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Abstract

Traditional production function models rely on factor-neutral technology and functional form
assumptions, such as Cobb-Douglas. These assumptions impose strong theoretical restrictions
and are often rejected by the data. This paper develops a new method for estimating produc-
tion functions with factor-augmenting technology and assesses its economic implications. The
method does not impose parametric restrictions and generalizes prior approaches that rely on the
CES production function. I first extend the canonical Olley-Pakes framework to accommodate
factor-augmenting technology. Then, I show how to identify output elasticities based on a novel
control variable approach and the optimality of input expenditures. I use this method to esti-
mate output elasticities and markups in manufacturing industries in the US and four developing
countries. Neglecting labor-augmenting productivity and imposing parametric restrictions mis-
measures output elasticities and heterogeneity in the production function. My estimates suggest
that standard models (i) underestimate capital elasticity by up to 70 percent (ii) overestimate
labor elasticity by up to 80 percent. These biases propagate into markup estimates inferred from
output elasticities: markups are overestimated by 20 percentage points. Finally, heterogeneity
in output elasticities also affects estimated trends in markups: my estimates point to a much
more muted markup growth (about half) in the US manufacturing sector than recent estimates.
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1 Introduction

Production functions are useful in many areas of economics. They are used to quantify productivity
growth, misallocation of inputs, gains from trade and market power. The typical exercise requires
researchers to specify a model of production function and estimate its parameters using microdata.
However, a misspecified production function may produce biased elasticity and productivity esti-
mates, which in turn generate incorrect answers to important economic questions. For example, a
biased capital elasticity would imply misallocation in an economy with efficient allocation, and a
biased flexible input elasticity would give incorrect markups estimates.

Much of the empirical literature relies on Hicks-neutral technology and functional form assump-
tions, such as Cobb-Douglas, for production function estimation. These two elements of standard
practice impose strong theoretical restrictions.1 Indeed, several papers have shown that these restric-
tions are strongly rejected by data at the firm and industry levels. For example, the large firm-level
heterogeneity in input ratios is not consistent with Hicks-neutral technology (Raval (2019a)). Also,
the elasticity of substitution is often estimated to be less than one, contradicting the Cobb-Douglas
functional form (Chirinko (2008)).2 This evidence suggests that firms’ production functions do not
take the form of commonly used specifications.

In this paper, I develop a method for estimating nonparametric production functions with factor-
augmenting technology and examine its implications empirically. My model differs from standard
models in two ways. First, it includes two unobserved technology shocks: labor-augmenting produc-
tivity, which changes the productivity of labor, and Hicks-neutral productivity, which changes the
productivity of all inputs. These productivity shocks introduce unobserved firm-level heterogeneity
in the production technology. Second, the model does not rely on parametric assumptions to achieve
identification; it only imposes a limited functional form structure, which nests the common para-
metric forms. Together, these features yield a more flexible production function than the standard
models, with the ability to better match the data.

This paper makes both methodological and empirical contributions. On the methodological side,
I first extend the standard Olley and Pakes (1996) framework to accommodate labor-augmenting
technology. Then, I show how to identify output elasticities by developing a novel control variable
approach and exploiting the first-order conditions of the firm’s cost minimization problem.3 On
the empirical side, my results indicate that neglecting factor-augmenting technology and imposing
parametric restrictions mismeasure output elasticities and markups. I first present the empirical
results, and then explain how I deal with methodological challenges.

I use my method to estimate output elasticities in manufacturing industries in the US and

1For example, in the absence of input price variation, Hicks-neutral productivity implies no unobserved hetero-
geneity in the output elasticities. The Cobb-Douglas specification restricts the elasticity of substitution to equal one
and output elasticities to be common across firms.

2The decline in labor share, recently observed in developed countries, is also difficult to explain with Hicks-neutral
production functions (Oberfield and Raval (2014)).

3My approach does not rely on variation in input prices. Instead, I use optimal expenditure on flexible inputs.
However, the model can accommodate variation in input prices.



four developing countries: Chile, Colombia, India and Turkey. To document the biases in standard
models, I compare my results with estimates from two production functions with Hicks-neutral tech-
nology, Cobb-Douglas and translog. The results suggest that, in all countries, the Cobb-Douglas
model estimates incorrect output elasticities. In particular, it underestimates the output elasticity
of capital by 70 percent and overestimates the output elasticity of labor by 80 percent. Allowing for
labor-augmenting productivity also reveals substantial firm-level heterogeneity in the output elastic-
ities. Large firms have a higher elasticity of capital and lower elasticity of flexible inputs than small
firms, and exporting firms are more capital-intensive than domestic firms. Comparing my estimates
with a more flexible Hicks-neutral production function, such as translog, gives quantitatively similar
results.

Estimates of output elasticities are typically used to measure important economic variables. A
prime example is markups, which have recently been estimated using production functions (De
Loecker et al. (2018)). After documenting biases in output elasticities, I study how these biases
propagate into markups estimates.

Previous approaches yield severely biased estimates for markups. First, the Cobb-Douglas model
overestimates markups in all countries by 10 to 20 percentage points, an important difference when
markups are interpreted as a measure of market power. Second, the parametric CES production
function with labor-augmenting technology overestimates markups by up to 10 percent. This finding
highlights the importance of relaxing parametric assumptions. To explain what drives these biases
in markup estimates, I present a decomposition exercise. Standard models generate biased markup
estimates due to two sources of misspecification: (i) bias in the average output elasticity and (ii)
unmodeled heterogeneity in output elasticities. The existing empirical evidence and my elasticity
estimates imply that both sources of bias are positive.

The output elasticity estimates matter not only for the level but also for the trend of markups.
This is especially true when there is a change in a flexible input’s revenue share, as markup estimates
are inversely related to revenue shares.4 If production technology does not change over time, a
decline in the flexible input’s share immediately implies an increase in the markup. Therefore, for
correct markup estimation, it is crucial to account for the change in production technology. The
recent literature, using Hicks-neutral technology, has found little change in output elasticities for
the last fifty years, so the decline in labor share in advanced countries has been interpreted as an
increase in markups.

Among the countries analyzed, the change in the revenue share of labor is notable only in the
US, so I focus on the change in markups in the US. I estimate the evolution of markups in US
manufacturing with data from Compustat. Although Compustat’s data quality is lower than the
other datasets in the sample, it has been an important source for the recent findings on the rise of
markups. In particular, De Loecker et al. (2018) finds that the aggregate markup in the US has
risen by 40 percentage points in the US using a Cobb-Douglas production function.5 Their finding

4More precisely, markup equals the elasticity of a flexible input divided by that input’s share in revenue.
5They also use a translog production function and obtain similar results.
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has drawn significant attention recently as it suggests an enormous increase in market power.6

Using the same dataset, I instead find that the aggregate markup in US manufacturing has
increased by only 15 percentage points, about half of the estimates in De Loecker et al. (2018),
going up from 1.3 in 1960 to 1.45 in 2012. This difference arises because estimates from the Cobb-
Douglas production function suggest a negligible change in production technology over the last
fifty years, so the increase in markups found in the literature comes entirely from the decline in
revenue shares of flexible inputs. However, according to my production function estimates, the
average output elasticity of flexible inputs has declined since the 1990s. Also, my estimates suggest
important changes in the heterogeneity in output elasticities, which affects the evolution of markups.

On the methodological side, a major challenge in estimating production functions is the endo-
geneity of inputs. Firms’ input choices are related to productivity shocks, but productivity shocks
are unobservable. This problem generates an additional complication in my model due to the
multi-dimensional unobserved productivity and absence of parametric assumptions.

To address this challenge I make three methodological contributions. First, I impose a ho-
mothetic separability restriction on the production function, which enables me to express labor-
augmenting productivity as a function of inputs by inverting input demand functions. Homothetic
separability is a necessary and sufficient condition to achieve this; therefore, it is the minimal as-
sumption to control for labor-augmenting productivity. This result generalizes the widely-employed
parametric inversion (Doraszelski and Jaumandreu (2018), Raval (2019b), Zhang (2019)) to a non-
parametric setup. The rest of the assumptions extend the standard proxy variable framework of
Olley and Pakes (1996) to a model with multi-dimensional productivity.

The second contribution is to develop a novel control variable approach for production function
estimation, building on Imbens and Newey (2009). In particular, I show that under standard
assumptions on firm behavior, one can construct variables from inputs to control for productivity
shocks.7 This result overcomes two challenges that are not present in other applications of control
variables: (i) the model contains two structural unobserved variables and (ii) the independence
restriction required for a control variable derivation is not available. I address the first challenge
by showing that productivity shocks form a triangular structure under the modeling assumptions.
For the second challenge, I show that the modeling assumption provides a conditional independence
restriction, which I use to derive the control variables.

The third methodological contribution is an identification strategy for output elasticities and
markups. After developing control variables to address endogeneity, I study which features of the
production function can be identified from data. I first establish a negative result: without exogenous
variation in input prices, one cannot identify the output elasticity of flexible inputs from variation
in inputs and output; only the sum of the flexible input elasticities is identified. To separately
identify the flexible input elasticities, I use the first-order conditions of optimal input choices. Cost
minimization implies that the ratio of two flexible inputs’ elasticities is identified as the ratio of their

6See, for example, Basu (2019), Berry et al. (2019), Traina (2018) for discussions.
7In particular, I use the timing assumption and joint first-order Markov property of productivity shocks, both of

which are standard assumptions in the production function estimation literature.
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expenditures, without further restrictions on the production function. Importantly for the purpose
of markup estimation, the firm’s market power is not restricted in the output market, in contrast
to recent work that exploits first-order conditions (Gandhi et al. (2018)).

The model has an especially attractive feature for markup estimation: estimates from two
flexible inputs are numerically identical. This feature addresses the well-known problem that two
different flexible inputs often give conflicting markups estimates (Raval (2019a), Doraszelski and
Jaumandreu (2019)). Obtaining identical markup estimates is the direct implication of using the
ratio of expenditures to identify the ratio of elasticities. However, allowing for labor-augmenting
technology is still essential for this result. With labor-augmenting technology, the output elasticities
cannot be separately identified from variation in inputs and output; only the sum of the flexible
elasticities is identified. This feature of the model makes it possible to use the ratio of expenditures
to identify the ratio of flexible input elasticities, ensuring markups from two flexible inputs are
equal.

My framework can incorporate many economic restrictions on the production function, such as
constant returns to scale. This is possible because my model covers a family of specifications, ranging
from parametric CES to nonparametric weak homothetic separable production functions, that are
nested within each other. The nested structure provides three advantages. First, the estimation
method can be applied to the CES production function, if one is willing to make functional form
assumptions. Second, it is possible to test the restrictions of a model by comparing its results with
a more general model. For example, getting significantly different estimates from a CES production
function and a nonparametric model would suggest rejecting constant elasticity of substitution in
the production technology. Third, the nested structure makes it possible to impose regularization
based on economic theory. One can start with the most general model with as few restrictions
as possible. If the estimates are too noisy, then a nested model can be employed to improve
precision. Regularization is especially relevant for industries with a small number of firms, for
which nonparametric estimation is often infeasible.

The control variable approach developed in this paper is applicable to parametric production
functions, including CES and Cobb-Douglas. When applied to the Cobb-Douglas production func-
tion, this approach provides some advantages over the standard methods. For example, it is robust
to the functional dependence problem highlighted by Ackerberg et al. (2015). Also, it conditions on
less information, and therefore provides efficiency gains in estimation.

In terms of data requirements, I focus on the common data scheme in the production function
literature, which in general lacks firm-level input prices. Therefore, variation in input prices is not
required for identification. However, I show how to extend the model and identification strategy
to include observed firm-level input prices. In another extension, I present a way of incorporating
non-random firm exit into the estimation method under a simplifying assumption that firms exit
when they receive a Hicks-neutral productivity draw below a threshold.
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1.1 Related Literature

The most common method for production function estimation is the proxy variables approach,
which uses inputs to control for endogeneity (Olley and Pakes (1996), Levinsohn and Petrin (2003),
Wooldridge (2009), Ackerberg et al. (2015), Gandhi et al. (2018)).8 Olley and Pakes (1996) find the
conditions under which investment can be used as a ‘proxy’ to control for unobserved productivity.
Motivated by practical challenges to using investment as a proxy, Levinsohn and Petrin (2003)
instead propose using materials. Ackerberg et al. (2015) point out a potential collinearity issue
in these papers and introduce an alternative proxy variable approach that avoids the collinearity
problem. More recently, Gandhi et al. (2018) study nonparametric identification of production
functions using proxy variables. They show how to combine the proxy variable approach with
first-order conditions.

My approach builds on these papers but differs in three main respects. First, it allows for factor-
augmenting productivity in addition to Hicks-neutral productivity. I determine the conditions under
which both productivity shocks can be expressed as a function of inputs by nonparametrically in-
verting input demand functions. Second, I use control variables identified from data to overcome
the endogeneity of productivity shocks, as opposed to variables directly observed in the data. Third,
I use the first-order conditions of cost-minimization within the proxy variable framework for iden-
tification. Unlike Gandhi et al. (2018), firms have market power in the output market, but my
approach requires two flexible inputs.

Three recent papers have also highlighted the importance of incorporating factor-augmenting
technology into production functions (Raval (2019b), Zhang (2019), Doraszelski and Jaumandreu
(2018)). These papers study the change in factor-augmenting productivity and its relation to other
economic variables.9 The common feature in these papers is the CES production function and
firm-level variation in input prices. They exploit the parameter restrictions between the production
and input demand functions and parametrically invert the input demand functions to recover labor-
augmenting productivity. I relax the CES assumption and generalize the parametric inversion to
a nonparametric inversion. Also, my paper does not require variation in input prices, but it can
accommodate it. Finally, the focus of my empirical application is different. I analyze how labor-
augmenting technology affects output elasticities and markups.10

This paper benefits from and contributes to the literature on markup estimation from production
data (Hall (1988), De Loecker and Warzynski (2012), Raval (2019a)). This literature demonstrates
how to estimate markups from output elasticities under a cost minimization assumption. In a recent

8The production function estimation literature goes back to Marschak and Andrews (1944), who first recognized
the endogeneity problem. First attempts to address the endogeneity problem have used panel data methods (Mund-
lak (1961), Mundlak and Hoch (1965)). However, these methods do not give satisfactory answers in practice, as
summarized by Griliches and Mairesse (1995). See also Blundell and Bond (2000).

9Raval (2019b) estimates a value-added CES production function with labor-augmenting productivity. Doraszelski
and Jaumandreu (2018) estimate a gross CES production function with labor-augmenting productivity. Zhang (2019)
allows for the materials-augmenting productivity in a CES specification.

10Another strand of literature uses the random coefficients framework to model firm-level heterogeneity in pro-
duction technology. See Kasahara et al. (2015), Balat et al. (2016), Li and Sasaki (2017) and Fox et al. (2019).
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paper, Doraszelski and Jaumandreu (2019) extends this literature by studying markup estimation
in the presence of unobserved demand shocks and adjustment cost in flexible inputs. I investigate
the role of production function specification on markup estimates and argue that correct estimation
of output elasticities and firm-level heterogeneity is crucial for markup estimation. Specifically, I
show that estimating a flexible production technology leads to lower markup estimates.

Lastly, a growing empirical literature analyzes markup growth and market power in the US.
Much of this literature assumes a Cobb-Douglas production function and finds that markups have
risen in the US and other developed countries (Diez et al. (2018), De Loecker et al. (2018), Autor
et al. (2019)). I emphasize the importance of a flexible production function by showing that labor-
augmenting technology points to a more muted rise in markups in the US.

2 Model

I start by introducing a production function model with labor-augmenting technology. I then show
how this model explains the data better by comparing it to commonly-used production function
models.

2.1 Nonparametric Production Function with Labor-Augmenting Technology

The defining feature of my production function is that it allows for both labor-augmenting and
Hicks-neutral technology without parametric restrictions. In this way, the model can accommodate
a rich heterogeneity in production technology across firms.

Firm i produces output at time t by transforming three inputs—capital, Kit; labor, Lit; and
materials, Mit—according to the following production function:

Yit = Ft(Kit, ω
L
itLit,Mit) exp(ωHit ) exp(εit), (2.1)

where Yit denotes the quantity of output produced by the firm. Two unobserved productivity terms
affect production. Labor-augmenting productivity, denoted by ωLit ∈ R+, increases the effective units
of the labor input. Hicks-neutral productivity, denoted by ωHit ∈ R, raises the quantity produced
for any given input combination. Finally, εit ∈ R is a random shock to planned output.

The factors of production are classified into two types: flexible and predetermined. I assume
that labor and materials are flexible inputs, meaning that the firm chooses them each period, and
they do not affect future production. Materials consist of intermediate inputs used for production,
such as raw materials and energy. In contrast, I assume that capital is a predetermined input, that
is, the firm chooses the level of capital to use during period t in period t− 1. Therefore, the firm’s
current capital decision affects future production.

In each period, the firm chooses the level of flexible inputs to minimize the total cost of pro-
duction based on its information set. I use Iit to denote firm i’s information set at period t, which
includes productivity, ωLit, and ω

H
it , past information sets, and other signals related to production

and profit. The information set is orthogonal to the random shock, i.e., E[εit | Iit] = 0, the only
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orthogonality restriction imposed on the information set. Under this assumption, εit can be viewed
as measurement error in output or an ex-post productivity shock not observed (or predicted) by the
firm before production.

I assume that the input markets for labor and materials are perfectly competitive. The input
prices do not vary across firms, but they can vary over time. Therefore, firms are price-takers
facing plt and pmt as the prices of labor and materials, respectively. My model and identification
strategy extends to the case where input prices are heterogeneous and observed, but firms do not
have market power in the input markets.11 The model does not assume that output markets are
perfectly competitive.

The form of the production function is industry-specific and time-varying. That is, all firms in
the same industry produce according to the same functional form, which can change over time, as
indicated by the index t in Equation (2.1). Although the industry-specific production function is
restrictive, firm-specific productivities and lack of parametric restrictions introduce firm-level het-
erogeneity in production technology. In particular, the nonparametric production function allows
for heterogeneity based on the input mix, whereas labor-augmenting and Hicks-neutral productiv-
ity allow for unobserved heterogeneity in labor productivity and total factor productivity. These
features of the model are crucial for explaining the large cross-firm heterogeneity observed in the
data.

Despite its flexibility, the production function comes with some restrictions. In the model,
factor-augmenting productivity affects only the labor input, implying that the quality of capital
and materials inputs are homogeneous across firms. In general, my framework can accommodate
only one factor-augmenting productivity, and that factor should be a flexible input. The main
reason for this limitation is that a non-flexible input has dynamic implications, which makes it
difficult to model its unobserved productivity. Therefore, I do not consider capital-augmenting
production technology. However, the framework and identification results can accommodate models
with materials-augmenting technology instead of labor-augmenting technology.12

I choose to consider labor-augmenting technology for three reasons. First, labor-augmenting
productivity is an essential component of endogenous growth models and its changes are an im-
portant subject in the literature (Acemoglu (2003)). Second, heterogeneity in ωLit reflects firm-level
differences in labor quality. Several sources of labor quality, such as firms managing labor differ-
ently, human capital, and experience might lead to differences in labor productivity across firms.
Labor-augmenting productivity can account for these unobserved sources of productivity differences.
Finally, in most production datasets, labor has the most across-firm variation among all inputs, so
intuitively we should expect most unobserved heterogeneity in labor input.

My production function differs from standard models in two significant ways: (i) It contains
factor-augmenting technology and (ii) It does not impose a parametric structure. These features
are not trivial and that my flexible production function has important implications not captured

11I present this extension in Supplemental Appendix 3.1.
12Modeling materials’ productivity could be important in some industries as it might reflect heterogeneity in input

quality; see Fox and Smeets (2011).
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by other production functions. For an illustration, a common specification is the Cobb-Douglas
production function:

yit = βkkit + βllit + βmmit + ωHit + εit,

where lowercase letters denote the logarithms of the corresponding uppercase variables. This spec-
ification is nested in Equation (2.1) and has two key restrictions: (i) The production function is
log-linear and (ii) ωHit is the only source of unobserved heterogeneity in production technology.
These are strong restrictions with strong implications. The log-linear functional form constrains the
output elasticities to be common across firms. This constraint is not consistent with some of the
empirical findings in the literature. First, it implies that all firm-level heterogeneity in flexible input
allocation comes from variation in input prices since a cost-minimizing firm sets marginal products
equal to prices for the flexible inputs.13 Second, the literature has documented large heterogene-
ity in capital and labor intensities of production, which contradicts constant elasticity.14 Another
implication of the log-linear functional form is unitary elasticity of substitution between all input
pairs. This prediction is also inconsistent with empirical findings in the literature.15

A solution to these issues, commonly employed in the literature, is to assume a more flexible
Hicks-neutral production function, such as translog. However, assuming that Hicks-neutral produc-
tivity is the only source of unobserved heterogeneity is still restrictive and is not consistent with
several observed patterns. The literature has documented a large and increasing heterogeneity in
labor shares at the firm-level and a significant decline in labor share at the economy-level in many ad-
vanced economies. Most important, these facts have been attributed to within-industry changes and
reallocation across firms rather than across-industry changes (Karabarbounis and Neiman (2014),
Kehrig and Vincent (2018), Autor et al. (2019)). Changes and heterogeneity in production technol-
ogy have been proposed as a mechanism (Oberfield and Raval (2014)). Labor-augmenting produc-
tivity in my production function model captures this heterogeneity. Failing to account for this will
lead to biased production function estimates.

In brief, the inability of commonly used production functions to explain the data suggests that
we need a more flexible production function.16

13Raval (2019b) tests and rejects this prediction using data from the Census of US manufacturing.
14For example, the literature finds that large firms are more capital-intensive and less labor-intensive than small

firms (Holmes and Schmitz (2010), Bernard et al. (2009)) and exporting firms are more capital-intensive than domestic
firms (Bernard et al. (2007)).

15Although estimates vary, the consensus is that the aggregate elasticity of substitution between capital and
labor is less than one (Antras (2004), Klump et al. (2007),Herrendorf et al. (2015), Alvarez-Cuadrado et al. (2018)).
Furthermore, Chirinko et al. (2011) show that the elasticity of substitution at the firm-level must be lower than the
aggregate elasticity of substitution, providing further evidence that Cobb-Douglas is not an accurate representation
of the firms’ production technology.

16There are well-known identification problems with Hicks-neutral production functions. Gandhi et al. (2018)
study such production functions and show that the standard proxy variable approach from Olley and Pakes (1996)
does not identify the production function nonparametrically. They instead propose a method that exploits the first-
order conditions under the assumption that the output market is perfectly competitive. However, this assumption
rules out markups, one of the objects of interest in this paper. Empirical studies often estimate the translog functional
form to allow for a flexible production technology. However, the translog production function is subject to the same
identification problems studied in Gandhi et al. (2018).
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2.2 Assumptions

In this section, I present assumptions and discuss their implications. The first assumption imposes a
homothetic separability restriction on the production function. This assumption allows me to invert
the firm’s inputs decisions to express ωLit as an unknown function of inputs. Other assumptions
concern firm behavior and the distribution of productivity shocks. They generalize the standard
proxy variable framework to a model with two productivity shocks. Throughout the paper, I
assume that all functions are continuously differentiable as needed and all random variables have a
continuous and strictly increasing distribution function.

2.2.1 A Homothetic Separability Restriction

I first provide a set of conditions under which labor-augmenting productivity can be expressed as a
function of the firm’s inputs.

Assumption 2.1 (Homothetic Separability). Suppose that

(i) The production function is of the form

Yit = Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
exp(ωHit ) exp(εit).

(ii) ht(Kit, ·, ·
)
is homogeneous of arbitrary degree (homothetic) for all Kit.

(iii) The firm minimizes production cost with respect to (Lit,Mit) given Kit, productivity shocks
(ωLit, ω

H
it ) and input prices (plt, p

m
t ).

(iv) The elasticity of substitution between effective labor (ωLitLit) and materials is either greater than
1 for all (Kit, ω

L
it) or less than 1 for all (Kit, ω

L
it).

Assumption 2.1(i) requires that the production function is separable in Kit and a composite
input given by ht(Kit, ω

L
itLit,Mit). This assumption is without loss of generality unless further

restrictions are imposed.

Assumption 2.1(ii) states that ht(·) is a homothetic function in effective labor and materials
for any capital level. Combined with Assumption 2.1(i), this property is called weak homothetic
separability, first introduced by Shephard (1953). Weak homothetic separability is common in
models of consumer preferences and production functions, and most parametric production functions
satisfy this property. Its key implication is that the ratio of the marginal products of two inputs
does not depend on ωHit . Note that the homotheticity of ht does not imply that the production
function is homothetic.

Assumption 2.1(iii) specifies that firms choose the level of flexible inputs to minimize their
(short-run) production cost. The production cost does not involve capital, as it is a predetermined
input. Cost-minimization is weaker than profit maximization because the output level does not
have to maximize profit; the cost is minimized for an arbitrary level of output. Moreover, it is a
static problem, so this assumption is agnostic about the firm’s dynamic problem.17

17In my model, cost-minimization does not give rise to parametric first-order conditions. As a result, this assump-
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Assumption 2.1(iv) implies that effective labor and materials are either substitutes or comple-
ments. In a nonparametric production function, whether two inputs are substitutes or complements
can change with the level of inputs and ωLit. Assumption 2.1(iv) precludes this possibility.

Next, I state a result establishing the properties of the ratio of flexible inputs using Assumption
2.1.

Proposition 2.1.
(i) Under Assumptions 2.1(i-iii), the flexible input ratio, denoted by M̃it = Mit/Lit, depends only
on Kit and ωLit

M̃it ≡ rt(Kit, ω
L
it), (2.2)

for some unknown function rt(Kit, ω
L
it).

(ii) Under Assumption 2.1(iv), rt(Kit, ω
L
it) is strictly monotone in ωLit.

Proof. See Appendix B.

The first part of this proposition states that the flexible input ratio is a function of only one
of the model unobservables: labor-augmenting productivity. To see the intuition for this result,
observe that the firm’s relative labor and materials allocation depends on the relative marginal
products of these inputs. By the homotheticity of ht(·), the ratio of the marginal products does not
change with ωHit , so as the ratio of flexible inputs. Formally, the proof relies on the multiplicative
separability of the firm’s cost function under Assumption 2.1. Under homothetic separability and
cost minimization, the cost function can be derived as:

C(Ȳit,Kit, ω
H
it , ω

L
it, p

m
t , p

l
t) = C1(Kit, ω

L
it, p

m
t , p

l
t)C2(Kit, Ȳit, ω

H
it ), (2.3)

where C(·), C1(·) and C2(·) are unknown functions that depend on the production function, and Ȳit
is planned output. By Shephard’s Lemma, the optimal input demands equal the derivatives of the
cost function with respect to input prices (pmt , plt). This implies that the ratio of materials to labor
input does not depend on C2(Kit, Ȳit, ω

H
it ) and its arguments.

The second part of Proposition 2.1 establishes that rt(Kit, ω
L
it) is strictly monotone and invertible

in ωLit. For strict monotonicity, the flexible input ratio should always move in the same direction
as ωLit, which affects the ratio of marginal products of labor and materials. Since the relationship
between the input ratio and the ratio of marginal products depends on whether the elasticity of
substitution is below of above one, Assumption 2.1(iv) restricts the elasticity of substitution.18

Together, these two results provide a function, rt(Kit, ω
L
it), that is strictly monotone in a scalar

unobserved variable.

Next, I provide two examples of parametric production functions that satisfy the restrictions in
Assumption 2.1.

tion is less restrictive in my model than in most models in the literature, which usually make parametric restrictions.
18In particular, if materials and effective labor are substitutes, firms increase materials-to-labor ratio as ωL

it in-
creases, otherwise firms decreases materials-to-labor ratio as ωL

it increases.
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Example 1 (CES). The constant elasticity of substitution production function is given by

Yit =
(
βkK

σ
it + βl[ω

L
itLit]

σ + (1− βl − βm)Mσ
it

)v/σ
exp(ωHit ) exp(εit).

My framework nests the CES production function with h
(
Kit, ω

L
itLit,Mit

)
= βl

[
ωLitLit

]σ
+ (1−βl−

βm)Mσ
it. This function is homogeneous of degree one and the elasticity of substitution between

effective labor and materials is σ. The CES specification has been widely used in the literature
to study factor-augmenting technology (Doraszelski and Jaumandreu (2018), Zhang (2019), Raval
(2019b)). Under the CES assumption rt(Kit, ω

L
it) has a known form, which is log-linear in ωLit:

log(M̃it) = σp̃t + log(ωLit), (2.4)

where p̃t is the ratio of input prices. A common strategy in the literature is to estimate this linear
equation using instruments for input prices and recover ωLit.

19 However, this strategy relies on the
CES functional form, because first-order conditions are, in general, not separable in ωLit and prices.
Therefore, one contribution of this paper is to generalize the CES production function with labor-
augmenting technology to an arbitrary functional form, subject to Assumption 2.1. I show that ωLit
is invertible under more general conditions.20

Example 2 (Nested CES). A more flexible parametric form is the nested CES:

Yit =
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1 + (1− βl)Mσ1
it

)σ/σ1 )v/σ
exp(ωHit ) exp(εit). (2.5)

This is a special case of my model with h
(
Kit, ω

L
itLit,Mit

)
=
(
βl
[
ωLitLit

]σ1 + (1−βl−βm)Mσ1
it

)1/σ1 .
h(·) is homogeneous of degree one and the elasticity of substitution between effective labor and
materials is σ1. Since the Nested CES is a special case, my approach can be used to estimate
this model, if one is willing to make parametric assumptions. Supplemental Appendix Section 4
explains in detail how to employ my approach for the estimation of CES and Nested CES production
functions.

My production function differs from these parametric models in two important ways. First, in
both examples the elasticity of substitution between inputs is constant, which has strong theoretical
implications (Nadiri (1982)). In contrast, I impose a mild restriction on the elasticity of substitution
given by Assumption 2.1(iv), so it can vary freely subject to this restriction. Second, neither example
allows for heterogeneity in returns to scale across firms, which equals v. Returns to scale varies across
firms without restriction in my model.21

19In order to estimate Equation (2.4), one needs to observe heterogeneous input prices at the firm level.
20Doraszelski and Jaumandreu (2018) discuss informally how to use M̃it to control for ωL

it without parametric
assumptions. However, their model is more restricted than my model and they do not show invertibility of M̃it in
ωL
it.

21See Section 4.5 for how to impose common returns to scale across firms.
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2.2.2 Other Assumptions

The rest of the assumptions generalize the standard proxy variable framework assumptions to ac-
commodate labor-augmenting technology.

Assumption 2.2 (First-Order Markov). Productivity shocks (jointly) follow an exogenous first-
order Markov process,

P (ωLit, ω
H
it | Iit−1) = P (ωLit, ω

H
it | ωLit−1, ω

H
it−1).

According to this assumption the current productivity shocks are the only variables in the firm’s
information set that are informative about future productivity. It is a natural generalization of
the standard first-order Markov assumption from Olley and Pakes (1996) to accommodate two-
dimensional productivity shocks.22 This assumption does not restrict the joint distribution of pro-
ductivity shocks, which can be arbitrarily correlated. For example, firms with high Hicks-neutral
productivity can also have high labor-augmenting productivity. Furthermore, there is no restriction
on the first-order dynamics of productivity shocks: higher ωHit this period might be associated with
higher ωLit+1 next period.23

Assumption 2.3 (Monotonicity). Materials demand is given by

Mit = st(Kit, ω
L
it, ω

H
it ), (2.6)

where st(Kit, ω
L
it, ω

H
it ) is an unknown function that is strictly increasing in ωHit .

Introduced by Levinsohn and Petrin (2003), the assumption that materials demand is monotone in
Hicks-neutral productivity is pervasive in the literature. However, in my model, firms’ materials
demands also depend on ωLit, as it affects the marginal product of materials. Therefore, the materials
demand function takes capital and two unobserved productivity shocks as arguments. 24

Verifying this assumption requires the primitives of the output market, such as the demand
function and competition structure, which I do not model in this paper.25 However, this assumption
is intuitive and expected to hold under general conditions. It says that keeping everything else the
same, more productive firms have a lower marginal cost, leading to a decline in prices and an increase
in output.26

Implicit in this assumption is that there is no unobserved heterogeneity in firms’ residual demand
curves in the output market; otherwise, the materials input demand function should include firm-

22The model can be extended to have a controlled Markov process, where some observed variables such as R&D
and export can affect the joint distribution of productivity (Doraszelski and Jaumandreu (2013)).

23Note that this assumption does not restrict the firm’s beliefs about future productivity shocks, which can be
incorrect and heterogeneous across firms. This is because I am agnostic about the firm’s dynamic problem.

24As discussed in Gandhi et al. (2018), this assumption imposes an implicit restriction on εit, i.e. E[exp(εit) |
Iit] = E[exp(εit) | Kit, ω

L
it, ω

H
it ].

25Note that this is different from the monotonicity condition for ωL
it, which depends only on the form of production

function and not on any other parts of the firm’s problem.
26Using standard demand models, Melitz (2000) and DeSouza (2006) verify this assumption for Hicks-neutral

productivity.
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specific demand shocks, violating two-dimensional unobserved heterogeneity. Even though it is
restrictive, it covers commonly some commonly used demand models such as monopolistic and
Cournot competitions. Moreover, it allows for ex-post demand shock after the firm decides on its
planned output. For more discussion; see Jaumandreu (2018) and Doraszelski and Jaumandreu
(2019).

Assumption 2.4 (Timing). Capital evolves according to

Kit = κ(Kit−1, Iit−1),

where Iit−1 denotes investment made by firm i during period t− 1.

According to this assumption, investment becomes productive in the next period, implying that
firms choose capital one period in advance. As a result, Kit belongs to the information set at period
t− 1, that is, Kit ∈ Iit−1

27.

2.3 Invertibility: Expressing Unobserved Productivity Using Inputs

Proposition 2.1 provides the necessary conditions, monotonicity and scalar unobserved heterogene-
ity, to invert out ωLit using the flexible input ratio:

ωLit = r−1
t (Kit, M̃it) ≡ r̄t(Kit, M̃it). (2.7)

Similarly, Assumption 2.3 provides a monotonicity result for ωHit using materials demand function
in Equation (2.6). Inverting that function yields

ωHit = s−1
t (Kit,Mit, ω

L
it). (2.8)

This function contains another unobservable, ωLit, as an argument. Substituting for it from Equation
(2.7) gives

ωHit = s−1
t (Kit,Mit, r̃t(Kit, M̃it)) ≡ s̄t(Kit,Mit, M̃it). (2.9)

Equations (2.7) and (2.9) demonstrate that the modeling assumptions and optimal firm behavior
allow me to write unobserved productivity shocks as unknown functions of inputs. The intuition is
that, even though productivity shocks are unobservable to the researcher, firms observe them before
making their input decisions. This makes it possible to use the firm’s input decisions to obtain
information about productivity.

Invertibility is a standard condition in the proxy variable approach, which uses observables,
such as investment or materials, as a proxy to control for unobserved productivity. However, the
proxy variable approach is infeasible in my production function model due to multi-dimensional
productivity. To see why, if we use Equation (2.9) to control for ωHit , we have to condition on all
the inputs, leaving no variation for identification. To address this problem, I will first develop a

27The approach is robust to a weaker timing assumption, which can potential provides efficiency gains. For a
discussion, see Ackerberg (2016).
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control variable approach building on the invertibility results in this section. Then, I will show how
to exploit first-order conditions of cost minimization for production function estimation.

3 A Control Variable Approach to Production Function Estimation

The control variable approach relies on constructing variables from data to control for endogeneity.
In particular, by conditioning on control variables, one can isolate the exogenous variation and
achieve identification (Imbens and Newey (2009), Matzkin (2004)). In this section, I construct
a control variable for each productivity shock using the first-order Markov process and timing
assumptions.

My approach builds on the standard control variable framework presented in Imbens and Newey
(2009). They show how to derive a control variable when a single dimensional unobserved variable
is strictly monotone in an observed variable and satisfied an independence condition. To apply
their approach in production function estimation, I make two innovations. First, I show that the
modelling assumption provides an independence condition for innovation to productivity. Second,
my model involves two-dimensional unobserved heterogeneity, for which standard control variable
approach does not work (Kasy (2011). I overcome this challenge by using the triangular structure
of productivity shocks using Equations (2.7) and (2.8)28.

I derive control variables in two stages. In the first stage, I derive the control variable for ωLit.
In the second stage, building on the first control variable, I derive the control variable for ωHit . For
notational convenience, I omit time subscripts from functions in the rest of the paper.

3.1 Derivation of the Control Variable for Factor-Augmenting Technology

If productivity shocks are continuously distributed, we can relate labor-augmenting productivity to
past productivity shocks in the following way:

ωLit = g1(ωLit−1, ω
H
it−1, u

1
it), u1

it | ωLit−1, ω
H
it−1 ∼ Uniform(0, 1). (3.1)

This representation of ωLit is without loss of generality and follows from the Skorohod representation
of random variables. Here, g1(ωLit−1, ω

H
it−1, τ) corresponds to the τ -th conditional quantile of ωLit

given (ωLit−1, ω
H
it−1). As such, we can view u1

it as the productivity rank of firm i relative to firms
with the same past productivity.

Another interpretation of u1
it is unanticipated innovation to ωLit, which determines the current

period productivity given previous period’s productivity. Unlike the standard definition of “innova-
tion”, which is separable from and mean independent of past productivity, u1

it is non-separable and
independent. These properties of u1

it are key for utilizing the modeling assumptions to construct
the control variables. In the previous section, I showed that M̃it = r

(
Kit, ω

L
it

)
. Substituting for ωLit

28The control variable approach has a long tradition in industrial organization. It has been used for estimating
demand (Bajari and Benkard (2005), Ekeland et al. (2004), Kim and Petrin (2010)), dynamic discrete choice models
(Hong and Shum (2010)) and auctions (Guerre et al. (2009)). To the best of my knowledge, my paper is the first
application of the control variable approach to a model with two-dimensional unobserved heterogeneity.
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from Equation (3.1) and using Equations (2.7) and (2.9), I obtain

M̃it = r
(
Kit, g1(ωLit−1, ω

H
it−1, u

1
it)
)
,

M̃it = r
(
Kit, g1

(
r̄(Kit−1, M̃it−1), s̄(Kit−1, M̃it−1,Mit−1), u1

it

))
,

M̃it ≡ r̃
(
Kit,Wit−1, u

1
it

)
, (3.2)

for some unknown function r̃(·) and Wit denotes the input vector, Wit = (Kit,Mit, Lit). Note that
M̃it is strictly monotone in u1

it because r(·) is strictly monotone in ωLit by Assumption 2.1, and
g1(·) is strictly monotone in the last argument by construction. Next, I establish an independence
condition so that I can use Equation (3.2) to derive the control variable for ωLit.

Lemma 3.1. Under Assumptions 2.2 - 2.4, u1
it is jointly independent of (Kit,Wit−1).

Proof. See Appendix B.

The intuition behind this result is as follows. Condition on (ωLit−1, ω
H
it−1) throughout. By the

timing assumption, (Kit,Wit−1) belongs to Iit−1. Together with the Markov assumption, this
implies that (Kit,Wit−1) is not informative about current productivity. Recall that u1

it contains all
the information related to current productivity. Since (Kit,Wit−1) does not contain information
about current productivity it is independent of u1

it.

We now have the two conditions for deriving a control variable: (i) r̃
(
Kit,Wit−1, u

1
it

)
is strictly

monotone in u1
it and (ii) u1

it is independent of (Kit,Wit−1). Since the distribution of u1
it is already

normalized to a uniform distribution in Equation (3.1), we can identify it from data as:

u1
it = FM̃it|Kit,Wit−1

(M̃it | Kit,Wit−1), (3.3)

where FM̃it|Kit,Wit−1
denotes the CDF of M̃it conditional on (Kit,Wit−1).29 The main idea is that

two firms, i and j, with the same capital and previous period’s inputs, but different materials-to-
labor ratios, differ only in their innovations to labor-augmenting productivity. That is, conditional
on Kit andWit−1, M̃it > M̃jt if and only if u1

it > u1
jt. Therefore, ranking in terms of M̃it is the same

as ranking in terms of u1
it. As a result, I can recover u1

it by looking at a firm’s rank in the flexible
input ratio. Using this result, I can express ωLit as a function of the control variable and past inputs:

ωLit = g1(ωLit−1, ω
H
it−1, u

1
it)

= g1

(
r̄(Kit−1, M̃it−1), s̄(Kit−1,Mit−1, M̃it−1), u1

it

)
≡ c1

(
Wit−1, u

1
it

)
, (3.4)

where c1(·) is an unknown function.

29For notational simplicity, I assume M̃it is strictly increasing in u1
it. This is without loss of generality because I

need to recover u1
it up to a monotone transformation. If M̃it is strictly decreasing in u1

it, then FM̃it|Kit,Wit−1
(M̃it |

Kit,Wit−1) = 1− u1
it, a monotone transformation.
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3.2 Derivation of the Control Variable for Hicks-Neutral Technology

Control variable derivation for ωHit proceeds similarly. The Skorohod representation of ωHit is30:

ωHit = g2(ωLit−1, ω
H
it−1, u

1
it, u

2
it), u2

it | ωLit−1, ω
H
it−1, u

1
it ∼ Uniform(0, 1). (3.5)

Next, I use the monotonicity of materials in ωHit given by Assumption 2.3 to write

Mit = s
(
Kit, c1

(
Wit−1, u

1
it

)
, g2

(
ωLit−1, ω

H
it−1, u

1
it, u

2
it

))
= s

(
Kit, c1

(
Wit−1, u

1
it

)
, g2

(
r̄ (Wit−1) , s̄ (Wit−1) , u1

it, u
2
it

))
≡ s̃

(
Kit,Wit−1, u

1
it, u

2
it

)
, (3.6)

where s̃(·) is an unknown function. Note that s̃
(
Kit,Wit−1, u

1
it, u

2
it

)
is strictly monotone in u2

it

because s
(
Kit, ω

L
it, ω

H
it

)
is strictly monotone in ωHit by Assumption 2.3, and g2

(
ωLit−1, ω

H
it−1, u

1
it, u

2
it

)
is strictly monotone in u2

it by construction.

Lemma 3.2. Under Assumptions 2.2 - 2.4, u2
it is jointly independent of (Kit,Wit−1, u

1
it).

Proof. See Appendix B.

Having strict monotonicity and independence, we can use Equation (3.6) to identify u2
it. In

particular,

u2
it = FMit|Kit,Wit−1,u1it

(Mit | Kit,Wit−1, u
1
it), (3.7)

where FMit|Kit,Wit−1,u1it
denotes the CDF of Mit conditional on (Kit,Wit−1, u

1
it). Therefore, by

comparing firms’ materials levels, conditional on (Kit,Wit−1, u
1
it), we can recover the innovation to

Hicks-neutral productivity, u2
it. With this result, ωHit can be written as:

ωHit ≡ c2

(
Wit−1, u

1
it, u

2
it

)
, (3.8)

for an unknown function c2(·) whose derivation is the same as Equation (3.4). This result and
Equation (3.4) obtained in the previous subsection imply that conditional on previous period’s
inputs and the two control variables, there is no variation in productivity shocks. Therefore, using
these control variables, we can control for endogeneity in production function estimation.31,32

Remark 3.1 (Application to the Cobb-Douglas Production Function). Since my control variable
approach relies only on timing and Markov assumptions, it can be applied to other functional forms.

30Unlike the previous subsection, u1
it is included in this representation, in addition to (ωL

it−1, ω
H
it−1), to account

for the correlation between ωL
it and ωH

it . If one relaxes the joint Markov assumption and assumes that innovations
to two productivity shocks are independent conditional on past productivity, I do not need to condition on u1

it. See
Section Supplemental Appendix 3.3 for control variable derivation under this assumption.

31Using the same procedure and substituting past productivities recursively, we can write productivity shocks as
ωL
it = c1

(
Wit−k, {u1

it−l}k−1
l=0

)
and ωH

it = c2
(
Wit−k, {u1

it−l}k−1
l=0 , {u

2
it−l}k−1

l=0

)
for any integer k, where u1

it−l and u2
it−l

are defined as in Equation (3.3) and (3.7). This would lead to more identifying variation at the expense of having to
estimate more control variables.

32I show in Supplemental Appendix 3.1 how to extend the control variable approach when there is heterogeneity
in input prices.
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Supplemental Appendix 4.1 demonstrates its application to Cobb-Douglas production function and
discusses its properties. For an overview, consider a value added Cobb-Douglas production function
yit = βkkit+βllit+ω

H
it +εit. Using a control variable, ωHit can be written as ωHit = c(mit−1, kit−1, uit),

where uit = Fmit|mit−1,kit−1
(mit | kit,mit−1, kit−1). Substituting this into the production function

gives a partially linear model:

yit = βkkit + βllit + c(mit−1, kit−1, uit) + εit,

with the condition E[εit | kit, lit,mit−1, kit−1, uit] = 0. As I discuss in Supplemental Appendix 4.1,
estimating the production function using this partially linear model has two advantages over the
standard proxy variable approach. First, estimation is robust to the functional dependence problem
highlighted by Ackerberg et al. (2015). That is because even if labor is a flexible input, there
is variation in labor conditional on (mit−1, kit−1, uit)

33. Second, there are efficiency gains, as my
approach fully uses the independence condition given by the Markov assumption.

Remark 3.2 (Functional Dependence Problem). It is well-known that in Hicks-neutral production
functions with two flexible inputs, after conditioning on capital and one flexible input, there is no
variation in the other flexible input (Ackerberg et al. (2015), Bond and Söderbom (2005)). My
model is robust to this problem because the second productivity shock, ωLit, generates additional
variation in inputs.

3.3 Comparison to the Proxy Variable Approach

My approach differs from the standard proxy variable approach in that control variables condition
on ‘less’ current period information than proxy variables. The proxy variable approach relies on the
invertibility of productivity shocks shown in Section 2.3 to control for endogeneity,

ωLit = r̄(Kit, M̃it), ωHit = s̄(Kit,Mit, M̃it). (3.9)

Applying the proxy variable approach would require conditioning on (Kit, M̃it) and (Kit,Mit, M̃it)

to control for ωLit and ωHit , and then using the last period’s inputs as instruments. However, as
pointed out by Gandhi et al. (2018), after conditioning on the proxy variables, there is no variation
in any of the inputs. In contrast, the control variable approach relies on a different representation
of productivity shocks:

ωLit = c1

(
Wit−1, u

1
it

)
, ωHit = c2

(
Wit−1, u

1
it, u

2
it

)
,

which requires past inputs and control variables, u1
it and u2

it, to control for endogeneity. Conse-
quently, I do not need to condition on any of the current period inputs directly, which reduces the
dimension of the conditioning variables. I achieve this result by exploiting the Markov assumption.
Papers using the proxy variable framework, such as Olley and Pakes (1996), Levinsohn and Petrin

33To see this, if labor is perfectly flexible, we can write it as lit = l(kit, ω
H
it ) =

l
(
k(kit−1, ωit−1, νit−1), c(mit−1, kit−1, uit)

)
= l

(
k(kit−1, s

−1(kit−1,mit−1), νit−1)), c(mit−1, kit−1, uit)
)

=:

l̃(kit−1,mit−1, uit, νit−1), where νit−1 corresponds to a vector of random variables that affects the firm’s in-
vestment decision, such as investment prices and heterogeneous belief about future.
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(2003), and Ackerberg et al. (2015), have also assumed that productivity follows a first-order Markov
process, but they have not exploited all the information provided by that assumption; they have
only used its mean independence implication. In contrast, I fully exploit the Markov assumption,
which results in stronger identification results and efficiency gains. However, if mean independence
holds but independence does not, then my method would give inconsistent estimates, whereas proxy
variable estimator would remain consistent.

4 Identification

This section discusses identification of the output elasticities, the elasticity of substitution, and
productivity shocks. First, I point out a fundamental identification problem by showing that the
production function and output elasticities cannot be identified from variations in inputs and out-
put. Then, I propose a solution to this problem by exploiting the first-order conditions of cost-
minimization to identify output elasticities. Finally, I examine identification of the other features
of the production function and explore how further economic restrictions can be imposed on the
production function.

4.1 A Non-identification Result

Taking the logarithm of output and denoting f = log(F ), yit = log(Yit), I write the logarithm of
the production function in an additively separable form in ωHit as

yit = f
(
Kit, h(Kit, ω

L
itLit,Mit)

)
+ ωHit + εit.

Since h(·) is homothetic in its second and third arguments by Assumption 2.1, I assume, without
loss of generality, that it is homogeneous of degree one. Using this property, I rewrite the production
function as

yit = f
(
Kit, Lith(Kit, ω

L
it, M̃it)

)
+ ωHit + εit. (4.1)

This reformulation is convenient because ωLit becomes an argument in h(·). In Subsection 2.3, I
showed that ωLit = r̄(Kit, M̃it). Substituting this into Equation (4.1) gives

yit = f
(
Kit, Lith

(
Kit, r̄(Kit, M̃it), M̃it

))
+ ωHit + εit.

This equation reveals an identification problem.

Proposition 4.1. Without further restrictions, h cannot be identified from variation in (Wit, Yit).

To see this result note that for arbitrary values of (Kit, M̃it), the second argument of the h function,
r̄(Kit, M̃it), is uniquely determined. Therefore, it is not possible to independently vary (Kit, ω

L
it, M̃it)

and trace out all dimensions of h.34 Therefore, h is not identified from the relationship between the

34As I show in Supplemental Appendix 4.1, with variation in input prices r̄(Kit, M̃it) depends also on the price
ratio and functional dependence brakes down.
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inputs and output.35 Most of the economically interesting objects, such as the output elasticities
or elasticity of substitutions, are a function of h, which underscores the challenge for identification.
To see this, suppressing the arguments of the functions, we can write output elasticities as

θKit := (f1 + f2h1)Kit, θLit := f2h2Litr̄(Kit, M̃it), θMit := f2h3Mit,

where fk denotes the derivative of f with respect to its k−th component. I also use θjit to denote the
output elasticity with respect to j. Note that all the output elasticities depend on the derivatives
of h, which are not identified.

Given this nonidentification result, I introduce another function, h̄(Kit, M̃it) :=

h(Kit, r̄(Kit, M̃it), M̃it), as a composite function of h and r̄, and rewrite the production function:

yit = f
(
Kit, Lith̄(Kit, M̃it)

)
+ ωHit + εit. (4.2)

Here, h̄ can be viewed as an (ex-post) reduced form function, which arises as a result of the firm’s
optimal input choices in equilibrium. It combines the effects of ωLit and the ratio of the optimally
chosen flexible inputs on output. In the rest of this section, I propose a solution to nonidentification
of output elasticities by investigating (i) what can be identified from first-order conditions of cost
minimization, and (ii) what can be identified from the functions f(·) and h̄(·).

4.2 Identification of Output Elasticities

This section investigates the identification of the output elasticities and labor-augmenting produc-
tivity, and obtains both positive and negative results. I find that the output elasticity of labor and
materials are identified by exploiting first-order conditions, but the output elasticity of capital and
labor-augmenting productivity are not identified without further restrictions.

4.2.1 Identifying the Ratio of Labor and Materials Elasticities

The multicollinearity problem presented in Subsection 4.1 implies that θLit and θ
M
it cannot be iden-

tified from variation in the inputs and output. However, the model provides an additional source of
information: firms’ optimal input decisions. Recall that cost minimization implies a link between
the production function and optimally chosen flexible inputs through the first-order conditions.
Therefore, we can learn about the production function from the observed flexible inputs. To show
the information provided by the first-order conditions, I write the firm’s cost minimization problem
as:

min
Lit,Mit

pltLit + pmt Mit

s.t. F
(
Kit, ω

L
itLit,Mit

)
exp(ωHit )E[exp(εit) | Iit] > Ȳit.

The first-order condition associated with this optimization problem is FV λit = pVt , where V ∈
{M,L}, FV donates the marginal product of V , and λit corresponds to the Lagrange multiplier.

35A similar nonidentification result is obtained by Ekeland et al. (2004) in the context of hedonic demand estima-
tion.
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Multiplying both sides by Vit/(Yitpit) and rearranging gives,

FV Vit
Yit︸ ︷︷ ︸

Elasticity(θVit )

E[exp(εit) | Iit]λit
exp(εit)pit

=
Vitp

v
t

Yitpit
,︸ ︷︷ ︸

Revenue Share of Input(αV
it)

(4.3)

where pit is the price of output. This expression involves the output elasticity and revenue share
of a flexible input, and it is satisfied for all flexible inputs. Taking the ratio of Equation (4.3) for
V = M and V = L yields

θMit
θLit

=
αMit
αLit

. (4.4)

The ratio of the output elasticities of labor and materials is identified as the ratio of revenue shares
using the cost-minimization assumption.36 The revenue shares are often observed in the data so
that we can calculate the ratio of elasticities without estimation. An important implication of using
the first-order conditions is that identification of output elasticities is possible only at the observed
input levels. This situation precludes a counterfactual exercise. I provide further discussion on this
in later sections. 37

Using the first-order conditions to estimate production functions has long been recognized in
the literature, but mostly under parametric assumptions. Doraszelski and Jaumandreu (2013)
and Grieco and McDevitt (2016) use first-order conditions to identify the Cobb-Douglas and CES
production functions, respectively. Gandhi et al. (2018) propose a method that employs Equation
(4.3) in a nonparametric fashion. They assume perfect competition in the output market, which
implies elasticity equals the revenue share. My contribution is to show how to exploit the first-order
conditions nonparametrically in the presence of two flexible inputs, even if firms have market power.

4.2.2 Identification of Sum of Materials and Labor Elasticities

In this subsection, I show how to recover the sum of the labor and materials elasticities from the
reduced form representation of the production function in Equation (4.2).

Proposition 4.2. The sum of labor and materials elasticities is identified from f and h̄ as

θVit := θMit + θLit = f2

(
Kit, Lith̄(Kit, M̃it)

)
Lith̄(Kit, M̃it), (4.5)

which equals the elasticity of F
(
Kit, Lith̄(Kit, M̃it)

)
with respect to its second argument.

Proof. Using Equation (4.1) the output elasticities of materials and labor can be obtained as:

θMit = f2h3Mit, θLit = f2

(
h− h3

Mit

Lit

)
Lit.

36For this result, I only need that firms are cost-minimizers, labor and materials are flexible inputs and firms are
price takers in the input markets. Therefore, this result is robust to violations of other assumptions in the model.

37In a recent paper, Doraszelski and Jaumandreu (2019) also used the ratio of revenue shares to identify the ratio
of elasticities.

20



The sum of the elasticities depends only on h, but none of its derivatives:

θVit = f2hLit = f2h̄Lit.

From this proposition, we see that identification of f and h̄ is sufficient for identifying the
sum of flexible input elasticities. Importantly, we do not need to identify the structural functions
and labor-augmenting productivity shock.38 The intuition is the following. If labor and materials
simultaneously increase by the same factor, ωLit = r̄(Kit, M̃it) remains the same because it is a
function of labor and materials only through their ratio. Thus, any change in the output would
not be confounded by the change in ωLit, and therefore, this change corresponds to the sum of the
flexible input elasticities.

Given the sum of elasticities, θVit , and the ratio identified in the previous subsection, the labor
and materials elasticities can be written as

θLit = θVit
αLit
αVit

, θMit = θVit
αMit
αVit

, (4.6)

where αVit = αLit + αMit . This result shows that combining the first-order conditions with the sum of
elasticities identifies the elasticity of labor and materials separately.

4.2.3 Other Identification Results

This section examines the identification of the other important features of the production function.
In particular, I ask what can be identified from (f, h̄) and from the output elasticity of flexible
inputs.

Proposition 4.3. Labor-augmenting productivity, the output elasticity of capital and the elasticity
of substitutions are not identified from (f, h̄, θLit, θ

M
it ).

Proof. See Appendix B.

With this result, I conclude that we can learn only the elasticity of flexible inputs using the reduced
form production function and first-order conditions. This makes sense because the first-order condi-
tions are only informative about the output elasticities with respect to flexible inputs. Identification
of other features suffers from the non-identification problem due to multicollinearity described in
Subsection 4.1. As a solution to this problem, I next ask what further restrictions are required to
identify the objects in Proposition 4.3.

38Note that even if f and h̄ are not uniquely identified, the sum of elasticities is uniquely identified. Assume that
there exists (f, h̃) and (f ′, h̃′) such that f(Kit, Lith̃) = f ′(Kit, Lith̃

′). Taking the derivative of this expression with
respect to Lit I obtain f2h̃ = f ′2h̃

′. Therefore, the observationally equivalent (f, h̃) and (f ′, h̃′) give the same sum of
flexible input elasticities.
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4.3 Identification under Further Restrictions

A potential solution to non-identification of the capital elasticity and labor-augmenting productivity
is imposing additional structure on the production function. In this section, I consider a slightly
more restrictive production function and establish that the capital elasticity and labor-augmenting
productivity are identified, but the elasticity of substitution is not identified. Consider the following
production function:

yit = f
(
Kit, h(ωLitLit,Mit)

)
+ ωHit + εit. (4.7)

This model differs from the main model in that h does not take Kit as an argument.39 Since this is
a special case, Proposition 2.1 applies to this production function with ωLit = r̄(M̃it). Substitution
this into Equation (4.7), I obtain the reduced form for the production function in Equation (4.7) as

yit = f
(
Kit, Lith̄(M̃it)

)
+ ωHit + εit. (4.8)

Since Kit appears as an argument of f but not of h, this model is more convenient for identification
than the main model. The next proposition shows how to identify the output elasticity of capital
and the labor-augmenting productivity shock.

Proposition 4.4. If we replace the production function in Assumption 2.1 with Equation (4.7),
the capital elasticity is identified and labor-augmenting productivity is identified up to scale from
(f, h̄, θLit, θ

M
it ) as:

θKit = f1(Kit, Lith̄(M̃it)), log(ωLit) = log(r̄(M̃it)) =

∫ M̃it

M̃
b(M̄it)dM̄it + k. (4.9)

where b(·) is a function provided in the proof, which depends on f , h̄ and the output elasticities of
flexible inputs, and k is an unknown constant.

Proof. See Appendix B.

θKit is identified under the additional restriction because ωLit is not a direct function of capital,
implying that we can learn capital elasticity from f1. Identification of ωLit relies on the idea that we
can obtain information about the first derivatives of h from the output elasticities of flexible inputs.
In the proof, I show that information on the first derivatives of h from the first-order conditions can
be mapped back to ωLit. The identification of ωLit up to scale is standard in the literature. My final
result states the non-identification of elasticity of substitution.

Proposition 4.5. Under the conditions of Proposition 4.4 the elasticity of substitution between
effective labor and materials is not identified from (f, h̄, θLit, θ

M
it ).

Proof. See Appendix B.

39This function is called strongly separable with respect to partition of labor and materials. A production function
is called strongly separable if the marginal rate of substitution between two inputs is independent of another input
(Nadiri (1982)).

22



The first-order conditions are only informative about the first derivatives of the production
function, whereas the elasticity of substitution depends on the second derivatives of the production
function. Thus we can identify the output elasticities but not the elasticity of substitution.

This result extends the impossibility theorem of Diamond et al. (1978) to a setup with firm-level
data. They show that if the production function is at the industry-level, the elasticity of substitution
is not identified from time series data without exogenous variation in input prices. My result is
similar in spirit because I also assume no variation in input prices. In Supplemental Appendix 3.1,
I extend my model to have variation in input prices at the firm level. With this extension, the
multicollinearity problem disappears, and the elasticity of substitution can potentially be identified.

An important implication of using the first-order conditions for identification is that the output
elasticities can only be identified for values of (Lit, ω

L
it,Mit) on the surface {(ωLit,Mit) | ωLit = r̄(M̃it)}.

This means that I can identify the output elasticities only at the observed input values realized
in equilibrium. Therefore, it is not possible to conduct counterfactual exercises, such as keeping
ωLit constant and asking how change in inputs affects output.40 However, this is not an important
limitation in practice because the majority of the applications of production function require output
elasticities and productivity only at the observed values.

4.4 Imposing A Returns to Scale Restriction

My model can easily accommodate a returns to scale restriction on the production function. In
particular, if one is willing to restrict the return to scale to an unknown constant v, the production
function takes the form

yit = vkit + f
(
1, L̃ith(ωLit, M̃it)

)
+ ωHit + εit,

where kit = log(Kit) and L̃it = Lit/Kit. The reduced form representation of this function is

yit = vkit + f̃
(
L̃ith̄(M̃it)

)
+ ωHit + εit, (4.10)

where f̃ = f
(
1, L̃ith̄(M̃it)

)
. The results in the previous section apply to this model. In particular,

after estimating the flexible input elasticities and v, the capital elasticity can be calculated using
the returns to scale restriction, θKit = v − θLit − θMit .

40Note that this problem does not arise in a production function with only Hicks-neutral productivity when first-
order conditions are used; see Gandhi et al. (2018). This is because ωL

it is non-separable from the production function,
so output elasticities depend on an unobserved variable.
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4.5 Summary of Models

The nonparametric approach I propose accommodates five models that are nested within each other.
I list these models, from most general to least, to provide a complete picture.

yit = f
(
Kit, h(Kit, ω

L
itLit,Mit)

)
+ ωHit + εit (Weak Homothetic Sep.)

yit = f
(
Kit, h(ωLitLit,Mit)

)
+ ωHit + εit (Strong Homothetic Sep.)

yit = vkit + f
(
L̃ith(ωLit, M̃it)

)
+ ωHit + εit (Homogeneous)

yit =
v

σ
log
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1
+ (1− βl)Mσ1

it

) σ
σ1

)
+ ωHit + εit (Nested CES)

yit =
v

σ
log
(
βkK

σ
it + βl

(
ωLitLit

)σ
+ (1− βl − βm)Mσ

it

)
+ ωHit + εit (CES)

Even though I analyze the most general model, a researcher interested in estimating a more restricted
production function with labor-augmenting technology can use one of the nested models. The
identification strategy and control variable approach, when applied to these special cases, are new.

There are two advantages of providing a family of models, where models are nested within each
other. First, comparing the results from a nested model and a general model tests the restrictions
imposed by the nested model. For example, we can test the restrictions of the CES model by
comparing its estimates with the estimates of the strong homothetic separable model. Second, we
can impose regularization based on economic theory. One can start with the most general model to
impose as few restrictions as possible. If the estimates are too noisy, then a nested model can be
considered to improve precision. This is especially relevant for industries with a small number of
firms, for which nonparametric estimation is often not feasible.

5 Empirical Model and Data

This section presents the empirical model and introduces the datasets used in empirical estimation.

5.1 Empirical Model

The purpose of my empirical model is to estimate the output elasticities and to infer markups from
those estimates. To avoid the identification problems described above and to ease the demand on
data, I use the strong homothetic production function in Equation (4.7), which leads to the following
estimating equation:

yit = f
(
Kit, Lith̄(M̃it)

)
+ ωHit + εit. (5.1)

In Section 4, I showed how to identify the output elasticities from f and h̄, so the goal is to identify
these functions.41 To control for Hicks-neutral productivity, I use the control variables developed

41Note that h̄ is identified up to a scale since its scale is not identified separately from f . However, the elasticities
are uniquely identified. I restrict the logarithm of h to have mean zero in the estimation to impose this normalization.
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in Equation (3.8), ωHit = c2

(
Wit−1, u

1
it, u

2
it

)
. Substituting this into Equation (5.1), the estimating

equation can be written as

yit = f
(
Kit, Lith̃(M̃it)

)
+ c2

(
Wit−1, u

1
it, u

2
it

)
+ εit. (5.2)

Since εit is orthogonal to the firm’s information set, we have the conditional moment restriction

E[εit |Wit,Wit−1, u
1
it, u

2
it] = 0. (5.3)

Since all right-hand-side variables are orthogonal to the error term, Equation (5.2) can be estimated
by minimizing the sum of squared residuals. However, Equation (5.3) is not the only moment
restriction provided by the model. Recall that capital is a predetermined input that is orthogonal
to the innovation to productivity shocks at time t, which can be used to augment the moment
restriction in Equation (5.3). To see this, using the first-order Markov property of the productivity
shocks, Hicks-neutral productivity can be expressed as

ωHit ≡ c̃3(ωHit−1, ω
L
it−1) + ξit,

for an unknown function c3(·), where ξit is the separable innovation to Hicks-neutral productivity
with E[ξit | Iit−1] = 0. This innovation term is different from those defined in Section 3 because it
is mean independent of (ωHit−1, ω

L
it−1) and separable, in contrast to (u1

it, u
2
it), which are independent

and non-separable. ξit is commonly used in the proxy variable approach for constructing moments.

Since (ωHit−1, ω
L
it−1) can be written as functions of Wit−1, I obtain a second representation of ωHit

as ωHit ≡ c3(Wit−1) + ξit. This representation gives another estimating equation:

yit = f
(
Kit, Lith̄(M̃it

)
+ c3(Wit−1) + ξit + εit. (5.4)

The error term, ξit+ εit, is orthogonal to the firm’s information set at time t−1, which includes Kit

so we have E[ξit + εit | Kit] = 0, additional moment restrictions. Now I summarize the estimation
problem by combining the models and moment restrictions. We have two estimating equations

yit = f
(
Kit, Lith̄(M̃it)

)
+ c2

(
Wit−1, u

1
it, u

2
it

)
+ εit,

yit = f
(
Kit, Lith̄(M̃it)

)
+ c3(Wit−1) + ξit + εit,

with two conditional moment restrictions:

E[εit |Wit,Wit−1, u
1
it, u

2
it] = 0, (5.5)

E[ξit + εit | Kit,Wit−1] = 0. (5.6)

Estimating output elasticities requires estimates of the unknown functions f , h̄, c2 and c3 using these
moment restrictions. In Supplemental Appendix C, I analyze the identification of f and h̄ based on
the moment restriction in Equation (5.5) and show that it identifies f and h̄ except for special cases.42

These cases include some support conditions on the derivatives of conditional CDF in Equation (3.7),

42This is sometimes called generic identification; see Lewbel (2016).
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so they are testable.43 Since Equation (5.5), by itself, generically identifies the output elasticities,
the moment restriction in Equation (5.6) provides efficiency gains and overidentifying restrictions.44

The estimation proceeds in two steps. In the first step, I estimate the control variable u2
it by

estimating the conditional CDF in Equation (3.7). In the strongly separable model, u1
it corresponds

to normalized M̃it so it does not require any estimation. Then, I approximate the nonparametric
functions using polynomials and use the moment restrictions in Equations (5.5) and (5.6).

5.1.1 Estimation Procedure

In this section, I provide an overview of the estimation procedure. A more detailed estimation
algorithm is given in Supplemental Appendix 1.7.

I estimate separate production functions for each industry. However, estimating the production
function separately each year is not feasible for most industries due to the small sample size. To
address this, I use eight-year rolling-window estimation for Compustat and three-year rolling window
estimation for other datasets following De Loecker et al. (2018).45

The estimation involves two stages. In the first stage, I learn conditional distribution function in
Equation (3.7). For this estimation, I first choose a grid of values in the support of M and estimate
the CDF at each point using a flexible logit model. For the second stage, I follow Chen and Pouzo
(2012) and use a polynomial series approximation for the unknown functions. In particular, I use
second-degree polynomials to approximate the production function and third-degree polynomials to
approximate the control functions. Replacing the true functions with the approximations yields

yit = f̂
(
Kit, Lit

̂̄h(M̃it)
)

+ ĉ2(Wit−1, û
1
it, û

2
it) + ε̂1it,

yit = f̂
(
Kit, Lit

̂̄h(M̃it)
)

+ ĉ3(Wit−1) + ξ̂it + ε̂2it.

I construct an objective function using the moment restrictions in Equations (5.5) and (5.6). In par-
ticular, I use the sum of squared residuals from Equation (5.5) and timing moments from Equation
(5.6) to obtain the following objective function:

J(f̂ , ̂̄h, ĉ2, ĉ3) =
1

TN

∑
i,t

ε̂21it︸ ︷︷ ︸
Sum of Squared Residuals

+
( 1

TN

∑
i,t

(ξ̂it + ε̂2it)Kit

)2
+
( 1

TN

∑
i,t

(ξ̂it + ε̂2it)K
2
it

)2

︸ ︷︷ ︸
Timing Moments

(5.7)

I minimize this objective function for estimation. The estimation of ĉ2(Wit−1) and ĉ3(Wit−1) are
computationally simple as they can be partialed out for a given (f̂ , ̂̄h). So the estimation requires
searching for f̂ and ̂̄h to minimize the objective function. After obtaining the estimates for f and̂̄h, I calculate the output elasticities as described in Equations (4.5), (4.6) and (4.9).

43I also provide these conditions for homothetic production function in Appendix Proposition C.1 and for strong
homothetic separable production function in Appendix Proposition C.2.

44As described in Section 3.1, it is possible to construct other moment restrictions to increase efficiency at the
expense of a more complicated estimation procedure.

45The number of rolling windows is higher for the US than other countries because the US sample size is significantly
smaller than those of other countries. The results are robust to different rolling window size but they are less precise.
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Deriving the large sample distribution of the output elasticities and other estimates used in the
empirical applications is difficult. First, I need to account for estimation error in the first stage,
and then I need to understand how estimation errors in the output elasticities translate into further
stages. To avoid these complications, I use the bootstrap to estimate standard errors. The bootstrap
procedures treat firms as independent observations and resample firms with replacement.

5.2 Data

For the empirical model, I use panel data from manufacturing industries in five countries: Chile,
Colombia, India, Turkey, and the United States. The data source for the US is Compustat, compiled
from firms’ financial statements. For other countries, I use plant-level production datasets. The
sample periods are given in Table 1, which vary across countries based on data availability. The US
data covers the longest period, from 1961 to 2014. The Indian sample covers a recent period, while
the Chilean, Colombian, and Turkish samples end before 2000.

5.2.1 Chile, Columbia, India, Turkey

The datasets for the four developing countries are traditional plant-level production data collected
through censuses. The first dataset comes from the census of Chilean manufacturing plants con-
ducted by Chile’s Instituto Nacional de Estadística (INE). It covers all firms from 1979-1996 with
more than ten employees. Similarly, the Colombian dataset comes from the manufacturing census
covering all manufacturing plants with more than ten employees from 1981-1991. These datasets
have been used extensively in previous studies.46 The Turkish dataset is from the Annual Surveys
of Manufacturing Industries (ASMI), conducted by the Turkish Statistical Institute, and covers all
establishments with ten or more employees.47 Finally, the Indian data come from the Annual Survey
of Industries conducted by the Indian statistical institute for plants with 100 or more employees.48

From these datasets, I obtain the measures of inputs and output for estimating the production
functions. I obtain materials inputs by deflating the materials cost using the appropriate deflators.
For materials cost, I construct separate measures of materials for non-energy raw materials and
energy (which includes electricity and fuels) for the manufacturing datasets. Materials cost is the
sum of the cost of raw materials and energy. The labor input measure is the number of manufacturing
days for India and the number of workers for Chile, Colombia, and Turkey. I obtain capital either
via the perpetual inventory method or from deflated book values. I remove outliers based on labor’s
share of revenue, materials’ share of revenue and the combined variable input share of the revenue
for each industry.

To obtain precise estimates, I limit my sample to industries with at least an average of 250 plants
per year. The number of industries ranges from five to eight across datasets. I provide details about
the data collection, industries, and summary statistics in Supplemental Appendix 1.

46Some examples are Gandhi et al. (2018), Eslava et al. (2010) and Pavcnik (2002), and Liu (1993).
47This dataset has previously been used by Levinsohn (1993) and Taymaz and Yilmaz (2015).
48The survey also includes a sample of firms with less than 100 employees. I exclude these firms from my sample.
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Table 1: Descriptive Statistics on Datasets

US Chile Colombia India Turkey

Sample Period 1961-2014 1979-96 1978-91 1998-2014 1983-2000
Num of Industries 3 5 9 5 8
Level Of Estimation 2-dig NAICS 3-dig SIC 3-dig SIC 3-dig NIC 3-dig SIC
Num of Obs/Year 1247 2115 3918 2837 4997
Note: This table provides descriptive statistics for the dataset used in the empirical estimation.

5.2.2 US

The Compustat sample contains all publicly traded manufacturing firms in the US between 1961–
2014. It includes information compiled from firm-level financial statements, including sales, total
input expenditures, number of employees, capital stock formation, and industry classification. From
this information, I obtain measures of labor, materials, and capital inputs and produced output.
My output measure is the net sales deflated by a common 3-digit deflator, and my labor measure
is the number of employees. Compustat does not report separate expenditures for materials. To
address this issue, I follow Keller and Yeaple (2009) to estimate materials cost by netting out capital
depreciation and labor costs from the cost of goods sold and administrative and selling expenses.
For the details of the variables’ construction, see Supplemental Appendix 1.4

Some concerns about Compustat data are worth mentioning in the context of production function
estimation. First, Compustat is not representative of the general economy as it only includes publicly
traded firms. These firms are bigger, older and more capital intensive. Second, firms drop out of
the sample due to mergers and acquisitions and enter the sample as they become public. Finally, it
is from accounting data, which is low-quality compared to traditional manufacturing censuses.

The concerns on Compustat cast doubt on the suitability of Compustat data for production
function and estimation. Despite these concerns, I use Compustat dataset because some of the
recent findings on the rise of market power in the US have been obtained using Compustat (De
Loecker and Scott (2016)). I aim to revisit those findings and explore how using flexible production
function technology affects the results. To alleviate the concerns on Compustat I use high-quality
datasets from four developing countries given above and check whether I obtain similar results using
these datasets.

6 Empirical Results: Production Function

This section presents results from the empirical model. I use production function estimates to discuss
several findings. First, I find that my model generates different output elasticity estimates compared
to the Cobb-Douglas model in all countries. Second, I find significant substantial heterogeneity in
output elasticities, which are related to firm size and export in a way that is consistent with previous
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findings.

6.1 Output Elasticities

Table 2 presents the sales-weighted average elasticities for the three largest industries in each country
from three methods: (i) my approach (labeled “FA”), (ii) Cobb-Douglas estimated with Ackerberg
et al. (2015) (henceforth, ACF) and (iii) Cobb-Douglas estimated with OLS. My model generates
output elasticities that are precisely estimated and reasonable: they are broadly in line with previ-
ous results, capital elasticities are positive, and returns to scales are around one. Materials have the
highest elasticity, ranging from 0.50-0.67, across industry/county. The average labor and capital
elasticities range from 0.22–0.52 and 0.04–0.16, respectively. The returns to scale estimates, mea-
sured by the sum of the elasticities, range from 0.93–1.1, indicating that firms, on average, operate
close to constant returns to scale.

There are large differences in the average elasticity estimates between my model and Cobb-
Douglas estimated with ACF. Cobb-Douglas generates higher labor elasticities and lower capital
elasticities than my model for most industries. Lower labor elasticity estimates from my method
are consistent with labor’s low revenue share in the data. Lastly, looking at the OLS estimates, I
find small and insignificant differences between the ACF and OLS methods, whereas my estimates
are significantly different from the OLS estimates. This suggests that my method corrects the
transmission bias in the OLS estimates.

To see the differences in estimates across methods more clearly, I report the economy-level output
elasticities of capital and labor from my model and ACF, along with the difference in Figure 1.49

The results suggest that I estimate a higher output elasticity of capital and lower elasticity of labor
in all countries. The difference is statically significant in all countries for the labor elasticity and in
all countries except the US for the capital elasticity. Drawing the same conclusions in all datasets
provides strong evidence that these results are robust to the sample period and country-specific
characteristics.50

6.2 Heterogeneity in Output Elasticities

This section examines the within-industry heterogeneity in the output elasticities and relates it to
other economic variables. In particular, I test: (i) Are large firms more capital-intensive and less
labor- and flexible-input intensive? (ii) Are exporters more capital-intensive? The literature has
found heterogeneity at the firm-level along many dimensions, including productivity, labor share,
and size (Van Reenen (2018)). However, there is limited evidence on firm-level heterogeneity in
production technology. Moreover, this section provides some evidence for the external validation of

49Other elasticity estimates are reported in Supplemental Appendix Figure 6.8.
50A common problem in production function estimation is measurement error in capital, which could be more

severe in a nonparametric model. With measurement error in capital, the capital elasticity estimates will be biased
towards zero, and other elasticities will be biased upwards since other inputs are usually positively correlated with
capital. I verify this prediction using a simulation exercise in Section 5.5. Since my results suggest larger capital
elasticity and lower labor elasticity, they cannot be driven by measurement error. See Hu et al. (2011), Collard-Wexler
and De Loecker (2016) and Kim et al. (2016) for attempts to address measurement error in capital.
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Table 2: Sales-Weighted Average Output Elasticities for Three Largest Industries

Industry 1 Industry 2 Industry 3
FA ACF OLS FA ACF OLS FA ACF OLS

Chile (311, 381, 321)

Capital 0.09 0.04 0.05 0.12 0.09 0.09 0.09 0.09 0.09
(0.01) (0.00) (0.00) (0.03) (0.01) (0.01) (0.03) (0.01) (0.01)

Labor 0.1 0.14 0.14 0.19 0.31 0.31 0.19 0.23 0.23
(0.00) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

Materials 0.79 0.87 0.88 0.69 0.69 0.69 0.66 0.72 0.72
(0.02) (0.01) (0.01) (0.04) (0.01) (0.01) (0.05) (0.01) (0.01)

Rts 0.98 1.06 1.06 1 1.09 1.09 0.94 1.04 1.04
(0.02) (0.01) (0.01) (0.04) (0.01) (0.01) (0.06) (0.01) (0.01)

Colombia (311, 322, 381)

Capital 0.13 0.07 0.07 0.12 0.07 0.08 0.19 0.13 0.13
(0.02) (0.00) (0.00) (0.02) (0.02) (0.02) (0.03) (0.01) (0.01)

Labor 0.11 0.18 0.18 0.3 0.46 0.45 0.25 0.36 0.36
(0.00) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01)

Materials 0.78 0.8 0.8 0.63 0.56 0.54 0.56 0.61 0.61
(0.02) (0.00) (0.00) (0.02) (0.01) (0.01) (0.04) (0.01) (0.01)

Rts 1.01 1.05 1.05 1.05 1.09 1.06 1 1.1 1.09
(0.03) (0.00) (0.00) (0.03) (0.01) (0.01) (0.05) (0.01) (0.01)

India (230, 265, 213)

Capital 0.07 0.05 0.05 0.09 0.02 0.04 0.04 0.03 0.07
(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

Labor 0.08 0.09 0.09 0.18 0.43 0.34 0.06 0.37 0.33
(0.00) (0.01) (0.01) (0.00) (0.02) (0.02) (0.00) (0.04) (0.04)

Materials 0.82 0.84 0.84 0.67 0.54 0.56 0.82 0.65 0.56
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.04) (0.04)

Rts 0.96 0.98 0.98 0.94 1 0.94 0.93 1.05 0.97
(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03)

Turkey (321, 311, 322)

Capital 0.14 0.03 0.03 0.08 0.03 0.03 0.07 0.03 0.03
(0.02) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03) (0.01) (0.01)

Labor 0.14 0.22 0.22 0.08 0.17 0.17 0.12 0.29 0.29
(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01)

Materials 0.7 0.79 0.78 0.83 0.84 0.84 0.9 0.72 0.71
(0.02) (0.01) (0.01) (0.01) (0.00) (0.00) (0.02) (0.01) (0.01)

Rts 0.98 1.04 1.04 0.99 1.04 1.04 1.09 1.04 1.03
(0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.04) (0.01) (0.01)

US (33, 32, 31)

Capital 0.24 0.21 0.2 0.22 0.24 0.23 0.31 0.28 0.29
(0.03) (0.01) (0.01) (0.05) (0.03) (0.03) (0.07) (0.05) (0.05)

Labor 0.28 0.52 0.52 0.21 0.47 0.46 0.21 0.44 0.45
(0.01) (0.02) (0.02) (0.01) (0.03) (0.03) (0.01) (0.05) (0.05)

Materials 0.58 0.26 0.26 0.6 0.31 0.3 0.55 0.23 0.24
(0.01) (0.02) (0.02) (0.04) (0.06) (0.06) (0.03) (0.06) (0.06)

Rts 1.1 0.99 0.98 1.03 1.02 0.99 1.07 0.95 0.98
(0.03) (0.01) (0.01) (0.05) (0.01) (0.01) (0.07) (0.02) (0.02)

Note: Comparison of sales-weighted average output elasticities produced by different methods. FA refers to my
estimates, ACF refers to Ackerberg et al. (2015) estimates and OLS is Cobb-Douglas estimated by OLS. For each
year and industry, sales-weighted averages are calculated, and then simple averages are taken over years. Numbers
in each panel correspond to the SIC code of the largest, second largest and third largest industries, respectively,
in each country. Industry codes are provided in parentheses in each panel. Corresponding industry names are
Food Manufacturing (311), Equipment Manufacturing (381), Paper Manufacturing (322), Glass Manufacturing (311),
Cotton ginning (230), Textile (265). Bootstrapped standard errors in parentheses (100 iterations).
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Figure 1: Average Capital and Labor Elasticities Comparison

−0.2

0.0

0.2

0.4

Chile Colombia India Turkey US

E
la

st
ic

ity

  My Estimates      Cobb−Douglas      Difference  

(a) Capital Elasticity

−0.2

0.0

0.2

0.4

Chile Colombia India Turkey US

E
la

st
ic

ity

  My Estimates      Cobb−Douglas      Difference  

(b) Labor Elasticity

Note: Comparison of sales-weighted average elasticities produced by my estimates (white) and Cobb-
Douglas estimated by ACF (grey) for each country. The difference between the two averages is shown
by the black bar. For each year and industry, sales-weighted averages are calculated, and then simple
averages are taken over years. The error bars indicate 95 percent confidence intervals calculated using
bootstrap (100 iterations).

Figure 2: Average Coefficient of Variation
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Note: This figure shows the average coefficient of variation for the output elasticities averaged across
industries over years. In each panel, each bars reports the average CoV of the output elasticity of
the corresponding input for all countries. The error bars indicate the 10th and 90th percentile of the
distribution.
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Table 3: Regressions of the Output Elasticities on Firm Size

Chile Colombia India Turkey US

Capital Elasticity 0.008 0.02 0.006 0.016 0.025
(0.000) (0.000) (0.000) (0.000) (0.000)

Labor Elasticity -0.021 -0.037 -0.053 -0.024 -0.016
(0.000) (0.000) (0.000) (0.000) (0.000)

Flexible Input -0.023 -0.02 -0.011 -0.012 -0.004
(0.000) (0.000) (0.000) (0.000) (0.000)

Capital Intensity 0.253 0.303 0.387 0.396 0.228
(0.003) (0.002) (0.002) (0.002) (0.001)

Notes: Regressions of firm size on the output elasticities and capital intensity controlling for 4 digit
industry-year fixed effects based on Equation (6.1). Firm size is proxied by the logarithm of sales.
Each row corresponds to a separate regression where left-hand side variable is given in the first column.
Standard errors are clustered at the firm level and reported in parentheses.

the model since firm size and export are outside the model.

To measure heterogeneity, I estimate the coefficient of variation (CV) of the output elasticities
within each industry-year group. Figure 2 displays the average and 10-90th percentiles of the
CV estimates for all countries. There is substantial heterogeneity in the output elasticities in all
countries, as evidenced by the large average CV estimates. The heterogeneity is highest for the
labor elasticity and lowest for the materials elasticity. This finding is consistent with the large
heterogeneity in labor’s revenue share and low heterogeneity in materials’ revenue share observed in
the data. Also, the 10-90th percentiles show that this result is not driven by only a small number
of industries. Also, I find little heterogeneity in returns to scale, a reasonable finding because too
large or too small returns to scale would not be consistent with the economic theory.

The presence of heterogeneity in production technology is an important finding and it com-
pliments the existing evidence on large firm-level heterogeneity in other dimensions. Yet, a more
interesting question is what explains this heterogeneity? Although the literature on heterogeneity
in production technology is scarce, there are two findings on the relationship between production
functions and other economic variables. First, the literature has found that large firms are more
capital-intensive than small firms (Holmes and Mitchell (2008), Kumar et al. (1999)). Second,
the literature has documented that exporting firms are more capital-intensive than domestic firms
(Bernard et al. (2009)). I use my elasticity estimates to revisit these findings.

To understand the relationship between output elasticities and firm size, I estimate:

dijt = α0 + γ × Firm Sizeijt + δjt + εit, (6.1)

where j indexes the 4-digit industry, so δjt denotes the industry-year interaction fixed effects. γ

is the coefficient of interest. I estimate separate regressions for three outcomes: the flexible input
elasticity, capital elasticity, and capital intensity. Following the literature, I define capital intensity
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Table 4: Regression of Capital Intensity on Export Status

Chile India

Capital Elasticity 0.014 0.005
(0.000) (0.000)

Capital Intensity 0.136 0.4
(0.018) (0.016)

Notes: Regressions of capital elasticity on a dummy of whether the firm exports,
controlling for 4 digit industry-year fixed effects. Each row corresponds to a sep-
arate regression where the left-hand side variable is given in the first column.
Standard errors are clustered at the firm level and reported in parentheses.

as log capital elasticity divided by log labor elasticity. I use log-sales to proxy for firm size.

Table 3 reports the coefficient estimates. Focusing on capital intensity, I find that large firms are
more capital intensive than small firms in all countries. This finding remains similar when I use the
capital elasticity as the outcome variable. Finally, negative and statistically significant coefficients
estimates in the second and third row suggest that flexible input elasticity and labor elasticity are
negatively associated with firm size. Overall, these findings agree with the literature, which finds
that large firms use more capital, and less labor relative to small firms.

The second estimation concerns the relationship between capital intensity and exports. I consider
the same model as above, replacing firm size with an indicator variable that equals one if the firm
exports, and zero otherwise. I estimate this model on the Chilean and Indian datasets since only
for these countries firm-level export data are available. The outcome variables are capital intensity
and capital elasticity.51 The coefficient of interest reflects the average difference of the outcome
variable between exporters and non-exporters. Results in Table 4 suggest that exporting firms are
more capital intensive than domestic firms in both countries. This finding is also consistent with
the existing empirical evidence.

In brief, this section documents substantial heterogeneity in production technology that is related
to firm size and export status. This analysis can also be seen as an external validation exercise for my
model because the explanatory variables, firm size and export, are outside the production function
model. I show that these variables explain the output elasticities in a way that is predicted by
theoretical literature and the results agrees with the existing empirical evidence.

7 Inferring Markups from Production

There is a simple link between a firm’s markup and its output elasticities, which has been widely
used to estimate markups recently. In this section, I first describe this link and then argue that the
form of the production function has critical implications for the implied markups.

Building on Hall (1988), De Loecker and Warzynski (2012) propose an approach to estimate
51I focus on these variables because trade literature finds an association between capital intensity and export.
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Figure 3: Distribution of Coefficient of Variation of Sum Elasticity
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Notes: This figure compares the distribution of coefficient of variation of the sum elasticity within firm (red) with
the estimates of unconditional coefficient of variation in the entire sample (blue) for each country.

markups from production data under the assumption that firms are cost-minimizers with respect to
at least one flexible input and they take input prices as given. In particular, under these assumptions,
markup is given by

µit :=
θVit
αVit

, (7.1)

where µit denotes the firm-level markup and it equals the output elasticity of a flexible input, divided
by its revenue share. Since the revenue shares of flexible inputs are typically available in the data,
an estimate of the flexible input elasticity is enough to estimate markups. Moreover, since Equation
(7.1) holds for all flexible inputs, we need an estimate of only one flexible input’s elasticity.

In recent years, estimating markups from production data has become popular. Since this
method does not require a model of competition, researchers estimated markups at the macro level
using production data. (De Loecker et al. (2016), Autor et al. (2019) and Traina (2018)). The
evidence from this literature ignited a debate over the rise in market power in the US and other
developed countries (Basu (2019), Berry et al. (2019)).

7.1 How Does the Form of the Production Function Affect Markup Estimates?

Output elasticity is the only estimated component of markup in Equation (7.1). Therefore, when the
production approach is used for markup estimation, the bias in output elasticity directly translates
into markups, making the markup estimates sensitive to the form of the production function.52 In
this section, I first discuss implications of functional form assumptions on markups and then argue
that labor augmenting productivity provides solution to some common problems in the literature.

Heterogeneity in Markups. Much of the empirical research estimating markups assumes a Cobb-

52Van Biesebroeck (2003) compares conventional production function estimation methods and finds that they give
broadly similar productivity measures, but significantly different output elasticities. Therefore, how we estimate
production functions is particularly important for markup estimation.
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Douglas production function. Under this assumption, output elasticities are equal across firms in
the same industry, so the cross-section variation in markups comes only from revenue shares. If
the true output elasticities vary across firms, then Cobb-Douglas would give an incorrect markup
distribution. This is particularly important for studies that relate markups to other firm-level
observables. In fact, if the true production function is Cobb-Douglas, then industry fixed-effects in
a regression of markups on another variable are sufficient to account for variation output elasticities.

Conflicting Markup Estimates from Different Flexible Inputs. Cost minimization implies
that markup estimates from different flexible inputs should be the same. However, studies estimating
markups from two flexible inputs have found that different flexible inputs often give conflicting
markups estimates (De Loecker et al. (2018), Doraszelski and Jaumandreu (2019), Raval (2019a)).
This evidence suggests that at least one assumption required to estimate markups from production
data is violated.

Raval (2019a) formally tests the production function approach using its implication that two
flexible inputs should give the same markups. He estimates markups from labor and materials
under the Cobb-Douglas specification in five datasets. He finds that the two markup measures
are negatively correlated and suggest different trends. He then examines the possible mechanisms
that explain this result, such as heterogeneity in the production function, adjustment costs in
labor, measurement error, and violation of cost minimization assumption. He concludes that the
most plausible explanation is the inability of the standard production functions to account for
heterogeneity in production technology.53

Raval (2019a)’s results suggest unobserved heterogeneity in the output elasticities as a potential
solution to conflicting markups estimates. One contribution of this paper is to show that labor-
augmenting productivity ensures identical markup estimates from labor and materials. Two key
components of my approach lead to this outcome: (1) the presence of labor-augmenting productivity
and (2) using the ratio of revenue shares to identify the ratio of elasticities in Subsection 4.2.1. The
latter immediately implies that the two markups estimates are the same:

θLit
θMit

=
αLit
αMit

=⇒ µLit =
θLit
αLit

=
θMit
αMit

= µMit , (7.2)

where µLit and µMit denote markup estimates from labor and materials, respectively.54 However,
the presence of labor-augmenting productivity is crucial to be able to use the ratio of revenue
shares to identify the ratio of output elasticities. As shown in Section 6.1 and argued by Raval
(2019b), without the labor augmenting productivity the identity in Equation (7.2) is rejected by the
model. This identification result also provides some intuition for identification: the over-identifying
restrictions already available in the Hicks-neutral production function allow me to add another
unobserved productivity and identify the model.

53To account for labor-augmenting productivity he uses the quintile cost share method, where quantiles correspond
to labor cost to materials cost ratio. He finds that this method gives positively correlated markups from labor and
materials.

54Doraszelski and Jaumandreu (2019) also make this observations.
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7.2 Decomposing Markups: The Role of Production Function Estimation

This section presents a markup decomposition framework to quantify the role of the production
function. I show that production function estimation can bias the aggregate markup through two
channels: (i) bias in the average output elasticity and (ii) firm-level heterogeneity in the output
elasticities. After estimating firm-level markups, researchers often compute the aggregate markup,
µt, for an industry or economy using:

µt =

Nt∑
i=1

witµit,

where wit is the aggregation weight, usually a measure of firm size. Recently, researchers have
used the aggregate markup to measure the change in market power in the US and other developed
economies (De Loecker et al. (2018), Diez et al. (2018)).

To assess the influence of production function estimation on the estimated aggregate markup,
I apply a decomposition method proposed by Olley and Pakes (1996). This method decomposes a
weighted average into two parts: (1) an unweighted average and (2) covariance between the weight
and variable of interest. To implement the Olley-Pakes decomposition, I look at the logarithm of
markup. Using the firm-level markups and weights, the aggregate log markup can be expressed as

µ̃t =

Nt∑
i=1

wit log(θit)−
Nt∑
i=1

wit log(αit),

which equals the difference of two weighted averages. Therefore, we can apply the Olley-Pakes
decomposition to both terms to obtain:

µ̃t = θ̄t︸︷︷︸
Average Elasticity (1)

+ Cov(wit, log(θit))︸ ︷︷ ︸
Heterogeneity in Technology (2)︸ ︷︷ ︸

Estimation

− ᾱt︸︷︷︸
Average Share (3)

− Cov(wit, log(αit))︸ ︷︷ ︸
Heterogeneity in Shares (4)︸ ︷︷ ︸
Data

(7.3)

The aggregate log markup is composed of four parts. The first two parts involve the output elasticity:
(1) is the unweighted average of log elasticity, denoted by θ̄t and (2) is the covariance between firm
size and log elasticity. The last two parts involve the revenue share: (3) is the unweighted average
revenue share, denoted by ᾱt, and (4) is the covariance between firm size and log revenue share.

This decomposition is useful for analyzing the aggregate markup because each component in-
volves either the output elasticity, which is estimated, or the revenue share, which comes directly
from the data. Therefore, we can disentangle the role of the elasticity estimates from the revenue
shares in markup estimation. More precisely, since production function estimates appear only in
the first two components, analyzing those components reveals how biases in production function
estimates translate into markup estimates.
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7.2.1 Bias from the Average Output Elasticity

The first component in the decomposition is the average elasticity, which reflects the underlying
production technology in the economy. Under misspecification, this component will be estimated
with bias, which directly translates into bias in the aggregate markup.55 My output elasticity
estimates in the previous section suggested that Cobb-Douglas overestimates the flexible input
elasticity. Therefore, the bias from this source should be positive.

7.2.2 Bias from Heterogeneity in Production Technology

The second component in the decomposition is the covariance between firm size and the output
elasticity of flexible input. This component contributes to the aggregate markup when the elasticities
are heterogeneous and correlated with firm size. If the production function does not account for this
heterogeneity, then the aggregate markup will be biased. The bias is positive when large firms have
lower flexible input elasticity than small firms, and negative otherwise. My estimates and existing
empirical evidence suggest that this source of bias is also positive.

If the first two components change over time we should also expect bias in the change in markups.
This can happen, for example, if large firms become more capital-intensive over time, leading to an
increase in the magnitude of the second component in the markup decomposition. A production
function that fails to capture this trend in production technology overestimates the change in the
aggregate markup.

Together, this section makes two arguments that motivate a flexible production function for
correct markup estimation. It is critical to (i) estimate the average output elasticity in the economy
correctly and (ii) account for firm-level heterogeneity in the output elasticities.

8 Empirical Results: Markups

I estimate markups using the output elasticities reported in Section 6. With these estimates in
hand, I look at whether my markup estimates are systematically different from those generated by
Cobb-Douglas and other production functions.56 My aggregate markup estimates are lower than
the Cobb-Douglas estimates in all countries. I find that two factors drive this difference: (1) Cobb-
Douglas overestimates the average output elasticity, and (2) Cobb-Douglas does not capture the
negative correlation between firm size and the output elasticity of flexible input.

Then I look at whether the differences in production function estimates affect the trend in
markups. For this analysis, I focus only on the US, given the recent empirical findings on the rise

55It is difficult to evaluate the direction or magnitude of this bias, besides some special cases, as it comes from
misspecification rather than from an omitted variable. Therefore, I rely on the empirical model to understand the
bias by comparing the average output elasticities across different methods.

56This section mainly focuses on the comparison with Cobb-Douglas since it is the most commonly used specifi-
cation. In Supplemental Appendix 5, I compare my results with the translog production function with Hicks-neutral
productivity and in Subsection 5.4) with Nested CES production function with labor-augmenting productivity.
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Figure 4: Distribution of Markups Implied by Labor and Materials (Cobb-Douglas)
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Notes: This figure compares the distribution of markups implied by labor (black) and materials
(red) elasticities from the Cobb-Douglas specification estimated using the Ackerberg et al. (2015)
procedure for each country. Each plot shows the result for the country given in the top-left corner.

in markups in the US. I find that the markup growth is lower according to my estimates.

8.1 Testing the Cobb-Douglas Specification using Markups

As discussed in Section 7, testing the equality of markups from labor and materials elasticities serves
as a specification test. This section applies this test to the Cobb-Douglas production function.

I use the output elasticity estimates produced by the ACF method for markup estimation. Figure
4 plots the distributions of markup estimates inferred from the labor and materials elasticities. If the
model is correct, the two distributions should overlap. However, the distributions are quite different,
with labor generating a more dispersed distribution than materials in all countries. This result is
driven by high dispersion in labor’s revenue share in the data, as Cobb-Douglas model assumes
constant output elasticities. Moreover, both markup measures indicate that a significant fraction
of firms have markups below one. These results provide strong evidence against the Cobb-Douglas
specification.

Since I reject the Cobb-Douglas specification with two flexible inputs, I estimate another produc-
tion function with a single flexible input for comparison purposes, following De Loecker et al. (2018):

yit = βkkit + βvvit + ωit + εit.

Here, vit is the combined flexible input of labor and materials, defined as the deflated sum of
labor and materials cost.57 I estimate this model using the ACF method and calculate markups

as µCDit =
βv

αVit
. For my model, I use the sum of flexible input elasticity divided by flexible input’s

revenue share as my markup measure. This markup measure equals the markups obtained from
labor and materials elasticities.

57Having a single flexible input avoids conflicting markups estimates. However, this model implicitly assumes that
labor and materials are perfect substitutes because only under that assumption βv equals the output elasticity of the
flexible input.
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Figure 5: Average Markups Comparison
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Notes: Comparison of sales-weighted average markups produced by my estimates (white) and Cobb-
Douglas estimated by ACF (grey) for each country. The difference between the two averages is shown
by the black bar. For each year and industry, sales-weighted averages are calculated, and then simple
averages are taken over years. The error bars indicate 95 percent confidence intervals calculated using
bootstrap (100 iterations).

8.2 Markups Comparison: Level

This section compares the aggregate markups produced by my method and by Cobb-Douglas pro-
duction function. After finding significant differences between the two estimates, I use the markup
decomposition framework presented in Section 7.2 to understand what drives this difference.

For each country, I first calculate the sales-weighted markup for every year and then take the
average over years.58 Figure 5 displays the aggregate markups from the two methods, along with
the 95 percent confidence interval. My model generates aggregate markups that are significantly
smaller than the Cobb-Douglas estimates in all countries. The difference ranges from 0.1 to 0.2,
an important magnitude when markups are interpreted as market power. Furthermore, reaching
the same conclusion in all countries provides compelling evidence that the results are not driven by
country-specific characteristics.59

What drives these differences in markups estimates? I answer this question by decomposing
markups into its four components, as presented in Section 7.2. These components, averaged over
time, are presented in Figure 6. The red and white bars come directly from the data, and their

58Edmond et al. (2018) argue that weighting by cost, instead of sales is more appropriate for understanding the
welfare implications of markups. I report cost-weighted estimates in Supplemental Appendix 6 and find qualitatively
similar results.

59Supplemental Appendix Figure 6.15 presents the evolution of markups based on two production function models
and the 10-90the percentile of the bootstrap distribution for the difference in estimates. I find that the Cobb-Douglas
markup estimates are always higher than my markups estimates, and the difference is statistically significant. So this
difference is not driven by a small number of years.
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Figure 6: Markup Decomposition
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Notes: This figure compares the four components of the aggregate log-markups given in Equation
(7.3) produced by my method and Cobb-Douglas estimated with ACF procedure. For each country,
each component is averaged over years and indicated by a different color.

magnitudes are the same for both estimation methods. Therefore, markup estimates between the
two methods differ only through the grey and black bars in Figure 6. The largest difference is from
the black bar, the covariance between firm size and elasticity. While this component is negligible
under the Cobb-Douglas assumption, my estimates suggest that it is negative. This is not surprising
because both the literature and my analysis in Section 6 suggest that large firms are more capital-
intensive and less flexible input-intensive, leading to a negative correlation between firm size and
the flexible input elasticity.

To focus on the first two components I take the difference between my markup measure and the
Cobb-Douglas markup measure:

µ̃CDt − µ̃t = θ̄CDt − θ̄t︸ ︷︷ ︸
Mean-Elasticity

+Cov(wit, log(θCDit ))− Cov(wit, log(θit)),︸ ︷︷ ︸
Cov-Elasticity

(8.1)

where the third and fourth components cancel out, so the difference in markups is explained by the
differences in the mean elasticity and covariance between firm size and output elasticity across two
methods. I plot these differences in Figure 7. Except for Chile, both components are positive for all
countries. This result reveals two key reasons behind the difference in markup estimates between two
methods. First, the Cobb-Douglas production function overestimates the flexible input elasticity
in all countries except Chile. Second, Cobb-Douglas does not capture the negative relationship
between firm size and flexible input elasticity. Both of these factors generate upward bias in the
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Figure 7: Decomposition of the Difference between Aggregate Markups
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Notes: This figure decomposes the difference between the aggregate log markups produced by my
method and the Cobb-Douglas model estimated using the ACF procedure (Equation 8.1).

Cobb-Douglas markup estimates.

8.3 Markups Comparison: Trend

After showing important differences in the level of markups across estimation methods, I now turn
to the change in markups over time. I start by looking at what explains the time series variation in
markups. Then I focus on the markup growth in US manufacturing.

8.3.1 Variance Decomposition of the Aggregate Markups

I decompose the time series variance of the aggregate log-markup into the variance of (1)+(2) and
variance of (3)+(4) in Equation (7.3), ignoring the covariance between the two. Figure 8 presents
the results from this decomposition for both production functions. Focusing on the Cobb-Douglas
model first, we see that a large fraction of the variance is explained by the change in revenue shares,
consistently in all datasets. The result is particularly striking for the US, where the contribution
of the change in output elasticity is only 1%. The decomposition results from my method reveal a
different picture. The change in the output elasticity explains a significant fraction of the change
in markups in all countries.

If the true production function is Cobb-Douglas, then aggregate markups are almost entirely
driven by the change in revenue shares. As a result, if we want to understand the evolution of
markups, looking at the change in revenue shares is sufficient.60 Is the role of change in technology
really minimal? For the rest of this section, I seek to answer this question.
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Figure 8: Variance Decomposition of the Change in Markups
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Notes: This figure shows the results by decomposing the annual aggregate log markups time series into
the components obtained from elasticities (gray) and revenue shares (black). The covariance between the
two components are subtracted from the total variance so that the two components sum to 100.

8.3.2 Change in Markups in the US Manufacturing Sector

This section investigates the evolution of the aggregate markup in the US manufacturing sector.
Figure 9 plots the sales-weighted aggregate markup from 1960 to 2012 along with the 10-90th
percentile confidence band. In the 1960s, the aggregate markup is about 30 percent over marginal
cost. It remains flat until 1970 and then declines gradually between 1970 and 1980, falling to about
15 percent in 1980. Starting from this point, markups rise with some cyclical pattern and reach 40
percent at the end of the sample period. We also see that the aggregate markup tends to decline
during recessions. Overall, the aggregate markup in the manufacturing industry has risen from 30
percent to 40 percent during the sample period.61

One concern about a nonparametric model is precision because a nonparametric model trades
off flexibility for precision, generating noisier estimates than the parametric models. The narrow
confidence band reported in Figure 9 suggests that this is not a concern. Note that the estimate is
not centered around the confidence band because the aggregate markup is a non-linear function of
the output elasticities. The change in the sample size affects the width of the confidence band—the

60This is also evident in Supplemental Appendix Figure 6.14, which displays the evolution of markups along with
its two components. The aggregate markups closely track the revenue share in all countries.

61To explore the importance of weighing in aggregation, Supplemental Appendix Figure 6.9 compares the sales-
weighted and cost-weighted markup series. Although they exhibit similar trends, the sales-weighted markup is always
above the cost-weighted markup. Moreover, the change in the sales-weighted markup is larger than the change in the
cost-weighted markup.
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Figure 9: Evolution of the Aggregate Markup
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Notes: The evolution of markups in the US manufacturing industry. The dotted lines report the
10-90the percentile of the bootstrap distribution (100 iterations).

sample size of Compustat changes with mergers and acquisitions over the estimation period. The
sample size is small at first, with few publicly-traded companies in the 1960s. The sample size
increases until the 1990s and then declines again. We see the impact of this on the width of the
confidence band: The most precise markup estimates are obtained in the 1990s.

Next, I compare my results with the Cobb-Douglas estimates. Cobb-Douglas estimation is
essentially a replication of De Loecker et al. (2018), who estimated a Cobb-Douglas production
function with a single flexible input. They find a dramatic rise in markups in the US economy since
1960 and interpret this finding as a large increase in market power. My goal is to understand how
a flexible production function affects this conclusion.

Figure 10 reports both markups measures. The Cobb-Douglas estimates suggest that markups
rose more than 30 percent between 1960 and 2012. This finding mirrors De Loecker et al. (2018)’s
finding and is essentially a replication of their result for the manufacturing industry. The markups
estimates from my production function also suggest a rise in markup, albeit a more modest one: 13
percent between 1960 and 2012. This rise is even smaller when markups are weighted by cost shares.
The overall change is not the only difference. The series closely follow each other between 1960 and
1970, but they start to diverge after 1970. Also, my estimates have cyclical markup estimates,
consistent with the business cycle in the US.62

This result has an important implication for the evolution of market power in the US manufac-
turing industry. As shown by the variance decomposition, using a restrictive production function
does not indicate any change in production technology over time, and markup estimates are driven
by the change in revenue share. Viewed in this light, the rise in markup in the US manufacturing
industries, according to the Cobb-Douglas specification, is explained by the decline in the labor

62As a robustness check, I estimate a nested CES production function with labor-augmenting productivity in
Supplemental Appendix Section 5.4 and compare markups estimates.
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Figure 10: Sales-Weighted Markup (Compustat)
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Notes: Comparisons of the evolution of markups in the US manufacturing industry produced by
my method and the Cobb-Douglas model estimated using the ACF procedure.

share.

9 Extensions

In this section, I briefly discuss three extensions to my model by showing how to account for (i)
heterogeneity in input prices, (ii) unobserved materials prices and (iii) non-random firm exit. I
provide details for these extensions in Supplemental Appendix 3.

9.1 Heterogeneous Input Prices

My main model assumes that input prices are common across firms. This assumption is standard
in the literature, mostly because traditional production datasets lack information on input prices.
However, input prices are increasingly available in more recent and detailed datasets.63 To ac-
commodate this case, I develop an extension in Supplemental Appendix 3.1, which assumes that
firms might face different input prices, but they do not have market power in the input markets.
This extension requires incorporating heterogeneous input prices into the model and modifying the
estimation procedure, but the general framework and identification strategy remains the same.

9.2 Unobserved Materials Prices

My framework can also be used for estimating production functions when materials prices are unob-
served and productivity is Hicks-neutral. This situation may arise if firms use different quality inputs
at different prices.64 The key in this extension is to show that unobserved materials-augmenting

63For examples, see De Loecker et al. (2016), Grieco et al. (2016), and Atalay (2014).
64In a recent paper, Grieco et al. (2016) study this question under the assumption that the production function is

CES. My extension can be seen as a generalization of their framework to a nonparametric production function.
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productivity is equivalent to a model with unobserved and heterogeneous materials prices under my
assumptions. Under this equivalence, the toolkit developed in this paper can be used to account for
unobserved materials prices. I show this extension in Supplemental Appendix 3.2.

9.3 Accounting for Firm Selection

In Supplemental Appendix 3.3, I present a way of incorporating non-random firm exit into my
estimation framework. I achieve this extension under two simplifying assumptions. First, I assume
that the non-separable innovations to productivity shocks defined in Section 3 are independent
of each other conditional on previous period’s productivity. Second, I assume that firms decide
whether to exit based on only Hicks-neutral productivity. With these assumptions, I rely on Olley
and Pakes (1996)’s insight that there is a cutoff in Hicks-neutral productivity conditional observables
and firms that draw Hicks-neutral productivity below that cutoff exit. I estimate the propensity of
exit conditional on the previous period’s inputs and current period’s capital level, which allows me
to control for selection. The empirical results from implementing this selection correction procedure
are provided in Supplemental Appendix 5.3.

10 Conclusions

This paper first proposed an approach to estimate nonparametric production functions with labor-
augmenting productivity. Then, it used this new approach to estimate output elasticities and
markups using manufacturing data in five countries.

Methodologically, I contribute to the literature by introducing an identification and estimation
method for production functions with labor-augmenting and Hicks-neutral productivity. Unlike
previous methods, the identification strategy does not rely on parametric restrictions or variation in
input prices. The identification is challenging due to two sources of unobserved heterogeneity and
absence of parametric restrictions. To address this challenge, I first incorporate labor-augmenting
productivity into the standard proxy variable framework from Olley and Pakes (1996). Then, using
a novel control variable approach, I show how to overcome the endogeneity of productivity shocks.
Finally, after showing that flexible inputs elasticities are not identified, I propose exploiting first-
order conditions without parametric assumptions.

Empirically, I show that ignoring labor-augmenting productivity and imposing parametric re-
strictions generate biased output elasticity and markups estimates. These biases are economically
significant. The commonly used specifications underestimate capital elasticity and overestimate
labor elasticity. The estimates also document substantial firm-level heterogeneity in the output
elasticities. To what extent these biases and heterogeneity translate into the inferred markups?
The estimates suggest that the standard methods generate an upward bias in both the level and
growth of markups. I also revisit the recent findings on the rise of US markups. My estimates
suggest that markup growth in the US manufacturing sector is 15 percent, in contrast to 30 percent
as suggested by recent papers.
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A Supplementary Lemmas

Lemma A.1. Suppose x, y and z are scalar and continuous random variables with a joint probability
density function given by f(x, y, z). Assume that (x, y) are jointly independent from z. Then x and
z are independent conditional on y.

Proof. Let f(x | y) denote the conditional probability density function of x given y. Independence
assumption implies that f(x, y, z) = f(x, y)f(z). To achieve the desired result, I need to show that
f(x, z | y) = f(x | y)f(z | y). Using Bayes’s rule for continous random variables I obtain

f(x, z | y) =
f(x, y, z)

f(y)
=
f(x, y)f(z)

f(y)
=
f(x | y)f(y)f(z)

f(y)
= f(x | y)f(z),

= f(x | y)f(z | y),

where in the last line f(z | y) = f(z) follows by the indepedence assumption.

Lemma A.2. Let f : R+ → R and h : R+ → R+ be continuously differentiable functions. If there
exists a differentiable function s : R2

+ → R:

f(zh(x)) = s(x, z) (A.1)

Then
log′

(
h(x)

)
z

=
s1(z, x)

s2(z, x)
(A.2)

where sj(z, x) denotes the derivative of s(z, x) with respect to its j-th argument and log′
(
h(x)

)
denotes derivative of log(h(x)) with respect to x.

Proof. By the assumptions we can differentiate equation (A.1). Differentiating with respect to z to
get

f ′(zh(x))h(x) = s1(z, x). (A.3)

Differentiating with respect to x yields

f ′(zh(x))zh′(x) = s2(z, x). (A.4)

Taking the ratio of Equation (A.4) and (A.3) I obtain

zh′(x)

h(x)
=
s2(z, x)

s1(z, x)
, (A.5)

which gives

log′
(
h(x)

)
z =

s2(z, x)

s1(z, x)
. (A.6)

So the ratio of derivatives of s(z, x) does not depend on f .

Lemma A.3. Let f : R2
+ → R and h : R+ → R+ are differentiable functions. If there exists a

differentiable function s : R3
+ → R with

f(w, zh(x)) = s(w, x, z) (A.7)

then
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• Ratio of derivative of s(w, z, x) does not depend on w and depends only on z and some function
of x

s2(w, z, x)

s3(w, z, x)
=

log′
(
h(x)

)
z

.

• Derivative of s1(w, z, x) with respect to w depends only on w and zh(x)

f2(w, zh(x)) = s1(w, z, x).

Proof. Taking derivative of the both sides of Equation in (A.7) with respect to z we obtain

f2(w, zh(x))h(x) = s2(w, z, x).

Taking derivative of the both sides of Equation in (A.7) with respect to x we obtain

f1(w, zh(x))zh′(x) = s2(w, z, x)

Taking the ratio between the two

zh′(x)

h(x)
=
s3(w, z, x)

s2(w, z, x)
. (A.8)

which gives

z

log′
(
h(x)

) =
s3(w, z, x)

s2(w, z, x)
. (A.9)

Taking derivative with respect to w

f ′(w, zh(x)) = s1(w, z, x).

Lemma A.4. Consider the following model

y = f
(
zh(x)

)
+ g(x) + ε, E[ε | z, x] = 0.

where (y, x, z) are observed random variables and f : R+ → R, h : R+ → R+ and g : R+ → R are
unknown functions. Let (f0, h0, g0) denote true functions. Assume that (i) h′0(x) > 0 for all x in
the support, where h′0(x) denotes the derivative of h0 (ii) Functions (f0, h0, g0) are continuously
differentiable and have non-zero derivatives almost everywhere (iii) The joint distribution function
of (y, z, x) is absolutely continuous with positive density everywhere on its support.

Let Ω be is the set of functions that obey the model restrictions and assumptions, so (f0, h0, g0) ∈
Ω = Ωf×Ωh×Ωg. Define the set of log-linear functions as Ωlog = {f(x) : f(x) = a log(x)+b, (a, b) ∈
R2} and assume that they are excluded from Ωf , i.e., Ωlog ∩ Ωf = ∅.
I next provide some definitions based on Matzkin (2007). (f, h, g) ∈ Ω and (f̃ , h̃, g̃) ∈ Ω are
observationally equivalent if and only if

f
(
zh(x)

)
+ g(x) = f̃

(
zh̃(x)

)
+ g̃(x),

for all (z, x) ∈ X × Z.(f0, h0, g0) ∈ Ω are identifiable if no other member of Ω is observationally
equivalent to (f, h, g). If identification holds except in special or pathological cases the model is
generically identified.

Based on these definitions and under my assumptions, g is identified up to a constant, h is
identified up to a scale and f is identified up to a constant and a normalization specified below in
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the proof. Since identification fails only in special cases we say that the functions, (f, h, g), are
generically identified. The special cases where identification fails are testable.

Proof. Note that from E[ε | z, x] = 0, we have

E[y | z, x] = f
(
zh(x)

)
+ g(x)

Since E[y | z, x] is identified from the distribution of observables we can take it as known for
identification purposes. This conditional expectation captures all the information from data based
on the assumption on ε.

For contradiction assume (f, h, g) ∈ Ω and (f̃ , h̃, g̃) ∈ Ω are observationally equivalent. Using
the definition of identification given above, this implies:

f
(
zh(x)

)
+ g(x) = f̃

(
zh̃(x)

)
+ g̃(x). (A.10)

I will show that if Equation (A.10) holds, then (f, h, g) and (f̃ , h̃, g̃) have to obey the normalization
restrictions below

f(x) = f̃(λx) + a, h(x) =
h̃(x)

λ
, g(x) = g̃(x)− a,

for λ ∈ R and a ∈ R. To show this, I will take the derivatives of Equation (A.10) with respect to x
and z. Taking derivative with respect to z yields

f ′
(
zh(x)

)
h(x) = f̃ ′

(
zh̃(x)

)
h̃(x). (A.11)

This gives me the first restriction. Next, taking derivative with respect to x gives

f ′
(
zh(x)

)
zh′(x) + g′(x) = f̃ ′

(
zh̃(x)

)
zh̃′(x) + g̃′(x).

Rearranging this to collect similar terms, I obtain

f ′
(
zh(x)

)
zh′(x)− f̃ ′

(
zh̃(x)

)
zh̃′(x) = g̃′(x)− g′(x).

Dividing and multiplying the two terms on the left hand side by
h(x)

h(x)
and

h̃(x)

h̃(x)
, respectively,

f ′
(
zh(x)

)
zh(x)

h′(x)

h(x)
− f̃ ′

(
zh̃(x)

)
zh̃(x)

h̃′(x)

h̃(x)
= g̃′(x)− g′(x)

Further rearranging and denoting
h′(x)

h(x)
by log′(h(x)), using assumption (i), we have

z
(
f ′
(
zh(x)

)
h(x) log′(h(x))− f̃ ′

(
zh̃(x)

)
h̃(x) log′(h̃(x))

)
= g̃′(x)− g′(x).

By Equation (A.11) we have that f ′
(
zh(x)

)
h(x) = f̃ ′

(
zh̃(x)

)
h̃(x). Using this

z
(
f ′
(
zh(x)

)
h(x) log′(h(x))− f ′

(
zh(x)

)
h(x) log′(h̃(x))

)
= g̃′(x)− g′(x)

zf ′
(
zh(x)

)
h(x)

(
log′(h(x))− log′(h̃(x))

)
= g̃′(x)− g′(x). (A.12)
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Now as a contradiction suppose h(x) 6= h̃(x)

λ
for x ∈ X̃ such that Pr(x ∈ X̃ ) > 0. Then

f ′
(
zh(x)

)
=

g̃′(x)− g′(x)(
log′(h(x))− log′(h̃(x))

)
zh(x)

,

which gives a differential equation. The only solution to this differentiable equation is

f ′
(
zh(x)

)
=

a

zh(x)
and

g̃′(x)− g′(x)(
h′(x)

h(x)
− h̃′(x)

h̃(x)

) =
1

a
,

for some constant a. This solution gives

f(w) = a log(w) + b,

which was excluded from Ωf by my assumption. Therefore, we cannot have h(x) 6= h̃(x)

λ
, which

implies

log′(h(x)) = log′(h̃(x)), g̃′(x) = g′(x) (A.13)

Next, using equation (A.12) we also have

g̃′(x) = g′(x) (A.14)

Integrating these equations, there exists λ and a such that

h(x) =
h̃(x)

λ
g(x) = g̃(x)− a

Now using these results and Equation (A.11) we solve for f
(
zh(x)

)
and f̃

(
zh(x)

)
f
(
zh(x)

)
= f̃

(
zh̃(x)

)
+ g̃(x)− g(x) (A.15)

= f̃
(
zλh(x)

)
+ a (A.16)

which obeys the stated normalization f(x) = f̃(λx) + a. Therefore, I conclude that observationally
equivalent functions (f, h, g) ∈ Ω and (f̃ , h̃, g̃) ∈ Ω should satisfy

f(x) = f̃(λx) + a, h(x) =
h̃(x)

λ
, g(x) = g̃(x)− a.

In the second part of the proof, I show that the assumption that f 6∈ Ωlog is testable. To see this,
note that f ∈ Ωlog if and only if conditional expectation has the following form

y(x, z) := E[y | z, x] = λ log z + h(x) + g(x). (A.17)

which is testable by estimating E[y | z, x] from data. If part is trivial. To show the only if part, by

fundamental theorem of calculus, Equation (A.17) implies that
∂t(x, z)

∂ log z
= λ. Using this

∂t(x, z)

∂ log z
= z

∂t(x, z)

∂z
= zf ′(zh(x))h(x) = λ.
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From this, I obtain

f ′(zh(x))h(x) =
λ

z
. (A.18)

The only solution to this equation is f(w) = λ log(w) + a, which belongs to Ωlog. Therefore,
f ∈ Ωlog is testable by simply testing whether the derivative of E[y | z, x] with respect to log(z) is
constant.

Lemma A.5. Under Assumption 3.6 u1
it and u

2
it are independently distributed conditional on Wit−1.

Proof. We have that

ωLit = g1(ωLit−1, ω
H
it−1, u

1
it) ωHit = g2(ωLit−1, ω

H
it−1, u

1
it, u

2
it)

By assumption 3.6, we have

ωLit⊥⊥ωHit | (ωLit−1, ω
H
it−1).

The monotonicity of g1 and g2 in their last arguments imply that u1
it and u2

it are independently
distributed conditional on Wit−1.

B Proofs

Proof of Proposition 2.1

This proof builds on a classic result by Shephard (1953). Throughout the proof, I assume that
the standard properties of production functions are satisfied (Chambers (1988, p.9)), so that cost
function exists and Shephard’s Lemma holds. I also drop the time subscripts from functions to
simplify notation.

Part (i)

With some abuse of notation, I use ωHit and εit in place of exp(ωHit ) and exp(εit) in the production
function. The production function becomes:

Yit = F
(
Kit, h(Kit, ω

L
itLit,Mit)

)
ωHit εit.

The firm minimizes the cost of flexible inputs for a given level of planned output, Ȳit. This problem
can be written as

min
Lit,Mit

pltLit + pmt Mit

s.t. E
[
F
(
Kit, h(Kit, ω

L
itLit,Mit)

)
ωHit εit | Iit

]
> Ȳit.

Because the firm’s information set includes both productivity shocks we can write the firm’s problem
as follows:

min
Lit,Mit

pltLit + pmt Mit

s.t. F
(
Kit, h(Kit, ω

L
itLit,Mit)

)
ωHit Eit(Iit) > Ỹit,

(B.1)

where Eit(Iit) := E[εit | Iit]. I use L̄it := ωLitLit to denote the effective (quality-adjusted) labor and
p̄lit := plt/ω

L
it to denote the quality-adjusted price of labor. With this notation, I can reformulate

the firm’s problem as another cost minimization, where the firm chooses the effective labor facing
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the quality-adjusted input prices. The two problems are equivalent because the firm takes ωLit as
given. Therefore, the cost minimization problem in Equation (B.1) can be rewritten as

min
Mit,L̄it

p̄litL̄it + pmt Mt

s.t. F
(
Kit, h(Kit, L̄it,Mit)

)
ωHit > Ȳit(Iit),

(B.2)

where Ỹit := Ȳit/Eit(Iit). So, for what follows, I suppress keep the argument (Iit) implicit in Ỹit.
I will next derive the cost function from this optimization problem. Letting p̄it = (p̄lit, p

m
t ) denote

the (quality-adjusted) input price vector, the cost function can be written as:

C(Ỹit,Kit, ω
H
it , p̄it) = min

L̄it,Mit

{
p̄litL̄it + pmt Mit : Ỹit 6 F

(
Kit, h(Kit, L̄it,Mit)

)
ωHit

}
,

= min
L̄it,Mit

{
p̄litL̄it + pmt Mit : F−1(Ỹit/ω

H
it ,Kit) 6 h(Kit, L̄it,Mit)

}
,

= min
L̄it,Mit

{
p̄litL̄it + pmt Mit : 1 6 h

(
Kit, L̄it/F

−1(Ỹit/ω
H
it ,Kit),Mit/F

−1(Ỹit/ω
H
it ,Kit)

)}
,

= min
L̄it,Mit

{
F−1(Ỹit/ω

H
it ,Kit)

(
p̄litL̄it + pmt Mit

)
: 1 6 h

(
Kit, L̄it,Mit

)}
,

= F−1(Ỹit/ω
H
it ,Kit) min

L̄it,Mit

{(
p̄litL̄it + pmt Mit

)
: 1 6 h

(
Kit, L̄it,Mit

)}
,

≡ C1(Kit, Ỹit, ω
H
it )C2(Kit, p̄

l
it, p

m
t ). (B.3)

The second line follows by the assumption that F (·, ·) is strictly monotone in its second argument.
The third and fourth lines are due to homotheticity property of h(Kit, ·, ·). In the last line I define
two new functions that characterize the cost function. Equation (B.3) implies that the cost function
can be expressed as a product of two functions, one of which depends only on capital and input
prices. By Shephard’s Lemma, the firm’s optimal demands for flexible inputs are given by the
derivatives of the cost function with respect to the input prices:

L̄it =
∂C(Ỹit,Kit, ω

H
it , p̄it)

∂p̄lit
= C1(Kit, Ỹit, ω

H
it )
∂C2(Kit, p̄

l
it, p

m
t )

∂p̄lit
,

Mit =
∂C(Ỹit,Kit, ω

H
it , p̄it)

pmt
= C1(Kit, Ỹit, ω

H
it )
∂C2(Kit, p̄

l
it, p

m
t )

∂pmt
.

The ratio of materials to the effective labor equals:

Mit

L̄it
=
∂C2(Kit, p̄

l
it, p

m
t )/∂pmt

∂C2(Kit, p̄lit, p
m
t )/∂p̄lit

≡ Cm(Kit, p̄
l
it, p

m
t )

Cl(Kit, p̄lit, p
m
t )

,

which does not depend on (Ỹit, ω
H
it ). Using L̄it = Litω

L
it the ratio of materials to labor takes the

form:
Mit

Lit
=
Cm(Kit, p̄

l
it, p

m
t )ωLit

Cl(Kit, p̄lit, p
m
t )

.

This function depends only on capital, labor-augmenting productivity and input prices. Hence

M̃it ≡ r(Kit, ω
L
it, p

m
t , p

l
t) ≡ rt(Kit, ω

L
it), (B.4)

for some function rt(Kit, ω
L
it), as input prices do not vary across firms. This completes the first part

of the proof.
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Part (ii)

In the second part of the proof, I will show that

∂rt(Kit, ω
L
it)

∂ωLit
> 0 for all (Kit, ω

L
it) or

∂rt(Kit, ω
L
it)

∂ωLit
< 0 for all (Kit, ω

L
it).

In part (i), I showed that

rt(Kit, ω
L
it) = M̃it =

Cm(Kit, p̄
l
it, p

m
t )ωLit

Cl(Kit, p̄lit, p
m
t )

.

By the properties of the cost function, Cm(·) and Cl(·) are homogenous of degree of zero with
respect to input prices (Chambers (1988, p.64)). This implies that the input ratio can be written
as a function of quality-adjusted labor and materials prices:

M̃it ≡
C̃m(Kit, p̃it)ω

L
it

C̃l(Kit, p̃it)
, (B.5)

where p̃it :=
p̄lit
pmt

, C̃m := Cm(Kit, p̃it, 1) and C̃l(Kit, p̃it) := Cl(Kit, p̃it, 1). Taking the logarithm of

Equation (B.5), the logarithm of input is given by

log(M̃it) = log

(
C̃l(Kit, p̃it)

C̃m(Kit, p̃it)

)
+ log(ωLit).

Taking the derivative of this expression with respect to log(ωLit) and with some algebra, I obtain

∂ log(M̃it)

∂ log(ωLit)
=

∂ log

(
C̃l(Kit, p̃it)

C̃m(Kit, p̃it)

)
∂ log(ωLit)

+ 1,

=

∂ log

(
C̃l(Kit, p̃it)

C̃m(Kit, p̃it)

)
∂ log(p̃it)

(
∂ log(p̃it)

∂ log(ωLit)

)
+ 1,

=

∂ log

(
C̃l(Kit, p̃it)

C̃m(Kit, p̃it)

)
∂ log(p̃it)

+ 1,

≡ −σ(Kit, p̃it) + 1,

where the last line follows by the fact that the elasticity of substitution between two inputs equals
the negative derivative of the logarithm of input ratio with respect to the logarithm of input price
ratio (Chambers (1988, p.94)). So, σ(Kit, p̃it) equals the elasticity of subtitution between effective
labor and materials. By Assumption 2.1(iv) σ(Kit, p̃it) > 1 for all (Kit, ω

L
it) or σ(Kit, p̃it) < 1 for

all (Kit, ω
L
it). From this I conclude that the flexible input ratio is strictly monotone in ωLit. This

completes the proof.

Proof of Lemma 3.1
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By Assumption 2.2 we have that

ωLit ⊥⊥ Iit−1 | ωLit−1, ω
H
it−1.

Substituting ωLit from Equation (3.1)

g(ωLit−1, ω
H
it−1, u

1
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1. (B.6)

Since g(ωLit−1, ω
H
it−1, u

1
it) is strictly monotone in u1

it, Equation (B.6) implies independence of u1
it and

Iit−1 conditional on (ωLit−1, ω
H
it−1)

u1
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1. (B.7)

Note that by normalization u1
it is uniformly distributed conditional on (ωLit−1, ω

H
it−1) and by timing

assumption (Kit,Wit−1, ω
L
it−1, ω

H
it−1) ∈ Iit−1. Therefore, Equation (B.7) implies

u1
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1 ∼ Uniform(0, 1)

Using Equations (2.7) and (2.9), (ωLit−1, ω
H
it−1) can be expressed as functions of Wit−1. Thus

u1
it | Kit,Wit−1, r̃t(Kit−1, M̃it−1), s̃t(Kit−1, M̃it−1,Mit−1) ∼ Uniform(0, 1),

u1
it | Kit,Wit−1 ∼ Uniform(0, 1).

Therefore, the u1
it is uniformly distributed conditional on (Kit,Wit−1). This concludes the proof.

Proof of Lemma 3.2

By Assumption 2.2, we have

(ωLit, ω
M
it ) ⊥⊥ Iit−1 | ωLit−1.ω

H
it−1

Using the representations of productivity shocks in Equation (3.1) and (3.5) yields

g1(ωLit−1, ω
H
it−1, u

1
it), g2(ωLit−1, ω

H
it−1, u

1
it, u

2
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1.

Monotonicity of g1 and g2 with respect to their last arguments and Lemma A.1 imply

u2
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, u

1
it. (B.8)

It follows from Equation (B.8), the fact that u2
it is normally distributed conditional on

(ωLit−1, ω
H
it−1, u

1
it) and (Kit,Wit−1) ∈ Iit−1 that

u2
it | Kit,Wit−1, ω

L
it−1, ω

H
t−1, u

1
it ∼ Uniform(0, 1).

Using Equations (2.7) and (2.9), (ωLit−1, ω
H
it−1) can be expressed as functions of Wit−1. This gives

u2
it | Kit,Wit−1, u

1
it ∼ Uniform(0, 1),

which completes the proof.

Proof of Proposition 4.3

The proof consists of two parts. First, I will show that two different set of structural functions, lead
to observationally equivalent (θLit, θ

M
it , h̄, f). Then, I will show that labor-augmenting productivity,

the output elasticity of capital and elasticity of substitutions depend on the structural functions h
and r̄, and therefore can not identified. Looking at the elasticities first, θLit and θ

M
it can be written
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as a function of production function in the following way

θLit = f2h2(Kit, r̄(Kit, M̃it), M̃it)r̄(Kit, M̃it)Lit, (B.9)

θMit = f2h3(Kit, r̄(Kit, M̃it), M̃it)Mit, (B.10)

where arguments of the derivatives of f are omitted. Next, the derivatives of the reduced form
function h̄ can be written as:

h̄2(Kit, M̃it) = h2(Kit, r̄(Kit, M̃it), M̃it)r2(Kit, M̃it) + h3(Kit, r̄(Kit, M̃it), M̃it), (B.11)

h̄1(Kit, M̃it) = h1(Kit, r̄(Kit, M̃it), M̃it) + h2(Kit, r̄(Kit, M̃it), M̃it)r1(Kit, M̃it). (B.12)

So the right-hand side of these equations are identified from h̄ and the output elasticities θLit and θ
M
it .

To give an intuition for the identification problem note that we have four equations, but structural
functions h(Kit, r̄(Kit, M̃it), M̃it) and r̄(Kit, M̃it) has five arguments in total. This suggests that it
might not be possible to identify h and r̄ from (θLit, θ

M
it , h̄, f). More formally, consider two sets of

functions (h1, h2, h3, r̄1, r̄2) and (h′1, h
′
2, h
′
3, r̄
′
1, r̄
′
2) such that

r̄′(Kit, M̃it) = r̄(Kit, M̃it)T (Kit),

h′2(Kit, r̄(Kit, M̃it), M̃it) =
h2(Kit, r̄(Kit, M̃it), M̃it)

T (Kit)
,

h′1(Kit, r̄(Kit, M̃it), M̃it) = h1(Kit, r̄(Kit, M̃it), M̃it)− r̄(Kit, M̃it)
T1(Kit)

T (Kit)
,

h′3(Kit, r̄(Kit, M̃it), M̃it) = h3(Kit, r̄(Kit, M̃it), M̃it),

where T (Kit) is an arbitrary function and T1(Kit) denotes the derivative of T (Kit) with respect to
Kit. These functions lead to observational equivalence since they give the same (θLit, θ

M
it , h̄, f).

θLit = f2h
′
2(Kit, r̄

′(Kit, M̃it), M̃it)r
′(Kit, M̃it)Lit

= f2h2(Kit, r̄(Kit, M̃it), M̃it)r(Kit, M̃it)Lit

θMit = f2h
′
3(Kit, r̄

′(Kit, M̃it), M̃it)Mit

= f2h3(Kit, r̄(Kit, M̃it), M̃it)Mit

h̄2(Kit, M̃it) = h′2(Kit, r̄
′(Kit, M̃it), M̃it)r

′
2(Kit, M̃it) + h′3(Kit, r̄

′(Kit, M̃it), M̃it)

= h2(Kit, r̄(Kit, M̃it), M̃it)r2(Kit, M̃it) + h3(Kit, r̄(Kit, M̃it), M̃it)

h̄1(Kit, M̃it) = h′1(Kit, r̄
′(Kit, M̃it), M̃it) + h′2(Kit, r̄

′(Kit, M̃it), M̃it)r
′
1(Kit, M̃it)

= h1(Kit, r̄(Kit, M̃it), M̃it) + h2(Kit, r̄(Kit, M̃it), M̃it)r1(Kit, M̃it)

This implies that we cannot distinguish (h1, h2, r̄1, r̄2) from (h′1, h
′
2, r̄
′
1, r̄
′
2), however h3 might be

identified. Next I show that labor-augmenting productivity, output elasticity of capital and elasticity
of substitution depend on (h1, h2, r̄1, r̄2), so they cannot be recovered from (θLit, θ

M
it , h̄, f). Labor-

augmenting productivity is given by

ωLit = r̄(Kit, M̃it).

Hence, non-identification of r̄(Kit, M̃it) immediately implies that ωLit is not identified. The output
elasticity of capital is given by

θKit = f1 + f2h1(Kit, r̄(Kit, M̃it), M̃it).

Since h1 is not identified, θKit is not identified. Finally, to see that the elasticity of substitution is

54



not identified note that it is defined as

σML
it =

∂ log(Lit/Mit)

∂ log(FM/FL)
,

which depends on the ratio of marginal products. We can write the ratio of marginal products as

FL
FM

=
h(Kit, r̄(Kit, M̃it), M̃it)

h3(Kit, r̄(Kit, M̃it), M̃it)
− M̃it

Using this elasticity of substitution is given by

σML
it =

h3(Kit, r̄(Kit, M̃it), M̃it)
2 − h(Kit, r̄(Kit, M̃it), M̃it)h33(Kit, r̄(Kit, M̃it), M̃it)

h3(Kit, r̄(Kit, M̃it), M̃it)2
− 1

which depends on h33(Kit, r̄(Kit, M̃it), M̃it). This function is not identified because r̄(Kit, M̃it) is
not identified. Therefore, I conclude that the elasticity of substitution is not identified. Elasticity
of substitution with respect to other inputs can similarly be derived and it can be showed than then
depend on the derivatives of h.

Proof of Proposition 4.4

If production function takes the form given Equation (4.7) the output elasticities with respect to
labor and materials, as a function of f and h, can be written as

θLit = f2h1(r̄(M̃it), M̃it)r(M̃it)Lit (B.13)

θMit = f2h2(r̄(M̃it), M̃it)Mit.

Since I already showed in Equation (4.6) that θLit and θMit are identified, the right-hand sides of
these equations are identified. The identification of θMit immediately implies that h2(r̄(M̃it), M̃it) is
identified from (f2, θ

M
it . Taking the derivative of the reduced form function h̄ and using h̄(M̃it) =

h(r̄(M̃it), M̃it) I obtain

h̄1(M̃it) = h1(r̄(M̃it), M̃it)r̄
′(M̃it) + h2(r̄(M̃it), M̃it), (B.14)

where r̄′(M̃it) denotes the derivative of r̄(M̃it). Therefore, the right-hand side of Equation (B.14)
is identified from h̄(M̃it). Now, taking the ratio of θLit/Lit and f2h̄1(M̃it)− θMit /Mit gives

b(M̃it) :=
θLit/Lit

f2h̄1(M̃it)− θMit /Mit

=
f2h1(r̄(M̃it), M̃it)r

′(M̃it)

f2h1(r̄(M̃it), M̃it)r(M̃it)

=
r̄′(M̃it)

r̄(M̃it)
=
∂ log(r̄(M̃it))

∂M̃it

.

This shows that the derivative of log(r(M̃it) with respect to M̃it can be identified from (θLit, θ
M
it , h̄, f)

as b(M̃it). Therefore, we can recover log(r(M̃it)) up to a constant by integrating b(M̃it) with respect
to M̃it.

log(r(M̃it)) =

∫ M̃it

M̃it

b(M̃it)dM̃it + a.

Since ωLit = r(M̃it), and log(r(M̃it)) is identified up to a constant, ωLit is identified up to a scale.
Identification of output elasticity of capital is easy to show because it depends on f and h̄ only. We
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can recover the output elasticity of capital from f and h̄ as:

θKit = f1(Kit, Lith̃(M̃it)).

This concludes the proof.

Proof of Proposition 4.5

The elasticity of substitution is given by

σML
it =

∂ log(Lit/Mit)

∂ log(FM/FL)

If production function takes the form in Equation (4.7), we can derive σML
it as

σML
it =

h2(r̄(M̃it), M̃it)
2 − h(r̄(M̃it), M̃it)h2(r̄(M̃it), M̃it)

h22(r̄(M̃it), M̃it)2
− 1,

which depends on h22. Since h22 is not identified, the elasticity of substitution is not identified.

C Identification

In this section I show that the homothetic and strong homothetic separable production functions in
Section 4.5 are identified except special cases using the moment restriction in Equation (5.5). The
identification results follow Roehrig (1988)65.

Identification for Homothetic Production Function

Under homotheticity assumption, the function function takes the following form

yit = vkit + f̃
(
L̃ith̄(M̃it)

)
+ ωHit + εit.

Substituting a unknown function of control variables for ωHit gives

yit = vkit + f
(
L̃ith̄(M̃it)

)
+ g
(
Wit−1, u

1
it, u

2
it)
)

+ εit, E[εit | kit,Mit, M̃it,Wit−1] = 0. (C.1)

Under homothetic model the control variables are u1
it = M̃it and u2

it = FMit|Kit,Wit−1,u1it
(Mit |

Kit,Wit−1, u
1
it). Substituting these into Equation (C.1), I obtain

yit = vkit + f
(
L̃ith̄(M̃it)

)
+ c2

(
Wit−1, M̃it, s̃(Kit,Mit, M̃it,Wit−1)

)
+ εit, E[εit | kit,Mit, M̃it,Wit−1] = 0,

where s̃(·) equals the CDF given above, α and (f, h̄, g) are unknown parameter and functions to be
estimated. By transforming the arguments of s̃, we can rewrite this equation as:

yit = vkit + f
(
L̃ith̄(M̃it)

)
+ c2

(
Wit−1, M̃it, s(kit, L̃it, M̃it,Wit−1)

)
+ εit, E[εit | kit, L̃it, M̃it,Wit−1] = 0.

where s̃(x1, x2, x3, x4) = s(log(x1), x2/(x3x1), x3, x4). Note that under the modelling assumptions,
none of the random variable in (kit, L̃it, M̃it,Wit−1) is stochastically dependent on others. To sim-
plify the notation I relabel (kit, L̃it, M̃it,Wit−1) as (w, z, x, t), relabel h̄ by h, and drop the indices

65Benkard and Berry (2006) describes an error in the identification proof of Roehrig (1988) when the system involves
multiple equations and multi-dimensional errors. Since my setting involves a single equation, Roehrig (1988)’s result
still applies.

56



from the random variables

y = αw + f
(
zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
+ ε, E[ε | w, z, x, t] = 0.

By the moment restriction in Equation (5.5), we have

E[y | w, z, x, t] = αw + f
(
zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
.

Therefore, from data, we can identify E[y | w, z, x, t]. Let Ω denote the set of functions that satisfy
the restrictions imposed on the true parameter and functions, so (α0, f0, h0, g0) ∈ Ω. Using this, we
say that (α, f, h, g) ∈ Ω and (α̃, f̃ , h̃, g̃) ∈ Ω are observationally equivalent if and only if

αw + f
(
zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
= α̃w + f̃

(
zh̃(x)

)
+ g̃
(
x, t, s(w, z, x, t)

)
. (C.2)

We say that (α0, f0, h0, g0) ∈ Ω are identifiable if no other member of Ω that is observationally
equivalent to (α0, f0, h0, g0). The following proposition establishes the generic identification of
(α0, f0, h0, g0) ∈ Ω.

Proposition C.1. Suppose that (i) Functions (f0, h0, g0) are twice continuously differentiable and
have non-zero derivatives almost everywhere, (ii) The joint distribution function of (w, z, x, t) is
absolutely continuous with positive density everywhere on its support, (iii) h′(x) > 0 almost every-
where. (iv)f0 6∈ Ωlog, where Ωlog is defined in Lemma A.4. (v) The matrix defined below is full rank
almost everywhere [

s2
1(w, z, x, t) s11(w, z, x, t)

s1(w, z, x, t)s2(w, z, x, t) s12(w, z, x, t)

]
Then g0 is identified up to constant, h0 is identified up to scale and f0 is identified up to constant
and normalization given in Lemma A.4, and α0 is identified.

Proof. I will show that if there exists observationally equivalent (α, f, h, g) and (α̃, f̃ , h̃, g̃), then they
equal each other up to normalization described in the proposition. The proof adopts the notation
that ri() denotes the derivative of function r with respect to its i-th argument and r′ to denote
the derivative if function r takes a single argument. Taking the derivative of Equation (C.2) with
respect to w we obtain

α+ g3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t) = α̃+ g̃3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t).

Rearranging this equation:

g3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t)− g̃3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t) = α̃− α. (C.3)

As a contradiction suppose α 6= α̃ and define ḡ3 = g3 − g̃3. Using this notation we have that

ḡ3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t) = α̃− α. (C.4)

Taking the derivatives of Equation (C.4) with respect to w and z

ḡ33

(
x, t, s(w, z, x, t)

)
s2

1(w, z, x, t) + ḡ3

(
x, t, s(w, z, x, t)

)
s11(w, z, x, t) = 0.

ḡ33

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t)s2(w, z, x, t) + ḡ3

(
x, t, s(w, z, x, t)

)
s12(w, z, x, t) = 0.

By the full rank assumption in (v) ḡ3 = 0 is the only solution to this system of equations everywhere
in the support. Therefore, we obtain

α = α̃, g3

(
x, t, s(w, z, x, t)

)
− g̃3

(
x, t, s(w, z, x, t)

)
= 0. (C.5)

This shows that α and g3 are identified. Next, taking the derivative of Equation (C.4) with respect

57



to t gives

g2

(
x, t, s(w, z, x, t)

)
+ g3

(
x, t, s(w, z, x, t)s4(w, z, x, t) = g̃2

(
x, t, s(w, z, x, t)

)
+ g̃3

(
x, t, s(w, z, x, t)s4(w, z, x, t).

Since I already showed that g3 = g̃3 this gives:

g2

(
x, t, s(w, z, x, t)

)
= g̃2

(
x, t, s(w, z, x, t)

)
. (C.6)

Therefore g2

(
x, t, s(w, z, x, t)

)
is also identified. Taking the derivative of Equation (C.4) with respect

to z to obtain

f ′
(
zh(x)

)
h(x) + g3

(
x, t, s(w, z, x, t)

)
s2(w, z, x, t) = f̃ ′

(
zh̃(x)

)
h̃(x) + g̃3

(
x, t, s(w, z, x, t)

)
.s2(w, z, x, t)

Using g3 = g̃3 obtained in Equation in (C.5) gives

f ′
(
zh(x)

)
h(x) = f̃ ′

(
zh̃(x)

)
h̃(x). (C.7)

Finally, taking the derivative of Equation (C.4) with respect to x

f ′
(
zh(x)

)
h′(x)z + g′1

(
x, t, s(w, z, x, t)

)
= f̃ ′

(
zh̃(x)

)
h̃′(x)z + g̃′1

(
x, t, s(w, z, x, t)

)
Rearranging

z
(
f ′
(
zh(x)

)
h′(x)− f̃ ′

(
zh̃(x)

)
h̃′(x)

)
= g̃1

(
x, t, s(w, z, x, t)

)
− g1

(
x, t, s(w, z, x, t)

)
Using Equation (C.7) we can substitute f ′

(
zh(x)

)
h′(x) and, with some algebra, get

z
(
f̃ ′
(
zh̃(x)

)
h̃(x)(log′(h(x))− log′(h̃(x))

))
= g̃1

(
x, t, s(w, z, x, t)

)
− g1

(
x, t, s(w, z, x, t)

)
(C.8)

Taking the derivative with respect to w

g13

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t) = g̃13

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t).

This implies that g13

(
x, t, s(w, z, x, t)

)
= g̃13

(
x, t, s(w, z, x, t)

)
. Taking the derivative with respect

to t

g12

(
x, t, s(w, z, x, t)

)
+ g13

(
x, t, s(w, z, x, t)

)
s4(w, z, x, t) = g̃12

(
x, t, s(w, z, x, t)

)
+ g̃13

(
x, t, s(w, z, x, t)

)
s4(w, z, x, t)

Using g13 = g̃13, we have g12

(
x, t, s(w, z, x, t)

)
= g̃12

(
x, t, s(w, z, x, t)

)
. By fundamental theorem of

calculus

ḡ1(x) ≡ g1

(
x, t, s(w, z, x, t)

)
− g′1

(
x, t, s(w, z, x, t)

)
(C.9)

Now as a contradiction suppose there exists with X̃ such that Pr(x ∈ X̃ ) > 0, h(x) 6= h̃(x)/λ.
Therefore, Equation (C.8) can be written as

f ′
(
zh̃(x)

)
=

ḡ′1
(
x
)

(log′(h(x))− log′(h̃(x)
)
h̃(x)z

.

Now applying a result in Lemma A.4 we obtain

f(x) = f̃(λx) + a, h(x) =
h̃(x)

λ
, g(x) = g̃(x)− a, α = α̃ (C.10)

This concludes the proof.

Identification for Strong Homothetic Production Function
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Under strong homothetic separability assumption, the function function takes the following form,

yit = f
(
Kit, Lith̄(M̃it)

)
+ ωHit + εit. (C.11)

Substituting an unknown function of control variables for ωHit we obtain:

yit = f
(
Kit, Lith̄(M̃it)

)
+ c2

(
Wit−1, u

1
it, u

2
it)
)

+ εit, E[εit | kit,Mit, M̃it,Wit−1, u
1
it, u

2
it] = 0.

Under the strong homothetic separable model the control variables are u1
it = M̃it and u2

it =
FMit|Kit,Wit−1,u1it

(Mit | Kit,Wit−1, u
1
it). Substituting these into Equation (C.11) gives:

yit = f
(
Kit, Lith̄(M̃it)

)
+ g
(
M̃it,Wit−1, s̃(Kit,Mit, M̃it,Wit−1)

)
+ εit, E[εit | Kit,Mit, M̃it,Wit−1] = 0.

where s̃(·) equals the CDF given above, (f, h̄, g) are unknown functions to be estimated. By trans-
forming the arguments of s̃, we can rewrite this equation as

yit = f
(
Kit, Lith̄(M̃it)

)
+ g
(
M̃it,Wit−1, s(Kit, Lit, M̃it,Wit−1)

)
+ εit E[εit | Kit, Lit, M̃it,Wit−1] = 0

where s̃(x1, x2, x3, x4) = s(x1, x2/x3, x3, x4). Note that under the modelling assumptions, none of
the random variable in (Kit, Lit, M̃it,Wit−1) is stochastically dependent on others. To simplify the
notation, I relabel (Kit, Lit, M̃it,Wit−1) as (w, z, x, t), h̄ as h, and drop indices from the random
variables to obtain

y = f
(
w, zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
+ ε, E[ε | w, z, x, t] = 0.

By the moment restriction in Equation (5.5), we have

E[y | w, z, x, t] = f
(
w, zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
.

From data, we can identify E[y | w, z, x, t]. Let Ω denote the set of functions that satisfy the
restrictions imposed on the functions, so (f0, h0, g0) ∈ Ω. Using this we say (f, h, g) ∈ Ω and
(f̃ , h̃, g̃) ∈ Ω are observationally equivalent if and only if

f
(
w, zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
= f̃

(
w, zh̃(x)

)
+ g̃
(
x, t, s(w, z, x, t)

)
. (C.12)

(f0, h0, g0) ∈ Ω are identifiable if no other member of Ω that is observationally equivalent to
(f0, h0, g0).

Proposition C.2. Suppose that (i) Functions (f0, h0, g0) are twice continuously differentiable and
have non-zero derivatives almost everywhere, (ii) The joint distribution function of (w, z, x, t) is
absolutely continuous with positive density everywhere on its support, (iii) h′0(x) > 0 almost every-
where. (iv) E[s2

1(w, z, x, t) | x, t] > 0. (vi) Define q := s2(w, z, x, t) log′
(
h0(x)

)
z − s3(w, z, x, t). I

assume that E[q2 | x, s, t] > 0 for all (x, s, t). Then g0 is identified up to constant, h0 is identified
up to scale and f0 is identified up to constant and normalization given in Lemma A.4.

Proof. I will show that if there exists observationally equivalent (f, h, g) and (f̃ , h̃, g̃), then they
equal each other up to normalization described in the proposition. Denote E[y | w, x, z, t] by
y(w, z, x, t). Taking the derivative of y(w, z, x, t) with respect to (w, z, x) we have

y1(w, z, x, t) = f1

(
w, zh(x)

)
+ g2

(
x, s(w, z, x, t), t

)
s1(w, z, x, t), (C.13)

y2(w, z, x, t) = f2

(
w, zh(x)

)
h(x) + g2

(
x, s(w, z, x, t), t

)
s2(w, z, x, t), (C.14)

y3(w, z, x, t) = f2

(
w, zh(x)

)
h′(x) + g2

(
x, s(w, z, x, t), t

)
s3(w, z, x, t) + g1

(
x, s(w, z, x, t), t

)
. (C.15)

The same equations hold when we replace (f, h, g) by (f̃ , h̃, g̃). Multiplying y2(w, z, x, t) by
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log′
(
h(x)

)
z and subtracting y3(w, z, x, t) we obtain

y2(w, z, x, t) log′
(
h(x)

)
z − y3(w, z, x, t) = (C.16)

g2

(
x, s(w, z, x, t), t)

(
s2(w, z, x, t) log′

(
h(x)

)
z − s3(w, z, x, t)

)
− g1

(
x, s(w, z, x, t), t

)
. (C.17)

We obtain a similar equation for (f̃ , h̃, g̃).

y2(w, z, x, t) log′
(
h̃(x)

)
z − y3(w, z, x, t) = (C.18)

g̃2

(
x, s(w, z, x, t), t)

(
s2(w, z, x, t) log′

(
h̃(x)

)
z − s3(w, z, x, t)

)
− g̃1

(
x, s(w, z, x, t), t

)
. (C.19)

In Equation (C.16), the unknown functions are h(x), g1

(
x, s(w, z, x, t), t) and g2

(
x, s(w, z, x, t), t),

and other functions are known or identified. None of the unknown functions de-
pend on w. By assumption (vi), conditional on (x, s, t) there is variation in(
x, s(w, z, x, t), t)

(
s2(w, z, x, t) log′

(
h̃(x)

)
z − s3(w, z, x, t)

)
. Therefore, g2 and g1 can be identified

from Equations (C.16) and (C.18) for a given h(x) and h̃(x). Therefore, g1 and g̃1 can be written
as a function of observed or identified random variables and h(x) and similarly g̃2 and g̃1 can be
written as a function of observed or identified random variables and h̃(x). So we write

g2

(
x, s, t) = ḡ2(y2, y3, z, h(x), w, t, s2, s3),

g̃2

(
x, s, t) = ḡ2(y2, y3, z, h̃(x), w, t, s2, s3),

g1

(
x, s, t) = ḡ1(y2, y3, z, h(x), w, t, s2, s3)

g̃1

(
x, s, t) = ḡ1(y2, y3, z, h̃(x), w, t, s2, s3)

where ḡ1 and ḡ2 are known functions that can be derived from Equations (C.16) and (C.18). This
implies that g2 and g̃2 equal each other up to a transformation of their first argument. And similarly
for g1 and g̃1. So we can write

g2

(
x, s(w, z, x, t), t) = g̃2

(
h−1(h̃(x)), s(w, z, x, t), t), (C.20)

g1

(
x, s(w, z, x, t), t) = g̃1

(
h−1(h̃(x)), s(w, z, x, t), t). (C.21)

Let r̃(x) denote h−1(h̃(x)). Now using y1(w, z, x, t) we can write

f1

(
w, zh(x)

)
+ g̃2

(
r̃(x), s(w, z, x, t), t

)
s1(w, z, x, t) = f̃1

(
w, zh̃(x)

)
+ g̃2

(
x, s(w, z, x, t), t

)
s1(w, z, x, t)

Once we condition on w, this problem falls into the case given in Lemma (A.4) with a slight
modification. Therefore, h(x) is identified up to a scale:

h(x) =
h̃(x)

λ
.

This implies identification of g1

(
h(x), s(w, z, x, t), t) and g2

(
h(x), s(w, z, x, t), t) from Equations

(C.20) and (C.21). With these identification results, identification of f0

(
w, zh(x)

)
follows by Equa-

tion (C.13) and (C.14).
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1 Data and Estimation

1.1 Chile

The data for Chile are from the Chilean Annual Census of Manufacturing, Encuesta Nacional Industrial
Anual (ENIA), covering the years 1979 through 1996. This dataset includes all manufacturing plants with
at least 10 employees.

I restrict my sample to industries that have more than 250 firms per year on average. I drop observations
that are at the bottom and top 2% of the distribution of revenue share of labor or revenue share of materials
or revenue share of combined flexible input for each industry to remove outliers. Appendix Table 1.0 lists the
names and SIC codes of the industries in the final sample. I report each industry’s share in manufacturing
in terms of sales, and the number of plants operating in each industry for the first, last and midpoint year
of the sample. The last row labeled as “other industries” provides information about the industries that are
excluded from the sample. After sample restrictions, there are five industries remaining in the sample, which
cover around 30 percent of the manufacturing sector of Chile in terms of sales.

1.2 Colombia

The data for Colombia are from the annual Colombian Manufacturing census provided by the Departamento
Administrativo Nacional de Estadistica, covering the years 1981 through 1991. This dataset contains all
manufacturing plants with 10 or more employees.

I restrict my sample to industries that have more than 250 firms per year on average. I drop observations
that are at the bottom and top 2% of the distribution of revenue share of labor or revenue share of materials
or revenue share of combined variable input for each industry to remove outliers. Appendix Table 1.0 provides
summary statistics. The number of industries after sample restrictions is nine, relatively higher than the
number of industries in other datasets. The sample covers around 55 percent of the entire manufacturing
sector in Colombia in terms of sales. We see that for most industries, the number of plants is stable, with
little change over the sample period.

1.3 India

The Indian data was collected by the Ministry of Statistics and Programme Implementation, Government
of India, through the Annual Survey of Industries (ASI), which covers all factories that have ten or more
workers and use electricity, or that do not use electricity but have at least twenty workers. The factories
are divided into two categories: a census sector and a sample sector. The census sector consists of all large
factories and all factories in states classified as industrially backward by the government. From 2001 to 2005,
the definition of a large factory is one with 200 or more workers, whereas from 2006 onward, the definition
was changed to one with 100 or more workers. All factories in the census sector are surveyed every year.
The remaining factories constitute the sample sector, from which a random sample is selected each year for
the survey.

India uses National Industrial Classification (NIC) to classify manufacturing establishments which is
similar to industrial classifications in other countries. The industry definition repeatedly changes over the
sample period. I follow Allcott et al. (2016) to create a consistent industry definition at the NIC 87 level.
The ASI data include firm and product-level price information for intermediate inputs and produced goods,
but my empirical framework does not use them, as it requires extensive data cleaning and price indexes.
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For sample restriction and data cleaning I first follow Allcott et al. (2016).1 Then, I restrict my sample
to the Census sample to be able to follow the firms over time. Therefore, compared to other developing
countries, the average firm size is large in the Indian data. My final sample includes industries that have
more than 250 firms per year on average. I drop observations that are at the bottom and top 2% of the
distribution of revenue share of labor or revenue share of materials or revenue share of combined variable
input for each industry to remove outliers.

Appendix Table 1.0 provides summary statistics. Among all datasets, the Indian sample is the least
representative of the country manufacturing sector as five industries in the sample make up only 20 percent
of the Indian manufacturing sector in terms of sales. We also see a very large increase in the number of
plants over the sample period for all industries. This reflects the extensive growth in Indian manufacturing
over the sample period.

1.4 Compustat

Compustat data is obtained from Standard and Poor’s Compustat North America database and covers the
period from 1961 to 2012. Data from more recent years are available, but due to the unavailability of some
deflators used in variable construction I restrict my sample from 1961 to 2012. Since Compustat is compiled
from firm’s financial statements, it requires more extensive data cleaning than the other datasets. First, I
drop the firms that are not incorporated in the US. Then, as is standard in the literature, I drop financial and
utility firms with industry code between 4900-4999 and 6000-6999. I also remove the firms with negative or
nonzero sales, employment, cogs, xsga and less than 10 employees and firms that do not report an industry
code. Finally, the sample is restricted to only manufacturing firms operating in industries with the NAICS
codes 31, 32 and 33. To construct the variables used in production function estimation, I follow Keller and
Yeaple (2009), who explain the procedure in detail in their Appendix B, page 831.

Unlike other datasets in my sample, which are at the plant level, Compustat is at the firm-level as it only
comprises of public firms. Also, the industry classification is based on NAICS and industries are defined at
the 2-digit level. Appendix Table 1.0 provides some summary statistics. Since there are only three 2-digit
level NAICS industries, my sample covers the entire population of public manufacturing firms, subject to
data cleaning. Differently from other countries there is a large increase in sample size from 1961 to 2012.
This reflects the fact that the number of public firms has risen enormously in the US over the sample periods.
Differently from other datasets, I drop observations that are at the bottom and top 1 percent, instead of 2
percent, of the distribution for Compustat to preserve the sample size.

1.5 Turkey

The data for Turkey are provided by the Turkish Statistical Institute (TurkStat; formerly known as the
State Institute of Statistics, SIS), which collects plant-level data for the manufacturing sector. Periodically,
Turkstat conducts the Census of Industry and Business Establishments (CIBE), which collects information
on all manufacturing plants in Turkey. In addition, TurkStat conducts the Annual Surveys of Manufacturing
Industries (ASMI) that covers all establishments with at least 10 employees. The set of establishments used
for ASMI is obtained from the CIBE. In non-census years, the new private plants with at least 10 employees
are obtained from the chambers of industry.

I use a sample covering a period from 1983 to 2000. Data from a more recent period are available, but
due to major changes in the survey methodology, it is not possible to link ASMI to the data from a more

1The code for data cleaning is available at https://www.aeaweb.org/articles?id=10.1257/aer.20140389.
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recent period. The data includes gross revenue, investment, the book value of capital, materials expenditures
and the number of production and administrative workers. For variable construction, I follow Taymaz and
Yilmaz (2015).

I restrict my sample to industries that have more than 250 firms per year on average and private estab-
lishments. I drop observations that are at the bottom and top 2% of the distribution of revenue share of
labor or revenue share of materials or revenue share of combined variable input for each industry to remove
outliers. In the final sample, I have 15437 firms and 104271 year-firm observations. Appendix Table 1.0
provides summary statistics. In 2000, the industries in the sample make up 71 percent of all manufacturing
sector of Turkey. An industry’s share and the number of firms are proportional to each other except for the
vehicle industry, which constitutes the 12 percent of sales but only 5 percent of all firms in manufacturing.

1.6 Variable Construction

1.6.1 Labor

For Chile, Colombia, Turkey and the US, I use the total number of workers as my measure of labor. For
India, I use the total number of days worked by all workers. For the labor’s revenue share I use the sum of
total salaries and benefits divided by total sales during the year.

1.6.2 Materials

For Chile, Colombia, India and Turkey, I calculate materials cost as total spending on materials, with
an adjustment for inventories by adding the difference between the end year and beginning year value of
inventories. I deflate the nominal value of total material cost using the industry-level intermediate input
price index. For Compustat materials input is calculated as deflated cost of goods sold plus administrative
and selling expenses less depreciation and wage expenditures. For the materials’ revenue share I use the sum
of materials cost divided by total sales during the year.

1.6.3 Capital

For Turkey, capital stock series is constructed using the perpetual inventory method where investment in
new capital is combined with deflated capital from period t− 1 to form capital in period t. For Compustat,
capital is calculated as the value of property, plant, and equipment, net of depreciation deflated using from
the BEA satellite accounts. For India, the book value of capital is deflated by an implied national deflator
calculated “Table 13: Sector-wise Gross Capital Formation” from the Reserve Bank of India’s Handbook of
Statistics on the Indian Economy. For Chile and Colombia, I follow Raval (2019).

1.6.4 Output

For all countries, the output is calculated as deflated sales. For Chile, Colombia, India and Turkey, total
sales are given by total production value, plus the difference between the end year and beginning year value
of inventories of finished goods. For Compustat, it is net sales from Compustat’s Industrial data file.

1.7 Estimation Algorithm

This section presents the estimation algorithm. Apply data cleaning and variable construction described
in Subsection 1.1 and denote the resulting sample by A. Remove the observations for which the previous
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period’s inputs are missing and denote the resulting sample by B. Take the subset of observations in B that
fall into the corresponding rolling window and denote this sample by Br. Estimate control variables u2

it for
each it ∈ Br as follows. Construct a grid that partitions the support of Mit into 500 points so that each bin
contains the same number of observations. Denote the set of these points by Q. For each q ∈ Q, estimate

Prob(Mit 6 q | Kit = k,Wit−1 = w, u1
it = u) ≡ s(q, k, w, u)

using a flexible logit model. Then for each it ∈ Br, estimate u2
it = s(Mit,Kit,Wit, u

1
it) as û2

it = s(q̄, Kit,Wit, u
1
it)

where q̄ denotes the closest point toMit in Q.2 From this procedure obtain û2
it for all it ∈ Br. For production

function estimation, first approximate the logarithm of h̄ by using second-degree polynomials

log(ĥ(M̃it)) = a1 + a2m̃it + a3m̃
2
it, (1.1)

where {a1, a2, a3} are the parameters of the polynomial approximation and lowercase letters denote the
logarithms of uppercase letters. Set a1 = 0 to impose the normalization for ĥ(M̃it) described in Section 4.
Let Vit := Litĥ(M̃it). Approximate the production function as

f̂(Kit, Litĥ(M̃it)) = b1 + b2kit + b3k
2
it + b3kitvit + b4vit + b5v

2
it, (1.2)

where {b1, b2, b3, b4, b5} are the parameters of the polynomial approximation. Approximate the control
functions c2(·) and c3(·) using third-degree polynomials similarly. For given values {aj}3j=1, {bj}5j=1, ĉ2(·)
and ĉ3(·) construct the objective function in Equation (5.7). Minimize this objective function to estimate
the production function as follows. For a given {aj}3j=1, estimate {bj}5j=1, ĉ2(·) and ĉ3(·) by minimizing
the objective function using least squares regression. The algorithm involves two layers. For a candidate
value of the parameter vector {aj}3j=1, in the inner loop, estimate {bj}5j=1, ĉ2(·) and ĉ3(·) using least squares
regression. In the outer loop use an optimization routine to estimate {aj}3j=1. Minimizing the objective
function requires an optimization routine only over three parameters, so it is not computationally intensive.
After estimating the production function parameters, the next step is elasticity and markups estimation.

Take observations that are in the midpoint of the rolling window period in sample A and denote that
sample by Ac. For each it ∈ Ac, calculate output elasticities and markups as follows.3 Obtain the estimates
of f and h̄ from the estimates of the parameters {aj}31 and {bj}51 in Equations (1.1) and (1.2). First, using
the estimates of f and h̄, calculate the output elasticity of capital and the sum of the materials and labor
elasticities, given in Equations (4.5) and (4.9) by taking numerical derivatives. Then given an estimate of
θVit and revenue shares of materials and labor use Equations (4.6) to estimate output elasticity of labor and
materials. Finally estimate markups from θ̂Vit and the revenue share of flexible input as in Equation (??).

For standard errors, resample firms with replacement from sample A then repeat the estimation procedure
above. For estimation of the Nested CES model in Section 5.4, I use the same procedure except that I impose
the parametric restrictions given by the Nested CES model.

2One can estimate s(m, k,w, u) for every Mit observed in the data with additional computational cost.
3I consider a larger sample for markup estimation than production function estimation because given a production function

estimate calculating elasticities and markups does not require observing previous period’s inputs.
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Table 1.0: Descriptive Statistics - Chile

Share (Sales) Number of Plants

ISIC Industry 1979 1988 1996 1979 1988 1996

311 Leather Tanning and Finishing 0.17 0.19 0.20 1245 1092 983
381 Metal Products 0.04 0.04 0.04 383 301 353
321 Textiles 0.05 0.04 0.02 418 312 257
331 Repair Of Fabricated Metal Products 0.03 0.02 0.03 353 252 280
322 Apparel 0.02 0.02 0.01 356 263 216

Other Industries 0.69 0.69 0.69 2399 1957 1873

Note: Descriptive Statistics for Chile. Column 3-5 shows each industry share as a percentage of sales in the entire manufacturing
industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports the number of active plants. The
last row provides information about the industries that are not included in the sample.

Table 1.0: Descriptive Statistics - Colombia

Share (Sales) Number of Plants

ISIC Industry 1978 1985 1991 1978 1985 1991

311 Leather Tanning and Finishing 0.21 0.21 0.20 971 840 976
322 Apparel 0.03 0.03 0.03 666 862 842
381 Metal Products 0.04 0.04 0.03 593 478 534
321 Textiles 0.11 0.09 0.08 467 398 428
342 Cutlery, Hand Tools, and General Hardware 0.02 0.03 0.02 325 315 342
382 Laboratory Instruments 0.02 0.02 0.02 285 266 307
352 Farm and Garden Machinery and Equipment 0.06 0.07 0.09 287 257 305
369 Miscellaneous Electrical Machinery 0.03 0.04 0.03 299 257 267
356 General Industrial Machinery 0.02 0.03 0.04 197 252 341

Other Industries 0.45 0.45 0.46 3893 3673 4001

Note: Descriptive Statistics for Colombia. Column 3-5 shows each industry share as a percentage of sales in the entire
manufacturing industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports the number of active
plants. The last row provides information about the industries that are not included in the sample.

Table 1.0: Descriptive Statistics - India

Share (Sales) Number of Plants

NIC Industry 1998 2007 2014 1998 2007 2014

230 Other non-metallic mineral products 0.09 0.05 0.08 596 1056 1386
265 Measuring and testing, equipment 0.01 0.02 0.02 272 877 750
213 Pharmaceuticals, medicinal chemical 0.01 0.01 0.01 186 479 670
304 Military fighting vehicles 0.04 0.03 0.07 118 383 704
206 Sugar 0.06 0.04 0.04 271 363 431

Other Industries 0.79 0.86 0.78 1172 2795 3510

Note: Descriptive Statistics for India. Column 3-5 shows each industry share as a percentage of sales in the entire manufacturing
industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports the number of active plants. The
last row provides information about the industries that are not included in the sample.
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Table 1.0: Descriptive Statistics - US

Share (Sales) Number of Firms

NAICS Industry 1961 1987 2014 1961 1987 2014

33 Manufacturing I 0.39 0.37 0.60 113 1092 752
32 Manufacturing II 0.51 0.53 0.25 84 392 222
31 Manufacturing III 0.10 0.10 0.15 36 138 104

Note: Descriptive Statistics for US. Column 3-5 shows each industry share as a percentage of sales in the entire manufacturing
industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports the number of active plants.

Table 1.0: Descriptive Statistics - Turkey

Share (Sales) Number of Plants

ISIC Industry 1983 1991 2000 1983 1991 2000

321 Textiles 0.16 0.13 0.16 1017 945 1803
311 Food 0.12 0.12 0.11 1261 1120 1061
322 Apparel 0.02 0.05 0.04 300 831 800
381 Metal Products 0.04 0.04 0.04 650 542 834
382 Machinery 0.05 0.06 0.04 532 482 683
383 Electrical-Electronic Machinery 0.04 0.03 0.04 413 523 639
356 Plastic Products 0.08 0.07 0.07 309 312 402
352 Pharmaceuticals 0.08 0.09 0.12 331 286 428
371 Motor Vehicles and Motor Vehicle Equipment 0.02 0.02 0.03 287 261 383
312 Beverage and Tobacco Product Manufacturing 0.05 0.06 0.07 263 218 250

Other Industries 0.33 0.34 0.29 5100 5302 7033

Note: Descriptive Statistics for Turkey. Column 3-5 shows each industry share as a percentage of sales in the entire manufac-
turing industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports the number of active plants.
The last row provides information about the industries that are not included in the sample.

2 Supplementary Lemmas

Proof of Proposition 3.2

This proof closely follows the same lines as the proof of Proposition 2.1. I maintain the same conditions
and notation. The main difference is that production function involves only Hicks-neutral productivity, but
materials prices vary at the firm-level.

The firm minimizes the cost of flexible inputs for a given level of planned output, Ȳit. This problem,
under Assumption 3.5, can be written as:

min
Lit,Mit

pltLit + pmitMit

s.t. E
[
F (Kit, h(Kit, Lit,Mit))ω

H
it εit | Iit

]
> Ȳit

Since the firm’s information set includes ωHit , we have

min
Lit,Mit

pltLit + pmitMit

s.t. F (Kit, h(Kit, Lit,Mit))ω
H
it Eit > Ȳit,

(2.1)
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where Eit(Iit) := E[εit | Iit]. The cost minimization problem in Equation (2.1) is given by

min
Mit,Lit

pltLit + pmitMt

s.t. F (Kit, h(Kit, Lit,Mit)ω
H
it > Ȳit,

where Ỹit := Yit/Eit(Iit). So, for what follows I suppress the argument Iit of Ỹit. Letting p̄it = (plt, p
m
it )

denote the price vector and following the steps I used to obtain Equation (B.3), the cost function can be
expressed as:

C(p̄it, Ỹit,Kit, ω
H
it ) = C1(Kit, Ỹit, ω

H
it )C2(Kit, p

l
t, p

m
it ). (2.2)

By Shephard’s Lemma the input demands are given by the derivatives of cost function with respect to input
prices:

Mit =
∂C(p̄it, Ỹit,Kit, ωit)

∂pmit
= C1(Kit, Ȳit, ωit)

∂C2(Kit, p
l
t, p

m
it )

∂pmit
,

Lit =
∂C(p̄it, Ỹit,Kit, ωit)

∂plt
= C1(Kit, Ȳit, ωit)

∂C2(Kit, p
l
t, p

m
it )

∂plt
.

Using optimal labor and materials demand the ratio of labor to materials can be obtained as

Lit
Mit

≡ Cl(Kit, p
l
t, p

m
it )

Cm(Kit, plt, p
m
t )
.

Since Mit is not observed we cannot use Lit/Mit to control for ωLit. Therefore, I next define the ratio in
terms of the observed variables. Using RmitωMit = Mit, the ratio of materials cost to labor is

Lit
Rmit

=
Cl(Kit, p

l
t, p

m
it )ω

M
it

Cm(Kit, p̄lt, p
m
it )

.

Now, we see that this equation has the same structure as Equation (B.4) in the proof of Proposition 2.1,
with ωLit = ωMit , p̄lit = 1/ωMit , pmt = plt and M̃it = Lit/R

m
it . Therefore, we can treat Rmit as materials input and

treat ωMit = 1/pMit as the materials-augmenting productivity for the purpose of estimation. This solves the
problem that materials quantity, Mit, is unobserved as we can replace it with Rmit and introduce a materials-
augmenting productivity to the model. Given this equivalence, the rest of proof proceeds similarly to the
proof of Proposition 2.1 and, therefore, is omitted.

Proof of Lemma 3.1

This proof closely follows the proof of Lemma 3.1. By Assumption 3.1 we have

(p̃it, ω
L
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1

p̃it, g1(ωLit−1, ω
H
it−1, p̃it, p̄it−1, u

1
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1

Monotonicity of g1 with respect to its last argument and Lemma A.1 imply

u1
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̃it, p̄it−1.

Since u1
it has a uniform distribution conditional on (ωLit−1, ω

H
it−1, p̃it, p̄it−1) by normalization and (Kit,Wit−1) ∈
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Iit−1 we have

u1
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, p̃it, p̄it−1 ∼ Uniform(0, 1).

Using Equations (2.7) and (2.9) we substitute (ωLit, ω
H
it ) as functions of (Wit−1) to obtain

u1
it | Kit,Wit−1, p̃it ∼ Uniform(0, 1)

which shows the desired result.

Proof of Lemma 3.2

This proof closely follows the proof of Lemma 3.2. By Assumption 3.1 we have

(p̄it, ω
L
it, ω

H
it ) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1,

p̄it, g1(ωLit−1, ω
H
it−1, p̃it, p̄it−1, u

1
it), g2(ωLit−1, ω

H
it−1, p̄it−1, p̄it, u

1
it, u

2
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1.

Monotonicity of g1 and g2 with respect to their last arguments and Lemma A.1 imply that

u2
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it, p̄it−1, u

1
it.

Since u2
it has a uniform distribution conditional on (ωLit−1, ω

H
it−1, p̄it, p̄it−1, u

1
it) by normalization and (Kit,Wit−1) ∈

Iit−1 we have

u2
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, p̄it, u

1
it ∼ Uniform(0, 1)

Using Equations (2.7) and (2.9) to substitute (ωLit−1, ω
H
it−1) as functions of Wit−1, I obtain

u2
it | Kit,Wit−1, p̃it, u

1
it ∼ Uniform(0, 1),

which shows the desired result.

Proof of Lemma 3.4

By Assumption 3.6 we have that

ωHit ⊥⊥ Iit−1 | ωLit−1, ω
H
it−1.

Using the Skorokhod representation of ωHit in Equation (3.8) we write

g2(ωLit−1, ω
H
it−1, u

2
it) ⊥⊥ Iit−1, g1(ωLit−1, ω

H
it−1, u

1
it) | ωLt−1, ω

H
t−1. (2.3)

By monotonicity of g1 and g2 in their last arguments, u2
it is (conditionally) independent of (Iit−1, u

1
it)

u2
it ⊥⊥ Iit−1, u

1
it | ωLit−1, ω

H
it−1.

It follows from Equation (2.3) and the fact that u2
it is uniformly distributed conditional on (ωLit−1, ω

H
it−1)

that

u2
it | Iit−1, ω

L
it−1, ω

H
it−1, u

1
it ∼ Uniform(0, 1).
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Since (Kit,Wit−1) ∈ Iit−1

u2
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, u

1
it ∼ Uniform(0, 1)

which implies

u2
it | Kit,Wit−1, u

1
it ∼ Uniform(0, 1). (2.4)

Next, I use the monotonicity condition given in materials demand function to write

Mit = s
(
Kit, ω

H
it , ω

L
it

)
,

= s
(
Kit, g2

(
ωLit−1, ω

H
it−1, u

2
it

)
, c1
(
Wit−1, u

1
it

))
,

= s
(
Kit, g2

(
r̃ (Wit−1) , s̃ (Wit−1) , u2

t

)
, c1
(
Wit−1, u

1
it

))
,

≡ s̄
(
Kit,Wit−1, u

1
it, u

2
it

)
. (2.5)

The intuition is similar to that of Lemma 3.1. Employing strict monotonicity of s̄ in u2
it and Equation (2.4),

we can use Equation (2.5) to identify u2
it. In particular, u2

it equals

u2
it = FMit|Kit,Wit−1,u1

it
(Mit | Kit,Wit−1, u

1
it), (2.6)

where FMit|Kit,Wit−1,u1
it
denotes the CDF of Mit conditional on (Kit,Wit−1, u

1
it). Therefore, u2

it is identified
from data and ωHit can be written as

ωHit ≡ c2
(
Wit−1, u

2
it

)
.

This concludes the proof.

3 Extensions

3.1 Heterogeneous Input Prices

This extension assumes that input prices are heterogeneous, but firms are price-takers in input markets. I
denote labor and materials prices by plit and pmit , respectively, and use p̄it to denote the input price vector, so
p̄it := (plit, p

m
it ). I also use p̃it to denote the input price ratio. Moreover, differently from the main model, Wit

includes also input prices, Wit = (Kit, Lit,Mit, p̄it). I first modify homothetic separability and monotonicity
assumptions to incorporate the input prices into the model. With variation in input prices, Assumptions 2.1
is replaced by the following assumption.

Assumption 3.1. The distribution of productivity shocks and input prices obey:

P (ωLit, ω
H
it , p̄it | Iit−1) = P (ωLit, ω

H
it , p̄it | ωLit−1, ω

H
it−1, p̄it−1).

This assumption states that prices and productivity shocks jointly follow an exogenous first-order Markov
process. Importantly, this assumption allows for correlation between productivity shocks and input prices.
Since we expect that more productive workers, as represented by higher ωLit, earn higher wages, correlation
between input prices and productivity is important to accommodate. As I discuss later, with some additional
structure on the joint distribution, I can obtain stronger identification results. An example is independence
between the innovations to productivity shocks and input prices. However, I make minimal assumptions in
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this section to develop a general framework.

Assumption 3.2. Firm’s materials demand is given by

Mit = st(Kit, ω
H
it , ω

L
it, p̄it), (3.1)

and st(Kit, ω
H
it , ω

L
it, p̄it) is strictly increasing in ωHit .

This assumption is a natural extension of Assumption 2.3, as the demand for materials should depend on
both input prices. In this section, I maintain the other assumptions in the model, namely Assumptions 2.2
and 2.4, and state the following proposition.

Proposition 3.1.
(i) Under Assumptions 2.2(i-iv) and with heterogeneity in input prices, the flexible input ratio, denoted by
M̃it = Mit/Lit, depends on Kit, ωLit and p̃it

M̃it = rt(Kit, ω
L
it, p̃it). (3.2)

(ii) Under Assumptions 2.2(v), rt(Kit, ω
L
it, p̃it) is strictly monotone in ωLit.

The proof of this proposition is a straightforward extension of the proof of Proposition 2.1, and therefore, is
omitted. Compared to Proposition 2.1, the only difference is that the flexible input ratio depends also on
the input price ratio. It is worth emphasizing that the ratio of prices, not the price vector, affects the flexible
input ratio due to the properties of cost functions. This property would reduce the dimension of the control
variables in estimation. With this proposition, ωLit is invertible once we condition on the input price ratio
and capital. The invertibility of Hicks-neutral productivity is given by Assumption 3.2. To summarize, by
inverting Equations (3.2) and (3.1), and omitting the time subscripts in functions, I can write productivity
shocks as:

ωLit = r̄(Kit, M̃it, p̃it), ωHit = s̄(Kit,Mit, M̃it, p̄it). (3.3)

In the presence of heterogeneous input prices, the derivation of the control variables proceed similarly as in
Section 3 with minor differences. I first use the Skorokhod’s representation of ωLit to write:

ωLit = g1(ωLit−1, ω
H
it−1, p̃it−1, p̃it, u

1
it), u1

it | ωLit−1, ω
H
it−1, p̃it−1, p̃it ∼ Uniform(0, 1). (3.4)

Unlike Equation (3.1), I include the ratio of current and past input prices in the representation of ωLit, given
by g1(·) function. This is needed because, as stated in Proposition 3.1, the optimal flexible input ratio
depends on the ratio of input prices. Using Equations (3.2), (3.3) and (3.4), I obtain

M̃it = r
(
Kit, g1(ωLit−1, ω

H
it−1, p̃it−1, p̃it, u

1
it), p̄it

)
,

M̃it = r
(
Kit, g1(r̄(Kit−1, M̃it−1, p̃it−1), s̄(Kit−1,Mit−1, M̃it−1, p̄it−1), p̃it−1, p̃it, u

1
it), p̄it

)
,

M̃it ≡ r̃
(
Kit,Wit−1, p̄it, u

1
it

)
.

Note also that r̃(·) is strictly monotone in u1
it.

Lemma 3.1. Under Assumptions 3.1 - 3.2, u1
it is jointly independent of (Kit,Wit−1, p̃it):

u1
it⊥⊥Kit,Wit−1, p̄it.

Proof. See Appendix B.
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Using independence and monotonicity, u1
it can be identified as:

u1
it = FM̃it|Kit,Wit−1,p̄it

(L̃it | Kit,Wit−1, p̄it).

Therefore, we can use Equations (3.3) and (3.4) to write ωLit as:

ωLit ≡ c1(Wit−1, p̃it, u
1
it).

Note that differently from the main model, the CDF in u1
it calculation is conditional on the price vector p̄it

and control function includes a price ratio p̃it. Prices are included in the conditioning set since they are
endogenous. If we assume that input prices are exogenous, c1(·) does not take p̃it as an argument. The
procedure for deriving the control function for ωHit is similar to that of ωLit. I use

ωHit = g2(ωLit−1, ω
H
it−1, p̄it−1, p̄it, u

1
it, u

2
it), u2

it | ωLit−1, ω
H
it−1, p̄it−1, p̄it, u

1
it,∼ Uniform(0, 1). (3.5)

Following the same steps in Equation (3.2) of Section 3, materials demand function can be written as:

Mit ≡ s̃
(
Kit,Wit−1, p̄it, u

1
it, u

2
it

)
,

where s̃(·) is strictly monotone in u2
it.

Lemma 3.2. Under Assumptions 3.1 and 3.2, u2
it is jointly independent of (Kit,Wit−1, p̄it, u

1
it):

u2
it⊥⊥Kit,Wit−1, p̄it, u

1
it.

Proof. See Appendix B.

By independence and monotonicity we can recover u2
it as

u2
it = FMit|Kit,Wit−1,p̄it,u1

it
(Mit | Kit,Wit−1, p̄it, u

1
it),

and the control function is given by

ωHit ≡ c2
(
Wit−1, p̄it, u

1
it, u

2
it

)
.

I conclude that in the presence of input prices control functions becomes

ωLit = c1
(
Wit−1, p̃it, u

1
it

)
, ωHit = c2

(
Wit−1, p̄it, u

1
it, u

2
it

)
.

In contrast to the main model, I need to condition on the current and previous period’s input prices to
derive control functions. The rest of the identification and estimation results remain the same with these
modifications in control variables.

3.2 Unobserved Materials Prices under Hicks-Neutral Productivity

The approach in this paper can be adopted to a model with Hicks-neutral productivity, where only cost of
materials is observed, but not the quantity and prices of materials. This would be the case, for example, if
there is heterogeneity in materials prices. This model is worth discussing because in standard production
datasets, average wages are typically observed, however materials prices are not. Since, usually, only the cost
of materials is available in the data, quantity of materials cannot be recovered from its cost when materials
prices are heterogeneous. This is especially the case if there are differences in quality of materials used by

11



firms. To discuss this scenario, I need to restrict the productivity shock to be Hicks-neutral. Therefore, I
consider the following production function:

Yit = Ft (Kit, Lit,Mit) exp(ωHit ) exp(εit).

I assume that the resercher observes (Kit, Lit) but she does not observeMit. Instead, materials expenditure,
denoted by Rmit = Mitp

m
it , is observed. Due to heterogeneity in materials prices across firms, as indicated by

pmit , we cannot recover Mit from Rmit . Therefore, we cannot estimate the production function. However we
can replace materials with its expenditure in the following way:

Yit = Ft
(
Kit, Lit, R

m
itω

M
it

)
exp(ωHit ) exp(εit), (3.6)

where I define ωMit := 1/(pmit ). In Equation (3.6), one can interpret materials cost as an input in the production
function and the inverse materials prices as unobserved materials-augmenting productivity shock. Given this
equivalence, I will show that the tools developed in this paper can be used to estimate this model using Rmit in
place of materials. First, I modify the assumptions to accommodate unobserved materials prices. I maintain
the assumption that firms face the same wages in the labor market.

Assumption 3.3. Productivity shock and materials price jointly follow an exogenous joint first-order Markov
process

P (ωHit , p
m
it | Iit−1) = P (ωHit , p

m
it | ωHit−1, p

m
it−1).

This assumption does not restrict the correlation between materials prices and firm productivity, so firms
that use higher quality materials can be more productive. The next assumption incorporates the unobserved
materials prices into the firm’s materials demand function.

Assumption 3.4. Firm’s materials decision is given by

Mit = st(Kit, p
m
it , ω

H
it ), (3.7)

where st(Kit, p
m
it , ω

H
it ) is strictly increasing in ωHit .

We can write the materials expenditure, Rmit , using Equation (3.7) and materials prices as follows:

Rmit = st(Kit, p
m
it , ω

H
it )/pmit ,

≡ sMt (Kit, p
m
it , ω

H
it ).

Since st(Kit, p
m
it , ω

H
it ) is strictly monotone in ωHit conditional on (Kit, p

m
it ), Rmit is also strictly monotone in

ωHit conditional on (Kit, p
m
it ). This shows that the monotonicity with respect to materials implies mono-

tonicity with respect to materials expenditure. Next, I define a version of Assumptions 2.1 to accommodate
heterogeneous materials prices.

Assumption 3.5. Suppose that

(i) Production function is of the following form

Yit = Ft
(
Kit, h(Kit, Lit,Mit)

)
exp(ωHit ) exp(εit).

(ii) ht(Kit, ·, ·
)
is homogeneous of arbitrary degree (homothetic) for all Kit.

12



(iii) The firm minimizes the production cost with respect to (Lit,Mit) given Kit, productivity shock ωHit and
input prices (plt, p

m
it ).

(iv) The elasticity of substitution between labor and materials is either greater than 1 for all (Kit, p
m
it ) or

less than 1 for all (Kit, p
m
it ).

Next, using this assumption, I show that the ratio of labor and materials cost, Lit/RMit , depends only on Kit

and unobserved materials prices pmit .

Proposition 3.2.
(i) Under Assumptions 3.5(i-iii), the ratio of labor and materials cost, denoted by L̃it = Lit/R

M
it , depends

only on Kit and ωMit :

L̃it ≡ rt(Kit, ω
M
it ),

where rt(·) is an unknown function.

(ii) Under Assumptions 3.5(iv) rt(Kit, ω
M
it ) is strictly monotone in ωMit .

Proof. See Appendix B.

With this result, I have two monotonicity conditions that are analogous to those in the main model. The
difference is that I replace Mit with Rmit and ωLit with 1/pmit . Also, this model involves materials-augmenting
producticity instead of labor-augmenting productivity. Therefore, following the same steps in the main model
I can write ωHit and ωMit as:

ωHit ≡ st(Kit, R
m
it , L̃it), ωMit ≡ rt(Kit, L̃it).

Given the equivalence of this model and the main model, the procedure for developing the control functions
and identification analysis are the same as the main model. Thus, the rest of the derivation and proofs are
omitted.

3.3 Selection

In this section, I present a method of incorporating non-random firm exit, which generates selection problem,
into my estimation framework under some simplifying assumptions. In particular, I assume that firms decide
whether to exit based only on Hicks-neutral productivity, not labor-augmenting productivity. The second
simplifying assumption is that innovations to productivity shocks are independent from each other. Under
these simplifying assumptions, I show how to adjust my control variables to account for selection. Accounting
for selection relies on Olley and Pakes (1996)’s insight that there is a cutoff in productivity level below which
firms exit. In this section, I maintain the assumptions of the model in Section 2.2, and impose additional
restrictions.

Assumption 3.6. Productivity shocks are independent conditional on last period’s productivity:

P (ωHit | ωLit, Iit−1) = P (ωHit | ωHit−1, ω
L
it−1).

This assumption implies that innovation to ωHit and innovation to ωLit are independently distributed.

Assumption 3.7. The firm’s exit decision depends only on ωHit and Kit. In particular, the firm exits if and
only if

ωHit 6 ω̄(Kit),
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where ω̄ is a function that gives the exit threshold in ωHit . It specifies the firm’s exit decision conditional on
Kit.

The control variable derivation remains the same as in Subsection 3.1. However, for ωHit , differently from
Equation (3.5), I use the following representation:

ωHit = g2(ωLit−1, ω
H
it−1, u

2
it), u2

it | ωLit−1, ω
H
it−1 ∼ Uniform(0, 1). (3.8)

In contrast to Equation (3.5), g2(ωLit−1, ω
H
it−1, u

2
it) does not include u1

it. This follows by Assumption (3.6),
which implies that innovations to productivity shocks are independent. To introduce exit to the model, let
Iit denote an indicator variable which equals one if firm i exits and zero otherwise. By Assumption 3.7,
Iit = 1 if and only if ωHit 6 ω̄(Kit). So, firm i’s exit decision at time t depends on its capital level and current
Hicks-neutral productivity. Using the representation of ωHit in Equation (3.8) I can write the exit rule as:

g2(ωLit−1, ω
H
it−1, u

2
it) 6 ω̄(Kit),

u2
it 6 g−1

2

(
ωLit−1, ω

H
it−1, ω̄(Kit)

)
,

u2
it 6 g−1

2

(
r̄(Wit−1), s̄(Wit−1), ω̄(Kit)

)
,

u2
it 6 ω̃(Wit−1,Kit), (3.9)

where in the second line I use the fact g2 is invertible in u2
it, and the third line follows from Equation (3.9)

and my assumptions. In the last line, I define a new function ω̃ to write the exit rule based on a cutoff value
in u2

it. This rformulation of exit suggests that conditional on (Wit−1,Kit) the firm’s exit decision depends
only on the realization of u2

it. Using Lemma 3.2, I have

u2
it | (Wit−1,Kit) ∼ Uniform(0, 1).

This is useful because the variable that determines whether a firm exits, (u2
it), is uniform and independent

from the variables I need to condition on in Equation (3.9), (Wit−1,Kit). Therefore, I can estimate the
cutoff in u2

it conditional on (Wit−1,Kit) from the fraction of firms that exit conditional on (Wit−1,Kit). In
particular, this cutoff value equals the conditional exit probability observed in the data and can be written
as:

ω̃(Wit−1,Kit) = Prob(Iit = 1 |Wit−1,Kit) ≡ p(Wit−1,Kit). (3.10)

This suggests that conditional on (Wit−1,Kit) firms that receive u2
it that is greater than p(Wit−1,Kit) stay

and other firms exit. As a result, the distribution of u2
it conditional on (Wit−1,Kit) and (Iit = 1) can be

written as another uniform distribution:

u2
it |Wit−1,Kit, (Iit = 1) ∼ Uniform

(
p(Wit−1,Kit), 1

)
. (3.11)

As shown in Equation (3.7), to control for ωHit I need the distribution of u2
it conditional on (Wit−1,Kit, u

1
it, (Iit =

1)). This creates a problem because even though (Wit−1,Kit) is observed for the firms that exit, u1
it cannot

be estimated from data for the firms that exit; we do not observe M̃it for (Iit = 1). To overcome this problem,
I next show that probability of exit remains the same when I condition on

(
Wit−1,Kit, u

1
it, (Iit = 1)

)
. This

result uses Assumption 3.6 and is given by the following lemma.
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Lemma 3.3.

Prob(Iit = 1 |Wit−1,Kit, u
1
it) = Prob(Iit = 1 |Wit−1,Kit).

Proof. The probability of exit conditional on (Wit−1,Kit, u
1
it) equals

Prob(Iit = 1 |Wit−1,Kit, u
1
it) = Prob

(
g2(ωLit−1, ω

H
it−1, u

2
it) > ω̄(Kit) |Wit−1,Kit, u

1
it

)
,

= Prob
(
g2(r̄(Wit−1), s̄(Wit−1), u2

it) > ω̄(Kit) |Wit−1,Kit, u
1
it

)
,

= Prob
(
g2(r̄(Wit−1), s̄(Wit−1), u2

it) > ω̄(Kit) |Wit−1,Kit

)
,

= p(Wit−1,Kit),

where the third line follows because u1
it and u2

it are independently distributed conditional onWit−1 by Lemma
A.5.

From this result, I obtain

u2
it |Wit−1,Kit, u

1
it, (Iit = 1) ∼ Uniform(p(Wit−1,Kit, u

1
it), 1), (3.12)

∼ Uniform(p(Wit−1,Kit), 1). (3.13)

This allows me to recover u2
it conditional on (Iit = 1) using observables because I can estimate p(Wit−1,Kit)

from data. After showing the effects of non-random firm exit on control variables, now I derive my control
function. The next lemma gives the control variable and control function under these new assumptions.

Lemma 3.4. We have that

ωHit ≡ c2
(
Wit−1, u

2
it

)
, u2

it = FMit|Kit,Wit−1,u1
it

(Mit | Kit,Wit−1, u
1
it). (3.14)

Proof. See Appendix B.

Since I do not observe FMit|Kit,Wit−1,u1
it

(Mit | Kit,Wit−1, u
1
it) but only observe the distribution conditional on

selection FMit|Kit,Wit−1,u1
it

(Mit | Kit,Wit−1, u
1
it, Iit = 0), u2

it cannot be recovered using this lemma. However,
I can use use Lemme (3.3), which gives the distribution of u2

it for the firms that stay, to write u2
it as:.

u2
it = p(Wit−1,Kit)

(
1− FMit|Kit,Wit−1,u1

it
(Mit | Kit,Wit−1, u

1
it, Iit = 0)

)
+

FMit|Kit,Wit−1,u1
it

(Mit | Kit,Wit−1, u
1
it, Iit = 0)

This result uses the distribution of u2
it conditional on firms that stay, which is given in Equation (3.12). It

says that u2
it can be recovered from the observed distribution function of Mit conditional on (Iit = 0) and

the propensity score, both of which are identified from data. After recovering u2
it from data, the rest of the

estimation procedure follows the main model.

4 Additional Results

4.1 Application of Control Variables to Cobb-Douglas Production Function

The control function approach developed in this paper can be applied to Hicks-neutral production function.
This section presents this application and discusses the advantages of the control variable method of this
paper relative to the proxy variable approach. Since the literature has shown that the gross Cobb-Douglas
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production is not identified when there are two flexible inputs, I demonstrate this application using the
value-added production function studied in Ackerberg et al. (2015). However, one can use the same control
variables for gross production functions, subject to the issues highlighted in the literature.

The (log) production function is given by

yit = βkkit + βllit + ωHit + εit

where ωHit is unobserved scalar productivity and εt is ex-post shock to productivity, which is mean inde-
pendent of capital and labor. I consider the standard assumptions in the proxy variable literature: (i)
Productivity shocks follow an exogenous first-order Markov process P (ωHit | Iit−1) = P (ωHit | ωHit−1) (ii)
Capital is a dynamic input chosen one period in advance, labor is static input optimized every period, (iii)
The firm’s intermediate input decision is given by mit = s(kit, ω

H
it ), which is strictly increasing in ωHit .

We now construct a control variable following a similar procedure in Section 3. Productivity can be
represented as:

ωHit = g(ωHit−1, uit) uit | ωHit−1 ∼ Uniform(0, 1), (4.1)

where g(ωHit−1, uit) is strictly increasing in uit by construction. By Markov Assumption ωHit ⊥⊥ Iit−1 | ωHit−1.
Substituting ωHit using Equation (4.1) we obtain

g(ωHit−1, uit) ⊥⊥ Iit−1 | ωHit−1

This implies that uit ⊥⊥ Iit−1 | ωHit−1.

mit = s(kit, ωit) = s(kit, g(ωit−1, uit)) = s(kit, g(s−1(kit−1,mit−1), ut))

≡ s̃(kit, kit−1,mit−1, uit)

Note that s(kit, ·) is a strictly increasing function and g(ωit−1, ·) is also strictly increasing function by
construction. So ≡ s̃ is strictly increasing in uit. It follows from Lemma 3.1 that

uit | kit,mit−1, kit−1 ∼ Uniform(0, 1). (4.2)

Therefore, we can recover uit as the conditional CDF of mit: uit = Fmit
(mit | kit,mit−1, kit−1). This

suggests that, we can employ (mit−1, kit−1, uit) as control variables to proxy ωHit .

ωHit = g(ωHit−1, uit) = g(s−1(kit−1,mit−1), uit) ≡ c(mit−1, kit−1, uit).

With this result, we obtain a partially linear model

yit = βkkit + βllit + c(mit−1, kit−1, uit) + εit (4.3)

with E[εit | Iit] = 0, which gives moments for estimation. However, we can develop other moment restrictions
using the first-order Markov property of ωHit as standard in the literature (Ackerberg et al. (2015)). In
particular, we write ωHit = c2(ωHit−1) + ξit with E[ξit | Iit−1] = 0. We can obtain second model

yit = βkkit + βllit + c2(mit−1, kit−1) + ξit + εit (4.4)

with E[ξit | Iit] = 0. Now we can estimate the parameters (βk, βl) and unknown functions c1(·), c2(·) in
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Equation (4.3) and (4.4) using the following moment restictions.

E[εit | kit, lit,mit,mit−1, kit−1, uit] = 0

E[ξit + εit | kit,mit−1, kit−1] = 0

I highlight that my control variable approach does not suffer from the functional dependence problem studied
in Ackerberg et al. (2015) even if labor is flexible and can be written as lit = l(ωit, kit). The main distinction
between my approach and proxy variable approach is the conditioning variables in the estimation. While the
proxy variable approach conditions on an unknown function of (kit,mit), my method conditions on a known
function of (kit,mit), a single dimensional set. Therefore, my procedure leads to a dimension reduction in
the conditioning set. Conditional on the control variable uit there is still variation in kit and lit, which can
identify the production function parameters. However, this approach is not robust to other issues studied in
Ackerberg et al. (2015).

4.2 Nested CES Production Function

In this section, I study the identification of Nested CES production function:

Yit =
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1
+ (1− βl)Mσ1

it

)σ/σ1
)v/σ

exp(ωHit ) exp(εit),

where materials and effective labor are nested. Analyzing this model is also useful to see parametric analog
more results in a simpler model. We maintain the assumptions in Section 2.2. Taking the logarithm of this
production function we write

yit =
v

σ
log
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1
+ (1− βl)Mσ1

it

)σ/σ1
)

+ ωHit + εit.

Using homotheticity property of Nested CES we can reformulate this production function as:

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)

(
βl
[
ωLitL̃it

]σ1
+ (1− βl)

)σ/σ1
)

+ ωHit + εit

where K̃it and L̃it denote the ratio of capital to material and ratio of labor to material, respectively and
mit denotes the logarithm of materials. Taking the first-order conditions of cost minimization, one can show
that

ωLit = γL̃(1−σ1)/σ1 , γ :=

(
(1− βl)plt
βlpmt

)1/σ1

where is γ is a constant that depends on input prices and model parameters. Substituting this into the
production function we obtain

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)γ1

(
L̃it + γ2

)σ/σ1
)

+ ωHit + εit,

where γ1 and γ2 are constants that depend on the model parameters. Note that ωLit disappeared from the
model. This is the parametric analog of my nonparametric inversion result in Proposition 2.1. The model
parameters can be estimated using the control functions I develop with the following estimating equation

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)γ1

(
L̃it + (1− βl)

)σ/σ1
)

+ c(Wit−1, u
1
it, u

2
it) + εit
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where u1
it = L̃it in the Nested CES model because it falls into the model in Equation (4.7). We can estimate

the model using the objective function in Equation (4.7). One can show that the sum of the flexible input
elasticites are identified from the model parameters as:

θVit = v
(1− βk)γ1x

σ

(1− βk)γ1xσ + βkKσ
it

where x = M(L̃it + γ2)1/σ1 . Note that (1 − βk)γ1 and βk are not separately identified in the production
function, but the ratio is identified. Since θVit depends only on the ratio, it is identified after estimating the
parameters. Labor and materials elasticities are identified using θVit and the ratio of revenu shares of labor
and materials as follows:

θLit = θVit
αLit
αVit

, θMit = θVit
αMit
αVit

.

And finally, the output elasticity of capital is identified as

θKit = v
βkK

σ

(1− βk)γxσ + βkKσ

4.3 CES

In this section, I consider the CES production function:

Yit =
(

(1− βl − βm)Kσ
it + βl

[
ωLitLit

]
+ (1− βm)Mσ

it

)v/σ
exp(ωHit ) exp(εit),

Using homotheticity property we can write

yit = vmit +
v

σ
log
(

(1− βl − βm)K̃σ
it + βl

[
ωLitL̃it

]σ
+ βm

)
+ ωHit + εit

where K̃it and L̃it denote the ratio of capital to material and ratio of labor to material, respectively and mit

denotes the logarithm of materials. By taking the first-order conditions of cost minimization, one can show
that

ωLit = γL̃(1−σ)/σ, γ :=

(
(1− βl)plt
βlpmt

)1/σ1

where γ is a constant that depends on input prices and model parameters. Substituting this into the
production function we obtain

yit = vmit +
v

σ
log
(

(1− βl − βm)K̃σ
it + γ1(L̃it + γ2)

)
+ ωHit + εit

where ωLit disappeared from the model. This is a parametric analog of my nonparametric inversion result.
The model parameters can be estimated using the control functions I develop

yit = vmit +
v

σ
log
(

(1− βl − βm)K̃σ
it + γ1(L̃it + γ2)

)
+ c(Wit−1, u

1
it, u

2
it) + εit,
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Figure 4.1: Decomposition of the Change in the Log Aggregate Markups
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Notes: Comparisons of the evolution of the mean elasticity (red) and covariance elasticity (black) components
of the aggregate log markups produced by my estimates and Cobb-Douglas model using the ACF procedure.

with the same objective function in Section 5. One can again show that the sum of the flexible input
elasticites is identified from the model parameters as:

θVit = v
γ1x

σ

γ1xσ + (1− βl − βm)Kσ

where x = Mit(L̃it + γ2). Note that (1− βl − βm) and γ1 are not separately identified from this production
function but the ratio is identified. Since θVit depends only on the ratio, the sum elasticity is identified. Labor
and materials elasticities are identified from θVit and the ratio of revenu shares of labor and materials

θLit = θVit
αLit
αVit

, θMit = θVit
αMit
αVit

.

And finally, the output elasticity of capital is identified as

θKit = v
(1− βl − βm)Kσ

γ1xσ + (1− βl − βm)Kσ

4.4 Decomposing Growth in Markups

One remaining question is where this difference comes from. As I argued in my decomposition exercise in
Section 7, two sources can explain the differences in time trends: average flexible input elasticity and the
covariance between firm size and flexible input elasticity. To understand the role of these two channels, I plot
them according to my production function and Cobb-Douglas in Figure 4.1. According to the Cobb-Douglas
production function, the change in both components is limited over the last five decades. This explains why
the decline in the share of flexible inputs drives the rise in markups. In contrast, my estimates suggest that
both components change over time. The mean elasticity stays the same between 1960-1980, rises slightly
for the next ten years and then declines heavily. The decline in the average elasticity can explain why we
observe a decline in the revenue share of the flexible input. The covariance term also changes substantially
and has a large variation.
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5 Robustness Checks

This section considers four robustness checks. I look at how (i) measurement error in capital, (ii) correction
for capacity utilization, (iii) correction for selection and (iv) comparison with a translog production function,
affect the empirical results.

5.1 Measurement Error in Capital

I analyze how measurement error in capital input affects my empirical estimates using a simulation study.
In particular, I assume that the observed data are generated from the ‘true’ data generating process, and
then to understand the impact of measurement error, I add independently distributed error to capital input.
The error is drawn from a mean-zero normal distribution whose standard deviation equals one-tenth of the
standard deviation of capital in the data. I simulate 100 datasets with measurement errors in the capital
input, estimate output elasticities and markups using these dataset and report the average over 100 estimates.

Figure 5.2: Comparison of Estimates with and without Measurement Error
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Notes: This figure compares sales-weighted output elasticities and markups estimates obtained using my
method with and without measurement error in capital. White bars report the estimates from the main
text and grey bars report the average of 100 estimates obtained from simulated datasets as described in this
section.
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Figure 5.2 reports the original estimates together with the average of 100 estimates obtained from sim-
ulated datasets. As expected, measurement error in capital reduces the magnitude of the output elasticity
of capital and increases the magnitude of the output elasticity of labor. This observation suggests that the
higher estimates of capital elasticity obtained using my model and reported in Subsection 6.1 cannot be
explained by potential measurement error in capital. Figure 5.3, which compares estimates from my method
and the Cobb-Douglas model in the presence of measurement error, provides further evidence. We see that
the difference of the magnitudes between my model and Cobb-Douglas declines for capital elasticity and
markups estimates, and increases for labor elasticity. This suggests that if data contains measurement in
capital, my estimates become more conservative.

Figure 5.3: Comparison of Estimates Across Methods with Measurement Errors in Capital
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Notes: This figure compares sales-weighted output elasticities and markups estimated using my method and
Cobb-Douglas averaged over 100 simulations whose specification is described in this section. Cobb-Douglas
specification estimated using the Ackerberg et al. (2015).
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5.2 Capital Utilization

In this section, I analyze the effects of capacity utilization of capital on my estimates. For this I use firms’
energy consumption under the assumption that capital energy takes a Leontief form in the production
function. Under this assumption, one can recover the true amount of capital used by the firm using energy
consumption as capital input and energy should be proportional. I observe firms’ energy consumption only in
two datasets, Chile and Turkey, so I consider this robustness exercise only using dataset from those countries.
For capacity utilization corrected estimates, I first recover the true capital used by the firm and then estimate
output elasticities and markups using the recovered capital.

Figure 5.4 reports the original estimates together with the estimates obtained with capacity utilization
corrected capital. The results suggest that correcting for capacity utilization affect only capital elasticities,
and for other elasticities and markups, the estimates remain the same with negligible differences. For the
output elasticity of capital, correcting for capacity utilization changes the estimates in different directions in
Chile and Turkey. Figure 5.5 compares the estimates from my method and Cobb-Douglas model with using
capacity utilization corrected capital. Comparison between my estimates and Cobb-Douglas estimates lead
to the same conclusion as in the main text for all elasticities and markups, with the exception of capital
elasticity.
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Figure 5.4: Comparison of Estimates with and without Capacity Utilization Correction
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Notes: This figure compares sales-weighted output elasticities and markups estimates obtained using my
method with and without capacity utilization in capital. White bars report the estimates from the main
text and grey bars report 100 estimates obtained after correcting for capacity utilization as described in this
section.
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Figure 5.5: Comparison of Estimates Across Methods with Capacity Utilization Correction
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Notes: This figure compares sales-weighted output elasticities and markups estimated using my method
and Cobb-Douglas with measurement errors in capital. Cobb-Douglas specification estimated using the
Ackerberg et al. (2015).
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5.3 Selection

In this section, I estimate output elasticities and markups after accounting for non-random firm exit as
described in Subsection 3.3. Figure 5.6 reports the estimates with and without selection correction using my
method. The results suggest that selection correction does not have a significant impacts on the results.

Figure 5.6: Comparison of Estimates with and without Selection Correction
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Notes: This figure compares sales-weighted output elasticities and markups estimates obtained using my
method with and without selection correction. White bars report the estimates from the main text and grey
bars report the estimates after accounting for selection.

5.4 Markup Comparison to Nested CES with Labor-Augmenting Technology

The model introduced in this paper has two key features: labor-augmenting productivity and absence of
parametric restrictions. Analyzing the role of these features theoretically is difficult, but we can disentangle
their effects empirically. To this end, I compare my results with a parametric production function with labor-
augmenting technology. In particular, I estimate the nested CES production function given in Equation (2.5).
The details of the estimation are provided in Appendix 4.2.

Nested CES is a parametric model with labor-augmenting productivity, so a comparison highlights the role
of the nonparametric component of my production function. Although this model contains labor-augmenting
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technology, the elasticities of substitutions and returns to scale are restricted to be common across firms.

Appendix Figure 6.17 presents the results from comparing the output elasticities estimated from the two
models. The capital and materials elasticity estimates of the nested CES are significantly lower than my
estimates; however, the labor elasticity estimates are similar. This suggests that, although estimates from a
parametric model with labor-augmenting technology are closer to my results than Cobb-Douglas, allowing
for a nonparametric model still gives quantitatively different results.

I next turn to the markup comparison in Appendix Figure 6.18. Estimated markups are significantly
different for the four developing countries between two models, but the two methods produce similar results
for the US. We conclude that differences in the output elasticity estimates affect markups estimates, showing
the implications of the parametric restrictions. To understand the source of this difference, I turn to markup
decomposition. Appendix Figure 6.19 shows the difference between the first two components in markup
decomposition. We see that by allowing for labor-augmenting technology, the difference between the average
elasticity estimates vanishes, but the difference in covariances persists. I conclude that the nested CES
estimates the average elasticity level correctly, but it does not account for the heterogeneity in the output
elasticities.
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5.5 Translog Production Function

Figure 5.7: Comparison of my Estimates with Translog Production Function
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Notes: This figure compares sales-weighted output elasticities and markups estimated using my method and
translog. Translog specification is estimated using the Ackerberg et al. (2015) method.
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Table 6.8: Unweighted Average Output Elasticities

Industry 1 Industry 2 Industry 3
FA ACF OLS FA ACF OLS FA ACF OLS

Chile (311, 381, 321)

Capital 0.05 0.04 0.05 0.1 0.09 0.09 0.09 0.09 0.09
(0.01) (0.00) (0.00) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Labor 0.15 0.14 0.14 0.25 0.31 0.31 0.19 0.23 0.23
(0.00) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.02) (0.02)

Materials 0.84 0.87 0.88 0.68 0.69 0.68 0.71 0.72 0.72
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

Rts 1.04 1.06 1.06 1.02 1.09 1.09 0.98 1.04 1.04
(0.02) (0.01) (0.00) (0.03) (0.01) (0.01) (0.02) (0.01) (0.01)

Colombia(311, 322, 381)

Capital 0.09 0.07 0.07 0.09 0.07 0.08 0.13 0.13 0.13
(0.01) (0.00) (0.00) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

Labor 0.18 0.18 0.18 0.36 0.46 0.44 0.33 0.36 0.36
(0.00) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

Materials 0.75 0.8 0.8 0.59 0.56 0.54 0.57 0.61 0.61
(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Rts 1.01 1.05 1.05 1.04 1.09 1.06 1.02 1.1 1.09
(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

India(230, 265, 213)

Capital 0.05 0.05 0.05 0.08 0.02 0.04 0.04 0.02 0.08
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01)

Labor 0.12 0.09 0.09 0.31 0.43 0.35 0.13 0.42 0.35
(0.00) (0.01) (0.01) (0.00) (0.02) (0.01) (0.00) (0.04) (0.02)

Materials 0.82 0.84 0.84 0.57 0.54 0.56 0.77 0.64 0.54
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.04) (0.02)

Rts 0.99 0.98 0.98 0.96 0.99 0.95 0.95 1.08 0.96
(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.03) (0.01)

Turkey(321,311,322)

Capital 0.09 0.04 0.04 0.05 0.03 0.03 0.06 0.03 0.04
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.02) (0.01) (0.01)

Labor 0.16 0.21 0.21 0.1 0.17 0.17 0.16 0.28 0.28
(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01)

Materials 0.72 0.79 0.79 0.82 0.84 0.84 0.79 0.72 0.72
(0.02) (0.01) (0.00) (0.01) (0.00) (0.00) (0.02) (0.01) (0.01)

Rts 0.97 1.04 1.04 0.97 1.04 1.04 1.02 1.04 1.03
(0.02) (0.00) (0.00) (0.01) (0.00) (0.00) (0.03) (0.01) (0.01)

US(33,32,31)

Capital 0.16 0.2 0.19 0.15 0.24 0.23 0.2 0.27 0.28
(0.01) (0.01) (0.01) (0.02) (0.03) (0.02) (0.04) (0.05) (0.05)

Labor 0.32 0.53 0.52 0.28 0.47 0.46 0.21 0.45 0.46
(0.00) (0.02) (0.02) (0.01) (0.03) (0.03) (0.01) (0.05) (0.04)

Materials 0.55 0.27 0.26 0.55 0.31 0.3 0.58 0.22 0.24
(0.01) (0.02) (0.02) (0.02) (0.06) (0.04) (0.03) (0.06) (0.05)

Rts 1.03 0.99 0.98 0.98 1.02 1 0.99 0.94 0.97
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.04) (0.02) (0.02)

Note: Comparison of unweighted average output elasticities produced by different methods. FA refers to my estimates, ACF
refers to Ackerberg et al. (2015) estimates and OLS is Cobb-Douglas estimated by OLS. For each year and industry, sales-
weighted averages are calculated, and then simple averages are taken over years. Numbers in each panel correspond to the SIC
code of the largest, second largest and third largest industries in each country. Industry codes are provided in parentheses in each
panel. Corresponding industry names are Food Manufacturing (311), Equipment Manufacturing (381), Paper Manufacturing
(322), Glass Manufacturing (311), Cotton ginning (230), Textile (265). Bootstrapped standard errors in parentheses (100
iterations).



6 Additional Tables and Figures

Figure 6.8: Comparison of Output Elasticities
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Note: Comparison of sales-weighted average elasticities produced by my estimates (white) and Cobb-Douglas
estimated by ACF (grey) for each country. The difference between the two averages is shown by the black bar.
For each year and industry, sales-weighted averages are calculated, and then simple averages are taken over years.
The error bars indicate 95 percent confidence intervals calculated using bootstrap (100 iterations).

Figure 6.9: Evolution of Markups (Compustat)
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Notes: Comparisons of the evolution of markups in the US manufacturing industry produced by my method
and the Cobb-Douglas model estimated using the ACF procedure. The two panels show results with two
different weighting method used when aggregating firm-level markups.
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Figure 6.10: Evolution of Markups (Chile)
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Notes: Comparisons of the evolution of markups in the Chilean manufacturing industry produced by my
method and the Cobb-Douglas model estimated using the ACF procedure. The two panels show results with
two different weighting method used when aggregating firm-level markups.

Figure 6.11: Evolution of Markups (Colombia)
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Notes: Comparisons of the evolution of markups in the Colombian manufacturing industry produced by my
method and the Cobb-Douglas model estimated using the ACF procedure. The two panels show results with
two different weighting method used when aggregating firm-level markups.
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Figure 6.12: Evolution of Markups (India)
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Notes: Comparisons of the evolution of markups in the Indian manufacturing industry produced by my
method and the Cobb-Douglas model estimated using the ACF procedure. The two panels show results with
two different weighting method used when aggregating firm-level markups.

Figure 6.13: Evolution of Markups (Turkey)
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Notes: Comparisons of the evolution of markups in the Turkish manufacturing industry produced by my
method and the Cobb-Douglas model estimated using the ACF procedure. The two panels show results with
two different weighting method used when aggregating firm-level markups.

31



Figure 6.14: Decomposition of Markup: Elasticity vs Share
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Notes: This figure shows the evolution of the two components of log aggregate markup given in Equation
7.3. Black line displays the log aggregate markups, red line displays the component from production function
estimation and, blue line displays the component from revenue share of flexible inputs.
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Figure 6.15: Confidence Bands for Difference
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Notes: This figure shows the evolution of the aggregate markups estimated from my method and Cobb-
Douglas on left panel and 10-90the percentile of the bootstrap distribution (100 iterations) for the difference
between the two estimates.
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Figure 6.16: Sales-Weighted
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Figure 6.17: Comparison with Nested CES
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Note: Comparison of sales-weighted average elasticities produced by my estimates (white) and Nested CES esti-
mated by procedure given in Subsection 4.2 for each country. The difference between the two averages is shown
by the black bar. For each year and industry, sales-weighted averages are calculated, and then simple averages are
taken over years. The error bars indicate 95 percent confidence intervals calculated using bootstrap (100 iterations).

Figure 6.18: Markups Comparison with Nested CES
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Note: Comparison of sales-weighted markups produced by my estimates (white) and Nested CES estimated by
procedure given in Subsection 4.2 for each country. The difference between the two averages is shown by the black
bar. For each year and industry, sales-weighted averages are calculated, and then simple averages are taken over
years. The error bars indicate 95 percent confidence intervals calculated using bootstrap (100 iterations).
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Figure 6.19: Decomposition of Markup Difference - Nested CES
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Notes: This figure decomposes the difference between the aggregate log markups produced by non-parametric
labor-augmenting production function and labor-augmenting CES production function estimated using the
procedure described in Subsection 4.2. The decomposition is based on Equation 8.1.
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