enter those functions. These two features imply that, if the econometrician is only interested in

estimating the production function parameters βl and βk, he can achieve this by simply estimating

the cross-sectional model. This is possible as long as the functions φt and gt,t+1 are allowed to vary

in a non-parametric way over time to deal with the existence of the aggregate shocks. The clever

use of time-dummies, therefore, solves all the issues raised by the presence of aggregate shocks.

However, if the econometrician is interested in estimating the entire model, which includes the

parameters that describe the distribution of the aggregate shocks, he has to rely on the general

approach based on the combination of cross-sectional and time-series variables.
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5 Example 3: A General Equilibrium Model

In this section, we consider as a third example a general equilibrium model of education and labor

supply decisions in which aggregate shocks influence individual choices. This example provides

additional insights into the effects of aggregate shocks on the estimation of model parameters.

Aggregate shocks are particularly important in the estimation of general equilibrium models (Lee

and Wolpin (2006), Dix-Carneiro (2014)).13 Differently from the portfolio and production func-

tion examples, in a general equilibrium context the relationship between the cross-sectional and

time-series models is generally bi-directional: the cross-sectional parameters cannot be identified

from cross-sectional data without knowledge of the time-series parameters and the time-series

parameters cannot be identified from time series data without knowing the cross-sectional param-

eters. Thus, the simple two step procedure employed in the asset pricing example cannot be used

here. Instead, simultaneous estimation of time series and cross-sectional parameters is required.

Because of this, the general equilibrium example can be employed to illustrate how the inferential

and estimation method developed in the paper can be applied to more general cases. We also use

the example to show that, in the presence of aggregate shocks, the limiting distribution of the

estimator takes generally a more complex mixed normal form instead of the conventional normal

form we find in the asset pricing example. Lastly, the example represents the basis of the Monte

Carlo exercise we perform later in the paper to determine the ability of our method to account

for aggregate shocks.

In principle, we could have used as a general example a model proposed in the general equi-

librium literature such as the model developed in Lee and Wolpin (2006). We decided against

this alternative because in those models the effect of the aggregate shocks on the estimation of

the model parameters and the relationship between the cross-sectional and time-series models are

complicated and therefore difficult to describe. Instead, we decided to develop a model that is

sufficiently general to generate an interesting relationship between the shocks and the estimation

of the parameters in the cross-sectional and time-series models, but at the same time sufficiently

stylized for these relationships to be easy to describe and understand.

13Other papers have estimated general equilibrium models without including aggregate shocks. Some examples
are Davidson and Woodbury (1993), Ferreyra (2007), Lise, Seitz, and Smith (2004), Metha (2017), and Shephard
(2017).
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In the model we develop, aggregate shocks affect the education decisions of young individuals

and their subsequent labor supply decisions when of working-age. Specifically, we consider an

economy where in each period t a young and a working-age generation overlap. Each generation

is composed of a continuum of individuals with measure Nt.
14 Each individual is endowed with

preferences over a non-durable consumption good and leisure. The preferences of individual i are

represented by a Cobb-Douglas utility function U i (c, l) = (cσl1−σ)
1−γi
/

(1− γi), where the risk

aversion parameter γi is a function of the observable variables xi,t, the unobservable variables ξi,t,

and a vector of parameters µ, i.e. γi = γ (xi,t, ξi,t|µ). Future utilities are discounted using a

discount factor δ.

Both young and working-age individuals are endowed with a number of hours T that can

be allocated to leisure or to a productive activity. Young individuals are also endowed with

an exogenous income yi,t. In each period, the economy is hit by an aggregate shock νt whose

conditional probability P (νt+1| νt) is determined by log νt+1 = % log νt + ηt. We assume that ηt is

normally distributed with mean 0 and variance ω2. The aggregate shock affects the labor market

in a way that will be established later on.

In each period t, young individuals choose the type of education to acquire. They can choose

education F that trains them for an occupation that is only marginally affected by aggregate

shocks. Or they can select education R that prepares them for an occupation that is significantly

affected by aggregate shocks. We will refer to education F as the flexible education and to

education R as the rigid education. We interpret the flexible education as a an education that

provides workers with skills that are valued by firms during periods of economic expansion as well

as periods of economic downturn. One example is training that prepares workers for a job in

the health or education sectors. The rigid education, instead, endows individuals with skills that

are highly valued during periods of economic growth, but are in limited demand during years of

economic decline. The typical example is training for jobs in the financial sector.

The two types of education have identical cost Ce < yi,t and need the same amount of time to

acquire Te < T . Since young individuals typically have limited financial wealth, we assume that

there is no saving decision when young and that any transfer from parents or relatives is included in

14In the rest of the section we use interchangeably the word ’measure’ and the more intuitive but less precise
word ’number’ to refer to Nt or similar objects.
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non-labor income yi,t. We also abstract from student loans and assume that all young individuals

can afford to buy one of the two types of education. As a consequence, a young individual will

consume the part of income yi,t that is not spent on education.

At each t, working-age individuals draw a productivity shock εSi,t, for S = F,R, which deter-

mines how productive their hours of work are in case they choose to supply labor. We assume

that the productivity shock is unknown to the individuals when young. They also draw a wage

offer. Given the productivity shock and the wage offer, working-age individuals choose how much

to work hi,t and how much to consume. If a working-age individual decides to supply hi,t hours

of work, the effective amount of labor hours supplied is given by exp
(
εFi,t
)
hi,t for the flexible type

of education F and by exp
(
εRi,t
)
hi,t for the rigid type of education R. We assume that εSi,t is

normally distributed with mean µSε and variance σ2
S, for S = F,R, and that σ2

F < σ2
R. To simplify

the analysis we normalize E
[
exp

(
εSi,t
)]

= 1, for S = F,R.15 Throughout the section we will use

two definitions of wages. We will denote by wSt , for S = F,R, the wage per unit of effective labor,

and by wSi,t = wSt exp
(
εRi,t
)

the actual wage received by the worker for each unit of labor hours hi,t.

The economy is populated by two types of firms to whom the working-age individuals supply

labor. The first type of firm employs only workers with education F , whereas the second type

of firm employs only workers with education R. Both use the same type of capital K, which

is assumed to be fixed over periods. The labor demand functions of the two types of firms are

assumed to take the following form:

logHD,F
t = α0 + α1 logwFt ,

and

logHD,R
t = α0 + α1 logwRt + log νt,

where HD,S is the total demand for effective labor, with S = F,R, α0 > 0, and α1 < 0. We assume

that the two labor demands have identical intercepts and slopes for simplicity.16 These two labor

15The assumption E
[
exp

(
εSi,t
)]

= 1 implies that µSε = −σ2
S/2, for S = F,R.

16The labor demand function of the flexible firm can be derived from a Cobb-Douglas production function that

is independent of the aggregate shock, i.e. qt =
(
HF
t

)δ (
K̄
)γ

, where K̄ is the fixed amount of capital employed by
the firm. The labor demand function of the rigid firm can be derived from a Cobb-Douglas production function
that depends multiplicately on the aggregate shock, i.e. qt = ν1−δ

t (Ht)
δ (
K̄
)γ

. With these production functions,

α0 =
(
log δ + γ log K̄

)
/(1− δ) and α1 = −1 /(1− δ) .
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demand functions enable us to capture the idea that workers with more flexible education are

affected less by aggregate shocks such as business cycle shocks. The wage for each education group

is determined by the equilibrium in the corresponding labor market. It will therefore generally

depend on the aggregate shock.

We conclude the description of the model by pointing out that there is only one source of un-

certainty in the economy, the aggregate shock, and two sources of heterogeneity across individuals,

the risk aversion parameter and the productivity shock.

The problem solved in period t by individual i of the young generation is to choose consumption,

leisure, and the type of education that satisfy:

max
ci,t,li,t,ci,t+1,li,t+1,S

(
cσi,tl

1−σ
i,t

)1−γi

1− γi
+ δ

∫ (
cσi,t+1l

1−σ
i,t+1

)1−γi

1− γi
dP (νt+1| νt) (18)

s.t. ci,t = yi,t − Ce and li,t = T − Te

ci,t+1 = wSt+1 (νt+1) exp
(
εSi,t+1

)
(T − li,t+1) for every νt+1.

Here, wSt+1 (νt+1) denotes the wage per unit of effective labor in the second period, which varies

with the education choice S = F,R. It is determined in equilibrium and, hence, it depends on the

realization of the aggregate shock νt+1.

The problem solved by a working-age individual takes a simpler form. Conditional on the

realization of the aggregate shock νt, the individual idiosyncratic shock, and the type of the

education S chosen when young, individual i of the working-age generation chooses consumption

and leisure that solve the following problem:

max
ci,t,li,t

(
cσi,tl

1−σ
i,t

)1−γi

1− γi
(19)

s.t. ci,t = wSt (νt) exp
(
εSi,t
)

(T − li,t) .

We now solve the model starting from the problem of a working-age individual. Using the

first order conditions of problem (19) the optimal choice of consumption, leisure, and hence labor
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supply for a working-age individual takes the following form:

c∗i,t = σwSt (νt) exp
(
εSi,t
)
T , (20)

l∗i,t = (1− σ) T , (21)

h∗i,t = T − li,t (νi,t) = σT .

The supply of effective labor is therefore equal to σ exp
(
εSi,t
)
T . Given the optimal choice of

consumption and leisure, conditional on the aggregate shock, the value function of a working-age

individual with education S can be written as follows:

Vi,t (S, νt, εi,t) =

[(
σwSt (νt) exp

(
εSi,t
)
T
)σ

((1− σ) T )1−σ]1−γi
1− γi

, S = F, R.

Given the value functions of a working-age individual, we can now characterize the education

choice of a young individual. This individual will choose education F if the expectation taken over

the next period aggregate shocks of the corresponding value function is greater than the analogous

expectation for education R:

E [Vi,t (F, νt+1, εi,t+1)| νt] ≥ E [Vi,t (R, νt+1, εi,t+1)| νt] . (22)

To simplify the discussion, we assume that εi,t+1 is independent of γi, thereby eliminating sample

selection issues in the wage equations.

Before we can determine which variables and parameters affect the education choice, we have

to derive the equilibrium in the labor market. It can be shown that the labor market equilibrium

is characterized by the following two wage equations:17

logwFi,t =
log nFt + log σ + log T − α0

α1

+ εFi,t, (23)

logwRi,t =
log nRt + log σ + log T − α0 − log νt

α1

+ εRi,t, (24)

where wFi,t and wRi,t are the wages individual i would receive if i chooses to work in sector F or

17See the on-line Appendix B.2.
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R and nFt and nRt are the measures of individuals that choose education F and R. We can now

replace the equilibrium wages inside inequality (22) and analyze the education decision of a young

individual. It can be shown that a young individual chooses the flexible type of education at time

t if the following inequality is satisfied:18

γi ≥ 1−
log
(
nFt+1

nRt+1

)
+

σ2
R−σ

2
F

2
+ % log νt

σ(σ2
R−σ

2
F+ω2)

2α1

. (25)

This inequality provides some insight into the educational choices of young individuals. Since

α1 < 0, they are more likely to choose the flexible education which insures them against aggregate

shocks if the variance of the aggregate shock is larger, if they are more risk averse, if the aggregate

shock at the time of the decision is lower as long as % > 0, and if the elasticity of the wage for the

rigid education with respect to the aggregate shock is larger (the absolute value of α1 is lower).

Similarly to the first two examples, we can classify some of the variables and some of the

parameters as belonging to the cross-sectional model and the remaining to the time-series model.

The cross-sectional variables include consumption ci,t, leisure li,t, individual wages wFi,t and wRi,t,

the variable determining the educational choice Di,t, the amount of time T an individual can

divide between leisure and productive activities, and the variables that enter the risk aversion

parameter xi,t. The time-series variables are composed of the aggregate shock νt, the numbers of

young individuals choosing the two types of education nF and nR, and the aggregate equilibrium

wages in the two sectors wFt = E
[
wFit
]

and wRt = E
[
wFit
]
.19 We want to stress the difference

between individual wages and aggregate wages. Individual wages are typically observed in panel

data or repeated cross-sections whose time dimension is generally short, whereas aggregate wages

are available in longer time-series of aggregate data. The cross-sectional parameters consist of the

relative taste for consumption σ, the variances σ2
F and σ2

R of the individual productivity shocks,

the parameters defining the risk aversion µ, and the parameters of the wage equations α0 and

α1, whereas the time-series parameters include the two parameters governing the evolution of the

aggregate shock % and ω2, and the discount factor δ. The discount factor is notoriously difficult

18Details are given in the on-line Appendix.
19The expectation operator E corresponds to the expectation taken over the distribution of cross-sectional vari-

ables.
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to estimate. For this reason, in the rest of the section we will assume it is known.

We now employ the method proposed in this paper, which exploits a combination of a long

time-series of aggregate data and cross-sectional data, in the estimation of the model parameters.

We assume that the econometrician has access to two repeated cross-sections of data for periods

t = 1 and t = 2, which include i.i.d. observations on educational choices Fi,t, wages wSi,t with

S = F,R, consumption c∗i,t, and leisure l∗i,t. The econometrician also has access to a time-series of

aggregate data that spans s = τ0 + 1, . . . , τ0 + τ . It consists of the measures of people choosing

the flexible and rigid educations nFt and nRt , and their corresponding aggregate wages wFs and wRs .

For simplicity, we assume that the two cross-sections consist of the same number of individuals n,

and that the first n̄1 and n̄2 individuals in the two cross sections chose S = F .

The parameters α1, σ, σ2
F , and σ2

R can be estimated using only the two cross-sections. Specif-

ically, α1 can be consistently estimated using the wage equation for flexible education (23) in

periods 1 and 2 as the α̂1 that solves

1

n̄1

n̄1∑
i=1

logwFi,1 −
1

n̄2

n̄2∑
i=1

logwFi,2 =
1

α̂1

(
log nF1 − log nF2

)
. (26)

This can be done because the productivity shock εt and the risk aversion parameter γi are assumed

to be independent of each other, which implies that there is no sample selectivity problem. The

parameter σ can be consistently estimated employing the consumption and leisure choices of

working-age individuals (20) and (21) for period 1 as the σ̂ that solves

1

n̄1

n̄1∑
i=1

c∗i,1
l∗i,1

= wF1
σ̂

1− σ̂
. (27)

The variances of the productivity shocks for the two sectors σ2
F and σ2

R can be estimated using the

wage equations for sectors F and R (23) and (24) as the sample variances of logwFi,t and logwRi,t.

The aggregate shocks and the parameters governing their evolution % and ω2 can then be

estimated using the time-series of aggregate data. Specifically, with α1 consistently estimated,

the aggregate shock in period s can be consistently estimated for s = τ0 + 1, . . . , τ0 + τ using the

following equation:

l̂og νs = α̂1

(
logwFs − logwRs

)
−
(
log nFs − log nRs

)
, (28)
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which was derived by computing the difference between the equations defining the equilibrium

wages in sectors R and S and solving for log νs.
20 Observe that νs can only be estimated because

α1 was previously estimated using the cross-sections. The parameters % and ω2 can then be

consistently estimated by the time-series regression of the equation that characterizes the evolution

of the estimated aggregate shocks:

̂log νs+1 = %l̂og νs + ηt. (29)

The only parameters left to estimate are the parameters µ defining the individual risk aver-

sion γi. They are the most interesting parameters of the model because they incorporate the

bi-directional relationship between the cross-sectional and time-series models, as the following dis-

cussion reveals. Specifically, if the distribution of γi is parametrically specified, the parameters µ

can be consistently estimated by MLE using cross-sectional variation on the educational choices

and the inequality that characterizes those choices (25). In the Monte Carlo exercise in Section 7,

we assume that log γi ∼ N (µ, 1). Under this assumption, the distribution of risk aversion in the

population is characterized by only one parameter, its mean µ. It can be shown that in this case

the probability that an individual chooses education F takes the following form:21

1− Φ (log (1−Θt)− µ) ,

where Φ denotes the CDF of N (0, 1), and

Θt ≡
log
(
nFt+1

nRt+1

)
+

σ2
R−σ

2
F

2
+ % log νt

σ(σ2
R−σ

2
F+ω2)

2α1

. (30)

We can therefore estimate the mean of the distribution of risk aversion µ using a Probit maximum

likelihood estimator, provided that νt, %, ω2, σ2
F , σ2

R, σ, and α1 and are known.22 The cross-

sectional parameter µ can therefore be estimated only if the time-series parameters νt, %, and ω2

20The equations defining the equilibrium wages are reported in the Appendix as equations (52) and (53).
21For details see the on-line Appendix.
22It is straightforward to relax the distributional assumption on γi and consider the more general case where the

risk aversion parameter γi is a function of the observable variables xi,t, the unobservable variables ξi,t, and a vector
of parameters µ, i.e. γi = γ (xi,t, ξi,t|µ).
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have been previously estimated. But their estimation requires the prior estimation of the cross-

sectional parameter α1. Hence, the bi-directional relationship between the cross-sectional and

time-series models.

To evaluate the effect of misspecification by ignoring aggregate shocks when estimating the

parameters of the general equilibrium model, we now consider the case of an econometrician who

is unaware of the presence of aggregate shocks and, hence, only uses cross-sectional variation

for the identification and estimation of the parameters of interest. The misspecification changes

the inequality that characterizes the education choice (25), which in this case takes the following

form:23

γi ≥ 1−
log
(
nFt+1

nRt+1

)
+

σ2
R−σ

2
F

2
+ log νt+1

σ(σ2
R−σ

2
F )

2α1

. (31)

As a consequence, under the misspecification and the assumption that log γi ∼ N (µ, 1), the

probability that an individual chooses education F becomes

1− Φ (log (1−Θ∗t )− µ) ,

where

Θ∗t ≡
log
(
nFt+1

nRt+1

)
+

σ2
R−σ

2
F

2
+ log νt+1

σ(σ2
R−σ

2
F )

2α1

.

Since this form of misspecification only changes the probability of choosing education F , only

estimation of the parameter µ is affected. To understand its effect, we derive the estimation bias

in closed form. In the misspecified model, the probability that someone selects education F can

be written as follows:

1− Φ (log (1−Θ∗t )− µ) = 1− Φ (log (1−Θt)− (µ− log (1−Θ∗t ) + log (1−Θt))) .

Let µ̂ be the maximum likelihood estimator of the correctly specified model. Then, the previous

equation implies that the maximum likelihood estimator µ̂mis of the misspecified model satisfies

23For details see the on-line Appendix E.
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the following equation:

µ̂mis = µ̂+ log
(

1− Θ̂∗t

)
− log

(
1− Θ̂t

)
,

where Θ̂∗t and Θ̂t denote the estimators of Θ∗t and Θt. The asymptotic misspecification bias has

therefore the following analytic form:

log (1−Θ∗t )− log (1−Θt) = (32)

log

1−
log
(
nFt+1

nRt+1

)
+

σ2
R−σ

2
F

2
+ log νt+1

σ(σ2
R−σ

2
F )

2α1

− log

1−
log
(
nFt+1

nRt+1

)
+

σ2
R−σ

2
F

2
+ % log νt

σ(σ2
R−σ

2
F+ω2)

2α1

 .

It shows that the magnitude of the asymptotic bias depends on the size of the the variance of the

aggregate shocks ω2 and on the difference between the expected aggregate shock in period t + 1,

% log νt, and its realization, log νt+1. Later in the paper, we will use particular values for the model

parameters to provide evidence on the magnitude of the bias.

Intuitively, ignoring the uncertainty generated by the aggregate shocks should have the same

effect as in the portfolio example of biasing upward the estimated risk aversion parameter. Not

accounting for the aggregate shocks is equivalent to assuming that the agents face less uncertainty

than they actually experience when making the education decisions. Since the individuals’ deci-

sions are based on the actual uncertainty, the only way the model can explain those choices is by

making people more risk averse. In the general equilibrium model, this insight is not as straight-

forward to see as in the portfolio example, since the bias depends also on the difference between

the current and next period aggregate shocks. For this reason we perform a Monte Carlo exercise

whose results are reported in Section 7. They confirm the intuition regarding the sign of the bias

and suggests that its size can be extremely large. These insights are not specific to the uncer-

tainty generated by the aggregate shocks. They apply equally to individual-specific shocks. If the

econometrician disregards the variation generated by those shocks, risk aversion will generally be

estimated to be larger than it actually is.

There is an alternative approach that uses only micro-level data, instead of a combination

of micro-level and aggregate data, to estimate model parameters when aggregate shocks affect

behavior. The econometrician can use a single panel of micro-level data in which the time-series

dimension of the panel is sufficiently long, instead of a small number of repeated cross-sections
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combined with the time-series of aggregate data. The general equilibrium model of this section is

too complicated to illustrate the limitations of the alternative panel-data approach. Let n and T

denote the cross section dimension and time series dimension of the panel data. Using a stylized

linear panel model, however, one can show that, when the alternative approach is used, the effective

sample size of the data is not n×T but T, with the cross-section generally playing a minor role.24

The reason is that the asymptotic theory for the alternative “long panel” approach requires,

analogously to time-series analysis, the time dimension T to go to infinity because parameters

related to the aggregate shock process are exclusively identified from time series variation. A

large cross-section n does not compensate for the lack of a long time-series in the panel. Since in

practice almost all panel data sets have limited time-series dimensions, using the alternative panel

approach would therefore lead to imprecise estimates relative to our proposed method.

It is also important to point out that the practice of computing standard errors under the as-

sumption that the time-series parameters are known does not solve the large-T problem illustrated

by our panel example. Under that assumption, the standard errors for the cross-sectional param-

eters are incorrect and tend to be too small because they do not account for the noise introduced

by the estimation of the time series parameters. Lee and Wolpin (2006) use such a procedure (see

also their footnote 37). Their standard errors therefore underestimate the true standard errors.25

The econometric method proposed in this paper for the estimation of models with aggregate

shocks requires the combined use of cross-sectional data with long time-series of aggregate data.

There are no formulas available for the computation of standard errors and confidence intervals that

account for jointly estimated time series and cross-sectional coefficients based on those combined

data sources. In the next section, we provide such formulas. They are based on a new and complex

asymptotic theory that we develop in the companion paper Hahn, Kuersteiner, and Mazzocco

(2016). Surprisingly, in spite of the complexity of the theory, the formulas are straightforward and

easy to use.

24A detailed exposition of the model and derivation are in the on-line Appendix C.
25Donghoon Lee kindly confirmed this in private communication.

32



6 Standard Errors

The asymptotic theory underlying estimators obtained from the combination of the two data

sources considered in this paper is complex. It is based on a new central limit theorem that requires

a novel martingale representation. Given its complexity, the theory is presented in a separate

paper (Hahn, Kuersteiner and Mazzocco (2016)). However, the mechanical implementation of

test statistics and confidence intervals is surprisingly straightforward. In this Section, we first

provide a step-by-step description of how these statistics can be calculated. We then explain how

they can be employed in concrete cases using as examples the portfolio choice and the general

equilibrium models analyzed in the previous sections.

The computation starts with the explicit characterization of the “moments” that identify the

cross-sectional parameters β and the time-series parameters ρ. In the most general case, the ag-

gregate shocks are unknown and must be estimated jointly with the other model parameters using

cross-sectional data, as illustrated in the general equilibrium example. The shocks can therefore be

treated as cross-sectional parameters. This is accounted for by introducing a new vector of param-

eters θ which is composed of the original cross-sectional parameters and the aggregate shocks, i.e.

θ = (β, ν1, ..., νT ).26 We then denote with fθ,i (θ, ρ) the i-th moment used in the identification of

the parameters in θ and with gρ,t (β, ρ) the t-th moment used in the identification of the time-series

parameters. For simplicity, we assume that gρ,t is the correctly specified score of the conditional

density of zt. Since the score of a correctly specified likelihood is a martingale difference sequence

it is not serially correlated. This simplifies the estimation of Ωg.
27

Our proposed estimator based on a combination of cross-sectional data and a long time-series

26Implicit in this representation is the idea that we are given a short panel for estimation of θ = (β, ν1, . . . , νT ),
where T denotes the time series dimension of the panel data. In order to emphasize that T is small, we use the
term ‘cross-section’ for the short panel data set, and adopt asymptotics where T is fixed.

27In a technical note we discuss extensions to the misspecified and non-martingale case. There we provide results
for versions of our standard errors that are robust to serial correlation. More specifically, we prove a joint time
series and cross-sectional CLT for stationary and iid processes allowing for the case where E [gρ,t] = 0 but not
necessarily E

[
gρ,tg

′
ρ,s

]
= 0 for t 6= s. It follows that Ωg = E

[
gρ,tg

′
ρ,t

]
+
∑∞
s=1

(
E
[
gρ,tg

′
ρ,s

]
+ E

[
gρ,sg

′
ρ,t

])
which

can be estimated consistently with a HAC standard error estimator. The remaining implications of our theory as
presented in this paper are unaffected by this extension.

33



of aggregate data can then be written as the solution
(
θ̂, ρ̂
)

to the following system of equations:

n∑
i=1

fθ,i

(
θ̂, ρ̂
)

= 0, (33)

τ0+τ∑
s=τ0+1

gρ,s

(
β̂, ρ̂
)

= 0. (34)

As discussed in Section 2, τ0 + 1 here denotes the beginning of the time series data, which is

allowed to differ from the beginning of the panel data.

Using those equations, the standard errors for θ̂ and ρ̂ can be calculated using the following

five steps.

1. Let φ = (θ′, ρ′)′ be the vector of parameters.

2. Let

A =

 Âf,θ Âf,ρ

Âg,θ Âg,ρ

 ,
be the matrix of first order derivatives of the moments with respect to the parameters, with

Âf,θ = n−1

n∑
i=1

∂fθ,i

(
θ̂, ρ̂
)

∂θ′
, Âf,ρ = n−1

n∑
i=1

∂fθ,i

(
θ̂, ρ̂
)

∂ρ′
,

Âg,θ = τ−1

τ0+τ∑
s=τ0+1

∂gρ,s

(
β̂, ρ̂
)

∂θ′
, Âg,ρ = τ−1

τ0+τ∑
s=τ0+1

∂gρ,s

(
β̂, ρ̂
)

∂ρ′
.

3. Let

Ω̂f =
1

n

n∑
i=1

fθ,i

(
θ̂, ρ̂
)
fθ,i

(
θ̂, ρ̂
)′

and

Ω̂g =
1

τ

τ0+τ∑
s=τ0+1

gρ,s

(
θ̂, ρ̂
)
gρ,s

(
θ̂, ρ̂
)′
.

4. Let

W =

 1
n
Ω̂f 0

0 1
τ
Ω̂g
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5. Calculate

V = A−1W (A′)
−1

and use the square roots of the diagonal elements as the standard errors of the estimator.

For instance, if one is interested in the 95% confidence interval of the first component of φ,

it can be written as φ̂1 ± 1.96
√

V1,1.

The five-step algorithm described above may be understood intuitively by considering a Taylor

series expansion of equations (33) and (34). For simplicity, we work with a special case where

the time series model does not depend on the cross-section parameter β and the derivative with

respect to ρ of the log of the probability density function of the time series variable zs conditional

on zs−1 is given by gρ (zs| zs−1, ρ). Denote by ρ̂ the MLE. Standard results imply that
√
τ (ρ̂− ρ)

is asymptotically N
(

0, A−1
g,ρΩg

(
A′g,ρ

)−1
)

, where Ag,ρ = E [∂gρ,t/ ∂ρ
′] and Ωg = E

[
gρ,sg

′
ρ,s

]
with

gρ,s = gρ (zs| zs−1, ρ). The variance matrix of ρ̂ therefore corresponds to the lower-right block of

the matrix V derived using the five-step algorithm.

With ρ̂ estimated from the time series data, we can estimate θ by solving (33). Using a Taylor

series expansion, the asymptotic distribution of θ̂ is characterized as follows:

√
n
(
θ̂ − θ

)
≈ −

(
n−1

n∑
i=1

∂fθ,i (θ, ρ)

∂θ′

)−1(
1√
n

n∑
i=1

fθ,i (θ, ρ̂)

)
.

Because

1√
n

n∑
i=1

fθ,i (θ, ρ̂) ≈ 1√
n

n∑
i=1

fθ,i (θ, ρ) +

√
n√
τ

(
1

n

n∑
i=1

∂fθ,i (θ, ρ)

∂ρ′

)
√
τ (ρ̂− ρ) ,

we expect

√
n
(
θ̂ − θ

)
≈ −A−1

f,θ

(
1√
n

n∑
i=1

fθ,i

)
− A−1

f,θAf,ρ

√
n√
τ

√
τ (ρ̂− ρ) , (35)

where Af,θ = E [∂fθ,i/ ∂θ
′] and Af,ρ = E [∂fθ,i/ ∂ρ

′]. Assume that n−1/2
∑n

i=1 fθ,i is asymp-

totically N (0,Ωf ), and that n and τ grow to infinity at the same rate. If the two terms on

the right hand side of (35) are asymptotically independent, we expect
√
n
(
θ̂ − θ

)
to be ap-

proximately N
(

0, A−1
f,θΩf

(
A′f,θ

)−1
+ n

τ
A−1
f,θAf,ρA

−1
g,ρΩg

(
A′g,ρ

)−1
A′f,ρ

(
A′f,θ

)−1
)

or, equivalently, we

expect θ̂− θ to be approximately normally distributed with variance equal to 1
n
A−1
f,θΩf

(
A′f,θ

)−1
+
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1
τ
A−1
f,θAf,ρA

−1
g,ρΩg

(
A′g,ρ

)−1
A′f,ρ

(
A′f,θ

)−1
. This is exactly the variance of θ̂ implied by the upper-left

block of the matrix V derived using the five-step algorithm. In general, the two terms on the right

hand side of (35) are not asymptotically independent. But our technical discussion in the on-line

appendix justifies this assumption.

The theoretical results in our companion paper as well as more detailed calculations in the

appendix reveal a few important points. The matrix V in general is a function of aggregate shocks

realized during the observation periods of the cross-sectional sample. Consequently, the standard

errors computed from a combination of cross-sectional and time series data generally depend

on the actual realizations of an aggregate shocks at the time the cross-sections were observed.

With variation across the business cycle, these shocks and therefore the estimated standard errors

may change. Explicit formulas of how the standard errors depend on aggregate shocks in our

general equilibrium model are given in the appendix. The consequence of this finding is that

comparing standard errors across studies with cross-sections observed at different points in time

is problematic. This result applies to both cross-sectional and time-series parameters. A similar

word of caution applies to sample descriptive statistics such as sample averages obtained from

short panels, since these averages in general are functions of realized values of aggregate shocks

even when the cross-sectional sample size is large. As a result, descriptive statistics are expected

to change in response to changes of the aggregate shock. Comparison of these descriptive measures

across different time periods or data sets thus needs to be done with caution. Pivotal statistics

such as t-ratios or confidence intervals have, however, standard distributional properties and can

be compared across different samples. The deep structural parameters estimated in this paper are

also typically thought to be fixed. As long as these parameters are estimated consistently, their

point estimators are not affected by variation from aggregate shocks in large enough samples.

In Appendix D of the on-line appendix, we show for the interested reader how the standard error

formulas can be derived for the portfolio example of Section 3 and the general equilibrium model

of Section 5. The application of the formulas to the two examples highlights two features that

determine the properties of the asymptotic distribution of the proposed estimator. In the simple

portfolio example, there is a unidirectional relationship between the cross-sectional and time-series

models. As a consequence, the cross-sectional parameters cannot be estimated without knowledge

of the time-series parameters. In addition, agents form expectations for the main variable, end-
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of-period wealth, that do not depend on the current realization of the aggregate shock. These

two features imply that the asymptotic distribution has a simple form that is independent of the

aggregate shocks. If one of these two conditions is not satisfied, the limiting distribution has

the more general and complicated form that depends on aggregate shocks. The more complex

general equilibrium example illustrates this point. In that case, the relationship between the two

sub-models is bidirectional, implying that there is no recursive structure that can be used to first

estimate the cross-sectional parameters without knowledge of their time-series counterparts. As

a consequence, the asymptotic distribution depends on the aggregate variables needed for the

estimation of the cross-sectional parameters. Moreover, agents use the current realization of the

aggregate shock to form expectations about future events. Since these expectations are used in

their decision making process, the aggregate shocks affect the limiting distribution of the estimator

by entering the variance-covariance matrix.

7 Monte Carlo Results

In this section, we present the Monte Carlo results obtained by simulating the general equilibrium

model. We use the Monte Carlo results first to illustrate how the estimation and inference approach

developed in this paper can be applied in practice. We then document the ability of our standard

error formulas to produce the correct coverage probabilities for the parameters of interest, and

the inability of the standard error formulas that do not account for the aggregate uncertainty to

generate appropriate coverage probabilities. As a by-product, we also report the magnitude of the

estimation bias that can be generated if the econometrician ignores aggregate shocks.

To perform the Monte Carlo simulations and determine the size of the bias, we have to set

the 7 parameters of the general equilibrium model at particular values. The most consequential

parameter value is the one assigned to the variance of the aggregate shocks ω2 since, as shown

in Section 5, it determines the magnitude of the bias if the econometrician ignores the aggregate

shocks. We chose the size of ω2 using the estimated variance of the aggregate shocks used by

Kydland and Prescott (1982). They use an estimated variance for the quarterly U.S. cyclical output

that is equal to 0.000165. Differently from Kydland and Prescott (1982), in our model capital is

assumed to be fixed. As a consequence, the variation in aggregate shocks affects exclusively labor
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demand. To account for this feature of our model, we divided the variance estimated in Kydland

and Prescott (1982) by the square of the labor share in the economy.28 Since in the U.S. the

labor share is approximately 2/3, we divide 0.000165 by 4/9 to obtain 0.00037. In addition, our

model is characterized by two sectors: the rigid and the flexible sectors. We interpret the flexible

sector as the one composed of workers with jobs in industries that are affected less by aggregate

shocks (e.g. health and education), and the rigid sector as the one that employs workers with jobs

in more cyclical sectors (e.g. finance and business). If one includes in the rigid sector financial

activities, professional and business services, and construction, the Bureau of Labor Statistics

(BLS) estimates that slightly less than one quarter of workers where employed in the rigid sector

(22.6% in 2006 and 22.5% in 2016).29 Since in our model only the rigid sector is affected by

aggregate shocks, to make the estimated variance consistent with our model, we multiply it by

the square of 4 (the inverse of the size of the rigid sector). With this additional adjustment, we

have a quarterly variance for the aggregate shock of 0.006. Our model has only two periods, one

in which people engage in education and one in which they work. We assume that each period is

composed of 20 years and we multiply the quarterly variance of 0.006 by 4 quarters and 20 years,

obtaining the aggregate variance we use in the simulations, 0.48.

The values assigned to the variances of the productivity shocks σ2
F and σ2

R are also important

for the outcome of the Monte Carlo exercise, since they determine the size of the individual-

level uncertainty relative to the size of the aggregate uncertainty. We chose those variances using

the estimated variance of the productivity shocks reported in Macurdy (1982). Macurdy (1982)

estimates a variance for the residuals of yearly wages in the U.S. that is between 0.054 and 0.062.

To derive our measures of the micro variances, we multiply the upper bound of the yearly variance

estimated by Macurdy by 20 years (one of our periods), obtaining 1.2.30 Lastly, in our model the

micro shocks in sector F have a smaller variance than the shocks in sector R. To account for

this, we set σ2
F = 1 and σ2

R = 1.4. The mean variance of the micro shocks is therefore 1.2, which

corresponds to the estimate obtained using the results in Macurdy (1982).

The remaining parameters are set equal to the following values. The mean of the log of the

28The derivation of the short-run labor demand function for a Cobb-Douglas production function shows that this
is the correct adjustment.

29The BLS data used in the computation are available at https : //www.bls.gov/emp/ep table 201.htm.
30If we use the lower bound, the bias increases.
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risk aversion parameter µ is set equal to 0.2, which corresponds to a mean risk aversion parameter

of approximately 2. The parameter measuring the persistence of the aggregate shock ρ is initially

set equal to 0.75. We then evaluate how the results change when it is first increased to 0.9 and

then reduced to 0.5. The constant α0 and slope α1 of the labor demand functions are chosen to

be equal to 7 and -1, respectively. The parameter characterizing the preferences for consumption

σ is set equal to 0.6.

In the Monte Carlo exercise we consider 12 different specifications depending on the size of the

cross-section sample and length of the time-series sample. Specifically, we simulate the model and

estimate the parameters using the following sample sizes for the cross-section: 2,500, 5,000, 10,000,

and 50,000 individuals; and the following lengths for the time-series: 25, 50, and 100 periods. Lee

and Wolpin (2006) construct their cross-sections using the National Longitudinal Survey of Youth

1979 (NLSY79), with sample size 12,686 per wave, and the Current Population Survey (CPS)

March Supplement, with sample size 50,000 until 2000 and 60,000 afterward. Their time-series

is constructed using Bureau of Economic Analysis (BEA) data for the period 1968-2000, which

implies that its length corresponds to 33. The specification that approximates Lee and Wolpin’s

setting is therefore the one with 10,000 individuals in the cross-section and 25 periods in the time-

series. In all cases we generate 5,000 simulated data sets for the general equilibrium model. The

estimates and the coverage probabilities obtained using the method proposed in this paper and

the coverage probabilities computed without considering the aggregate uncertainties are presented

in Table 1. The mean and median bias generated by ignoring the aggregate shocks are reported

in Table 3. We only report results for the parameters µ, ρ, and ω2. All the other parameters

are estimated using the same estimators in the correct and misspecified model. The estimates

are therefore identical in the two models. Moreover, they are estimated precisely and without

significant bias in all Monte Carlo specifications.

We start by discussing the performance of the proposed approach. In the second column of

Table 1, we report the selected parameter estimates and, in the third and fourth columns, the

coverage probability for those parameters of a confidence interval with 90% nominal coverage

probability.31 Table 1 documents that the accuracy of the estimates increases with the length of

the time-series. For all cross-sections, when the length of the time-series increases from 25 to 100,

31To perform the Monte Carlo exercise we have to deal with a technical issue. The estimation of the risk aversion
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the estimated persistence parameter ρ goes from 0.698, 0.052 lower than the true parameter, to

about 0.735, just 0.015 lower than the true parameter. The size of the cross-section has therefore

no effect on the estimated value of ρ. A similar pattern characterizes the estimates of the variance

of the aggregate shocks, except that in this case the size of the cross-section has a small effect

on the estimation results. For a cross-section of 10,000 individuals, an increase from 25 to 100

periods produces a decline in the estimated ω2 from 0.503, 0.023 higher than the true parameter,

to 0.487, just 0.007 above the true value. Similar trends characterize the estimates of ω2 for the

other cross-sections, except that the accuracy of the estimates improves slightly for cross-sections

larger than 2,500.

In the estimation of the risk aversion parameter µ, we replace the other parameters that enter

the educational decision (25) with their estimated values. The small biases in the estimation of ρ

and ω2 will therefore affect the estimation of µ, and generate patterns that are similar to the ones

observed for ρ and ω2 when we increase the length of the time-series and the size of the cross-

section. For instance, with a cross-section of 10,000 individuals, when we increase the time-series

from 25 to 100 periods the estimated µ increases from 0.173, 0.027 below the true parameter,

to 0.184, just 0.016 below the true value. To confirm that the small bias in the estimation of

µ is generated by the small biases that characterize the other parameters, we also estimated µ

using the educational decision and the true value of the other parameters. We will refer to this

estimator as the infeasible estimator. The estimated values obtained using this estimator, which

by construction varies only with the length of the time series, are reported in Table 1. They are

always identical to the true parameter, which confirms that the small bias in the estimation of µ

is generated by the small bias introduced by the other parameters. These results indicate that it

parameter µ in the general equilibrium model requires the computation of log (1−Θt) where

Θt ≡
log
(
nF
t+1

nR
t+1

)
+

σ2
R−σ

2
F

2 + % log νt

σ(σ2
R−σ2

F +ω2)
2α1

.

In the model, Θt is always smaller than 1 and, hence, log (1−Θt) is always well defined. We provide a proof of
this statement in Appendix G. In the estimation of µ, however, the true parameters included in Θt are replaced
with their estimated values. In some of the Monte Carlo repetitions, the randomness of the estimated parameters
generates values of Θt that are greater than 1, which implies that log (1−Θt) is not well defined. A similar problem
arises when we estimate the misspecified model. The results reported in this Section are obtained by dropping all
simulations for which Θt ≥ 1. In Appendix F, we report the results obtained by using all the Monte Carlo runs
and by setting Θ = 0.99 in all cases in which Θ ≥ 1.
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is important to use a long time-series when estimating a model with aggregates shocks to reduce

the noise introduced by the estimation of the other parameters. A long time-series of aggregate

variables should therefore be preferred to a panel of data, since available panels have a short time

dimension.

The second column of Table 1 reports the coverage probabilities using the method we have

developed. In all cases, the coverage probabilities are close to the nominal one. For example, with

a cross-section of 10, 000 individuals, the coverage probability for a 90% interval is 0.890 for a

time-series of 25 periods, 0.913 if the time-series is increased to 50, and 0.928 when 100 periods

are used. The third column describes the coverage probabilities obtained using standard errors

based on the erroneous assumption that the aggregate parameters are not estimated but known.

The coverage probabilities of the erroneous confidence intervals display two noteworthy patterns.

The first pattern is that the coverage probabilities move further away from the theoretical one

when the size of the cross-section increases. With 100 periods, the erroneous coverage probability

is 0.818 when 2, 500 individuals are simulated, but only 0.469 when 50, 000 workers are considered.

The explanation for this pattern is straightforward. Under the assumption that the time-series

parameters are known, an increase in the size of the cross-section implies that the cross-sectional

parameters are estimated with more precision, hence the smaller standard errors. If the assumption

is incorrect and the time-series parameters are estimated, the erroneous standard errors incorrectly

reflect the true variability of the estimator, often in the direction of smaller confidence intervals.

Second, the under-coverage problem is ameliorated as the length of the time series grows. For

instance, with a cross-section of 10, 000 people, the coverage probability goes from 0.515 with 25

periods to 0.694 with 100 periods. This pattern can be explained by noting that the erroneous

standard errors are computed under the assumption that the parameters of the aggregate shocks

are known. When the time series grows, this assumption becomes a better approximation of the

economy we simulate and, as a consequence, the under-coverage problem is often reduced.

We now provide a more rigorous explanation for the two patterns discussed above. We start

by observing that the erroneous standard errors are obtained using the matrix

1

n
Â−1
f,θΩ̂f

(
Â−1
f,θ

)′
, (36)
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instead of the correct formula V = A−1W (A′)−1 introduced in the previous section. To simplify

the discussion, consider the special case in which the cross-sectional parameter θ is a scalar. In

that event, the square of the correct standard error for θ corresponds to the upper left block of

A−1W (A′)−1, which can be written as follows:

A−1W (A′)
−1

=
1

n

(
Âf,θ − Âf,ρÂ−1

g,ρÂg,θ

)−1

Ω̂f

((
Âf,θ − Âf,ρÂ−1

g,ρÂg,θ

)−1
)′

+
1

τ
Â−1
f,θÂf,ρ

(
Âg,ρ − Âg,θÂ−1

f,θÂf,ρ

)−1

Ω̂g

(
Â−1
f,θÂf,ρ

(
Âg,ρ − Âg,θÂ−1

f,θÂf,ρ

)−1
)′
. (37)

An inspection of the previous equation reveals that the incorrect formula (36) ignores the term

after the plus sign in (37), which corresponds to the time series error of magnitude O
(

1
τ

)
, whose

size may be substantial if n is significantly bigger than τ .

To illustrate the effect of ignoring the time-series error, it is instructive to examine the ratio

between (36) and (37) as n→∞ with τ fixed. Simple calculations indicate that the ratio (36)/(37)

converges to zero. This implies that for n sufficiently large, the erroneous standard error will be

substantially smaller than the correct standard error. As a consequence, the confidence intervals

based on the erroneous standard error will have smaller coverage probability as n becomes larger,

which explains the first pattern in our Monte Carlo exercise. This problem is less severe if τ is

sufficiently large that we can ignore the second term in (37), since in this case the only difference

between (36) and (37) is given by the Âf,ρÂ
−1
g,ρÂg,θ inside the first term of (37), which explains the

second pattern in the Monte Carlo exercise.

We now describe the estimation of the risk aversion parameter using only cross-sectional data.

As discussed in Section 5, the parameter µ requires both cross-section and time-series variation

to be consistently estimated. If the econometrician uses only cross-sectional data, the estimated

µ will be biased. In Table 3 we report the mean and median estimated µ and the corresponding

bias only for the three time-series, since the results are nearly identical across cross-sections. The

numbers indicate that the bias is positive, extremely large, and similar for all time-series whether

one considers the mean or the median. The parameter µ is estimated to be between six and seven

times the size of the true parameter and the bias to be between five and six times the true value.

A bias of this magnitude can have significant consequences if the estimated parameter is used to
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answer policy questions, with answers that can be considerably different from the ones that should

be obtained.

In Tables 4 and 5, we also report the effect of changing the persistence of the aggregate shock

by increasing ρ from 0.75 to 0.9 and by reducing it from 0.75 to 0.5 for the the specification

with 10,000 people and 100 periods. The effect is small. When we use our proposed method the

estimated coefficients are close to the true values. But if one ignores the aggregate shocks the bias

is large and positive.

Our Monte Carlo results indicate that ignoring aggregate shocks that affect the data can have

large effects on inference, on the estimation of important parameters, such as the coefficient of

risk aversion, and on the policy evaluations which are based on them. Our results also indicate

that the inference and estimation method we propose performs well. Given that it is relatively

straightforward to use, it is an easy solution for dealing with the presence of aggregate shocks.

8 Summary

Using a general econometric framework and three examples we shown that generally, when ag-

gregate shocks are present, model parameters cannot be identified using cross-sectional variation

alone. Identification of those parameters requires the combination of cross-sectional and time-

series data. When those two data sources are jointly used, there are no available formulas for the

computation of test statistics and confidence intervals. We provide new easy-to-use formulas that

account for the interaction between those data sources. Our results are expected to be helpful for

the econometric analysis of rational expectations models involving individual decision making as

well as general equilibrium models.
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Table 1: Monte Carlo Results, Parameter Estimates For Correct Model

True Parameter Estimate Cov. Prob. Cov. Prob.
No Agg. Uncert.

Cross-sectional Sample Size: 2,500, Time-series Sample Size: 25
Log Risk Aversion Mean: µ = 0.2 0.161 0.903 0.659
Aggregate Shock Persistence: ρ = 0.75 0.698 0.872 -
Variance of Aggregate Shock: ω2 = 0.48 0.514 0.833 -

Cross-sectional Sample Size: 2,500, Time-series Sample Size: 50
Log Risk Aversion Mean: µ = 0.2 0.172 0.919 0.742
Aggregate Shock Persistence: ρ = 0.75 0.722 0.880 -
Variance of Aggregate Shock: ω2 = 0.48 0.502 0.870 -

Cross-sectional Sample Size: 2,500, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.173 0.936 0.818
Aggregate Shock Persistence: ρ = 0.75 0.736 0.891 -
Variance of Aggregate Shock: ω2 = 0.48 0.498 0.888 -
Infeasible estimator of Log Risk Aversion Mean, Cross-section of 2,500: 0.1997
Cross-sectional Sample Size: 5,000, Time-series Sample Size: 25

Log Risk Aversion Mean: µ = 0.2 0.175 0.902 0.587
Aggregate Shock Persistence: ρ = 0.75 0.698 0.868 -
Variance of Aggregate Shock: ω2 = 0.48 0.508 0.830 -

Cross-sectional Sample Size: 5,000, Time-series Sample Size: 50
Log Risk Aversion Mean: µ = 0.2 0.183 0.916 0.670
Aggregate Shock Persistence: ρ = 0.75 0.722 0.876 -
Variance of Aggregate Shock: ω2 = 0.48 0.497 0.873 -

Cross-sectional Sample Size: 5,000, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.173 0.932 0.758
Aggregate Shock Persistence: ρ = 0.75 0.736 0.889 -
Variance of Aggregate Shock: ω2 = 0.48 0.492 0.894 -
Infeasible estimator of Log Risk Aversion Mean, Cross-section of 5,000: 0.1997
Cross-sectional Sample Size: 10,000, Time-series Sample Size: 25

Log Risk Aversion Mean: µ = 0.2 0.173 0.890 0.515
Aggregate Shock Persistence: ρ = 0.75 0.698 0.868 -
Variance of Aggregate Shock: ω2 = 0.48 0.503 0.826 -

Cross-sectional Sample Size: 10,000, Time-series Sample Size: 50
Log Risk Aversion Mean: µ = 0.2 0.184 0.913 0.596
Aggregate Shock Persistence: ρ = 0.75 0.722 0.872 -
Variance of Aggregate Shock: ω2 = 0.48 0.492 0.865 -

Cross-sectional Sample Size: 10,000, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.184 0.928 0.694
Aggregate Shock Persistence: ρ = 0.75 0.737 0.890 -
Variance of Aggregate Shock: ω2 = 0.48 0.487 0.887 -
Infeasible estimator of Log Risk Aversion Mean, Cross-section of 10,000: 0.200

Notes: This table reports the Monte Carlo results for the correct model obtained using our proposed estimation method. They are
derived by simulating the general equilibrium model 5000 times. The second column reports the average estimated parameter, where
the average is computed over the 5000 simulations. Column 3 reports the coverage probability of a confidence interval with 90%
nominal coverage probability. 48



Table 2: Monte Carlo Results, Parameter Estimates For Correct Model, Cont.

True Parameter Estimate Cov. Prob. Cov. Prob.
No Agg. Uncert.

Cross-sectional Sample Size: 50,000, Time-series Sample Size: 25
Log Risk Aversion Mean: µ = 0.2 0.176 0.876 0.296
Aggregate Shock Persistence: ρ = 0.75 0.698 0.868 -
Variance of Aggregate Shock: ω2 = 0.48 0.502 0.820 -

Cross-sectional Sample Size: 50,000, Time-series Sample Size: 50
Log Risk Aversion Mean: µ = 0.2 0.187 0.897 0.377
Aggregate Shock Persistence: ρ = 0.75 0.722 0.870 -
Variance of Aggregate Shock: ω2 = 0.48 0.491 0.854 -

Cross-sectional Sample Size: 50,000, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.189 0.911 0.469
Aggregate Shock Persistence: ρ = 0.75 0.736 0.882 -
Variance of Aggregate Shock: ω2 = 0.48 0.487 0.884 -
Infeasible estimator of Log Risk Aversion Mean, Cross-section of 5,000: 0.1994

Notes: See table 1.

Table 3: Monte Carlo Results, Risk Aversion Estimates For Misspecified Model

Mean Median
True Parameter Estimate Bias Estimate Bias

Cross-sectional Sample Size: 2,500
Log Risk Aversion Mean: µ = 0.2 1.224 1.024 1.400 1.200

Cross-sectional Sample Size: 5,000
Log Risk Aversion Mean: µ = 0.2 1.224 1.024 1.405 1.205

Cross-sectional Sample Size: 10,000
Log Risk Aversion Mean: µ = 0.2 1.227 1.027 1.416 1.216

Cross-sectional Sample Size: 50,000
Log Risk Aversion Mean: µ = 0.2 1.229 1.029 1.416 1.216

Notes: This table reports the Monte Carlo results for the misspecified model obtained using only cross-sectional variation. They
are derived by simulating the general equilibrium model 5000 times. The second column reports the average estimated parameter,
where the average is computed over the 5000 simulations. Column 3 reports the estimation bias, which is computed as the difference
between the estimated and true parameter.
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Table 4: Monte Carlo Results, Parameter Estimates For Correct Model, Different ρ’s

True Parameter Estimate Cov. Prob. Cov. Prob.
No Agg. Uncert.

Cross-sectional Sample Size: 10,000, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.217 0.911 0.726
Aggregate Shock Persistence: ρ = 0.9 0.884 0.899 -
Variance of Aggregate Shock: ω2 = 0.48 0.493 0.883 -

Cross-sectional Sample Size: 10,000, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.180 0.929 0.654
Aggregate Shock Persistence: ρ = 0.5 0.492 0.884 -
Variance of Aggregate Shock: ω2 = 0.48 0.489 0.886 -

See notes at Table 1.

Table 5: Monte Carlo Results, Risk Aversion Estimates For Misspecified Model, Different ρ’s

Mean Median
True Parameter Estimate Bias Estimate Bias

Cross-sectional Sample Size: 10,000, ρ = 0.9
Log Risk Aversion Mean: µ = 0.2 1.192 0.992 1.342 1.142

Cross-sectional Sample Size: 10,000, ρ = 0.5
Log Risk Aversion Mean: µ = 0.2 1.208 1.008 1.401 1.201

See notes at Table 3.
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On line Appendix

A Discussion for Section 3

A.1 Proof of (2)

The maximization problem is equivalent to

max
α
−e−δ(α(1+r)+(1−α))E

[
e−δ(1−α)ui,t

]
.

Since −δ (1− α)ui,t ∼ N
(
−δ (1− α)µ, δ2 (1− α)2 σ2

)
, we have

E
[
e−δ(1−α)ui,t

]
= e−δ(1−α)µ+

δ2(1−α)2σ2
2 ,

and the maximization problem can be rewritten as follows:

max
α
−e
−δ

(
α(1+r)+(1−α)(1+µ)− δ(1−α)

2σ2

2

)
.

Taking the first order condition, we have,

0 = −δ
(
r − µ+ σ2δ − ασ2δ

)
,

from which we obtain the solution

α =
1

σ2δ

(
r − µ+ σ2δ

)
.

A.2 Euler Equation and Cross Section

Our model in Section 3 is a stylized version of many models considered in a large literature

interested in estimating the parameter δ using cross-sectional variation. Estimators are often based

on moment conditions derived from first order conditions (FOC) related to optimal investment

and consumption decisions. We illustrate the problems facing such estimators.

1



Assume a researcher has a cross-section of observations for individual consumption and returns

ci,t and ui,t. The population FOC of our model32 takes the simple form E
[
e−δci,t (r − ui,t)

]
= 0. A

just-identified moment based estimator for δ solves the sample analog n−1
∑n

i=1 e
−δ̂ci,t (r − ui,t) =

0. It turns out that the probability limit of δ̂ is equal to (νt − r)/ ((1− α)σ2
ε ), i.e., δ̂ is inconsistent.

We now compare the population FOC a rational agent uses to form their optimal portfolio

with the empirical FOC an econometrician using cross-sectional data observes:

n−1

n∑
i=1

e−δci,t (r − ui,t) = 0.

Noting that ui,t = νt + εi,t and substituting into the budget constraint

ci,t = 1 + αr + (1− α)ui,t = 1 + αr + (1− α) νt + (1− α) εi,t,

we have

n−1

n∑
i=1

e−δci,t (r − ui,t) = n−1

n∑
i=1

e−δ(1+αr+(1−α)νt)−δ(1−α)εi,t (r − νt − εi,t) (38)

= e−δ(1+αr+(1−α)νt)

(
(r − νt)n−1

n∑
i=1

e−δ(1−α)εi,t − n−1

n∑
i=1

e−δ(1−α)εi,tεi,t

)
.

Under suitable regularity conditions including independence of εi,t in the cross-section it follows

that

n−1

n∑
i=1

e−δ(1−α)εi,t = E
[
e−δ(1−α)εi,t

]
+ op (1) = e

δ2(1−α)2σ2ε
2 + op (1) (39)

and

n−1

n∑
i=1

e−δ(1−α)εi,tεi,t = E
[
e−δ(1−α)εi,tεi,t

]
+ op (1) = −δ (1− α)σ2

ε e
δ2(1−α)2σ2ε

2 + op (1) . (40)

Taking limits as n → ∞ in (38) and substituting (39) and (40) then shows that the method of

moments estimator based on the empirical FOC asymptotically solves

(
(r − νt) + δ (1− α)σ2

ε

)
e
δ2(1−α)2σ2ε

2 = 0. (41)

32We assume δ 6= 0 and rescale the equation by −δ−1.
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Solving for δ we obtain

plim δ̂ =
νt − r

(1− α)σ2
ε

.

This estimate is inconsistent because the cross-sectional data set lacks cross sectional ergodicity,

or in other words does not contain the same information about aggregate risk as is used by rational

agents. Therefore, the empirical version of the FOC is unable to properly account for aggregate

risk and return characterizing the risky asset. The estimator based on the FOC takes the form of

an implicit solution to an empirical moment equation, which obscures the effects of cross-sectional

non-ergodicity. A more illuminative approach uses our modelling strategy in Section 2.

On the other hand, it is easily shown using properties of the Gaussian moment generating

function that the population FOC is proportional to

E
[
e−δ(1−α)ui,t (r − ui,t)

]
=
(
r − µ+ δ (1− α)σ2

)
e−δ(1−α)µ+

δ2(1−α)2σ2
2 = 0. (42)

The main difference between (39) and (40) lies in the fact that σ2
v is estimated to be 0 in the

sample and that νt 6= µ in general. Note that (42) implies that consistency may be achieved with

a large number of repeated cross sections, or a panel data set with a long time series dimension.

However, this raises other issues discussed in Section C.

B Details of Section 5

B.1 Proof of (25)

In the proof we will drop the i subscripts for notational purposes. The individual will choose

education F if

E
[
Vt+1

(
F, νt+1, ε

F
t+1

)∣∣ νt] ≥ E
[
Vt+1

(
R, νt+1, ε

R
t+1

)∣∣ νt] .
Using (52) and (53) later in Section B.2, we write

Vt+1

(
F, νt+1, ε

F
t+1

)
=

[((
nFt+1σT

eα0

)1/α1

σT

)σ

((1− σ)T )1−σ

]1−γ

1− γ
exp

(
σ (1/α1) (1− γ) εFt+1

)
,

3



and

Vt+1

(
R, νt+1, ε

R
t+1

)
=

[((
nRt+1σT

eα0

)1/α1

σT

)σ

((1− σ)T )1−σ

]1−γ

1− γ
exp

(
σ (1/α1) (1− γ) εRt+1

)
×
(
ν
−σ(1/α1)(1−γ)
t+1

)
.

It follows that education F is chosen if and only if

(
nFt+1

)σ(1−γ)/α1 ≥
(
nRt+1

)σ(1−γ)/α1

×
E
[
exp

(
σ (1/α1) (1− γ) εRt+1

)]
Et

[
ν
−σ(1/α1)(1−γ)
t+1

]
E
[
exp

(
σ (1/α1) (1− γ) εFt+1

)] . (43)

Recall that E
[
exp

(
εSt
)]

= 1 for S = F,R. It follows that εFt+1 ∼ N
(
−σ2

F

2
, σ2

F

)
, and εRt+1 ∼

N
(
−σ2

R

2
, σ2

R

)
, and as a consequence,

E

[
exp

(
σ (1− γ)

α1

εFt+1

)]
= exp

(
−σ (1/α1) (1− γ)σ2

F

2
+

(σ (1/α1) (1− γ))2 σ2
F

2

)
, (44)

E

[
exp

(
σ (1− γ)

α1

εRt+1

)]
= exp

(
−σ (1/α1) (1− γ)σ2

R

2
+

(σ (1/α1) (1− γ))2 σ2
R

2

)
. (45)

Also, because log νt+1 = ρ log νt + ηt, or νt+1 = νρt exp (ηt), we can write

Et

[
ν
−σ(1−γ)(1/α1)
t+1

]
= Eη

[
(νρt exp (ηt))

−σ(1−γ)(1/α1)
]

= ν
−ρσ(1−γ)(1/α1)
t E [exp (−σ (1− γ) (1/α1) ηt)] .

where Eη [·] denotes the integral with respect to ηt alone. The assumption that ηt ∼ N (0, ω2)

allows us to write

E [exp (−σ (1− γ) (1/α1) ηt)] = exp

(
(σ (1− γ) (1/α1))2

2
ω2

)

recognizing that the expectation on the left is nothing but the moment generating function of
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N (0, ω2) evaluated at −σ (1− γ) (1/α1). Therefore, we have

Et

[
ν
−σ(1−γ)(1/α1)
t+1

]
= ν

−ρσ(1−γ)(1/α1)
t exp

(
(σ (1− γ) (1/α1))2

2
ω2

)
. (46)

Combining (44), (45), and (46), we obtain

E
[
exp

(
σ (1/α1) (1− γ) εRt+1

)]
Et

[
ν
−σ(1/α1)(1−γ)
t+1

]
E
[
exp

(
σ (1/α1) (1− γ) εFt+1

)]
= ν

−ρσ(1−γ)(1/α1)
t exp

(
(σ (1− γ) (1/α1))2

2

(
σ2
R − σ2

F + ω2
))

× exp

(
−σ (1/α1) (1− γ) (σ2

R − σ2
F )

2

)
.

As a consequence, (43) is equivalent to

(
nFt+1

)σ(1−γ)/α1 ≥
(
nRt+1

)σ(1−γ)/α1
ν
−ρσ(1−γ)(1/α1)
t exp

(
(σ (1− γ) (1/α1))2

2

(
σ2
R − σ2

F + ω2
))

× exp

(
−σ (1/α1) (1− γ) (σ2

R − σ2
F )

2

)
(47)

when 1− γ > 0, and

(
nFt+1

)σ(1−γ)/α1 ≤
(
nRt+1

)σ(1−γ)/α1
ν
−ρσ(1−γ)(1/α1)
t exp

(
(σ (1− γ) (1/α1))2

2

(
σ2
R − σ2

F + ω2
))

× exp

(
−σ (1/α1) (1− γ) (σ2

R − σ2
F )

2

)
(48)

when 1− γ < 0.

Consider first the case 1− γ > 0. Taking logs of (47), we obtain

σ (1− γ)

α1

log nFt+1 ≥
σ (1− γ)

α1

log nRt+1 − ρ
σ (1− γ)

α1

log νt

+
(σ (1− γ))2

2α2
1

(
σ2
R − σ2

F + ω2
)
− σ (1/α1) (1− γ) (σ2

R − σ2
F )

2
.
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Dividing by σ and multiplying by α1 < 0, we conclude that the decision is equivalent to

(1− γ)

(
log

nFt+1

nRt+1

+
(σ2

R − σ2
F )

2
+ ρ log νt

)
≤ σ (1− γ)2 (σ2

R − σ2
F + ω2)

2α1

.

Dividing by σ (1− γ) (σ2
R − σ2

F + ω2) > 0, we obtain

log
nFt+1

nRt+1
+

σ2
R−σ

2
F

2
+ ρ log νt

σ (σ2
R − σ2

F + ω2)
≤ 1− γ

2α1

.

Multiplying by 2α1 < 0, we obtain

log
nFt+1

nRt+1
+

σ2
R−σ

2
F

2
+ ρ log νt

σ(σ2
R−σ

2
F+ω2)

2α1

≥ 1− γ

or

γ ≥ 1−
log
(
nFt+1

nRt+1

)
+

σ2
R−σ

2
F

2
+ ρ log νt

σ(σ2
R−σ

2
F+ω2)

2α1

,

which proves inequality (25) for the 1− γ > 0 case.

Consider now the case 1− γ < 0. Taking logs of (48), we obtain

σ (1− γ)

α1

log nFt+1 ≤
σ (1− γ)

α1

log nRt+1 − ρ
σ (1− γ)

α1

log νt

+
(σ (1− γ))2

2α2
1

(
σ2
R − σ2

F + ω2
)
− σ (1/α1) (1− γ) (σ2

R − σ2
F )

2
.

Dividing by σ and multiplying by α1 < 0, we conclude that the decision is equivalent to

(1− γ)

(
log

nFt+1

nRt+1

+
σ2
R − σ2

F

2
+ ρ log νt

)
≥ σ (1− γ)2 (σ2

R − σ2
F + ω2)

2α1

.

Dividing by by σ (1− γ) (σ2
R − σ2

F + ω2) < 0, we obtain

log
nFt+1

nRt+1
+

σ2
R−σ

2
F

2
+ ρ log νt

σ (σ2
R − σ2

F + ω2)
≤ (1− γ)

2α1

.
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Multiplying by 2α1 < 0, we obtain

log
nFt+1

nRt+1
+

σ2
R−σ

2
F

2
+ ρ log νt

σ(σ2
R−σ

2
F+ω2)

2α1

≥ 1− γ

or

γ ≥ 1−
log

nFt+1

nRt+1
+

σ2
R−σ

2
F

2
+ ρ log νt

σ(σ2
R−σ

2
F+ω2)

2α1

,

which proves inequality (25) for the 1− γ < 0 case as well.

B.2 Proof of (23) and (24)

Note that individual heterogeneity is completely summarized by the vector χt ≡
(
εFt , ε

R
t , γ
)
. This

means that the labor supply for each type χ of workers can be written hFt (χ) and hRt (χ). We

assume that the measure of individuals such that
(
εFt , ε

R
t , γ
)
∈ A for some A ⊂ R3 is given

by Nt

∫
A
G (dχ), where G is a joint CDF. For simplicity, we assume that G is such that the

first and second components are independent of each other. Recall that we also assume that∫
exp (εt)G (dχ) = 1.

We can rewrite (22) as follows:

E

[ [(
σwFt+1 (νt+1) exp

(
εFt+1

)
T
)σ

((1− σ)T )1−σ]1−γ
1− γ

∣∣∣∣∣ νt
]

≥ E

[ [(
σwRt+1 (νt+1) exp

(
εRt+1

)
T
)σ

((1− σ)T )1−σ]1−γ
1− γ

∣∣∣∣∣ νt
]
. (49)

As a consequence, education F is chosen if

ψ (γ, νt) ≡ E

[ [(
wFt+1 (νt+1) exp

(
εFt+1

))]σ(1−γ)

1− γ

∣∣∣∣∣ νt
]
− E

[ [
wRt+1 (νt+1) exp

(
εRt+1

)]σ(1−γ)

1− γ

∣∣∣∣∣ νt
]
≥ 0.

(50)

Specifically, an individual chooses F if ψ (γ, νt) > 0. We can now introduce the equilibrium

7



condition for education F . It takes the following form:

HD,F
t+1 = Nt+1

∫
E=F

hFt+1 (χ)G (dχ) = Nt+1σT
∫
ψ(γ,νt)≥0

exp
(
εFt+1

)
G (dχ)

HD,R
t+1 = Nt+1

∫
E=R

hFt+1 (χ)G (dχ) = Nt+1σT
∫
ψ(γ,νt)<0

exp
(
εRt+1

)
G (dχ) .

Using independence between γ and ε as well as
∫

exp
(
εFt
)
G (dχ) = 1, we can write

∫
ψ(γ,νt)≥0

exp
(
εFt+1

)
G (dχ) =

(∫
ψ(γ,νt)≥0

G (dχ)

)(∫
exp

(
εFt+1

)
G (dχ)

)
=

∫
ψ(γ,νt)≥0

G (dχ)

= Fraction of workers in Sector F, (51)

so we can write HD,F
t = nFt σT , where nF is the measure of individuals that chose education F .

Taking logs, we have:

logHD,F
t = log nFt + log σ + log T,

Substituting for HD,F
t , we obtain the following equilibrium condition:

α0 + α1 logwFt = log nFt + log σ + log T,

Solving for logwFt , we have the log equilibrium wage:

(
zFt ≡

)
logwFt =

log nFt + log σ + log T − α0

α1

. (52)

This wage is for the unit of effective labor. Because the worker i provides σ exp (εt)T of effective

labor, his recorded earning is σ exp (εt)T exp

(
log nFt + log σ + log T − α0

α1

)
. Because the indi-

vidual works for σT hours, his wage for the labor is exp (εt) exp

(
log nFt + log σ + log T − α0

α1

)
;

we will assume that the cross section “error” consist of n i.i.d. copies of εt, i.e.,the observed log

equilibrium individual wage follows:

logwFit =
log nFt + log σ + log T − α0

α1

+ εFit .

8



Because of the normalization E
[
exp

(
εRit
)]

= 1, the second equality in (51) also applies to the

R sector, and as a consequence, the equilibrium condition for education R has the following form:

HD,R
t = nRt σT,

where nR is the measure of individuals that chose education R. Substituting for HD,R
t and solving

for logwRt , we obtain the following equilibrium wage for R:

(
zRt ≡

)
logwRt =

log nRt + log σ + log T − α0 − log νt
α1

. (53)

By the same reasoning, the observed log equilibrium wage would look like

logwRit =
log nRt + log σ + log T − α0 − log νt

α1

+ εRit .

C Long Panels?

Our proposal requires access to two data sets, a cross-section (or short panel) and a long time

series of aggregate variables. One may wonder whether we may obtain an estimator with similar

properties by exploiting panel data sets in which the time series dimension of the panel data is

large enough.

One obvious advantage of combining two sources of data is that time series data may contain

variables that are unavailable in typical panel data sets. For example the inflation rate potentially

provides more information about aggregate shocks than is available in panel data. We argue with

a toy model that even without access to such variables, the estimator based on the two data sets is

expected to be more precise, which suggests that the advantage of data combination goes beyond

availability of more observable variables.

Consider the alternative method based on one long panel data set, in which both n and T go to

infinity. Since the number of aggregate shocks νt increases as the time-series dimension T grows,

we expect that the long panel analysis can be executed with tedious yet straightforward arguments

by modifying ideas in Hahn and Kuersteiner (2002), Hahn and Newey (2004) and Gagliardini and

Gourieroux (2011), among others.
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We will now illustrate a potential problem with the long panel approach with a simple artificial

example. Suppose that the econometrician is interested in the estimation of a parameter γ that

characterizes the following system of linear equations:

qi,t = xi,t
γ

ω
+ νt + εi,t i = 1, . . . , n; t = 1, . . . ,T,

νt = ωνt−1 + ut.

The variables qi,t and xi,t are observed and it is assumed that xi,t is strictly exogenous in the sense

that it is independent of the error term εi,t, including all leads and lags. For simplicity, we also

assume that ut and εi,t are normally distributed with zero mean and that εi,t is i.i.d. across both

i and t. We will denote by δ the ratio γ/ω.

In order to estimate γ based on the panel data {(qi,t, xi,t) , i = 1, . . . , n; t = 1, . . . ,T}, we can

adopt a simple two-step estimator of γ. In a first step, the parameter δ and the aggregate shocks

νt are estimated using an Ordinary Least Square (OLS) regression of qi,t on xi,t and time dummies.

In the second step, the time-series parameter ω is estimated by regressing ν̂t on ν̂t−1, where ν̂t,

t = 1, . . . ,T, are the aggregate shocks estimated in the first step using the time dummies. An

estimator of γ can then be obtained as δ̂ω̂.

The following remarks are useful to understand the properties of the estimator γ̂ = δ̂ω̂. First,

even if νt were observed, for ω̂ to be a consistent estimator of ω we would need T to go to infinity,

under which assumption we have ω̂ = ω+Op

(
T−1/2

)
. This implies that it is theoretically necessary

to assume that our data source is a “long” panel, i.e., T→∞. Similarly, ν̂t is a consistent estimator

of νt only if n goes to infinity. As a consequence, we have ν̂t = νt +Op

(
n−1/2

)
. This implies that

it is in general theoretically necessary to assume that n→∞.33 Moreover, if n and T both go to

infinity, δ̂ is a consistent estimator of δ and δ̂ = δ +Op

(
n−1/2T−1/2

)
. All this implies that

γ̂ = δ̂ω̂ =

(
δ +Op

(
1√
nT

))(
ω +Op

(
1√
T

))
= δω +Op

(
1√
T

)
= γ +Op

(
1√
T

)
.

The Op

(
n−1/2T−1/2

)
estimation noise of δ̂, which is dominated by the Op

(
T−1/2

)
error from

33For ω̂ to have the same distribution as if νt were observed, we need n to go to infinity faster than T or
equivalently that T = o (n). See Heckman and Sedlacek (1985, p. 1088).
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estimating ω̂, is the term that would arise if ω were not estimated. The term reflects typical findings

in long panel analysis (i.e., large n, large T), where the standard errors are inversely proportional

to the square root of the number n×T of observations. The fact that the estimation error of γ̂ is

dominated by the Op

(
T−1/2

)
term indicates that the number of observations is effectively equal

to T, i.e., the long panel should be treated as a time series problem for all practical purposes.

This conclusion has two interesting implications. First, the sampling noise due to cross-section

variation should be ignored and the “standard” asymptotic variance formulae should generally be

avoided in panel data analysis when aggregate shocks are present. We note that Lee and Wolpin’s

(2006, 2010) standard errors use the standard formula that ignores the Op

(
T−1/2

)
term. Second,

since in most cases the time-series dimension T of a panel data set is relatively small, despite the

theoretical assumption that it grows to infinity, estimators based on panel data will generally be

more imprecise than may be expected from the “large” number n× T of observations.34

D Asymptotic Distribution and Standard Error Formulas

for Examples

In this section, we discuss how the discussion in Section 6 applies to the general equilibrium model.

We also present characterizations of the asymptotic distributions for the examples in Sections 3

and 5.

D.1 Standard Error Formula Applied to the General Equilibrium Model

Recall our assumption that the (repeated) cross-sectional data include n i.i.d. observations(
wi,t, c

∗
i,t, l

∗
i,t, Fi,t

)
for working individuals from two periods t = 1, 2. Here, Fi,t denotes a dummy

34This raises an interesting point. Suppose there is an aggregate time series data set available with which
consistent estimation of γ is feasible at the standard rate of convergence. Also suppose that the number of time
series observations, say τ , is a lot larger than T . In that case we conjecture that the panel data analysis is strictly
dominated by the time series analysis from an efficiency point of view.
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variable that is equal to one if the agent chooses S = F in the previous period. Recall that we use

1

n̄1

n̄1∑
i=1

logwFi,1 −
1

n̄2

n̄2∑
i=1

logwFi,2 =
1

α̂1

(
log nF1 − log nF2

)
1

n̄1

n̄1∑
i=1

c∗i,1
l∗i,1

= wF1
σ̂

1− σ̂

as well as

l̂og νs = α̂1

(
logwFs − logwRs

)
−
(
log nFs − log nRs

)
. (54)

The parameters % and ω2 can then be consistently estimated by the time-series regression of the

following equation:

̂log νs+1 = %l̂og νs + ηs. (55)

In addition to these equations, we will use the cross section variances of logwFi,1 and logwRi,1 to

estimate σ2
F and σ2

R. We also have the log likelihood from a sample of n individuals (cross section)

is
n∑
i=1

{Fi,2 log [1− Φ (log (1−Θ)− µ)] + (1− Fi,2) log [Φ (log (1−Θ)− µ)]} ,

where Θ is constant across i and given by

Θ ≡
log
(
nF2
nR2

)
+

σ2
R−σ

2
F

2
+ % log ν1

σ(σ2
R−σ

2
F+ω2)

2α1

. (56)

The moments employed in the estimation of α1 and σ take the following form:

1

n̄1

n̄1∑
i=1

logwFi,1 −
1

n̄2

n̄2∑
i=1

logwFi,2 =
1

α̂1

(
log nF1 − log nF2

)
1

n̄1

n̄1∑
i=1

c∗i,1
l∗i,1

= wF1
σ̂

1− σ̂
.

To simplify notation we introduce two redundant parameters δ1 and δ2

1

n̄1

n̄1∑
i=1

logwFi,1 = δ̂1,
1

n̄2

n̄2∑
i=1

logwFi,2 = δ̂2
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and understand

α̂1 =
log nF1 − log nF2

δ̂1 − δ̂2

. (57)

Given that our asymptotics are based on n→∞, we need to express moments in terms of n:

n∑
i=1

Fi,1
(
logwFi,1 − δ1

)
= 0,

n∑
i=1

Fi,2
(
logwFi,2 − δ2

)
= 0,

n∑
i=1

Fi,1

(
c∗i,1
l∗i,1
− wF1

σ

1− σ

)
= 0.

For the estimation of σ2
F = σ2

ε , we use the fact that the second moment is the sum of the variance

and the square of the first moment and let

n∑
i=1

Fi,1

((
logwFi,1

)2 −
(
σ2
F + δ2

1

))
= 0.

Likewise, for the estimation of σ2
R,

n∑
i=1

(1− Fi,1)
(
logwRi,1 − δ3

)
= 0,

n∑
i=1

(1− Fi,1)
((

logwRi,1
)2 −

(
σ2
R + δ2

3

))
= 0.

For the estimation of the parameters ρ and ω2, the OLS estimator of % and the corresponding

estimator for ω2 solve:
1

τ

τ0+τ∑
s=τ0+1

l̂og νs

(
̂log νs+1 − %̂l̂og νs

)
= 0

and
1

τ

τ0+τ∑
s=τ0+1

(
̂log νs+1 − %̂l̂og νs

)2

= ω̂2.
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Replacing for ̂log νs+1 and l̂og νs using equation(54), as well as (57), we obtain the following two

moment conditions:

τ0+τ∑
s=τ0+1

 lognF1 −lognF2
δ1−δ2

(
logwFs − logwRs

)
−
(
log nFt − log nRt

)
×

 lognF1 −lognF2
δ1−δ2

(
logwFs+1 − logwRs+1

)
−
(
log nFs+1 − log nRs+1

)
− %

 lognF1 −lognF2
δ1−δ2

(
logwFs − logwRs

)
−
(
log nFs − log nRs

)
 = 0,

τ0+τ∑
s=τ0+1

 lognF1 −lognF2
δ1−δ2

(
logwFs+1 − logwRs+1

)
−
(
log nFs+1 − log nRs+1

)
− %

 lognF1 −lognF2
δ1−δ2

(
logwFs − logwRs

)
−
(
log nFs − log nRs

)
2

− ω2

 = 0.

For the rest of the parameters, we note that Fi,2 is chosen with probability 1−Φ (log (1−Θ)− µ)

for

Θ =
log
(
nF2
nR2

)
+

σ2
R−σ

2
F

2
+ % log ν1

σ(σ2
R−σ

2
F+ω2)

2α1

,

so µ can be estimated by Probit MLE, where the FOC can be shown to be

0 =
n∑
i=1

{Fi,2 − [1− Φ (log (1−Θ)− µ)]} ,

where

Θ =
log
(
nF2
nR2

)
+

σ2
R−σ

2
F

2
+ % log ν1

σ(σ2
R−σ

2
F+ω2)

2α1

=
log
(
nF2
nR2

)
+

σ2
R−σ

2
F

2
+ %

(
lognF1 −lognF2

δ1−δ2

(
logwF1 − logwR1

)
−
(
log nF1 − log nR1

))
σ(σ2

R−σ
2
F+ω2)

2
δ1−δ2

lognF1 −lognF2

.

Here, we used the fact that

log ν1 = α1

(
logwF1 − logwR1

)
−
(
log nF1 − log nR1

)
α1 =

log nF1 − log nF2
δ1 − δ2

.
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Based on the previous discussion, we can now present moments in the form of (33) and

(34). In our case, log ν1 is estimated with the aid of aggregate variables, so we have β = θ =

(µ, δ1, δ2, σ, δ3, σ
2
F , σ

2
R)
′

and ρ = (%, ω2)
′
. We see that the cross sectional moments are

1

n

n∑
i=1

Fi,1
(
logwFi,1 − δ1

)
= 0,

1

n

n∑
i=1

Fi,2
(
logwFi,2 − δ2

)
= 0,

1

n

n∑
i=1

Fi,1

(
c∗i,1
l∗i,1
− wF1

σ

1− σ

)
= 0,

1

n

n∑
i=1

{Fi,2 − [1− Φ (log (1−Θ)− µ)]} = 0,

and

n∑
i=1

Fi,1

((
logwFi,1

)2 −
(
σ2
F + δ2

1

))
= 0,

n∑
i=1

(1− Fi,1)
(
logwRi,1 − δ3

)
= 0,

n∑
i=1

(1− Fi,1)
((

logwRi,1
)2 −

(
σ2
R + δ2

3

))
= 0,

where

Θ =
log
(
nF2
nR2

)
+

σ2
R−σ

2
F

2
+ %

(
lognF1 −lognF2

δ1−δ2

(
logwF1 − logwR1

)
−
(
log nF1 − log nR1

))
σ(σ2

R−σ
2
F+ω2)

2
δ1−δ2

lognF1 −lognF2

,

and the time series moments are

1

τ

τ0+τ∑
s=τ0+1

log νs (log νs+1 − % log νs) = 0,

1

τ

τ0+τ∑
s=τ0+1

(
(log νs+1 − % log νs)

2 − ω2
)

= 0,
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where

log νs =
log nF1 − log nF2

δ1 − δ2

(
logwFs − logwRs

)
−
(
log nFs − log nRs

)
.

Letting

fθ,i (θ, ρ) =



Fi,1
(
logwFi,1 − δ1

)
Fi,1

(
c∗i,1
l∗i,1
− wF1 σ

1−σ

)
Fi,1

((
logwFi,1

)2 − (σ2
F + δ2

1)
)

(1− Fi,1)
(
logwRi,1 − δ3

)
(1− Fi,1)

((
logwRi,1

)2 − (σ2
R + δ2

3)
)

Fi,2
(
logwFi,2 − δ2

)
Fi,2 − [1− Φ (log (1−Θ)− µ)]


, (58)

and

gρ,s (β, ρ) =

 log νs (log νs+1 − % log νs)

(log νs+1 − % log νs)
2 − ω2

 , (59)

we can compute

Ω̂f =
1

n

n∑
i=1

fθ,if
′
θ,i

and

Ω̂g = τ−1

τ0+τ∑
s=τ0+1

gρ,sg
′
ρ,s

and

Ŵ =

 1
n
Ω̂f 0

0 1
τ
Ω̂g

 . (60)

We are now ready to describe the five steps required in the computation of test statistics and

confidence intervals for the general equilibrium model. As a first step, let θ = β = (µ, δ1, δ2, σ, δ3, σ
2
F , σ

2
R)
′

and ρ = (%, ω2)
′
. Observe that the aggregate shock is not in the set of estimated parameters, since

the general equilibrium model implies that log νs = α1

(
logwFs − logwRs

)
−
(
log nFs − log nRs

)
. In

the second, third, and fourth steps compute the matrices A, Ω̂f , Ω̂g, andW using the vectors of mo-

ments fθ,i and gρ,s derived above. In the last step, calculate the variance matrix V = A−1W (A′)−1

and form related t-ratios and confidence intervals.
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D.2 Limiting Distributions

We first consider the portfolio choice problem in Section 3. In this example, the time series log

likelihood is given by

τ−1

τ0+τ∑
s=τ0+1

log (φ ((νs − µ) /σν) /σν) ,

where φ is the PDF of N (0, 1). The likelihood is maximized that µ̂ = τ−1
∑τ0+τ

s=τ0+1 νs and σ̂2
ν =

τ−1
∑τ0+τ

s=τ0+1 (νs − µ̂)2 . The cross-sectional likelihood is given by

n−1

n∑
i=1

log (φ ((ui1 − ν1) /σε) /σε) + n−1

n∑
i=1

log (φ ((αi1 − α) /σe) /σe) ,

where α = (δ (σ2
ε + σ2

ν) + r − µ) /δ (σ2
ε + σ2

ν). For given values of µ, r,and σ2
ν there is a one-

to-one mapping between the parameters (δ, σ2
ε , σ

2
e , ν1) and (α, σ2

ε , σ
2
e , ν1) . Maximizing the likeli-

hood with respect to (δ, σ2
ε , σ

2
e , ν1) is thus equivalent to maximizing the likelihood with respect to

(α, σ2
ε , σ

2
e , ν1) and then solving for (δ, σ2

ε , σ
2
e , ν1). The maximizer for (α, σ2

ε , σ
2
e , ν1) is the standard

MLE of the normal distribution for mean and variance, ν̂1 = n−1
∑n

i=1 ui1, α̂ = n−1
∑n

i=1 αi1,

σ̂2
ε = n−1

∑n
i=1 (ui1 − ν̂1)2 and σ̂e = n−1

∑n
i=1 (αi1 − α̂)2. The limiting distributions of these esti-

mators are given by

τ 1/2

 µ̂− µ

σ̂2
ν − σ2

ν

→d N

0,

 σ2
ν 0

0 2σ2
ν

 ,

and

n1/2


α̂− α

σ̂2
ε − σ2

ε

σ̂2
e − σ2

e

ν̂1 − ν1

→d N

0,


σ2
e 0 0 0

0 2σ2
ε 0 0

0 0 2σ2
e 0

0 0 0 σ2
ε



 .

From the results in Hahn, Kuersteiner, and Mazzocco (2016) the convergence of the two vectors

is joint, with asymptotic independence between cross-section and time series parameters, and

stable with respect to ν1. However, because of the particularly simple nature of the model the

limiting distributions are conventional Gaussian limits with fixed variances. To obtain the limiting

distribution of δ̂ one now simply applies the delta method and the continuous mapping theorem.
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More specifically, we have δ̂ = (µ̂− r) / ((σ̂2
ε + σ̂2

ν) (1− α̂)) and

n−1/2
(
δ̂ − δ

)
=

µ− r
(σ2

ε + σ2
ν) (1− α)2n

1/2 (α̂− α)− µ− r
(σ2

ε + σ2
ν)

2 (1− α)
n1/2

(
σ̂2
ε − σ2

ε

)
(61)

+
1

(σ2
ε + σ2

ν) (1− α)

√
n

τ
τ 1/2 (µ̂− µ)− µ− r

(σ2
ε + σ2

ν)
2 (1− α)

√
τ

n
τ 1/2

(
σ̂2
ν − σ2

ν

)
+ op (1) ,

leading to a limiting distribution of δ̂ given by

n−1/2
(
δ̂ − δ

)
→d N

(
0,

2 (1− α)2 (µ− r)2 (σ2
ε + κσ2

ν) + (σ2
ε + σ2

ν)
2 (

(µ− r)2 σ2
e + (1− α)2 κσ2

ν

)
(1− α)4 (σ2

ε + σ2
ν)

4

)
,

where κ = lim n
τ

and the variance formula uses the fact that the four components in (61) are

asymptotically independent. The formula for the variance is indicative of the fact that first step

estimation of the time series parameters can be ignored if τ is much larger than n, such that κ is

close to zero. However, this is an unlikely scenario given that cross-sectional samples tend to be

quite large.

We now consider the general equilibrium example. It is useful to analyze the form of the

limiting distribution of a set of GMM estimators based on f and g. Define the empirical moment

functions as

hn (θ, ρ) = n−1

n∑
i=1

fθ,i (θ, ρ) , kτ (β, ρ) = τ−1

τ0+τ∑
t=τ0+1

gρ,t (β, ρ) ,

and the moment based criterion functions Fn (θ, ρ) = −hn (θ, ρ)′ Ω̂−1
y hn (θ, ρ) and Gτ (β, ρ) =

−kτ (β, ρ)′ Ω̂−1
ν kτ (β, ρ). The estimators then are defined as the solution

(
θ̂, ρ̂
)

to

∂Fn

(
θ̂, ρ̂
)

∂θ
= 0

∂Gτ

(
β̂, ρ̂
)

∂ρ
= 0.
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Because the GMM estimators are exactly identified in our example these equations reduce to

hn

(
θ̂, ρ̂
)

= 0

kτ

(
β̂, ρ̂
)

= 0.

We focus on the just identified case and refer the reader to our companion paper Hahn, Kuersteiner

and Mazzocco (2016) for a general treatment. The limiting distribution of θ̂, ρ̂ depends on the

joint limiting distribution of hn (θ0, ρ0) and kτ (β0, ρ0) .

Recall logwFit = α−1
1

(
log nFt + log σ + log T − α0

)
+ εFit such that

δ1 = α−1
1

(
log nF1 + log σ + log T − α0

)
− σ2

F

2
.

Similarly, let δ2 = α−1
1

(
log nF2 + log σ + log T − α0

)
− σ2

F/2,

δ3 = α−1
1

(
log nR1 + log σ + log T − α0 − log ν1

)
− σ2

R

2

and define p (Θ) = Φ (log (1−Θ)− µ) . Let C be the σ-field generated by log nR1 , log nF1 , log nF2

and log ν1 such that Θ, wF1 , δ1, δ2 and δ3 are measurable with respect to C. A formal definition of

C-stable convergence is due to Renyi (1963).

Definition 1 Let Zn and Z be random variables defined on a joint probability space (Ω,F , P )

taking values in Rd and let C be as sub-sigma field of F . The sequence Zn converges C-stably to

Z if for all bounded ζ measurable with respect to C it follows that

E [ζ exp (itZn)]→ E [ζ exp (itZ)]

for i =
√
−1 and t ∈ Rd.

The exact form of Definition 1 is due to Aldous and Eagleson (1978) who show that it is

equivalent to the joint weak convergence of Zn and ζ.

Based on the theory in our companion paper, the moment functions converge jointly and stably
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to independent mixed Gaussian limits

n1/2hn (θ0, ρ0)→d Ω
1/2
f ξh ∼ N (0,Ωf ) (C-stably) ,

where ξh ∼ N (0, I) and is independent of any C-measurable random variable,

Ωf,1 =


p
(
Θ̄1

)
σ2
F p

(
Θ̄1

) wF1 σ
1−σ σ

2
F 2δ1σ

2
F

p
(
Θ̄1

) wF1 σ
1−σ σ

2
F p

(
Θ̄1

) (wF1 σ
1−σ

)2 (
eσ

2
F − 1

)
p
(
Θ̄1

) wF1 σ
1−σ (2δ1 + 1)σ2

ε

2δ1σ
2
F p

(
Θ̄1

) wF1 σ
1−σ (2δ1 + 1)σ2

F p
(
Θ̄1

)
(2σ4

ε + 4δ2
1σ

2
F )

 ,

Ωf,2 =

 (1− p (Θ̄1

))
σ2
R 2δ3σ

2
R

2δ3σ
2
R

(
1− p

(
Θ̄1

))
(2σ4

R + 4δ2
3σ

2
R)

 ,
Ωf,3 =

 p
(
Θ̄1

)
σ2
ε 0

0 p
(
Θ̄2

) (
1− p

(
Θ̄2

))


and

Ωf =


Ωf,1 0 0

0 Ωf,2 0

0 0 Ωf,3

 .
Here, we let

Θ̄t ≡
log
(
nFt
nRt

)
+

(π2
2−1)σ2

ε

2
+ % log νt−1

σ(σ2
R−σ

2
F+ω2)

2α1

for clarity. For the time series sample it is straight forward to see that under suitable regularity

conditions

τ 1/2kτ (β0, ρ0)→d Ω1/2
g ξk ∼ N (0,Ωg) (C-stably) ,

where ξk ∼ N (0, I) and independent of any C-measurable random variable and

Ωg =

 ω4

1−%20
0

0 2ω4

 .
The results in Hahn, Kuersteiner and Mazzocco (2016) imply that ξh and ξk are independent
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Gaussian random variables conditional on C. The explicit formulas make clear that in this model

the limiting variance does depend on macro variables including common shocks and other observ-

ables. Since these variables remain random in the limit as n and τ tend to infinity, the resulting

limiting distribution is mixed Gaussian and the convergence to the limit is joint with the macro

variables or C-stable. The later is important because the influence matrix A, as we show below,

also depends on these same macro variables.

Next compute the limits

Af,θ = plimn−1

n∑
i=1

∂fθ,i (θ0, ρ0)

∂θ′
, Af,ρ = plimn−1

n∑
i=1

∂fθ,i (θ0, ρ0)

∂ρ′
,

Ag,θ = plim τ−1

τ0+τ∑
t=τ0+1

∂gρ,t (β0, ρ0)

∂θ′
, Ag,ρ = plim τ−1

τ0+τ∑
t=τ0+1

∂gρ,t (β0, ρ0)

∂ρ′
.

First, letting ṗ (Θ) = φ (log (1−Θ)− µ) where φ is the PDF of N (0, 1),

Af,θ =



0 −p
(
Θ̄1

)
0 0 0 0 0

0 0 0 − −wF
1

(1−σ)2
p
(
Θ̄1

)
0 0 0

0 −2δ1p
(
Θ̄1

)
0 0 0 −p

(
Θ̄1

)
0

0 0 0 0 −
(
1− p

(
Θ̄1

))
0 0

0 0 0 0 −2δ3
(
1− p

(
Θ̄1

))
0 −

(
1− p

(
Θ̄1

))
0 0 −p

(
Θ̄2

)
0 0 0 0

−ṗ
(
Θ̄2

)
− ṗ(Θ̄2)

1−Θ̄2

∂Θ̄2

∂δ1
− ṗ(Θ̄2)

1−Θ̄2

∂Θ̄2

∂δ2
− ṗ(Θ̄2)

1−Θ̄2

∂Θ̄2

∂σ 0 − ṗ(Θ̄2)
1−Θ̄2

∂Θ̄2

∂σ2
F

− ṗ(Θ̄2)
1−Θ̄2

∂Θ̄2

∂σ2
R


,

Next, consider the two cross-derivative terms where the first one is given by

Af,ρ =



0 0

0 0

0 0

0 0

0 0

0 0

− ṗ(Θ̄)
1−Θ̄

∂Θ̄
∂%
− ṗ(Θ̄)

1−Θ̄
∂Θ̄
∂ω2


.
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Next note that

log νs =
log nF1 − log nF2

δ1 − δ2

(
logwFs − logwRs

)
−
(
log nFs − log nRs

)
such that ∂ log νs/∂θ is non-zero for elements δ1 and δ2. For log νs (log νs+1 − % log νs) the derivative

(∂ log νs/∂θ) (log νs+1 − %0 log νs) has zero expectation because (log νs+1 − %0 log νs) = ηs. For

(log νs+1 − % log νs)
2 − ω2 we obtain partial derivatives equal to 2ηs (∂ log νs+1/∂θ − %∂ log νs/∂θ).

Since ηs is orthogonal to all data in log νs it follows that E [ηs (∂ log νs+1/∂θ − %∂ log νs/∂θ)] =

E [ηs∂ log νs+1/∂θ]. Under suitable regularity conditions it then follows that sample averages

converge to these expectations, leading to

Ag,θ =

 0 E
[
log νs

(
∂ log νs+1

∂δ1
− %∂ log νs

∂δ1

)]
E
[
log νs

(
∂ log νs+1

∂δ2
− %∂ log νs

∂δ2

)]
0 0 0 0

0 2E
[
ηs

∂ log νs+1

∂δ1

]
2E
[
ηs

∂ log νs+1

∂δ2

]
0 0 0 0

 .
Finally, straight forward calculations show that under suitable regularity conditions ensuring a

law of large numbers for an autoregressive process the limits in Ag,ρ are given by

Ag,ρ =

 − ω2

1−%2 0

0 −1

 .
The limiting distribution of θ̂ is a consequence of Hahn, Kuersteiner and Mazzocco (2016), Theo-

rem 2 and Corollary 2. Using the notation developed here we have

√
n
(
θ̂ − θ0

)
d→ −Af,θΩ1/2

f ξh −
√
κAg,ρΩ1/2

g ξk (C-stably),

where

Af,θ = A−1
f,θ + A−1

f,θAf,ρ
(
Ag,ρ − Ag,θA−1

f,θAf,ρ
)−1

Ag,θA
−1
f,θ

Ag,ρ = −A−1
f,θAf,ρ

(
Ag,ρ − Ag,θA−1

f,θAf,ρ
)−1

.

The limiting distribution of θ̂ is mixed Gaussian N (0,Ωθ), with random weight matrix Ωθ =

Af,θΩfA
f,θ′ + κAg,ρΩgA

g,ρ′ where we have shown how the elements of A and Ωf depend on macro
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variables and unobserved macro shocks. Similarly, the limiting distribution of ρ̂ is also mixed

Gaussian and can be derived in a similar fashion.

E Proof of (31)

Suppose that our econometrician tries to estimate µ using only cross-section data sets misspecifies

the model and assumes that the difference in the labor demand functions of the two types of firms

is not due to the aggregate shock, but to different intercepts, i.e.,

logHD,F
t+1 = α0 + α1 logwFt+1

logHD,R
t+1 = α′0 + α1 logwRt+1

with α0 6= α′0. The equilibrium wages are then

logwFt+1 =
log nFt+1 + log σ + log T − α0

α1

,

logwRt+1 =
log nRt+1 + log σ + log T − α′0

α1

, (62)

and as a consequence, equation (43) is changed to

(
nFt+1

)σ(1−γ)/α1

[((
1

eα0

)1/α1
)σ]1−γ

E
[
exp

(
σ (1/α1) (1− γ) εFt+1

)]
≥
(
nRt+1

)σ(1−γ)/α1

[((
1

eα
′
0

)1/α1
)σ]1−γ

E
[
exp

(
σ (1/α1) (1− γ) εRt+1

)]
.

Note that

E
[
exp

(
σ (1/α1) (1− γ) εFt+1

)]
= exp

(
−σ (1/α1) (1− γ)

2
σ2
ε

)
exp

(
(σ (1− γ) (1/α1))2

2
σ2
F

)
,

E
[
exp

(
σ (1/α1) (1− γ) εRt+1

)]
= exp

(
−σ (1/α1) (1− γ)

2
π2

2σ
2
ε

)
exp

(
(σ (1− γ) (1/α1))2

2
σ2
R

)
,
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and [((
1

eα0

)1/α1
)σ]1−γ

exp

(
−σ (1/α1) (1− γ)

2
σ2
F

)
= exp (−σ (1/α1) (1− γ) α̃0) ,[((

1

eα
′
0

)1/α1
)σ]1−γ

exp

(
−σ (1/α1) (1− γ)

2
σ2
R

)
= exp (−σ (1/α1) (1− γ) α̃′0) ,

where

α̃0 = α0 +
1

2
σ2
F = α0 − E

[
εFt+1

]
, α̃′0 = α′0 +

1

2
σ2
R = α′0 − E

[
εRt+1

]
.

Therefore, the econometrician will conclude that F is chosen if

(
nFt+1

)σ(1−γ)/α1
exp (−σ (1/α1) (1− γ) α̃0)

≥
(
nRt+1

)σ(1−γ)/α1
exp (−σ (1/α1) (1− γ) α̃′0) exp

(
(σ (1− γ) (1/α1))2

2

(
σ2
R − σ2

F

))

when 1− γ > 0, and

(
nFt+1

)σ(1−γ)/α1
exp (−σ (1/α1) (1− γ) α̃0)

≤
(
nRt+1

)σ(1−γ)/α1
exp (−σ (1/α1) (1− γ) α̃′0) exp

(
(σ (1− γ) (1/α1))2

2

(
σ2
R − σ2

F

))

when 1− γ < 0. This implies that F is chosen if

γ ≥ 1−
log
(
nFt+1

nRt+1

)
+ (α̃′0 − α̃0)

σ(π2
2−1)σ2

ε

2α1

. (63)

Note that

α̃′0 − α̃0 = α′0 − α0 +
1

2

(
σ2
R − σ2

F

)
.

We now argue that α′0− α0 above should be understood to be equal to log vt+1. Note that the

econometrician can estimate α1 consistently using equation (26), which is based on cross-section

variation. The econometrician can also estimate α′0−α0 consistently by α̂1

(
logwFt+1 − logwRt+1

)
−(

log nFt+1 − log nRt+1

)
. Comparing with (28), we conclude that the econometrician’s estimator is
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exactly equal to our earlier estimator of log νt+1. This is a natural consequence of the nature of

the econometrician’s misspecification, who assumes that the difference in the equilibrium wages in

(62) reflects the difference of intercepts of the labor demand functions. However, this assumption

is incorrect and the difference of the intercepts is due to the aggregate shock, i.e, α′0 = α0+log vt+1.

It follows that the econometrician’s conclusion (63) above can be equivalently written with

α′0 − α0 replaced by log vt+1, which establishes (31).

F Censored versus Truncated Results

As mentioned in the main text, to perform the Monte Carlo exercise we have to deal with a

technical issue. The estimation of the risk aversion parameter µ in the general equilibrium model

requires the computation of log (1−Θ) where

Θ ≡
log
(
nF2
nR2

)
+

σ2
R−σ

2
F

2
+ % log ν1

σ(σ2
R−σ

2
F+ω2)

2α1

.

In the model, Θ is always smaller than 1 and, hence, log (1−Θ) is always well defined. In the

estimation of µ, however, the true parameters included in Θ are replaced with their estimated

values. In some of the Monte Carlo repetitions, the randomness of the estimated parameters

generates values of Θ that are greater than 1, which implies that log (1−Θ) is not well define.

We deal with this issue by presenting two sets of results. A first set in which we only use Monte

Carlo runs in which Θ < 1. We will refer to these results as the “truncated“ results. A second set

in which we set Θ = 0.99 if Θ > 1 and report our findings using all the Monte Carlo runs. We

will refer to the second set as the ”censored“ set. With the results, we also report the number of

simulations in which Θ > 1. An examination of the probability of choosing education F clarifies

that the censored set tends to bias the estimates of µ downward: by setting Θ closer to 1, the MLE

estimator of µ tends to minus infinity. The truncated set may therefore provide a more accurate

description of the true bias. But the censored set is also informative because it documents the

potential effect of replacing the true parameters of the model with their estimates in the estimation

of parameters that are affected by both cross-sectional and time-series variation.
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This issue is even more significant when the risk aversion parameter is estimated using the

misspecified model. In that case, Θ can be greater than 1 for two different reasons. First, as in

the general equilibrium model, the true parameters are replaced by their estimated counterparts.

Second, Θ is misspecified and, hence, there is no reason to expect that it satisfies the theoretical

restriction Θ < 1. We therefore expect the downward bias for the misspecified model in the

censored results and the number of cases in which Θ > 1 to be larger than in the general equilibrium

model.

Tables 6 and 7 compare the results obtained using the censored sample with the results ob-

tained using the truncated sample. There are three patterns worth highlighting. First, when

the censored sample is used, as expected, the average of the estimated risk aversion parameter

obtained employing our proposed method is always lower. Second, with our proposed method the

number of cases in which Θ > 1 decreases with the length of the time-series, since the persistence

and the variance of the aggregate shocks are estimated more precisely. This suggests that it is

important to employ a long time-series of aggregate data to avoid situations in which the estimated

parameters are incompatible with the structure of the model. Lastly, as expected, when we use the

misspecified model, the number of cases in which Θ > 1 is much larger and the misspecification

bias goes from being positive to being negative.

G Proof of Θt < 1.

We first prove Θt < 1 under the assumption that an equilibrium exists. We then prove the

existence of a unique equilibrium.

If an equilibrium exists for the general equilibrium model developed in Section 5, it is straight-

forward to prove that Θt < 1. Suppose Θt ≥ 1. Since γi > 0, we have

1−
log
(
nFt+1

nRt+1

)
+

σ2
R−σ

2
F

2
+ % log νt

σ(σ2
R−σ

2
F+ω2)

2α1

= 1−Θt ≤ 0 < γi.

Equation (25) then implies that every person will choose the flexible education. As a consequence,

nRt+1 = 0 and log
(
nFt+1

nRt+1

)
= ∞. Hence, Θt = −∞ because α1 < 0, which contradicts the initial

26



assumption that Θt ≥ 1.

We now show that an equilibrium exists. Let Λ denote the CDF of γi. Note that Λ (t) = 0 for

all t ≤ 0 because of the assumption that γi > 0. Equation (25) implies that the probability that

education F is chosen (the proportion of workers who chose F ) is equal to 1−Λ (max (0, 1−Θt)).

It follows that the proportion of workers who chose R is equal to Λ (max (0, 1−Θt)). As a

consequence, in equilibrium, the ratio nFt+1

/
nRt+1 is a fixed point of the equality

nFt+1

nRt+1

=
1− Λ (max (0, 1−Θt))

Λ (max (0, 1−Θt))
,

where we note that Θt is a function of nFt+1

/
nRt+1. Let x = nFt+1

/
nRt+1, and write the equilibrium

condition as

x =
1− Λ (max (0, 1−Θt (x)))

Λ (max (0, 1−Θt (x)))
. (64)

The left hand side is straightforwardly a monotonically increasing function of x. Consider now

the right hand side. As x increases from 0 to ∞, log
(
nFt+1

nRt+1

)
= log x monotonically increases from

−∞ to ∞. As a consequence, since α1 < 0, 1 − Θt (x) monotonically increases from −∞ to ∞

as x increases from 0 to ∞. Hence, max (0, 1−Θt (x)) monotonically increases from 0 to ∞. Be-

cause Λ is the CDF of a positive valued random variable γi, Λ (max (0, 1−Θt (x))) monotonically

increases from 0 to 1 and, as a consequence, (1− Λ (max (0, 1−Θt (x))))/ Λ (max (0, 1−Θt (x)))

monotonically decreases from ∞ to 0, as x increases from 0 to ∞. We can therefore conclude

that, as x increases from 0 to ∞, the left hand side of (64) montonically increases from 0 to ∞,

while the right hand side monotonically decreases from ∞ to 0. Hence, the model has a unique

equilibrium.
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Table 6: Monte Carlo Results, Parameter Estimates For Correct Model

Censored Results Truncated Results
True Parameter Estimate Cov. Prob. Estimate N. Cases

Cross-sectional Sample Size: 2,500, Time-series Sample Size: 25
Log Risk Aversion Mean: µ = 0.2 0.057 0.893 0.161 119/5000

Cross-sectional Sample Size: 2,500, Time-series Sample Size: 50
Log Risk Aversion Mean: µ = 0.2 0.116 0.914 0.172 67/5000

Cross-sectional Sample Size: 2,500, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.126 0.933 0.173 59/5000

Cross-sectional Sample Size: 5,000, Time-series Sample Size: 25
Log Risk Aversion Mean: µ = 0.2 0.071 0.892 0.175 118/5000

Cross-sectional Sample Size: 5,000, Time-series Sample Size: 50
Log Risk Aversion Mean: µ = 0.2 0.132 0.912 0.183 62/5000

Cross-sectional Sample Size: 5,000, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.145 0.928 0.173 36/5000

Cross-sectional Sample Size: 10,000, Time-series Sample Size: 25
Log Risk Aversion Mean: µ = 0.2 0.078 0.881 0.173 107/5000

Cross-sectional Sample Size: 10,000, Time-series Sample Size: 50
Log Risk Aversion Mean: µ = 0.2 0.137 0.909 0.184 57/5000

Cross-sectional Sample Size: 10,000, Time-series Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.153 0.925 0.184 39/5000

Cross-sectional Sample Size: 50,000, Time-series Sample Size: 25
Log Risk Aversion Mean: µ = 0.2 0.078 0.865 0.176 110/5000

Cross-sectional Sample Size: 50,000, Time-series Sample Size: 50
Log Risk Aversion Mean: µ = 0.2 0.141 0.893 0.187 56/5000

Cross-sectional Sample Size: 50,000, Time-series5Sample Size: 100
Log Risk Aversion Mean: µ = 0.2 0.154 0.908 0.188 43/5000

Notes: This table reports the Monte Carlo results for the correct model obtained using our proposed estimation method. They are
derived by simulating the general equilibrium model 5000 times. The second column reports the average estimated parameter, where
the average is computed over the 5000 simulations, when we use all the Monte Carlo runs and set Θt = 0.99 in all cases in which
Θt ≥ 1. Column 3 reports the corresponding coverage probability of a confidence interval with 90% nominal coverage probability.
Columns 4 reports the average estimated parameter when we drop all simulations for which Θt ≥ 1. Column 5 reports the number
of case in which Θt ≥ 1.
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Table 7: Monte Carlo Results, Parameter Estimates For Misspecified Model

Censored Results Truncated Results
True Parameter Estimate Bias Estimate N. Cases

Cross-sectional Sample Size: 2,500
Log Risk Aversion Mean: µ = 0.2 -0.923 -1.123 1.224 1853/5000

Cross-sectional Sample Size: 5,000
Log Risk Aversion Mean: µ = 0.2 -0.932 -1.132 1.224 1861/5000

Cross-sectional Sample Size: 10,000
Log Risk Aversion Mean: µ = 0.2 -0.935 -1.135 1.227 1865/5000

Cross-sectional Sample Size: 50,000
Log Risk Aversion Mean: µ = 0.2 -0.937 -1.137 1.229 1867/5000

Notes: This table reports the Monte Carlo results for the misspecified model obtained using only cross-sectional variation. They are
derived by simulating the general equilibrium model 5000 times. The second column reports the average estimated parameter, where
the average is computed over the 5000 simulations, when we use all the Monte Carlo runs and set Θt = 0.99 in all cases in which
Θt ≥ 1. Column 3 reports the corresponding coverage probability of a confidence interval with 90% nominal coverage probability.
Columns 4 reports the average estimated parameter when we drop all simulations for which Θt ≥ 1. Column 5 reports the number
of case in which Θt ≥ 1.
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