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Abstract

In dynamic multisector economies, the planner’s optimal capital allocation can serve
to minimize the aggregate impact of shocks cascading through nonlinear produc-
tion networks. We show analytically that (i) optimal capital allocation under uncer-
tainty involves deliberately over-investing in upstream sectors in order to mitigate
severe economic downturns; (ii) this efficient strategy reduces the average level of
consumption and gives rise to a high welfare cost of business cycles. Deploying novel
deep-learning techniques in a general environment we show quantitatively that: (iii)
the ergodic distribution of the simulated nonlinear economy features higher mean
capital levels in key upstream sectors, lower mean levels of macroeconomic aggre-
gates, realistic aggregate volatility and a welfare cost of business cycles one order of
magnitude larger than in standard linear models.
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1 Introduction

Recent research on production networks has demonstrated that nonlinearities and com-
plementarities between sectors can dramatically amplify the impact of shocks. When
inputs are complementary — as is often the case with specialized components, rare ma-
terials, or energy inputs — disruptions in upstream sectors can cascade throughout the
economy with outsized effects. This powerful intuition sheds light on classical issues in
macroeconomics and holds the promise of better understanding, for example, the non-
linear aggregate effects of oil shocks or the origins of aggregate disaster risk.

In this paper, we confront the benevolent planner of textbook dynamic neoclassical
economies with this novel logic of nonlinear production networks. We ask whether,
in efficient economies, the planner’s allocation of dynamic inputs, such as capital, can
help mitigate the tail risk that has been shown to emerge in static networked environ-
ments. We do so both analytically, in a simplified environment, and quantitatively, in
a general state-of-the-art dynamic multi-sector setup. We start by showing that optimal
capital allocation under uncertainty involves over-investing in upstream sectors in order
to minimize the risk of catastrophic downstream transmission.The optimal avoidance of
disaster risk also leads to significant sacrifices in the average level of consumption. In the
second part of the paper, we offer a quantitative benchmark. We show how to adapt and
deploy frontier deep neural network tools that can capture the full nonlinear effects in
a canonical dynamic production-networks setup featuring both intermediate input and
investment good linkages across sectors. We find that, relative to the deterministic steady
state, the ergodic distribution of the simulated nonlinear economy features higher mean
capital levels in key upstream sectors, lower mean levels of output, investment and con-
sumption, realistic aggregate volatility and, importantly, a high welfare cost of business
cycles.

Analytical characterization. Our first contribution is to characterize optimal capital al-
location under uncertainty in a tractable two-period, two-sector networked economy. The
model features an upstream sector that produces and intermediate good and a down-
stream sector that serves the final demand consumption of the representative household.
Crucially, both sectors also need capital to produce. Unlike most of the extant literature
– which has focused on characterizing static economies – we are interested in character-
izing the planner’s allocation of pre-determined dynamic inputs, such as capital, across
sectors and how this depends on nonlinearities and complementarities.A key focus is on
what we call ”pre-allocation” of capital before productivity shocks are realized, i.e., how
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the allocation of capital to a particular sector compares to what would be optimal in a
deterministic environment.

Our key analytical result shows that whenever the downstream production function fea-
tures complementarity across inputs and risk aversion is not too low, the planner’s alloca-
tion results in excess pre-allocation of capital to the upstream, input-supplying sector (rel-
ative to the deterministic optimum). This is because productivity shocks upstream have
a nonlinear effect on aggregate output rendering possible aggregate consumption disas-
ters for sufficiently low realizations of shocks. This, in turn, renders insurance against
negative upstream shocks more valuable to the planner, who deploys capital to the input
supplying sector for this purpose. Our second analytical result shows that, indeed, the
elasticity of aggregate consumption with respect to negative upstream shocks is strictly
smaller when the planner pursues this excess pre-allocation strategy, relative to what
obtains at deterministic optimum allocations.

Our third key analytical result shows that complementarities also imply that pre-allocating
capital upstream is costly in terms of lower average consumption level at the stochastic
steady state (again, relative to its deterministic counterpart).1 This is because, holding
the productivity of the downstream sector fixed, the planner is: (i) allocating excess cap-
ital upstream, to be used precisely in states of the world where that sector is particularly
unproductive, and (ii) allocating too little capital downstream, in states of the world
where the return to investing in downstream capacity would be relatively high. Thus, in
mitigating nonlinear consumption disasters, the planner faces a fundamental tradeoff in
terms of the level of aggregate consumption. This result implies that the welfare cost of
business cycle does not come from observable volatility of consumption or consumption
disasters. As discussed, the planner is able to avert these through manipulating input
allocations. Instead, the welfare cost of business cycle is associated with a reduction in
average consumption.

Quantitative model. In the second part of the paper, we present a quantitative bench-
mark by deploying tools that can capture the full nonlinear effects of dynamic production
networks. Our quantitative environment is canonical, allowing for flexible substitution
possibilities in consumption, investment and production, as well as flexible adjustment-
cost specifications for both primary inputs, labor and capital. In detail, our baseline

1The stochastic steady state is the steady state of an uncertain economy where all shocks happen to be
realized at their (zero) mean. For nonlinear economies, such as ours, this will in general differ from the
steady state that obtains in the corresponding deterministic economy.
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environment features a representative household with GHH preferences over consump-
tion and labor. In turn, each of these is a CES aggregate of, respectively, disaggregated
final consumption goods and labor employed across the different sectors in the econ-
omy.2 Each of the sectors is populated by a representative firm that combines labor and
capital with intermediate inputs to produce sectoral gross output. The latter, in turn, can
be sold as final consumption, as an intermediate input, or as an investment good. We
again allow for successive CES nests, allowing for substitution/complementarity over
the two primary inputs, across the intermediate inputs necessary for production, and
across primary and intermediate inputs. Sector-specific capital follows a standard law of
motion including sector-specific adjustment costs. Sector-specific investment combines
investment goods produced by other sectors, again in a CES fashion. All uncertainty
derives from sector-specific persistent productivity processes. We assume throughout a
perfectly competitive market structure across all markets.

We render this complex disaggregated environment quantitative by calibrating it to data
moments for 37 sectors in the US, using data spanning 1948 to 2018. We match steady-
state expenditure shares in the model against time-averaged data counterparts, as well as
feature empirically relevant input-output and investment linkages across sectors, while
also taking into account empirical sector-specific depreciation rates for capital. When-
ever possible, we set elasticities to consensus parameterizations already present in the
literature.

Even for our relatively low levels of disaggregation, the global solution implies that find-
ing an equilibrium requires solving a stochastic dynamic programming problem with 74
state variables. This is beyond what traditional nonlinear solution methods, such as those
based on Chebyshev collocation, can achieve due to the ’curse of dimensionality’. Our
second contribution is to show how realistically-large multi-sector general equilibrium
models can be solved using deep learning techniques. We build on the ’deep equilibrium
nets’ method of Azinovic et al. (2022), which approximates equilibrium objects using
deep neural networks. To guarantee the quality of our approximation, we have run ex-
tensive accuracy checks.

With this method in hand, our third contribution is to document quantitative features
of the global solution of our baseline economy. Specifically, we can both compute the
ergodic distribution by simulation, capturing how the (potentially) nonlinear propaga-

2The CES aggregate of labor allows us to control the degree of flexibility of labor reallocation across
sectors.
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tion of Gaussian shocks interacts with the anticipation effects of risk on agents, and
provide generalized impulse responses at the stochastic steady state. We report five key
quantitative results. Our first finding is that the mean of the ergodic distribution of key
aggregates – consumption, labor, GDP, investment and total intermediates produced –
is always below that of the deterministic steady state. Second, we find that the implied
aggregate volatility is substantial – e.g. the standard deviation of annual GDP is 3.4%.
Third, our results imply that nonlinear production network economies do not display
quantitatively important higher-order moments: in the ergodic distribution, kurtosis is
negligible, skewness is small throughout and, depending on the macro aggregate under
consideration, can have the wrong sign relative to data. Fourth, there is substantial het-
erogeneity across sectors in the ergodic mean allocation, with key upstream sectors – like
Mining, Oil and Gas – displaying relatively higher capital stocks, whereas downstream
sectors display relatively lower capital stocks. Fifth, we also show how, in counterfactual
economies with higher sectoral TFP volatility, consumption and labor volatilities increase
less than one-to-one. That is, as the risks of nonlinear disasters following large shocks
become material, the planner spends more resources in keeping aggregate volatility from
spiraling upwards.

Taken together, these results echo our analytical findings in the first part of the paper
and suggest that the planner in this dynamic, fully nonlinear economy, is redistributing
capital towards upstream sectors and away from downstream sectors in order to dampen
large aggregate fluctuations originating in central upstream sectors. By doing this, the
planner avoids the endogenous disasters stressed elsewhere in the production networks
literature, at the cost of lower mean levels of aggregates. We show how the nonlinear
impulse responses to sectoral TFP shocks are attenuated in comparison to the log-linear
ones.3

Finally, we find that the welfare costs of business cycles are substantial relative to stan-
dard calculations in the literature: our global solution implies that the representative
household would do away with 1% of lifetime consumption in order to live in a counter-
factual economy without shocks. Combining the results above, this large welfare cost of
business cycles is largely the direct result of the mean of the ergodic distribution being
below that of the deterministic economy, rather than aggregate endogenous disaster risk,
which is absent.

3This contrasts with the nonlinear response to an unanticipated zero-probability shock, which is ampli-
fied with respect to the log-linear case, in line with the findings of Baqaee and Farhi (2019).
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Related Literature Our paper relates to three different strands of literature. The first is
the rapidly growing literature on production networks (see Acemoglu et al. (2012) for the
seminar reference and Carvalho and Tahbaz-Salehi (2019) and Baqaee and Rubbo (2023)
for recent overviews of this literature. In particular, our work relates to Baqaee and Farhi
(2019) analysis of nonlinear, higher order effects in production networks. In particular,
Baqaee and Farhi (2019) show how complementarity and intermediate input linkages to-
gether can generate endogenous skewness and aggregate disasters, depending on the size
and location - in the production network - of micro-shocks. Relative to Baqaee and Farhi
(2019) and the literature that followed – emphasizing nonlinearities in (static) production
networks – our contribution is to show that in dynamic environments, the efficient al-
location of predetermined inputs alters business cycle properties of these models.4 On
the one hand, we show how the pre-allocation of capital limits the extent to which ag-
gregate nonlinearities – in the form of skewness and aggregate disasters – can emerge as
important features in this class of models. On the other hand, our analysis shows that
this aggregate disaster possibility and the ensuing optimal preallocation of capital yields
a high welfare cost of business cycles. As a second contribution to this literature, this
paper is the first to offer a quantitative framework that enables a systematic evaluation
of nonlinear networks. This is because all extant quantitative characterizations either
provide quantitative illustrations in static economies (e.g. Baqaee and Farhi, 2019) where
the absence of endogenous dynamics renders it difficult to benchmark results against
competing dynamic general equilibrium environments, or rely on approximation tech-
niques such as log-linearized solution (e.g. Horvath, 2000, Atalay, 2017 and Vom Lehn
and Winberry, 2022) 5, which, by definition, are ill-suited to fully capture the effects of
the non-linear equilibrium dynamics that characterize these environments.

Second, our paper relates to the long-standing literature on the welfare cost of business
cycles in dynamic equilibrium economies. As is well known, starting from the seminal
contribution of Lucas (1987), simple textbook environments are typically thought to be
unable to deliver high welfare costs of uncertainty. This realization, in turn, has moti-
vated a long list of influential research on, for example, the role of preferences, market
incompleteness, and various frictional environments or risk processes. Our main contri-

4Our emphasis on how predetermined inputs interact and alter other standard features of production
networks is shared with Kopytov et al. (2024), who show that, with endogenous network formation but
in an otherwise linear and static Cobb-Douglas environment, pre-commitment to risky suppliers may lead
firms to optimally choose less risky but less productive suppliers. See also Pellet and Tahbaz-Salehi (2023)
for a similar mechanism.

5Carvalho (2007), Foerster et al. (2011) and Liu and Tsyvinski (2024) also study dynamic environments
but focus on Cobb-Douglas, linear economies.
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bution is to overturn the baseline assertion in the literature: we show that a ’vanilla’ real
business cycle model – with no distortions, frictions, exotic preferences, or unconven-
tional exogenous driving processes – can deliver a high welfare cost of business cycles.
Further, we show that the mechanism through which the model attains this high wel-
fare cost is related to - but distinct from - recent resolutions of the ’welfare cost puzzle’
relying on disasters and higher order properties of consumption risk (e.g. Barro (2009),
Martin (2008) or Jorda et al. (2024)). In particular, our novel mechanism relies on (effi-
cient) capital reallocation across sectors – and the ensuing decline in average output and
consumption levels – in order to avoid disaster risk, rather than on how large disaster
realizations change welfare calculations.

Third, our paper relates to a recent literature on the use of deep learning to solve high-
dimensional general equilibrium models (e.g., Maliar et al., 2021; Han et al., 2021; Gu et
al., 2024).6 To the best of our knowledge, this paper is the first to apply these techniques to
multi-sector dynamic equilibrium models. We do so by extending the “deep equilibrium
nets”methodology by Azinovic et al. (2022), as explained in Appendix C.

The rest of the paper proceeds as follows. In Section 2, we provide a simple two-sector
model that allows us to analytically characterize capital allocation under uncertainty in
a multi-sector networked economy. In Section 3, we exhibit the model and the system
of equations that describe the solution. In Section 4, we discuss the calibration and the
numerical method. Finally, in Section 5 we detail the results for the global solution of the
model.

2 Two-sector model

In this section, we analyze a stylized two-sector model that allows us to analytically char-
acterize capital allocation under uncertainty in a multi-sector networked economy. A key
focus is on what we call ”excess allocation” of capital, which refers to the allocation of
capital to a particular sector that exceeds what would be optimal in a deterministic envi-
ronment. We use this terminology because capital must be allocated before productivity
shocks are realized, and uncertainty leads to systematically different capital shares com-
pared to the deterministic optimum. Using this tractable framework, we characterize the
incentives behind excess allocation of capital and explore the implications of this alloca-
tion on the severity of consumption disasters and on expected consumption. The model

6See Fernandez-Villaverde et al. (2024) for a recent review.
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allows us to derive theoretical propositions that illuminate the economic forces at play
when the planner faces uncertainty about sectoral productivities. Appendix A presents
all detailed algebraic derivations and proofs.

2.1 Setting

There are two sectors. Sector 1 (“upstream”) produces the intermediate good, and sec-
tor 2 (“downstream”) produces the final good. Both sectors are subject to productivity
shocks, A1 for upstream and A2 for downstream. The intermediate good is produced
with capital. The final good is produced using capital and the intermediate good. The
planner has one unit of a factor K that needs to be allocated to the two sectors, K1 and K2.
The key aspect of this problem is that capital is allocated before the shocks (A1, A2) are
realized, creating a decision under uncertainty. After the shocks are realized, there are
no remaining decisions to be made, since goods produced and consumed are determined
by the previously allocated capital.

Let Qi and Ki denote gross output and capital in sector i = {1, 2}, and let C denote
consumption of the final good. The problem is defined by the following equations:

K1 + K2 = 1, (Resource constraint) (1)

Q1 = A1K1, (Upstream production) (2)

Q2 = A2

(
(1 − γq) (Q1)

σq−1
σq + γq (K2)

σq−1
σq

) σq
σq−1

, (Downstream production) (3)

C = Q2, (Consumption) (4)

where σq is the elasticity of substitution between capital in the downstream sector K2

and the intermediate good from the upstream sector Q1, γq parametrizes the share of the
intermediate good in gross output, and the shocks A1 and A2 are independent random
variables.

Each shock takes either a high value AH = Ā + ∆A or a low value AL = Ā − ∆A. For
shock A1, the probability of the low state is p1, while for shock A2, the probability of the
low state is p2.

A representative household maximizes the expected utility:
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E[U(C)] = E

[
C1−ϵ−1

c

1 − ϵ−1
c

]
(5)

where the expectation is taken with respect to the random variables A1 and A2, and ϵc is
the intertemporal elasticity of substitution.

We consider the first-best allocation produced by a benevolent social planner. This co-
incides with the allocation in the competitive equilibrium, assuming that firms in both
sectors operate under perfect competition. The social planner maximizes household wel-
fare (5) subject to the technological constraints (1)-(4),

2.2 First-order condition

We express consumption as a function of K1 and normalize it to downstream-efficiency
units, C̃ = C/A2. Specifically, using the resource constraint (1), we can substitute K2 =

1 − K1 to obtain:

C̃S1 =

(
(1 − γq)

(
A1,S1K1

) σq−1
σq + γq (1 − K1)

σq−1
σq

) σq
σq−1

, S1 ∈ {L, H} . (6)

Here, C̃S1 represents the normalized consumption level when the upstream productivity
shock A1 is in state S1, where A1,S1 denotes the realization of A1 in state S1 ∈ {L, H}.
Note that S2 does not appear as a subscript since we are normalizing by A2.

We obtain the following expression for the first-order condition:
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∂Ũ(C̃)
∂K1

= p1C̃−ϵ−1
c

L

(1 − γq)

(
ALK1

C̃L

)−1
σq

AL︸ ︷︷ ︸
˜MPK1,L

− γq

(
1 − K1

C̃L

)−1
σq

︸ ︷︷ ︸
˜MPK2,L

 (7)

+ (1 − p1)C̃
−ϵ−1

c
H

(1 − γq)

(
AHK1

C̃H

)−1
σq

AH︸ ︷︷ ︸
˜MPK1,H

− γq

(
1 − K1

C̃H

)−1
σq

︸ ︷︷ ︸
˜MPK2,H

 = 0. (8)

The first-order condition for K1 is central to our analysis of excess allocation. Each com-
ponent of the sum represents the marginal utility impact of allocating capital to the
upstream sector in a specific upstream productivity state, weighted by the probability of
that state and the marginal utility in that state.

This expression breaks down the marginal impact of allocating more capital to the up-
stream sector. The first term in each state, ˜MPK1,S, represents the (per-unit of efficiency)
marginal product of capital in the upstream sector, which contributes positively to con-
sumption. The second term, ˜MPK2,S, represents the opportunity cost in terms of foregone
production in the downstream sector. The total marginal product in each state is the dif-
ference between these two effects.

For the following results, we consider the case where p1 = p2 = 1/2, which gives us
symmetric positive and negative productivity shocks. Also, we assume Ā = 1.

2.3 The deterministic optimum

First, we analyze the deterministic problem, that is, the problem of allocating capital
when A1 = A2 = 1. The first-order condition is:(

(1 − γq)

(
K1

C̃

)−1
σq

− γq

(
1 − K1

C̃

)−1
σq
)

= 0, (9)
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Solving for Kdeterm
1 (the optimal capital allocation in the deterministic case):

Kdeterm
1 =

(
1 − γq

)σq

γ
σq
q +

(
1 − γq

)σq
(10)

This expression shows that the optimal deterministic allocation depends only on the pro-
duction share parameters γq and the elasticity of substitution σq. Intuitively, when γq is
higher—that is, when downstream capital is more important in production—less capital
is allocated to the upstream sector. The effect of σq depends on the relative magnitudes
of γq and (1 − γq). In the special case where γq = 1/2, meaning both sectors have equal
weight in production, we have Kdeterm

1 = 1/2 regardless of the value of σq.

2.3.1 The impact of productivity shocks at the deterministic solution

To formally characterize the asymmetric responses of consumption to sectoral produc-
tivity shocks, we introduce notation for impulse responses and skewness measures. We
write CA1 A2(K1) to denote the consumption function when the upstream productivity is
A1, the downstream productivity is A2, and the capital allocation to the upstream sector
is K1. We use IR−,upst(K1) and IR+,upst(K1) to denote impulse responses of consump-
tion to negative and positive upstream productivity shocks, respectively, as functions of
the capital allocation K1. Similarly, IR−,downst(K1) and IR+,downst(K1) denote impulse
responses to negative and positive downstream productivity shocks. Formally:

IR+,upst(K1) ≡ CHĀ(K1)− CĀĀ(K1), IR+,downst(K1) ≡ CĀH(K1)− CĀĀ(K1)

IR−,upst(K1) ≡ CĀĀ(K1)− CLĀ(K1), IR−,downst(K1) ≡ CĀĀ(K1)− CĀL(K1)

Note that for negative shocks, we write the impulse responses as the difference between
consumption at the expected productivity level and consumption at the low productivity
level. This ensures all impulse responses are measured as positive numbers, facilitating
comparisons of their magnitudes.

We define the skewness coefficient as:
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Skewupst(K1) =
(IR+,upst(K1))

3 − (IR−,upst(K1))
3

[(IR−,upst(K1))2 + (IR+,upst(K1))2]3/2 (11)

Skewdownst(K1) =
(IR+,downst(K1))

3 − (IR−,downst(K1))
3

[(IR−,downst(K1))2 + (IR+,downst(K1))2]3/2 (12)

Using this notation, we can formally characterize the asymmetric nature of consumption
responses under the deterministic allocation:

Lemma 1. For σq < 1, upstream shocks generate negatively skewed responses in consumption,
while downstream shocks generate symmetric impacts:

1. Upstream shocks (negatively skewed):

IR−,upst(Kdeterm) > IR+,upst(Kdeterm) =⇒ Skewupst(Kdeterm) < 0

2. Downstream shocks (symmetric):

IR−,downst(Kdeterm) = IR+,downst(Kdeterm) =⇒ Skewdownst(Kdeterm) = 0

Lemma 2. In a Leontief economy, the asymmetry of upstream impulse responses equals −1+ AL:

lim
σq→0+

Asymmetryupst(K1) = IR+,upst − IR−,upst = −IR−,upst = −1 + AL (13)

The proof of these lemmas is presented in Appendices A.3 and A.4. These lemmas for-
malize a central phenomenon that emerges in production networks: when inputs are
complements, negative upstream productivity shocks have disproportionately large ef-
fects on consumption compared to positive shocks of equal magnitude (Baqaee and
Farhi, 2019). Lemma 2 provides additional insight by examining the limiting Leontief
case, which reveals two properties of production networks with perfect complementar-
ity in terms of capital slackness. First, the positive impulse response upstream is zero
(IR+,upst = 0) in the Leontief limit. This occurs because when the upstream sector ex-
periences a positive shock, upstream capital becomes slack—production is constrained
by the downstream sector, which becomes the binding constraint. Additional upstream
productivity cannot improve overall output when the downstream complement remains
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fixed. Second, the negative impulse response shows that when the upstream sector ex-
periences a negative shock, upstream capital becomes binding while downstream capital
becomes slack. In this case, production is entirely determined by the constrained up-
stream sector. Consequently, upstream capital allocation matters in the margin precisely
when the upstream sector is unproductive.

Figure 1 shows the consumption response to productivity shocks under four different
substitutability cases. Panel (a) shows that upstream shocks generate asymmetric con-
sumption responses when inputs are complements, with the asymmetry becoming more
pronounced as σq decreases toward the Leontief case analyzed in Lemma 2. Notably,
even with substitutable inputs (σq = 4), some asymmetry persists, though it is much less
pronounced than in the complementary cases. Panel (b) shows the contrasting behavior
of downstream shocks, which generate symmetric responses regardless of the elasticity
of substitution, as predicted by Lemma 1. This occurs because downstream productiv-
ity shocks operate outside the CES aggregator in our production structure, making the
substitutability parameters irrelevant for the consumption response.

Figure 1: Consumption responses to productivity shocks in the deterministic solution

(a) Impact of upstream productivity shocks (b) Impact of downstream productivity shocks

Note: The figure shows consumption as a function of productivity in both sectors. Panel (a) shows the
impact of upstream productivity shocks across four substitutability cases: Leontief (σq = 0), complements
(σq = 0.25), Cobb-Douglas (σq = 1), and substitutes (σq = 4). Panel (b) shows the impact of downstream
productivity shocks; the four substitutability cases are irrelevant for the consumption response since the
downstream shock is outside the CES aggregator. Assumed parameters: γq = 0.5, so both sectors are the
same size.

2.4 The benefits and costs of excess allocation upstream

Having established the conditions under which upstream productivity shocks create
asymmetric consumption effects, we now analyze the consequences of allocating excess
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capital to the upstream sector beyond what would be optimal in a deterministic envi-
ronment. Specifically, we examine both the insurance benefits and efficiency costs of
such excess allocation. These results provide insights into how capital allocation serves
as an insurance mechanism against negative upstream productivity shocks in networked
production economies.

2.4.1 Insurance benefits of excess allocation upstream

Lemma 3. If inputs are complements (σq < 1), then increasing capital allocation to the upstream
sector beyond the deterministic optimum decreases the impulse response to negative upstream
productivity shocks:

∂IR−,upst(K1)

∂K1

∣∣∣∣
K1=Kdeterm

1

< 0

where IR−,upst(K1) measures the consumption drop resulting from a negative upstream produc-
tivity shock.

The proof of this lemma is presented in Appendix A.5.

This lemma formalizes the insurance value of excess allocation upstream. When up-
stream and downstream sectors are complements, allocating more capital to the upstream
sector than would be optimal in a deterministic environment dampens the effect of nega-
tive upstream productivity shocks on consumption. The negative derivative indicates that
each additional unit of capital allocated to the upstream sector reduces the consumption
drop caused by adverse shocks.

Figure 2 illustrates the economics of risk mitigation under different production struc-
tures. The figure provides a comprehensive view of consumption across all productivity
states, demonstrating how the elasticity of substitution determines the optimal risk mit-
igation strategy. When inputs are complements (σq < 1), left-tail risk is attenuated by
allocating more capital to the unproductive, shock-affected sector. Conversely, when in-
puts are substitutes (σq > 1), tail risk is better mitigated by strengthening the productive
sectors—reflecting the essence of substitutability, where agents optimally shift resources
away from low-productivity toward high-productivity inputs.
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Figure 2: Impact of higher upstream capital on consumption across productivity shocks

Note: The figure shows consumption as a function of σq for high, average, and low upstream productiv-
ity levels under two scenarios: deterministic optimal capital allocation and 10% higher upstream capital
allocation. The graph shows how higher upstream capital affects consumption responses to productivity
shocks. We use ∆A = 0.5 throughout.

Crucially, the figure shows that while excess upstream allocation attenuates negative im-
pulse responses under complementarity, it comes at the cost of lower expected consump-
tion across all states. We next characterize the productivity costs of excess allocation
upstream.

2.4.2 Productivity costs of excess allocation upstream

While excess allocation upstream provides insurance benefits, it also entails costs. The
next proposition show the conditions under which strengthening the upstream sector
reduces expected consumption.

Proposition 1. Up to the first-order approximation, if inputs are complements (σq < 1), the
effect of excess allocation upstream on expected consumption depends on the relative strength of
the upstream sector:

1. When the upstream sector is large enough (γq < γ̄q(△A)), increasing upstream capital
allocation beyond the deterministic optimum decreases expected consumption:

∂E{C(A, K1)}
∂K1

∣∣∣∣
K1=Kdeterm

1

< 0.
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2. When the upstream sector’s role is more limited (γq > γ̄q(△A)), increasing upstream
capital allocation increases expected consumption.

The proof of this proposition is presented in Appendix A.6.

This proposition establishes the opportunity cost of allocating excess capital to the up-
stream sector compared to the deterministic solution. When inputs are complements and
the upstream sector is not too small, allocating more capital upstream reduces expected
consumption. To understand the mechanism by which expected consumption decreases,
we decompose the impact of excess allocation upstream on expected consumption into
marginal productivities of capital in each sector, for both states. This decomposition
shows why there is an efficiency cost to providing insurance through upstream capital
allocation:

∂E[C̃]
∂K1

∣∣∣∣
Kdeterm

1

= p1

(1 − γq)

(
ALKdeterm

1

C̃L

)−1
σq

AL︸ ︷︷ ︸
˜MPK1,L (=(1−γq)AL as σq→0)

− γq

(
1 − Kdeterm

1

C̃L

)−1
σq

︸ ︷︷ ︸
˜MPK2,L (=0 as σq→0)



+ (1 − p1)

(1 − γq)

(
AHKdeterm

1

C̃H

)−1
σq

AH︸ ︷︷ ︸
˜MPK1,H (=0 as σq→0)

− γq

(
1 − Kdeterm

1

C̃H

)−1
σq

︸ ︷︷ ︸
˜MPK2,H (=γq as σq→0)



The behavior of marginal products is presented in Figure 3. With complementarities, pro-
duction is constrained by the sector with lower productivity—the ”low-quantity sector.”
In the low upstream productivity state, the upstream sector becomes the low-quantity
sector; in the high upstream productivity state, the downstream sector becomes the low-
quantity sector. Everything else constant, adding resources to the constraining sector
provides a high increase in the aggregate.
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Figure 3: Marginal products of capital across different elasticities of substitution

Note: The figure shows the marginal product of capital in the upstream sector ( ˜MPK1) and
downstream sector ( ˜MPK2) under both low upstream productivity (red, intersect in the lower
half) and high upstream productivity (blue, intersect in the upper half) states. All values are
evaluated at the deterministic optimal capital allocation. The vertical dotted line marks σq = 1,
the boundary between complementarity (σq < 1) and substitutability (σq > 1). Parameters:
γq = 0.5 and ∆A = 0.5.

The Leontief case (σq → 0), which corresponds to the leftmost limit of Figure 3, illus-
trates this constraint. When inputs are perfect complements, only the low-quantity sector
matters at the margin. Thus, ˜MPK2 in the low upstream productivity state and ˜MPK1 in
the high upstream productivity state both approach zero, since additional capital in the
non-constraining sector yields no marginal benefit.

This insight can be described in terms of the slackness of capital under complementarity.
In each state, one sector is binding and the other is slack. In the low upstream productiv-
ity state, downstream capital is slack, while upstream capital is binding but its marginal
product is penalized by A1 = AL. In the high upstream productivity state, upstream
capital is slack, while downstream capital is binding and enjoys full productivity, A2 = 1.
Strengthening the upstream sector therefore shifts units of capital away from uses that
are binding and fully productive (downstream in the high upstream productivity state)
toward uses that are either slack (upstream in the high upstream productivity state) or
binding but penalized (upstream in the low upstream productivity state). This slackness
asymmetry is visible in Figure 3: the marginal product of capital downstream in the high
upstream productivity state exceeds the marginal product upstream in the low upstream

16



productivity state.

This insight reflects a general property of complementarities in production networks.
In a multi-sector network with CES aggregation, the productivity cost of reallocating
capital upstream is a generic consequence of complementarities. When the elasticity of
substitution is low, shocks to any CES-linked input create consumption disasters, which
makes it tempting to insure by over-allocating capital to those inputs. However, for any
sector inside a CES nest, extra capital is nearly unproductive in high-productivity states
because effective output is constrained by its complements, so its marginal product is
concentrated in bad states. This asymmetry strengthens with upstreamness: an upstream
unit of capital must be combined not only with its intra-nest complement but with the
entire set of downstream complements along the chain, so in good states its marginal
product is capped by multiple downstream bottlenecks, whereas in bad states it bears the
full penalty of the sector’s own adverse shock. As a result, the fraction of states in which
upstream capital is slack rises with upstreamness, shifting its payoff toward disaster states
and increasing the expected-output cost of using upstream capital to provide insurance.
This represents the trade-off: insurance value rises with upstreamness, but so does the
productivity cost.

Consistent with this trade-off, a risk-neutral planner who maximizes E[C] would not
over-allocate upstream, since insurance provides no benefits, whereas sufficient risk aver-
sion can rationalize accepting the efficiency loss for insurance value. We now characterize
the conditions under which excess allocation upstream occurs.

2.5 Optimal capital allocation under uncertainty

The previous subsection established that excess allocation upstream generates two oppos-
ing effects: it provides valuable insurance against negative upstream productivity shocks
by reducing their impact on consumption, but it also comes at the cost of lower expected
consumption. To understand when the insurance benefits outweigh the efficiency costs,
we need to characterize optimal capital allocation under uncertainty.

We cannot generally solve for the optimal level of capital allocation under uncertainty in
closed form. Instead, we use the marginal expected utility ∂E[U(C)]/∂K1 evaluated at
the deterministic case Kdeterm

1 . If the marginal expected utility of capital upstream at the
deterministic allocation is positive, then it is optimal to increase the allocation of capital
upstream. Our analytical strategy relies on the fact that the marginal expected utility is
decreasing in K1, which follows from the general principle of decreasing marginal returns
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to inputs.

Figure 4: Marginal expected utility as a function of upstream capital allocation

Note: This figure illustrates our proof approach: when MEU evaluated at the deterministic opti-
mum Kdeterm

1 is positive, the stochastic optimum K∗
1 must be higher, resulting in excess allocation

to the upstream sector. The parameters used are σq = 0.25, γq = 0.5, risk aversion ϵ−1
c = 1, and

∆A = 0.5. The intersection of the marginal expected utility curve with the horizontal axis deter-
mines the stochastic optimum.

Figure 4 illustrates this approach by showing the marginal expected utility curve (solid
blue line) as a function of K1, calculated assuming σq = 0.25, γq = 0.5, risk aversion
ϵ−1

c = 1, shock distribution p1 = p2 = 0.5, and shock values Ā = 1 and ∆A = 0.5.
The intersection of this curve with the horizontal axis determines the stochastic optimum
K∗

1 , while the deterministic optimum Kdeterm
1 is shown by the vertical dotted-dashed red

line. The figure shows that when the marginal expected utility is positive at Kdeterm
1 ,

the stochastic optimum involves higher allocation to the upstream sector. This figure
represents the main idea of our proof for excess allocation upstream: the curvature and
position of the marginal expected utility function determine whether and how much
excess allocation occurs.

In order to evaluate the marginal expected utility of K1 at the deterministic allocation, we
first obtain consumption and the marginal productivity of K1 evaluated at the determin-
istic allocation. First, we evaluate the consumption level at the deterministic allocation:
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C̃S
∣∣
Kdeterm

1
=

(
1

γ
σq
q +

(
1 − γq

)σq

)(
A

1− 1
σq

1,S1

(
1 − γq

)σq + γ
σq
q

) σq
σq−1

.

Next, we evaluate the derivative of consumption with respect to K1 at the deterministic
solution in each of the two states S:

∂C̃S

∂K1

∣∣∣∣
Kdeterm

1

=

(
A

1− 1
σq

1,S1
− 1
)

(
A

1− 1
σq
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(
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)σq + γ
σq
q

) −1
σq−1

The FOC evaluated at the deterministic optimum is:

∂E[U(C)]
∂K1

∣∣∣∣
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1
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(
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1− 1
σq
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1− 1
σq

L
(
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σq
q

) ϵ−1
c σq−1
σq−1
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(
A

1− 1
σq

H − 1
)

(
A

1− 1
σq

H
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

,

where we have removed the positive constant
[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c
.

To show that we obtain excess allocation—that is, K∗
1 > Kdeterm

1 —we need to prove that
the marginal expected utility with respect to K1 is positive when evaluated at the deter-
ministic solution, ∂E[U(C)]

∂K1

∣∣∣
Kdeterm

1

> 0. This would indicate that the planner would increase

K1 beyond the deterministic optimum when facing uncertainty. Thus, we are trying to
find parametric conditions such that:

(1 − p1)
A

1−σ−1
q

H − 1(
A

1− 1
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H
(
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)σq + γ
σq
q
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q
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A

1− 1
σq

L
(
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) ϵ−1
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Proposition 2. If inputs are complements (σq < 1), the planner allocates excess capital to the
upstream sector (that is, K∗

1 > Kdeterm
1 ) under any of the following conditions, to a first-order

approximation:

1. If risk aversion is high enough, ϵ−1
c ≥ 1.

2. If risk aversion is moderate ϵ̄−1
c (∆A, γq) < ϵ−1

c < 1.

3. If risk aversion is low, 0 < ϵ−1
c < ϵ̄−1

c (∆A, γq), and the downstream sector’s importance in
production is sufficiently high, γq > γ̄q(∆A).

The thresholds γ̄q(∆A) and ϵ̄−1
c (∆A, γq) are determined by the size of productivity shocks and

production parameters.

The proof of this proposition is presented in Appendix A.7.

This proposition clarifies the role of risk aversion in determining when excess allocation
upstream is optimal. As we saw in subsection 2.4, with risk neutrality we have that excess
upstream allocation would be suboptimal since insurance provides no benefits. However,
a sufficiently risk-averse agent may accept this efficiency cost for the insurance value. The
proposition shows that risk aversion ϵ−1

c ≥ 1 is sufficient (but not necessary) for excess
allocation upstream to occur when inputs are complements. This threshold captures the
critical level of risk aversion where the marginal utility gains from insurance outweigh
the marginal productivity losses from misallocation.

Figure 5 provides computational verification of this theoretical result across a wide range
of parameter values. Panel (a) illustrates how excess allocation depends on the elasticity
of substitution between inputs and on risk aversion: with substitutable inputs (σq > 1),
capital is allocated in excess downstream, while with complementary inputs (σq < 1),
capital is generally allocated in excess upstream except when both risk aversion and the
elasticity of substitution are low. Panel (b) examines how excess allocation varies with the
downstream sector’s intensity share (γq) when inputs are complements (σq = 0.5). The
results show that excess allocation to the upstream sector occurs across most parameter
combinations, except when both risk aversion and the downstream intensity share are
low. The blue regions in both panels represent parameter combinations where excess
allocation to the upstream sector occurs, while the dashed black line in panel (b) shows
the boundary case of zero excess allocation.
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Figure 5: Excess allocation over the parameter space

(a) Excess allocation as a function of risk aver-
sion and elasticity of substitution

(b) Excess allocation as a function of down-
stream size and elasticity of substitution

Note: Excess allocation to the upstream sector. Panel (a) shows the percentage difference between stochas-
tic optimum K∗

1 and deterministic optimum Kdeterm
1 across elasticity of substitution σq and risk aversion ϵ−1

c ,
with γq = 0.5. The vertical line at σq = 1 marks the boundary between complementarity and substitutabil-
ity. Panel (b) shows excess allocation across downstream intensity share γq and elasticity of substitution
(σq), with ϵ−1

c = 2. In both panels, blue regions indicate positive excess allocation upstream, while red
regions indicate the opposite. Contour lines show the level of excess allocation. We use ∆A = 0.5 through-
out.

The analytical results in this section provide a characterization of optimal capital allo-
cation under uncertainty in networked production economies. Lemma 1 identifies the
issue with deterministic solutions: negative shocks upstream generate consumption dis-
asters, when inputs are complements. Proposition 3 shows how to use capital allocation
to attenuate consumption disasters: with complementarities, adding capital upstream
increases the quantity of the unproductive sector constraining production, while with
substitutability, adding capital downstream allows substitution from the unproductive to
the productive sector. Proposition 1 demonstrates that for the case of complementari-
ties, excess allocation upstream, even though it helps with consumption disasters, has a
productivity cost that makes expected consumption decrease, rendering such allocation
suboptimal for a risk-neutral agent. Mechanically, with complementarities, capital in sec-
tors that have CES complements becomes slack in good states because their complements
bind; for upstream sectors—whose output must be combined with both intra-nest and
downstream complements—this slackness is more pervasive, so reallocating capital up-
stream shifts units from binding, fully productive uses to uses that are frequently slack
or productivity-penalized, lowering expected consumption. Finally, Proposition 2 charac-
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terizes the level of risk aversion that makes excess allocation upstream optimal, showing
that risk aversion ϵ−1

c ≥ 1 is sufficient (but not necessary) for this outcome.

Having established the theoretical foundations of capital allocation under uncertainty in
a stylized two-sector framework, we now turn to a full dynamic quantitative model with
input-output and investment goods networks to examine these mechanisms in a richer,
more realistic setting.

3 Quantitative Model

We introduce here the full quantitative model. There are a finite number of perfectly
competitive sectors indexed by j = 1, ..., N. A representative household consumes goods
and supplies labor to firms in each sector. Time is discrete and infinite.

3.1 Households

The representative household has the following preferences over consumption of each
good j, which we denote Cjt, and labor on industry j, which we denote Ljt:

U =
∞

∑
t=0

βt

 1
1 − ϵ−1

c

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

1−ϵ−1
c
 where

Ct =

(
N

∑
j=1

ξ
1
σc
j (Cjt)

1−σ−1
c

) 1
1−σ−1

c
,

N

∑
j=1

ξ j = 1 and Lt=

(
N

∑
j=1

(Ljt)
1+σ−1

l

) 1
1+σ−1

l

where β is the discount factor, ϵc is the intertemporal elasticity of substitution (or the
inverse of the relative risk aversion), ϵl is the Frisch elasticity of labor, ξ j captures the
time-invariant preference for good j, σc is the elasticity of substitution across goods,
σl controls the degree of labor reallocation between sectors, and θ is a normalization
constant.
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3.2 Firms

The representative firm in sector j produces gross output Qjt using capital Kjt, labor Ljt,
and intermediate inputs Mjt.7 The production function is:

Qjt =
[
(µj)

σ−1
q
(
Yjt
)1−σ−1

q +
(
1 − µj

)σ−1
q
(

Mjt
)1−σ−1

q
] 1

1−σ−1
q , where

Yjt = Ajt

[
(αj)

σ−1
y
(
Kjt
)1−σ−1

y +
(
1 − αj

)σ−1
y
(

Ljt
)1−σ−1

y
] 1

1−σ−1
y .

Variable Yjt denotes value-added production, αj captures the share of capital in value-
added, µj parametrizes the share of materials in gross output, σq is the elasticity of sub-
stitution between primary outputs (e.g. capital and labor) and materials, and Ajt is an
industry-specific shock to value added productivity that follows the process

log Ajt+1 = ρj log Ajt + εA
jt+1

where ρj represents industry-specific persistence and the shocks εA
jt+1 are distributed mul-

tivariate normal with mean 0 and variance-covariance matrix ΣA. The industry-specific
productivity shocks may be correlated, that is, the variance-covariance matrix may not be
diagonal.

Firms can accumulate capital by producing an industry-specific investment good Ijt fac-
ing capital adjustment costs denoted by Φjt:

Kjt+1 = (1 − δj)Kjt + Ijt − Φjt,

Φjt =
ϕ

2

(
Ijt

Kjt
− δj

)2

Kjt

where δj is the industry-specific depreciation rate, and ϕ parametrize the adjustment cost
function.

The investment good is produced by bundling goods produced by other industries:

Ijt =

(
N

∑
i=1

(
γI

ij

)σ−1
I (

Iijt
)1−σ−1

I

) 1
1−σ−1

I
, where

N

∑
i=1

γI
ij = 1

7This variable is also labeled as material in some papers (e.g., Rotemberg and Woodford, 1993).
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where γI
ij represents the importance of good i in the production of the investment good

for sector j, and σI is the elasticity of substitution between inputs of the investment
bundle. In the same vein, the intermediate input is produced using the following bundle:

Mjt =

(
N

∑
i=1

(
γm

ij

)σ−1
m (

Mijt
)1−σ−1

m

) 1
1−σ−1

m
, where

N

∑
i=1

γm
ij = 1.

Parameters γm
ij and σm are analogous to the parameters γI

ij and σI discussed for the
investment bundle.

3.3 Market Clearing and the Planner’s First Order Conditions

The market clearing conditions for each good is:

Qjt = Cjt +
N

∑
i=1

(
Mjit + Ijit

)
,

which implies that gross output equals final consumption, intermediate inputs, and in-
vestment goods.

In order to obtain the first-order conditions, we will use the fact that the model satisfies
the first welfare theorem, so we can formulate the equilibrium allocations as the solution
of a planning problem. The planner’s Lagragian is given by:
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[
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]]}

where Pk
jt is the Lagrange multiplier associated to the capital accumulation constraint, Pjt

is the Lagrange multiplier associated to the market clearing condition.
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In Appendix B, we provide a detailed derivation of all first-order conditions and the
resulting system of equations. We also calculate welfare, the deterministic steady state,
and the closed form solution for the expenditure shares, to be used for the calibration.

4 Calibration and solution method

We calibrate the model in two steps: first, by directly setting parameters from data or
existing literature, and second, by internally calibrating remaining parameters to match
key empirical moments. Table 1 summarizes all parameter values and their sources.

For our dataset, we rely heavily on the empirical work of Vom Lehn and Winberry
(2022).8. The dataset spans 1948-2018 and draws primarily from BEA Tables. The BEA
Fixed Assets data is used to construct the investment network and depreciation param-
eters; Input-Output data provides the intermediates network parameters; and GDP-by-
Industry data yields value added and employment observations. The aggregation level
is N = 37 private non-farm sectors, with non-manufacturing sectors at the 2-digit NAICS
level and manufacturing sectors at the 3-digit level.

4.1 Externally-calibrated parameters

Household preferences. At annual frequency, we set the discount factor (β) to 0.96,
implying a 4% real interest rate in the deterministic steady state. The intertemporal
elasticity of substitution (ϵc) is 0.5, corresponding to a risk aversion of 2. The Frisch
Elasticity of Labor Supply (ϵl) is 0.5.

Elasticities of substitution. Following Atalay (2017) and Vom Lehn and Winberry (2022),
we set the elasticity of substitution between intermediate goods (σm) to 0.1. Based on
Oberfield and Raval (2021), the elasticity between capital and labor (σy) is 0.8. We set the
elasticities between value-added and intermediates (σq), between investment goods (σI),
and between consumption goods (σc) to 0.5.9

Depreciation. Capital depreciation rates (δj) reflect each sector’s implied depreciation

8Data can be downloaded https://sites.google.com/site/cvomlehn/research?authuser=0 Our model
generalizes some assumptions and functional forms used by Vom Lehn and Winberry (2022), so our
calibration strategy differs. In particular, we have imperfect labor reallocation, and general CES for all
aggregators. This mostly modify how to calibrate TFP shocks, and we need to add additional empirical
targets, as explained below.

9Limited empirical evidence exists for these elasticities as most studies assume Cobb-Douglas. Our
robustness analyses confirm that results remain qualitatively unchanged with this parameterization.
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Table 1: Model Calibration

Parameter Symbol Value Source

Panel A: External Parameters

Discount factor β 0.96 Standard
IES ϵc 0.5 Standard
Frisch elasticity ϵl 0.5 Standard
Intermediate elasticity σm 0.1 Atalay (2017)
K-L elasticity σy 0.8 Oberfield and Raval (2021)
VA-Int. elasticity σq 0.5 Intermediate Value
Investment elasticity σI 0.5 Intermediate Value
Consumption elasticity σc 0.5 Intermediate Value
Depreciation δj By sector BEA (1947-2018)
TFP persistence ρj By sector Solow residuals
TFP covariance ΣA By sector Solow residuals

Panel B: Internal Parameters

HH preferences ξ j By sector Exp. shares
VA intensity µj By sector Exp. shares
Capital intensity αj By sector Exp. shares
Investment network γI

ij By sector-pair Exp. shares
I-O network γM

ij By sector-pair Exp. shares
Capital adj. cost ϕ Calibrated Inv. volatility
Labor realloc. σl Calibrated Labor volatility

Notes: Panel A shows parameters from data or literature. Panel B shows parameters matched
to empirical moments. Model calibrated annually with N = 37 sectors (BEA 1948-2018). TFP
processes detrended using fourth-order log-polynomial.

rates derived from BEA Fixed Assets data (1947-2018). Each δj is calculated by averaging
the annual depreciation rates, weighting by the quantity of each capital good type used
in sector j.

TFP. Parameters governing the TFP process (ρj, ΣA) are calibrated using sector-level
Solow residuals. Given our CES specification for value added, TFP variation is computed
as:
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where αjt denotes the capital share of sector j at time t. We allow factor shares to vary over
time to account for technological changes, though results remain robust with constant
shares. Capital input (Kjt) is constructed using the perpetual inventory method, with
initial values from BEA nominal year-end capital stock data for 1948. We detrend sector-
level TFP using a fourth-order log-polynomial, balancing nonlinearity capture against
overfitting.10

4.2 Internally-calibrated parameters

We move now to the internally-calibrated parameters.

Expenditure shares, IO network and investment networks. Given that we have general
CES aggregators at all levels, expenditure shares do not match exactly intensity shares
of the corresponding CES aggregator. For example, 1 − α is not exactly the labor share,
thought it is proportional to it. This also applies to the input-output network and the
investment network, which also use CES aggregators. In Appendix B.10, we describe
how we can obtain an analytic expression for expenditure shares for all aggregators in
the model. Using this expression, we iterate on the intensity shares of the model until the
expenditure shares in the deterministic steady state matches the data. Specifically, this
procedure is used to calculate the intensity parameters associated with household prefer-
ences over goods (ξ j), value-added intensity share (µj), capital share( αj), the investment
network (γI

ij), and the input-output network (γM
ij ).

Parameters set to match volatilities. The capital adjustment cost parameter (ϕ) matches
the weighted average volatility of sectoral investment, while the labor reallocation pa-
rameter (σl) matches the weighted average volatility of sectoral labor.

4.3 Solution method

Our analysis of preallocation and nonlinear shock propagation requires a global solution
method. With this solution in hand, we can simulate the economy to compute the ergodic
distribution of sectoral and aggregate variables, capturing both nonlinear shock propa-
gation and the anticipation effects of risk on agents’ behavior. This ergodic distribution
centers around the stochastic steady state (SSS)—defined as the equilibrium state where
agents fully internalize the impact of future shocks on equilibrium outcomes, but current
shock realizations are zero. This approach differs fundamentally from standard first-

10Results remain stable with lower-order polynomial detrending.
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or second-order perturbation methods, which approximate the solution locally around
the deterministic steady state (DSS)—a steady state where shocks are not just zero but
impossible, precluding any preallocation behavior.

The global solution of our model presents a significant computational challenge. With
37 sectors and two state variables per sector (capital and TFP), we must solve a stochas-
tic dynamic programming problem with 74 state variables —pushing the boundaries of
current computational capabilities. We overcome this challenge by extending the ’deep
equilibrium nets’ method developed by Azinovic et al. (2022) to allow for high dimen-
sional shocks, through the use Monte Carlo simulation to build the expectation terms
that appear in theEulerr equations.

While we provide detailed technical documentation in Appendix C, the core approach
can be summarized as follows: We approximate all equilibrium objects (policies and
prices) as functions of the state variables using deep neural networks. The solution pro-
cess then reduces to training these networks by minimizing violations of the equilibrium
conditions, which consists of Euler equations and technological constraints. This is ac-
complished through an iterative procedure that alternates between simulation and opti-
mization steps. In each iteration, we first simulate the economy using current network
parameters, then use the simulated data to update these parameters, minimizing equi-
librium condition errors. This process continues until we achieve the desired numerical
precision.

5 Quantitative results

5.1 Ergodic distribution

We start by analyzing how risk can lead to preallocation in the full model. Armed with
our new solution method, we consider three scenarios differing on the shock volatility.
First, the baseline scenario, discussed in Section 4. Second, a low volatility scenario, in
which the volatility of all sectoral TFP shocks is divided by two. This scenario gets us
closer to the (log-)linear model.11 Finally, a high-volatility scenario in which shocks are 1.5
times as volatile as in the baseline.

We solve the model nonlinearly for each of these scenarios. Then we compute the er-
godic distribution by simulating 500,000 periods using in the three cases the volatility

11The log-linear model is computed by solving the model using a first-order perturbation method.
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of the baseline scenario. That implies that the allocations in the high- and low-volatility
scenarios are suboptimal, as the planner forecasts volatilities that do not materialize in
the simulation. Results are displayed in Figure 6. Each panel displays the ergodic dis-
tribution of some aggregate variable, with a dashed vertical line marking the position of
the DSS. Table 2 summarizes this information.
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Figure 6: Ergodic distribution of key aggregate variables

(a) Consumption (b) Labor

(c) GDP (d) Investment

(e) Intermediates (f) Capital

Note: The figure shows the ergodic distribution of specific aggregate variables, using the 500,000
periods simulation of the global solution. For each variable, we show the case for three policy
functions: baseline policy, the policy trained under low volatility (shocks scaled by 0.5), and the
policy trained under high volatility (shocks scaled by 1.5). The figures are calculated using the
same shocks for the four policies, that is, the only thing that varies is the policy function. The
baseline volatility was used to simulate the shocks.30



Variable Policy Mean (%) Sd (%) Skewness Kurtosis

Consumption

Benchmark -1.4 2.1 0.089 -0.102
High volatility -2.0 2.0 0.145 -0.193
Low volatility -0.3 2.3 0.067 -0.059
Log-linear 0.0 3.1 -0.001 -0.028

Labor

Benchmark -0.5 1.2 0.076 -0.076
High volatility -0.7 1.3 0.131 -0.138
Low volatility -0.1 1.2 0.059 -0.047
Log-linear 0.0 1.3 -0.002 -0.019

GDP

Benchmark -0.8 3.4 0.073 -0.062
High volatility -1.0 3.4 0.086 -0.102
Low volatility -0.1 3.5 0.064 -0.038
Log-linear 0.0 3.8 0.000 -0.016

Investment

Benchmark -1.3 6.9 -0.020 -0.001
High volatility -1.4 6.7 -0.019 -0.014
Low volatility -0.5 7.1 -0.035 0.001
Log-linear 0.0 7.9 0.001 0.012

Intermediates

Benchmark -1.5 3.7 -0.002 -0.025
High volatility -1.8 3.7 0.019 -0.067
Low volatility -0.5 3.9 -0.024 -0.005
Log-linear 0.0 4.2 -0.002 -0.009

Capital

Benchmark -1.2 3.3 0.056 -0.027
High volatility -1.4 3.2 0.083 -0.064
Low volatility -0.3 3.3 0.045 -0.016
Log-linear 0.0 3.7 0.011 -0.016

Table 2: Descriptive statistics of key aggregate variables
Note: This table shows descriptive statistics of aggregate variables, using the 500,000 periods
simulation of the global solution. For each variable, we show the case for the four policy functions:
baseline policy, the policy trained under low volatility (shocks scaled by 0.5), the policy trained
under high volatility (shocks scaled by 1.5), and the policy trained under log-linear approximation
(no expected shock as it is a perturbation around the DSS). The statistics are calculated using
the same shocks for the four policies, that is, the only thing that varies is the policy function.
The benchmark volatility, calculated from data, was used to simulate the shocks. Mean and
standard deviation are expressed in percentage deviations from the DSS for easier interpretation
(for example, -1.4% means the variable is on average 1.4% below its DSS value). Skewness and
kurtosis are calculated over variables expressed in log deviations from the DSS.

Several important results emerge. First, all aggregate variables display a mean below
the DSS. That implies that once aggregate risk is factored in, agents find it optimal to
reduce their investment and labor supply in a more volatile environment. This translates
into lower capital and labor, and hence lower consumption and output. This mechanism
is amplified as shock volatility increases. That showcases how the model nonlinearity
becomes more prevalent as shocks are more volatile. Notice how the impact is hetero-
geneous across variables. While a threefold increase in volatility between the low- and
high-volatility scenarios implies a sevenfold decrease in consumption, from -0.3 percent

31



to -2.0 percent, it is only threefold in the case of investment, from -0.5 percent to -1.3
percent.

Second, the standard deviation of all aggregate variables decreases with expected shock
volatility. In other words, in counterfactual economies with higher sectoral TFP volatility,
the standard deviation of key macro variables increases less than one-to-one The planner
is thus trading a lower mean by a reduction in standard deviation as shock variance
increases. This is in line with the theoretical results presented in Section 2. Furthermore,
the implied aggregate volatility is substantial – e.g. the standard deviation of annual
GDP is 3.4%.

Third, the economy displays negative excess kurtosis and a negligible degree of skewness.
The negative kurtosis reflects the fact that the economy reduces large excursions from the
mean, that is, the economy displays ’thinner tails’ than the (log-)normal. This reflects the
fact that policy functions bend for large shock values in the global solution, whereas they
are (log-)linear in the linear solution (we will return to this point in subsection 5.3).

5.2 Stochastic steady state

We next analyze the SSS. A comparison between Table 2 and 3 clearly shows how the SSS
is very close to the mean of the ergodic distribution. The advantage of the SSS is that
it allows us to analyze in detail the sectoral characteristics of the equilibrium under the
global solution.

Policy Consumption (%) Labor (%) GDP (%) Investment (%) Intermediates (%) Capital (%)

Low Volatility -0.43 -0.16 -0.28 -0.37 -0.43 -0.45
Baseline -1.56 -0.58 -1.02 -1.32 -1.50 -1.48
High Volatility -1.89 -0.62 -1.07 -1.14 -1.47 -1.21

Table 3: Aggregate Variables in Stochastic Steady State
Note: This table shows aggregate variables in the SSS. We show the case for the baseline model,
the model with low volatility (shocks scaled by 0.5), and the model with high volatility (shocks
scaled by 1.5). Values are expressed as percentage deviations from the DSS (for example, -1.56%
means consumption is 1.56% below its DSS value). The SSS is calculated by sampling 1,000 points
from the full simulation, and simulating forward but setting shocks to zero. Then, we take the
resulting 1,000 ending points, verify they are the same within 0.01% tolerance, and average them.

Figure 7 displays the capital allocation across sectors as a difference with respect to the
DSS. This reflects how the anticipation of aggregate risk affects agents’ decisions regard-
ing investment.
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From the aggregate results above, we know that aggregate capital is lower in the SSS
than in the DSS. This result, however, masks a considerable degree of sectoral hetero-
geneity. In the baseline scenario, aggregate capital is 1.5 percent lower in the SSS than in
the DSS. This translates into a decline in capital across most sectors of a magnitude be-
tween roughly 1-2 percent (blue). Capital is particularly penalized in Printing and Food
Services. There is, however, an increase in the stock of capital in one upstream sector:
Mining, Oil, and Gas.

This heterogeneous capital allocation gets much amplified in the high-volatility scenario.
While most sectors experience a decline of a similar magnitude as in the baseline, the
striking exceptions are Petroleum and Mining, Oil, and Gas, which get an increase larger
than 2 percent compared to the DSS. The SSS does exhibit preallocation towards upstream
sectors, in line with the theoretical prescriptions of Section 2.
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Figure 7: Distribution of Capital in the Stochastic Steady State

Note: This figure shows the capital of each sector in the stochastic steady state. We show the case
for the baseline model, the model with low volatility (shocks scaled by 0,5), and the model with
high volatility (shocks scaled by 1.5). Sectors are ordered using the value for the high volatility
policy. Variables are in log deviations from the deterministic steady state, so 0.05 can be inter-
preted as 5% above the deterministic steady state. The stochastic steady state is calculated by
sampling 1000 points from the full simulation and simulating forward trajectories with the shocks
set to zero. Then, we take the resulting 1000 ending points, verify they are the same within 0.01%
tolerance, and average them.

Figure 8 shows the distribution of labor in the stochastic SSS, compared to the DSS. We
observe the opposite pattern compared to the distribution of capital. In the high volatility
case, labor is lower in Petroleum and Mining, Oil and Gas. Notice, however, how SSS of
labor is not exactly the specular image of that of capital, as Machinery and Electrical are
the two sectors less penalized in terms of labor whereas Food Services are Printing were
the two sectors more penalized of capital..
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Figure 8: Distribution of Labor in the Stochastic Steady State

Note: This figure shows labor of each sector in the stochastic steady state. We show the case for
the baseline model, the model with low volatility (shocks scaled by 0,5), and the model with high
volatility (shocks scaled by 1.5). Sectors are ordered using the value for the high volatility policy.
Variables are in log deviations from the deterministic steady state, so 0.05 can be interpreted as
5% above the deterministic steady state. The stochastic steady state is calculated by sampling 1000
points from the full simulation and simulating forward trajectories with the shocks set to zero.
Then, we take the resulting 1000 ending points, verify they are the same within 0.01% tolerance,
and average them.

Still, as we can see in Figure 9, value-added production is higher in those upstream sec-
tors such as Mining, Oil and Gas, and Petroleum, so the higher level of capital dominates
the lower level of labor.

As we discuss in Section 5.3 next, this distributional pattern in the SSS increases resilience
to negative shocks, since capital takes time to accumulate and cannot be readily adjusted
as a response to a negative shock, while labor can be more easily reallocated.
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Figure 9: Distribution of Value Added in the Stochastic Steady State

Note: This figure shows value added production of each sector in the stochastic steady state. We
show the case for the baseline model, the model with low volatility (shocks scaled by 0,5), and the
model with high volatility (shocks scaled by 1.5). Sectors are ordered using the value for the high
volatility policy. Variables are in log deviations from the deterministic steady state, so 0.05 can be
interpreted as 5% above the deterministic steady state. The stochastic steady state is calculated by
sampling 1000 points from the full simulation and simulating forward trajectories with the shocks
set to zero. Then, we take the resulting 1000 ending points, verify they are the same within 0.01%
tolerance, and average them.

5.3 Impulse Responses

To examine the dynamic properties of the global solution, we analyze impulse response
functions following a large sectoral productivity shock. Figure 10 shows how aggregate
consumption responds to a negative 20% shock to the TFP of Mining, Oil, and Gas, which
is a key upstream sector characterized by substantial capital preallocation, as previously
discussed. The figure compares three solution methods: our global solution (black lines),
a log-linear approximation (red line), and a perfect foresight solution (blue line).12 The
global solution results include the baseline (solid line), as well as the low- (dashed) and

12Given the nonlinearity of the model, these are generalized impulse responses.
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high- (dotted-dashed) volatility scenarios.

Figure 10: Impulse Response of Aggregate Consumption to a Mining, Oil, and Gas Shock

Note: This figure shows the impulse response of aggregate consumption to a 20% negative TFP
shock in Mining, Oil, and Gas (an upstream sector). The black line represents the response using
the global solution method, the red line shows the response using a log-linear approximation, and
the blue line shows the perfect foresight solution. For the global solutions, the vertical axis shows
log deviations relative to the stochastic steady state, while for the log-linear and perfect foresight
solutions we show percentage deviations from the deterministic steady state.

The perfect-foresight solution evaluates transitional dynamics after an unexpected one-off
’MIT shock’ when the economy starts at the DSS. It coincides with the log-linear approxi-
mation for small shocks (Boppart et al., 2018). In the case of a large shock, such as the one
considered here, the two responses diverge as the perfect-foresight solution captures the
nonlinear elements of the response. We see that nonlinearities amplify the impact on ag-
gregate consumption by a 15%. This nonlinear amplification of unanticipated upstream
shocks isin line with the results by Baqaee and Farhi (2019).

We also compare the perfect foresight response with that under the baseline global so-
lution. This comparison captures the effect of input preallocation, since the baseline
solution deviates from the SSS due to ex-ante uncertainty, while the perfect-foresight so-
lution deviates from the DSS. Figure 10 shows that the baseline policy is attenuated by
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50% compared to the perfect foresight solution.

The fact that the baseline model with preallocation dampens the response to sectoral
shocks compared to both the linear and perfect foresight cases is similar for shocks in
other sectors, both upstream and downstream, as displayed in Appendix D.13. The fact
that the planner dampens the consumption response through capital preallocation ex-
plains why consumption volatility is lower under the global solution, as shown in Table
2 above.

5.4 Welfare Cost of Business Cycles

Finally, we conclude this section by looking at the welfare implications of business cycles
under the light of our model. Table 4 reports different measures of welfare costs, always
defined in consumption-equivalent terms.14

Policy Full Nonlinear (%) Loglinear (%) C fixed at DSS (%) L fixed at DSS (%) Mean at DSS (%)

Low Volatility -0.46 -0.05 0.16 -0.63 -0.03
Baseline -1.05 -0.11 0.41 -1.51 -0.06
High Volatility -1.50 -0.19 0.57 -2.18 -0.10

Table 4: Welfare Cost of Business Cycle
Note: This table shows the welfare cost of business cycles under different scenarios. All values
are expressed as percentage changes in consumption equivalent terms (for example, -1.05% means
households would need to decrease their consumption by 1.05% in the deterministic steady state
to be indifferent between that and living in the stochastic economy). We show results for three
cases: baseline model, model with low volatility (shocks scaled by 0.5), and model with high
volatility (shocks scaled by 1.5). The welfare cost is calculated as described in subsection B.7,
using 1,000 different trajectories from the full simulation, each of length 2,000 periods. We then
calculate the mean welfare at the first period of each slice. The ”Full Nonlinear” and ”Loglinear”
columns show the welfare cost using the global solution and loglinear approximation respectively.
”C fixed at SS” shows the cost when labor follows the observed paths but consumption is fixed at
the deterministic steady state. ”L fixed at SS” fixes labor at the deterministic steady state. ”Mean
at SS” shows the pure effect of volatility by renormalizing the observed trajectories so their mean
matches the deterministic steady state.

First, we display the losses in the global solution under the baseline calibration (1.05
percent), which are one order of magnitude larger than if the model is solved using
loglinear methods (0.11 percent). This result makes evident how linear approximations
may be greatly downplaying the true costs of aggregate fluctuations. This result is a direct

13There we show impulse responses for shocks to construction, machinery, petroleum, retail, and real
estate.

14They are defined as the consumption amount that the representative household would be willing to
pay in order to live in a counterfactual economy without shocks.
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consequence of the fact that mean consumption is lower in the SSS than in the DSS, and
thus the mean consumption along the business cycle falls in the global solution.

Naturally, there are two opposing effects. The SSS displays lower consumption, and
lower labor supply, where the latter is welfare-improving. To capture exclusively the
impact of consumption on welfare, in the second column we recompute welfare in the
global solution keeping labor constant at its DSS value. Welfare now increases, reflecting
the lower labor in the SSS. Conversely, if we keep labor fixed at its DSS value in the third
column, welfare losses are amplified as the only effect is the fall in consumption.

The last column captures exclusively the impact of volatility on the nonlinear model,
abstracting from the difference in means. It shows how welfare losses are higher under
the loglinear solution, reflecting the higher volatility in that case.

Finally, we compare the low- and high- volatility scenarios. The welfare loss in the high-
volatility scenario is 1.5%. This reflects both the lower mean in this case and the higher
volatility.

Our results invite us to revisit the traditional view of low welfare costs of business cycles
once we abandon the unrealistic assumptions of one single sector and local dynamcis
around the DSS.

6 Conclusion

This paper demonstrates that, in dynamic multisector economies, optimal capital allo-
cation by a social planner involves deliberately over-investing in upstream sectors to
insure against the risk of severe economic downturns caused by sectoral shocks cas-
cading through the network. While this strategy effectively mitigates the likelihood of
catastrophic aggregate disruptions, it comes at the cost of lower average consumption,
resulting in a much higher welfare cost of business cycles than predicted by standard
linear models.

Using deep learning techniques to solve a high-dimensional, US-calibrated model, we
show that the ergodic distribution of the economy features higher capital in key up-
stream sectors, realistic aggregate volatility, and a substantial welfare loss. This high-
lights a fundamental trade-off between resilience to rare disasters and average economic
performance. Our work underscores the importance of accounting for nonlinearities and
network structure in macroeconomic policy design.
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A Two sector model appendix

A.1 Setting

The full description of the model is presented in Section 2. Here we briefly summarize
the key equations needed for the proofs.

This vertical network economy consists of two sectors. Sector 1 (“upstream”) produces
the intermediate good by using capital. In contrast, sector 2 (“downstream”) produces the
final good using both capital and the intermediate good. Both sectors are subject to gross-
output (i.e., Hicks-neutral) productivity shocks. The planner is endowed with one unit
of capital K which must be allocated between the two sectors K1 and K2. A key feature of
the problem is that the capital allocation decision must be made before the realization of
the total factor productivity shock, so we have an allocation decision under uncertainty.
Once the shock is realized, no further decisions are required, as the quantities of goods
produced and consumed are fully determined by the preallocated capital. Let Qi, Ki

represents gross-output and capital in sector i = {1, 2}, and C represents consumption of
the final good. The problem is defined by the following equations:

K1 + K2 = 1, Q1 = A1K1, Q2 = A2

(
(1 − γq) (Q1)

σq−1
σq + γq (K2)

σq−1
σq

) σq
σq−1

, C = Q2

where A1 and A2 are independent random productivity for sectors 1 and 2 respectively.
Both random variables take either a low value AL = Ā − ∆A or a high value AH = Ā +

∆A. For shock A1, the probability of low state is p1, while for shock A2, the probability
of the low state is p2. Unless stated otherwise, we assume that p1 = p2 = 1/2 in the
proofs below. σq is the elasticity of substitution in production between the two goods.
The planner maximizes:

E[U(C)] = E

[
C1−ϵ−1

c

1 − ϵ−1
c

]

where ϵc is the intertemporal elasticity of substitution (so ϵ−1
c is risk aversion).
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A.2 First-order Conditions and Steady-state Solution

If we replace K2 = 1 − K1, we have an unconstrained problem with one control vari-
able, K1. Following our definition of normalized aggregate consumption C̃ = C/A2,
normalized consumption in each scenario can be written as

C̃S =

(
(1 − γq) (AsK1)

σq−1
σq + γq (1 − K1)

σq−1
σq

) σq
σq−1

, S ∈ {L, H}

Now we can write the expected utility in terms of per-unit-of-efficiency consumption C̃S1 :

E[U(C)] = E

[
C1−ϵ−1

c

1 − ϵ−1
c

]

= E

p1A1−ϵ−1
c

2
C̃1−ϵ−1

c
L

1 − ϵ−1
c

+ (1 − p1)A1−ϵ−1
c

2
C̃1−ϵ−1

c
H

1 − ϵ−1
c


=

p1p2A1−ϵ−1
c

2,L
C̃1−ϵ−1

c
L

1 − ϵ−1
c

+ p1(1 − p2)A1−ϵ−1
c

2,H
C̃1−ϵ−1

c
L

1 − ϵ−1
c

+(1 − p1)p2A1−ϵ−1
c

2,L
C̃1−ϵ−1

c
H

1 − ϵ−1
c

+ (1 − p1)(1 − p2)A1−ϵ−1
c

2,H
C̃1−ϵ−1

c
H

1 − ϵ−1
c


=
(

p2A1−ϵ−1
c

2,L + (1 − p2)A1−ϵ−1
c

2,H

) 1
1 − ϵ−1

c

[(
p1C̃1−ϵ−1

c
L + (1 − p1)C̃

1−ϵ−1
c

H

)]
.

Let Φ be the positive constant outside the brackets.15 Since Φ is constant, we can simplify
our analysis by defining a normalized utility function Ũ(C̃) = U(C̃)/Φ. Maximizing
E[U(C)] is equivalent to maximizing E[Ũ(C̃)].

Before we calculate the first order condition (F.O.C.), we will calculate the derivative of

15Φ =
(

p2 A1−ϵ−1
c

2,L + (1 − p2)A1−ϵ−1
c

2,H

)
1

1−ϵ−1
c
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C̃S with respect to K1:

∂C̃S

∂K1
=

σq

σq − 1

(
(1 − γq) (ASK1)

σq−1
σq + γq (1 − K1)

σq−1
σq

) σq
σq−1−1

×
(

σq − 1
σq

)(
(1 − γq) (ASK1)

−1
σq AS − γq (1 − K1)

−1
σq

)
, S ∈ {L, H}

= C̃
1

σq
S

(
(1 − γq) (ASK1)

−1
σq AS − γq (1 − K1)

−1
σq

)
, S ∈ {L, H}

=

(
(1 − γq)

(
ASK1

C̃S

)−1
σq

AS − γq

(
1 − K1

C̃S

)−1
σq

)
, S ∈ {L, H}

Then, the F.O.C. is:

∂E[U(C)]
∂K1

=

{
p1

1

C̃ϵ−1
c

L

(
(1 − γq)

(
ALK1

C̃L

)−1
σq

AL − γq

(
1 − K1

C̃L

)−1
σq

)

+(1 − p1)
1

C̃ϵ−1
c

H

(
(1 − γq)

(
AHK1

C̃H

)−1
σq

AS − γq

(
1 − K1

C̃H

)−1
σq

)}
× E{A1−ε−1

c
2 }

= 0

We can then pin down steady-state solution.

(
(1 − γq)

(
K1

C̃S

)−1
σq

Ā
σq−1

σq − γq

(
1 − K1

C̃S

)−1
σq
)

= 0
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or

(1 − γq)

(
Kdeterm

1

C̃S

)−1
σq

Ā
σq−1

σq = γq

(
1 − Kdeterm

1

C̃S

)−1
σq

,

(
Kdeterm

1

1 − Kdeterm
1

)−1
σq

=
γq

1 − γq
Ā

1−σq
σq ,

Kdeterm
1

1 − Kdeterm
1

=

(
1 − γq

γq

)σq

Āσq−1,

Kdeterm
1 =

(
1 − γq

γq

)σq

Āσq−1 − Kdeterm
1

(
1 − γq

γq

)σq

Āσq−1,

Kdeterm
1 =

(
1−γq

γq

)σq
Āσq−1(

1−γq
γq

)σq
Āσq−1 + 1

,

Kdeterm
1 =

(
1 − γq

)σq Āσq−1

γ
σq
q Āσq−1 +

(
1 − γq

)σq
.

When we assume Ā = 1

Kdeterm
1 =

(
1 − γq

)σq

γ
σq
q +

(
1 − γq

)σq

A.3 Proof for Lemma 1: Asymmetric Impacts of Negative and Positive

Shocks

We firstly establish a baseline result that around the deterministic allocation of capital,
negative upstream shocks have larger effects than positive ones, whereas downstream
shocks exhibit symmetric effects.

Lemma. For σq < 1, upstream shocks generate negatively skewed responses in consumption
while downstream shocks generate symmetric impact:

1. Upstream shocks (negatively skewed):

IR−,upst(Kdeterm) > IR+,upst(Kdeterm) =⇒ Skewupst(Kdeterm) < 0

2. Downstream shocks (symmetric):

IR−,downst(Kdeterm) = IR+,downst(Kdeterm) =⇒ Skewdownst(Kdeterm) = 0
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Proof. Downstream Shock. We start the proof by discussing the symmetric result for
downstream shock.. The IRFs for negative downstream shock a.nd positive upstream
shock are given by

IR−,downst(Kdeterm
1 ) ≡

∣∣∣CĀL(K
determ
1 )− CĀĀ(K

determ
1 )

∣∣∣ = CĀĀ(K
determ
1 )− CĀL(K

determ
1 )

= ∆AC̃Ā(K
determ
1 )

IR+,downst(Kdeterm
1 ) ≡

∣∣∣CĀH(K
determ
1 )− CĀĀ(K

determ
1 )

∣∣∣ = CĀH(K1)− CĀĀ(K
determ
1 )

= ∆AC̃Ā(K
determ
1 )

Therefore, two IRFs have the same size.

IR+,downst(Kdeterm
1 )− IR−,downst(Kdeterm

1 ) = 0.

Upstream Shock. Around the deterministic allocation of capital, the IRF for negative
upstream shock and that for positive upstream shock are given by

IR−,upst(Kdeterm
1 ) ≡

∣∣∣CLĀ(K
determ
1 )− CĀĀ(K

determ
1 )

∣∣∣ = CĀĀ(K
determ
1 )− CLĀ(K

determ
1 )

IR+,upst(Kdeterm
1 ) ≡

∣∣∣CHĀ(K
determ
1 )− CĀĀ(K

determ
1 )

∣∣∣ = CHĀ(K1)− CĀĀ(K
determ
1 )

Recall that the steady-state capital allocation is given by

Kdeterm
1 =

(1 − γq)
σq

(1 − γq)
σq + γ

σq
q

Therefore,

CĀĀ(K
determ
1 )

= Ā

(
(1 − γq)

(
Kdeterm

1

) σq−1
σq Ā

σq−1
σq + γq

(
1 − Kdeterm

1

) σq−1
σq

) σq
σq−1

CLĀ(K
determ
1 ) = Ā

(
(1 − γq)

(
Kdeterm

1

) σq−1
σq (AL)

σq−1
σq + γq

(
1 − Kdeterm

1

) σq−1
σq

) σq
σq−1

CHĀ(K
determ
1 ) = Ā

(
(1 − γq)

(
Kdeterm

1

) σq−1
σq (AH)

σq−1
σq + γq

(
1 − Kdeterm

1

) σq−1
σq

) σq
σq−1
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We need to show that when σq < 1,

CĀĀ(K
determ
1 )− CLĀ(K

determ
1 ) > CHĀ(K

determ
1 )− CĀĀ(K

determ
1 )

CĀĀ(K
determ
1 ) >

1
2

CHĀ(K
determ
1 ) +

1
2

CLĀ(K
determ
1 )

CĀĀKdeterm
1 ) > E

P(A1=AH)= 1
2
{CSĀ(K

determ
1 )}

Since

∂

(
(1 − γq)

(
Kdeterm

1
) σq−1

σq (A1)
σq−1

σq + γq
(
1 − Kdeterm

1
) σq−1

σq

) σq
σq−1

∂A1

= (1 − γq)
(

Kdeterm
1

) σq−1
σq A

−1
σq
1

(
(1 − γq)

(
Kdeterm

1

) σq−1
σq (A1)

σq−1
σq + γq

(
1 − Kdeterm

1

) σq−1
σq

) 1
σq−1

= (1 − γq)
(

Kdeterm
1

) σq−1
σq

(
(1 − γq)

(
Kdeterm

1

) σq−1
σq + γq

(
1 − Kdeterm

1

) σq−1
σq (A1)

1−σq
σq

) 1
σq−1

We have

∂2
(
(1 − γq)

(
Kdeterm

1
) σq−1

σq (A1)
σq−1

σq + γq
(
1 − Kdeterm

1
) σq−1

σq

) σq
σq−1

∂A2
1

= (− 1
σq
)(1 − γq)

(
Kdeterm

1

) σq−1
σq

γq

(
1 − Kdeterm

1

) σq−1
σq A

1−2σq
σq

1

×
(
(1 − γq)

(
Kdeterm

1

) σq−1
σq + γq

(
1 − Kdeterm

1

) σq−1
σq (A1)

1−σq
σq

) 2−σq
σq−1

Therefore, CSĀ(K
determ
1 ) is concave in A1 (as long as σq > 0) and thus Jensen inequality

gives us the ideal result.
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A.4 Proof for Lemma 2: Impact of Preallocation on IRFs in Leontief

Economy

We define an asymmetry index as the difference between the impulse responses to posi-
tive and negative shocks, which also depend on the capital allocation K1:

Asymmetryupst(K1) = IR+,upst(K1)− IR−,upst(K1) (14)

Asymmetrydownst(K1) = IR+,downst(K1)− IR−,downst(K1) (15)

Positive asymmetry indicates that positive shocks have larger impacts than negative
shocks, while negative asymmetry indicates that negative shocks have larger impacts.
The asymmetry index is connected to the skewness of the consumption function.

The asymmetry index is an order-preserving (monotonic) transformation of the statistical
skewness.16 Therefore, Asymmetryupst(K1) and Skewupst(K1) always have the same sign
and their derivatives with respect to any parameter have the same sign.

Lemma. In Leontief economy, the asymmetry of upstream IRFs equal to −1 + AL

lim
σq→0+

Asymmetryupst(K1) = −1 + AL

Proof. By taking limit, we have

lim
σq→0+

∂IR−,upst(Kdeterm
1 )

∂K1
|K1=Kdeterm

1

= lim
σq→0+

−

(
(1 −△A)

1− 1
σq − 1

)
(
(1 −△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

.

As σq → 0+, notice that

lim
σq→0+

(
(1 −△A)

1− 1
σq − 1

)
= (1 −△A)

1−limσq→0
1

σq − 1 = ∞,

16This follows because (IR+)3 − (IR−)3 = (IR+ − IR−) × [(IR+)2 + IR+ · IR− + (IR−)2], where the
second factor is always positive.
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lim
σq→0+

(
(1 −△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

= ∞.

We thus have indeterminate from for negative shock. Further calculation gives us

lim
σq→0+

−

(
(1 −△A)

1− 1
σq − 1

)
(
(1 −△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

= − lim
σq→0+

1 − (1 −△A)
1

σq −1(
(1 −△A)

1− 1
σq
(
1 − γq

)σq (1 −△A)
(1−σq)2

σq + (1 −△A)
(1−σq)2

σq γ
σq
q

) −1
σq−1

= − 1 − 0
(1 −△A)−1 + 0

= −(1 −△A).

where

lim
σq→0+

(1 −△A)
1− 1

σq +
(1−σq)2

σq = lim
σq→0+

(1 −△A)
1+

(1−σq)2−1
σq = (1 −△A)

−1.

lim
σq→0+

(1 −△A)
1

σq −1
= (1 −△A)

(limσq→0+
1

σq )−1
= 0

and

lim
σq→0+

(1 −△A)
(1−σq)2

σq γ
σq
q = (1 −△A)

limσq→0+
(1−σq)2

σq = 0

For a positive shock, we have

lim
σq→0+

∂IR+,upst(Kdeterm
1 )

∂K1
|K1=Kdeterm

1
= lim

σq→0+
−

(
(1 +△A)

1− 1
σq − 1

)
(
(1 +△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

= 1,

where we have applied

lim
σq→0+

(
(1 +△A)

1− 1
σq − 1

)
= (1 +△A)

1−limσq→0
1

σq − 1 = −1.
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lim
σq→0+

(
(1 +△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

= (1 + 0 × 1)1 = 1.

Therefore, we have

lim
σq→0+

∂IR−,upst(Kdeterm
1 )

∂K1
|K1=Kdeterm

1
= − (1 −△A) = AL

lim
σq→0+

∂IR+,upst(Kdeterm
1 )

∂K1
|K1=Kdeterm

1
= −1,

so that,
lim

σq→0+
Asymmetryupst(K1) = −1 + AL.

A.5 Proof for Lemma 3: Preallocation upstream reduces the impact of

negative shocks

Next, we will analyze the implications of preallocating capital upstream for the impact of
upstream productivity shock. We define a negative productivity shock as moving from
Ā = E [A] to AL. Furthermore, we define the absolute value of the impulse response of
consumption to a negative upstream productivity shock, as a function of original capital
stock in sector 1, as:

IR−,upst(Kdeterm
1 ) ≡

∣∣∣CLĀ(K
determ
1 )− CĀĀ(K

determ
1 )

∣∣∣ = CĀĀ(K
determ
1 )− CLĀ(K

determ
1 )

Following this definition, we will prove in our next proposition that the absolute value of
the impulse response of consumption to a negative shock is smaller when we set capital
to the optimum under uncertainty (K∗

1) versus the deterministic optimum (Kdeterm
1 ). To do

that, we evaluate the derivative of IR−,upst(Kdeterm
1 ) with respect to K1 at the deterministic

optimum Kdeterm
1 , and show that when σq < 1, we have that ∂IR−,upst(Kdeterm

1 )
∂K

∣∣∣∣
K1=Kdeterm

1

< 0.

The interpretation of this result is that preallocation towards the upstream sector reduces
the impact of negative shocks in consumption.

Lemma. If inputs are complements (σq < 1), then increasing capital allocation to the upstream
sector beyond the deterministic optimum decreases the impulse response to negative upstream
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productivity shocks:
∂IR−,upst(K1)

∂K1

∣∣∣∣
K1=Kdeterm

1

< 0

where IR−,upst(K1) measures the consumption drop resulting from a negative upstream produc-
tivity shock.

Proof. We start by building ∂IR−,upst(Kdeterm
1 )

∂K1

∣∣∣∣
K1=Kdeterm

1

using our expression for CSĀ(K
determ
1 ):

∂IR−,upst(Kdeterm
1 )

∂K1

∣∣∣∣∣
K1=Kdeterm

1

=
∂CĀĀ(Kdeterm

1 )

∂K1

∣∣∣∣∣
K1=Kdeterm

1

− ∂CLĀ(Kdeterm
1 )

∂K1

∣∣∣∣∣
K1=Kdeterm

1

=

(
Ā1− 1

σq − 1
)

(
Ā1− 1

σq
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

−

(
A

1− 1
σq

L − 1
)

(
A

1− 1
σq

L
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

= −

(
A

1− 1
σq

L − 1
)

(
A

1− 1
σq

L
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

.

Since AL ∈ (0, 1), we have that

σq < 1 ⇔ 1 − σ−1
q < 0 ⇔

(
A

1−σ−1
q

L − 1
)
> 0 ⇔ ∂IR(K1, AL)

∂K1

∣∣∣∣
K1=Kdeterm

1

< 0.
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In the case of positive shocks

∂IR+,upst(Kdeterm
1 )

∂K1

∣∣∣∣∣
K1=Kdeterm

1

=
∂CHĀ(K

determ
1 )

∂K1

∣∣∣∣∣
K1=Kdeterm

1

−
∂CĀĀ(K

determ
1 )

∂K1

∣∣∣∣∣
K1=Kdeterm

1

=

(
A

1− 1
σq

H − 1
)

(
A

1− 1
σq

H
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

−

(
Ā1− 1

σq − 1
)

(
Ā1− 1

σq
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

=

(
A

1− 1
σq

H − 1
)

(
A

1− 1
σq

H
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

,

and using a similar reasoning as above, we get

σq < 1 ⇔
(

A
1−σ−1

q
H − 1

)
< 0 ⇔

∂IR+,upst(Kdeterm
1 )

∂K1

∣∣∣∣∣
K1=Kdeterm

1

< 0.

Therefore preallocating capital upstream also dampens the effect of positive shocks.

A.6 Proof for Proposition 1: Preallocation upstream reduces the ex-

pected consumption

Moreover, we can explore how preallocation towards upstream sector affects the mean
of aggregate consumption under different conditions by following the same strategy of
proof.

Proposition. Up to the first-order approximation, if inputs are complements (σq < 1), the effect of
upstream preallocation on expected consumption depends on the relative strength of the upstream
sector:

1. When the upstream sector is large enough (γq < γ̄q(△A)), increasing upstream capital
allocation beyond the deterministic optimum decreases expected consumption:

∂E{C(A1, A2, K1)}
∂K1

∣∣∣∣
K1=Kdeterm

1

< 0.

2. When the upstream sector’s role is more limited (γq > γ̄q(△A)), increasing upstream
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capital allocation increases expected consumption.

Proof. We start by showing that

E{C(A1, A2, K1)} = E{A2}
[
pC̃L(K1) + (1 − p)C̃H(K1)

]
∂E{C(A1, A2, K1)}

∂K1
|K1=Kdeterm

1
= p1

∂C̃L(K1)

∂K1
|K1=Kdeterm

1
+ (1 − p1)

∂C̃H(K1)

∂K1
|K1=Kdeterm

1

= p1

(
A

1− 1
σq

L − 1
)

(
A

1− 1
σq

L
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

+ (1 − p1)

(
A

1− 1
σq

H − 1
)

(
A

1− 1
σq

H
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

Following our previous assumption, we set p1 = 1/2, thus our target is to analyze the
sign of

F ≡

(
A

1− 1
σq

H − 1
)

(
A

1− 1
σq

H
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

+

(
A

1− 1
σq

L − 1
)

(
A

1− 1
σq

L
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

Notice that this is a special case of proposition 2 below, where ϵ−1
c = 0. By taking a

second-order local approximation for F around σq = 1, as the appendix ?? shows, we
have

lim
σq→1

F = 0

and
∂

∂σq
F|σq=1 = (1 +△A)

1−γq log(1 +△A) + (1 −△A)
1−γq log(1 −△A)

By Intermediate Value Theorem, there exists a unique threshold value γ̄q(△A) such that

∂

∂σq
F|σq=1


> 0 if γq < γ̄q(△A)

= 0 if γq = γ̄q(△A)

< 0 if γq > γ̄q(△A)
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Since the values on the boundary are strictly bounded away from 0, γ̄q(△A) ∈ (0, 1).
Finally, when γq > γ̄q(△A),

F ≈ 0 +
∂

∂σq
|σq=1F︸ ︷︷ ︸
<0

×(σq − 1)

F is bigger than 0 if and only if σq < 1 up to the first-order approximation.

A.7 Proof for Proposition 2: Preallocation toward the upstream sector

While in the optimum we have that ∂E[U(C)]/∂K1 = 0, we can use the expression of the
marginal expected utility to evaluate how optimal capital allocation in the uncertainty
case compares to the optimum for the deterministic case. By evaluating C̃S(K1) at the
deterministic capital allocation

C̃S(K1)
∣∣
Kdeterm

1
=

(1 − γq)

(
AS

(
1 − γq

)σq

γ
σq
q +

(
1 − γq

)σq

) σq−1
σq

+ γq

(
1 −

(
1 − γq

)σq

γ
σq
q +

(
1 − γq

)σq

) σq−1
σq


σq

σq−1

=

(
1

γ
σq
q +

(
1 − γq

)σq

)(
A

1− 1
σq

S
(
1 − γq

)σq + γ
σq
q

) σq
σq−1
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Next, we evaluate the derivative:

∂C̃S(K1)

∂K1

∣∣∣∣
Kdeterm

1

=

(1 − γq)

AS
(1−γq)

σq

γ
σq
q +(1−γq)

σq

CS


−1
σq

AS − γq

1 − (1−γq)
σq

γ
σq
q +(1−γq)

σq

CS


−1
σq



=
[
γ

σq
q +

(
1 − γq

)σq
] 1

σq

(
A

1− 1
σq

S − 1
)

C
− 1

σq
S

=
[
γ

σq
q +

(
1 − γq

)σq
] 1

σq

(
A

1− 1
σq

S − 1
)

( 1
γ

σq
q +(1−γq)

σq

)(
A

1− 1
σq

S
(
1 − γq

)σq + γ
σq
q

) σq
σq−1

− 1
σq

=

(
A

1− 1
σq

S − 1
)

(
A

1− 1
σq

S
(
1 − γq

)σq + γ
σq
q

) −1
σq−1

The FOC evaluated at the deterministic optimum is

∂E[U(C)]
∂K1

∣∣∣∣
Kdeterm

1

= E{A2}

p1
1

C̃L(K1)ϵ−1
c

∣∣∣
Kdeterm

1

∂C̃L(K1)

∂K1

∣∣∣∣
Kdeterm

1

+ (1 − p1)
1

C̃H(K1)ϵ−1
c

∣∣∣
Kdeterm

1

∂C̃H(K1)

∂K1

∣∣∣∣
Kdeterm

1


= p1

[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c

(
A

1− 1
σq

L − 1
)

(
A

1− 1
σq

L
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

+(1 − p1)
[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c

(
A

1− 1
σq

H − 1
)

(
A

1− 1
σq

H
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

,

∝ p1

(
A

1− 1
σq

L − 1
)

(
A

1− 1
σq

L
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

+ (1 − p1)

(
A

1− 1
σq

H − 1
)

(
A

1− 1
σq

H
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

,
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where in the last line we take out the positive constant
[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c
.

We start proof by firstly showing an auxiliary lemma that ∂E[U(C)]
∂K1

is decreasing in K1

globally.

Lemma. The expected utility of aggregate consumption is globally concave in K1.

∂2E{U(C)}
∂K2

1
< 0

Proof. We firstly prove that the normalized aggregate consumption is globally concave in
K1.

∂2C̃S(K1)

∂K2
1

=
1
σq
(1 − γq)γq A

σq−1
σq

S

(
(1 − γq)A

σq−1
σq

S + γq(
1 − K1

K1
)

σq−1
σq

) 2−σq
σq−1

(
1 − K1

K1
)
−1
σq (− 1

K2
1
)

− γq(1 − γq)A
σq−1

σq
S A

σq−1
σq

S

(
(1 − γq)A

σq−1
σq

1 (
K1

1 − K1
)

σq−1
σq + γq

) 2−σq
σq−1

(
K1

1 − K1
)
−1
σq

1
(1 − K1)2

< 0

Then, it’s straightforward to show that the expected utility of aggregate consumption is
globally concave in K1.

∂E{U(C)}
∂K1

= E{C−ϵ−1
c

∂C
∂K1

}

∂2E{U(C)}
∂K2

1
= E{(−ϵ−1

c )C−ϵ−1
c −1 ∂C

∂K1︸ ︷︷ ︸
>0︸ ︷︷ ︸

<0

}+ E{C−ϵ−1
c

∂2C
∂K2

1︸︷︷︸
<0

}

< 0

Given the lemma above, if the derivative of upstream capital on expected utility, evalu-
ated at the deterministic allocation, is positive, then it is optimal for the social planner
to allocate more capital to the upstream sector. Thus, by setting p1 = 1 − p1 = 1

2 , the
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necessary and sufficient condition for allocating extra capital to sector 1 is

(1 + ∆A)
1−σ−1

q − 1[
(1 + ∆A)

1−σ−1
q
(
1 − γq

)σq + γ
σq
q

] ϵ−1
c σq−1
σq−1

>
1 − (1 − ∆A)

1−σ−1
q[

(1 − ∆A)
1−σ−1

q
(
1 − γq

)σq + γ
σq
q

] ϵ−1
c σq−1
σq−1

. (16)

The following proposition 2 fully characterizes the conditions for the above inequality to
hold when σq < 1.

Proposition. If inputs are complements (σq < 1), the planner preallocates capital to the up-
stream sector (that is, K∗

1 > Kdeterm
1 ) under any of the following conditions, up to the first-order

approximation:

1. If risk aversion is high enough, ϵ−1
c ≥ 1.

2. If risk aversion is moderate ϵ̄−1
c (△A, γq) < ϵ−1

c < 1.

3. If risk aversion is low, 0 < ϵ−1
c < ϵ̄−1

c (△A, γq), and the downstream sector’s importance
in production is sufficiently high, γq > γ̄q(△A).

The thresholds γ̄q(△A) and ϵ̄−1
c (△A, γq) are determined by the size of productivity shocks and

production parameters.

Proof. Given the auxiliary lemma, our target is to discuss the conditions for the following
inequality to hold when σq < 1.

F ≡

(
(1 −△A)

1− 1
σq − 1

)
(
(1 −△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

+

(
(1 +△A)

1− 1
σq − 1

)
(
(1 +△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

> 0

We apply first-order approximation around σq = 1 and proceed with the whole proof in
two general steps.

1. Firstly, we show that in a Cobb-Douglass economy,

lim
σq→1

F = 0

Extra allocation of capital to certain sector does not exist.
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2. Secondly, given the first-order approximation,

F ≈ 0 +
∂

∂σq
F|σq=1(σq − 1)

it suffices to discuss the conditions for the following to hold

∂

∂σq
F|σq=1 < 0

Step 1 Firstly, ∀ϵ−1
c ≥ 0,

lim
σq→1+

(
(1 −△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

< ∞ ; lim
σq→1−

(
(1 −△A)

1− 1
σq
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

< ∞

The same holds for A = 1 +△A. We therefore have

lim
σq→1+

F = 0 = lim
σq→1−

F ∀ϵ−1
c ≥ 0

Step 2 we then discuss the sign of the limit of the derivative of our objective function F
by rewriting it as the sum of the limits of two derivatives.

∂

∂σq
F|σq=1 = lim

σq→1

{
∂

∂σq

(1 +△A)
1−σ−1

q − 1[
(1 +△A)

1−σq−1
(1 − γq)σq + γ

σq
q

] ϵ−1
c σq−1
σq−1

+
∂

∂σq

(1 −△A)
1−σ−1

q − 1[
(1 −△A)

1−σ−1
q (1 − γ)σq + γσq

] ϵ−1σq−1
σq−1

}

= lim
σq→1

Ω1
1 − Ω1

2

D2
1

+ lim
σq→1

Ω2
1 − Ω2

2

D2
2

(17)

where we define

D1 ≡
[
(1 +△A)

1−σ−1
q (1 − γq)

σq + γ
σq
q

] ϵ−1
c σq−1
σq−1

, D2 ≡
[
(1 −△A)

1−σ−1
q (1 − γq)

σq + γ
σq
q

] ϵ−1
c σq−1
σq−1

Ω1
1 ≡ [

∂

∂σq
((1 +△A)

1−σ−1
q − 1)]D1 , Ω2

1 ≡ [
∂

∂σq
((1 −△A)

1−σ−1
q − 1)]D2

Ω1
2 ≡ ((1 +△A)

1−σ−1
q − 1)(

∂

∂σq
D1) , Ω2

2 ≡ ((1 −△A)
1−σ−1

q − 1)(
∂

∂σq
D2)

The following proof of is proceeded by firstly calculating the two limits separately and
then discussing the conditions for their sum to be positive. WLOG, we offer a detailed
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explanation for finding the limits of D1, Ω1
1, Ω1

2 as σq → 1+. The symmetric result then
follows for σq → 1− and for D2, Ω2

1, Ω2
2.

We start by calculating the limit for D1. Due to L’hospital rule,

lim
σq→1

D1 = exp
{ log(γq)γq +

[
log(1 − γq)(1 − γq) + log(1 +△A)(1 − γq)

]
(ϵ−1

c − 1)−1

}
We therefore have

lim
σq→1

Ω1
1 = lim

σq→1
log(1 +△A)(1 +△A)

1−σ−1
q σ−2

q D1 = log(1 +△A) lim
σq→1

D1

Moreover, we have

∂

∂σq
D1

= exp
{ϵ−1

c σ − 1
σq − 1

log
[
(1 +△A)

1−σ−1
q (1 − γq)

σq + γ
σq
q

]}
︸ ︷︷ ︸

g1
1(σq)=D1

×
{

ϵ−1
c (σ − 1)− (ϵ−1

c σq − 1)
(σq − 1)2 log

[
(1 +△A)

1−σ−1
q (1 − γq)

σq + γ
σq
q

]
︸ ︷︷ ︸

g1
2(σq)

+
ϵ−1

c σq − 1
σq − 1

[
log(γq)γ

σq
q + log(1 − γq)(1 − γq)σq(1 +△A)

1−σ−1
q + log(1 +△A)(1 − γq)σq(1 +△A)

1−σ−1
q (σ−2

q )
]

(1 +△A)
1−σ−1

q (1 − γq)σq + γ
σq
q︸ ︷︷ ︸

g1
3(σq)

}

So we can express the limit of Ω1
2 as

lim
σq→1

Ω1
2 = lim

σ→1
D1 lim

σq→1

[
((1 +△A)

1−σ−1
q − 1)g1

2(σq)︸ ︷︷ ︸
(1)

+ ((1 +△A)
1−σ−1

q − 1)g1
3(σq)︸ ︷︷ ︸

(2)

]
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We first discuss the limit of component (1) from both sides. By applying L’hospital rule,

(1 − ϵ−1
c ) lim

σq→1+

0+︷ ︸︸ ︷[
(1 +△A)

1−σ−1
q − 1

] 0−︷ ︸︸ ︷
log
[
(1 +△A)

1−σ−1
q (1 − γq)

σq + γσ
q

]
(σq − 1)2︸ ︷︷ ︸

0+

= (1 − ϵ−1
c ) log(1 +△A) lim

σq→1

log
[
(1 +△A)

1−σ−1
q (1 − γq)σq + γ

σq
q

]
2(σq − 1)

+ (1 − ϵ−1
c ) lim

σq→1
g1

4

[
(1 +△A)

1−σ−1
q − 1

]
2(σq − 1)

=
1
2
(1 − ϵ−1

c ) log(1 +△A) lim
σq→1

g1
4 +

1
2
(1 − ϵ−1) lim

σq→1
g1

4 lim
σq→1

log(1 +△A)(1 +△A)
1−σ−1

q (σ−2
q )

= (1 − ϵ−1
c ) log(1 +△A) lim

σq→1
g1

4

where

g1
4 =

1

(1 +△A)
1−σ−1

q (1 − γq)
σq + γσ

{
log(γq)γq +

[
log(1−γq)(1−γq)+ log(1+△A)(1−γq)

]}

The same applies for σq → 1−.

We then discuss the limit of component (2) from both sides. Here we apply L’hospital
rule twice.

lim
σq→1+

[
(1 +△A)

1−σ−1
q − 1

]
g1

3(σq)

= lim
σq→1+

{
log(γq)γ

σq
q +

[
log(1 − γq)(1 − γq)σq(1 +△A)

1−σ−1
q + log(1 +△A)(1 − γq)σq(1 +△A)

1−σ−1
q (σ−2

q )
]}

(1 +△A)
1−σ−1

q (1 − γq)σq + γ
σq
q

× lim
σq→1+

0︷ ︸︸ ︷[
(1 +△A)

1−σ−1
q − 1

]
σq − 1

ϵ−1
c σq − 1︸ ︷︷ ︸

0

=

{
log(γq)γq +

[
log(1 − γq)(1 − γq) + log(1 +△A)(1 − γq)

]} log(1 +△A)(1 +△A)
1−σ−1

q (σ−2
q )

ϵ−1
c −1

(ϵ−1
c σq−1)2

= − lim
σq→1

g1
4

log(1 +△A)
1

1−ϵ−1
c

The same applies for σq → 1−.
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And, the calculations for (limits of) D1, Ω1
1, Ω1

2 can also apply to D2, Ω2
1, Ω2

2. Therefore,
by combining the above results,

lim
σq→1

Ω1
2 = lim

σq→1
g1

1(σq)
[
log(1 +△A)

limσq→1 g1
4

1
1−ϵ−1

c

− log(1 +△A)
limσq→1 g1

4
1

1−ϵ−1
c

]
= 0

lim
σq→1

Ω2
2 = lim

σq→1
g2

1(σq)
[
log(1 −△A)

limσq→1 g2
4

1
1−ϵ−1

c

− log(1 −△A)
limσq→1 g2

4
1

1−ϵ−1
c

]
= 0

All of the results above hold for all ϵ−1
c ≥ 0

Based on the previous calculation, our original target equation 17 in step 2 is reduced to

∂

∂σq
F|σq=1 = lim

σq→1

Ω1
1 − Ω1

2

D2
1

+ lim
σq→1

Ω2
1 − Ω2

2

D2
2

= lim
σq→1

Ω1
1

D2
1
+ lim

σq→1

Ω2
1

D2
2

= (1 +△A)
(1−ϵ−1

c )(1−γq) log(1 +△A)

D(ϵ−1
c , γq)

+ (1 −△A)
(1−ϵ−1

c )(1−γq) log(1 −△A)

D(ϵ−1
c , γq)

where D(ϵ−1
c , γq) ≡ exp

(
log(γq)γq+log(1−γq)(1−γq)

(ϵ−1
c −1)−1

)
is strictly positive for any (ϵ−1

c , γq) ∈
[0, 1] × [0, 1]. Therefore, the sign of the first-order derivative depends on the values of
△A, γq, and ϵ−1

c .

When ϵ−1
c = 1, due to the strict concavity of log function, given △A ∈ (0, 1)

∂

∂σq
F|σq=1 = log(1 +△A) + log(1 −△A) < 1
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When ϵ−1
c > 1,

∂

∂σq
F|σq=1 < (1 −△A)

(1−ϵ−1
c )(1−γq) log(1 +△A)

D
+ (1 −△A)

(1−ϵ−1
c )(1−γq) log(1 −△A)

D

= (1 −△A)
(1−ϵ−1

c )(1−γq)
[ log(1 +△A)

D
+

log(1 −△A)

D

]
< (1 −△A)

(1−ϵ−1
c )(1−γq)

[ log(1)
D

+
log(1)

D

]
= 0

Since log(1+△A) > 0 > log(1−△A) and (1−△A)
(1−ϵ−1

c )(1−γq) > (1+△A)
(1−ϵ−1

c )(1−γq),
by adding more positive numbers, we get the first inequality. The second strict inequality
is again due to the strict concavity of log function.

Lastly, when ϵ−1
c < 1, we first note that

lim
γq→0

lim
ϵ−1

c →0+

∂

∂σq
F|σq=1 > 0, lim

γq→0
lim

ϵ−1
c →1−

∂

∂σq
F|σq=1 < 0 (Opposite Signs on ϵ−1

c ’s boundary)

lim
γq→0

lim
ϵ−1

c →0+

∂

∂σq
F|σq=1 > 0, lim

γq→1
lim

ϵ−1
c →0+

∂

∂σq
F|σq=1 < 0 (Opposite Signs on γq’s boundary)

These two pairs of opposite signs indicate the existence of threshold values for γq and
ϵ−1

c . Notice that ∂
∂σq

F|σq=1 is continuously differentiable and strictly monotone in ϵ−1
c and

γq when △A ∈ (0, 1). Therefore, we can apply Intermediate Value Theorem (IVT) to
show that given any △A ∈ (0, 1), there exists a unique threshold value γ̄q(△A) such that

1. if γq > γ̄q(△A), ∂
∂σq

F|σq=1 < 0 when ϵ−1
c < 1. Together with previous discussion,

∂
∂σq

F|σq=1 < 0 ∀ϵ−1
c ≥ 0.

2. if γq ≤ γ̄q(△A), by applying IVT again, there exists a unique threshold value
ϵ̄−1

c (△A, γq) ∈ (0, 1) such that

∂

∂σq
F|σq=1


> 0 ∀ϵ−1

c < ϵ̄−1
c (γq,△A)

= 0 ∀ϵ−1
c = ϵ̄−1

c (γq,△A)

< 0 ∀ϵ−1
c ∈ (ϵ̄−1

c (γq,△A), 1)

Finally,

F ≈ 0 +
∂

∂σq
F|σq=1 × (σq − 1)
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When either γq > γ̄q(△A) or [γq ≤ γ̄q(△A)] ∧ [ϵ−1
c ∈ (ϵ̄−1

c (γq,△A), 1)], ∂
∂σq

F|σq=1 < 0,
and thus F is bigger than 0 if and only if σq < 1 up to the first-order approximation.

A.8 Proof for Proposition: Comparative statics of risk aversion and

volatility

Proposition 3. Up to the first-order approximation around σq = 1, when inputs are complements
(σq < 1),

1. an increase in the degree of risk aversion leads to more allocation of capital towards sector 1

∂
∂E{U(C)}

∂K1
|K1=Kss

1

∂ϵ−1
c

> 0 ∀ϵ−1
c ≥ 0

2. when ϵ−1
c ≥ 1, an increase in sector 1’s volatility certainly increases the preallocation of

capital towards the it.
∂

∂E{U(C)}
∂K1

|K1=Kss
1

∂△A
> 0

Proof. We prove two statements in two separate parts.

Statement 1 Our target is to prove that the following derivative is positive up to the
first-order approximation around σq = 1.

∂
∂E{U(C)}

∂K1
|K1=Kss

1

∂ϵ−1
c

= log
(

γ
σq
q +

(
1 − γq

)σq
)ϵ−1

c
[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c
F

+
[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c ∂F
∂ϵ−1

c

where F is the objective function we define in proposition 3

F = p1

(
A

1− 1
σq

L − 1
)

(
A

1− 1
σq

L
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1

+ (1 − p1)

(
A

1− 1
σq

H − 1
)

(
A

1− 1
σq

H
(
1 − γq

)σq + γ
σq
q

) ϵ−1
c σq−1
σq−1
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Since the mapping x 7→ xy is decreasing in y when x ∈ (0, 1), xy + (1 − x)y > x + (1 −

x) = 1. Then, log
(

γ
σq
q +

(
1 − γq

)σq
)ϵ−1

c
[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c
> 0 and

[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c ≥
0 for any value of σq ≥ 0. It’s therefore sufficient to pin down the sign of F and ∂F

∂ϵ−1
c

up
to the first order approximation.

Based on the proof in proposition 3, the proof for F follows. For ∂F
∂ϵ−1

c
,

∂F
∂ϵ−1

c
≈ lim

σq→1

∂F
∂ϵ−1

c︸ ︷︷ ︸
=0

+

(
lim

σq→1

∂

∂σq

∂F
∂ϵ−1

c

)
(σq − 1)

= lim
σq→1

∂F
∂ϵ−1

c︸ ︷︷ ︸
=0

+

(
lim

σq→1

∂

∂ϵ−1
c

∂F
∂σq

)
(σq − 1) (Young’s Theorem)

= lim
σq→1

∂F
∂ϵ−1

c︸ ︷︷ ︸
=0

+

[
∂

∂ϵ−1
c

(
lim

σq→1

∂F
∂σq

)]
(σq − 1)

where Young’s theorem and the exchange between limits and derivative hold because F is
continuously differentiable in ϵ−1

c and at σq = 1, and ∂F
∂σq

as well as ∂
∂ϵ−1

c

∂F
∂σq

are continuous

at σq = 1. As long as ∂
∂ϵ−1

c

(
limσq→1

∂F
∂σq

)
< 0, our ideal results are established.

By defining
H = γq log(γq) + (1 − γq) log(1 − γq)

and

Λ+ = −H − log(1 +△A)(1 − γq)

< −H − log(1 −△A)(1 − γq) > 0

≡ Λ−

We can rewrite the derivative (defined in the proof for proposition ) compactly as

∂

∂ϵ−1
c

(
lim

σq→1

∂F
∂σq

)
= eΛ−(ϵ−1

c −1)
[
Λ− log(1 −△A) + Λ+ log(1 +△A)e(Λ

+−Λ−)(ϵ−1
c −1)

]
︸ ︷︷ ︸

(∗)

If Λ+ < 0, then the derivative is trivially negative. If Λ+ > 0, we then finish the proof in
two general steps
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1. The function in the bracket is strictly decreasing in ϵ−1
c

2. The function in the bracket has maximum 0 at ϵ−1
c = 0

Firstly,
∂(∗)
∂ϵ−1

c
= (Λ+ − Λ−)︸ ︷︷ ︸

<0

Λ+ log(1 +△A)e(Λ
+−Λ−)(ϵ−1

c −1) < 0

Secondly, it’s sufficient to show

Λ− log(1 −△A) + Λ+ log(1 +△A)e−(Λ+−Λ−) < 0

e(Λ
−−Λ+) Λ+ log(1 +△A)

Λ−(− log(1 −△A))
< 1

where
Λ− − Λ+ = (1 − γq) [− log(1 −△A) + log(1 +△A)]

and

log(Λ−)− log(Λ+) < Λ− − Λ+

The key is to notice that the left-hand-side (LHS) of the ideal inequality is strictly mono-
tone in H and in 1 − γq.

1. Holding (1− γq) fixed, −H ↑ leads to higher LHS, so LHS is maximized, given any
γq, at −H = − log(0.5) = log(2) < 1

2. Holding −H fixed, the derivative with respect to (1 − γq) is

∂(∗)
∂1 − γq

= constant︸ ︷︷ ︸
<0

+
− log(1 +△A)

Λ+
− − log(1 −△A)

Λ− + log(
1 +△A

1 −△A
)

<
− log(1 +△A)

Λ+
− − log(1 −△A)

Λ− + log(
1 +△A

1 −△A
)

Let

F̃ ≡ log(1 +△A)

Λ+
+

− log(1 −△A)

Λ−
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Then, because of Jensen’s inequality,

F̃
log(1 +△A)− log(1 −△A)

=
log(1 +△A)

log(1 +△A)− log(1 −△A)

1
Λ+

+

(
1 − log(1 +△A)

log(1 +△A)− log(1 −△A)

)
1

Λ−

>
1

log(1+△A)
log(1+△A)−log(1−△A)

Λ+ +
(

1 − log(1+△A)
log(1+△A)−log(1−△A)

)
Λ−

Therefore,

F̃ >
[log(1 +△A)− log(1 −△A)]

2

log(1 +△A)Λ+ + (− log(1 +△A))Λ−

where

log(1 +△A)Λ+ + (− log(1 −△A))Λ−

= −H [log(1 +△A)− log(1 −△A)]− log(1 +△A)
2(1 − γq) + log(1 −△A)

2(1 − γq)

= −H [log(1 +△A)− log(1 −△A)] + (1 − γq)

(
log(1 −△A)

2

log(1 +△A)2 − 1
)

< −H [log(1 +△A)− log(1 −△A)]

< log(1 +△A)− log(1 −△A)

So

F̃ > log(1 +△A)− log(1 −△A)

Based on this inequality, we can find a strict upper bound on the derivative of (∗).

∂(∗)
∂1 − γq

<

(
log(

1 +△A

1 −△A
)− F

)
< 0

Therefore, the remaining function is maximized at 1 − γq

log(1 +△A)

− log(1 −△A)

−H
−H

< 1

log(1 +△A) + log(1 −△A) < 0

The bracket is thus maximized at ϵ−1
c = 0.

So, maxϵ−1
c ≥0(∗) < 0. Since eΛ−(ϵ−1

c −1) > 0, then ∂
∂ϵ−1

c

(
limσq→1

∂F̃
∂σq

)
< 0 and ∂F̃

∂ϵ−1
c

> 0.
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Finally,

∂
∂E{U(C)}

∂K1
|K1=Kss

1

∂ϵ−1
c

= log
(

γ
σq
q +

(
1 − γq

)σq
)ϵ−1

c
[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c︸ ︷︷ ︸
>0

F̃︸︷︷︸
>0 up to first-order approximation

+
[
γ

σq
q +

(
1 − γq

)σq
]ϵ−1

c︸ ︷︷ ︸
>0

∂F̃
∂ϵ−1

c︸ ︷︷ ︸
>0 up to first-order approximation

Our ideal result is achieved.

Statement 2 Following the same logic in proving statement 1, because ∂F
∂σq

and ∂2F
∂σ∂△A

are
jointly continuous at σq = 1 (the following expressing can be double-checked by firstly
calculate the derivative and then take first-order approximation around σq = 1).

∂F
∂△A

= lim
σq→1

∂F
∂△A︸ ︷︷ ︸

=0

+

[
∂

∂△A

(
lim

σq→1

∂F
∂σq

)]
(σq − 1)

It’s sufficient to discuss the sign of ∂
∂△A

(
limσq→1

∂F
∂σq

)
. Again, based on previous calcula-

tion,

∂

∂△A

(
lim

σq→1

∂F
∂σq

)
= D

{[
(1 +△A)

(1−ϵ−1)(1−γ)−1 − (1 −△A)
(1−ϵ−1)(1−γ)−1

]
+(1 − γ)(1 − ϵ−1)

[
(1 +△A)

(1−ϵ−1)(1−γ)−1 log(1 +△A)− (1 −△A)
(1−ϵ−1)(1−γ)−1 log(1 −△A)

]}

where
D = exp

( log(γ)γ + log(1 − γ)(1 − γ)

(ϵ−1 − 1)−1

)
> 0

Therefore, when ϵ−1 ≥ 1,

(1 +△A)
(1−ϵ−1)(1−γ)−1 − (1 −△A)

(1−ϵ−1)(1−γ)−1 < 0

(1− ϵ−1)
[
(1 +△A)

(1−ϵ−1)(1−γ)−1 log(1 +△A)− (1 −△A)
(1−ϵ−1)(1−γ)−1 log(1 −△A)

]
< 0
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So limσq→1

∂

[
∂(∂E{U(C)}/∂K1|Kss

1
)

∂△A

]
∂σq

< 0.

Then, based on the first-order approximation around σq = 1, ϵ−1 ≥ 1 is sufficient to

ensure that when σq < 1,
∂(∂E{U(C)}/∂K1|Kss

1
)

∂△A
> 0.

B First-order conditions and auxiliary results regarding the

full model

In this appendix, we derive the first-order conditions of the full model. We also provide
some additional results

The Lagrangian of the planner is:

L = E0

∞

∑
t=0

βt

 1
1 − ϵ−1

c

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

1−ϵ−1
c

+
N

∑
j=1

Pk
jt
[
Ijt + (1 − δj)Kjt − Φjt − Kjt+1

]
+

N

∑
j=1

Pjt

[
Qjt − Cjt −

N

∑
i=1

[
Mjit + Ijit

]]}
,

where
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Ct =

(
N

∑
j=1

ξ
σ−1

c
j (Cjt)

1−σ−1
c

) 1
1−σ−1

c
,

Lt =

(
N

∑
j=1

(Ljt)
1+σ−1

l

) 1
1+σ−1

l
,

Qjt =
[
(µj)

σ−1
q
(
Yjt
)1−σ−1

q +
(
1 − µj

)σ−1
q
(

Mjt
)1−σ−1

q
] 1

1−σ−1
q ,

Yjt = Ajt

[
(αj)

σ−1
q
(
Kjt
)1−σ−1

y +
(
1 − αj

)σ−1
y
(

Ljt
)1−σ−1

y
] 1

1−σ−1
y ,

Ijt =

(
N

∑
i=1

(
γI

ij

)σ−1
I (

Iijt
)1−σ−1

I

) 1
1−σ−1

I
,

Mjt =

(
N

∑
i=1

(
γm

ij

)σ−1
m (

Mijt
)1−σ−1

m

) 1
1−σ−1

m
,

Φjt =
ϕ

2

(
Ijt

Kjt
− δj

)2

Kjt.

We will start by writing down all the derivatives of the CES aggregators and the adjust-
ment cost function. See sub-appendix B.11 to see the details of the CES algebra involved:

∂Ct

∂Cjt
=

(
ξ j

Ct

Cjt

)σ−1
c

∂Lt

∂Ljt
=

(
Ljt

Lt

)σ−1
l

∂Qjt

∂Yjt
=

(
µj

Qjt

Yjt

)σ−1
q ∂Qjt

∂Mjt
=

((
1 − µj

) Qjt

Mjt

)σ−1
q

∂Yjt

∂Kjt
= A

1−σ−1
y

jt

(
αj

Yjt

Kjt

)σ−1
y ∂Yjt

∂Ljt
= A

1−σ−1
y

jt

((
1 − αj

) Yjt

Ljt

)σ−1
y

∂Mjt

∂Mijt
=

(
γM

ij
Mjt

Mijt

)σ−1
m ∂Ijt

∂Iijt
=

(
γI

ij
Ijt

Iijt

)σ−1
I

∂Φjt

∂Ijt
= ϕ

(
Ijt

Kjt
− δj

)
∂Φjt

∂Kjt
= −ϕ

2

(
I2
jt

K2
jt
− δ2

j

)
.
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B.1 FOC for consumption

We start with

∂L
∂Cjt

= βt


Ct − θ

L
1+ϵ−1

l
t

1 + ϵ−1
l

−ϵ−1
c

∂Ct

∂Cjt
− Pjt

 = 0.

Next, we replace the derivatives:

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

−ϵ−1
c

∂Ct

∂Cjt
= Pjt,

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

−ϵ−1
c (

ξ j
Ct

Cjt

)σ−1
c

= Pjt.

B.2 FOC for labor

We start with

∂L
∂Ljt

= βt

−

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

−ϵ−1
c

θ (Lt)
ϵ−1

l
∂Lt

∂Ljt
+ Pjt

∂Qjt

∂Ljt

 = 0.

Next, we replace the derivatives, using the chain rule when needed:

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

−ϵ−1
c

θ (Lt)
ϵ−1

l
∂Lt

∂Ljt
= Pjt

∂Qjt

∂Yjt

∂Yjt

∂Ljt
,

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

−ϵ−1
c

θ (Lt)
ϵ−1

l

(
Ljt

Lt

)σ−1
l

= Pjt A
1−σ−1

y
jt

(
µj

Qjt

Yjt

)σ−1
q
((

1 − αj
) Yjt

Ljt

)σ−1
y

.
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B.3 FOC with respect to capital in next period

We start with

∂L
∂Kjt+1

= βt
(
−Pk

jt

)
+ βt+1Et

(
Pk

jt+1

(
(1 − δj)−

∂Φjt+1

∂Kjt+1

)
+ Pjt+1

∂Qjt+1

∂Kjt+1

)
= 0.

Next, we replace the derivatives, using the chain rule when needed:

Pk
jt = βEt

(
Pk

jt+1

(
(1 − δj)−

∂Φjt+1

∂Kjt+1

)
+ Pjt+1

∂Qjt+1

∂Yjt+1

∂Yjt+1

∂Kjt+1

)
,

Pk
jt = βEt

[
Pk

jt+1

(
(1 − δj) +

ϕ

2

(
I2
jt+1

K2
jt+1

− δ2
j

))

+Pjt+1A
1−σ−1

y
jt+1

(
µj

Qjt+1

Yjt+1

)σ−1
q
(

αj
Yjt+1

Kjt+1

)σ−1
y
 .

B.4 FOC for intermediates and system reduction

We start with

∂L
∂Mijt

= βt

(
Pjt

∂Qjt

∂Mijt
− Pit

)
= 0.

Next, we replace the derivatives, using the chain rule when needed:

Pjt
∂Qjt

∂Mjt

∂Mjt

∂Mijt
= Pit,

Pjt

((
1 − µj

) Qjt

Mjt

)σ−1
q
(

γM
ij

Mjt

Mijt

)σ−1
m

= Pit

We want to use this FOC to get rid of Mijt. First, we solve for Mijt:

Mijt =

(
Pjt

Pit

)σm
((

1 − µj
) Qjt

Mjt

) σm
σq

γm
ij Mjt
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We solve for Mjt by aggregating from the solution for Mijt. First, we construct the term(
γm

ij

) 1
σm M1−σ−1

m
ijt that is inside the aggregator:

Mijt =

(
Pjt

Pit

)σm
((

1 − µj
) Qjt

Mjt

) σm
σq

γm
ij Mjt,

(
γm

ij

) 1
σm M1−σ−1

m
ijt =

(
γm

ij

) 1
σm

(
Pit

Pjt

)1−σm ((
1 − µj

) Qjt

Mjt

) σm−1
σq (

γm
ij Mjt

)1−σ−1
m

,

(
γm

ij

) 1
σm M1−σ−1

m
ijt = γm

ij

(
Pit

Pjt

)1−σm ((
1 − µj

) Qjt

Mjt

) σm−1
σq (

Mjt
)1−σ−1

m .

Next, we sum over all the goods in the aggregator:

N

∑
i=1

(
γm

ij

) 1
σm M1−σ−1

m
ijt =

N

∑
i=1

γm
ij

(
Pit

Pjt

)1−σm ((
1 − µj

) Qjt

Mjt

) σm−1
σq

M1−σ−1
m

jt ,

M1−σ−1
m

jt = (Pjt)
σm−1

((
1 − µj

) Qjt

Mjt

) σm−1
σq

M1−σ−1
m

jt

N

∑
i=1

γm
ij (Pit)

1−σm ,

M
σm−1

σq
jt =

((
1 − µj

)
Qjt
) σm−1

σq (Pjt)
σm−1

N

∑
i=1

(
γm

ij

)
(Pit)

1−σm ,

Mjt =
((

1 − µj
)

Qjt
)

Pσq
jt

(
N

∑
i=1

(
γm

ij

)
(Pit)

1−σm

) σq
σm−1

.

Following the CES algebra in sub-appendix B.11, we define the price index for the Mjt

bundle as:

Pm
jt =

(
N

∑
i=1

(
γm

ij

)
(Pit)

1−σm

) 1
1−σm

.

so we can write the FOC for Mjt as:

Mjt =
(
1 − µj

) (Pm
jt

Pjt

)−σq

Qjt.
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We can use this expression for Mjt to simplify our solution for Mijt:

Mijt =

(
Pit

Pjt

)−σm ((
1 − µj

) Qjt

Mjt

) σm
σq

γm
ij Mjt,

=

(
Pit

Pjt

)−σm

(1 − µj
) Qjt(

1 − µj
) (Pm

jt
Pjt

)−σq

Qjt


σm
σq

γm
ij Mjt,

= γm
ij

(
Pit

Pm
jt

)−σm

Mjt.

Finally, using this solution for Mijt, we can calculate the supply of intermediate goods of
each sector, which we denote Mout

jt = ∑N
i=1 Mjit:

Mout
jt =

N

∑
i=1

Mjit =
N

∑
i=1

γm
ji

(
Pjt

Pm
it

)−σm

Mit.

B.5 FOC for investment and system reduction

We start with

∂L
∂Iijt

= βt

(
Pk

jt

(
∂Ijt

∂Iijt
−

∂Φjt

∂Iijt

)
− Pit

)
= 0.

Next, we replace the derivatives, using the chain rule when needed:

Pk
jt

(
∂Ijt

∂Iijt
−

∂Φjt

∂Ijt

∂Ijt

∂Iijt

)
= Pit,

Pk
jt

∂Ijt

∂Iijt

(
1 −

∂Φjt

∂Ijt

)
= Pit,

Pk
jt

(
γI

ij
Ijt

Iijt

)σ−1
I
(

1 − ϕ

(
Ijt

Kjt
− δj

))
= Pit.

We want to use this FOC to eliminate Iijt. First, we solve for Iijt:
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Iijt = γI
ij

(
Pit

Pk
jt

)−σI

Ijt

(
1 − ϕ

(
Ijt

Kjt
− δj

))σI

.

We solve for Ijt by aggregating up from the solution for Iijt

Iijt = γI
ij

(
Pit

Pk
jt

)−σI

Ijt

(
1 − ϕ

(
Ijt

Kjt
− δj

))σI

,

(
γI

ij

)σ−1
I I1−σ−1

I
ijt =

(
γI

ij

)σ−1
I

(
Pit

Pk
jt

)1−σI (
γI

ij Ijt

)1−σ−1
I

(
1 − ϕ

(
Ijt

Kjt
− δj

))σI−1

,

I1−σ−1
I

jt =
N

∑
i=1

(
γI

ij

)(Pit

Pk
jt

)1−σI (
Ijt
)1−σ−1

I

(
1 − ϕ

(
Ijt

Kjt
− δj

))σI−1

.

1 =
(

Pk
jt

)σI−1
(

1 − ϕ

(
Ijt

Kjt
− δj

))σI−1 N

∑
i=1

(
γI

ij

)
(Pit)

1−σI ,

Pk
jt =

(
1 − ϕ

(
Ijt

Kjt
− δj

))−1( N

∑
i=1

(
γI

ij

)
(Pit)

1−σI

) 1
1−σI

.

We define the frictionless price index of capital goods as

P̃k
jt =

(
N

∑
i=1

(
γI

ij

)
(Pit)

1−σI

) 1
1−σI

.

Then, we can write the FOC for Ijt as

Pk
jt = P̃k

jt

(
1 − ϕ

(
Ijt

Kjt
− δj

))−1

.

Next, we calculate the amount of goods of a sector that goes to other sectors as investment
goods. We define

Iout
jt =

N

∑
i=1

Ijit.
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Using the FOC for Iijt, we have

Iout
jt =

N

∑
i=1

γI
ji

(
Pjt

Pk
it

)−σI

Iit

(
1 − ϕ

(
Iit

Kit
− δi

))σI

.
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B.6 Full system of equations

The full system we get is:

log Ajt+1 = ρj log Ajt + εA
jt+1,

Kjt+1 = (1 − δj)Kjt + Ijt −
ϕ

2

(
Ijt

Kjt
− δj

)2

Kjt,

Pjt =

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

−ϵ−1
c (

ξ j
Ct

Cjt

)σ−1
c

,

θ (Lt)
ϵ−1

l
( Ljt

Lt

)σ−1
l

(
Ct − θ

L
1+ϵ−1

l
t

1+ϵ−1
l

)ϵ−1
c

= Pjt A
1−σ−1

y
jt

(
µj

Qjt

Yjt

)σ−1
q
((

1 − αj
) Yjt

Ljt

)σ−1
y

,

Pk
jt = βEt

Pjt+1 A
1−σ−1

y
jt+1

(
µj

Qjt+1

Yjt+1

)σ−1
q
(

αj
Yjt+1

Kjt+1

)σ−1
y
 ,

+Pk
jt+1

(
(1 − δj) +

ϕ

2

(
I2
jt+1

K2
jt+1

− δ2
j

))]
,

Pm
jt =

(
N

∑
i=1

(
γm

ij

)
(Pit)

1−σm

) 1
1−σm

,

Mjt =
(
1 − µj

) (Pm
jt

Pjt

)−σq

Qjt,

Mout
jt =

N

∑
i=1

γm
ji

( Pjt

Pm
it

)−σm

Mit,

Pk
jt =

(
N

∑
i=1

(
γI

ij

)
(Pit)

1−σI

) 1
1−σI

(
1 − ϕ

(
Ijt

Kjt
− δj

))−1

,

Iout
jt =

N

∑
i=1

γI
ji

(
Pjt

Pk
it

)−σI

Iit

(
1 − ϕ

(
Iit
Kit

− δi

))σI

,

Qjt = Cjt + Mout
jt + Iout

jt ,

Qjt =

[
(µj)

σ−1
q
(
Yjt
)1−σ−1

q +
(
1 − µj

)σ−1
q
(

Mjt
)1−σ−1

q

] 1
1−σ−1

q ,

Yjt = Ajt

[
(αj)

σ−1
y
(
Kjt
)1−σ−1

y +
(
1 − αj

)σ−1
y
(

Ljt
)1−σ−1

y

] 1
1−σ−1

y ,

Ct =

(
N

∑
j=1

ξ
1

σc
j (Cjt)

1−σ−1
c

) 1
1−σ−1

c
,

Lt =

(
N

∑
j=1

(Ljt)
1+σ−1

l

) 1
1+σ−1

l .
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B.7 Welfare

In order to calculate welfare, we can write the intertemporal utility of the representative
household as:

Vt =
1

1 − ϵ−1
c

Ct − θ
L

1+ϵ−1
l

t

1 + ϵ−1
l

1−ϵ−1
c

+ βEtVt+1.

Steady state welfare is:

V̄ =
1

1 − β

1
1 − ϵ−1

c

(
C̄ − θ

L̄1+ϵ−1
l

1 + ϵ−1
l

)1−ϵ−1
c

.

Then, in a given period, we can get an interpretable measure of welfare by calculating
the fraction of steady-state consumption that you would need to give up to achieve that
level of welfare in the steady state. We denote such consumption-equivalent welfare as
V̂c

t :

Vt =
1

1 − β

1
1 − ϵ−1

c

(
C̄(1 + V̂c

t )− θ
L̄1+ϵ−1

l

1 + ϵ−1
l

)1−ϵ−1
c

.

We can solve analytically for consumption-equivalent welfare V̂c
t :

V̂c
t =

1
C̄

[(
Vt(1 − β)(1 − ϵ−1

c )
) 1

1−ϵ−1
c + θ

L̄1+ϵ−1
l

1 + ϵ−1
l

]
− 1.

We will analyze how V̂c
t is affected by productivity shocks.

B.8 Vectorizations

In terms of programming, it will be useful to vectorize the equations that involve sums
over sectoral variables. We will use variables in bold to denote vectors where each el-
ement represents the corresponding sectoral value, and use ∗ to denote element by el-
ement multiplication. When we raise a vector to the power of a parameter, we mean
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element-to-element exponentiation. Then, we get the following equations:

Pm
t =

(
Γ
′
MPt

1−σm
) 1

1−σm ,

Mout
t = Pt

−σm ∗ ΓM (Pm
t )σm ∗ Mt

P̃k
t =

(
Γ
′
IPt

1−σI
) 1

1−σI ,

Ĩout
t = Pt

−σI ∗ ΓI

(
Pk

t

)σI
∗ It.

B.9 Steady state

There are three dynamic equations in the model:

Kjt+1 = (1 − δj)Kjt + Ijt −
ϕ

2

(
Ijt

Kjt
− δj

)2

Kjt,

ajt+1 = ρjajt + ϵjt,

Pk
jt = βEt

Pjt+1A
1−σ−1

y
jt+1

(
µj

Qjt+1

Yjt+1

)σ−1
q
(

αj
Yjt+1

Kjt+1

)σ−1
y

+Pk
jt+1

(
(1 − δj) +

ϕ

2

(
I2
jt+1

K2
jt+1

− δ2
j

))]
.

First, notice that Ijt = δjKjt implies Kjt+1 = Kjt and makes the adjustment costs equal to
zero. Then, in the steady state we have:

K̄ = Īj/δj,

P̄k
j =

β

1 − β(1 − δ)
P̄j

(
µj

Q̄j

Ȳj

)σ−1
q
(

α
Ȳj

K̄j

)σ−1
y

.

B.10 Intensity shares mapping to expenditure shares

In sub-appendix B.11, we show that for standard CES aggregators, the intensity shares
(e.g., ξ j for consumption bundle or αj for value-added function) do not correspond to
expenditure shares. In the same sub-appendix, we show that how to map expenditures
shares to intensity shares once you know the steady state equilibrium variables. We use
tilde notation to refer to expenditures, so ξ̃ j is the consumption share of good j. Then,
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for a given steady state equilibrium the relation between the expenditure share in steady
state and the intensity share used to calculate the steady state is:

ξ̃ j = ξ
σ−1

c
j

(
C̄j

C̄

)1−σ−1
c

,

µ̃j = µ
σ−1

q
j

(
Ȳj

Q̄j

)1−σ−1
q

,

α̃j = α
σ−1

y
j

(
K̄j

Ȳj

)1−σ−1
y

,

γ̃m
ij =

(
γm

ij

)σ−1
m

(
M̄ij

M̄j

)1−σ−1
m

,

γ̃I
ij =

(
γI

ij

)σ−1
I

(
Īij

Īj

)1−σ−1
I

.

Since we do not solve explicitly for M̄ij and Īij we are going to use the first order condi-
tions to solve for M̄ij/M̄j and Īij/ Īj . We get

γ̃m
ij = γm

ij

(
Pit

Pm
jt

)1−σm

,

γ̃I
ij = γI

ij

(
Pit

Pk
jt

)1−σI

.

Given this mapping, a naive approach would be simply to replace the intensity shares
with the equations that map the empirical shares with the model shares. Nevertheless,
if we use this mapping equations as endogenous equations in the steady state system
of equations, the output of each aggregator become indeterminate. To see why, we can
replace the mapping in the consumption aggregator and rearrange to obtain:

Ct = C̄

 N

∑
j=1

ξ̃ j

(
Cjt

C̄j

)1−σ−1
c


1
1−σ−1

c

.

This equation for aggregate C cannot be used in steady state, since if we replace the time
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t values for steady-state values we get a tautology (C̄ = C̄). Given this, the correct ap-
proach is to include in the steady state system the difference between the model-implied
expenditure shares as additional expressions to minimize.

B.11 CES algebra

The objective of this appendix is to obtain a mapping between the intensity shares (the
primitive parameters that appear in the CES aggregator) and the expenditure shares
(input expenditure/aggregate expenditure). We start with the common CES aggregator:

X = A

(
N

∑
j=1

ξ
σ−1

x
j Xj

1−σ−1
x

) 1
1−σ−1

x
.

where A is a constant (e.g., TFP in the value added aggregator). The derivative is:

∂X
∂Xj

=
A
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x

(
N

∑
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ξ
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x
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x
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x
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x (

ξ
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x
j

(
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x

)
(Xj)

−σ−1
x
)

,

=
A

Aσ−1
x

Aσ−1
x

(
N

∑
j=1

ξ
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q
j (Xj)

1−σ−1
x

) σ−1
x

1−σ−1
x

ξ
σ−1

x
j (Xj)

−σ−1
x ,

= A1−σ−1
x

A

(
N

∑
j=1

ξ
σ−1

x
j (Xj)

1−σ−1
x

) 1
1−σ−1

x

σ−1
x

ξ
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x
j (Xj)

−σ−1
x .

Notice that we can now plug the definition of the aggregator. We get:

∂Xt

∂Xjt
= A1−σ−1

x Xσ−1
x ξ

σ−1
x

j (Xj)
−σ−1

x ,

= A1−σ−1
x

(
ξ j

X
Xj

)σ−1
x

From this first-order condition, we are going to get a price aggregator. We start from the
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budget constraint:
N

∑
j=1

PjXj = Yj.

where Yjt represents income. The optimization problem is

max
{Xj}N

j=1

X s.t.
N

∑
j=1

PjXj = Yj,

The first-order conditions with respect to Xjt are:

∂X
∂Xj

− λPj = 0.

So, for al goods i ̸= j, we have:

∂X
∂Xj

1
Pj

=
∂X
∂Xi

1
Pi

,

A1−σ−1
x

(
ξ j

X
Xj

)σ−1
x 1

Pj
= A1−σ−1

x

(
ξi

X
Xi

)σ−1
x 1

Pi
,

and we get

Xj =

(
Pi

Pj

)σx
ξ j

ξi
Xi.

Let’s replace that into the aggregator:

X = A

(
N

∑
j=1

ξ
σ−1

x
j

((
Pi

Pj

)σx
ξ j

ξi
Xi

)
1−σ−1

x

) 1
1−σ−1

x
,

=
1
ξi
(Pi)

σx Xi A

(
N

∑
j=1

ξ j
(

Pj
)1−σx

) 1
1−σ−1

x
.
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We get an expression for Xi in terms of aggregates:

Xi = ξi

(
1
Pi

)σx

XA−1

(
N

∑
j=1

ξσx
j
(

Pj
)1−σx

) −1
1−σ−1

x
.

We calculate total expenditure:

PiXi = P1−σx
i ξiXA−1

(
N

∑
j=1

ξ j
(

Pj
)1−σx

) −1
1−σ−1

x
.

Adding up all the goods:

Y = XA−1

(
N

∑
j=1

ξ j
(

Pj
)1−σx

)(
N

∑
j=1

ξ j
(

Pj
)1−σx

) −1
1−σ−1
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,

= XA−1

(
N

∑
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ξ j
(

Pj
)1−σx

) 1
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We can define the price aggregator

P = A−1

(
N

∑
j=1

ξ j
(

Pj
)1−σx

) 1
1−σx

.

such that Yt = XtPt. Also, we can plug in the price aggregator in our expression for Xit

to obtain:

Xi = ξi

(
1
Pi

)σx

XA−1

(
N

∑
j=1

ξ j
(

Pj
)1−σx

) −1
1−σ−1

x
,

= ξi

(
P
Pi

)σx

X.

The problem with the standard formulation of the CES is that the taste parameters ξi do
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not correspond to expenditure shares unless σx = 1:

ξi =

(
Xi

X

)(
Pi

P

)σx

Given this, we propose a mapping between intensity shares ξi and expenditure shares ξ̃i:

ξi =

(
Xi

X

)(
Pi

P

)σx

,

=

(
Xi

X

)(
X
Xi

Xi

X
Pi

P

)σx

,

=

(
Xi

X

)1−σx (
ξ̃i
)σx .

This implies the following mapping from intensity shares to expenditure shares:

ξ̃i = ξ
σ−1

x
i

(
Xi

X

)1−σ−1
x

.

C Solution Method

To find the global solution, we adapt the Deep Equilibrium Nets method (Azinovic et al.,
2022) to allow for Monte-Carlo based expectations, since our model has a large number
of shocks. This method consists in using neural networks as function approximators for
the policy functions that map the state variables {Kjt, Zjt}j to the endogenous variables
(policies and prices), which we denote as

{
Xjt
}

j, and train the neural net to reduce
the error in the system of equations describing the equilibrium, presented in subsection
B.6. One of the key elements of this methodology is that we use the neural network to
simulate the model and obtain points of the state space over which we will minimize the
loss function. Also, we use the neural net to estimate the expectation terms that appear
in the system of equations that describe the solution.

More specifically, the system of equations that we are trying to solve contains state and
endogenous variables at time t, and expectations that depend on endogenous variables
at time t + 1. In order to evaluate the average error in the system of equations associated
to some neural net parameters, we first sample points of the state space by simulating
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episodes using the neural net to step the model forward. Then, we use again the neural
network to get the policies at those points of the state space. Finally, to calculate the ex-
pectation terms at each point of the state space, we simulate many one-period transitions,
use the neural net to recover the terms inside the expectation for each one-period ahead
simulation, and then averaging them up to get the expectation. The only non-trivial part
of this evaluation is to evaluate the expectation terms. For models in which we have
an explicit and deterministic equation linking the endogenous state today (Kjt) with the
endogenous state tomorrow (Kjt+1), such as real business cycle models, we can simu-
late many one-period transitions by sampling only the exogenous state, since we already
know Kjt+1.

Before we explain formally how to calculate the expectation terms, we are going to in-
troduce the neural net approximator. Let St ∈ R2N be the state vector S = [Kt, at]. The
neural net approximator, with L layers indexed by i, is:

F ({W, bl}l; St) = σl(Wl ∗ [Kt, at] + bl)

Thus, the neural net is a function F (θt; Kt, at) where θt correspond to the internal pa-
rameters of the neural net. The output of the neural net is a vector of non-negative real
values. In particular, we define the policy variables as

Xt = F (θt; Kt, at)

Next, we show how to calculate the expectation function given that we are at particular
point of the state space and our current policy has parameters θt.
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C.1 The expectation function

In the system of equations presented in subsection B.6, the only expectation term appears
in the F.O.C. for Kjt+1:

Pk
jt = βEt

Pjt+1
(

Ajt+1
)1−σ−1

y

(
µj

Qjt+1

Yjt+1

)σ−1
q
(

α
Yjt+1

Kjt+1

)σ−1
y

+ Pk
jt+1

(
(1 − δk) +

ϕ

2

(
I2
jt+1

K2
jt+1

− δ2
j

))
|Kt, at

]

Notice that given policy parameters θt, Kjt+1 is already determined, so the expectation is
taken over realizations of at+1 ≡ log(At+1), whose conditional probability distribution is

p(at+1|at) = N (ρat, Σa)

In order to calculate our loss function, we need to calculate that expectation term at each
point of the state space we visit. Next, we break down how that expectation would be
constructed using a montecarlo simulation. First, given Kt and the policy parameters θt,
we calculate next period capital:

Kt+1 = (1 − δj)Kt + 1
′
It
F (θt; Kt, at)

where 1
′
It

is a vector that selects, among all the policies, the vector of sectoral investments.
Second, we sample 128 realization of the shock vector using the conditional distribution
(at+1|at) = N (ρat, Σa). Third, we we are going to use our policy function to obtain the
policies in t + 1 for a each draw of at+1 ∼ N (ρat, Σa) and the predetermined Kt+1:

Xt+1 = F (θt; Kt+1, at+1)

Finally, we use Kt+1 and the policies Xt+1 to calculate the term inside the expectation for
each draw of the shock vector, and we get the expectation by taking the average across
all draws.
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C.2 The loss function

Now that we have solved for the expectation function Φt(Kt, at, θt), we can calculate the
loss function in period t. First, we specify the endogenous variables in period t given Kt,
at and the parameters of the policy θt:Xt = F (θt; Kt, at). Then, we calculate the period
error, given as the quadratic loss in the system of equations that describe the solution.
The error is written as right hand side divided by left hand side minus. For example, the
loss for the market clearing equation of sector j is:

LQj ≡


[
(muj)

1
σq
(
Yjt
) σq−1

σq +
(
1 − µj

) 1
σq
(

Mjt
) σq−1

σq

] σq
σq−1

Qjt
1


2

then, we take this loss and square it.

C.3 Implementation

In this section, we present a step by step breakdown of the implementation. The first part
of the implementation, which consists on calculating a loglinear policy using dynare, is
done in Matlab. The second and third part of the implementation, which consist on
pretraining the neural net to fit the log linear policy and then use that solve the full
nonlinear version of the model, are coded in Python Colab Notebooks. The notebooks
are publicly available at RbcProdNet pretrain and RbcProdNet train, and all the codes,
including the notebooks, can also be found in the github page github econjax.

Before we start our three steps, we start in Matlab calculating the steady state, described
in section B.9

C.3.1 Solve Log-linear Model

We solve a version of the model with log-linearization around the steady state using
dynare. We are going to use these policies to “pre-train” the neural net (more details
in next subsection). . Next, we recover the state space representation used by dynare
internally. Let Xt = {It, Qt, Pt, Lt} be the vector of endogenous variables, and denote the
vector with logs as xt .st contains the log of the states, and the sub-index ss represents
steady state values. The representation is:
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st+1 − sss = A(st − sss) + Bet

xt − xss = C(st−1 − sss) + Det

A relevant detail of this stage is that timing conventions in dynare, and in particular
the implementation of the log-linearized systems, introduce a subtle informational as-
sumption. They write the evolution of log TFP as at = ρtat−1 + ϵt . Policies depend on
{kt, at1, ϵt}, and the terms at−1 and ϵt do not load according to the evolution of at. Try-
ing to fit the neural net to these policies, conditioning only on {kt, at} leads to less than
complete learning (up to 95% accuracy). Then, we will use{kt, at−1, ϵt}as an input for the
neural net. We will also normalize those three vectors by subtracting the steady state and
dividing by the standard deviation over dynare simulations. Thus, we denote observa-
tions as as ot = {k̃t, ãt−1, ẽt}, where tildes are used to represent normalized variables. 17

As an output of this stage, which we pass to Python, we save the matrices {A, B, C, D}
and the standard deviation of all state and policy variables in the simulation. We are
going to import in Python.

C.3.2 Pretrain Neural Net

Next, we ”pretrain” the neural net to approximate the dynare policies. First, we simulate
the model using the state space representation we extracted from dynare, and we store
the states we visited and loglinear policy at each period. Second, we evaluate the neural
net at the visited states, so we get the neural net policies. Third, we calculate the loss at
each step, using the following loss function:

Lt =
4N

∑
i=1

(Xneuralnet
it /Xloglinear

it − 1)2/(4N)

We can also calculate the average accuracy in one period as

Acct =
4N

∑
i=1

∣∣∣∣∣Xneuralnet
it − Xloglinear

it

Xdynare
it

∣∣∣∣∣ /(4N)

so 100% represents perfect fitting.

17Throughout the code, we will distinguish between state and observations, and normalized variables or
not.
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Table 5: Pretrain experiment hyperparameters

Hyperparameter Value

Network Architecture
NN hidden layers [1024,1024]

Output layer Softplus
Training Workflow

episodes per step 1024
periods per episode 128

steps per epoch 100
number of epoches 1000
shock size scaling 1.5

Optimization
Optimizer Adam

Learning rate 5e-4 to 1e-5
batch size 16

Opt. Momentum 0.9
Mean gradients exp. decay 0.9
S.D. gradients exp. decay 0.999

Solution threshold mean error < 5e-6, max error < 5e-5

In table 5, we show the configuration of the pre-train experiment. We will use vanilla
Fully Connected Layer, also called Multi-layer Perceptron, with 2 hidden layers of 1024
nodes each. The input to the neural net is the normalized observations we just described
in subsection C.3.1. We activate the output layer with a Softplus activation, which guar-
antees that the outputs are positive. The input to the neural net is the normalized ob-
servations we just described in subsection C.3.1. The targets that the neural net needs
to hit are normalized in such a way that if the neural net outputs 1 for a variable, it is
outputting the deterministic steady state of the variable. If it outputs 1.1, it is outputting
a value that is 10% higher than the deterministic steady state.

In order to explain the training workflow, we need to introduce some notation. Whenever
we update the neural net, we call it a step. But we let the computer to run for several
steps before it gives us feedback on how the neural net is doing. We call this set of steps
an epoch, so we have a parameter called steps per epoch, set to 100 in this case. Then, in a
step, we are going to sample a number of episodes in parallel. An episode is a simulation
of the model for a number of periods (in this case years). Hence, we have a parameter
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called episodes per step, set at 1024, and another parameter called periods per episode ,
set at 128. For the training, we scale up the shocks by 1.5 so we have more volatility.

For the optimization, we use Adam as an optimizer with default parameters. The learn-
ing rate follows a cosine decaying schedule starting at 5e-4 and ending at 1e-5. We split
randomly all the periods collected in a step in minibatches of step 16, we calculate gra-
dients of the loss function for each minibatch, and then we average the gradients across
minibatches. While we are training for a fixed number of epochs, our criteria for the
problem being solved is that the mean loss is below 5e-6 and the max loss is below 5e-5.

C.3.3 Solve the Nonlinear Model

FOllowing the same notation explained in the pretraining step, the configuration of the
experiment is

Table 6: Train experiment hyperparameters

Hyperparameter Value

Network Architecture
NN hidden layers [1024,1024]

Output layer Softplus
Training workflow

episodes per step 64
periods per episode 32

steps per epoch 100
number of epoches 1000
shock size scaling 1.5
Montecarlo draws 128

Optimization
Optimizer Adam

Learning rate 2e-5
batch size 16

Opt. Momentum 0.9
Mean gradients exp. decay 0.9
S.D. gradients exp. decay 0.999

Solution threshold mean error < 5e-6, max error < 5e-5

Given that in the training step we need to estimate the expectations at each point of the
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state space that we visit, the training step is much more computationally intensive, so
we have lower values for periods per episode and episodes per step. For the montecarlo
estimation of expectations, we draw 128 samples of the shock vector in parallel (each
shock vector has dimension 37 by 1). Since the pretraining leaves us close to the optimum,
we fix the learning rate at a low value of 2e-5.

C.4 Accuracy Checks

In figure 11, we observe the histogram of period losses that result from a 10000 period
simulation of the solved neural net policies. We see that most of the mass is concentrated
below 5e-6.

Figure 11: Distribution of Losses over Ergodic Distribution

Note: This figure shows the distribution of losses over the ergodic distribution. Ir order to calcu-
late, we simulate the global solution for 10000 periods, calculate the loss in each period, and plot
the histogram.
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Another accuracy metric that is important to keep track of is the error introduced by
the expectation estimation via the montecarlo method. In order to do this, we use the
solved neural net and we calculate the expectation terms in random points of the state
space. For each point of the state space, we repeat the montecarlo simulation 1000 times
with different shock realizations. In figure 12, we see the accuracy of the montecarlo
estimation of the expectation terms, measured as the standard deviation divided by the
mean of the error. As we can see, the error diminishes considerably as we increase the
number of random draws, but at 128, the number of draws we use, the error is already
below 1%.

Figure 12: Error in Montecarlo Estimation of Expectations

Note: This figure shows the accuracy of the montecarlo simulation method. In order to calculate
it, we perform the simulation 1000 times for different draws of the shocks, and calculate accuracy
statistics. In the y axis we present our measure of accuracy, that corresponds to the normalized
standard deviation of the expectation estimation (standard deviation divided by the mean). The
number of draws actually used in the experiments is 128.
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D Auxiliary Figures for Section 5

In this appendix, we present impulse responses for additional sectors.

Figure 13: Impulse Response of Aggregate Consumption to a Construction TFP Shock

Note: This figure shows the impulse response of aggregate consumption to a 20% negative TFP
shock in Construction. The black line represents the response using the global solution method,
the red line shows the response using a log-linear approximation, and the blue line shows the
perfect foresight solution. For the global solutions, the vertical axis shows log deviations relative
to the stochastic steady state, while for the log-linear and perfect foresight solutions we show
percentage deviations from the deterministic steady state.
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Figure 14: Impulse Response of Aggregate Consumption to a Machinery TFP Shock

Note: This figure shows the impulse response of aggregate consumption to a 20% negative TFP
shock in Machinery. The black line represents the response using the global solution method, the
red line shows the response using a log-linear approximation, and the blue line shows the perfect
foresight solution. For the global solutions, the vertical axis shows log deviations relative to the
stochastic steady state, while for the log-linear and perfect foresight solutions we show percentage
deviations from the deterministic steady state.
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Figure 15: Impulse Response of Aggregate Consumption to a Petroleum TFP Shock

Note: This figure shows the impulse response of aggregate consumption to a 20% negative TFP
shock in Petroleum. The black line represents the response using the global solution method, the
red line shows the response using a log-linear approximation, and the blue line shows the perfect
foresight solution. For the global solutions, the vertical axis shows log deviations relative to the
stochastic steady state, while for the log-linear and perfect foresight solutions we show percentage
deviations from the deterministic steady state.
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Figure 16: Impulse Response of Aggregate Consumption to a Retail TFP Shock

Note: This figure shows the impulse response of aggregate consumption to a 20% negative TFP
shock in Retail. The black line represents the response using the global solution method, the red
line shows the response using a log-linear approximation, and the blue line shows the perfect
foresight solution. For the global solutions, the vertical axis shows log deviations relative to the
stochastic steady state, while for the log-linear and perfect foresight solutions we show percentage
deviations from the deterministic steady state.

95



Figure 17: Impulse Response of Aggregate Consumption to a Real Estate TFP Shock

Note: This figure shows the impulse response of aggregate consumption to a 20% negative TFP
shock in Real Estate. The black line represents the response using the global solution method, the
red line shows the response using a log-linear approximation, and the blue line shows the perfect
foresight solution. For the global solutions, the vertical axis shows log deviations relative to the
stochastic steady state, while for the log-linear and perfect foresight solutions we show percentage
deviations from the deterministic steady state.
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