
 

 

 

 

GRIPS Discussion Paper 18-12 

 

 

 

 

Multivariate Stochastic Volatility with Co-Heteroscedasticity 

 
 

 

 

 

Joshua Chan 

Arnaud Doucet 

Roberto León-González 

Rodney W. Strachan 
 

 

 

 

 

October 2018 

 

 

 

 

 

 

 

 

 
 

National Graduate Institute for Policy Studies 

7-22-1 Roppongi, Minato-ku, 

Tokyo, Japan 106-8677 



Multivariate Stochastic Volatility with Co-Heteroscedasticity1

Joshua Chan

Purdue University

Arnaud Doucet

University of Oxford

Roberto León-González
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ABSTRACT

This paper develops a new methodology that decomposes shocks into homoscedastic and het-

eroscedastic components. This specification implies there exist linear combinations of heteroscedas-

tic variables that eliminate heteroscedasticity; a property known as co-heteroscedasticity. The het-

eroscedastic part of the model uses a multivariate stochastic volatility inverse Wishart process. The

resulting model is invariant to the ordering of the variables, which we show is important for impulse

response analysis but is generally important for, e.g., volatility estimation and variance decompositions.

By incorporating testable co-heteroscedasticity restrictions, which are encompassed within the unre-

stricted model, the specification allows estimation in moderately high-dimensions. The computational

strategy uses a novel particle filter algorithm, a reparameterization that substantially improves algorith-

mic convergence and an alternating-order particle Gibbs that reduces the amount of particles needed

for accurate estimation. We provide two empirical applications; one to exchange rate data and another

to a large Vector Autoregression (VAR) of US macroeconomic variables. We find strong evidence for

co-heteroscedasticity and, in the second application, estimate the impact of monetary policy on the

homoscedastic and heteroscedastic components of macroeconomic variables.

Keywords: Markov Chain Monte Carlo, Gibbs Sampling, Flexible Parametric Model, Particle

Filter, Co-heteroscedasticity, state-space, reparameterization, alternating-order.

JEL Codes: C11, C15
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1 Introduction

It is now well recognised that the variance for many macroeconomic and financial variables change

over time. Many approaches have been proposed and employed to model this behaviour including Au-

toregressive Conditional Heteroscedasticity (ARCH) and Generalized ARCH (GARCH) models (Engle

(1982), Bollerslev (1986)) in which the variance of the reduced form errors is a deterministic function

of past residuals and variances. Another important class of models of the variance are the stochastic

volatility (SV) models. These differ from ARCH and GARCH models in that the conditional variance

is an unobserved Markov Process.

For univariate models, it has been found that SV models forecast better than GARCH in terms of

root mean squared forecast error and log-predictive scores for macro data (e.g. Chan (2013)) and in

terms of log Bayes factors for financial data (e.g. Kim , Shephard and Chib (1998)). Similar evidence is

found in multivariate models (e.g. Clark and Ravazzolo (2015)) where the SV specification provides the

advantage of more flexible models since the GARCH approach requires many simplifying restrictions

to ensure that the covariance matrix is positive definite.

In many applications, it is important to have an accurate estimate of the reduced form covariance

matrix, Σt, and of its stationary value E(Σt). Impulse response functions in VAR analysis of macroeco-

nomic data, for example, rely on decompositions of the reduced form covariance matrix (e.g. Hamilton

(1994, p.320)). To accurately report the impact of structural shocks requires a good estimate of the

covariance matrix. Another example is in portfolio allocation based on financial data.

If the order of the variables in a vector affects the estimates of its covariance matrix then we can

say that the estimation method is not invariant to ordering. An issue with the approaches employed

in most of the literature on multivariate stochastic volatility models (e.g. Primiceri (2005), Chib et al.

(2006)) is that they are not, in fact, invariant to ordering. A survey of the applied literature suggests

that a common specification is to use a Cholesky decomposition of Σt, and let each element of this

decomposition follow a Markov Process. However, this implies that the distribution of Σt and the

predictive distribution of yt depend on the ordering. An alternative approach to modelling multivariate

volatility uses factor models. Factor models also require restrictions to permit estimation and, again,

the most commonly employed restrictions on factor models are not invariant2 (Chan et al. (2018)).

Another disadvantage of using factor models to represent a time-varying variance is that these models

typically imply that the time variation of a r × r covariance matrix Σt is driven by at most r + r1

time-varying processes, where r1 is the number of factors, and that these restrictions are never tested.

2For example, to identify factor models it is common to restrict the matrix of factor loadings to be lower triangular,
which implies that estimates depend on the order of the variables. However, Sentana and Fiorentini (2001) show that it
is possible to avoid this problem if the factors have time-varying variances and are either conditionally independent, or
have time-invariant covariances.
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In fact, even if a factor structure is imposed on Σt, there are r + r1 + rr1 − r1(r1 + 1)/2 free elements

in Σt (e.g. Chan et al. (2018)), which can be substantially larger than r + r1. Furthermore, if a factor

structure is not desired, this way of modelling time-varying volatility puts even a greater number of

undesired restrictions on the time-variation, as the number of free elements in Σt (i.e. r(r + 1)/2) is

much larger than the dimension of the time-varying process3 (r + r1).

Another feature of the multivariate SV models used in the literature is that they use a log-normal

distribution for the volatility. This specification implies that all moments of the volatility exist. In many

applications, particularly in finance, features of the data suggest that the distributions have heavy tails

and possibly few moments. To allow for the possibility of heavy tails, it is common to use Student’s-t

errors.

Another line of literature in modelling multivariate SV uses Wishart or inverted Wishart processes

(see, for example, Uhlig (1997), Philipov and Glickman (2006), Casarin and Sartore (2007), Asai and

McAleer (2009), Fox and West (2011), Triantafyllopoulos (2011), and Karapanagiotidis (2012)). A

feature of this approach is that the estimates are invariant to ordering. Inverted Wishart models also

allow for non-existence of higher moments and heavier tails. In a recent paper, León-González (2018)

shows, in the univariate case, that Student’s-t errors are often not needed to model heavy tails when an

inverse gamma volatility process is used, but are very important when a log-normal volatility process is

used. The approach in this paper uses an inverse Wishart process but differs from the above approaches

in a number of respects. For example, the model is relatively unrestricted, computation is more efficient,

the stationary covariance matrix is estimated and the specification permits an interesting decomposition

of the errors into homoscedastic and heteroscedastic parts.

In this paper we propose inference on multivariate volatility in an Inverted Wishart SV model. The

resulting inference is invariant to ordering of the variables and allows for heavy tails and even non-

existence of higher order moments. We present a novel particle filter that samples all volatilities jointly

conditionally on the unknown parameters using Particle Gibbs (Andrieu et al. (2010)) with backward

sampling (Whiteley (2010)). The particle filter uses an approximation of the posterior distribution as

a proposal density, which allows us to substantially reduce the computation time in models of higher

dimension, and it is related to the ψ-Auxiliary Particle Filters studied in Guarniero et al. (2017).

We additionaly use the approximation of the posterior to find a reparameterization of the model that

substantially reduces the correlation between the latent states and the fixed parameters, which we

empirically find to speed up computation and thus contributes to the literature on parameterization in

state space and hierarchical models (e.g. Pitt and Shephard (1999), Papaspiliopoulos et al. (2007)).

3For example, with r = 10 and r1 = 4, we have that r + r1 = 14, while the number of free elements of Σt is equal to
44 when the factor structure is imposed, and equal to 55 if the factor structure is not imposed.
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We also propose to alternate the order in which the volatilities are generated, finding that this reduces

the number of particles needed for accurate estimation.

Another important feature of our approach is that the specification allows for testable restrictions

that reduce the dimension of the latent variables, and these restrictions are encompassed within the

unrestricted model that, unlike factor models, allows all free elements of Σt to change in an unre-

stricted manner. This greatly improves computation efficiency and permits inference on potential

co-heteroscedasticity (Engle and Kozicki (1993), Dovonon and Renault (2013)). It also allows us to

obtain new variance decompositions as well as new insights into the characteristics of the structural

shock and its impact on the variables of interest. Co-heteroscedasticity might also be relevant to find

portfolio allocations with thinner tails and constant variance returns (e.g. Diebold and Nerlove, (1989),

Engle and Susmel (1993) and Hernández-Trillo (1997)).

The structure of the paper is as follows. Section 2 describes the model and the identification strategy.

Section 3 clarifies the difference between identifying assumptions and ordering of variables and presents

decompositions of impulse responses and the variance. Section 4 presents the particle filter to estimate

the likelihood while in Section 5 the particle Gibbs algorithm and tools for model comparison are

presented. Section 6 discusses two applications to real data, one to a large VAR of macroeconomic

variables and another one to returns of exchange rates.

2 Model and Identification Strategy

We consider the following model of stochastic volatility:

yt = βxt + et, with et|xt ∼ N(0,Σt)

where β : r × kx is a matrix of unknown parameters, xt : kx × 1 is a vector of predetermined variables,

and et : r×1 is the vector of unobserved errors. The vector et can be decomposed into r1 heteroscedastic

errors (u1t : r1 × 1) and r2 homoscedastic errors (u2t : r2 × 1), with r = r1 + r2:

et = A1u1t +A2u2t =

(
A1 A2

) u1t

u2t

 = Aut (1)

We can then decompose Σt as:

Σt = var(et|xt) = var(A1u1t)︸ ︷︷ ︸
changing

+ var(A2u2t)︸ ︷︷ ︸
constant
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where as a normalization we fix cov(u1t, u2t) = 0 and var(u2t) = Ir2
4. Note that this implies that there

are r2 linear combinations of et which are homoscedastic. In particular, if the (r × r2) matrix A1⊥ lies

in the space of the orthogonal complement of A1, then the r2× 1 vector A′1⊥et has a constant variance.

It can be said then that the elements of the vector yt share heteroscedastic shocks, a property known

in the literature as common heteroscedasticity (Engle and Kozicki (1993)), and which for convenience

we refer to as co-heteroscedasticity:

Definition 1 Let =t = (yt−1, yt−2, ..., xt, xt−1, ..., ) be all the information available up to period t. An

r × 1 vector yt with time variant conditional var-cov matrix (i.e. var(yt|=t) = Ω=t) is said to be co-

heteroscedastic if there exists a full rank matrix A1⊥ : r × r2 such that the vector A′1⊥yt has a constant

conditional var-cov matrix (i.e. var(A′1⊥yt|=t) = Ω0 for all t), with 0 < r2 < r. The largest possible

value of r2 for which this property holds is the co-heteroscedasticity rank.

In our framework the heteroscedastic errors u1t have var(u1t) = K−1t , where Kt = Z ′tZt, and Zt is

a n× r1 matrix distributed as a Gaussian AR(1) process5:

Zt = Zt−1ρ+ εt vec(εt) ∼ N(0, Ir1 ⊗ In) (2)

where ρ is diagonal r1 × r1 (with diagonal elements smaller than one in absolute value) and we assume

that vec(Z1) is drawn from the stationary distribution N(0, (Ir1 − ρ2)−1 ⊗ In). So var(et) = Σt can be

written as:

Σt = A1K
−1
t A′1 +A2A

′
2 = A

 K−1t 0

0 Ir2

A′, for A =

(
A1 A2

)
(3)

Because var(yt|xt) = E(Σt), it is possible to identify G = E(Σt), but restrictions are needed to

identify A = (A1, A2). For the purpose of identification, we assume that the time-varying component

of Σt has on average bigger singular values than the constant component. This assumption is natural

if it is assumed that et has an approximate factor structure with r1 factors and r is large, because

a factor structure implies that the first r1 eigenvalues of G grow without bound as r gets larger,

whereas the other eigenvalues are bounded (provided that the factor loadings are not negligible, see for

example Chamberlain and Rothschild (1983) or Bai and Ng (2002)). Another practical reason for this

assumption is that it is well-known that stochastic volatility is empirically important, and therefore it

seems reasonable to introduce K−1t into the model in the way that it will have the greatest impact,

4Because var(et) = Avar(ut)A′, it is not possible to identify var(ut) and A at the same time, hence the normalization.
5This representation implies that n is an integer, but in Section 5 we will use an equivalent representation that allows

n to be continuous when n ≥ 2r1.
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which is by interacting K−1t with the largest singular values of G. In any case, it is important to note

that we will compare models with different values of r1, starting with r1 = 0, and increasing until we

find a value of r1, say c, that is better than c+1. In this way, we test the identifying assumption against

the alternative where all factors are heteroscedastic (i.e. no co-heteroscedasticity).

Note that our model differs from traditional factor models (e.g. King et al. (1994) or Chib et al.

(2006)) in two important aspects. Firstly, we allow for time-varying correlation among the heteroscedas-

tic factors. This implies that the time-varying process has dimension r1(r1 + 1)/2, which approaches

the number of free elements of Σt as r1 approaches r. Secondly, as in Chamberlain and Rothschild

(1983), we do not impose the strict factor structure, which would imply the existence of idiosyncratic

errors, but instead allow correlation among the homoscedastic factors.

To impose the identifying assumption we use the singular value decomposition of E(Σt) (SVD, e.g.

Magnus and Neudecker (1999, p. 18)), which is given by:

G = E(Σt) = USU ′ = U1S1U
′
1 + U2S2U

′
2 (4)

where U is a r×r orthogonal matrix such that U ′U = Ir, S = diag (s1, ..., sr) with s1 ≥ s2 ≥ ... ≥ sr ≥ 0,

and S1 contains the r1 biggest singular values, such that:

U =

(
U1 U2

)
S =

 S1 0

0 S2

 (5)

U1 : r × r1, U2 : r × r2, S1 : r1 × r1, S2 : r2 × r2

Let us standardize K−1t by defining Υ−1t = (n−r1−1)(I−ρ2)−1/2K−1t (I−ρ2)−1/2, such that E(Υ−1t ) =

Ir1 . We impose the identifying assumption by writing:

Σt = U1S
1/2
1 Υ−1t S

1/2
1 U ′1 + U2S2U

′
2 (6)

where we are also assuming that n > r1 + 1, so that E(Σt) is finite6. Comparing (3) and (6) we are

able to identify A1 and A2 as follows:

6Note that the variance of any element of K−1
t will only be finite when n > r1 + 3 (e.g. Gupta and Nagar (2000,

p.113)), and so the restriction n > r1 +1 still allows for very fat tails. Also note that the marginal of any diagonal element
of K−1

t is an inverted Gamma-2 distribution (Bauwens et al. (1999, p.p. 292, 305 )) with (n− r1 + 1) degrees of freedom.
Therefore, if n = r1 + 2 (which is the minimum value that we allow in this paper), the marginal of a diagonal element of
K−1

t will have only 3 degrees of freedom, implying that it has finite mean but not finite variance.
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A1 =
√

(n− r1 − 1)U1S
1/2
1 (I − ρ2)−1/2 (7)

A2 = U2S
1/2
2

We follow a Bayesian approach and put a prior directly on (G, ρ, n, β), where G enters the model

through (A1, A2). This framework allows for a Normal-Wishart prior on (β,G), which simplifies the

calculations in the context of estimating a large VAR. This prior allows for shrinkage, and implies that

the conditional posterior of β is normal with a mean and var-cov matrix which can be calculated without

inverting large matrices. In particular, the posterior mean and var-cov matrix of β can be calculated

by inverting matrices of order r1kx. This implies a reduction from rkx to r1kx.

The distribution for Kt implied by (2) is known in the literature as Wishart Autoregressive process

of order 1 (WAR(1)) and its properties are well established (e.g. Gourieroux et al. (2009), Koop et

al. (2011)). For example, the stationary distribution of Kt is a Wishart distribution with n degrees of

freedom and E(Kt) = n(I − ρ2)−1, and the conditional expectation of Kt|Kt−1 is equal to a weighted

average of Kt−1 and E(Kt):

E(Kt|Kt−1) = ρKt−1ρ+ (I − ρ2)1/2E(Kt)(I − ρ2)1/2

The correlations between different elements of Σ−1t conditional on Σ−1t−1 are controlled by the pa-

rameters in A1 and can be calculated using the properties of the non-central Wishart.

3 Invariance, Identification of Structural Shocks and Decom-

positions

When we refer to invariance to the ordering of the variables, we mean that the ordering of the variables

in the vector yt should not have any impact on inference. The ordering of the variables, understood

in this sense, is a concept that should be distinguished from the identifying assumption to obtain the

structural shocks, as any particular identifying assumption can be imposed regardless of the ordering

of the variables in the vector yt. For example, consider the identifying assumption that y1t is a slow

variable, such that it does not react contemporaneously to a shock to y2t. This assumption is normally

imposed by writing the reduced form shocks et = (e1t, e2t) as a function of orthogonal structural shocks

as follows:
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 e1t

e2t

 =

 p11 0

p21 p22


︸ ︷︷ ︸

P

 ξ1t

ξ2t

 , with PP ′ = var

 e1t

e2t

 = Σ =

 σ11 σ12

σ12 σ22



The matrix P contains the parameters of interest and it is common to put a relatively non-

informative prior on them, say π(P ). However, the same identifying assumption can also be used

with the reverse ordering, first defining the following observationally-equivalent model with orthogonal

(non-structural) shocks denoted by (ξ̃2t, ξ̃1t):

 e2t

e1t

 =

 p̃11 0

p̃21 p̃22


︸ ︷︷ ︸

P̃

 ξ̃2t

ξ̃1t

 , with P̃ P̃ ′ = var

 e2t

e1t

 = Σo =

 σ22 σ12

σ12 σ11



where Σo is equal to Σ after reordering the rows and columns. After specifying a prior on P̃ , say π̃(P̃ ),

the model can be estimated, and the identifying assumption can be imposed ex-post by first reordering

the rows and columns of the estimated Σo = P̃ P̃ ′ to obtain an estimate of Σ, and then calculating its

Cholesky decomposition to obtain estimates of the structural parameters in7 P . However, unless both

π(P ) and π̃(P̃ ) imply the same prior on Σ, these two approaches will give different results (Sims and Zha

(1998, eqns. 24-25, p. 961)), with the difference being very pronounced in the context of a large VAR

with stochastic volatility, as we illustrate in the empirical section. Whenever precise prior information

is available about P , it seems reasonable to put directly a prior on P . However, in most cases there is

not such prior information, and this is specially the case when a block identifying assumption is used

(as we do in Section 6.1, see also Zha (1999)), where a block of variables is assumed to react slowly,

without making any assumption about which variables are slower within the block.

Equations (1) and (7) imply that the heteroscedastic component of et can be obtained as ehett =

U1U
′
1et = H1et = A1u1t, such that yt can be decomposed into its heteroscedastic (yhett ) and ho-

moscedastic components (yhomt ). In the case of a VAR in which xt contains a constant and lags of yt,

7The structural shocks ξt = (ξ1t, ξ2t) can also be recovered from ξ̃t = (ξ̃1t, ξ̃2t) using the transformation ξt = Hξ̃t,

where H is an orthogonal matrix defined as H = P−1P̃0, where P̃0 is equal to P̃ after reversing the order of rows and
columns.
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the decomposition can be obtained by using the moving average representation:

yt = yhett + yhomt = µ+ et + Ψ1et−1 + Ψ2et−2 + ... (8)

yhett = H1µ+H1et + Ψ1H1et−1 + Ψ2H1et−2 + ...+

yhomt = H2µ+H2et + Ψ1H2et−1 + Ψ2H2et−2 + ...

where H2 = Ir−H1 = U2U
′
2. Note that yhett is a sum of only heteroscedastic shocks, and yhomt is a sum

of only homoscedastic shocks. After writing et in terms of orthogonal shocks et = Pξt, and using some

assumption to identify P , the impulse response function can be decomposed as:

IR(s; i, j) =
∂yi,t+s
∂ξjt

=
∂yheti,t+s

∂ξjt
+
∂yhomi,t+s

∂ξjt
= IRhet(s; i, j) + IRhom(s; i, j)

where the partial derivatives correspond to the (i, j) elements of ΨsP , ΨsH1P or ΨsH2P, respec-

tively, with Ψ0 = Ir. IRhet(s; i, j) can be interpreted as the impact of ξjt on yhett at horizon s, and

IRhom(s; i, j) can be interpreted in an analogous way. Equation (8) can also be used to obtain variance

decompositions, calculating the proportion of var(yt|yt−h), var(yhett |yt−h) or var(yhomt |yt−h) caused by

the structural shocks ξt or by the heteroscedastic shocks (u1t), as we illustrate in the empirical section.

Importantly, we can also calculate the proportion of the variance of the structural shock ξt caused by

the heteroscedastic shocks, by noting that ξt = P−1et = P−1(A1u1t+A2u2t), and therefore the variance

of the heteroscedastic component of ξt is var(P−1(A1u1t)) = var(P−1(H1et)) = P−1H1GH
′
1

(
P−1

)′
.

Finally, note that by decomposing yt into yhett and yhomt using equation (8), we can estimate how yt

would behave if there were only heteroscedastic shocks (i.e. u2t = 0 and yt = yhett ) or there were only

homoscedastic shocks (i.e. u1t = 0 and yt = yhomt ), as we illustrate in the empirical section.

4 Likelihood and Particle Filter

The value of the likelihood evaluated at the posterior means of the parameters can be used to calculate

the Bayesian Information Criterion (BIC) or the marginal likelihood (Chib and Jeliazkov (2001)) for

selecting r1. However, because the likelihood cannot be calculated in analytical form, we propose a

particle filter that provides a numerical approximation. This particle filter will also be a key ingredient

of the particle Gibbs algorithm that we use to sample from the posterior distribution, and that we

describe in Section 5.

Although one could in principle use a bootstrap particle filter (Gordon et al. (1994)), such approach

would require too much computation time, especially as r1 increases, and could become impractical when
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the data contains extreme observations, which are often abundant in economic or financial datasets8.

The bootstrap particle filter uses the prior distribution of K1:T , with density π(K1:T |θ) and θ =

(G, ρ, n), as a proposal density, and then the resampling weights are given by the likelihood L(Y |Σ1:T , β),

where Y represents the observed data and Σ1:T = (Σ1, ...,ΣT ). In order to define a more efficient parti-

cle filter, we first find a convenient approximation of the posterior π(K1:T |Y, θ), denoted as the pseudo

posterior π̃(K1:T |Y, θ), such that π(K1:T |θ)L(Y |Σ1:T , β) ∝ π̃(K1:T |Y, θ)R(K1:T ), for some function R(.).

Then we use π̃(K1:T |Y, θ) as a proposal density, such that the resampling weights will be determined

by R(K1:T ). We can expect that the particle filter will be more efficient when π̃(K1:T |Y, θ) approxi-

mates π(K1:T |Y, θ) well, and we can expect an improvement over the bootstrap particle filter whenever

π̃(K1:T |Y, θ) is better than π(K1:T |θ) as an approximation of π(K1:T |Y, θ)9.

In order to define the pseudo posterior, note that because of the Gaussian assumption about et, the

density of Y given Σ1:T is given by:

L(Y |Σ1:T , β) =

(
T∏
t=1

|Σt|−1/2
)
L̃(Y |Σ, β)

where L̃(Y |Σ, β) is a pseudo-likelihood defined as:

L̃(Y |Σ1:T , β) = (2π)
−Tr/2

exp

(
−1

2

T∑
t=1

tr
(

Σ−1t ete
′

t

))
, where et = yt − βxt (9)

Exploiting the fact that the prior is conjugate for the pseudo likelihood, we define the pseudo-

posterior as π̃(K1:T |Y, θ) ∝ π(K1:T |θ)L̃(Y |Σ1:T , β), which turns out to be (as shown in Appendix I)

also a WAR(1) process, and can be represented as Kt = Z ′tZt with:

Zt = Zt−1ρVt + εt vec(εt) ∼ N(0, Vt ⊗ In), for t > 1 (10)

Z1 = ε1 vec(ε1) ∼ N(0, V1 ⊗ In)

where Vt is given by the following recursion:

VT = (I +B′1eT e
′
TB1)−1 (11)

Vt = (I +B′1ete
′
tB1 + ρ(I − Vt+1)ρ)−1 t > 1

V1 = (I +B′1e1e
′
1B1 − ρV2ρ)−1

8León-González (2018) proposes methods of inference for the univariate version of the model proposed in this paper,
and finds that a particle Metropolis-Hasting algorithm that uses the bootstrap particle filter would have an effective
sample size for n of only 0.29 per minute when T = 2000, when using only one core.

9The particle filter that we propose can be viewed as a bootstrap particle filter on a ’twisted model’, and falls into the
class of ψ-Auxiliary Particle Filters discussed in Guarniero et al. (2017).
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where B = (B1, B2) = (A−1)′, with B1 : r × r1. Appendix I shows that the true likelihood, after

integrating out the latent K, can be compactly written as:

L(Y |β, θ) = c̃LEπ̃

(
T∏
t=1

|Kt|1/2
)

(12)

c̃L =
∣∣I − ρ2∣∣n/2 |A1A

′
1 +A2A

′
2|
−T/2

exp

(
−1

2

T∑
t=1

tr
(
B2B

′
2ete

′

t

))( T∏
t=1

|Vt|n/2
)

(13)

where the expectation is taken with respect to the pseudo-posterior π̃(K1:T |Y, θ). Because this expec-

tation cannot be calculated in analytical form, we propose a particle filter that provides a numerical

approximation.

An unbiased estimate of the expectation in (12) can be obtained using a particle filter in which

the proposal density is given by the pseudo-posterior π̃(Kt|K1:t−1,Y, θ). Using N particles, denoted as

{Kk
1:T = (Kk

1 , ...,K
k
T )} for k = 1, ..., N , the particle filter can be described as follows (e.g. Andrieu et

al. (2010, p. 272)):

Algorithm 2 Particle filter.

Step 1: at time t = 1,

(a) sample Kk
1 from a Wishart Wr1(n, V1) for every k = 1, ..., N , and

(b) compute the weights:

C1 :=
1

N

N∑
m=1

|Km
1 |

0.5
, W k

1 :=

∣∣Kk
1

∣∣0.5
NC1

Step 2: at times t = 2, ..., T ,

(a) sample the indices Akt−1, for every k = 1, ..., N , from a multinomial distribution on (1, ..., N)

with probabilities Wt−1 = (W 1
t−1, ...,W

N
t−1)

(b) sample Kk
t from a non-central Wishart Wr1(n, Vt, ρK

Akt−1

t−1 ρVt) and

(c) compute the weights

Ct :=
1

N

N∑
m=1

|Km
t |

0.5
, W k

t :=

∣∣Kk
t

∣∣0.5
NCt

Step 3: Estimate the Likelihood value as:

L̂(Y |β, θ) := c̃L

T∏
t=1

Ct

where Wr1(n, Vt,Ω) denotes a non-central Wishart distribution with noncentrality parameters Ω (e.g.
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Muirhead 2005, p. 442).

When n ≥ 2r1 a draw Kt from Wr1(n, Vt, ρKt−1ρVt) can be obtained (e.g. Anderson and Girshick

(1944, pp. 347-349) or Appendix II) by drawing a matrix L1t : r1 × r1 from a normal (vec(L1t) ∼

N(vec((Kt−1)
1/2

ρVt), Ir1 ⊗ Vt)), K2t from a Wishart Wr1(n− r1, Vt) and calculating Kt = (L1t)
′L1t +

K2t, where (Kt−1)
1/2

is any matrix such that ((Kt−1)
1/2

)′ (Kt−1)
1/2

= Kt−1 (for example the upper tri-

angular Cholesky factor). When r1 ≤ n < 2r1 and n is an integer, a draw Kt from Wr1(n, Vt, ρKt−1ρVt)

can be obtained by drawing Zt : n × r1 from a Normal (vec(Zt) ∼ N(vec(µZ), In ⊗ Vt)), with

µZ = ((Kt−1)
1/2

ρVt)
′, 0r1×(n−r1))

′ and calculating Kt = Z ′tZt.

5 Particle Gibbs and Model Comparison

In order to define the Gibbs algorithm, we rewrite the WAR(1) process in (2) using the representation

of a non-central Wishart in Anderson and Girshick (1944, p.p. 347-349), which has been used for con-

structing simulation algorithms (e.g. Gleser (1976)). This representation writes a non-central Wishart

matrix with n degrees of freedom Kt as Kt = L′1tL1t +K2t, where L1t is a r1× r1 normally distributed

matrix and K2t is a Wishart density with n − r1 degrees of freedom. Applying this representation to

the WAR(1) process in (2), we get the following:

Kt ∼ W (n, (I − ρ2)−1), for t = 1 (14)

L1t = (Kt−1)1/2ρ+ ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Ir1 ⊗ Ir1), for t > 1

K2t ∼ W (n− r1, Ir1), for t > 1

where (Kt−1)1/2 is any matrix such that ((Kt−1)1/2)′(Kt−1)1/2 = Kt−1 (for example the upper trian-

gular Cholesky factor). This representation allows n to be a continuous parameter but requires that

n ≥ 2r1 (otherwise K2t would be singular). When n ≤ 2r1 we assume that n is an integer and write

K2t = L′2tL2t, where L2t is a (n− r1)× r1 matrix such that vec(L2t) ∼ N(0, Ir1 ⊗ In−r1) for t > 1 and

vec(L2t) ∼ N(0, (Ir1 − ρ2)−1 ⊗ In−r1) for t = 1.

As a prior for n we assume a discrete probability distribution in the interval [r1 + 2, 2r1] and

a continuous density on (2r1,∞). The continuous density is specified with a normal prior on ñ =

log(n− 2r1).

Our algorithm for simulating from the posterior distribution groups the parameters and latent states

in 3 main blocks: (L1,1:T ,K2,1:T ), β and (G, ρ, n). The latent states (L1,1:T ,K2,1:T ) = (L11, ..., L1T ,K21, ...,K2T )

are drawn using a Particle Gibbs algorithm with Backward Sampling (Andrieu et al. (2010) and White-
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ley (2010)), β is drawn from a normal distribution and the parameters in (G, ρ, n) are generated jointly

using a reparameterization and a sequence of Metropolis steps.

The latent states can be generated starting from t = 1 up t = T (natural order), or in the reverse

order (starting at t = T and continuing up to t = 1). In the natural order, the mixing properties of the

states tend to be better for the states near t = T , whereas in the reverse order the mixing tends to be

better for the states near t = 1. Although one solution to obtain equally good mixing properties for all t

is to increase the number of particles, this requires extra computational cost. Here we propose a strategy

which consists in alternating between the natural order and the reverse order at different iterations of

the algorithm. In this way we are using a mixture of two MCMC kernels, resulting in an algorithm

that we find performs empirically better than the use of only one of them at no extra computational

cost10. In particular we find that using the Macroeconomic data described in Section 6.1 with r1 = 7,

the alternating order algorithm delivers an Effective Sample Size (ESS) for K = (K1 + ...+KT )/T that

is 37% (33%) higher than the ESS of the natural order (reverse order) algorithm, respectively, when

the number of particles is 80 (see appendix II for more details).

5.1 Drawing the latent states (L1,1:T , K2,1:T ) in natural order

Let Lt = (L1t,K2t) for t > 1 and L1 = K1, and L1:T = (L1, L2, ..., LT ). Let the N particles be denoted

as Lkt = (Lk1t,K
k
2t) for t > 1 and Lk1 = (Kk

1 ), for k = 1, ..., N . Define Kk
t = (Lk1t)

′Lk1t + Kk
2t for t > 1.

The value of L1:T at iteration i, denoted as L1:T (i) = (L1(i), ..., LT (i)), can be generated given the

previous value L1:T (i− 1) using a conditional Particle Filter with Backward sampling (cPFBS).

Algorithm 3 cPFBS.

Step 1: Fix the last particle equal to L1:T (i− 1), that is, LN1:T = L1:T (i− 1)

Step 2: at time t = 1,

(a) sample Kk
t ∼Wr1(n, V1) for k = 1, ..., N − 1, and

(b) compute and normalize the weights:

wk1 :=
∣∣Kk

1

∣∣0.5 , W k
1 := wk1/(

N∑
m=1

wm1 ), k = 1, ..., N

Step 3: at times t = 2, ..., T ,

(a) sample the indices Akt−1, for k = 1, ..., N − 1, from a multinomial distribution on (1, ..., N) with

probabilities Wt−1 = (W 1
t−1, ...,W

N
t−1)

10There is an ample literature on the use of mixture of kernels to improve MCMC algorithms, see for example Andrieu
et al. (2003, section 3.3) for a review.
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(b) sample vec(Lk1t) ∼ N(

(
K
Akt−1

t−1

)1/2

ρVt, Ir1 ⊗ Vt) and Kk
2t ∼ Wr1(n − r1, Vt), calculate Kk

t =

(Lk1t)
′Lk1t +Kk

2t for k = 1, ..., N − 1 and

(c) compute and normalize the weights

wkt :=
∣∣Kk

t

∣∣0.5 , W k
t := wkt /(

N∑
m=1

wmt ), k = 1, ..., N

Step 4: at time t = T , sample bT from a multinomial distribution on (1, ..., N) with probabilities

WT , and set LT (i) = LbTT .

Step 5: at times t = T − 1, ..., 1

(a) compute the updated weights

w̃kt = wkt f(K
bt+1

t+1 |Kk
t ),..., W̃ k

t := w̃kt /(

N∑
m=1

w̃mt ), k = 1, ..., N , where

µkt = (Kk
t )1/2ρVt+1, f(K

bt+1

t+1 |Kk
t ) = exp(−1

2
tr(V −1t+1(L

bt+1

1(t+1) − µ
k
t )′(L

bt+1

1(t+1) − µ
k
t ))

(b) sample bt from a multinomial distribution on (1, ..., N) with probabilities W̃t = (W̃ 1
t , ..., W̃

N
t ),

and set Lt(i) = Lbtt .

5.2 Drawing the latent states (L1,1:T , K2,1:T ) in reverse order

Because we assume that Z1 is drawn from the stationary distribution, the WAR(1) process in equation

(2) can be equivalently written in reverse order as Zt = Zt+1ρ+ εt, with ZT drawn from the stationary

distribution (see Appendix II for a proof). However, we show in the Appendix II that to use the

representation in (14) we need to define first (L̃1t, K̃2t) as follows:

L̃1t = (K
−1/2
t+1 )′L′1,t+1K

1/2
t , for t = 1, ..., (T − 1) (15)

K̃2t = Kt − L̃′1tL̃1t

Using this definition we can write the transition equation in reverse order as:

Kt ∼ W (n, (I − ρ2)−1), for t = T (16)

L̃1t = (Kt+1)1/2ρ+ ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Ir1 ⊗ Ir1), for t < T

K̃2t ∼ W (n− r1, Ir1), for t < T
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Then the pseudo-posterior in (10) can be written in reverse order by first adapting the recursion in (11)

as follows:

Ṽ1 = (I +B′1e1e
′
1B1)−1 (17)

Ṽt = (I +B′1ete
′
tB1 + ρ(I − Ṽt−1)ρ)−1 t < T

ṼT = (I +B′1eT e
′
TB1 − ρṼT−1ρ)−1

and then writing the pseudo-posterior in reverse order as:

Kt ∼ W (n, Ṽt), for t = T (18)

L̃1t = (Kt+1)1/2ρṼt + ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Ṽt ⊗ Ir1), for t < T

K̃2t ∼ W (n− r1, Ṽt), for t < T

A similar conditional particle filter to that defined in Section 5.1 can be defined to draw L̃1:T (see

Algorithm 4 in Appendix II for details). A draw of L̃1:T can be then converted into a draw of L1:T

using the inverse transformation of (15):

L1t = (K
−1/2
t−1 )′L̃′1,t−1K

1/2
t , for t = 2, ..., T (19)

K2t = Kt − L′1tL1t

5.3 Drawing θ = (G, ρ, n)

It is well known that the choice of parameterization can have an important impact on the computational

efficiency of MCMC algorithms in state space and hierarchical models (e.g. Pitt and Shephard (1999),

Papaspiliopoulos et al. (2007)). In line with this literature, we compare two algorithms, one generates

θ conditional on the latent states L1:T and the other one conditional on a one-to-one differentiable

transformation of the states fθ(L1:T ), where the transformation depends on θ. In the first case we use a

Metropolis step that targets the conditional posterior π(θ|L1:T , β) and in the other we target πt(θ|ε, β),

where ε = fθ(L1:T ) such that the conditional density πt(θ|ε, β) can be obtained by the change of variables

theorem as:

πt(θ|ε, β) ∝ π(θ|f−1θ (ε), β)J

where J is the Jacobian of the transformation. Note that although we keep ε constant when we generate

θ, the latent states in the original parameterization might change. That is, when we condition on ε, a
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new value generated for θ (say θ∗) implies that the latent states have to updated as11 L∗1:T = f−1θ∗ (ε).

Using the transformation will be more efficient when θ is less correlated with ε than with L1:T .

To find an efficient parameterization, we propose to obtain first a convenient approximation to

the distribution of the conditional posterior of the states given parameters πa(L1:T |θ), in which it is

possible to find ε such that in the approximated density, ε becomes independent of θ: πa(ε|θ) = πa(ε).

This strategy could be used in conjunction with existing linear Gaussian approximation methods (e.g.

Durbin and Koopman (ch. 11)), given that in linear Gaussian state-models the standardized residuals

are independent of θ. We can expect that the better the approximation, the weaker the dependence of

ε and θ in the true posterior, and hence the better the reparameterization12. In our context, we can

apply this strategy by rewriting the pseudo-posterior in (10) using the decomposition of the non-central

Wishart:

Kt ∼ W (n, Vt), for t = 1 (20)

L1t = (Kt−1)1/2ρVt + ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Vt ⊗ Ir1), for t > 1

K2t ∼ W (n− r1, Vt), for t > 1

Define the standardized residuals as a1t = ε1t(Vt)
−1/2. To standardize K̂2t we first define K̂2t =

(V
−1/2
t )′K2t(Vt)

−1/2, and then, to eliminate the dependence on the degrees of freedom parameter n, we

use the Bartlett decomposition. For this purpose define the Cholesky factor ∆t such that K̂2t = ∆′t∆t,

and let ct be the off-diagonal elements of ∆t. Let pt be the result of evaluating the distribution function of

a χ2 distribution at the squared of the diagonal elements of ∆t. Then we define the reparameterization

as ε = (a1t, pt, ct : t = 1, ..., T ), which is independent of θ in the pseudo-posterior. The details of

the conditional density πt(θ|ε, β) are given in Appendix III, as well as a simulation that shows that,

accounting for computation time, this reparameterization is 16 times more efficient to sample n and 4.7

times more efficient to sample ρ in terms of Effective Sample Size (ESS) when using the data in Section

6.1 with r1 = 7.

To generate θ we use a Metropolis step repeated a number of times with an AR(1) proposal, using

an inverse Wishart for (G), and a normal for ñ = log(n − 2r1) and ρ̃ = ln(− ln(1 − ρ2)) (details in

Appendix III).

11In Section 5.5 we give the overall summary of the MCMC algorithm, and we use the so-called State-Space expansion
of the Gibbs sampler described in Papaspiliopoulos et al. (2007).

12This approach is slightly different from that in Papaspiliopoulos et al. (2007) and Pitt and Shephard (1999), who
compare the efficiency of centred versus uncentred parameterizations. Papaspiliopoulos et al. (2007) defines centred
parameterizations as those in which Y is independent of θ given L1:T , and uncentred when ε and θ are independent in
the prior. Our approach is instead to make ε and θ independent in an approximation of the posterior.
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5.4 Drawing β

The matrix of coefficients β has dimension r × k, where the k is the number of rows of xt. The

conditional posterior of β is a normal, so when rk is not large, it is easy to generate β. However, in a

large VAR the value of rk is large (equal to 1620 in our application, with r = 20 and k = 81) and so

the time to calculate the posterior var-cov matrix of β and its Cholesky decomposition is not negligible.

Fortunately, as shown in Appendix IV, we only need to invert matrices of the order r1k to generate β.

For example, in our empirical analysis with a large VAR and r = 20 we conclude that the best value of

r1 is 7, and therefore we only need to invert matrices of order 567 (as opposed to 1620). The details of

the conditional posterior of β are given in Appendix IV.

5.5 Summary of the Algorithm

Let (L1:T (i− 1), θ(i− 1), β(i− 1)) be the values of (L1:T , θ, β) at the (i− 1)th iteration. The values at

the ith iteration are generated as follows:

• If i is even:

– Generate a value L∗1:T for L1:T , using the natural order Algorithm 3 in section 5.1.

• If i is odd: Calculate L̃1:T (i− 1) from L1:T (i− 1) using the inverse transformation (15).

– Generate a value L̃∗1:T of L̃1:T in reverse order using Algorithm 4 in Appendix II.

– Calculate L∗1:T from L̃∗1:T using transformation (19).

• Calculate the transformation ε = fθ(i−1)(L
∗
1:T ) using Algorithm 5 in Appendix III.

• Generate θ(i)|ε using a Metropolis step targeting the conditional distribution πt(θ|ε, β) in expres-

sion (26) of Appendix III.

• Fix L1:T (i) as L1:T (i) = f−1θ(i)(ε) using the inverse transformation outlined in Algorithm 6 in

Appendix III.

• Draw β(i) from a multivariate Normal Density with mean µβ and variance V β described in

Proposition 8 in Appendix IV.

5.6 Model Comparison

In order to select the value of r1 we can use the BIC, which can be calculated by evaluating the log

likelihood at the posterior mean of the parameters using the particle filter. Note that when r1 increases

by 1, the number of parameters only increases by 1, so the BIC easily allows us to assess whether it is
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worthwhile increasing r1 in terms of the likelihood gains. We also calculate the marginal likelihood using

the approach of Chib and Jeliazkov (2001), but using an approximation that allows us to calculate the

value of the posterior density of (G, β) at the posterior mean without doing any additional simulations.

For this we use the value of a Normal-Wishart density calibrated with the posterior mean of β and G,

which are calculated with the MCMC algorithm. For the posterior density ordinate of ñ = log(n− 2r1)

and of ρ̃ = ln(− ln(1−ρ2)) we use a normal approximation. We also use the BIC and marginal likelihood

to compare the model that assumes n ≥ 2r1 with the model that assumes n = r1 + 2.

6 Empirical Application

6.1 Macroeconomic Data

We use 20 macroeconomic quarterly variables (defined in Table 1) with 4 lags in the VAR, and a

normal-inverse-Wishart prior with shrinkage for (β,G)13. In order to compare models, we calculate the

log predictive likelihood value for observations t = 51...214. This is calculated as the difference of two

log marginal likelihoods (one with T = 214 and the other with T = 50). Table 2 shows model selection

criteria when the restriction n ≥ 2r1 is imposed, indicating that the best value for r1 is 7 according

to the predictive likelihood. We also estimated models that impose the restriction n = r1 + 2, finding

that their predictive likelihoods, not shown here for brevity, suggested a value of r1 equal to 5, but

were smaller than for models with the restriction n ≥ 2r1, leading us to choose r1 = 7. Estimating

the preferred model took 3 hours in a Intel Xeon CPU (E5-2690) with 2.9 GHz, using 10 cores, and

obtaining 10000 iterations with no thinning, a burn-in of 20 iterations and 80 particles14. The evaluation

of the loglikelihood, using the average of 100 independent replications of the particle filter, each one

with Tr1 = 1498 particles, took 1.5 minutes, with a numerical standard error of 0.7. For the preferred

model, Figure 1 shows the trace plot and autocorrelations for the seventh diagonal element of K107 (107

is the middle period in the sample), for the 4th element of ρ, for n and for the (1,1) element of G. In

all cases the autocorrelations decrease below 0.2 after 20 lags, indicating good convergence. For each of

these parameters, and also for the elements of K = (K1 + ... + KT ), the Monte Carlo Standard Error

(MCSE) was less than 4% of the posterior standard deviation15.

Figure 2 shows the posterior estimates of the reduced form volatility of the GDP growth (GDP) and

13This is the same dataset used in Chan (2018), and the shrinkage prior has k1 = 0.6, k2 = 100, with (k1,k2) defined in
Chan (2018). The degrees of freedom parameter for the inverse-Wishart prior of G is r + 3. The prior for each diagonal
elemet of ρ is a beta distribution B(80, 20) and the prior for ñ = log(n− 2r1) is a Normal N(ln(23.5 − 2r1), 1.5).

14The code is written in C++ and runs in Rstudio, allowing for computations in parallel. It is available at
http://www3.grips.ac.jp/˜rlg/. It can be run in Amazon Web Services (AWS) machines using an AMI for Rstudio.
The AWS machines c5d.4xlarge, using only 10 cores out of 16 to avoid memory bottlenecks, take 50% more of time than
the Intel Xeon E5-2690, with a cost per hour of approximately $0.26 per hour (spot price at 28 Sept 2018).

15MCSE values were calculated using the library LaplacesDemon in R (Hall, 2005) with the option of batch means
(Jones et al. 2006 and Flegal et al. 2008).
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the real stock returns (SP) using the non-invariant method, prevalent in the econometrics literature,

that specifies random walks as transition equations for the log of the diagonal elements of the Cholesky

decomposition (e.g. Carriero et al. (2015), Chiu et al. (2017), Clark and Ravazzolo (2015)) and our

invariant method, as well as the Bayesian squared residuals (which we define as the squared value of

an element of the vector (yt − β̂xt), with β̂ being the posterior mean). Defining ordering 1 with GDP

as the first variable and SP the last, and ordering 2 with SP the first and GDP the last (the other 18

variables remaining in the same place), we see that the non-invariant method is very sensitive to the

ordering. For example, the volatility of SP in 2008 Q4 is 35 under ordering 1 and 70 under ordering

216. Our method, in contrast, produces a very sensible stationary pattern of volatility which closely

resembles the spikes in the squared residuals.

Table 3 shows the proportion of the variance var(yt|yt−h) caused by the heteroscedastic shock u1t

for several key variables. For h = 1 the proportions due to u1t for SP and the Federal Funds Rate (FFR)

are (100%, 10%), whereas they become (72%, 17%) for h = ∞, respectively. In order to identify the

monetary policy shock (ξmon) we use the same classification of slow and fast variables as in Banbura et

al. (2010) and summarized in Table 1. We can see that ξmon affects only the homoscedastic components

of yt (yhomt ), to the extent that the proportion of var(yhett |yt−h) explained by ξmon is virtually 0 for

all h. This is confirmed by the impulse response functions in Figure 3, where we can see that ξmon has

the expected impact on GDP growth (GDP) and the 10 year bond yield (BOND), but only through

the homoscedastic component. In contrast, Figure 3 also shows that GDP responds positively to a

shock to SP17 only through its heteroscedastic component (yhett ). Interestingly, a shock to SP affects

both the hetero and homo components of BOND, but with different signs, with the homo component

increasing and the hetero decreasing when SP increases. The negative impact could be interpreted as

the substitution effect between bonds and stocks in the highly volatile and heteroscedastic stock market,

whereas the positive effect can be interpreted through the positive impact that the stock market has

on real economic activity, and therefore on the interest rates.

Figure 4 plots the actual value of GDP growth (GDP), and its hetero (GDPhet) and homo (GDPhom)

components, showing what the economy would be if there were only hetero (u1t) or homoscedastic shocks

(u2t). Although both GDPhet and GDPhom have approximately the same average of 3%, we can see

that GDPhom has a smaller variance and becomes negative less often than GDPhet, indicating that an

economy with only homoscedastic shocks would have higher welfare than one with only heteroscedastic

shocks. Figure 4 also decomposes the structural monetary policy shock into the hetero and homo

components, indicating that the hetero component became important in the early 1980s recession,

16For the other variables that do not change position with the ordering, the estimated volatilies are the same under
both orderings. The non-diagonal elements are assumed to remain constant with time as in Carriero et al (2015).

17The response to the SP shock is identified by assuming that SP is the fastest variable.
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Variable Transformation Speed
Real gross domestic product 400 ∆ log Slow
Consumer price index 400 ∆ log Slow
Effective Federal funds rate no transformation
M2 money stock 400 ∆ log Fast
Personal income 400 ∆ log Slow
Real personal consumption expenditure 400 ∆ log Slow
Industrial production index 400 ∆ log Slow
Civilian unemployment rate no transformation Slow
Housing starts log Slow
Producer price index 400 ∆ log Slow
Personal consumption expenditures: chain-type price index 400 ∆ log Slow
Average hourly earnings: manufacturing 400 ∆ log Slow
M1 money stock 400 ∆ log Fast
10-Year Treasury constant maturity rate no transformation Fast
Real gross private domestic investment 400 ∆ log Slow
All employees: total nonfarm 400 ∆ log Slow
ISM manufacturing: PMI composite index no transformation Slow
ISM manufacturing: new orders index no transformation Slow
Business sector: real output per hour of all Persons 400 ∆ log Slow
Real stock prices (S&P 500 index divided by PCE index) 100 ∆ log Fast

Table 1: Definition of Macroeconomic variables in the large VAR and block identification assumption.
Fast variables are assumed to react contemporaneously to a shock to the funds rate, whereas slow
variables react only after a lag.

which is when the FED raised significantly the interest rate following concerns on inflation. Overall,

however, a variance decomposition shows that the structural monetary policy shock is homoscedastic,

with only 3% of its variance caused by the heteroscedastic shocks u1t.

Finally, Figure 5 plots the squared residuals (e2t ), the squared heteroscedastic residuals ((ehett )2) and

the squared homoscedastic residuals ((ehomt )2) for GDP and inflation (INF)18. We can see that the large

spikes in the crises periods are captured only by (ehett )2, whereas (ehomt )2 does not have any noticeable

abnormal behavior during the crises years.

Figure 1: Trace plot and autocorrelations for the (7,7) element of K107, the 4th diagonal element of ρ,
for n and the (1,1) element of G (Macro data).

18Recall that Section 3 defined ehett = H1et, and ehomt = H2et, where H1 = U1U ′1 and H2 = U2U ′2 = Ir −H1
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r1 p(θ) + l(Y |θ) l(Y |θ) l(Y ) BIC Pred Lik Pred BIC
0 -6950.3 -5974.6 -9353.6 -5975.7 -7177.7 -5660.0
1 -6989.7 -5982.5 -9303.2 -5984.8 -7169.5 -5567.0
2 -6877.9 -5938.2 -9215.9 -5941.7 -7126.2 -5531.0
3 -6814.1 -5932.3 -9168.5 -5936.9 -7120.2 -5530.4
4 -6710.4 -5904.3 -9097.4 -5910.2 -7090.3 -5507.8
5 -6637.5 -5893.4 -9045.7 -5900.4 -7078.6 -5502.5
6 -6563.7 -5892.3 -9002.3 -5900.5 -7075.9 -5508.8
7 -6501.1 -5892.7 -8961.3 -5902.0 -7073.8 -5514.0
8 -6451.2 -5898.2 -8925.2 -5908.7 -7076.9 -5526.0

Table 2: Model selection criteria for each value of r1, with n estimated subject to n > 2r1 (Macro data).
p(θ) and l(Y |θ) denote the values of the log prior and log likelihood at the posterior mean, respectively.
l(Y ) is the approximated marginal likelihood, Pred Lik is the predictive likelihood for observations 51
to 214, and Pred BIC is the BIC approximation to the predictive likelihood (calculated as the difference
between the BIC with the full sample and the BIC with an initial sample). Numerical standard errors
(NSE) for the log likelihood values were estimated using 100 independent replications of the particle
filter, with N = Tr1 particles. In all cases, the NSE values were smaller than 0.9.

Mon Policy Shock (ξt) Hetero shock (u1t)
1 2 3 4 5 ∞ 1 2 3 4 5 ∞

GDP 0 0 4 4 4 4 88 75 64 61 60 55
GDPhet 0 0 0 0 0 0 100 100 100 100 100 100
GDPhom 0 0 10 10 9 10 0 0 0 0 0 0
INF 0 3 3 3 3 10 62 64 61 59 59 31
INFhet 0 0 0 0 0 0 100 100 100 100 100 100
INFhom 0 7 8 6 6 15 0 0 0 0 0 0
FFR 82 69 60 50 45 14 10 17 21 29 33 17
FFRhet 0 0 0 0 0 0 100 100 100 100 100 100
FFRhom 90 82 75 70 67 17 0 0 0 0 0 0
BOND 15 17 16 16 17 9 23 24 24 26 27 16
BONDhet 0 0 0 0 0 0 100 100 100 100 100 100
BONDhom 90 82 75 70 67 17 0 0 0 0 0 0
SP 0 0 1 2 2 3 100 96 91 87 85 72
SPhet 0 0 0 0 0 0 100 100 100 100 100 100
SPhom 1 1 12 15 13 12 0 0 0 0 0 0

Table 3: Variance Decompositions. Percentage of var(yt|yt−h), var(yhett |yt−h) and var(yhomt |yt−h)
caused by the monetary policy shock (ξt, left panel) and by the heteroscedastic shocks (u1t, right
panel), for h = 1, 2, 3, 4, 5,∞.
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Figure 2: Estimated reduced form volatilities and squared Bayesian residuals for the real GDP growth
rate (GDP) and the real stock returns (SP). The left panel corresponds to the method of Carriero et al.
(2016) under two different orderings: the solid line is for ordering 1 and the dotted line is for ordering
2. The central panel corresponds to our method with r1 = 7, and the right panel are the squared of the
Bayesian residuals.
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Figure 3: Impulse Responses of GDP growth (GDP) and the 10 year bond yield (BOND) to a monetary
policy shock (FFR) and to a stock return shock (SP). The left panel plots the overall response, the central
panel plots the reponse of the heteroscedastic component (yhet), and the right panel the homoscedastic
component (yhom). Posterior median and 90% credible interval.

Figure 4: Decomposition of GDP growth and the estimated monetary policy shock into their het-
eroscedastic and homoscedastic components.
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Figure 5: Plot of squared residuals e2t , squared heteroscedastic residuals (ehett )2 and squared homoscedas-
tic residuals (ehomt )2 for GDP growth (GDP) and the inflation rate (INF).

6.2 Exchange Rates Data

We use data on 1043 daily returns of 5 exchange rates (AUD, CAD, EUR, JPY, SWF) with respect

to the US dollar, beginning in January 2007 and ending in December 2010 (same data as in Chan et

al. (2018)). Table 4 shows model selection criteria for models under the restriction n > 2r1, and all

indicate that the best model is r1 = 5. Models under the restriction n = r1 + 2 also suggested r1 = 5,

but had worse predictive likelihoods for observations t = 501 −1043. Therefore we can conclude that

these 5 exchange rates are not co-heteroscedastic. Figure 6 shows the posterior volatility estimates and

the squared Bayesian residuals, where we can see that the exchange rates have idiosyncratic spikes,

reinforcing the impression that they do not share heteroscedastic shocks. Figure 7 shows the trace

plots and autocorrelation functions for r1 = 4, indicating that autocorrelations vanish within 10 lags

for most parameters (40 lags for ρ), and the mixing and convergence of the algorithm is good, taking

about 2.8 hours to obtain 15000 iterations with 60 particles. The evaluation of the loglikelihood, using

the average of 100 independent replications of the particle filter, each one with Tr1 = 4172 particles,

took 5.4 minutes, with a numerical standard error of 0.7.

However, the autocorrelations for the model r1 = 5 were much more persistent, with the most

persistent correlations being that of the (1,1) elements of ρ and K = (K1 + ...+KT )/T , which become

smaller than 10% only after 310 and 375 lags, respectively. Even in this case the MCSE values of ρ and

K were only about 8% of the posterior standard deviation, using 15000 iterations with 50 particles,

repeating the sampling of L1:T 30 times within each iteration, and using about 14 hours of computation

time. Appendix II presents more details of how the number of particles affect the effective sample size of

Kt. The evaluation of the loglikelihood for r1 = 5 took about 11.3 minutes, with a numerical standard

error of 0.7.
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r1 l(Y |θ) l(Y ) BIC Pred Lik Pred BIC
0 -5239.7 -5398.9 -5239.7 -2919.4 -2904.0
1 -5058.4 -5197.9 -5065.4 -2894.7 -2875.9
2 -4990.9 -5114.8 -5001.3 -2885.8 -2850.4
3 -4943.5 -5017.7 -4957.4 -2872.4 -2851.5
4 -4909.3 -4936.6 -4926.7 -2868.8 -2853.6
5 -4659.8 -4682.1 -4680.6 -2755.4 -2711.5

Table 4: Model selection criteria for each value of r1, with n estimated subject to n > 2r1 (exchange
rates data). Pred Lik is the predictive likelihood for observations 501 to 1043. Column labels as defined
in Table 2.

Figure 6: Posterior volatility estimates and squared Bayesian residuals for the returns of five exchange
rates: AUD, CAD, EUR, JPY, SWF.

Figure 7: Trace plot and autocorrelations for the (4,4) element of K521, the 4th diagonal element of ρ,
n and the (1,1) element of G (exchange rate data) (r1 = 4).
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7 Concluding remarks

In this paper we have developed methods for Bayesian inference in an inverted Wishart process for

Stochastic Volatility. Unlike most of the previous literature, the model is invariant to the ordering of

the variables and allows for fat tails and the non-existence of higher moments. We provide a novel

algorithm for posterior simulation which uses a pseudo posterior to define a more efficient particle filter,

and to obtain a reparameterization that we find improves computational efficiency.

The modelling framework allows us to determine whether a set of variables share heteroscedastic

shocks and are therefore co-heteroscedastic. Furthermore, the framework allows us to obtain new

variance decompositions as well as new insights on the characteristics of the structural shock and its

impact on the variables of interest. We find strong evidence of co-heteroscedasticity in an application

to a large VAR of 20 macroeconomic variables, and provided a detailed analysis of how monetary policy

and the stock market impact the heteroscedasticity of macroeconomic variables. We also illustrated the

methodology using data on exchange rates, but found no evidence of co-heteroscedasticity.

Future research could look into the implications of co-heteroscedasticity for finding portfolio alloca-

tions with smaller risk and for decision making. Another possible venue is to find ways to reduce the

number of free parameters in G through, for example, the use of Wishart graphical models (e.g. Dawid

and Lauritzen (1993), Wang and West (2009)).
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Appendix I

This appendix is for section 4, and derives the pseudo posterior and the compact expression for the

likelihood in (12). The prior π(Z1:T |θ) is:

(2π)−Tnr/2
∣∣I − ρ2∣∣n/2 exp

(
−1

2
tr

(
T∑
t=2

(Zt − Zt−1ρ)
′
(Zt − Zt−1ρ) + (Z ′1Z1) (I − ρ2)

))
(21)

= (2π)−Tnr/2
∣∣I − ρ2∣∣n/2 exp

(
−1

2
tr

(
T−1∑
t=1

(ρ′Z ′tZtρ) +
T∑
t=2

(Z ′tZt)− 2
T∑
t=2

(Z ′tZt−1ρ) + (Z ′1Z1) (I − ρ2)

))

Given the definition of Σt in (3), the inverse Σ−1t can be written as:

Σ−1t =
(
A−1

)′ Kt 0

0 I

A−1 = B1KtB
′
1 +B2B

′
2, for B =

(
A−1

)′
= ( B1 B2 ) (22)

where Kt = Z ′tZt. Thus, when we multiply (21) times the pseudo likelihood in (9) we obtain:

π(Z1:T |θ)L̃(Y |Σ1:T , β) = (23)

= exp

(
−1

2
tr

(
T−1∑
t=1

(ρ′Z ′tZtρ) +

T∑
t=2

(Z ′tZt) (I +B′1ete
′
tB1)− 2

T∑
t=2

(Z ′tZt−1ρ)

))
×

exp

(
−1

2
tr
(
(Z ′1Z1 +B′1e1e

′
1B1) (I − ρ2)

))
(2π)−Tnr/2

∣∣I − ρ2∣∣n/2 cB̃
where:

cB̃ = exp

(
−1

2

T∑
t=1

tr
(
B2B

′
2ete

′

t

))

The terms that depend on ZT in (23) are exp(−0.5tr((Z ′TZT ) (I + B′1eT e
′
TB1) − 2 (Z ′TZT−1ρ)))

and so ZT |Z1:T−1 is a normal with mean equal to ZT−1ρVT and variance VT = (I + B′1eT e
′
TB1)−1.

Integrating out ZT from (23) we obtain:
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∫
π(Z1:T |θ)L̃(Y |Σ1:T , β)dZT

= (2π)nr/2 |VT |n/2 exp(
1

2
tr(ρ′Z ′T−1ZT−1ρVT ))×

exp

(
−1

2
tr

(
T−1∑
t=1

(ρ′Z ′tZtρ) +

T−1∑
t=2

(Z ′tZt) (I +B′1ete
′
tB1)− 2

T−1∑
t=2

(Z ′tZt−1ρ)

))
×

exp

(
−1

2
tr
(
(Z ′1Z1 +B′1e1e

′
1B1) (I − ρ2)

))
(2π)−Tnr/2

∣∣I − ρ2∣∣n/2 cB̃
The terms that depend on ZT−1 are exp(−0.5tr(

(
Z ′T−1ZT−1

)
(I+B′1eT−1e

′
T−1B1+ρρ′)−2

(
Z ′T−1ZT−2ρ

)
−

(Z ′T−1ZT−1ρVT ρ
′))) and so ZT−1|Z1:T−2 is a normal with mean equal to ZT−2ρVT−1 and variance

VT−1 = (I + B′1eT−1e
′
T−1B1 + ρ(I − VT )ρ′)−1. This process can be repeated recursively to find the

densities described in (10) and (11) and also the following integrating constant:

∫
π(Z1:T |θ)L̃(Y |Σ1:T , β) =

∣∣I − ρ2∣∣n/2 c̃B T∏
t=1

|Vt|n/2 = c̃

which allows us to write the pseudo posterior as:

π̃(Z1:T |Y, θ) =
π(Z1:T |θ)L̃(Y |Σ1:T , β)

c̃

Then we can write the likelihood as:

L(Y |β, θ) =

∫ ( T∏
t=1

|Σt|−1/2
)
π(Z1:T |θ)L̃(Y |Σ1:T , β)dZ1:T

=

∫ ( T∏
t=1

∣∣Σ−1t ∣∣1/2
)
c̃π̃(Z1:T |Y, θ)dZ1:T

=

∫ ( T∏
t=1

|Kt|1/2
)(
|A1A

′
1 +A2A

′
2|
−T/2

)
c̃π̃(Z1:T |Y, θ)dZ1:T = c̃LEπ̃

(
T∏
t=1

|Kt|1/2
)

which is equal to (12).

Appendix II

This appendix is for Section 5.2. It derives the reverse order representation in (15) - (16) and outlines

the algorithm to obtain a draw of L̃1:T . It also provides a simulation to illustrate the computational

gains of alternating the order.
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To prove the connection between (L1t,K2t) and (L̃1t, K̃2t) in (15), we obtain (L1t,K2t) by first

defining the semi-orthogonal matrix
−→
Z t = Zt(Kt)

−1/2, with Kt = Z ′tZt and its orthogonal complement

−→
Z t⊥ : n× (n− r1) such that:

−→
Z ′t
−→
Z t = Ir1 ,

−→
Z ′t⊥
−→
Z t⊥ = In−r1 ,

−→
Z ′t
−→
Z t⊥ = 0

And transform from Zt to (L1t, L2t), where L1t =
−→
Z ′t−1Zt, L2t =

−→
Z ′t−1,⊥Zt, such that L1t : r1 × r1

is independent of L2t : (n− r1)× r1. Then the process Zt = Zt−1ρ+ εt implies that:

L1t =
−→
Z ′t−1Zt =

(−→
Z t−1

)′
Zt−1︸ ︷︷ ︸

K
1/2
t−1

ρ+
(−→
Z t−1

)′
εt︸ ︷︷ ︸

ε1t

(24)

L1t = K
1/2
t−1ρ+ ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Ir1 ⊗ Ir1), t > 1

and that:

L2t =
−→
Z ′t−1,⊥Zt =

(−→
Z t−1,⊥

)′
Zt−1ρ︸ ︷︷ ︸

0

+
(−→
Z t−1,⊥

)′
εt =

(−→
Z t−1,⊥

)′
εt︸ ︷︷ ︸

ε2t

L2t = ε2t, vec(L2t) ∼ N(0, Ir1 ⊗ In−r1)

K2t = L′2tL2t ∼Wr(n− r1, Ir1)

Note that the process Zt = Zt−1ρ + εt with Z1 following the stationary distribution can be equiv-

alently written as Zt−1 = Ztρ + εt with ZT following the stationary distribution19. Therefore we can

apply the same decomposition to the reverse process as follows:

L̃1,t−1 =
−→
Z ′tZt−1 =

(−→
Z t

)′
Zt︸ ︷︷ ︸

K
1/2
t

ρ+
(−→
Z t

)′
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ε1t

(25)

L̃2,t−1 =
−→
Z ′t⊥Zt−1 =

(−→
Z t⊥

)′
Ztρ︸ ︷︷ ︸

0

+
(−→
Z t⊥

)′
εt =

(−→
Z t−1,⊥

)′
εt︸ ︷︷ ︸

ε2t

K̃2t = L̃′2tL̃2t

19This can easily be proved from Zt = Zt−1ρ + εt by writing (Z1, ..., ZT ) as a vector Z =
(vec(Z1)′, vec(Z2)′, ..., vec(ZT )′)′, and noting that the joint distribution of Z is normal with 0 mean and covariance
V :

V =


(I − ρ2)−1 ⊗ In (I − ρ2)−1ρ⊗ In ... (I − ρ2)−1ρT−1 ⊗ In
ρ′(I − ρ2)−1 ⊗ In (I − ρ2)−1 ⊗ In (I − ρ2)−1ρT−2 ⊗ In

ρ(T−1)′(I − ρ2)−1 ⊗ In ρ(T−2)′(I − ρ2)−1 ⊗ In (I − ρ2)−1 ⊗ In


and also the distribution of Z̃ = (vec(ZT )′, vec(ZT−1)′, ..., vec(Z1)′)′ is normal with the same 0 mean and covariance
matrix V , and so we can also write Zt = Zt+1ρ+ εt provided ZT comes from the stationary distribution.
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Note that L1t =
−→
Z ′t−1Zt = (K

−1/2
t−1 )′Z ′t−1Zt, while L̃1,t−1 =

−→
Z ′tZt−1 = (K

−1/2
t )′Z ′tZt−1, and

therefore we can conclude that Z ′tZt−1 = (K
1/2
t )′L̃1,t−1 = ((K

1/2
t−1)′L1t)

′, from where we can arrive at

(15) and the inverse transformation (19).

The algorithm to generate a value for L̃1:T in reverse order is analogous to the natural order algorithm

in Section 5.1. Let L̃t = (L̃1t, K̃2t) for t < T, L̃T = KT , and L̃1:T = (L̃1, L̃2, ..., L̃T ). Let the N particles

be denoted as L̃kt = (L̃k1t, K̃
k
2t) for t < T and L̃kT = (Kk

T ). Define Kk
t = (L̃k1t)

′L̃k1t+ K̃k
2t for t < T . Given

the definition of Ṽt in (17), the value of L̃1:T at iteration i, denoted as L̃1:T (i) = (L̃1(i), ..., L̃T (i)), can

be generated given the previous value L̃1:T (i− 1) as follows:

Algorithm 4 Reverse order cPFBS.

Step 1: Fix the last particle equal to L̃1:T (i− 1), that is, L̃N1:T = L̃1:T (i− 1)

Step 2: at time t = T ,

(a) sample Kk
T ∼Wr1(n, ṼT ) for k = 1, ..., N − 1, and

(b) compute and normalize the weights:

wkT :=
∣∣Kk

T

∣∣0.5 , W k
T := wkT /(

N∑
m=1

wmT ), k = 1, ..., N

Step 3: at times t = T − 1, ..., 1,

(a) sample the indices Akt+1, for k = 1, ..., N − 1, from a multinomial distribution on (1, ..., N) with

probabilities Wt+1 = (W 1
t+1, ...,W

N
t+1)

(b) sample vec(L̃k1t) ∼ N(

(
K
Akt+1

t+1

)1/2

ρṼt, Ir1 ⊗ Ṽt) and K̃k
2t ∼ Wr1(n − r1, Ṽt), calculate Kk

t =

(L̃k1t)
′L̃k1t + K̃k

2t for k = 1, ..., N − 1 and

(c) compute and normalize the weights

wkt :=
∣∣Kk

t

∣∣0.5 , W k
t := wkt /(

N∑
m=1

wmt ), k = 1, ..., N

Step 4: at time t = 1, sample b1 from a multinomial distribution on (1, ..., N) with probabilities W1,

and set L̃1(i) = L̃b11 .

Step 5: at times t = 2, ..., T

(a) compute the updated weights

w̃kt = wkt f(K
bt−1

t−1 |Kk
t ),..., W̃ k

t := w̃kt /(

N∑
m=1

w̃mt ), k = 1, ..., N , where

µkt = (Kk
t )1/2ρṼt−1, f(K

bt−1

t−1 |Kk
t ) = exp(−1

2
tr(Ṽ −1t−1(L̃

bt−1

1(t−1) − µ
k
t )′(L̃

bt−1

1(t−1) − µ
k
t ))
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(b) sample bt from a multinomial distribution on (1, ..., N) with probabilities W̃t = (W̃ 1
t , ..., W̃

N
t ),

and set L̃t(i) = L̃btt .

In order to see the impact of alternating the order, we fix (G, β) equal to their posterior means

and (n, ρ) equal to their posterior medians and calculate the Effective Sample Size (ESS) of the (1,1)

element of Kt for 10000 iterations using the Macro data with r1 = 7 (Table 5) and the Exchange Rate

Data with r1 equal to 4 and 5 (Table 6). The ESS values are not adjusted by computing time because

the differences in computing time among algorithms are negligible. We can see that the ESS values of

KT are always bigger (smaller) than the ESS values of K1 in the natural order (reverse order) algorithm,

respectively. The alternating order algorithm has always better ESS than the natural order for K1, and

better ESS than the reverse order for KT . The gains imply that ESS is increased at least by a factor

of 3 (with Exchange rate data, 95 particles and r1 = 4) and at most by a factor of 260 (with Exchange

rates data, 95 particles and r1 = 5). However, the alternating order algorithm has lower ESS than

the natural order for KT , and lower ESS than the reverse order for K1, but the factor of increase of

the single order algorithms over the alternating algorithm is only between 1.4 and 2.9. Looking at the

ESS of KT/2 (i.e. at the middle of the sample), the alternating order algorithm has always better ESS

when using the Macro data (Table 5), with the factor of improvement ranging between 1.01 (with 110

particles) and 1.55 (with 25 particles). With the exchange rates data the alternating order algorithm is

always better than the natural order to sample KT/2, but the reverse order algorithm is even better in

5 out of 8 cases. To get a measure of which algorithm is overall better to sample K1:T , we calculate the

ESS of K = (K1 + ...+KT )/T . We find that the alternating order algorithm is the best in all but one

case, increasing the ESS by at most 140% and at least by 1%. The only exception is with the exchange

rate data with r1 = 5 and 95 particles, where the ESS of the reverse order algorithm is 42% better.

Overall we can conclude that the ordering in sampling K1:T affects the efficiency of the algorithm, and

that for our datasets alternating the ordering brings almost always computational gains.

Appendix III

This appendix is for Section 5.3 and it gives details on the reparameterization function ε = fθ(L1:T ),

its inverse f−1θ (ε), the density πt(θ|ε, β), and a simulation to illustrate the better performance of the

reparameterization.

Defining ε = (a2:T , p1:T , c1:T ), the following algorithm can be used to calculate ε = fθ(L1:T ).

Algorithm 5 To obtain ε = fθ(L1:T ).

Step 1: at time t = 1,
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N order K1 KT/2 KT K Gain (%)
-1 7853 107 86 91

25 0 3764 124 3938 103 14 31
1 88 80 7587 79
-1 8661 174 332 231

50 0 4640 272 4581 371 61 32
1 321 258 8762 281
-1 9222 579 558 586

80 0 4929 654 4971 801 37 33
1 709 475 9289 601
-1 9843 880 578 1052

110 0 5325 988 5357 1539 46 49
1 1226 974 9427 1030

Table 5: Effective sample size of K with 10000 iterations and r1 = 7 using the Macro data. The column
with label ’order’ takes values (-1,0,1) for reverse, alternating and natural order, respectively. N is the
number of particles and the columns (K1, KT/2, KT ,K̄) give the Effective Sample Size (ESS) with 10000

iterations of sampling the (1,1) element of (K1, KT/2, KT ,K), where K̄ = (K1 + ...+KT )/T . The two

columns under ’Gain (%)’ give the percentage increase in the ESS of the (1,1) element of K when using
alternating order with respect to reverse order (left) and natural order (right). The parameters (G, β)
were fixed equal to their posterior means and (n, ρ) equal to their posterior medians.

r1 N order K1 KT/2 KT K Gain (%)
-1 4755 1277 436 127

25 0 1651 1353 3078 240 88 48
1 92 1251 5608 161
-1 6482 2425 886 337

50 0 3428 2414 3713 345 2 37
4 1 228 2272 6983 251

-1 7141 4358 1599 516
95 0 4208 4243 5228 627 21 23

1 340 3925 7303 509
-1 7170 5364 1574 645

125 0 3971 4775 5953 660 2 1
1 404 3227 7745 655
-1 6627 372 93 33

25 0 3348 405 3875 37 12 188
1 29 277 7180 13
-1 8463 1044 177 64

50 0 4100 958 4562 88 37 140
5 1 47 569 8202 36

-1 8875 2281 580 146
95 0 4461 2357 4900 85 -42 25

1 17 1515 9256 68
-1 8675 2925 794 134

125 0 4709 2356 5201 171 28 27
1 44 1811 9655 135

Table 6: Effective sample size of K with 10000 iterations and r1 = 4 and 5, using the Exchange Rate
data. Column labels have the same meaning as in Table 5. The parameters (G, β) were fixed equal to
their posterior means and (n, ρ) equal to their posterios medians.

36



(a) Define K̂1 = (V
−1/2
1 )′K1(V

−1/2
1 ), and ∆1 as an upper triangular matrix such that K̂1 = ∆′1∆1,

with c1 being the off-diagonal elements of ∆1.

(b) Let d1 = (d11, d21, ..., dr11) be the diagonal elements of ∆1. Let p1 = (p11, p21, ..., pr11), with

pi1 = Fχ2(fni1)
(d2i1), where Fχ2(fni1)

(d2i1) is the distribution function of a chi-squared with fni1 = n+ i+ 1

degrees of freedom.

Step 2: at times t = 2, ..., T ,

(a) Calculate at as:

at = (L1t − (Kt−1)1/2ρVt)V
−1/2
t , for t > 1

(b) Calculate K̂2t = (V
−1/2
t )′K2t(V

−1/2
t ), and ∆t as an upper triangular matrix such that K̂2t =

∆′t∆t, with ct being the off-diagonal elements of ∆t.

(c) Let dt = (d1t, d2t, ..., dr1t) be the diagonal elements of ∆t. Let pt = (p1t, p2t, ..., pr1t), with

pit = Fχ2(fnit)
(d2it), where Fχ2(fnit)

(d2it) is the distribution function of a chi-squared with fnit = n−r1+i+1

degrees of freedom.

The inverse transformation is denoted as Lθ∗1:T = f−1θ∗ (ε), for θ∗ = (G∗, ρ∗, n∗), where we write Lθ∗1:T

instead of L1:T to make clear that for a fixed value of ε, L1:T changes when θ changes. For this reason we

also use the notation (Kθ
t ,K

θ
2t, L

θ
1t, V

θ
t ) for (Kt,K2t, L1t, Vt) below. The following algorithm describes

how to obtain Lθ∗1:T = f−1θ∗ (ε).

Algorithm 6 To obtain Lθ∗1:T = f−1θ∗ (ε)

Step 1: Calculate (V θ
∗

1 , V θ
∗

2 , ..., V θ
∗

T ) using the recursion in (11) and the value of θ∗ = (G∗, ρ∗, n∗).

Step 2: at time t = 1

(a) Obtain the vector dn
∗

t = (dn
∗

1t , d
n∗

2t , ..., d
n∗

r1t), by calculating dn
∗

it =
(
F−1
χ2(fn

∗
it )

(pit)
)1/2

, where

F−1
χ2(fn

∗
it )

is the inverse of the distribution function of a chi-squared with fn
∗

it = n∗ + i + 1 degrees

of freedom.

(b) Construct ∆θ∗

t as an upper triangular matrix with off diagonal elements equal to ct and diagonal

equal to dn
∗

it .

(c) Calculate Kθ∗

1 =
(
(V θ

∗

t )1/2
)′ (

∆θ∗

t

)′
∆θ∗

t (V θ
∗

t )1/2

Step 3: at times t = 2, ..., T

(a) Calculate

Lθ
∗

1t = (Kθ∗

t−1)1/2ρ∗V θ
∗

t + at(V
θ∗

t )1/2

(b) Obtain the vector dn
∗

t = (dn
∗

1t , d
n∗

2t , ..., d
n∗

r1t), by calculating dn
∗

it =
(
F−1
χ2(fn

∗
it )

(pit)
)1/2

, where
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F−1
χ2(fn

∗
it )

is the inverse of the distribution function of a chi-squared with fn
∗

it = n∗ − r1 + i + 1 de-

grees of freedom.

(c) Construct ∆θ∗

t as an upper triangular matrix with off diagonal elements equal to ct and with

diagonal equal to dn
∗

t

(d) Calculate Kθ∗

2t =
(
(V θ

∗

t )1/2
)′ (

∆θ∗

t

)′
∆θ∗

t (V θ
∗

t )1/2.

The following proposition gives the conditional posterior density of θ given (ε, β).

Proposition 7 The conditional posterior density of θ given (ε, β), denoted by πt(θ|ε, β), is such that:

πt(θ|ε, β) ∝ π(Lθ1:T |θ)L(Y |Kθ
1:T , β)Jεπ(θ)π(β|θ) (26)

where

L(Y |Kθ
1:T , β) = (2π)

−Tr/2

(
T∏
t=1

∣∣Σ−1t ∣∣1/2
)

exp

(
−1

2

T∑
t=1

tr
(

Σ−1t ete
′

t

))
,

with et = yt − βxt, Σ−1t = B1K
θ
tB
′
1 +B2B

′
2

π(Lθ1:T |θ) =
∣∣Ir1 − ρ2∣∣n/2 exp

(
−1

2
tr
((
Ir1 − ρ2

)
Kθ

1 +M
)) ∣∣Kθ

1

∣∣(n−r1−1)/2 ×
T∏
t=2

|K2t|(n−r1−(r1+1))/2 2−
((T−1)(n−r1)r1)

2

(Γr1 ((n− r1)/2))
T−1

2−
nr1
2

(Γr1 (n/2))
(2π)−

(T−1)r21
2

M =

T∑
t=2

Kθ
t +

T∑
t=2

ρ′Kθ
t−1ρ− 2ρ′

T∑
t=2

(
(
Kθ
t−1
)1/2

)′Lθ1t

Jε =
(
V θ1
)(r1+1)/2

(
T∏
t=2

(
V θt
)(r1+1)/2+r1/2

)(
T∏
t=2

r1∏
i=1

(
(dnit)

(r1−i)

F ′χ2(fnit)
((dnit)

2
)

))

where for t > 1, dnt = (dn1t,...,d
n
r1t) is the diagonal of the Cholesky decomposition of K̂2t = (V

−1/2
t )′K2t(V

−1/2
t ),

whereas for t = 1, dnt = (dn1t,...,d
n
r1t) is the diagonal of the Cholesky decomposition of K̂1 = (V

−1/2
1 )′K1(V

−1/2
1 ).

F ′χ2(fnit)
(d2it) is the density function of a χ2 distribution evaluated at d2it with degrees of freedom fnit =

n−r1 + i+1 for t > 1, and fnit = n+ i+1 for t = 1. π(θ) is the prior of θ, and π(β|θ) is the conditional

prior of β given θ.

Proof. L(Y |Kθ
1:T , β) is the likelihood given Kθ

1:T , π(Lθ1:T |θ) is the prior of Lθ1:T , and Jε is the

Jacobian of the transformation from L1:T to ε. π(Lθ1:T |θ) can be calculated as:

π(Lθ1:T |θ) = π(Kθ
1 |θ)

T∏
t=2

π(Lθ1t|θ,Kθ
t−1)π(Kθ

2t|θ)

and then use the expressions for the multivariate normal and Wishart densities with parameters specified

as in (14). To calculate the Jacobian Jε note that the Jacobian from K2t to K̂2t (or from K1 to K̂1)
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is
(
V θt
)(r1+1)/2

and the Jacobian from K̂2t to its Cholesky decomposition is
r1∏
i=1

(
(dnit)

(r1−i+1)
)

. The

Jacobian from dnit to pit is
(

(dnit)F
′
χ2(fnit)

((dnit)
2
)
)−1

, and the Jacobian from L1t to at is
(
V θt
)r1/2

.

In our estimations we use a normal inverse Wishart prior for G, and a normal prior for ñ = log(n−

2r1) and a beta distribution for ρ. However, in order to perform the Metropolis step we target the

conditional posterior of (G, ñ, ρ̃), where ρ̃ = ln(− ln(1− ρ2)). The prior for π(ρ̃) can be obtained as:

π(ρ̃) = π(ρ)Jρ

Jρ =
1− ρ2

2ρ
(− ln(1− ρ2))

where Jρ is the Jacobian. As a proposal density we use an inverse Wishart for G centered at ((1 −

τG)G(i− 1) + τGĜ), where G(i− 1) is the value of G in the previous iteration and Ĝ is a preliminary

estimate of G. For % = (ñ, ρ̃) we use a normal proposal density centered at ((1 − τρ)%(i − 1) + τρ%̂),

where %̂ is a preliminary estimate and %(i− 1) is the value of % in the previous iteration.

Figure 8 shows the trace plot and autocorrelations when no reparameterization is used, using the

macro data of Section 6.1. We can see that the autocorrelations are much more persistent than those

in Figure 1, particularly for ρ and n. For example, the lag 40 autocorrelation of n (ρ) is 0.87 (0.69)

with no reparameterization, but equal to 0.01 (0.025) with the reparameterization, respectively. The

effective sample sizes (ESS) of 10000 after burn-in iterations for (K, ρ, n, G) are (439, 81, 24, 107),

without reparameterization and equal to (960, 878, 877, 522) with the reparameterization. However,

the computation time with the latter is about 2.3 higher. Therefore, taking into account computation

time, the algorithm with the reparameterization is about 16 times more efficient to sample n, 4.7 times

more efficient to sample ρ, 2.3 times more efficient to sample G and roughly equally efficient to sample

K.

Appendix IV

This appendix gives the details of the conditional prior and posterior of β, discussed in Section 5.4.

Proposition 8 Assuming that the conditional prior of vec(β′)|G is a normal with mean µβ and co-

variance matrix V β given by:

V β = (G⊗ V 0) , for V 0 : k × k

the conditional posterior vec(β′)|G,K1:T is also normal with mean µβ and covariance matrix V β given

39



Figure 8: Trace plot and autocorrelations when no reparameterization is used in the model with r1 = 7
(Macro data). Trace plots and autocorrelations are for the (7,7) element of KT/2, the 4th diagonal
element of ρ, for n and the (1,1) element of G.

by:

V β = (A1 ⊗ Ik)

(
T∑
t=1

(Kt ⊗ xtx
′

t) + Ĩ−1r1 ⊗ V
−1
0

)−1
(A′1 ⊗ Ik) + (27)A2A

′
2 ⊗

(
T∑
t=1

(xtx
′

t) + V −10

)−1
µβ = V β

(
vec(

T∑
t=1

xty
′
tΣ
−1
t ) +

(
G−1 ⊗ V −10

)
µ
β

)
(28)

with Ĩ−1r1 = (n− r1 − 1)(Ir1 − ρ2)−1

A draw of vec(β′)|G,K1:T can be obtained as
((
V β
)1/2)′

η+µβ where η is a rk×1 vector of independent

standard normal variates, and
(
V β
)1/2

can be calculated as:

(
V β
)1/2

= (D1, D2)′, D1 : rk × r1k, D2 : rk × r2k (29)

D1 = (A1 ⊗ Ik)

( T∑
t=1

(Kt ⊗ xtx
′

t) + Ĩ−1r1 ⊗ V
−1
0

)−1/2′

D2 = A2 ⊗

( T∑
t=1

(xtx
′

t) + V −10

)−1/2′

Proof. Standard calculations, similar to those in a multivariate regression model, show that V β is

given by

V β =

(
T∑
t=1

(
Σ−1t ⊗ xtx′t

)
+G−1 ⊗ V −10

)−1
(30)

40



and that µβ is given by (28). However, expression (30) requires the inversion of a rk × rk matrix. To

obtain (27) first note that (3) and (22) imply that

G−1 = B

 Ĩ−1r1 0

0 Ir2

B′, Σ−1t = B

 Kt 0

0 Ir2

B′

Hence we can write (30) as:

V β =

(B ⊗ Ik)

 T∑
t=1


 Kt 0

0 Ir2

⊗ xtx′t
+

 Ĩ−1r1 0

0 Ir2

⊗ V −10

 (B′ ⊗ Ik)


−1

V β = (A⊗ Ik)


 ∑T

t=1Kt ⊗ xtx′t + Ĩ−1r1 ⊗ V
−1
0 0

0 Ir2 ⊗
(∑T

t=1 xtx
′
t + V −10

)


−1

(A′ ⊗ Ik)

V β = (A1 ⊗ Ik)

(
T∑
t=1

(Kt ⊗ xtx′t) + Ĩ−1r1 ⊗ V
−1
0

)−1
(A′1 ⊗ Ik) +A2A

′
2 ⊗

(
T∑
t=1

xtx
′
t + V −10

)−1
(31)

which is equal to (27), and where we have used that A ⊗ Ik = (A1, A2) ⊗ Ik = (A1 ⊗ Ik, A2 ⊗ Ik). To

derive (29) simply note that
((
V β
)1/2)′ (

V β
)1/2

= D1D
′
1 +D2D

′
2 = V β , as we wanted to show.
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