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Abstract

We study the endogenous determination of debt maturity in a setting with default
risk. Firms have access to a bond with a flexible structure. The optimal bond maturity
balances liquidity risk and default risk. Firms with poor prospects and firms in more
unstable industries will choose shorter maturities even if it is feasible to issue longer
debt. The model also offers predictions on how asset maturity, asset salability, and
leverage influence maturity. Even though our model is extremely stylized, predictions
are roughly consistent with the evidence. Moreover, it offers some insights into the
factors that determine the structure of debt.
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1 Introduction

The endogenous determination of the maturity structure of debt is a topic that interests both
financial and macro economists. In the case of business firms—the case mostly analyzed by
financial economists—early work by Diamond (1991) and by Leland and Toft (1996) has been
followed by substantial work on the optimal structure of debt. In the macro literature, Lucas
and Stokey (1983) highlighted the role that debt maturity has in supporting an optimal
policy. Angeletos (2009) and Buera and Nicolini (2004) study the case of non-contingent
debt while Shin (2007) allows for a maturity structure that changes depending on the state
of the economy. In all cases, there is no default in equilibrium. In the case of sovereign
debt, Arellano and Ramanarayanan (2012) develop a theory of debt maturity based on the
relative costs of different types of debt which is consistent with evidence that in low-output
periods countries have shorter-term debt. Aguiar et al. (2016) use the framework of Arellano
and Ramanarayanan (2012) to argue that when a country must reduce debt under risk of
default, it is optimal to remain passive in the long-term bond market (let those bonds
mature) and use the short-term bond market to roll over part of such debt. Hatchondo et al.
(2016) quantify the impact of reducing the ability of a country to dilute existing debt on
average maturity and find it substantial. Fernandez and Martin (2015) highlight the trade-
off between illiquidity and maturity when the country chooses between two types of debt
and there is an incentive for debt dilution. Similarly, Sédnchez et al. (2018) present a model
of endogenous determination of sovereign debt maturity but focus on the term structure of
interest rate spreads and the impact of alternative debt rescheduling arrangements.!

In this paper, we study a model of a risk-neutral agent—which we interpret as a firm—
that chooses the type of debt that it will issue to finance an initial investment. We assume
the stochastic process of earnings has two distinct phases. In the first phase, the earnings-
generating process (i.e. the technology) is in a “low growth” regime with steady but low
earnings. During this phase, the firm has access only to the bond market, which is used
to finance the initial investment and, if necessary, to rollover existing debt. Because of the
limited access to external financing, we also refer to this phase as “illiquid regime.” The
technology can switch stochastically to a “high growth” regime with a more uncertain —but
potentially much higher— earnings process. In this phase the firm has access to perfect

'Models of firm dynamics with debt and default traditionally have one period debt, as in Gomes and
Schmid (2010). In some cases, as in Gomes et al. (2016), there is long term debt but the debt maturity is
exogenous. To the best of our knowledge, only work in progress by Gourio and Michaux (2012) attempts to
incorporate debt maturity choice in models of firm dynamics.



capital markets and, therefore, we also refer to this phase as the “liquid regime.”

On the financing side, we allow for a general menu of noncontingent securities. We
assume that the firm can choose the structure of its debt from a continuum of securities.
These securities—that we view as bonds—are completely summarized by three parameters:
the coupon rate, b, that must be paid in every period, the face value (or the value that is
due at maturity), K, and a Poisson parameter, 7, that determines the stochastic maturity
of the bond. The expected maturity of the bond is then given by 1/7.> Upon maturity, the
debt can be refinanced.®> This flexible specification of the structure of debt has two major
advantages over the constant maturity approach pioneered by Leland and Toft (1996) and
then adopted by He and Xiong (2012), Diamond and He (2014), and He and Milbradt (2014).
First, it allows us to study debt that can be either front or backloaded, and it is a useful
setting to capture the tradeoff between expected maturity and face value of a bond. Second,
at refinancing time, the firm is completely free to change the structure of the debt. This is
essential to understanding how changes in the prospects of the firm get reflected in changes
in maturity.*

We assume that both the firm and credit market are risk neutral and have the same
discount rate. We purposely abstract away from the strategic aspects associated with issuing
short and long-term debt simultaneously since there is no risk of debt dilution. Moreover, we
also ignore how the liquidity of the secondary market influences the choice of maturity which
has been the focus of the recent literature. Our emphasis is on the non-strategic determinants
of debt maturity and the role played by technology that we take as exogenously varying on
the structure of debt. We view this as an interesting exercise since our “project/technology”
could be, in some applications, viewed as the outcome of a market equilibrium.® In this case
exogeneity of some features (e.g. variability of the growth rate of earnings) is a reasonable
assumption.

To highlight some of the economic forces that underlie the choice of maturity we first
discuss a simple version of the model that rules out refinancing.’ In this setting, we show
that the market value of the debt relative to its safe value depends on two risk prices (or
discounts). One of them captures the risk that the debt matures during the illiquid regime,

2We assume that maturity is stochastic to keep the model stationary.

3In our simple setting without an exogenous reason for issuing debt, the firm will never choose to refinance
in the high growth/liquid regime. In this regime, the optimal policy once the debt matures is to either pay
it off or default.

4In a recent paper, Chen et al. (2012) use a shortcut to allow for a change in maturity when the aggregate
state changes within the constant maturity model.

5See, for instance, Milbradt and Oehmke (2015) and Kozlowski (2017), for models of joint determination
of investment and debt maturity.

6The limit to refinancing is an extreme form of rollover risk: the probability of rolling over the debt is
effectively zero.



while the other measures the cost of strategic default. We show how the state of the firm
and the economic environment affect these two prices of risk, and we find that disentangling
these effects provides intuition about the optimal maturity choice.

We tackle the analysis of the general model in the context of a quantitative exercise. We
first study the more common form of debt: pure discount bonds. Thus, the two elements of
the debt are its average duration and its face value. We show that the structure of the debt
depends both on the value of the unlevered firm” and on features of the project/technology.
Firms whose value is low—and hence more likely to default for strategic/solvency reasons—
choose shorter bonds. As the unlevered value of the firm increases, the risk of strategic
default decreases and the optimal bond is chosen so as to decrease the risk of default associ-
ated with the bond maturing in the low growth regime. This is accomplished by increasing
expected maturity of the bond at the cost of a higher face value and, hence, of a higher
premium paid for strategic default. An implication is the firms (or countries) that need
to refinance their debt at the time when prospects are poor will choose shorter maturities
as it balances the two types of risk. An outside observer without a full understanding of
the problem solved by the firm might be tempted to reverse the direction of causality and
conclude that the firm made a “mistake” issuing short debt. This, in turn, would exacerbate
the chances of default.

The (fixed) properties of the technology have an impact on the choice of maturity: firms
that operate in more unstable environments choose shorter maturities and we find that the
expected maturity-output relationship is flatter the higher the uncertainty about growth
rates. Thus, the model not only implies that firms in high uncertainty environments borrow
using more short-term debt than similar firms in a low uncertainty environment, but also
that the cross-sectional dispersion of expected maturities is smaller in the high uncertainty
case.

Our results show that the degree of salability of the firm’s assets (or, alternatively the cost
of fire sales) also influences the choice of the optimal financing structure. We find that higher
post-default value of the assets results in longer expected maturities. The result is intuitive:
A higher recovery rate—conditional on default—reduces the cost of strategic default and
hence its shadow price. The firm then chooses to reduce the higher price risk—the risk of
illiquidity driven default—by choosing a bond with longer duration.

For the examples that we study, we find that higher levered firms (i.e. firms with higher
financing needs) choose shorter maturities while, at the same time, selling bonds with similar
face values. Thus, unlike other features of the environment, changes in leverage have a large
impact on expected maturity and a small impact on the face value of the optimal bond.

Not surprisingly, we find that the optimal choice of debt structure cannot be summarized

"This is the expected present discounted value of the firm if it was 100% equity financed.



as the minimization of some simple measure of cost like the excess yield. More specifically,
we show that the optimal choice often does not imply that the excess yield is minimized.

We then explore how sensitive our results are to the assumption that the firm is restricted
to issuing pure discount bonds. To do this we allow for the possibility of issuing debt that
promises a coupon payment as well as a face value at maturity. We present results when we
restrict the choice of maturities to a fixed set. We find that when the firm is at a corner
—i.e. issuing the debt with the highest possible coupon— the choice of maturity is roughly
similar to the pure discount bond. However, as the (unlevered) value of the firm increases
the optimal choice of debt structure becomes less monotonic. In our quantitative model we
find that there is a trade-off between smaller coupons —which reduces the size of strategic
default before the bond matures— and expected maturity: Higher value firms issue bonds
with lower coupons and shorter maturities. Thus, at the high end of the value distribution
we find firms issuing relatively short debt.

In the next section we briefly describe some empirical results. Section 3 presents the
model and section 4 describes the results for the case of extreme illiquidity. Section 5
presents our quantitative results. Section 6 contains some concluding remarks.

2 Review of Empirical Findings

In this section we report some results on the variation, along several dimensions, of equi-
librium debt structure chosen by firms. Since the literature is very broad, we provide here
a short description of the studies that emphasize factors that we highlight in our setting.®
In Appendix A, we reproduce some of those findings using non-financial and non-regulated
firms in Standard & Poor’s Compustat.’

We find that the evidence on the relationship between firm value and debt maturity is
sensitive to details on how these concepts are measured. Barclay and Smith (1995) use
Compustat data to study debt maturity. They restrict their analysis to only firms in the
industrial corporate sector. Debt maturity is measured as the share of the firm’s total debt
with a maturity longer than 3 years, which is a very common choice given the information
provided by Compustat. They find a negative relationship between R&D investment / firm
value and debt maturity. This result seems to contradict our theory, which predicts that
firms with higher potential growth (as measured by the expected growth rate of earnings)

8Some articles that we do not include here empirically analyze debt maturity in the context of the capital
structure of the firm. See, for instance, Titman and Wessels (1988).

9Most of the empirical literature on determinants of debt maturity uses data on publicly traded companies.
Ideally, one would like to analyze data on all firms but available balance sheet data on non-traded firms is
very limited.



would prefer to issue longer term debt. Guedes and Opler (1996) reproduce some of the
findings in Barclay and Smith (1995) using an alternative dataset with information about
debt issuances. However, they find a positive relationship between R&D investment-to-sales
ratio and debt maturity. Our findings in Appendix A, using a broader sample of Compustat
firms, are in line with Guedes and Opler (1996).

Stohs and Mauer (1996) also use a broad sample of Compustat firms to analyze the
determinants of debt maturity. They find that less risky firms use longer-term debt. A
similar finding is reported by Okzan (2002) for UK firms. In Appendix A, we also find that
firms in more volatile environments tend to issue shorter-term debt. They argue that this
may be because riskier firms need to re-balance their capital structure to moderate expected
bankruptcy costs. Our model provides an alternative explanation for this finding.

Guedes and Opler (1996), Stohs and Mauer (1996) and Okzan (2002) also show that
firms with longer-term asset maturities use longer-term debt. This relationship is expected
from the idea of “matching principle,” where firms would like to match the maturity of their
assets to the maturity of their debt in order to avoid defaulting when the debt matures
earlier. In Appendix A, we also find that firms with a higher proportion of assets maturing
at a long-term period also issue debts with longer-maturity, though this coefficient is not
statistically significant.

Demirgii¢-Kunt and Maksimovic (1999) find that firms with higher asset salability, thus
higher post-default value of assets, are associated with longer maturity. This result is also
consistent with the findings of Benmelech (2009), who reports that American railroads which
used rolling stock that could be more easily redeployed (higher resale value) tended to issue
longer term bonds. Our results in Appendix A are also in line with this finding.

Barclay et al. (2003) find that leverage is negatively associated with debt maturity. In
contrast, Johnson (2003) finds a positive relationship between maturity and leverage, and
argues that firms with high leverage choose longer term debt to avoid liquidation. This effect
is probably more important for firms with a very high risk of default. In fact, our results in
Appendix A using Compustat firms suggest that firm with higher leverage (actually, with
more reliance on external financing) prefer shorter term debt. In our theory, firms with
higher leverage would choose shorter debt maturity.

3 Model

In this section, we describe the simplest version of the model. We study the case of a risk-
neutral firm that has to incur an irreversible cost to implement an investment project. We
assume that the returns of the project are completely described by a few parameters that
determine the associated stochastic processes for output (or earnings). We assume that the



project is initially in the low growth/illiquid regime and has constant earnings given
by z. The amount of time spent in this regime is random and distributed exponentially
with parameter v. Denote by T, the time spent in the low growth regime. At time 7;, the
technology switches from the low growth/illiquid regime to the high growth/liquid
regime and net earnings/output are given by a stochastic process z; + 6z, where 6 € (0,1)
and x; satisfies

dry = pxydt + ox, dWy,

where W, is a Wiener process or Brownian motion, and p (“the percentage drift”) and o
(“the percentage volatility”) are constants. This formulation captures the idea that some
managerial resources must be allocated to the x;-dimension and, hence, the net output from
the low growth activity decreases (as captured by ¢ < 1). In what follows we view the
technology as a triplet (v, p, o).

We assume that z; is known at all times. That is, the firm—and the market—know
its potential output if the technology switched to the high growth regime. We assume an
extreme form of moral hazard: In the illiquid regime no outsider can operate the project
and, hence the firm cannot issue equity. In the high growth regime, the firm can issue equity
and its market price would be the expected present value of earnings.

3.1 Debt Financing

In this section, we assume that the firm has to finance either partially or totally the cost
of the project by issuing non-contingent debt. The firm has access to a risk-neutral credit
market that will price any debt issued by the firm using the same discount rate, r. Thus,
none of our results are driven by either difference in discount factor or difference in the
curvature of direct payoffs.

We study a market wherein the set of feasible debt instruments is completely described
by three parameters (b, K, 1), where b is the coupon rate, K is the payment due at maturity
(which does not necessarily coincide with the initial value of the debt) and 7 is the parameter
of a Poisson process that determines the maturity of the bond. Thus, maturity is stochastic
and the maturity time is denoted 7,. The expected maturity of a bond is 1/7.'° Given that
the length of the illiquid phase is uncertain, even if maturity was not stochastic by choosing
higher maturity firms would be choosing a lower probability that the debt matures in the
illiquid phase.

We assume that if the firm defaults on its debt in the low growth/illiquid regime, bond-

10We only consider bonds that make payments that are not contingent on the state of the firm. In
particular, we rule out callable bonds.



holders receive Dp.!! If the firm defaults in the high growth regime bondholders receive
Dg.12

Our simple version of the technology puts some restrictions on the type of bonds that
the firm can issue. Since we assumed that the firm cannot issue equity and that earnings are
z in the low growth regime, it follows that it cannot commit to paying a coupon rate that
exceeds this value. Thus, the only feasible choice is b < z.

If the debt matures in the illiquid regime it must be refinanced. If the firm cannot issue
debt that raises enough revenue to pay off the original debtholders, the firm will default. This
is the illiquidity risk associated with the bond. In case of default, the payoff to bondholders is
denoted Dp and shareholders receive zero. The cost of refinancing (a fixed cost) is denoted C.
Given that in the event that the debt has to be refinanced there is no other debt outstanding,
the firm chooses a new debt structure, (', K’,7n’) subject only to the restriction that the
market value of the debt must be at least as high as the amount to be refinanced. Note
that the firm can hedge the risk of not being able to refinance when it first issues debt by
choosing the original (b, K,n) bond such that its face value, K, is small.

In the high growth/liquid regime, depending on the values of b and 6z the firm has
incentives to strategically default either before the debt matures (when z is low) or at
maturity. Formally, this corresponds to the case in which in the high growth regime the firm
can issue equity to pay its creditors. We refer to this case as strategic default risk, or just
default risk.

As it is standard in these models the existence of debt financing could potentially lead to
the liquidation of the firm and this is inefficient given our assumptions about the stochastic
process for earnings. Thus, debt financing can potentially lead to inefficient liquidation, as
in as in Diamond (1991) and Leland (1994).

U For example, this includes the case in which debtholders receive a certain fraction of the value of the
certain stream z, denoted by (1 — d1,)z/r. We could interpret d;, as a measure of the value of the firm in
secondary markets including the changes in values associated with the probability of fire sales.

12As in the case of the residual value of the debt in the low growth regime Dg captures a variety of
factors including the probability of fire sales, the strength of debtors rights and costs of bakruptcy. In our
quantitative exercise we let this value depend on the value of the assets held by the firm.



3.1.1 The Value of the Firm in the Liquid Regime

The market value of a productive firm that has issued a (b, 7, K') bond, denoted by T'(z; z, b, n, K),
is

T,°T,
T(z;z,b,n, K) = {E/ e " (ry1s+0z—0)ds
0

T 0
+e max( T + 7z K, O)N[Tn<TS] Ty = :1:} .
r—pu o

Here T = inf{t : ; < 2*} is an endogenously chosen stopping time that determines default
before the debt matures, and Nz, <7,) is the indicator function of the event [T}, < T]. The
first term is the value of net output until default or maturity, while the second term is the
residual value of the firm. The optimal default rule at maturity is very simple: Default if

and only

x 0

Loy g,
r—u o r

that is, if the value of the assets falls short of the face value of the outstanding debt.

Standard arguments show that 7'(z) satisfies the following Hamilton—Jacobi-Bellman
(HJB) equation (where the arguments after the semicolon are suppressed to keep the notation
simple):

2 2
rT(x) =x+0z—b+ Z—Z(a:)/m: + %(m)%xz (1)
Ffmax(—— 4 7 K,0) - (o),

and the boundary conditions are (if b = 0)

T
lim 7'(z) =0, and lim (z)

x—0 r—oo

=0,

while if b > 0, the optimal default before the debt matures is the first time that the process
{z;} hits x*, where z* satisfies the standard value matching and super-contact conditions
given by,

T(z*) =0, and T'(z*) = 0.

Let’s denote the lowest value of x that triggers bankruptcy at maturity by z. Thus,
_ 0z
T(K)=(r—p) (K—7).

9



Of course, if the face value of the debt is sufficiently small, the above formula implies that
Z(K) < 0 and there is no default at maturity. Appendix B discusses the details of the
solution to equation (1) but, in general, it is possible —depending on the choice of debt
structure— to observe the following cases:

e The debt is safe. This implies no default at any time.

e The debt is safe until it matures. This means that the firm will choose to honor the
coupon but potentially default at maturity.

e The debt is not safe in any state. In this case—depending on x—the firm will choose
to default before the debt matures—standard strategic default—or at maturity (a type
of solvency default).

3.1.2 The Value of the Debt in the Liquid Regime

The value of a (b, 7, K) bond (again suppressing the constants from the notation) satisfies

0B 9?B, o
rB(z) =b+ a—x(x)ux + W(ac)?:c2 (2)

+n[ll(z, K) — B(z)],
where

K if x> z(K)
iz, ) :{ D¢ if v < z(K)

Moreover, if b > 0, then the choice of bankruptcy by the firm implies that

If b = 0, the value of the debt must satisfy lim,_,o B(z) = 0. Since the value of risk free debt
is given by
_b+nK

B* ,
r+mn

then the no-bubble condition is simply

lim [B(z) — B*] <0.

r—00

10



3.1.3 Valuations in the Illiquid Regime

In order to describe the value of the firm and the debt in the illiquid regime it is necessary
to take a stand on the possibility that the firm has to refinance any debt that matures in
the illiquid state. Let M (z; K) be the value of a firm that has just refinanced a maturing
bond with face value K.

Consider now the value of a firm that has issued a (b,7, K) bond and has the func-
tion M (x; K) —which must be determined endogenously— as its continuation value after
refinancing. We take that M (x; K) = 0 corresponds to default.

Let V(z;b,n, K; M(x; K)) be the value of the firm in the illiquid regime when (potential)
earnings are given by x and the firm has debt characterized by the triplet (b,7, K). Note
that potential earnings also depend on z, but since z is a constant we suppress it to simplify
the notation. Then,

ToAT,
V(z;byn, K; M(x; K))=FE {/ e "z —b)dt + e’TT"M(:UTn; KR, e+ (3)
0
e " (wg,) (1 — N[Tn<Tv])] | o =z, } ;

where N7, <7,] is the indicator function of the event {7, < T,}. The first term corresponds
to the expected present value of net earnings, z — b, until the time when either the debt
matures, T;, < T;, and the firm’s continuation value is M (zr,; K), or the project switches to
the liquid regime T;, < T})) and the value of the firm is given by its valuation in this regime,
T(xTv).

The valuation of the firm, V, satisfies:

2 2

B ov oV, o°,
rV(z)=z—-b+ %(a:)ua: + W(z);x (4)

+n [max (M (z, K) — C,0) — V(z)] + v [T(x) — V(x)].

In addition, the solution must satisfy the appropriate boundary conditions to rule out bubble
solutions. An important property of the solution to this valuation problem is that the
function V' (z;b,n, K; M (x; K)) is increasing in M (x; K) for any given debt structure.

We now describe the market value of the debt, L(z;b,n, K; M(x, K)). It is given by

TuAT,
L(z;b,n, K; M(z,K))=FE {/ e "bdt + e Az, K)N[TW<TU]+ (5)
0

€_TT1)B(ZETU) (1 — N[T7,<TU])] | Tog = l‘} .

11



The value of the bond in the event that it matures in the illiquid regime depends on the
value to the firms of refinancing. Formally,

K M, K)—C=>0

Dpgp otherwise

Az, K) = {

that is, the bond gets repaid if the value to the firm of refinancing, net of refinancing costs
Cr, is positive. If that is not the case, the firm defaults and the post-default value of the
debt is denoted Dpg

Standard arguments (if the function L is C?) show that the solution to equation (5) also
satisfies the following HJB equation!3:
O*L, o? ,

(@)pw + =~ (6)

oL
rL(z) =b+ o2 (:U)E:E

o
+n[A(z, K) = L(z)]
+ v [B(x) — L(x)].

Since increases in the refinancing value of the firm, M (z; K), increase the chance that a
bond maturing in the illiquid regime will be repaid, it follows that the market value of the
bond, L(x;b,n, K; M(z, K)), is increasing in M (z, K).

A firm that needs to refinance a bond with face value K faces the following constraints.
It can issue a new debt, (b',7', K’) that raises K. If the market is unwilling to lend the
necessary amount the firm must default. Thus, a first constraint is that the market value of
the new debt (¥',7/, K') must be greater than or equal to the amount to be refinanced plus
the refinancing cost. This is simply

L(z; V0, K'y M(z, K')) > K+ C (7)

Since in this sequential setting the possibility of repeated refinancing can give rise to a
bubble-like solution, we also impose that a debt that has no chance of maturing during the
illiquid regime and that it gets repaid with probability one, cannot exceed the value of the
project if it was debt free. This value is denoted as [:(b’ .1, K'). Formally, we impose that

x r+ vl z b v b +nK'

=l r+uvr _7‘+U r+uv r+mn

(8)

The left side of equation (8) is the value of a firm that has zero debt, while the right side
is the value of a bond with no default risk but no option to be refinanced.

13The Feynman-Kac theorem can be used to show that, for fixed stopping times, L is C? even though
A(z, K) is an indicator function.

12



We can now describe the problem faced by a firm that has to choose a new debt structure
to refinance maturing debt with face value K. The firm solves the following problem,

sup V(w0 K M(w; K')) (9)
' K"hel(x,K,M)
subject to
Sz, K, M) ={V,n,K") : L(x;¥',0/, K') > K + Cp (10)
and " 7"+U95> b v b’—l—nK’}‘

+ > +
rT— U r+uvr  r+uv r+v r+mn

We assume that if X(z, K, M) is empty, then the value of the firm is zero.
We find it useful to view the maximized value in equation (9) as defining an operator H.
Thus,
H(M)(z,K) = sup Vi(x;b',n', K's M(x; K')). (11)
o', K"e(z,K,M)
The equilibrium refinancing function —which is also the value of the firm— is a fixed
point of the operator H.

Proposition 1 There exists at least one fixed point of H.

Proof. See Appendix G =
The reason we cannot replace the sup operator with a max operator is that the function
M (z; K') is not necessarily continuous.'*

3.2 Choosing the Debt Structure

The problem faced by a firm that has to finance its investment issuing debt is similar to the
problem faced by the firm who refinances existing debt. If the cost of the project is C' and
the firm has resources given by O, then the problem of the firm is equivalent to that defined
by equations (9) and (10) with K = C — O.

4We can show that H maps lower semi-continuous functions into themselves with a discontinuity when
there is default. In the continuous region the standard argument shows that the max is well defined.

13



4 The One-Bond Example: Illiquidity Risk vs. Strate-
gic Risk

In order to highlight the interplay between technological parameters and the choice of fi-
nancing, we describe some results in a special case of the general model that provide insights
into the factors that influence the choice of maturity. We study two deviations relative to
the general model: no refinancing of the initial debt and no safe income (f = 0) in the
liquid regime. We relax these assumptions in Section 5, where we discuss the results from a
quantitative version of the model.

Finally, to simplify the algebra, we also assume that, upon default, bondholders get
zero.'> The relevant events in this case are the following:

Illiquid Regime
e Firm has enough (safe) income to pay the coupon b. [Formally, z > b.|

e If the debt matures in this regime it will be defaulted. This is the illiquidity risk.

Liquid Regime

e Depending on the structure of the bond, that is, the values of (b,7, K), the firm will
choose to default strategically in the following ways:

— Potentially before the debt matures (low K) [This corresponds to z* > z(K).]|

— Either before or at the time that the debt matures (high K') [This corresponds to

The previous two scenarios correspond to what we label as strategic risk.

It is possible to model the market value of the debt in the illiquid regime as being
determined by a discount over the value of a similar (b,7n, K') debt with zero risk, that is,
debt with no liquidity or strategic risk.

Formally, let the market value of the debt be denoted L(z;b,n, K). Without loss of
generality, we can define two “prices” or “discount factors” that we view as capturing the
way the market prices the illiquidity risk and the strategic risk. We denote by ) our measure
of the price of illiquidity risk, and we label S our measure of the price of strategic risk.

15 Assuming specific rules for the default payoff of the bonds simply adds a number of constants and makes
the algebra messier.
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The market price of a bond (b, 7, K) in the absence of illiquidity and strategic risk, that
is,if @ =9=0, is
_b+nK
or+ n

Given this definition we can view the market value of the debt as a discount relative to
the riskless version. Thus, our risk prices () and S are such that

B*

L(z;b,m, K) = B* (1 - Q(b,n, K) — S(x;0,n, K)),

where, anticipating the results that follow, we specify that the price of illiquidity risk —the
risk that the bond matures in the illiquid regime— is independent of potential earnings x.

There is a tight connection between these risk prices and the excess yield of the debt issued
by the firm. To see this, let us denote the yield of debt with market value L(z;b,n, K) as
the value of the discount rate, 7, which would make the value of a riskless version of the debt
using that discount rate equal its market value. Thus,

b+ nk
T+n

= L(x;b,n, K) = B* (1 - Q(b,n, K) — S(x;0,n, K)) .

It follows that —omitting the arguments in the functions—
2 k) @+ S@)
(1—(Q+5(x)))

The excess yield of the debt issued by the firm depends on the sum of the two risk prices.
Any factors that increase this sum will result in higher excess yield.

4.1 Measuring Risk Prices

We define the value of a (b, 7, K') debt that has no illiquidity risk as the value of the same
(b,n, K), denoted Ly;(x;b,n, K), except that, if it matures in the illiquid regime, debtholders
receive K. This is unlike the payoff of the debt issued by the firm that, in the event it matures
in the illiquid regime, pays zero to debtholders. Simple calculations show that

nk

Lyi(z:b,n, K) = L(z:b,n, K) + ————
ni(w;0,m, K) = L(x;b,1m, K) T

and we view the market value of the illiquidity risk as the difference between the value
of the debt with no illiquidity risk and that of the debt that has illiquidity risk, that is,

K
Lyr(w;0,m, K) — L(z;0,m, K) = rﬁﬁﬁ
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It follows that the price of illiquidity, @, is

nk r+n

b,n, K) = ) 12
Q( K ) b+nKr+n+v ( )
Using the definition of the risk prices, the price of strategic risk is
b K
S(z;0,m, K) 7 - il L(x;0,n, K). (13)

= + —
b+nK b+nKr+n+v b+nK

4.2 Properties of Risk Prices

Price of Illiquidity Risk There are two elements that influence the price of illiquidity
risk in equation (12). First, the degree of backloading of debt payments —as measured by the
ratio nK/(b+nK)— has a positive impact on the market price of risk. Second, the maturity
of the debt —as measured by 17— and the maturity structure of the underlying assets —as
measured by v— also influence the market price of illiquidity risk. It is straightforward to
see the following:

e Expected Maturity of the Debt. Increases in the expected maturity of the debt
(decreases in 7) decrease the price of illiquidity risk. In particular, lim, . Q =1
and lim, o @) = 0. This signifies that short-term debt bears a high implicit price of
illiquidity risk, while consols are priced as if there is no illiquidity risk.

e Asset Maturity. Increases in the expected duration of the illiquid regime (1/v) have
similar effects: When the illiquid regime is arbitrarily short (v — o0), then @ = 0. At
the other end, when the illiquid regime lasts forever (v = 0), the price of illiquidity
risk is proportional to the degree of backloading.

Before discussing the price of strategic risk, it is useful to be explicit about the valuation
of the debt. As in section 2, let x* be the highest value of income that triggers default
during the liquid regime. This threshold depends on the structure of the debt —the values
of (b,n, K)— as well as the parameters defining the economic environment, (o, v, 1, 7), but
to keep the notation simple we do not make this dependence explicit.

Price of Strategic Risk To study the properties of S(x;b,n, K) we first need to
establish some properties of the market value of the debt. As shown in the previous section,
the default rule at maturity in the liquid regime is to default whenever z < Z(K) = (r—p)K,
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while the optimal rule before maturity is to default the first time x drops below z*. This last
event is associated with the stopping time 7« given by

Tp« =inf{t : t > Tv and z; < z*}.

The value of the bond once the firm is in the liquid regime, denoted B(z;b,n, K), is given
by

Ty AT,
B(x’ b’ " K) =F {/0 eirtbdt + eern [KN[(TW<TQE*)m(ITnZi(K))]] ‘ To = x} '

It is immediate to show that B(x) —again suppressing most of the arguments— is an in-
creasing function of x (see the explicit solutions in Appendix C). The value of the debt in
the illiquid regime —which is the relevant one to study the choice of maturity since it is at
this stage that the firm selects the structure of the debt— is given by

Ty AT,
L(z;b,n, K) = E {/ e "bdt + e [B(x7, )Nip,>my) | 20 = x} .
0

It follows that the market value of the bond in the illiquid state also increases in x, since
this corresponds to a lower probability of default.

Equation (13) then implies that S(z; b, n, K) is decreasing in potential earnings (x). Thus,
our model implies that firms with better prospects (higher x) face lower prices of strategic
risk. S(x;b,n, K) also depends on the structure of the debt and the features of the economic
environment.

We can now use the results in Appendix C to analyze the implications of changing some
of the parameters. Since the details depend on the particular value of x, as well as the
relationship between z* and Z(K), here we report some general results. A full account of
the details is in Appendix C.

We find the following:

e Uncertainty. When the degree of uncertainty —as measured by o— is arbitrarily
low, the market price of strategic risk depends on the face value of the bond.

— If the face value K is low (the precise value is given in Appendix C), we show
that

lim S =

o—0

0 for x > a7
vy (1—(%)) forx <7 7

where 7 is the level of income at which the firm decides to go bankrupt (see

Appendix C).

17



If the face value K is high, we obtain that

0 for x > z(K)
111%5’: o — Su(x) for (K) zax=ap
s — Sp(x) forzxj;, >z

where the nonnegative functions Sy, (z) and Sy (x) are defined in Appendix C,
and x7; is the level of income that triggers bankruptcy in this case.

At the other end —when o0 — oo— the price of strategic risk is higher and,
independently of the state of the firm, satisfies

limS§=—2
o—00 r4+n+uv

In general our numerical results show that .S is increasing in o.

o Asset Maturity. Changes in the expected duration of the illiquid regime have the
following impact on the price of strategic risk:

limS = —2 —0,
v—0 r+n+v

and for z% € {27, 27} (depending, as before, on the value of K),

lim S =

V— 00

{ >0 for x > min(z*, 2(K))
1 for x < min(z}, z(K))

When the illiquid regime lasts a long time (v — 0), the market value of the debt is
governed by the illiquidity risk and, consequently, the price of strategic risk is zero.
At the other end, when the duration of the illiquid regime is arbitrarily short, there is
no illiquidity risk and the price of strategic risk is high if x is low because this implies
immediate default. If x is above the level that triggers an instantaneous default, then
the price is lower but still not zero, since in this case the price of debt is given by the
function B(z).

o Expected Maturity of Debt. We find that

lim S =0, and lim .S > 0.

n—00 n—0

The market charges a positive price for the strategic risk in the case of long bonds
(n < 00). Our numerical results show that S is decreasing in 7.
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How can understanding the factors that move the prices of the two risks help us under-
stand the forces that influence debt maturity? Here we present a heuristic argument that
suggests a possible connection between changes in the economic environment and the choice
of maturity. The next section discusses similar forces within our calibrated model.

Potential Earnings and Maturity Consider a firm that has optimally chosen the
maturity of its bond and suppose that there is an increase in the value of its potential
earnings, x. How should the firm adjust the maturity of its debt if it could reissue it? A
higher = implies that the price of strategic risk, S(z), is lower, while the price of illiquidity
risk, @), has not changed. If the firm decreases the expected duration of the debt (higher
n), this results in a lower price of illiquidity risk and, using the limiting results as good
indicators of the direction of the change, a higher price of strategic risk. Thus, in a sense,
lowering maturity allows the firm to economize in the risk factor whose price has increased
(strategic risk) at the cost of increasing the price of the other risk (illiquidity risk).

Uncertainty and Maturity Let us consider the impact of an increase in 0. According
to our results (again using the limits as good indicators of movements over the whole range),
an increase in o increases the price that the market changes for strategic risk, .S, while
the price of default risk, ), is unchanged. What can the firm do to compensate for those
changes? If the firm shortens the maturity of the debt (increases ), then it simultaneously
increases the price of illiquidity risk and decreases the price of strategic risk. Thus, as before,
such a change in maturity has the effect of economizing on the factor that has become more
expensive (strategic risk) by increasing the amount paid for illiquidity risk. Changing the
maturity of the debt provides one way of accomplishing this.

In the following section, we show the quantitative implications of a calibrated version of
the model that allows for refinancing.

5 Quantitative Analysis

5.1 Calibration

In order to better characterize the choice of maturity, we present a quantitative illustration
of the full model. First we study the case of pure discount bonds, b = 0, and in this case we
set z = 0. In Section 5.3 we incorporate coupons and show how our results are modified.

The calibration, shown in Table 1, is extremely simple since there are very few relevant
parameters. We set the value of i to zero as a normalization because the relevant variable
for discounting is r — p.
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Table 1: Parameters

Parameters Value Basis

(e, 2,0) 0 Normalization

Risk free rate, r 0.05 Standard
Refinancing cost, C 0.05 Issuance cost-to-debt ratio
Volatility, o 0.2 Sales volatility
Arrival prod. phase, v 1 Debt maturing under 5 years
Recovery, o 0.6 Debt-to-equity

There are 5 remaining parameters. The value of the cost of issuing debt, C, is set to 0.05,
which is slightly above 1 percent of the amount of debt issue. The interest rate, r, is set to
a standard value, 5 percent. The value determining the value of volatility of the process for
x, o0, is calibrated a priori at 0.2 because that is the median value for the standard deviation
of the first difference of sales (see Table 2). The value of the funds that must be raised,
K, is chosen such that it coincides with the maximum that can be raised for the lowest x,
K = 1.68. The remaining 2 parameters—the Poisson parameter determining the probability
of arrival of the productive phase, v, and the share recovered of the value of the firm in case
of default, )—are calibrated such that the model provides reasonable predictions for the
debt-to-asset ratio and debt maturity. Note, however, that to compare the model with data
we need to pick the value of x that would represent the median firm. We pick the value of x
that best represents the state of the median firm in the data in terms of the debt-to-equity
ratio.

Table 2: Fit of Calibration Targets
Model Median Firm

Debt-to-Equity ratio 0.205 0.208
Debt-to-Asset ratio 0.176 0.195
Share of debt with maturity under 3 years 0.465 0.606
Share of debt with maturity under 5 years 0.647 0.870
Volatility (Sales) 0.200 0.209

Note: See Appendix A for an explanation of the construction of these variables.

5.2 Results
5.2.1 Firm Value, Bond Characteristics and Maturity

It seems useful to first discuss how arbitrary choices of maturity impact the value of the
project and the set of feasible bonds. In this section, we fix the value of potential earnings
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(x) at the value used in the calibration to match the median of the statistics in the data and
study how changes in maturity affect the value of a firm, denoted M (z, K, K*(n*),n*), that
has to refinance a bond of a fixed value (K).

Figure 1 shows the value of the firm, denoted M (z, K, K*(n*),n*), as a function of ex-
ogenously chosen maturity, 1/n*, for alternative values of the cost of refinancing, C, and
measures of volatility of the firm’s earnings, o.

Figure 1: Maturity and the Value of the Firm
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As expected, the function M (x, K, K*(n*),n*) is concave in maturity and, in all cases,
the maximum is interior. Thus, the model is consistent with a well-defined optimal choice of
maturity —the maximum of the M function— even though all market participants are risk
neutral and use the same discount factor. In the base case —C = 0.05 and ¢ = 0.20— the
optimal debt structure has an expected maturity close to five years.

The left panel of Figure 1 summarizes the impact of changes in the cost of refinancing.
If this cost decreases from the base case (C' = 0.05) to C' = 0.01 (a charge equal to 0.25%
of the initial debt), the optimal maturity decreases from the base case of 5 years to less
than 3 years. As the cost gets close to zero, the optimal maturity falls below 1 year. The
lower costs of refinancing decrease the shadow cost of a bond maturing in the illiquid phase
and, hence, decrease optimal maturity. We find that, under our parameterization, optimal
maturity responds significantly to changes in the costs of refinancing.

The market value of a firm with a given stock of debt decreases as earnings volatility
increases. The right panel of Figure 1 illustrates the impact of increasing volatility by 25%
for a range of maturities from 1 month to 10 years. As in the case of the cost of refinancing,
the effects are significant. The peak of the M (z, K, K*(n*), n*) function in the high volatility
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case is attained at a maturity slightly above 3.5 years, which corresponds to approximately
a 25% decrease in optimal maturity when compared to the low volatility case.

How do the characteristics of the bond change with maturity? Figure 2 reports the face
value —holding the market value of the bond constant— and the yield to maturity as a
function of the expected maturity of the bond. If the firm chooses to issue longer bonds,
then the face value must increase and the yield to maturity must also increase. The market
prices long maturity bonds as riskier investments.

Figure 2: Maturity and Bond Characteristics
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The left panel of Figure 2 makes clear that the value maximizing debt structure does
not pick the lowest face value, which would minimize the probability of strategic default
since this is attained by the shortest possible bond. Similarly, the right panel of Figure 2
shows that the optimal bond does not minimize the interest cost as measured by the yield
to maturity. For example, in the base case, the firm chooses to pay a small spread over the
risk-free rate to issue debt with a longer maturity even though it had available the option of
issuing shorter term debt at a rate close to zero.

The negative impact of earnings volatility also shows up in the bond characteristics. A
firm in the higher variance environment (o = 0.25) issues shorter debt that nevertheless pays
a higher risk premium with a very small difference in the face value. The higher financing
cost reflects that higher uncertainty implies a higher probability of strategic default, as well
as lower likelihood that the firm will be able to refinance early maturing debt.

22



5.2.2 Maturity Choice and Value of the Firm
In this model, the value of a 100% equity-financed firm during the initial phase is

z r+uvl v T

V*(x)

:r—l—u r r+v—ur—u

In what follows, we interpret lower values of V*(x) as indicating (temporarily) poorly per-
forming firms, while higher values characterize (temporarily) highly productive firms.

We find that in all experiments with pure discount bonds, optimal maturity increases
with V*(z). We view this as evidence that firms that need to issue debt in “bad” times will
choose to issue relatively short-term debt. In all the cases that we study, the firms could
have issued longer term debt —say with the expected duration that it chooses when V*(z)
is slightly higher— but the tradeoff between cost and risk makes this unprofitable.

Figure 3 presents the values for key variables as potential output increases. First, Figure
3 (a) displays expected maturity. It is interesting to note what occurs at the lowest V*(z) for
which financing K is feasible (at that value of z, even an slightly larger value of K cannot be
financed). In this case, the cost of refinancing the debt relative to the potential earnings of
the project becomes too high. The firm chooses to issue a very high face value—that could
never refinanced—and 3 years of maturity. The yield to maturity, shown in Figure 3 (b),
reaches more than 30%, indicating that this firm would be in financial distress. Note that we
have also included in this figure the yield to maturity of the same bond but without liquidity
risk.!® This shows that as the risk of strategic default increases because x decreases, the
risk of default due to liquidity (which is captured by the difference between the blue and red
lines) also increases. As we mentioned before, the choice of the bond is balancing the risk of
both types of default.

Beyond that very low value of z, expected maturity increases steadily from about 1 year
to about 9 years as potential earnings increase. The face value, which is displayed in Figures
3 (c), shows that it follows a similar pattern as expected maturity, although less steep. As
potential earnings increase and the firms decide that debt will be refinanced in the event
that it matures during the illiquid phase, both yields to maturity decrease to a value close to
0%, as shown in Figure 3 (b). The debt-to-equity ratio is similarly patterned but with less
curvature, where firms who would not refinance borrow as much as 3.3 times the amount of
their equity, but the ratio decreases to less than half as potential earnings increases.

16This value is computed after solving for Ly numerically.
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Figure 3: Optimal Debt as a Function of the State of the Firm
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5.2.3 Technology and Equilibrium Maturity?

The earnings process of the firm is determined by the following four parameters: p, the
expected growth rate; o, a measure of the variability of the growth rate; v, an indicator of
liquidity (1/v is a measure of the expected duration of the illiquid phase); and 1 — ¢, which
measures the fraction of the value of the firm that debt holders can appropriate in case of
default. Figure 4 shows the impact of changes in the first two parameters on the equilibrium
maturity of debt for the median firm in our calibration data.
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Figure 4: Technology and Equilibrium Maturity I
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Firms with better growth prospects (higher p) issue longer debt. The intuition —as
discussed in the case of a single bond— is that higher expected growth reduces the likelihood
of default if the firm is in the liquid regime. Thus, for a fixed maturity, the market should
lower the excess yield for longer maturities. The firm will find it optimal in this case to issue
longer debt.

The impact of uncertainty is almost exactly the opposite. For a bond with a given face
value, increases in o lower the expected value of the repayment in the liquid regime. This
increases its price. The firm will then find it optimal to choose a shorter bond that can be
refinanced at a time in which earnings are (potentially) higher.

Figure 5 summarizes how equilibrium maturity responds to changes in the other two
technological parameters: v and d.
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Figure 5: Technology and Equilibrium Maturity II
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Consistent with the literature that emphasizes a connection between the maturity of the
assets and the debt, our model implies that the shorter the duration of the illiquid regime,
the shorter the expected duration of debt. The model also implies that the higher the resale
value of the assets in case of default —that is, the higher 1 — 6— the longer the optimal
maturity. A higher 1—§ is associated with lower costs (for the debt holders) of default in the
liquid regime, and, hence, it is optimal for a firm to redesign its debt by lowering the implicit
cost of illiquidity default. This is accomplished by increasing average maturity. Benmelech
(2009) report a consistent result: American railroads that used rolling stock that could be
more easily redeployed (higher resale value) tended to issue longer term bonds.

Appendix D shows how the other characteristics of the bond—its face value, yield spread,
and debt-to-equity ratio—vary with these parameters. To the extent that differences in
technology correspond to different sectors, the model implies that firms with similar values
of expected earnings will issue debt with different characteristics.

5.2.4 Leverage

Figure 6 shows how the structure of debt varies with the financing needs of the firm. We
interpret the funds raised by the firm, K, as an indicator of its leverage given that all other
characteristics of the firm are constant. The model implies that firms with higher leverage
issue shorter term bonds (panel (a)) with a higher face value (panel (c)). Increases in leverage
appear to have a highly nonlinear impact on yields : As K increases such that the debt-
to-equity ratio increases from 15% to 30%, the model implies small changes in the spread.
When K increases beyond this threshold, increases in the debt-equity ratio from 30% to 40%
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are associated with large increases in the yield to maturity. Higher values of K cannot be
financed in the market.

Figure 6: Debt Structure and Leverage
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5.2.5 Endogenous Borrowing Constraints

If firms would have access to perfect capital markets, all projects with V*(z) > K would be
started with equity financing. In our setup, however, during the illiquid phase firms must
raise K with a defaultable bond. To illustrate to what extent this lack of access to equity
markets would restrict start-ups, we computed the maximum value that a firm with a project
valued V*(z) could raise. Figure 7 shows the maximum amount that could be raised relative
to V*(z) and plot it as a function V*(z) (what could be raised in equity markets) for three
alternative parameterizations.
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Figure 7: Endogenous Borrowing Constraints
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There are at least two interesting findings. First, the maximum amount that could be
raised is significantly lower than 1 and flat with respect to V*(x). This means that in our
parameterization the financial friction of no access to equity market is very important for
all size of projects. Notice that this ratio is an endogenous borrowing constraint that arises
in our model as a consequence of lack of state-contingent debt instruments (firms can issue
flexible bonds but not equity). Second, this constraint depends on the characteristics of
the projects. Projects with higher salability or lower risk would have access to more credit,
although their value V*(z) would not change.

5.3 Bonds with Coupons

The previous analysis was simplified because it assumed that there was no revenue during
the first phase (z = 0) and, as a consequence, bonds were issued with no coupons, b = 0.
In this section, we make minimal modifications to the values of the parameters to consider
the role of bond coupons. In particular, the revenue during the first phase is increased to
z = 0.1. Thus, firms can now issue a bond with coupons of up to b = 0.1.

To show the role of the coupon, it is useful to show how arbitrary choices of the coupon
impact the value of the project for a set of feasible bonds. Note now that there are three
choices: K, 7, and b. For each combination of (7, b) considered, we select the value of K such
that the bond raises the desired resources. In particular, we analyze how changes in the bond
coupon impact the value of a firm, denoted M (x, K, K*(n,b),n,b), that has to refinance a
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bond of a fixed value.!”

The value of potential earnings (x) is set at many values from x = 0.35 and z = 1.8.
Figure 8 shows the value of the firm for alternative values of maturity, 1/7, exogenously
chosen, as a function of the bond coupon. We find that for values of = between 0.35 and 0.75
the largest possible coupon (b = 0.1) would be preferred. Actually, for values of 2 between
0.35 to 0.70, reducing the coupon is worse for the value of the firm for any value of maturity
(between 1 and 5) of the newly issued debt. For x = 0.75 we note that for some value of
maturity, other values of the coupon are preferred. For instance, for a 2-year maturity bond,
no coupon would be preferred. In terms of maturity, in this range of values of = we see a
pattern similar to Figure 3: Maturity initially decreases and then steadily increases.

Here, however, optimal maturity reaches 5 years at x = 0.75 and it starts to decrease.
Given that in this example we are not allowing for bonds with maturity higher than 5 years,
the alternative would be to keep maturity at 5 years and b = 0.1 and decrease K’. This is an
option that we allow, but as Figure 8 shows, for values of x > 0.75, there are other better
alternatives. For x = 0.8, maturity decreases to 4 years and the optimal coupon is 0.7. For
x = 1.4, optimal maturity is 1 year and b = 0.1. As b = 0, maturity continues to increase
with x as in the case with no coupon. For instance, for x = 1.8 the optimal maturity is 2
years.

ITWe set K = 2.8.
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Figure 8: Bond Coupon and the Value of the Firm
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Even though we are not maximizing over the set of all possible bonds, our results suggest
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the following;:

e For firms that have projects with low value, V*(x), it is optimal to issue bonds with a
high coupon (b = 0.1 is the upper bound) and of short-to-moderate maturity. These
firms face the highest price of strategic risk (driven by the low z), and they can econ-
omize on this factor by both frontloading the debt and choosing a relatively short
maturity. For these firms, improvements in their prospects —as measured by V*(x)—
result in longer maturities. Thus, these results resemble the findings in the case of pure
discount bonds.

e For firms with intermediate value, the results are more diverse. At the low end of this
region, the best bond still frontloads payments because it chooses the highest possible
coupon. However, since the higher x implies a lower price of strategic risk, it is optimal
to issue longer term debt (5 years). As the firm’s prospects improve, the firms issue
bonds with smaller coupons —which reduces the risk of strategic default— and they
shorten the maturity.

e Finally, firms with very high values of V*(x) face low prices of strategic risk and issue
zero coupon bonds with an intermediate maturity (2 years). This implies that the only
risk bondholders face is the risk that, when the bond matures, the earnings will fall
below Z(K).

6 Conclusion

We study the optimal choice of the structure of debt by a risk-neutral agent —which we
interpret as a firm— that borrows from a risk-neutral lender. The optimal maturity strikes
a balance between two risks: the risk of default in the low growth (illiquid) regime and the
risk of strategic default (in the high growth regime).

We find that the state of the firm —as measured by the unlevered value of its assets— and
the characteristics of the technology (or the economic environment) influence the structure
of the debt issued. In the case of pure discount bonds, as the level of (potential) output
increases, the shadow price of the risk of strategic default goes down and the cost of default
in the low growth regime goes up. Hence, it is optimal to lower the risk of default in the low
growth (initial) regime by extending the maturity of the debt. The degree of uncertainty in
the economic environment also influences the choice of financial structure. Higher uncertainty
about growth rates is associated with shorter term debt. Investment projects with a higher
value (to the lenders) upon default (e.g., higher resale value or lower cost of fire sales) and
projects with lower leverage are financed with longer-term debt.
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We also find that the results are sensitive to the assumption that debt can have any
duration but that it cannot commit to paying intermediate coupons. When we analyze
the more general case, we no longer find that the relationship between value and expected
maturity is monotone. In our setting, if the firm is at a corner —meaning that it chooses
to issue debt with the highest possible coupon— increases in value result in longer debt
maturity. However, as the prospects of the firm improve, the optimal debt is less frontloaded
and a higher share of the market value corresponds to the face value: Maturities are shorter.
We interpret this as the consequence of smaller default risks associated with higher unlevered
value of the firm. Finally, firms with very good prospects choose pure discount bonds.
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Appendices

A Maturity and Key Firms’ Characteristics

In this appendix, we reproduce some previous empirical findings in the existent literature.
We use the non-financial and non-regulated firms in Standard & Poor’s Compustat from
1988 to 2006 to draw our sample of US firms.!® The final sample size is 17,169 firm-year
observations, with 3,023 different firms.

The construction of Compustat variables is the following!':

e Debt Ratio under 3 years*™: A ratio of short-term debt (DD2 + DD3 + DLC) to total
debt (DLTT + DLQ).

e Debt Ratio under 5 years: A ratio of short-term debt (DD2 + DD3 + DD4 + DD5 +
DLC) to total debt (DLTT + DLC).

e R&D Investment: A ratio of R&D expenditure (XRD) to sales (SALE). This variable
captures “growth opportunities” following Guedes and Opler (1996).

e Volatility (Sales): A ratio of the standard deviation of the first difference in sales
(SALE) to the mean of total assets (AT) across time weighted by the average total
asset of the sample period, following Stohs and Mauer (1996) and Okzan (2002).

e Volatility (EBITDA): A ratio of the standard deviation of the first difference of EBITDA
(SALE - COGS - XSGA) to the mean of total assets (AT) across time.

e Return Volatility: The standard deviation of stock return, where stock return is mea-
sured by the growth rate of adjusted closing price of stock (PRCCD/AJEXDI). This
is a measure of return volatility.

18We have excluded financial firms from the data because the capital structure of the financial firms are
influenced by different factors from other sectors. Similarly, we have excluded utilities because those firms are
heavily regulated, and different debt maturity structure predictions may apply to such firms. We have also
trimmed the extreme 1% of all independent variables to exclude outliers. We have discarded observations
that have erroneous data for any of the variables used in the regression. To be specific, we have discarded
any observation with short-term debt that is higher than total debt, and with current asset higher than total
asset. See Stohs and Mauer (1996) and Johnson (2003) for similar practices.

9The (*) indicates variables that are included in the calibration target (Table 1A) but not in the regression
(Table 2A).
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e Asset Maturity: The weighted average of short-term assets (ACT/COGS) and long-
term assets (PPEGT/DP), where weights are defined, respectively, as (ACT/AT) and
(PPEGT/AT), following Stohs and Mauer (1996).

e Asset Salability: A ratio of total net property, plant and equipment (PPENT) to total
asset (AT), following De Jong et al. (2008).

e Kaplan-Zingales index: Following equation (14), where CF = (IB + DP), DIV = (DVC
+ DVP), C = (CHE), LEV = (DLTT + DLC)/(DLTT + DLC + SEQ), and Q = (LSE
+ CSHO*PRCC - CEQ -TXDB)/(LSE).?® We interpret a higher value of this index as
more reliance on external financing.

e Size: Logarithm of sales (SALE).

e Debt-to-Equity*: A ratio of total debt (DLTT + DLC) to equity (AT - DLC).
e Debt-to-Asset®: A ratio of total debt (DLTT + DLC) to assets (AT).

e Earnings Growth (Sales)*: A growth rate of sales (SALE)

e Std. Dev. of Earnings Growth (Sales)*: The standard deviation of the growth rate of
sales (SALE).

We use the short-term debt ratio calculated as the ratio of debt that matures within a
5-year period to the total debt as the endogenous variable. Table 1A reports the descriptive
statistics for the constructed variables. Importantly, short-term debt is prevalent among
these firms: On average, 25 percent of the debt has maturity longer than 5 years. There is
also large variation in debt maturity, as shown by the fact that the standard deviation of
the short-term debt ratio is 30 percent.

20The index is defined as following:

CFy Divgy Cit
— 39.368 —1.315
ATy ATy ATy

KZy = —1.002 +3.139Levy; + 0.283Q;;, (14)

where CF is the cash flow, Div is the dividend, C is the cash and short-term investment, Lev is the leverage,
Q is the Tobin’s Q and AT is the lagged total asset, following the paper by Lamont et al. (2001). The paper
argues that these variables obtained from the restricted version of the ordered logit of the central regression

by Kaplan and Zingales (1997) provide a good explanation for the wedge that firms face between internal
and external costs of funds.
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Table 1A: Descriptive Statistics

Mean Median Std. Dev.
Debt Ratio under 5 years 0.750  0.892 0.300

R&D Investment 0.103  0.040 0.335
Volatility (Sales) 0.280  0.213 0.220
Volatility (EBITDA) 0.113  0.075 0.118
Return Volatility 4.023  3.894 1.604
Asset Maturity 6.490  5.398 4.650
Asset Salability 0.221  0.201 0.129
Kaplan-Zingales Index -2.948  -0.787 8.678
Size 5.134  4.984 2.288

In Table 2A, we report panel-data regression on the short-term debt ratio. We also
show the “expected” sign given findings in previous empirical literature. In terms of the
regressions, we show several columns to argue that considering alternative volatility measures
does not alter the result in any significant way. We also show that we can control by sector
or firm fixed effects. For some of the intuitions that will be derived later, variations across
sectors are important, so we also show the results controlling only by year fixed effects.

We find that firms/sectors with:

e Higher growth opportunity — longer debt maturity.

Higher volatility — shorter debt maturity.

e Longer asset maturity — longer debt maturity (although not significant).

Higher asset salability — longer debt maturity.

More reliance on external financing — shorter debt maturity (although significant only
with variation across industries).

These findings are quite similar to the articles discussed in section 2. However, our new
theory offers an alternative explanation to the one usually provided in previous literature.
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B Additional Results: Valuations in the High Growth/Liquid
Regime

Preliminaries Let )\; be a root of

0.2

Given our assumptions, it follows that A; < 0 and A,. Moreover,

lim A =1 and lim \; =0,

1111[1) Ao = 00 and lir% A = —00
Oy o\
— < 0and — > 0.
do <van do ”
Similarly, let m; be a root of
o2

7"+17+U—u7r:77r(7r—1),

and, as before, denote 7; as the negative root and 75 as the positive root. Simple calculations
show that the impact of changes in o upon the 7; mimic their effect on the \;. It also follows
that

T < A1 and w9 > /\2,

and that
lim m = o0 and lim 7 = —o0.

v—00 vV—00

Recall that default at maturity happens if
_ 0z
r<z(K,0z)=(r—p) <K——) :
r
We assume that, upon default, bondholders get (1 — §) of the value of the assets.

Valuations There are four possible cases depending on the parameters:

1. Case I: Perfectly safe bond: b < 0z and K < 9%.

2. Case II: No default in the liquid regime except possibly at maturity: b < 6z and
K <0z
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3. Case III: Default is possible in the liquid regime both before the debt matures and at
maturity. However, it is never optimal for the firm to default at maturity: b > 6z and

K < ﬁm(% — )\1%). This corresponds to the case x* > Z(K, 0z).

4. Case IV: Default is possible in the liquid regime both before the debt matures and at

maturity. This corresponds to b > 6z and K > ﬁ)\l—r(gf - )\1%) or, z* < Z(K, 0z).

Case I. In this case, there is no risk and the values of the equity and debt are given by

b+ K
Ba;1) = 18 _ g
r+n
0z b+nK
T(z;1)= 2 22 0F7

T — T r+mn
Case II. The value of the bond is given by

Bla; 11 {B*+Bln)(§)h, x> I(K, 0z),
x; = b (1-9) 16z x T+ >, T\ = )
et o (Pt e t) + BUD(E)?, 2 <3(K, 62)
where
_ 1 (1—=00)z (r+n)(1—A) 0z }
B(11) = 2 (K — (1-8)2)],
uh 7“+77A1—>\2{7"—u TN = 2{ ( )T)
_ 1 1—-90)x 1-—
B = = - a-0 D).
r4+nA—X | T— U rT+n— i r
In this case the value of the firm is
x oy 02=b M 0z oy T (E)\M > z(K,0
ren={ T e Zaken
rn—p T z ’
where
T {( S T S (9—Z—K>}
_)\1—)\2 r+n—u r—u ? 27'—|—77 r ,
, 1 z T n_ bz
T2([]) — — 1—X)+ A ——K)|.
Uh=5—% {(Hn—u A )}

Case III. In this case we conjecture that the optimal default is such that * —the level
of x that triggers default— is greater than Z( K, 0z). This implies that if, for some ¢, z; < z*,
then the firm will default. However, if the stopping time T;, precedes such an event, then
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the bond will be repaid in full. Thus, in this case, the strategic risk is concentrated on the
period before the bond matures.
The relevant HJB equation for the value of equity solves the following:

0
PT(@; I1T) =2+ 62 b+ nl——— + — — K = T(x; I11)]
r—p
2
VT (e, TTT e + T (25 I]I)%x, € >zt

with standard boundary conditions

T(x: 111
T(a* 111 = 0 and lim L) o

T—00 x

and the smooth pasting condition given by
T'(x* 111) = 0.
The value of the firm is zero for z < z*, and for z > z*,

T 0z 1 0z z
__B* B*__ _)\1‘
r—u+r * 1—)\1( r)(a:*)

J

T(x;111) =

¥
The optimal bankruptcy decision rule is given by
(r—

0z
*: B*__
o )\1—1( T

).

Since this case requires that * > z(K, 0z), it implies that the face value of the bond must
satisfy
r+mn

K<————
r+n—M\r

0
0=, b
T r+n

(

for the solution to be in this region. The value of the debt is

)EKL

(1—5)[ v +9—Z],forx<a:*,
r—u T
and 0
z x* x
B(x;III) = B* 1—6)(— — B*| (=)
R e R [
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Case IV. If the face value of the bond is sufficiently high, then it is possible that the
pre-maturity default threshold, x*, is lower than the default threshold at maturity, = (K 0z).
In this case, it is possible that default may occur before maturity (if z drops below z* and
the bond has not matured) or at maturity. The values of the firm and the bond are given by

B*—i—BH(IV)(i) , x> Z(K,0z).
B(a; IV) = { 4 2D (% o) 4 BL(IV)(2)M + BL(IV)(2)%, 2 <x < 3(K, 02)
(1_5)(Tfu+erz)7 T <zt

The constants solve the following system of equations,

1 nl—0) =z 0z
)\1—)\2[(1_)\1)7“—1—77—;”»_“_)‘1T+n((1—5)7—[()]

*

BL(V) = (D) M- BV )(S )

B2,(1V) =

x* +9_z)_ b _77(1—5)(9_,2+ r*  r+n
rT— U T r+n r+n r r—ur—+n—Qu
_ _ _ 1-19),0z T+ nk
BLUV) = BLUV) + B (1v) + L ZiK - =
n(IV) u(IV) + By (IV) + T (7,+ 7“+77—M) r+7

+ (1= 9)( )l

The value of the firm is

S & B THIV)(2)M, v > 1(K,0z)
T(w;1V) = i T iin” +TLIV) (M + THIV)(E)e, 2" <z < 3(K,02)
0, <z

with the constants being given by the solution of the following system (imposing boundary
and smooth pasting conditions):

— 1 z x n 0z
TH(IV) = ———[(1 -\ — A
n(IV) =5l 1)(T+n_M T_M)+ G

FTV)(S))

_ x* r* 0z—b
Tu(IV)==(3) Al[r+?7—u T
— 1 T T _ _
TLHIV) = — — MTY(IV) 4+ NT2,(1IV))].
WIV) = ol =~y T IV) + T (V)]

The optimal default boundary solves

(:C*)/\Q[ 77(7" + U )\UJ) (K . 9_2')1,)\2] _ (1 - )\1) = i )\1b — 0z

(r = (r+mn—p)(r+n) r rn—p r+n’
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and it is immediate to verify that the solution is greater than z (K 6z) iff

r+n 0z \ b
r4+n—Mrr 17‘—1—77

C The One Bond Case

In this section, we illustrate how the two prices of risk depend on properties of the economic
environment. To simplify, we take a special version of cases III and IV. We assume that
) = 0 —which corresponds to the case of no riskless income in the liquid regime— and
0 = 1, which implies that debt holders get nothing in the case of default. Allowing for a
more general specification does not change the basic properties of the results but makes the
algebra more cumbersome.

Preliminaries In this case the value of K, is given by

K; = ¢7
(I—=X)r+n
and default at maturity occurs if

< Z(K)=K(r—p).

For K < K —we label this case [—the bankruptcy threshold is

e
while for K > K; —we label this case I/— the bankruptcy threshold solves
- * b A —1
r+n—p r+mn TN = x Lo rtn r+n—p
+ e e
Properties of K These include
—-X(0) b

et o 1—X(0)7’

where \;(0) is the value of the corresponding root when n = 0. Similarly, we use 7;(0) as the
value of the root when n = 0 as well.
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Given the properties of K, there are some configurations that are not possible. For
example, since lim,_,., K, = 0, there is very short duration debt in case I, since for any
finite K it must be the case that —for a sufficiently short duration 1/n— K > K. This
case is also ruled out in environments with very high variance as lim,_,,, K = 0.

Similar considerations apply to z*. For example, 7 and z7; both converge to zero as
o — oo since the high option value of not defaulting dominates. Moreover, z7}; converges
to zero when expected duration goes to zero. Finally, for consols (i.e., n — 0) we have that
lim, o 27 = lim, o 27; > 0.

Risk Prices The price of illiquidity risk, which we label @), is independent of the state

and given by

Q- nkK r+mn
b+ nKr4+n+o

The price of strategic risk during the illiquid regime —which is the relevant one when it

comes to analyzing refinancing decisions— depends on whether the firm is in case I or I1

and on the particular value of potential earnings, x.

(15)

Case I In this case, the prices of risk differ depending on whether x is above —which
we label L— or below —denoted LY the threshold that would trigger default in the liquid
regime. Standard calculations show that

nkK e \M [z \™
LAaz)=B"-—"— B (=) +LF(=) , 2>}
r+n+v x7 x7

b _ 2
L%(m)z——i—L% (%) , v <xj.

r+n+v
where
- H B*
T — T
- B*

o — T

Case I/ In this case, the optimal default threshold before the debt matures, z7j,, lies
below the default threshold at maturity, Z(K). This defines three regions in terms of the
value of potential earnings that require different treatment. We define the market value of
the debt LI (z) when x > Z(K). For intermediate values of = (that is, Z(K) > x > z%,),
we denote the value of the debt in the illiquid region by L (z). Finally, for low values of x
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(x%; > x), the value of the debt is L% (). Standard pricing arguments can be used to show
that the market value of the debt in each of these regions is given by

b =8 () 3 () 4 (i) 2 (i)

L b - x 2
Li(z) = —————+ L | == ;
r+n+v z(K)

where the constants satisfy

BH _ A K ( L1 ))\2)\1 _ b < T7g )/\1 _ A K
! Ao — N r+n \Z(K) r+n \z(K) Ao —Mr+7n
BL — A1 nk ( Ty )/\2)\1 b < Ty )/\1
1 — _ - _ )
Ay —Mr+n \Z(K) r+n \z(K)
Bf = A
)\2—)\17""‘77
_ _ K
L=+ =
Mo —mM7T+n+v
Eéwz T nk

To—mr+n+v

Y

* - * >\
Ly =1 2 + — +
Z(K) me—m \r+n r+n \z(K) Mo — M T +n+v
IL — Trr ’ ! b nk i\
Z(K) m—m \r+n+v r+n+v \Z(K)

~\1 b nk ( Tk, )M
+ + _ .
To — M1 7“+77 T'+77 CC(K)

Given the market value of the bond, L(z), the price of strategic risk is (see equation (6))

b nkK v T—I—nL

S(x;b,m, K) = B

(z;0,1,K).
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Maturity and Risk Prices In this section, we report the limiting values of the two risk
prices in the case of a short bond (1/n — 0) and a consol (1/7 — oo). We find that

’ Table C.1: Maturity and Risk Prices ‘

| [ [1/n—0] /1 — o |
x>z | Q 1 0
A 0) <%)7’1(0)
ot 5|0 (3)7 - adm A0+ RO
r<z*|Q 0
%)W(O)
T S x* S 0 riv - m [—)\1(0> +7T1<0)r+fu}

Uncertainty and Risk Prices Table C.2 reports the behavior of the risk prices as a func-
tion of ¢. Since () —the price of illiquidity risk— is independent of the degree of uncertainty,
we only report the values for the price of strategic risk.

’ Table C.2: Uncertainty and the Price of Strategic Risk ‘

| [ o0 oo
T > x7 S 0 r+:7)+v
7T+
T} > w S| (1 - <a:%> 2) T
r > Z(K) S 0 ) r+:7)+v
K)>zx>a5 | S T+Z+U - SAM(»’C) r+:7]+v
}( >x S 7“+:])+U — SL(.’L') r+:7)+v
where
. b 1 nk

SM(x) = —

rin (:z(i())g - r+;+v (f(xm)w;] |

Sp(z) = 1=(rem) 4= (L))ﬂ; X

r+n+v  B* \Z(K

7“—|—77+UB*+ B*

+ +

_nK 4 b (x?l )ﬂQ_ b (x?l )WZ_i_ nkK (37?1 )”
r+n+v  r+n \z(K) r+n+ov \z2(K) r+n \zZ(K) '
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In these formulas, we use A\ and 7, as the values of the roots when ¢ = 0. They are given
by

r+n r+n+uv

1

+ _ +
Ay = and T, =

Illiquidity and Risk Prices In the model, 1/v is the expected duration of the illiquid
regime. The price of illiquidity risk responds to changes in v in a very intuitive way:
0Q

. K . _ 0Q
1111—%@_1)—1—7]}{’ Uh_)IElQQ—O, and 50 < 0.

Table C.3 reports the limiting values of the price of strategic risk:

’ Table C.3: Illiquidity and the Price of Strategic Risk ‘

| | | 1/v— o0 | 1/v—0 |
A1
x> 7 S 0 (%)
;> S 0 1
x> I(K) |S 0 Su ()
(K)>zxz>a5 | S 0 bif](K—SL(x)
T > S 0 1

Sul(z) = A 1L (m?l )AZ) <i)h+—b <1)A1+ A2 nk <$ )Al
A= r+n \Z(K) %, b+nK \ 7}, Ay — M b+nK \Z(K)

Y

S(a) = A1 nk o, \2 [ x /\1_ b ES M R nk x
BN = M b+ 9K \Z(K) Tt b+nK \z3, Ay — M b+ K \Z(K
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D Additional Graphs
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E Algorithm for Numerical Solution

The algorithm used to solve the model numerically is based on value function interation and
it has the following steps:

1. Solve for the valuation of the firm 7T'(x,n, K) and bond B(z,n, K) in the liquid regime
using the solution given in Appendix C. Note that the valuation of the firm and bond
in the liquid regime does not change.

2. Solve for the valuation of the firm V!(x,n, K) and bond L'(x,n, K) in the illiquid
regime using the solution given in Appendix C. This will served as an initial guess.

3. Use numericaal maximization to find the optimal value of the firm that needs to be re-
financed such that M*(z; K) = maxy ;v xn V(2,0 7', K') such that L (z; 0,1/, K') >
K.

4. Solve for V?(z,n, K) and L?*(x,n, K) using M*'(z; K), following the equations given in
(3) and (4).

5. If |V3(z,n, K) — Vi(z,n, K)| + |L*(z,n,K) — L'(x,n, K)| < ¢, finish. Otherwise, set
Vi(z,n, K)=V?(x,n, K)and L'(x,n, K) = L*(x,n, K), then back to step (3).

F Optimal Maturity with Zero Cost

In this appendix we consider the case in which there is no cost in refinancing a loan and the
safe income, z, is equal to zero. To simplify, we study only the case of a pure discount bond,
that is, b = 0.

The conjecture is that in this case the optimal maturity will be zero (i.e., n = o0). To
check this conjecturem, we set the value of refinancing to the firm, M (x), equal to what would
be the value of a firm that issues zero maturity bonds. Thus, it keeps its principal constant
and default only occurs in Phase II (high growth) whenever x < Z(K). In particular, we
conjecture that if the firm takes this continuation payoff as given and bonds are priced as if
there is zero probability of default in Phase I (because of refinancing), then the optimal choice
of a bond, the optimal (7, K"), equals (oo, K), where K is the initial level of investment and,
moreover, the resulting value of the firm under this choice is indeed equal to the conjectured
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First, we display the final equation (so that the problem can be computed), and then we
describe the logic.

The value of the firm, V' (z;7n, K), has two branches, one corresponding to = > z(K),
which we label H, and the other corresponding to = < Z(K), which we label L.

1 1
e e I
r—pu r+nt+uv\r+v r+n

st (i) <1 () % ()

where i

_ — )

7L DR |
To—TiT+Uv—u To—TTr+v

_ 1—A A

TlH: 2 n + 2 n ]
)\2—)\17‘+77—,U )\2_)\1T+77

_1_772 n+v o r+n

v - -
Mg —MT+N+v—u Toe—TT+N+0V
The lower branch is
x n Tn 1
ren—p rENtUv—prt+uv—p

+ MEK (%)m + TEK (ﬁ)Az + VK (%)m :

VEi(z) =

where )
MQLZ T1 v i T v .
To—T1T+UV—W To—TIT+V
_ 1—A A
TQL: 1 n + 1 n )
)\2—)\17“+77_M >\2_)\17'+77
— 1—m n-+v m T+

Vy' =

_7r2—7r17‘+77+v—u_7r2—7r17“+77+v'

The value of the bond is given by the L(x) function. As in the previous case, it has two
branches:

L) = K+ BY (i — Do) (x&))h L (K- De) ()
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where
A2 n

_/\2—/\17“"‘7].

7 ) Ul

LY = :
Mo — M 7T +n+v

Bl =

The lower branch is

L) = ! nDﬁw% (K — Da)+BE (K - De) (%) LEE (K - Do) (f(i()) ;

where

- A1 n

Ao—MNr+n

="'
T —mr+n+v

BE =

G Proof of Proposition 1

Recall that the operator H is given by
H(M)(z,K) = sup V(b0 K's M(z; K')),

(', K )eX(z, ;M)
where

Y, K;M)={,n,K') : L(x;0',0', K') > K + Cp
x +T—|—U95> b LY b’—l—nK'}‘

r—pu r4+vr - r+v r+uv r+n
Let > be the natural order in the space of functions. Thus F' > G iff for all (z, K)
F(z,K) > G(z, K). Since M (x; K') is the continuation value of the firm, V' (x; 0, ', K'; M (z; K'))
increasing in M (x; K'). Moreover, higher continuation values increase the likelihood that
the debt will be repaid at maturity. Thus, the set 3 (z, K, M) is also increasing (in the set
inclusion sense) in M (z; K').
Let M be the set of functions that satisfy

and

0< M(z,K) <z/(r—p).

Then, it follows that H maps M into itself. Moreover, M is a complete lattice and hence
the Knaster-Tarski theorem implies that the set of fixed points is nonempty. This completes
the argument.
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