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Abstract. We develop a distribution regression model under endogenous sample selection. This

model is a semiparametric generalization of the Heckman selection model that accommodates

much rich patterns of heterogeneity in the selection process and effect of the covariates. The

model applies to continuous, discrete and mixed outcomes. We study the identification of the

model, and develop a computationally attractive two-step method to estimate the model param-

eters, where the first step is a probit regression for the selection equation and the second step

consists of multiple distribution regressions with selection corrections for the outcome equation.

We construct estimators of functionals of interest such as actual and counterfactual distributions

of latent and observed outcomes via plug-in rule. We derive functional central limit theorems for

all the estimators and show the validity of multiplier bootstrap to carry out functional inference.

We apply the methods to wage decompositions in the UK using new data. Here we decompose

the difference between the male and female wage distributions into four effects: composition,

wage structure, selection structure and selection sorting. After controlling for endogenous em-

ployment selection, we still find substantial gender wage gap throughout the distribution that is

not explained by observable labor market characteristics. We also uncover positive sorting for

single men and negative sorting for married women that accounts for a substantial fraction of the

gender wage gap at the top of the distribution. These findings can be interpreted as evidence of

assortative matching in the marriage market and glass-ceiling in the labor market.

Keywords: Sample selection, distribution regression, quantile, heterogeneity, uniform in-

ference, gender wage gap, assortative matching, glass ceiling

1. introduction

Sample selection is ubiquitous in empirical economics. For example, it arises naturally in the

estimation of wage equations because we do not observe wages of individuals who do not work

(Gronau, 1974; Heckman, 1974), and product demands because we do not observed quantities
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purchased by consumers who do not have access to the product. Sample selection biases the esti-

mation of causal or predictive effects when the reasons for not observing the data are related to the

outcome of interest. For example, there is sample selection bias in the estimation of a wage equa-

tion whenever the employment status and offered wage depend on common unobserved variables

such as ability, motivation or skills. The most popular solution to the sample selection bias is the

Heckman selection model (HSM) introduced in Heckman (1974). This model offers a convenient

and parsimonious way to account for sample selection by making parametric assumptions about

the outcome and selection processes. Our development is motivated by the observation that, in

addition to the parametric structure, this model imposes strong homogeneity assumptions on how

covariates affect the outcome and selection processes and how the selection process operates itself.

We develop a generalization of the HSM that relaxes all these three homogeneity restrictions. The

resulting model is a semiparametric model, where key parameters are function-valued, thereby

considerably generalizing the classical selection model.

Following the literature, we model sample selection using two latent variables for the selection

and outcome processes and relate the distribution of these variables with the distribution of

the corresponding observed variables. Here we find convenient to work with a local Gaussian

representation (LGR) of the joint distribution of the latent variables, which we introduce in the

paper. This representation is unique for any joint distribution and might be of independent

interest in other settings. The identification analysis is very transparent with the LGR. Thus,

we show that the parameters of the LGR are partially identified in the presence of endogenous

sample selection because there are only two free probabilities to identify three parameters. We

rely on exclusion restrictions to point-identify the three parameters nonparametrically. These

conditions require of a binary covariate that does not affect the distribution of the latent outcome

and dependence between the latent selection and outcome variables.

Once we have established nonparametric identification with the exclusion restrictions, we intro-

duce a flexible semiparametric distribution regression (DR) model with covariates for the LGR.

This model generalizes the HSM by adding multiple sources of heterogeneity to the selection

and outcome processes. Thus, it allows for observed and unobserved heterogeneity in selection

sorting, together with unobserved heterogeneity in the effect of the covariates on the selection

sorting and outcome. In the case of the wage equation, the model can capture the presence of

heterogenous returns to schooling across the wage distribution, or positive sorting at the top of

the wage distribution and negative sorting at the bottom. The model is semiparametric because

its parameters are function-valued and can be applied without modification to continuous, dis-

crete and continuous-discrete outcomes. We show how to construct interesting functionals of the

model parameters such as actual and counterfactual distributions of latent and observed out-

comes, which can be applied to policy evaluation, treatment effects, wage decompositions and

discrimination analysis accounting for sample selection. In the case of wage decompositions, we

show how to identify two new effects: a selection sorting effect and a selection structure effect.
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Selection sorting is determined by whether the employed individuals have higher or lower offered

or latent wages than unemployed individuals with the same characteristics. Selection structure

is determined by the proportion of employed individuals and how they are selected based on

observed characteristics.

We develop a two-step estimator for the model parameters. The first step consists of a probit

regression for the selection equation, which is identical to the first step in the Heckman two-step

method (Heckman, 1979). The second step estimates multiple DRs with sample selection correc-

tion. The difference between these DRs and the standard DRs without sample selection is that

we run bivariate probits instead of univariate probits (Foresi and Peracchi, 1995; Chernozhukov,

Fernández-Val, and Melly, 2013). We estimate functionals of the parameters using the plug-in

method. We derive functional central limit theorems for all the estimators and show how to use

these results to perform uniform inference on function-valued parameters. This type of inference

is useful to construct confidence bands and test hypotheses such as whether a coefficient or effect

is uniformly zero, constant or positive. We implement the inference methods using Kolmogorov-

Smirnov type statistics where the critical values are obtained via multiplier bootstrap (Giné and

Zinn, 1984). This bootstrap scheme is convenient in our setting because it avoids repeated compu-

tation of estimators in constructing the bootstrap draws of the statistic. We prove the validity of

multiplier bootstrap by deriving bootstrap functional central limit theorems for all the estimators.

We apply our methods to study the relationship between wage and employment in the U.K.

using updated data from 1978 to 2013. To this end we estimate wage equations for men and women

and carry out several wage decompositions accounting for endogenous selection into employment.

Here, we uncover positive sorting among single men and negative sorting among married women.

This difference in selection sorting is consistent with assortative matching in the marriage market.

It also explains a significant proportion of the gender wage gap at the top of the distribution,

which is consistent with recent explanations based on glass ceiling theory. We also find that most

of the gender wage gap in both observed and offered wages is accounted by differences in the wage

structure that are often associated with gender discrimination in the labor market. The effect of

education is positive and increases along the distribution. All the heterogeneity that we find is

inconsistent with the restrictions of the HSM.

Literature review. The sample selection problem has a long history in statistics and econo-

metrics. Classical references can be found in Lee (1982), Goldberger (1983), Amemiya (1985,

Section 10.7), Maddala (1986, Section 9.4), Manski (1989), Manski (1994), and Vella (1998).

A popular solution to the problem is the HSM developed by Heckman in a sequence of papers

(Heckman, 1974; Heckman, 1976; Heckman, 1979; Heckman, 1990). This model has been ex-

tended in several dimensions. Thus, Lee (1983), Prieger (2002) and Smith (2003) replaced the

bivariate standard normal copula with other parametric copulas, and Marchenko and Genton

(2012) replaced the bivariate normal by a bivariate t-distribution to apply the HSM to heavy

tailed data. Ahn and Powell (1993), Powell (1994), Andrews and Schafgans (1998), and Newey
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(1999) developed semiparametric versions of the HSM and Das, Newey, and Vella (2003) a non-

parametric version, focusing on location effect versions with homogeneous effects. None of the

models considered in these extensions accommodates all the sources of heterogeneity allowed by

our model.

Arellano and Bonhomme (2017a) proposed another extension of the HSM, which like our model

allows for multiple sources of heterogeneity.1 Their method relies on quantile regression to model

the marginal distribution of the latent outcome coupled with a parametric model for the copula

of the latent selection and outcome variables. They estimate the model parameters using a

three-step method where the first step is the same as in our method, but the second and third

steps involve an iterative procedure that alternates between quantile regressions to estimate the

outcome equation and nonlinear GMM to estimate the parameters of the copula. They also rely on

numerical simulation to estimate functionals of the parameters such as actual and counterfactual

distributions of the latent and observed outcomes. Compared to our method, they model the

covariates effects as direct on the conditional quantile of the latent distribution, whereas we model

the covariate effects as direct on the conditional latent distribution – hence in our framework

covariates affect the conditional quantiles indirectly. Further, their modeling approach imposes

homogeneity on the copula function, which rules out forms of copula heterogeneity across the

distribution of the latent outcome, which are permitted in our approach. Moreover, their quantile

regression model requires the latent outcome to be continuous, whereas our distribution regression

model can deal with any type of outcome and is therefore more widely applicable. Our method is

computationally simpler as it does not involve any iteration between methods in the second step.

The identification assumptions are also different and not nested: we impose more structure on the

dependence between the outcome and selection processes, whereas they require more variation on

the excluded covariates. We provide a more detailed comparison of the identifying assumptions

in Appendix A. Finally, from a technical point of view, Arellano and Bonhomme (2017a) only

derived pointwise limit theory for the estimators of the model parameters, whereas we derive

functional limit theory for the estimators of the model parameters and related functionals.

Outline. Section 2 looks at the identification problem under sample selection using a new rep-

resentation of a joint distribution. Section 3 introduces the DR model with selection and associ-

ated functionals, estimators of the model parameters and functionals, and a multiplier bootstrap

method to perform functional inference. Section 4 provides asymptotic theory for the estimation

and inference methods, and Section 5 reports the results of the empirical application.

2. Another View of the Sample Selection Problem

2.1. Local Gaussian Representation of a Joint Distribution. We start by characterizing

a local Gaussian representation (LGR) of the joint distribution of two random variables that is

1See Arellano and Bonhomme (2017b) for a recent survey on sample selection in quantile models.
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convenient to provide a new view of the identification problem with sample selection and motivate

our modeling choices later.

Let Y ∗ and D∗ be two random variables with joint cumulative distribution function (CDF)

FY ∗,D∗ and marginal CDFs FY ∗ and FD∗ . We label these variables with asterisks because they

will be latent variables when we introduce sample selection. Our first result shows that FY ∗,D∗

can be represented via a standard bivariate normal distribution at a point and with a correlation

parameter that depend on the evaluation point (y, d).

Lemma 2.1 (LGR Result). Let FY ∗,D∗ be a joint CDF, then, for any (y, d) ∈ R2,

FY ∗,D∗(y, d) = Φ2(µ(y), ν(d); ρ(y, d)),

where µ(y) ∈ R, ν(d) ∈ R, ρ(y, d) ∈ [−1, 1], and Φ2(·, ·; ρ) is the joint CDF of a standard bivariate

normal random variable with parameter ρ. Moreover, the values of µ(y), ν(d) and ρ(y, d) are

uniquely determined by µ(y) = Φ−1(FY ∗(y)), ν(d) = Φ−1(FD∗(d)), and the solution in ρ of

FY ∗,D∗(y, d) = Φ2(Φ−1(FY ∗(y)),Φ−1(FD∗(d)); ρ),

where Φ is the standard normal CDF. Hence, the representation is unique.

Proof. By standard properties of the bivariate normal distribution, the marginals corresponding

to the LGR are Φ(µ(y)) and Φ(ν(d)). Equalizing these marginals to the marginals of FY ∗,D∗(y, d)

yields

FY ∗(y) = Φ(µ(y)), FD∗(d) = Φ(ν(d)),

which uniquely determine µ(y) and ν(x) as µ(y) = Φ−1(FY ∗(y)) and ν(d) = Φ−1(FD∗(d)). Plug-

ging these expressions in the LGR gives

FY ∗,D∗(y, d) = Φ2(Φ−1(FY ∗(y)),Φ−1(FD∗(d)); ρ(y, d)).

Let φ2(·, ·; ρ) be the joint probability density function (PDF) of a standard bivariate normal

random variable with parameter ρ. The previous equation uniquely determines ρ(y, d) by the

following properties of the standard bivariate normal distribution:

(1) ρ 7→ Φ2(·, ·; ρ) is continuously differentiable and ∂Φ2(·, ·; ρ)/∂ρ = φ2(·, ·; ρ) > 0 (Sibuya,

1959; Sungur, 1990);

(2) limρ↗1 Φ2(x, y; ρ) = min[Φ(x),Φ(y)];

(3) limρ↘−1 Φ2(x, y; ρ) = max[Φ(x) + Φ(y)− 1, 0];

together with the Frechet-Hoeffding bounds

max[Φ(µ(y)) + Φ(ν(d))− 1, 0] 6 FY ∗,D∗(y, d) 6 min[Φ(µ(y)),Φ(ν(d))].

�
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Lemma 2.1 establishes that any joint CDF admits a unique representation as a sequence of

standard bivariate normal distributions. This result is stronger than the comprehensive property

of the Gaussian copula that establishes that this copula includes the two Frechet bounds and

independent copula by suitable choice of the correlation parameter, e.g., Smith (2003). Lemma

2.1 easily extends to CDFs conditional on covariates X by making all the parameters dependent

on the value of X.

The parameter ρ(y, d) can be interpreted as a measure of local dependence.2 Thus, when

ρ(y, d) = 0, the distribution FY ∗,D∗ factorizes at (y, d):

FY ∗,D∗(y, d) = Φ2(Φ−1(FY ∗(y)),Φ−1(FD∗(d)); 0) = FY ∗(y)FD∗(d),

that is, the events {Y ∗ 6 y} and {D∗ 6 d} are independent. Hence we can say that Y ∗ and D∗

are “locally independent” at (y, d).3 In general, the discrepancy

|Φ2(Φ−1(FY ∗(y)),Φ−1(FD∗(d)); ρ(y, d))− Φ2(Φ−1(FY ∗(y)),Φ−1(FD∗(d)); 0)|

measures deviation away from independent factorization, thereby giving meaning to ρ(y, d) as

local dependence parameter.

In the LGR, the marginal CDFs of Y ∗ and D∗ are represented by local Gaussian links

FY ∗(y) = Φ(µ(y)), FD∗(d) = Φ(ν(d)),

and the copula of Y ∗ and D∗ is represented by a local Gaussian copula

CY ∗,D∗(u, v) = Φ2(Φ−1(u),Φ−1(v); ρ(yu, dv)),

∀(u, v) ∈ [0, 1] : ∃yu ∈ R : FY ∗(yu) = u, ∃dv ∈ R : FD∗(dv) = v.
(2.1)

The LGR is convenient because it separates µ(y) and ν(d) as two parameters determining the

marginals of Y ∗ and D∗ from ρ(y, d) as a parameter determining the dependence between Y ∗ and

D∗.4

Kolev, Anjos, and Mendes (2006) developed a closely related result to (2.1) for the copula.

They established that the copula of any bivariate distribution can be represented by the bivariate

Gaussian copula with a local correlation parameter. The LGR is different from the local Gaussian

approximation of Tjøstheim and Hufthammer (2013), which approximates the distribution of a

continuous bivariate random variable in a neighborhood of the point of interest by a bivariate

normal distribution with local vector of means and variance-covariance matrix, see also Hjort and

Jones (1996). As Tjøstheim and Hufthammer (2013) noticed, unlike the LGR, a local Gaussian

approximation that intersects with the joint distribution at the point of interest is not unique.

2See Tjøstheim, Otneim, and Støve (2018) for a recent survey on measures of local dependence.
3This concept is different from the local independence of Doksum, Blyth, Bradlow, Meng, and Zhao (1994),

which is local in only one of the variables. Thus, for example, our concept is symmetric in Y ∗ and D∗ whereas the

concept in Doksum, Blyth, Bradlow, Meng, and Zhao (1994) is not.
4Note that the marginals of FY ∗,D∗ do not identify separately the mean and variances of the local Gaussian

representation.



DR WITH SELECTION 7

2.2. Identification of Sample Selection Model. We consider now the sample selection prob-

lem where we observe two random variables D and Y , which can be defined in terms of the latent

variables D∗ and Y ∗ as

D = 1(D∗ 6 0),

Y = Y ∗ if D = 1,

i.e., D is an indicator for D∗ 6 0 and Y ∗ is only observed when D = 1. The goal is to identify

features of the joint distribution of the latent variables from the joint distribution of the observed

variables.

The joint CDF of the observed variables can be written in terms of the LGR of FY ∗,D∗ as

FY,D(y, d) = Φ2(µ(y), ν(0); ρ(y, 0))1(d > 1) + [1− Φ(ν(0))]1(d > 0).

As shown below, the parameters of the LGR are partially identified because FY ∗,D∗ is only partially

identified. We proceed by characterizing the identified set for these parameters and provide

exclusion restrictions to achieve point identification. Since there is a one-to-one relationship

between FY ∗,D∗ and its LGR, the identified set for the parameters of the LGR determine the

identified set for FY ∗,D∗ . In what follows, we simplify the notation to

ν := ν(0), ρ(y) := ρ(y, 0).

We can only hope to identify ν(d) and ρ(y, d) at d = 0 since we only observe whether D∗ 6 0.

To understand the source of the partial identification in terms of the LGR, note that in the

presence of sample selection there are two free probabilities, P(D = 1) and P(Y 6 y | D = 1),

to identify three parameters, µ(y), ν and ρ(y). The parameter ν is pinned down by the selection

probability as

ν = Φ−1(P(D = 1)).

The parameters µ(y) and ρ(y) are partially identified as the solutions in (µ, ρ) to

FY,D(y, 1)− P(D = 0) = Φ2(µ,Φ−1(P(D = 1)); ρ).

These solutions form a one-dimensional manifold in R × [−1, 1] because ∂Φ2(µ, ·; ρ)/∂µ > 0,

∂Φ2(·, ·; ρ)/∂ρ > 0, and ∂2Φ2(·, ·; ρ)/∂µ∂ρ > 0 (Spivak, 1965; Munkres, 1991). The identified set

of (µ(y), ρ(y)) can be shrunk using additional information such as that ρ(y) is known to lie in a

subinterval of [−1, 1], e.g. |ρ(y)| < 0.2.

We use exclusion restrictions to achieve point identification of the parameters of the LGR. To

state these restrictions in terms of the LGR, we start by extending the LGR to CDFs conditional

on covariates. Let Z be a random variable and FY ∗,D∗|Z be the joint CDF of Y ∗ and D∗ conditional

on Z. Then, FY ∗,D∗|Z admits the LGR:

FY ∗,D∗|Z(y, d | z) = Φ2(µ(y | z), ν(d | z); ρ(y, d | z)),
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where µ(y | z) ∈ R, ν(d | z) ∈ R, and ρ(y, d | z) ∈ [−1, 1]. This representation can be characterized

using the same argument as in Lemma 2.1 after fixing the value of the covariate Z and letting all

the parameters of the LGR to depend on this value. The exclusion restrictions are:

Assumption 1 (Exclusion Restrictions). There is a binary random variable Z that satisfies:

(1) Non-Degeneracy: 0 < P(D = 1) < 1 and 0 < P(Z = 1 | D = 1) < 1.

(2) Relevance: P(D = 1 | Z = 0) < P(D = 1 | Z = 1) < 1.

(3) Outcome exclusion: µ(y | z) = µ(y).

(4) Selection exclusion: ρ(y, 0 | z) = ρ(y, 0).

The condition that Z is binary is made to emphasize that our identification strategy does not

rely on large variation of Z. If Z is not binary we only require that Assumption 1 be satisfied for

two values of Z. Part (1) requires that there is sample selection and that Z has variation in the

selected population. It is used to guarantee that all the probabilities employed in the identification

analysis are well-defined. Part (2) requires that Z affects the probability of selection and rules

out corner cases. The condition P(D = 1 | Z = 1) < 1 precludes identification at infinity (see

Remark 2.1). The sign of the inequality can be reversed by relabelling the values of Z. Part (3)

is a standard exclusion restriction, which is not sufficient for point identification in the presence

of sample selection (Manski, 1994; Manski, 2003). It holds if Y ∗ is independent of Z.5 Part (4)

is an exclusion restriction in the local dependence between Y ∗ and D∗, which holds if selection

sorting is independent of Z. We explain this condition more in detail below with an example and

compare it with the identification condition in Arellano and Bonhomme (2017a) in Remark 2.2.

We can get some intuition about the outcome and selection exclusion conditions with an ex-

ample. Consider a heteroskedastic bivariate normal model for the latent variables, i.e.,

(Y ∗, D∗) | Z = z ∼ N2

([
µY ∗(z)

µD∗(z)

]
,

[
σY ∗(z)

2 σY ∗,D∗(z)

σY ∗,D∗(z) σD∗(z)
2

])
.

The outcome exclusion imposes that

y − µY ∗(z)
σY ∗(z)

= µ(y),

whereas the selection exclusion imposes that

σY ∗,D∗(z)

σY ∗(z)σD∗(z)
= ρ.

If Y ∗ is independent of Z, the outcome exclusion holds and the selection exclusion boils down

to the condition that σY ∗,D∗(z)/σD∗(z) does not depend on z. In other words, the slopes of the

linear regressions of Y ∗ on D∗ conditional on Z are the same when Z = 0 and Z = 1.

5Kitagawa (2010) developed a test for the outcome exclusion.
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We now show how the presence of an exclusion restriction helps identify the parameters of the

conditional LGR. Under the exclusion restriction the conditional LGR at d = 0 simplifies to

FY ∗,D∗|Z(y, 0 | z) = Φ2(µ(y), ν(z); ρ(y)), z ∈ {0, 1}, (2.2)

where ν(z) := ν(0 | z) and ρ(y) := ρ(y, 0). The CDF of the observed variables conditional on Z

can be related to this conditional LGR as

FY,D|Z(y, d | z) = Φ2(µ(y), ν(z); ρ(y))1(d > 1) + [1− Φ(ν(z))]1(d > 0), z ∈ {0, 1}.

As before, ν(z) is identified from the conditional selection probability as

ν(z) = Φ−1 (P(D = 1 | Z = z)) , z ∈ {0, 1}. (2.3)

Moreover, µ(y) and ρ(y) are identified as the solution in (µ, ρ) to

FY,D|Z(y, 1 | z)− P(D = 0 | Z = z) = Φ2(µ,Φ−1 (P(D = 1 | Z = z)) ; ρ), z ∈ {0, 1}. (2.4)

This is a nonlinear system of two equations in two unknowns that has unique solution because the

Jacobian is a P-matrix for all µ ∈ R and ρ ∈ (−1, 1) by Theorem 4 of Gale and Nikaido (1965).

The following theorem provides a detailed identification analysis of the parameters of the con-

ditional LGR in (2.2). It includes boundary cases where the parameters µ(y) and ρ(y) can be

either point or partially identified.

Theorem 2.1 (Identification of LGR with Sample Selection). Assume that Assumption 1 holds.

Then, ν(z) is identified by (2.3) and there are the following cases for the identification of µ(y)

and ρ(y):

(1) If FY,D|Z(y, 1 | 1)− P(D = 0 | Z = 1) = FY,D|Z(y, 1 | 0)− P(D = 0 | Z = 0) > 0,

ρ(y) = 1, µ(y) = Φ−1
(
FY,D|Z(y, 1 | 1)− P(D = 0 | Z = 1)

)
.

(2) If FY,D|Z(y, 1 | 1) < 1 and FY,D|Z(y, 1 | 0) = 1,

ρ(y) = 1, µ(y) = Φ−1
(
FY,D|Z(y, 1 | 1)− P(D = 0 | Z = 1)

)
.

(3) If FY,D|Z(y, 1 | 1) = FY,D|Z(y, 1 | 0) = 1,

ρ(y) = 1, µ(y) ∈ [Φ−1(P(D = 1 | Z = 1)),+∞).

(4) If FY,D|Z(y, 1 | 1) > P(D = 0 | Z = 1) and FY,D|Z(y, 1 | 0) = P(D = 0 | Z = 0),

ρ(y) = −1, µ(y) = Φ−1
(
FY,D|Z(y, 1 | 1)

)
.

(5) If FY,D|Z(y, 1 | 1) = FY,D|Z(y, 1 | 0) < 1,

ρ(y) = −1, µ(y) = Φ−1
(
FY,D|Z(y, 1 | 1)

)
.

(6) If FY,D|Z(y, 1 | z) = P(D = 0 | Z = z), z ∈ {0, 1},

ρ(y) = −1, µ(y) ∈ (−∞,Φ−1
(
FY,D|Z(y, 1 | 1)

)
].
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(7) Otherwise, µ(y) and ρ(y) are point identified as the solution in (µ, ρ) to (2.4). This

solution exists and is unique.

Proof. The identification of ν(z) follows from equalizing the marginals with respect to D∗ of

FY ∗,D∗|Z and the conditional LGR at D∗ = 0. Since ν(z) is identified, we shall use Φ(ν(z)) in

place of P(D = 1 | Z = z) and Φ̄(ν(z)) in place of P(D = 0 | Z = z) in the rest of the proof to

lighten the notation.

Cases (1)–(3) correspond to ρ(y) = 1. This boundary case is identified because ρ(y) = 1 if and

only if FY,D|Z(y, 1 | 1) − Φ̄(ν(1)) = FY,D|Z(y, 1 | 0) − Φ̄(ν(0)) > 0 or FY,D|Z(y, 1 | 0) = 1. The if

part follows from the Frechet-Hoeffding bounds

FY,D|Z(y, 1 | z)− Φ̄(ν(z)) = FY ∗,D∗|Z(y, 0 | z) = min[Φ(ν(z)), FY ∗(y)], z ∈ {0, 1}, (2.5)

and Assumption 1(2). For the case FY,D|Z(y, 1 | 1)− Φ̄(ν(1)) = FY,D|Z(y, 1 | 0)− Φ̄(ν(0)) > 0, the

only if part follows because ν 7→ Φ2(·, ν; ρ) is strictly monotonic when ρ ∈ (−1, 1) and ν(1) > ν(0)

by Assumption 1(2). This shows that ρ 6∈ (−1, 1). Moreover, this case is ruled out when ρ = −1

by the Frechet-Hoeffding bounds

FY,D|Z(y, 1 | z)− Φ̄(ν(z)) = FY ∗,D∗|Z(y, 0 | z) = max[Φ(ν(z)) + FY ∗(y)− 1, 0], z ∈ {0, 1}, (2.6)

and Assumption 1(2). The case FY,D|Z(y, 1 | 0) = 1 implies that Φ2(µ(y), ν(0); ρ(y)) = Φ(ν(0)),

which is only possible when ρ(y) = 1.

Now, we can analyze the identification of µ(y) using (2.5) with FY ∗(y) = Φ(µ(y)). Case (1)

corresponds to FY,D|Z(y, 1 | 1)−Φ̄(ν(1)) = Φ(µ(y)), which identifies µ(y). Case (2) corresponds to

FY,D|Z(y, 1 | 0) = 1 and FY,D|Z(y, 1 | 1)− Φ̄(ν(1)) = Φ(µ(y)). The second equation identifies µ(y).

Case (3) corresponds to FY,D|Z(y, 1 | z) = 1, z ∈ {0, 1}, which partially identify the parameter

from Φ(µ(y)) > max[Φ(ν(0)),Φ(ν(1))] = Φ(ν(1)) by Assumption 1(2).

Cases (4)–(6) correspond to ρ(y) = −1. This boundary case is identified because ρ(y) = −1

if and only if FY,D|Z(y, 1 | 0) = Φ̄(ν(0)) or FY,D|Z(y, 1 | 0) = FY,D|Z(y, 1 | 1). Symmetrically

to ρ(y) = 1, the if part follows from the Frechet-Hoeffding bounds (2.6) and Assumption 1(2),

whereas the only if part for the case FY,D|Z(y, 1 | 0) = FY,D|Z(y, 1 | 1) follows from the Frechet-

Hoeffding bounds (2.5) and Assumption 1(2). The only if part for FY,D|Z(y, 1 | 0) = Φ̄(ν(0))

follows because this case implies that Φ2(µ(y), ν(0); ρ(y)) = 0, which is only possible when ρ(y) =

−1.

Now, we can analyze the identification of µ(y) using (2.6) with FY ∗(y) = Φ(µ(y)). Case

(4) corresponds to FY,D|Z(y, 1 | 1) = Φ(µ(y)), which identifies µ(y). Case (5) corresponds to

FY,D|Z(y, 1 | 0) = Φ(µ(y)) and FY,D|Z(y, 1 | 1) = Φ(µ(y)). Both of these equations have the same

solution that identifies µ(y). Case (6) corresponds to FY,D|Z(y, 1 | z) = Φ̄(ν(z)), z ∈ {0, 1}, which

partially identify the parameter from Φ(µ(y)) 6 min[Φ̄(ν(0)), Φ̄(ν(1))] = Φ̄(ν(1)) = FY,D|Z(y, 1 |
z) by Assumption 1(2).
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Consider now the non-boundary case (7) where ρ(y) ∈ (−1, 1). The parameters µ(y) and ρ(y)

are identified as the solution in (µ, ρ) to (2.4). This nonlinear system of 2 equations has unique

solution under Assumption 1(2). This result follows from Theorem 4 of Gale and Nikaido (1965),

after showing that the Jacobian of the system (2.4) is a P-matrix when ρ(y) ∈ (−1, 1).

Let ∂µΦ2(µ, ν; ρ) = ∂Φ2(µ, ν; ρ)/∂µ and ∂ρΦ2(µ, ν; ρ) = ∂Φ2(µ, ν; ρ)/∂ρ. The Jacobian matrix

of the system,

J(µ(y), ρ(y)) =

(
∂µΦ2(µ(y), ν(1); ρ(y)) ∂ρΦ2(µ(y), ν(1); ρ(y))

∂µΦ2(µ(y), ν(0); ρ(y)) ∂ρΦ2(µ(y), ν(0); ρ(y))

)
,

is a P-matrix for all µ(y) ∈ R and ρ(y) ∈ (−1, 1) because by the properties of the bivariate normal

CDF:

∂µΦ2(µ(y), ν(1); ρ(y)) = Φ

(
ν(1)− ρ(y)µ(y)√

1− ρ(y)2

)
φ(µ(y)) > 0,

∂ρΦ2(µ(y), ν(0); ρ(y)) = φ2(µ(y), ν(0); ρ(y)) > 0,

and

det(J(µ(y), ρ(y))) = φ(µ(y))2 [Φ (ν̃(1, y))φ (ν̃(0, y))− Φ (ν̃(0, y))φ (ν̃(1, y))] > 0,

where ν̃(0, y) = [ν(0)− ρ(y)µ(y)]/
√

1− ρ(y)2 and ν̃(1, y) = [ν(1)− ρ(y)µ(y)]/
√

1− ρ(y)2. In the

last result we use that, by the properties of the normal distribution,

φ2(µ, ν; ρ) = φ
(

[ν − ρµ]/
√

1− ρ2
)
φ(µ)

and the inverse Mills ratio ν 7→ λ(ν) := φ(ν)/Φ(ν) is strictly decreasing in R, so that

Φ (ν̃(1, y))φ (ν̃(0, y))− Φ (ν̃(0, y))φ (ν̃(1, y)) > 0,

since ν̃(0, y) < ν̃(1, y). �

The boundary cases in Theorem 2.1 are easy to detect. In practice, partial identification usually

occurs at extreme values of y. For example, case (3) arises for values of y such that Y > y a.s.,

and case (6) for values of y such that Y < y a.s.

Remark 2.1 (Identification at Infinity). When P(D = 1 | Z = 1) = 1 and µ(y | z) = µ(y), the

conditional LGR at z = 1 gives FY,D|Z(y, 1 | 1) = limν↗+∞Φ2(µ(y), ν; ρ(y | 1)) = Φ(µ(y)), which

identifies µ(y) by

µ(y) = Φ−1(FY,D|Z(y, 1 | 1)),

without the selection exclusion restriction. This result is analogous to the identification at infinity

of Chamberlain (1986) where Z is continuous with unbounded support and

lim
z↗+∞

P(D = 1 | Z = z) = 1.

Note that ρ(y | z) is not point identified without further restrictions.
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Remark 2.2 (Comparison with Arellano and Bonhomme (2017a), AB17). Assumption 1 is not

nested with the conditions that AB17 used to show nonparametric identification of their model.

We impose stronger restrictions in the dependence of the latent selection and outcome variables,

but require less variation in the excluded covariate Z. We provide a more detailed comparison in

Appendix A �

3. Distribution Regression Model with Sample Selection

3.1. The Model. We consider a semiparametric version of the LGR with covariates:

FY ∗,D∗(y, 0 | Z = z) = Φ2(−x′β(y),−z′π; ρ(x′δ(y))), (3.7)

where Y ∗ is the latent outcome of interest, which can be continuous, discrete or mixed continuous-

discrete; D∗ is a latent variable that determines sample selection; X is a vector of covariates;

Z = (Z1, X); and Z1 are excluded covariates, i.e., observed covariates that satisfy the exclusion

restrictions. The excluded covariates avoid reliance on functional form assumptions to achieve

identification. The model for the LGR consists of three indexes. We shall refer to −x′β(y) as

the outcome equation, to −z′π as the selection equation, and to ρ(x′δ(y)) as the selection sorting

equation. We observe the selection indicator D = 1(D∗ > 0) and the outcome Y = Y ∗ when

D = 1.6 In the empirical application that we consider below, Y ∗ is offered wage, D∗ is the

difference between offered wage and reservation wage, D is an employment indicator, Y is the

observed wage, X includes labor market characteristics such as education, age, number of children

and marital status, and Z1 includes measures of out-of-work income. We shall discuss the validity

of these measures as excluded covariates in Section 5.

The model (3.7) is semiparametric because y 7→ β(y) and y 7→ δ(y) are unknown functions,

i.e. infinite dimensional parameters in general. This flexibility allows the effect of X on the

outcome and selection sorting to vary across the distribution. For example, it allows the return

to education to vary across the distribution, the selection sorting to be different for high and

low educated individuals, or to have positive selection sorting at the upper tail and negative at

the bottom tail or vice versa. The function u 7→ ρ(u) is a known link with range [−1, 1], e.g.

the Fisher transformation (Fisher, 1915), ρ(u) = tanh(u). The corresponding distribution of Y ∗

conditional on Z is

FY ∗(y | Z = z) = lim
ν↗+∞

FY ∗,D∗(y, v | Z = z) = Φ(−x′β(y)), z = (x, z1).

6The minus signs in (3.7) are included to take into account that the selection is defined by D∗ > 0 instead

of D∗ 6 0. We use this definition to facilitate the interpretation of the parameters and the comparison with the

classical Heckman selection model; see Example 1.
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The selection bias arises because this distribution is different from the distribution of the observed

outcome Y , i.e.

FY ∗(y | Z = z) 6= FY (y | Z = z,D = 1) =
Φ2(−x′β(y), z′π;−ρ(x′δ(y)))

Φ(z′π)
.

Example 1 (HSM). Consider the Heckman (1974) sample selection model (HSM):

D∗ = Z ′π + V,

Y ∗ = X ′β + σU,

where (U, V ) is independent of Z and has standard bivariate normal distribution with parameter

ρ, such that

FY ∗,D∗(y, 0 | Z = z) = Φ2

(
y − x′β
σ

,−z′π; ρ

)
.

This is a special case of model (3.7) with

β1(y) = (β1 − y)/σ, β−1(y) = β−1/σ, ρ(x′δ(y)) = ρ.

The HSM therefore imposes strong homogeneity restrictions in the selection process and effect of

the covariates on the outcome and selection sorting. Thus, only the intercept of β(y) varies with

y, and ρ(x′δ(y)) is invariant to both x and y.

The model (3.7) has multiple data generating process representations as nonseparable systems.

One example is

D∗ = Z ′π + V, V | Z ∼ N (0, 1),

0 = X ′β(Y ∗) + ρ(X ′δ(Y ∗))V +
√

1− ρ(X ′δ(Y ∗))2U, U | Z ∼ N (0, 1),

where U and V are independent. For example, in the wage application V can be interpreted as

unobserved net benefit of working, and U as unobserved skills or innate ability net of V . This

representation is similar to the HSM in Example 1 with the difference that the equation for Y ∗ is

nonseparable.7

3.2. Functionals. There are several functionals of the parameters of the model (3.7) that can

be of interest. One is the marginal distribution of the latent outcome Y ∗

FY ∗(y) =

∫
FY ∗(y | Z = z)dFZ(z) =

∫
Φ(−x′β(y))dFX(x),

where FZ and FX are the marginal distributions of Z and X, respectively. In the case of the

wage application, FY ∗ corresponds to the distribution of the offered wage, which is a potential or

latent outcome free of selection. We can also construct counterfactual distributions by combining

coefficients β(y) and distributions FX from different populations or groups. These distributions

7Note that in Example 1 the equation for Y ∗ can be written as 0 = (X ′β − Y ∗)/σ + ρV +
√

1− ρ2Ũ , where Ũ

is standard normally distributed and independent of V and Z.
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are useful to decompose the distribution of offered wages between females and males or between

blacks and whites, which can be used to uncover discrimination in the labor market.

We can also use the model to construct distributions for the observed outcome using that

FY (y) =

∫
Φ2 (−x′β(y), z′π;−ρ(x′δ(y)))

Φ(z′π)
dFZ(z | D = 1)

=

∫
Φ2 (−x′β(y), z′π;−ρ(x′δ(y))) dFZ(z)∫

Φ(z′π)dFZ(z)
,

where the second equality follows from the Bayes rule. We can again construct counterfactual

distributions by changing β(y), π, δ(y) and FZ . In the wage application, we will decompose the

differences in the wage distribution between genders or across time into changes in the worker

composition FZ , wage structure β(y), selection structure π, and selection sorting δ(y). Both

selection effects are new to this model.

Remark 3.1 (Selection effects). To interpret the selection effects, it is useful to consider a

simplified version of the model without covariates where FY (y;π, ρ) = Φ2 (−β, π;−ρ) /Φ(π). Here

we drop the dependence of β and ρ on y to lighten the notation, and make explicit the dependence

of FY on the selection parameters π and ρ to carry out comparative statics with respect to them.

Then, by the properties of the normal distribution

∂FY (y;π, ρ)

∂ρ
= −φ2(−β, π;−ρ)

Φ(π)
< 0,

and

∂FY (y;π, ρ)

∂π
∝ Φ

(
−β + ρπ√

1− ρ2

)
Φ(π)−

∫ π

−∞
Φ

(
−β + ρx√

1− ρ2

)
φ(x)dx


< 0 if ρ < 0,

= 0 if ρ = 0,

> 0 if ρ > 0,

where Φ and φ are the standard normal CDF and probability density function (PDF), and φ2(·, ·; ρ)

be the joint PDF of a standard bivariate normal random variable with parameter ρ.8 Increasing

ρ therefore shifts the distribution to the right (increases quantiles) because it makes selection

sorting more positive while the size of the selected population is fixed. The effect of increasing

π is more nuanced and depends on the sign of ρ. Intuitively, π affects the size of the selected

population and the relative importance of observables and unobservables in the selection. For

example, when selection sorting is negative, increasing the size of the selected population by

increasing π shifts the distribution of the right (increases quantiles) because the newly selected

individuals have smaller (more negative) selection unobservables that correspond to larger (more

positive) outcome unobservables. In other words, the newly selected individuals are relatively less

adversely selected.

8To obtain the derivative we use that Φ2 (−β, π;−ρ) =
∫ π
−∞ Φ

(
−β+ρx√

1−ρ2

)
φ(x)dx.
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The sign of the selection effects might be different in the presence of covariates if the variation

in the parameters changes the composition of the selected population. Consider the following

extreme example with only one covariate based on the wage application. Let the covariate be an

indicator for high skills. Assume that high-skilled workers are relatively more likely to partici-

pate than low-skilled workers, there is no selection sorting on unobservables, which corresponds

to ρ(x′δ(y)) = 0 in the model, and the distribution of offered wages for high-skilled workers

first-order stochastically dominates the same distribution for low-skilled workers. In this case in-

creasing the probability of participation for high-skilled workers, which corresponds to increasing

the component of π associated to the high skill indicator in the model, both increases the overall

probability of participation and shifts the distribution of observed wages to the right (increases

quantiles), despite the lack of selection sorting. Intuitively, the distribution of observed wages is

a mixture of the distribution of wages for employed high-skilled and low-skilled workers, and we

are increasing the relative proportion of employed high-skilled workers. The opposite holds if the

distribution of offered wages for high-skilled workers is first-order stochastically dominated by the

same distribution for low-skilled workers. �

Quantiles and other functionals of the distributions of latent and observed outcomes can be

constructed by applying the appropriate operator. For example, the τ -quantile of the latent

outcome is QY ∗(τ) = Qτ (FY ∗), where Qτ (F ) := inf{y ∈ R : F (y) > τ} is the quantile or

left-inverse operator.

3.3. Estimation. To estimate the model parameters and functionals of interest, we assume that

we have a random sample of size n from (D,DY,Z), {(Di, DiYi, Zi)}ni=1, where we use DY to

indicate that we only observe Y when D = 1.

Before describing the estimators, it is convenient to introduce some notation. Let Y be the

region of interest of Y , and denote θy := (β(y), δ(y)), where we replace the arguments in y by

subscripts to lighten the notation.9

The estimation relies on the relationship between conditional distributions and binary regres-

sions. Thus, the CDF of Y at a point y conditional on X is the expectation that an indicator

that Y is less than y conditional on X,

FY |X(y | x) = E[1(Y 6 y) | X = x].

To implement this idea, we construct the set of indicators for the selected observations

Iyi = 1(Yi 6 y) if Di = 1,

for each y ∈ Y. In the presence of sample selection, we cannot just run a probit binary regression

of Iyi on Xi to estimate the parameter β(y) as in Foresi and Peracchi (1995) and Chernozhukov,

9If the support of Y is finite, Y can be the entire support, otherwise Y should be a subset of the support excluding

low density areas such as the tails.
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Fernández-Val, and Melly (2013). The problem is similar to running least squares in the HSM.

Instead, we use that

`i(π, θy) =
[
1− Φ(Z ′iπ)

]1−Di × Φ2(−X ′iβ(y), Z ′iπ;−ρ(X ′iδ(y)))DiIyi

× Φ2(X ′iβ(y), Z ′iπ; ρ(X ′iδ(y)))Di(1−Iyi)

is the likelihood of (Di, Iyi) conditional on Zi. This likelihood is the same as the likelihood of

a bivariate probit model or more precisely a probit model with sample selection (Zellner and

Lee, 1965; Poirier, 1980; Van de Ven and Van Praag, 1981).

We estimate the model parameters using a computationally attractive two-step method to

maximize the average log-likelihood, similar to the Heckman two-step method. The first step is a

probit regression for the probability of selection to estimate π, which is identical to the first step

in the Heckman two-step method. The second step consists of multiple distribution regressions

(DRs) with sample selection corrections to estimate β(y) and δ(y) for each value of y ∈ Y. These

steps are summarized in the following algorithm:

Algorithm 3.1 (Two-Step DR Method). (1) Run a probit for the selection equation to estimate

π:

π̂ = arg max
c∈Rdπ

L1(c) =
1

n

n∑
i=1

[
Di log Φ(Z ′ic) + (1−Di) log Φ(−Z ′ic)

]
, dπ := dimπ.

(2) Run multiple DRs with sample selection correction to estimate θy: for each y ∈ Y

θ̂y = arg max
t=(b,d)∈Θ

L2(t, π̂) =
1

n

n∑
i=1

Di [Iyi log Φ2

(
−X ′ib, Z ′iπ̂;−ρ(X ′id)

)
+ (1− Iyi) log Φ2

(
X ′ib, Z

′
iπ̂; ρ(X ′id)

)]
,

where Θ ∈ Rdθ is a compact parameter set, and

dθ := dim θu, ρ(u) = tanh(u) =
eu − e−u

eu + e−u
∈ [−1, 1],

∂ρ(u)

∂u
> 0.

In practice we replace the set Y by a finite grid Ȳ if Y contains many values.

The estimators of the functionals of interested are constructed from the estimators of the

parameters using the plug-in method. For example, the estimator of the distribution of the latent

outcome is

F̂Y ∗(y) =
1

n

n∑
i=1

Φ(−X ′iβ̂(y)), (3.8)

and the estimators of the counterfactual distributions of the observed outcome are constructed

from

F̂Y (y | D = 1) =

∑n
i=1 Φ2(−X ′iβ̂(y), Z ′iπ̂;−ρ(X ′i δ̂(y)))∑n

i=1 Φ(Z ′iπ̂)
, (3.9)

by choosing the estimators of β̂(y), π̂, and δ̂(y) and the sample values of Z appropriately. Estima-

tors of quantiles and other functionals of these distributions are obtained by applying the operators
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that define the functionals to the estimator of the distribution. For example, the estimator of the

τ -quantile of the latent outcome is Q̂Y ∗(τ) = Qτ (F̂Y ∗).

3.4. Uniform Inference. The model parameters and functionals of interest are generally function-

valued. We show how to construct confidence bands for them that can be used to test functional

hypotheses such as the entire function be zero, non-negative or constant. To explain the con-

struction consider the case where the functional of interest is a linear combination of the model

parameter θy, that is the function y 7→ c′θy, y ∈ Y, where c ∈ Rdθ . The set CBp(c
′θy) is an

asymptotic p-confidence band for c′θy if it satisfies

P
[
c′θy ∈ CBp(c′θy), ∀y ∈ Y

]
→ p, as n→∞.

We form CBp(c
′θy) as

CBp(c
′θy) = c′θ̂y ± cv(p)SE(c′θ̂y),

where θ̂y is the estimator of θy defined in Algorithm 3.1, SE(c′θ̂y) is the standard error of c′θ̂y,

and cv(p) is a critical value, i.e. a consistent estimator of the p-quantile of the statistic

tY = sup
y∈Y

|c′θ̂y − c′θy|
SE(c′θ̂y)

.

We obtain the standard error and critical value from the limit distribution of θ̂y derived in Section

4.

In practice, it is convenient to estimate the critical value using resampling methods. Multiplier

bootstrap is computationally attractive in our setting because it does not require parameter re-

estimation and therefore avoids the nonlinear optimization in both steps of Algorithm 3.1. The

multiplier bootstrap is implemented using the following algorithm:

Algorithm 3.2 (Multiplier Bootstrap). (i) For b ∈ 1, . . . , B and the finite grid Ȳ ⊆ Y, repeat

the steps: (1) Draw the bootstrap multipliers {ωbi : 1 6 i 6 n} independently from the data and

normalized them to have zero mean,

ωbi = ω̃bi −
n∑
i=1

ω̃bi/n, ω̃bi ∼ i.i.d. N (0, 1).

(2) Obtain the bootstrap estimator of the model parameter

θ̂by = θ̂y + n−1
n∑
i=1

ωbi ψ̂i(θ̂y, π̂),

where ψ̂i(θ̂y, π̂) is an estimators of the influence function of θ̂y given in (4.12). (2) Construct

bootstrap realization of maximal t-statistic tY for the functional of interest,

tbY = max
y∈Ȳ

|c′θ̂by − c′θ̂y|
SE(c′θ̂y)

, SE(c′θ̂y) =

√
c′Σ̂θyθyc,
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where Σ̂θyθy is an estimator of the asymptotic variance-covariance matrix of θ̂y given in (4.11).

(ii) Compute the critical value cv(p) as the simulation p-quantile of tbȲ ,

cv(p) = p− quantile of {tbY : 1 6 b 6 B}

The centering of the multipliers in step (i1) of the algorithm is a finite sample adjustment.

Confidence bands for other functionals of the model parameter can be constructed using a similar

bootstrap method.

4. Asymptotic Theory

We derive asymptotic theory for the estimators of the model parameters and functionals of

interest.

4.1. Limit distributions. We first introduce some notation that is useful to state the assump-

tions that we make to derive the limit distribution of the estimators. Let S̃1 := ∂πL1(π) and

S̃2y := ∂θyL2(θy, π) be the scores of the first and second steps in Algorithm 3.1 evaluated at the

true parameter values, and H1 := E [∂ππ′L1(π)] and H2y := E
[
∂θyθyL2(θy, π)

]
be the correspond-

ing expected Hessians. Let

Σθyθỹ := H−1
2y

{
nE
[
S̃2yS̃

′
2ỹ

]
− J21yH

−1
1 J ′21ỹ

}
H−1

2ỹ , (4.10)

where J21y := E
[
∂θyπ′L2(θy, π)

]
, dπ := dimπ, and dθ := dim θy.

Assumption 2 (DR Estimator with Sample Selection). (1) Random sampling: {(D∗i , Y ∗i , Zi)}ni=1

is a sequence of independent and identically distributed copies of (D∗, Y ∗, Z). We observe D =

1(D∗ > 0) and Y = Y ∗ if D = 1. (2) Model: the distribution of (D∗, Y ∗) conditional on Z

follows the DR model (3.7). (3) The support of Z, Z, is a compact set. (4) The support of Y is

either finite or a bounded interval. In the second case, the density function of Y conditional on

X and D = 1, fY |X,D(y | x, 1), exists, is uniformly bounded above, and is uniformly continuous

in (y, x) on the support of (Y,X) conditional on D = 1.(5) Identification and non-degeneracy:

the equations E[∂πL1(π̃)] = 0 and E[∂θyL2(θ̃y, π̃)] = 0 posses a unique solution at (π̃, θ̃y) = (π, θy)

that lies in the interior of a compact set Π×Θ ⊂ Rdπ+dθ for all y ∈ Y; and the matrices H1, H2y

and Σθyθy are nonsingular for each y ∈ Y.

Part (1) is a standard condition about the sampling and selection process, which is designed

for cross sectional data. Part (2) imposes the semiparametric DR model on the LGR of the

conditional distribution of (D∗, Y ∗) at d = 0. Part (3) imposes some compactness conditions,

which can be generalized at the cost of more complicated proofs. Part (4) covers continuous,

discrete and mixed continuous-discrete outcomes. Part (5) imposes directly identification and

that the variance-covariance matrix of the first-step estimator and the covariance function of the

second-step estimator are well-behaved. Note that H1, H2y and J21y are finite by Part (3). More
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primitive conditions for part (5) can be found in the conditional maximum likelihood literature,

e.g., Newey and McFadden (1986).

The main result of this section is a functional central limit theorem for θ̂y. Let `∞(Y) be the

set of bounded functions on Y, and  denote weak convergence (in distribution).

Theorem 4.1 (FCLT for θ̂y). Under Assumption 2,
√
n(π̂ − π) = −H−1

1 S̃1 + oP (1) Zπ ∼ N (0,−H−1
1 ), in Rdπ

and √
n(θ̂y − θy) = −H−1

2y

√
n
(
S̃2y − J21yH

−1
1 S̃1

)
+ oP (1) Zθy in `∞(Y)dθ ,

where y 7→ Zθy is a zero-mean Gaussian process with uniformly continuous sample paths and

covariance function Σθyθỹ , y, ỹ ∈ Y, defined in (4.10).

The first order term in the limit of
√
n(θ̂y − θy) is the sample average of the influence function

of θ̂y. We construct an estimator of the covariance function Σθyθỹ based on this function. Thus,

we form

Σ̂θyθỹ = n−2
n∑
i=1

ψ̂i(θ̂y, π̂)ψ̂i(θ̂ỹ, π̂)′. (4.11)

Here, ψ̂i is an estimator of the influence function of θ̂y,

ψ̂i(t, c) = −Ĥ2y(t, c)
−1
(
S2yi(t, c)− Ĵ21y(t, c)Ĥ1(c)−1S1i(c)

)
, (4.12)

where S1i(c) and S2iy(t, c) are the individual scores of the first and second steps of Algorithm 3.1,

S1i(c) := ∂cL1i(c), L1i(c) := Di log Φ(Z ′ic) + (1−Di) log Φ(−Z ′ic),

S2yi(t, c) := ∂tL2yi(t, c), t = (b, d)

L2yi(t, c) := Di

[
Iyi log Φ2

(
−X ′ib, Z ′ic;−ρ(x′d)

)
+ (1− Iyi) log Φ2

(
X ′ib, Z

′
ic; ρ(x′d)

)]
,

and

Ĥ1(c) := ∂cc′L1(c), Ĥ2y(t, c) := ∂tt′L2(t, c), Ĵ21y(t, c) := ∂tc′L2(t, c),

are estimators of H1, H2y, and J21y when evaluated at c = π̂ and t = θ̂y.

We now establish a functional central limit theorem for the estimators of functionals of the

model parameters. This result is based on expressing the functional as a suitable operator of

the model parameters and using the functional delta method (van der Vaart and Wellner, 1996,

Chapter 3.9). To present the result in a concise manner, we consider a generic functional

u 7→ ∆u = ϕu(π, θ·, FZ),

where u ∈ U , a totally bounded metric space, and ϕu is an operator that maps D∆ to the set

`∞(U), where ∆· takes values. Here D∆ denotes the space for the parameter tuple (π, θ·, FZ); this

space is not stated here explicitly, but is restricted by the regularity conditions of the previous

section. Here we identify FZ with an integral operator f 7→
∫
f(z)dFZ(z) taking values in `∞(F)
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that acts on a Donsker set of bounded measurable functions F , which includes indicators of

rectangular sets; see Chernozhukov, Fernández-Val, and Melly (2013) and examples below. The

parameter space D∆ is a subset of a normed space D := Rdπ × `∞(Y)dθ × `∞(F). In this notation,

the plug-in estimator of the functional ∆u is

∆̂u = ϕu(π̂, θ̂y, F̂Z),

where π̂ and θ̂y are the estimators of the parameters defined in Algorithm 3.1 and F̂Z is the

empirical distribution of Z.

We provide some examples. The distribution of the latent outcome is given by:

FY ∗(y) = ϕy(π, θy, FZ) =

∫
Φ(−x′βy)dFZ(z),

F contains {Φ(− ·′ βy) : y ∈ Y} as well as the indicators of all rectangles in Rdz , R := R ∪
{−∞,+∞}, dz = dimZ, and U = Y. The quantile function of the latent outcome is

QY ∗(τ) = ϕτ (π, θy, FZ) = QτRFY ∗ ,

F is the same as for the distribution of the latent outcome, and U is a closed subset of (0, 1)

including the quantile indexes of interest, R is the non-decreasing rearrangement operator, and

Qτ is the left-inverse (quantile) operator. The distribution of the observed outcome is given by:

FY (y | D = 1) = ϕy(π, θy, FZ) =

∫
Φ2 (−x′β(y), z′π;−ρ(x′δ(y))) dFZ(z)∫

Φ(z′π)dFZ(z)
,

F contains {Φ2 (− ·′ β(y), ·′π;−ρ(·′δ(y))) : y ∈ Y} as well as the indicators of all rectangles in

Rdz , and U = Y.

The following result is a corollary of Theorem 4.1 by the functional delta method. Let UC(Y, ξ)
be the set of functions on Y that are uniformly continuous with respect to ξ, a standard metric

on R, and UC(F , λ) be the set of functionals on F that are uniformly continuous with respect to

λ, where λ(f, f̃) = [P(f − f̃)2]1/2 for any f, f̃ ∈ F .

Corollary 4.1 (FCLT for ∆̂u). Suppose that Assumption 2 holds, and (p, ty, F ) 7→ ϕ·(p, ty, F ),

from D∆ ⊂ D to `∞(U) is Hadamard differentiable at (π, θy, FZ), tangentially to Rdπ×UC(Y, ξ)dθ×
UC(F , λ) with derivative (p, ty, F ) 7→ ϕ′·(p, ty, F ) that is defined and continuous on Rdπ×`∞(Y)dθ×
`∞(F). Then,

√
n(∆̂u −∆u) Z∆u := ϕ′u(Zπ, Zθy , ZF ) in `∞(U),

where Zπ and Zθy are the random limits in Theorem 4.1, ZF is a tight FZ-Brownian bridge, and

u 7→ Z∆u is a tight zero-mean Gaussian process.

Remark 4.1 (Hadamard Differentiable Functionals). The distributions of the latent and ob-

served outcome together with counterfactual distributions constructed thereof are examples of

Hadamard differentiable functions. In the case of the latent outcome, the result follows from the

Hadamard differentiability of the counterfactual operator in Chernozhukov, Fernández-Val, and



DR WITH SELECTION 21

Melly (2013). In the case of the observed outcome, the result follows from the differentiability

of the counterfactual operator and the composition rule for Hadamard derivatives applied to the

ratio of two functions. Quantile (left-inverse) functionals of these distributions are Hadamard

differentiable under additional conditions that guarantee that the quantile operator is Hadamard

differentiable. These include that the outcome variable be continuous with density bounded above

and away from zero (Chernozhukov, Fernández-Val, and Galichon, 2010). Then the Hadamard

differentiability of the quantile function follows from the composition rule for Hadarmard deriva-

tives.

Remark 4.2 (Inference on Quantile Functions). There are two alternatives to construct confi-

dence bands for quantile functions. The first approach is the standard method based on charac-

terizing the limit distribution of the estimator of the quantile function using the delta method,

which relies on the Hadamard differentiability of the inverse operator. As we mention in Remark

4.1, this differentiability requires of additional conditions including that the outcome variable be

continuous. The second approach applies to any type of outcome variable. It is based on the

generic method of Chernozhukov, Fernández-Val, Melly, and Wüthrich (2016) that inverts confi-

dence bands for distribution functions into confidence bands of quantile function. This method

does not rely on the delta method and is therefore more robust to modeling assumptions and

widely applicable. It has the shortcoming, however, that the bands might not be centered at the

point estimate of the quantile function. We apply the second method to obtain most of the results

in the empirical application.

4.2. Multiplier Bootstrap. We make the following assumption about the bootstrap multipliers

of Algorithm 3.2:

Assumption 3 (Multiplier Bootstrap). The multipliers (ω1, ..., ωn) are i.i.d. draws from a ran-

dom variable ω ∼ N (0, 1), and are independent of {(D∗i , Y ∗i , Zi)}ni=1 for all n.

Let

θ̂by = θ̂y + n−1
n∑
i=1

ωi ψ̂i(θ̂y, π̂)

be the multiplier bootstrap version of θ̂y. We establish a functional central limit theorem for

the bootstrap for θ̂y. Here we use  P to denote bootstrap consistency, i.e. weak convergence

conditional on the data in probability, which is formally defined in Appendix C.

Theorem 4.2 (Bootstrap FCLT for θ̂y). Under the conditions of Theorem 4.1 and Assumption

3,
√
n(θ̂by − θ̂y) P Zθy in `∞(Y)dθ ,

where y 7→ Zθy is the same Gaussian process as in Theorem 4.1.
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The following result is a corollary of Theorem 4.2 by the functional delta method for the

bootstrap (van der Vaart and Wellner, 1996, Chapter 3.9). Let ∆̂b
u = ϕu(π̂b, θ̂by, F̂

b
Z), be the

multiplier bootstrap version of ∆̂u where

π̂b = π̂ − n−1
n∑
i=1

ωi Ĥ1(π̂)−1S1i(π̂),

and F̂ bZ is the weighted empirical distribution of Z that uses (1 + ω1, . . . , 1 + ωn) as sampling

weights.

Corollary 4.2 (Bootstrap FCLT for ∆̂u). Suppose that the conditions of Corollary 4.1 and

Assumption 3 hold. Then,
√
n(∆̂b

u − ∆̂u) P Z∆u in `∞(U),

where Z∆u is the same process as in Corollary 4.1.

5. Wage Decompositions in the UK

We apply the DR model with sample selection to carry out wage decompositions accounting

for endogenous employment participation using data from the United Kingdom.

5.1. Data. The data come from the U.K. Family Expenditure Survey (FES) for the years 1978 to

2001, Expenditure and Food Survey (EFS) for the years 2002 to 2007, and Living Costs and Food

Survey (LCFS) for the years 2008 to 2013. Despite the differences in the name, these surveys

contain comparable information. Indeed, the FES was combined to the National Food Survey to

form the EFS, which was renamed LCFS when it became a module of the Integrated Household

Survey. The data from the FES has been previously used by Gosling, Machin, and Meghir (2000),

Blundell, Reed, and Stoker (2003), Blundell, Gosling, Ichimura, and Meghir (2007) and Arellano

and Bonhomme (2017a) to study wage equations in the U.K. labor market. We are not aware

of any previous use of the data from the EFS and LCFS for this purpose.10 The three surveys

contain repeated cross-sectional observations for women and men. The selection of the sample is

similar to the previous work that used the FES. Thus, we keep individuals with ages between 23

to 59 years, and drop full-time students, self-employed workers, those married with spouse absent,

and those with missing education or employees whose wages are missing. This leaves a sample

of 258,900 observations, 139,504 of them correspond to women and 119,765 to men. The sample

size per survey year and gender ranges from 2,197 to 4,545.

The outcome of interest, Y , is the logarithm of real hourly wage rate. We construct this variable

as the ratio of the weekly usual gross main nominal earning to the weekly usual working hours,

deflated by the U.K. quarterly retail price index. The selection variable, D, is an indicator for

10See Roantree and Vira (2018) for another recent application of the data to the analysis of female labour force

participation.
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being employed.11 The covariates, X, include 5 indicators for age when ceasing school (615, 16,

17–18, 19–20, 21–22 and > 23), a quartic polynomial in age, an indicator of being married or

cohabiting, 6 variables with the number of kids by age categories (1, 2, 3–4, 5–10, 11–16, and

17-18), 36 survey year indicators, and 11 region indicators (Northern 5.48%, Yorkshire 9.56%,

North Western 10.20%, East Midlands 7.36%, West Midlands 9.13%, East Anglia 5.31%, Greater

London 10.06%, South Eastern 16.82%, South Western 7.94%, Wales 4.99%, Scotland 8.92%, and

Northern Ireland 4.23%).12

The excluded covariate, Z1, is a potential out-of-work income benefit interacted with the marital

status indicator used before in Blundell, Reed, and Stoker (2003) and Blundell, Gosling, Ichimura,

and Meghir (2007). This benefit is constructed with the Institute for Fiscal Studies (IFS) tax

and welfare-benefit model (TAXBEN). TAXBEN is a static tax and benefit micro-simulation

model of taxes on personal incomes, local taxes, expenditure taxes, and entitlement to benefits

and tax credits that operates on large-scale, representative, household surveys (Brewer, 2009).

It is designed to calculate the income of a tax unit if the individual considered were out of

work.13 It is composed of eligible unemployment and housing benefits, which are determined by

the demographic composition of the tax unit and the housing costs that the tax unit faces. These

costs vary by region and over time due to numerous policy changes that have occurred over time.

There is no consensus in the literature about the validity of this variable as excluded covariate. In

this case the outcome and exclusion restrictions imply that, conditional on the observed covariates,

the offered wage and dependence between offered wage and net reservation wage do not depend

on the level of the benefit. We shall assume that the exclusion restrictions are satisfied and refer

to Blundell, Reed, and Stoker (2003) and Blundell, Gosling, Ichimura, and Meghir (2007) for a

discussion on the plausibility of the outcome restriction. In Appendix B, we provide an example

of a model for offered and reservation wages that satisfies the exclusion restrictions of Assumption

1.

Table 1 reports means and standard deviations of all the variables used in the analysis. We

report these statistics for the entire sample, and by employment status and gender. The overall

employment rate is 74%. Women are 17% less likely to be employed than men, and the uncon-

ditional gender wage gap is 33%. Overall, women and men are similar in terms of covariates.

Both working men and women are relatively more highly educated, younger, and more likely to

11For data before 1990, D = 0 if the individual is in one of the following status: seeking work, sick but seeking

work, sick but not seeking work, retired and unoccupied. For those in and after 1990, D = 0 if the individual is

seeking work and available, waiting to start work, sick or injured, retired or unoccupied.
12In the rest of the paper we shall refer to an individual being married or cohabiting as married.
13Our definition of the out-of-work benefit income is slightly different from the definition of Blundell, Reed,

and Stoker (2003) and Blundell, Gosling, Ichimura, and Meghir (2007). They calculated it as the income of a tax

unit if all the individuals within the tax unit were out of work. In our view our definition might better reflect the

opportunity cost or outside value option of working that the individual faces.
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Table 1. Summary Statistics

Full Male Female

All Employed All Employed All Employed

Log Hourly Wage 2.38 2.54 2.21

(0.54) (0.51) (0.52)

Employed 0.74 0.83 0.66

(0.44) (0.38) (0.47)

Ceased School at

6 15 0.33 0.30 0.33 0.31 0.33 0.29

(0.47) (0.46) (0.47) (0.46) (0.47) (0.45)

16 0.31 0.30 0.32 0.32 0.30 0.29

(0.46) (0.46) (0.47) (0.47) (0.46) (0.45)

17-18 0.18 0.19 0.16 0.17 0.20 0.22

(0.38) (0.39) (0.37) (0.37) (0.40) (0.41)

19-20 0.04 0.05 0.04 0.04 0.04 0.05

(0.20) (0.21) (0.20) (0.20) (0.21) (0.22)

21-22 0.09 0.11 0.09 0.10 0.09 0.12

(0.29) (0.31) (0.29) (0.30) (0.29) (0.32)

>23 0.05 0.05 0.06 0.06 0.04 0.04

(0.21) (0.22) (0.23) (0.24) (0.19) (0.20)

Age 40.13 39.84 40.22 39.76 40.06 39.92

(10.43) (10.10) (10.40) (10.11) (10.45) (10.08)

Married 0.76 0.79 0.78 0.81 0.75 0.76

(0.43) (0.41) (0.42) (0.39) (0.43) (0.43)

Number of children with age

0–1 0.06 0.05 0.06 0.06 0.06 0.03

(0.24) (0.22) (0.24) (0.25) (0.24) (0.18)

2 0.05 0.04 0.05 0.05 0.05 0.03

(0.23) (0.21) (0.23) (0.23) (0.23) (0.18)

3–4 0.10 0.09 0.10 0.10 0.11 0.07

(0.32) (0.29) (0.31) (0.32) (0.32) (0.27)

5–10 0.32 0.29 0.30 0.30 0.33 0.28

(0.64) (0.61) (0.62) (0.62) (0.65) (0.59)

11–16 0.30 0.30 0.28 0.29 0.32 0.32

(0.63) (0.62) (0.61) (0.61) (0.64) (0.63)

17–18 0.03 0.04 0.03 0.03 0.04 0.04

(0.19) (0.19) (0.18) (0.18) (0.19) (0.20)

Benefit Income 5.44 5.50 5.25 5.29 5.60 5.73

(0.74) (0.78) (0.70) (0.72) (0.73) (0.78)

Observations 258,900 190,765 119,396 98,764 139,504 92,001

Notes: all the entries are means with standard deviations in parentheses.

Source: FES/EFS/LCFS Data.

be married than their non-working counterparts. Having young children and high out-of-work

benefits is negatively associated with employment for women but not for men.
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Figure 1. Trends in U.K. labor market 1978-2013 by gender: left panel reports

the average of the log wage rate, the middle panel reports the 90-10 percentile

spread of the log wage rate, and the right panel reports the employment rate

Figure 1 provides some background on the U.K. labor market. The left panel shows that

over 36 years the average wages of working men and women have continuously grown and the

unconditional gender wage gap has progressively narrowed from 46% to 24%. The middle panel

indicates that the growth of average wage has come together with an increase in wage inequality

for both working men and women until 2000. The positive trend in wage inequality has continued

for men after 2000, but not for women. The right panel shows opposite trends in the employment

rate for men and women, where the gender employment gap has steadily and sharply reduced

from 34% to 8%.

5.2. Empirical Specifications. We estimate the DR model for different samples and carry out

several wage decompositions where we compare the distributions of men and women, or the dis-

tributions over time within genders. The specifications of the selection and outcome equations

include all the covariates described above except for the excluded covariates in the outcome equa-

tion. The parameter of the selection sorting function is notoriously more difficult to estimate than

the parameters of the selection and outcome equations. We consider four simplified specifications

of the sorting function where the covariates included in the index X ′δ(y) include:

• Specification 1: a constant.

• Specification 2: a constant and the marital status indicator.

• Specification 3: a constant and a linear trend on the year of the survey.

• Specification 4: a constant and a linear trend on the year of the survey interacted with

the marital status indicator.

We also experimented with other specifications that include the education indicators, indicators

of survey year, or age. We do not report these results because they do not show any clear pattern

due to imprecision in the estimation of the parameter δ(y).
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5.3. Model Parameters. We report point estimates and 95% confidence bands for the coeffi-

cients of the education and marital status indicators in the outcome equation and the correlation

function in the selection sorting. Estimates and 95% confidence bands for the coefficients of the

selection equation, coefficients of the fertility indicators in the outcome equation and coefficients

in the selection sorting function are given in the Appendix F. The estimates are obtained with

Algorithm 3.1 replacing Y by a finite grid containing the sample quantiles of log real hourly wage

with indexes {0.10, 0.11, . . . , 0.90} in the pooled sample of men and women. We report all the

estimates as a function of the quantile index. The confidence bands are constructed by Algorithm

3.2 with B = 200 bootstrap repetitions and the same finite grid as for the estimates. We also

report estimates from the HSM of Example 1 with dash lines as a benchmark of comparison.14

The estimates of the coefficients of the education and marital status indicators in the outcome

equation are reported in Figure 2 for men and Figure 3 for women. These estimates correspond to

specification 1. Estimates for specifications 2–4 are given in Appendix F. For all the specifications

and genders, we find that the returns to education are heterogenous across the distribution and

broadly increasing in the years of education (age leaving school). The HSM completely misses the

heterogeneity and estimates averaged coefficients. The coefficient of the marital status indicator

is uniformly positive for men, whereas is negative but mainly statistically not different from zero

for women. We cannot reject that this coefficient is homogeneous across the distribution for both

men and women.15

Figures 4–7 display the estimates of the sorting effect functions for specifications 1–4, respec-

tively. The estimates of the coefficients of these functions for specifications 3 and 4 are given

in Appendix F. Figure 4 shows positive selection sorting for men and negative selection sorting

for women. In both cases we cannot reject that the sorting is constant across the distribution.

This finding is refined in Figure 5, where we uncover that the positive male sorting comes mainly

from bachelors, whereas the negative female sorting comes from married women. This pattern

is consistent with a marriage market where there is assortative matching in offered wages given

observable characteristics, where women with high potential wages are married to highly paid

working men and decide not to work (Neal, 2004). Figure 6 shows that the sorting homogeneity

found in the pooled sample hides some heterogeneity across time. Thus, we find that the male

sorting is heterogeneous in the early years, negative at the bottom and positive at the top of the

distribution, and progressively becomes homogenous. The female sorting is more homogenous

14We report estimates of β/σ in the outcome equation of the HSM for comparability; see Example 1.
15We find more heterogeneity in the coefficient of the marital status indicator in the specifications 2 and 4 that

include marital status in the selection sorting function.
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Figure 2. Estimates and 95% confidence bands for coefficients of education and

marital status in the outcome equation: specification 1 for men

over time, but also displays a positive trend, specially at the bottom of the distribution. Fig-

ure 7 shows that the trends in sorting are driven by married individuals at the bottom of the

distribution and single individuals at the top of the distribution.16

16We do not report confidence bands for specifications 3 and 4 to avoid cluttering. The confidence bands for

the coefficients of the selection sorting function in Appendix F show that the results on the trends are statistically

significant.
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Figure 3. Estimates and 95% confidence bands for coefficients of education and

marital status in the outcome equation: specification 1 for women

5.4. Distributions of Offered and Observed Wages. Figure 8 shows point estimates of the

quantiles of offered and observed wages for men and women based on specification 1. Estimates

for the other specifications and confidence bands for all the specifications are given in Appendix F.

The offered wage is a latent variable defined for all the individuals that is free of sample selection.

As we showed in Section 3, the distributions of both types of wages can be expressed as functionals
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Figure 4. Estimates and 95% confidence bands for the selection sorting function:

specification 1

of the model parameters, and estimated using the plug-in estimators (3.8) and (3.9).17 We find

opposite signs in the sample selection bias for men and women. The quantiles of the observed

wages are below the quantiles of latent wages for men, but the opposite holds for women. This

pattern is consistent with the sign of the estimates of the selection sorting function, where we

found positive sorting for men and negative sorting for women. In results reported in Appendix

F, we find that the majority of the difference between the distribution of offered wages between

women and men is explained by differences in the wage structure, β(y), whereas differences in

composition, FZ , have very little explanatory power. This result can be interpreted as evidence

of gender discrimination in the labor market.

5.5. Wage Decompositions. We use the DR model to decompose changes in the distribution

of the observed wage between women and men, and between the first and second halves of the

sample period for each gender. We extract four components that correspond to different inputs

of the DR model:

(1) Selection (employment) sorting: δ(y).

(2) Selection (employment) structure: π.

(3) Outcome (wage) structure: β(y).

(4) Composition: FZ .

17The model-based estimator of the observed distribution in (3.9) produces almost identical estimates to the

empirical distribution of the observed wages.
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Figure 5. Estimates and 95% confidence bands for the selection sorting function:

specification 2

To define the effects of these components, let FY 〈t,s,r,k〉 be the counterfactual distribution of wages

when the sorting is as in group t, the employment structure is as in group s, the wage structure

is as in group r, and the composition of the population is as in group k. The actual distribution

in group t therefore corresponds to FY 〈t,t,t,t〉. We assume that there are two groups indexed by 0

and 1 that correspond to demographic populations such as men and women, or time periods such

as the first and second halves of the sample years. Then, we can decompose the distribution of

observed wage between group 1 and group 0 as:

FY 〈1,1,1,1〉 − FY 〈0,0,0,0〉 = [FY 〈1,1,1,1〉 − FY 〈0,1,1,1〉] + [FY 〈0,1,1,1〉 − FY 〈0,0,1,1〉]

+ [FY 〈0,0,1,1〉 − FY 〈0,0,0,1〉] + [FY 〈0,0,0,1〉 − FY 〈0,0,0,0〉],

where the first term in square brackets of the right hand side is a sorting effect, the second an

employment structure effect, the third a wage structure effect, and the forth a composition effect.
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Figure 6. Estimates and 95% confidence bands for the selection sorting function:

specification 3

This is a distributional version of the classical Oaxaca-Blinder decomposition that accounts for

sample selection (Kitagawa, 1955; Oaxaca, 1973; Blinder, 1973). It is well-known that the order

of extraction of the components in this type of decompositions might matter. As a robustness

check, we estimate the decomposition changing the ordering of the components. In results not

reported, we find that the main findings are not sensitive to the change of ordering.

In terms of the DR model, the counterfactual distribution can be expressed as the functional

FY 〈t,s,r,k〉(y) =

∫
Φ2 (−x′βr(y), z′πs;−ρ(x′δt(y))) dFZk(z)∫

Φ(z′πs)dFZk(z)
,

where δt is the coefficient of the sorting function in group t, πs is the coefficient of the employment

equation in group s, βr is the coefficient of the wage equation in group r, and FZk is the distribution

of characteristics in group k. Given random samples for groups 0 and 1, we construct a plug-

in estimator of FY 〈t,s,r,k〉 by suitably combining the estimators of the model parameters and

distribution of covariates from the two groups.

Figure 9 reports estimates of the quantile functions of observed wages for men and women,

together with the relative contributions of each component to the decomposition between men

(group 0) and women (group 1) based on specification 1. The bands for the contributions are joint

for all the components and rely on the delta method; see Remark 4.2. Estimates of the components

of the decomposition and the analysis based on specifications 2–4 are given in Appendix F. The

distribution for men first order stochastically dominates the distribution for women. Most of this

gender wage gap is explained by differences in the wage structure, i.e. differences in the returns to
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Figure 7. Estimates and 95% confidence bands for the selection sorting function:

specification 4

observed characteristics that might be associated to gender discrimination. However, differences

in sorting and employment structure also account for an important percentage of the gap, specially

at the top of the distribution. Thus, we uncover that the negative female sorting explains about

30–40% of the gap at the top of the distribution. A possible explanation is that women with

very high potential wages decide not to work because there are no high-paid jobs available to

them due to glass ceiling (Albrecht, Bjorklund, and Vroman, 2003). The negative contribution

of the employment structure can be explained by the order of the decomposition where we are

applying the male employment structure to the female distribution with positive male sorting.

In this case we are increasing the proportion of employed women, where the added women come

from a pool with lower positive selection, and this negative effect is not reversed by a change in

the composition of the working women; see Remark 3.1 for more details. The aggregate selection

effect, defined as the sum of the selection sorting and selection structure effects, is positive and
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Figure 8. Estimates of the quantiles of observed and offered (latent) wages: spec-

ification 1

statistically significant at the top of the distribution; see Figure F.15 in Appendix F. Differences

in the composition of the characteristics contribute very little to explain the gender gap. Finally,

the estimates from the HSM in dash lines pick up the average contributions of the components,

but miss all the heterogeneity across the distribution.

Figures 10 and 11 report estimates of the quantile functions of observed wages for the first and

second halves of the sample period, together with the relative contributions of each component to

the decomposition between second half (group 0) and first half (group 1) based on specification

1 for women and men, respectively. Estimates of the components of the decompositions are

given in Appendix F. The distribution for the second half first order stochastically dominates

the distribution for the first half in both cases. For women, the most important components are

the wage structure and composition effects in this order. The importance of the wage structure

is decreasing along the distribution, whereas the importance of the composition is increasing.

Composition and wage structure are also the most important components for men. The small

contributions of the selection sorting component to the change in the distribution of wages between

the two time period for both genders seem to contradict the linear time trends that we found in

the coefficient of the sorting selection function. This might be explained by the inability of a

coarse partition of the sample into two halves to capture the gradual increase in selection sorting,

together with the changes in the composition.

5.6. Discussion. The main findings can be summarized as: (1) heterogeneous positive effect of

education and homogeneous effect of being married on offered wages for both genders; (2) positive
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Figure 9. Estimates and 95% confidence bands for the quantiles of observed

wages and decomposition between men and women in specification 1
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Figure 10. Estimates and 95% confidence bands for the quantiles of observed

wages and decomposition between first and second half of the sample period for

women in specification 1
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Figure 11. Estimates and 95% confidence bands for the quantiles of observed

wages and decomposition between first and second half of the sample period for

men in specification 1

sorting for men and negative sorting for women driven by single men and married women, which is

consistent with assortative matching in the marriage market; (3) heterogeneity in selection sorting

decreases gradually over time; (4) differences in returns to characteristics in the wage equation,

which might be associated to gender discrimination in the labor market, account for most of the

gender wage gap; (5) selection sorting on unobservables explains up to 39% of the gender wage

gap at the top of the distribution, which can be taken as evidence of glass ceiling; and (6) changes

in the structure of the wage equation and composition of the characteristics account for most of

the differences in the wage distribution between the two halves of the sample period within each

gender.

We compare and contrast these findings with previous results from the literature that studied

similar issues. These results were obtained from different data and/or using different methodology.

Blundell, Gosling, Ichimura, and Meghir (2007) applied a bound approach that does not require

of exclusion restrictions to study the evolution of wage inequality using the FES data for the

period 1978–2000. They assumed positive sorting for men and women in some of their estimates

to make the bounds more informative. Interestingly, they mentioned the possibility that the

assumption is violated for married women due to assortative matching in the marriage market.

They also found evidence against the validity of out-of-work benefit income as a valid excluded

covariate for men. Arellano and Bonhomme (2017a) using the same data from the FES, also

found positive sorting for men, stronger for single than for married men, using an alternative

methodology that combines quantile regression for the marginal distributions with a parametric
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model for the copula. Contrary to our findings, they also found positive selection for women, which

is statistically significant only for married women. Mulligan and Rubinstein (2008) estimated a

HSM using data from the US-CPS for the periods 1975-1979 and 1995-1999. They found that

the selection sorting for women shifted from negative to positive between the two periods. We

also find for the UK that the sorting for most women has a positive trend over time, but remains

negative even in 2013 for most of the distribution. Maasoumi and Wang (Forthcoming) applied

the methodology of Arellano and Bonhomme (2017a) to data from the US-CPS for the period

1976–2014. They also found negative sorting for women at the beginning of the sample period

that became positive during the 90s, and positive sorting for men throughout the entire period.

Bertrand (2017) pointed out multiple possible explanations for the glass ceiling based on the field

of education, psychological attributes or preferences for job flexibility that are compatible with

our finding on the importance of sorting on unobservables at the top of the distribution. None of

the previous papers distinguished between the selection sorting and selection structure effects.

One limitation of our dataset is that it does not contain a direct measure of work experience.

As a final robustness check, we find that the results are not sensitive to the exclusion of college

graduates from the sample by redoing the analysis excluding all the individuals who cease school

after age 18. This is a relevant exclusion because work experience is a more relevant determinant

of wage for highly educated workers.18

6. Monte Carlo Simulation

We conduct a Monte Carlo simulation calibrated to the empirical application to study the

properties of the estimation and inference methods in small samples. The data generating process

is the HSM of Example 1 with the values of the covariates and parameters calibrated to the data

for women in the last ten years of the sample (2004–2013). We do not use the entire dataset to

speed up computation. We generate 500 artificial datasets and estimate the DR-model with the

same specifications for the selection and outcome equations as in the empirical application and

specification 1 for the selection sorting function, i.e. ρ(x′δ(y)) = ρ(y).

Figures 12, 13 and 14 report the biases, standard deviations and root mean square errors for

the estimators of the coefficients of the college (age when ceasing school 21–22) and marital status

indicators in the outcome equation, and ρ(y) in the selection sorting function, as a function of

the quantile indexes of the values of log real hourly wage in the data used in the calibration.19

Although these coefficients are constant in the HSM, we do not impose this condition in the

estimation. The estimates are obtained with Algorithm 3.1 replacing Y by a finite grid containing

the sample quantiles of log real hourly wage with indexes {0.10, 0.11, . . . , 0.90} in the original

18These results are available from the authors upon request.
19We find similar results for the other coefficients of the outcome equation. We do not report these reports for

the sake of brevity.
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subsample of women in the last ten years of the sample. All the results are in percentage of

the true value of the parameter. As predicted by the asymptotic theory, the biases are all small

relative to the standard deviations and root mean squared errors. The estimation error increases

for all the coefficients as we move away from the median towards tail values of the outcome.
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Figure 12. Bias, SD and RMSE for the coefficient of the college indicator in the

outcome equation
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Figure 13. Bias, SD and RMSE for the coefficient of the marital status indicator

in the outcome equation

Table 2 shows results on the finite sample properties of 95% confidence bands for the coefficients

of the indicators of college and marital status in the outcome equation and ρ(y) of the selection

sorting function. The confidence bands are constructed by Algorithm 3.2 with B = 200 bootstrap

repetitions and the same grid of values Ȳ as for the estimators. We report the average length of

the confidence bands integrated over threshold values, the average value of the estimated critical

values, and the empirical coverages of the confidence bands. For comparison, we also report the

coverage of pointwise confidence bands using the normal distribution, i.e. with critical value equal

to 1.96. The last row computes the ratio of the standard error averaged across simulations to

the simulation standard deviation, integrated over threshold values. We find that the bands have
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Figure 14. Bias, SD and RMSE for coefficient ρ(y) in the selection sorting equation

coverages close to the nominal level. As expected, pointwise bands severely undercover the entire

functions. The standard errors based on the asymptotic distribution provide a fair approximation

to the sampling variability of the estimator.

Table 2. Properties of 95% Confidence Bands

College Married ρ(y)

Average Length 0.38 0.16 0.35

Average Critical Value 2.91 2.89 2.88

Coverage uniform band (%) 96 98 96

Coverage pointwise band (%) 68 64 67

Average SE/SD 1.04 1.05 1.07

Notes: Nominal level of critical values is 95%. 500 simulations

with 200 bootstrap draws.

7. Conclusion

We develop a distribution regression model with sample selection that accommodates rich

patterns of heterogeneity in the effects of covariates on outcomes and selection. The model is

semiparametric in nature, as it has function-valued parameters, and is able to considerably gen-

eralize the classical selection model of Heckman (1974). Furthermore, the model allows for richer

covariate effects than the previous semiparametric generalizations which allowed the location ef-

fects for covariates. We propose to estimate the model by a process of probit regressions, indexed

by threshold-dependent parameters. We show that the resulting estimators of the function-valued

parameters are approximately Gaussian and concentrate in a 1/
√
n neigborhood of the true val-

ues. We present an extensive wage decomposition analysis for the U.K. using new data, generating

both new findings and demonstrating the power of the method.
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Giné, E., and J. Zinn (1984): “Some limit theorems for empirical processes,” Ann. Probab., 12(4), 929–998, With

discussion.

Goldberger, A. S. (1983): “Abnormal selection bias,” in Studies in econometrics, time series, and multivariate

statistics, pp. 67–84. Elsevier.

Gosling, A., S. Machin, and C. Meghir (2000): “The Changing Distribution of Male Wages in the U.K.,” The

Review of Economic Studies, 67(4), 635–666.



40 CHERNOZHUKOV, FERNÁNDEZ-VAL AND LUO
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Appendix A. Detailed Comparison with AB17

We need to introduce some notation to state the conditions of AB17. Let p(z) = P(D = 1 |
Z = z) and V = FD∗|Z(D∗ | Z) such that V | Z ∼ U(0, 1).20 AB17 assumed that (i) (Y ∗, V )

are independent of Z, (ii) v 7→ CY ∗,V (·, v) is real analytic on the unit interval, where CY ∗,V is

the copula of (Y ∗, V ), and (iii) the support of p(Z) contains an open interval. The condition (iii)

requires Z to have continuous variation and is therefore more restrictive than our assumption

that Z can be binary. We now show that our selection exclusion neither implies nor is implied by

conditions (i) and (ii). Selection exclusion implies that for any u ∈ [0, 1] that satisfies FY ∗(yu) = u

for some yu,

CY ∗,V |Z(u, p(z) | z) = CY ∗,D∗|Z(u, p(z) | z) = Φ2(Φ−1(u),Φ−1(p(z)); ρ(yu, 0)) = CY ∗,V (u, p(z)),

since p(z) = FD∗|Z(0 | z). This implication is weaker than condition (i) but it suffices for the

identification argument in AB17. However, it only guarantees that v 7→ CY ∗,V (·, v) is real analytic

on the support of p(Z).21 Therefore, we conclude that selection exclusion implies conditions (i)

and (ii) only if the support of p(Z) is the unit interval. To verify that the converse is also not

true, note that the LGR of (Y ∗, V ) conditional on Z under condition (i) is

FY ∗,V |Z(y, v | z) = Φ2(µ̃(y), ν̃(v); ρ̃(y, v)).

20We assume that D∗ is absolutely continuous with strictly increasing distribution. This assumption is without

loss of generality because the distribution of D∗ is only identified at D∗ = 0.
21Note that v 7→ Φ2(·,Φ−1(v); ρ(·, 0)) is a real analytic function.
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This, together with µ̃(y) = µ(y) and ν̃(p(z)) = ν(z), imply that

FY ∗,D∗|Z(y, 0 | z) = Φ2(µ̃(y), ν̃(p(z)); ρ̃(y, p(z))) = Φ2(µ(y), ν(z); ρ̃(y, p(z))),

which satisfies the selection exclusion only if ρ̃(y, v) = ρ̃(y) for all v in the support of p(Z), i.e.

the local dependence between Y ∗ and V does not vary with the value of V in this region. We

finally note that condition (i) together with ρ̃(y, v) = ρ̃(y) for all v in the unit interval imply

condition (ii) because

CY ∗,V (·, v) = Φ2(·,Φ−1(v); ρ̃(·))

is a real analytic function with respect to v in the unit interval. Alternatively, condition (ii) is

equivalent to v 7→ ρ̃(·, v) being real analytic, which is weaker than ρ̃(y, v) = ρ̃(y).

Appendix B. Model for Offered and Reservation Wages

We provide a simple model for offered and reservation wages that satisfies the exclusion restric-

tions of Assumption 1. Let Y ∗ and R∗ denote the offered wage and reservation wage, respectively.

The latent employment variable is D∗ = Y ∗ − R∗. We partition the vector covariates Z as

Z = (X,Z1), where Z1 is the subset of covariates that will satisfy some exclusion restrictions.

Assume that

(Y ∗, R∗) | Z = z ∼ N2

([
µY ∗(x)

µR∗(z)

]
,

[
σY ∗(x)2 σY ∗,R∗(x)

σY ∗,R∗(x) σR∗(x)2

])
,

where z = (x, z1). This assumption, in addition to joint normality, imposes that Y ∗ is independent

of Z1, Y ∗ and R∗ are covariance-independent of Z1 and R∗ is variance-independent of Z1, all

conditional on X.22 Then, by the properties of the normal distribution

(Y ∗, D∗) | Z = z ∼ N2

([
µY ∗(x)

µD∗(z)

]
,

[
σY ∗(x)2 σY ∗,D∗(x)

σY ∗,D∗(x) σD∗(x)2

])
,

where µD∗(z) = µY ∗(x) − µR∗(z), σY ∗,D∗(x) = σY ∗(x)2 − σY ∗,R∗(x), and σD∗(x)2 = σY ∗(x)2 +

σR∗(x)2−2σY ∗,R∗(x). This distribution satisfies the exclusion restrictions of Assumption 1 because

it has the LGR:

FY ∗,D∗|Z(y, d | z) = Φ2

(
y − µY ∗(x)

σY ∗(x)
,
d− µD∗(z)
σD∗(x)

;
σY ∗,D∗(x)

σY ∗(x)σD∗(x)

)
,

where the first and last argument do not depend on the value of the excluded covariates Z1.

22Under joint normality of Y ∗ and R∗, the identification conditions of Arellano and Bonhomme (2017a) require

the same independence restrictions.
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Appendix C. Notation

We adopt the standard notation in the empirical process literature, e.g. van der Vaart and

Wellner (1996),

En[f ] = En[f(A)] = n−1
n∑
i=1

f(Ai),

and

Gn[f ] = Gn[f(A)] = n−1/2
n∑
i=1

(f(Ai)− E[f(A)]).

When the function f̂ is estimated, the notation should interpreted as:

Gn[f̂ ] = Gn[f ] |
f=f̂

and E[f̂ ] = E[f ] |
f=f̂

.

We also follow the notation and definitions in van der Vaart and Wellner (1996) of bootstrap

consistency. Let Dn denote the data vector and En be the vector of bootstrap weights. Consider

the random element Zbn = Zn(Dn, En) in a normed space Z. We say that the bootstrap law of Zbn
consistently estimates the law of some tight random element Z and write Zbn  P Z in Z if

suph∈BL1(Z)

∣∣Ebh (Zbn)− Eh(Z)
∣∣→P∗ 0, (C.13)

where BL1(Z) denotes the space of functions with Lipschitz norm at most 1, Eb denotes the

conditional expectation with respect to En given the data Dn, and →P∗ denotes convergence in

(outer) probability.

Appendix D. Proofs of Section 4

We use the Z-process framework described in Appendix E.1 of Chernozhukov, Fernández-Val,

and Melly (2013). To set-up the problem in terms of this framework, we need to introduce some

notation. Let W := (Z,D, Y D) denote all the observed variables and ξy := (π′, θ′y)
′ be a vector

with the model parameters of the first and second steps. Let

ϕy,ξ(W ) :=

[
S1,ξ(W )

S2y,ξ(W )

]
=

[
∂`1,ξ(W )

∂π
∂`2y,ξ(W )

∂θy

]
where

`1,ξ(W ) := D log Φ(Z ′π) + (1−D) log Φ(−Z ′π),

`2y,ξ(W ) := D[Iy log Φ2

(
−X ′β(y), Z ′π;−ρ(X ′δ(y))

)
+ (1− Iy) log Φ2

(
X ′β(y), Z ′π; ρ(X ′δ(y))

)
],

be the scores of the first and second steps; and

J(y) = E

[
∂ϕy,ξ(W )

∂ξ′

]
=

[
H1 0

J21y H2y

]
(D.14)
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be the expected Hessian evaluated at the true value of ξy. We provide more explicit expressions

for the score and expected Hessian in Appendix E. Note that

J−1(y) =

[
H−1

1 0

−H−1
1 J21yH

−1
2y H−1

2y

]
(D.15)

by the inverse of the partitioned inverse formula, and

E[ϕy,ξ(W )ϕỹ,ξ(W )′] =

[
E[S1,ξ(W )S1,ξ(W )′] 0

0 E[S2y,ξ(W )S2ỹ,ξ(W )′]

]
(D.16)

because E[S1,ξ(W )S2y,ξ(W )′] = 0 for all y ∈ Y.

D.1. Auxiliary Results. We start by providing sufficient conditions that are useful to verify

Condition Z in Chernozhukov, Fernández-Val, and Melly (2013). They are an alternative to

Lemma E.1 of Chernozhukov, Fernández-Val, and Melly (2013), where we replace the requirement

that the function ξ 7→ Ψ(ξ, y) := E[ϕy,ξ(W )] is the gradient of a convex function by compactness

of the parameter space for ξy and an identification condition.23

Lemma D.1 (Simple sufficient condition for Z). Suppose that Ξ is a compact subset of Rdξ , and

Y is a compact interval in R. Let I be an open set containing Y. Suppose that (a) Ψ : Ξ×I 7→ Rdξ
is continuous, and ξ 7→ Ψ(ξ, y) possesses a unique zero at ξy that is in the interior of Ξ for each

y ∈ Y, (b) for each y ∈ Y, Ψ(ξy, y) = 0, (c) ∂
∂(ξ′,y)Ψ(ξ, y) exists at (ξy, y) and is continuous at

(ξy, y) for each y ∈ Y, and Ψ̇ξy ,y := ∂
∂ξ′Ψ(ξ, y)|ξy obeys infy∈Y inf‖h‖=1 ‖Ψ̇ξy ,yh‖ > c0 > 0. Then

Condition Z of Chernozhukov, Fernández-Val, and Melly (2013) holds and y 7→ ξy is continuously

differentiable.

Proof of Lemma D.1. We restate the statement of Condition Z of Chernozhukov, Fernández-

Val, and Melly (2013) with our notation for the reader’s reference.

Condition Z. Let Y be a compact set of some metric space, and Ξ be an arbitrary subset of

Rdξ . Assume (i) for each y ∈ Y, Ψ(·, y) : Ξ 7→ Rdξ possesses a unique zero at ξy, and, for some

δ > 0, N := ∪y∈YBδ(ξy) is a compact subset of Rdξ contained in Ξ, (ii) the inverse of Ψ(·, y)

defined as Ψ−1(x, y) := {ξ ∈ Ξ : Ψ(ξ, y) = x} is continuous at x = 0 uniformly in y ∈ Y with

respect to the Hausdorff distance, (iii) there exists Ψ̇ξy ,y such that limt↘0 supy∈Y,‖h‖=1 |t−1[Ψ(ξy +

th, y) − Ψ(ξy, y)] − Ψ̇ξy ,yh| = 0, where infy∈Y inf‖h‖=1 ‖Ψ̇ξy ,yh‖ > 0, and (iv) the maps y 7→ ξy

and y 7→ Ψ̇ξy ,y are continuous.

The first part of Z(i) follows immediately from condition (a). The verifications of the second

part of Z(i), Z(iii) and Z(iv) are omitted because they follow by the same argument as in the proof

of Lemma E.1 of Chernozhukov, Fernández-Val, and Melly (2013). To show Condition Z(ii), we

need to verify that for any xt → 0 such that xt ∈ Ψ(Ξ, y), dH(Ψ−1(xt, y),Ψ−1(0, y))→ 0, where dH

23We adapt the notation of Chernozhukov, Fernández-Val, and Melly (2013) to our problem by using y, Y, ξy,

dξ and Ξ in place of u, U , θ0(u), p, and Θ.
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is the Hausdorff distance, uniformly in y ∈ Y. Suppose by contradiction that this is not true, then

there is (xt, yt) with xt → 0 and yt ∈ Y such that dH(Ψ−1(xt, yt),Ψ
−1(0, yt)) 6→ 0. By compactness

of Y, we can select a further subsequence (xk, yk) such that yk → y, where y ∈ Y. We have that

Ψ−1(0, y) = ξy is continuous in y ∈ Y, so we must have dH(Ψ−1(xk, yk),Ψ
−1(0, y)) 6→ 0. Hence,

by compactness of Ξ, there is a further subsequence ul ∈ Ψ−1(xl, yl) with ul → u in Ξ, such that

u 6= Ψ−1(0, y) = ξy, and such that xl = Ψ(ul, yl)→ 0. But, by continuity Ψ(ul, yl)→ Ψ(u, y) 6= 0

since u 6= Ψ−1(0, y), yielding a contradiction. �

D.2. Proof of Theorem 4.1. We only consider the case where Y is a compact interval of R.

The case where Y is simpler. The proof follows the same steps as the proof of Theorem 5.2 of

Chernozhukov, Fernández-Val, and Melly (2013) for the DR-estimator without sample selection

using Lemma D.1 in place of Lemma E.1 of Chernozhukov, Fernández-Val, and Melly (2013).

Let Ψ(ξ, y) = P [ϕy,ξ] and Ψ̂(ξ, y) = Pn[ϕy,ξ], where Pn is the empirical measure and P is the

corresponding probability measure. From the first order conditions, the two-step estimator obeys

ξ̂y = φ(Ψ̂(·, y), 0) for each y ∈ Y, where φ is the Z-map defined in Appendix E.1 of Chernozhukov,

Fernández-Val, and Melly (2013). The random vector ξ̂y is the estimator of ξy = φ(Ψ(·, y), 0) in

the notation of this framework. Then, by step 1 below,

√
n(Ψ̂−Ψ) ZΨ in `∞(Y × Rdξ)dξ , ZΨ(y, ξ) = Gϕy,ξ,

where dξ := dim ξy, G is a P -Brownian bridge, and ZΨ has continuous paths a.s. Step 2 verifies

the conditions of Lemma D.1 for Ψ̇(ξy, y) = J(y), the Hessian matrix defined in (D.14), which

also implies that y 7→ ξy is continuously differentiable in the interval Y. Then, by Lemma E.2

of Chernozhukov, Fernández-Val, and Melly (2013), the map φ is Hadamard differentiable with

derivative map (ψ, 0) 7→ −J−1ψ at (Ψ, 0). Therefore, we can conclude by the functional delta

method that
√
n(ξ̂y − ξy) Zξy := −J−1(y)ZΨ(y, ξy) in `∞(Y)dξ , (D.17)

where y 7→ Zξy has continuous paths a.s.

Step 1 (Donskerness). We verify that G = {ϕy,ξ(W ) : (y, ξ) ∈ Y × Rdξ} is P -Donsker with a

square-integrable envelope. By inspection of the expression of ϕy,ξ(W ) = [S1,ξ(W )′, S2y,ξ(W )′]′

in Appendix E, ϕy,ξ(W ) is a Lipschitz transformation of VC functions with Lipschitz coefficient

bounded by c‖Z‖ for some constant c and envelope function c‖Z‖, which is square-integrable.

Hence G is P -Donsker by Example 19.9 in van der Vaart (1998).

Step 2 (Verification of the Conditions of Lemma D.1). Conditions (a) and (b) are immediate by

Assumption 2. To verify (c), note that for (ξ̃, ỹ) in the neighborhood of (ξy, y),

∂Ψ(ξ̃, ỹ)

∂(ξ̃′, ỹ)
= [J(ξ̃, ỹ), R(ξ̃, ỹ)],
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where

R(ξ̃, ỹ) = −E


0

fY |Z,D(ỹ | Z, 1)Φπ(Z)Φπ̃(Z)

[
G2,ξ̃(Z)

G3,ξ̃(Z)

]
⊗X

 ,

for ξ̃ = (π̃′, β̃′, ρ̃′)′, and

J(ξ̃, ỹ) =

[
J11(ξ̃, ỹ) J12(ξ̃, ỹ)

J21(ξ̃, ỹ) J22(ξ̃, ỹ)

]
,

for

J11(ξ̃, ỹ) = E
[
{g1(Z ′π̃)(D − Φπ̃(Z))−G1(Z ′π̃)φ(Z ′π̃)}ZZ ′

]
,

with g1(u) = dG1(u)/du; J12(ξ̃, ỹ) = 0;

J21(ξ̃, ỹ) = E

{
[Φπ(Z)Φν

2,ξ̃
(Z)− φ(Z ′π)Φ2,ξỹ(Z)]

[
G2,ξ̃(Z)

G3,ξ̃(Z)

]
⊗XZ ′

}

+ E

{
(Φπ(Z)Φ2,ξ̃(Z)− Φπ̃(Z)Φ2,ξỹ(Z))

[
Gν

2,ξ̃
(Z)

ρ′(X ′δ̃)Gν
3,ξ̃

(Z)

]
⊗XZ ′

}
,

with Gν
j,ξ̃

(Z) := Gνj

(
−X ′β̃, Z ′π̃;−ρ(X ′δ̃)

)
and Gνj (µ, ν; ρ) = ∂Gj(µ, ν; ρ)/∂ν for j ∈ {2, 3}; and

J22(ξ̃, ỹ) = −E

{
Φπ(Z)

[
Φµ

2,ξ̃
(Z)G2,ξ̃(Z) Φρ

2,ξ̃
(Z)G2,ξ̃(Z)

Φµ

2,ξ̃
(Z)ρ′(X ′δ̃)G3,ξ̃(Z) Φρ

2,ξ̃
(Z)ρ′(X ′δ̃)G3,ξ̃(Z)

]
⊗XX ′

}

+E

{
(Φπ(Z)Φ2,ξ̃(Z)− Φπ̃(Z)Φ2,ξỹ(Z))

[
Gµ

2,ξ̃
(Z) Gρ

2,ξ̃
(Z)

ρ′(X ′δ̃)Gµ
3,ξ̃

(Z) ρ′(X ′δ̃)2Gρ
3,ξ̃

(Z) + ρ′′(X ′δ̃)G3,ξ̃(Z)

]
⊗XX ′

}
,

with Ga
j,ξ̃

(Z) := Gaj

(
−X ′β̃, Z ′π̃;−ρ(X ′δ̃)

)
and Gaj (µ, ν; ρ) = ∂Gj(µ, ν; ρ)/∂a for j ∈ {2, 3} and

a ∈ {µ, ρ}. In the previous expressions we use some notation defined in Appendix E.

Both (ξ̃, ỹ) 7→ R(ξ̃, ỹ) and (ξ̃, ỹ) 7→ J(ξ̃, ỹ) are continuous at (ξy, y) for each y ∈ Y. The

computation above as well as the verification of the continuity follow from using the expressions

of ϕy,ξ in Appendix E, the dominated convergence theorem, and the following ingredients: (i) a.s.

continuity of the map (ξ̃, ỹ) 7→ ∂ϕỹ,ξ̃(W )/∂ξ̃′, (ii) domination of ‖∂ϕy,ξ(W )/∂ξ′‖ by a square-

integrable function ‖cZ‖ for some constant c, (iii) a.s. continuity and uniform boundedness of the

conditional density function y 7→ fY |X,D(y | X, 1) by Assumption 2, and (iv) G1(Z ′π̃), G2,ξ̃(Z)

and G3,ξ̃(Z) being bounded uniformly on ξ̃ ∈ Rdξ , a.s. By assumption, J(y) = J(ξy, y) is positive-

definite uniformly in y ∈ Y.

The expressions of the limit processes given in the theorem follow by partitioning Zξy =

(Z ′π, Z
′
θy

)′ and using the expressions of J−1(y) and E[ϕy,ξ(W )ϕỹ,ξ(W )′] given in (D.15) and

(D.16). �
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D.3. Proof of Theorem 4.2. Let ξ̂by := (π̂b
′
, θ̂b
′
y )′. By definition of the multiplier bootstrap draw

of the estimator
√
n(ξ̂by − ξ̂y) = Gnω

bϕ
y,ξ̂

= Gnω
bϕy,ξ + ry,

where ωb ∼ N(0, 1) independently of the data and ry := Gnω
b(ϕ

y,ξ̂
− ϕy,ξ). Then the result

follows from Gnω
bϕy,ξ  P Zξy in step 3 and ry  P 0 in step 4.

Step 3. Recall that ϕy,ξ is P -Donsker by step 1 of the proof of Theorem 4.1. Then, by Eωb = 0,

E(ωb)2 = 1 and the Conditional Multiplier Functional Central Limit Theorem (van der Vaart and

Wellner, 1996, Theorem 2.9.6),

Gnω
bϕy,ξ  P Zξy ,

where Zξy is the same limit process as in (D.17).

Step 4. Note that ry  0 because ϕy,ξ is P -Donsker and
√
n(ξ̂y−ξy) = OP(1) uniformly in y ∈ Y

by Theorem 4.1. To show that ry  P 0, we use that this statement means that for any ε > 0,

Eb1(‖ry‖2 > ε) = oP(1) uniformly in y ∈ Y. Then, the result follows by the Markov inequality

and

EEb1(‖ry‖2 > ε) = P(‖ry‖2 > ε) = o(1),

uniformly in y ∈ Y, where the latter holds by the Law of Iterated Expectations and ry  0.

�

Appendix E. Expressions of the Score and Expected Hessian

E.1. Score. Let Φπ(Z) := Φ(Z ′π) and Φ2,ξy(Z) := Φ2 (−X ′β(y), Z ′π;−ρ(X ′δ(y))). Note that

by the properties of the standard bivariate normal distribution Φ2 (X ′β(y), Z ′π; ρ(X ′δ(y))) =

Φπ(Z)− Φ2,ξy(Z). Then, straighforward calculations yield

S1,ξ(W ) =
∂`1,ξ(W )

∂π
= G1(Z ′π)[D − Φπ(Z)]Z,

where G1(u) = φ(u)/[Φ(u)Φ(−u)], and

S2y,ξ(W ) =
∂`2y,ξ(W )

∂θy
= D(Φ2,ξy(Z)− Φπ(Z)Iy)

[
G2,ξy(Z)

ρ′(X ′δ(y))G3,ξy(Z)

]
⊗X,

whereG2,ξy(Z) := G2 (−X ′β(y), Z ′π;−ρ(X ′δ(y))) andG3,ξy(Z) := G3 (−X ′β(y), Z ′π;−ρ(X ′δ(y)))

with

G2(µ, ν; ρ) =
Φµ

2 (µ, ν; ρ)

Φ2(µ, ν; ρ)[Φ(ν)− Φ2(µ, ν; ρ)]
, G3(µ, ν; ρ) =

Φρ
2(µ, ν; ρ)

Φ2(µ, ν; ρ)[Φ(ν)− Φ2(µ, ν; ρ)]
,

for

Φµ
2 (µ, ν; ρ) =

∂Φ2(µ, ν; ρ)

∂µ
= Φ

(
ν − ρµ√

1− ρ2

)
φ(µ), (E.18)
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and

Φρ
2(µ, ν; ρ) =

∂Φ2(µ, ν; ρ)

∂ρ
= φ2(µ, ν; ρ). (E.19)

To show (E.18) and (E.19), start from the factorization

Φ2(µ, ν; ρ) =

∫ µ

−∞
Φ

(
ν − ρv√

1− ρ2

)
φ(v)dv.

Then, (E.18) follows from taking the partial derivative with respect to µ using the Leibniz integral

rule. Taking the partial derivative with respect to ρ yields

∂Φ2(µ, ν; ρ)

∂ρ
=

∫ µ

−∞
φ

(
ν − ρv√

1− ρ2

)
ρν − v

(1− ρ2)
3
2

φ(v)dv

=

∫ µ

−∞

1√
2π

exp

[
−(ν − ρv)2

2(1− ρ2)

]
1√
2π

exp

[
−v

2

2

]
ρν − v

(1− ρ2)
3
2

dv

=

∫ µ

−∞

ρν − v
2π(1− ρ2)

3
2

exp

[
−ν

2 − 2ρvν + v2

2(1− ρ2)

]
dv

=
1

2π
√

1− ρ2
exp

[
−ν

2 − 2ρµν + µ2

2(1− ρ2)

]
= φ2(µ, ν; ρ)

E.2. Expected Hessian. Straighforward calculations yield

H1 = E

[
∂`1,ξ(W )

∂π∂π′

]
= −E

[
G1(Z ′π)φ(Z ′π)ZZ ′

]
, E

[
∂`1,ξ(W )

∂π∂θ′y

]
= 0,

J21y =
∂`2y,ξ(W )

∂θy∂π′
= E

{
[Φπ(Z)Φν

2,ξy(Z)− φ(Z ′π)Φ2,ξy(Z)]

[
G2,ξy(Z)

ρ′(X ′δ(y))G3,ξy(Z)

]
⊗XZ ′

}
,

where Φν
2,ξy

(Z) = Φν
2 (−X ′β(y), Z ′π;−ρ(X ′δ(y))) with

Φν
2(µ, ν; ρ) =

∂Φ2(µ, ν; ρ)

∂ν
= Φ

(
µ− ρν√

1− ρ2

)
φ(ν),

by a symmetric argument to (E.18), and

H2y =
∂`2y,ξ(W )

∂θy∂θ′y
= −E

{
Φπ(Z)

[
Φµ

2,ξy
(Z)G2,ξy(Z) Φρ

2,ξy
(Z)G2,ξy(Z)

Φµ
2,ξy

(Z)ρ′(X ′δ(y))G3,ξy(Z) Φρ
2,ξy

(Z)ρ′(X ′δ(y))G3,ξy(Z)

]
⊗XX ′

}
,

where Φµ
2,ξy

(Z) := Φµ
2 (−X ′β(y), Z ′π;−ρ(X ′δ(y))) and Φρ

2,ξy
(Z) := Φρ

2 (−X ′β(y), Z ′π;−ρ(X ′δ(y))).

Appendix F. Additional Empirical Results

F.1. Model Parameters.

F.2. Distribution of Offered and Observed Wages.
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Table F.1. Estimates of Coefficients of the Selection Equation

Variable Male Female Variable Male Female

educ16 0.25 0.06 agep4 -0.07 -0.05

(0.01) (0.01) (0.02) (0.02)

educ1718 0.46 0.20 numch1 -0.16 -0.90

(0.02) (0.01) (0.02) (0.02)

educ1920 0.42 0.16 numch2 -0.18 -0.77

(0.03) (0.02) (0.02) (0.02)

educ2122 0.74 0.28 numch34 -0.18 -0.63

(0.02) (0.02) (0.02) (0.01)

educ23 0.51 0.15 numch510 -0.18 -0.33

(0.02) (0.02) (0.01) (0.01)

couple -4.02 -8.14 numch1116 -0.16 -0.15

(0.09) (0.08) (0.01) (0.01)

agep -0.64 -0.92 numch1718 -0.02 -0.11

(0.03) (0.02) (0.03) (0.02)

agep2 -0.83 -0.68 tubeninc0 -0.35 -0.42

(0.03) (0.02) (0.01) (0.01)

agep3 -0.07 -0.08 m inc0 0.87 1.40

(0.02) (0.02) (0.02) (0.02)

constant 2.50 2.75

(0.08) (0.07)

Notes: standard errors in parentheses.

Table F.2. Participation decomposition between men and women

Participation (%)
Structure (π)

Male Female

Composition (FZ)

Male
83 59

(82, 83) (59, 59)

Female
83 66

(83, 83) (66, 66)

95% bootstrap confidence intervals in parentheses

F.3. Participation and Wage Decompositions.
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Figure F.1. Estimates and 95% confidence bands for coefficients of education

and marital status in the outcome equation: specification 2 for men
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Figure F.2. Estimates and 95% confidence bands for coefficients of education

and marital status in the outcome equation: specification 2 for women
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Figure F.3. Estimates and 95% confidence bands for coefficients of education

and marital status in the outcome equation: specification 3 for men
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Figure F.4. Estimates and 95% confidence bands for coefficients of education

and marital status in the outcome equation: specification 3 for women
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Figure F.5. Estimates and 95% confidence bands for coefficients of education

and marital status in the outcome equation: specification 4 for men
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Figure F.6. Estimates and 95% confidence bands for coefficients of education

and marital status in the outcome equation: specification 4 for women
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0.2 0.4 0.6 0.8

−
0

.3
0

.0
0

.2
0

.4
numch1

0.2 0.4 0.6 0.8

−
0

.3
0

.0
0

.2
0

.4

numch2

0.2 0.4 0.6 0.8

−
0

.3
0

.0
0

.2
0

.4

numch34

0.2 0.4 0.6 0.8

−
0

.3
0

.0
0

.2
0

.4

numch510

0.2 0.4 0.6 0.8

−
0

.3
0

.0
0

.2
0

.4

numch1116

0.2 0.4 0.6 0.8

−
0

.3
0

.0
0

.2
0

.4

numch1718

Estimates of Parameters, Male in 1978 ~ 2013

Figure F.7. Estimates and 95% confidence bands for coefficients of fertility in

the outcome equation: specification 1 for men
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Figure F.8. Estimates and 95% confidence bands for coefficients of fertility in

the outcome equation: specification 1 for women
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Figure F.9. Estimates and 95% confidence bands for coefficients of the selection

sorting function: specification 3
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Figure F.10. Estimates and 95% confidence bands for coefficients of the selection

sorting function: specification 4
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Figure F.11. Estimates and 95% confidence bands for the quantiles of observed

and offered (latent) wages and decomposition of offered wages between women and

men: specification 1



60 CHERNOZHUKOV, FERNÁNDEZ-VAL AND LUO
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Figure F.12. Estimates and 95% confidence bands for the quantiles of observed

and offered (latent) wages and decomposition of offered wages between women and

men: specification 2
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Figure F.13. Estimates and 95% confidence bands for the quantiles of observed

and offered (latent) wages and decomposition of offered wages between women and

men: specification 3
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Figure F.14. Estimates and 95% confidence bands for the quantiles of observed

and offered (latent) wages and decomposition of offered wages between women and

men: specification 4
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Figure F.15. Estimates and 95% confidence bands for decomposition between

men and women with aggregated selection effects in specification 1
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Figure F.16. Estimates and 95% confidence bands for the quantiles of observed

wages and decomposition between men and women: (left) specification 2, (middle)

specification 3, and (right) specification 4
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Figure F.17. Estimates and 95% confidence bands for the quantiles of observed

wages and decomposition between men and women with aggregated selection effect:

(left) specification 2, (middle) specification 3, and (right) specification 4
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Figure F.18. Estimates and 95% confidence bands for components of wage de-

composition between women and men in specification 1
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Figure F.19. Estimates and 95% confidence bands for components of wage de-

composition between women and men in specification 2
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Figure F.20. Estimates and 95% confidence bands for components of wage de-

composition between women and men in specification 3
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Figure F.21. Estimates and 95% confidence bands for components of wage de-

composition between women and men in specification 4
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Figure F.22. Estimates and 95% confidence bands for components of wage de-

composition between first and second half of sample period for men in specification

1
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Figure F.23. Estimates and 95% confidence bands for components of wage de-

composition between first and second half of sample period for women in specifi-

cation 1


