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Abstract

This paper explores a form of bounded rationality where agents learn about the economy
with possibly misspecified models. I consider a recursive general-equilibrium framework that
nests a large class of macroeconomic models. Misspecification is represented as a constraint on
the set of beliefs agents can entertain. I introduce the solution concept of constrained-rational-
expectations equilibrium (CREE), in which each agent selects the belief from her constrained set
that is closest to the endogenous distribution of observables in the Kullback–Leibler divergence.
If the set of permissible beliefs contains the rational-expectations equilibria (REE), then the REE
are CREE; otherwise, they are not. I show that a CREE exists, that it arises naturally as the limit
of adaptive and Bayesian learning, and that it incorporates a version of the Lucas critique. I
then apply CREE to a particular novel form of bounded rationality where beliefs are constrained
to factor models with a small number of endogenously chosen factors. Misspecification leads
to amplification or dampening of shocks and history dependence. The calibrated economy
exhibits hump-shaped impulse responses and co-movements in consumption, output, hours, and
investment that resemble business-cycle fluctuations.
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1 Introduction

The rational-expectations assumption underlies much ofmodernmacroeconomicmodeling. It
makes expectations model-consistent and predicts how they vary with changes in policy. But
the level of sophistication that it requires from agents may be unrealistically high. By putting a
straitjacket on agents’ expectations, the rational-expectations assumption also rules out many
compelling biases that have been documented through lab experiments (e.g., by Kahneman
and Tversky, 1972, 1982a,b) and survey evidence (e.g., by Coibion and Gorodnichenko, 2012,
2015a,b). While alternatives to rational expectations have been proposed (e.g., by Marcet and
Sargent, 1989a,b), a unified and flexible framework has been lacking. Abandoning rational
expectations leads a modeler into the “wilderness of bounded rationality,” as Sargent (1999)
famously quipped. How might we improve the realism of our models while maintaining the
endogeneity and discipline of rational expectations?

This paper proposes a flexible recursive general-equilibrium framework in which agents
face cognitive and behavioral constraints but do the best they can within the confines of their
constraints. It relaxes the rational-expectations assumptionbybreaking the linkbetweenagents’
models of the economy and the economic models they inhabit. Each agent is endowed with a
set ofmodels for the economy, uses them to learn about her environment, and selects themodel
that best describes her observations. If the agents’ models rule out the equilibrium distribution
of observables, the models are misspecified. Model misspecification can be seen as a unified
expression of bounded rationality: I show that many deviations from rational expectations
proposed in the literature are instances of misspecification.

The paper makes threemain contributions:

1. It introduces a general solution concept given arbitrary forms of misspecification and
provides Bayesian and adaptive learning foundations for the solution concept.

2. It proposes a new deviation from rational expectations, where agents’ models are con-
strained to low-dimensional hidden factor models.

3. It considers a medium-scale business-cycle model in which agents entertain one-
dimensional factor models and studies the quantitative implications of bounded
rationality.

In the first part of the paper, I introduce the solution concept of constrained-rational-
expectations equilibrium (CREE) as the misspecified counterpart to the rational-expectations
equilibrium (REE). In a CREE, (i) agents maximize their utilities given their expectations, (ii) the
general-equilibrium consistency requirements are satisfied, and (iii) each agent’s expectation is
chosen endogenously to minimize the distance to the distribution of observables. I build on
Esponda and Pouzo (2016a,b), extending their notion of Berk–Nash equilibrium to recursive
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general-equilibrium macro settings and extending the scope of the theory to allow for non-
convergence of beliefs. I show that a CREE exists under general conditions. I also prove that
the economy converges to a CREE as agents learn about their environment—either adaptively
or using Bayes’ rule. If the agents’ models are correctly specified, then the set of REE is a subset
of the set of CREE; otherwise, it is not. In the second part of the paper, I use CREE to study the
implications of a particular form of bounded rationality in a macroeconomic context. Agents’
models are given by hidden factor models with a small number of factors. I provide conditions
under which the response of the CREE to shocks is amplified/dampened relative to the REE. I
also show that the one-dimensional model with CREE exhibits outcomes that are qualitatively
similar to noisy informationmodels with Kalman filters (e.g., Sims, 2003). But in a CREE, agents
conjure up the measurement noise to better fit their misspecified low-dimensional models to
their observations.

In Section 2, I introduce the general framework used throughout the paper. I consider a
recursive general-equilibrium economy with a representative agent. The representative agent
solves a dynamic decision problem subject to a set of constraints on her choices. The agent’s
preferences and her choice set are functions of observables, which may include variables such
as prices, income, and taste shocks. The observables may be affected by the agent’s choices
in equilibrium, but she takes them as given. The agent’s optimal decisions thus depend on
her expectations about the future values of observables. The framework can nest a large
class of macroeconomic models—including some with heterogeneous agents and incomplete
information.

I begin Section 3 by adapting the temporary equilibriumof Grandmont (1977) andWoodford
(2013) to the general framework of this paper. I define a temporary equilibrium as a mapping
from the agent’s expectations andpast values of equilibriumvariables to the current distribution
of equilibrium variables. In a temporary equilibrium, the agent’s decisions are optimal given her
expectations, and the general-equilibrium consistency requirements such as market-clearing
conditions are satisfied. A temporary equilibrium is a convenient device for summarizing the
fundamentals of the economy, but it is silent on the determination of the agent’s expectations.

Instead of completing the description of equilibrium by imposing rational expectations, I
assume that the agent is endowed with a set of models and forms her expectations by fitting
her models to her observations. Each model defines a probability distribution over the path of
observables. The set of models may or may not include the probability distribution that arises
in equilibrium. If it does, then the agent’s collection of models is correctly specified; otherwise,
it is misspecified. When the agent has a misspecified set of models, she selects a model from
her misspecified set that minimizes a novel version of the Kullback–Leibler divergence from
the equilibrium distribution of observables. I later provide two formal learning foundations
for the Kullback–Leibler divergence as the appropriate notion of distance in the macro settings
considered in this paper.
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Section 3 goes on to formally define the solution concept of CREE. A CREE consists of a
temporary equilibrium, a stationary probability distribution for equilibrium variables, and the
set ofmodels for the agent that best fit her observations. In a CREE, the evolution of equilibrium
variables is determined by the temporary equilibrium; the agent updates her belief using Bayes’
rule; the equilibrium variables are distributed according to the stationary distribution; and the
agent puts positive probability only on the set of models that minimize the Kullback–Leibler
divergence given the temporary equilibrium and the stationary distribution. I show that a CREE
exists as long as some weak continuity and compactness conditions are satisfied.

In Section 4, I provide learning foundations for CREE. I first show that CREE arises as the limit
of Bayesian learning. I consider an agentwith a subjective priorwhoupdates her belief over time
using Bayes’ rule andmakes optimal choices given her belief—anticipating that she will update
herbelief in the futureusingBayes’ rule. This specificationofbeliefs leads toa recursiveversionof
the internally-rational-expectations equilibriumofAdamandMarcet (2011). I show that—under
a regularity condition called asymptotic mean stationarity—Bayesian learning leads the agent’s
belief to concentrate on the set of models thatminimize the Kullback–Leibler divergence. It also
leads the Bayesian equilibrium to converge to a CREE.

I then provide a second foundation for CREE by showing that adaptive learning also leads the
agent’s belief to concentrate on the set ofmodels thatminimize theKullback–Leibler divergence.
To study adaptive learning, I propose a generalization of the least-squares learning approach
(e.g., Marcet and Sargent, 1989a,b, Evans and Honkapohja, 1995, 2012), in which the agent
estimates hermodel using a quasi-maximum-likelihood estimator. The agent behaves optimally
given her estimate and under the assumption that she will not update her belief. I show that
under asymptotic mean stationarity of the adaptive equilibrium, the agent’s belief concentrates
on the set with the minimum Kullback–Leibler divergence from the equilibrium distribution of
observables. I also provide sufficient conditions under which the equilibrium itself converges to
a CREE as the result of adaptive learning.

The approach of CREE to the modeling of bounded rationality offers several conceptual and
practical advantages over the existing alternatives. It unifies and connects various disparate
approachesby casting themall as instances ofmisspecification. It facilitates the incorporationof
new and rich behavioral biases in standardmacromodels. And it leads to tractable and portable
models of expectation formation. The solution concept of CREE not only determines the agents’
expectations in equilibrium but also predicts how those expectations vary with changes in the
environment as agents learn. As such, it is particularly well-suited for counterfactual policy
analysis: a policymakerwhousesCREE to analyze the effects of alternative policies is not subject
to the Lucas critique.

In Section 5, I use CREE to study how misspecified expectations change the response of an
economy to shocks. I consider a simple linear economy with one choice variable, one state
variable, and one shock. The agent’s set of models is constrained to contain only hidden factor
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models. I provide conditions under which the response of the economy to shocks in a CREE is
amplified/dampened relative to the rational-expectations benchmark. I also show thatwhile the
REE does not exhibit history dependence, the CREE generically does so.

Section 6 describes the results of a quantitative exercise to study the role of bounded
rationality in explaining business-cycle fluctuations. I consider a medium-scale economy with
standard fundamentals. There are nominal price and wage rigidities, investment, neoclassical
capital-adjustment costs, realistic monetary and fiscal policies, and a large number of nominal
and real shocks. There is no habit formation in consumption, no wage or price indexation, no
shock to themarginal product of investment, and no investment-adjustment cost.1

I replace these frictions with a novel constraint on the agents’ set of models: agents are
constrained to entertain hidden factor models with d endogenously constructed factors. The
agents’ models are misspecified when d is small (relative to the size of the minimal state-space
representation of theREE). I refer to the particular case of CREEwhere agents have factormodels
with d factors as CREE-d . A CREE-d has only one additional parameter compared to the REE:
the number of factors d . The number of factors can be estimated jointly with the parameters of
preferences, technology, and shocks using standard techniques. As a first pass, I set the number
of factors equal to one and calibrate the other parameters to standard values from the DSGE
literature.

The CREE-1 exhibits quantitatively different outcomes relative to the REE. The impulse
responses of real variables to TFP andmonetary-policy shocks exhibit hump shapes in contrast
to the impulse responses in the REE. Demand shocks (i.e., government spending and discount-
factor shocks) lead to co-movements in consumption, investment, hours, andoutput thatmatch
the salient features of business-cycle fluctuations. In the REE, in contrast, both government
spendinganddiscount-factor shocks lead tocounterfactual co-movements. Boundedrationality
in the form of CREE-d thus emerges as a parsimonious alternative to the battery of frictions
needed in the DSGE literature to improve the empirical fit of standardmodels.

TheCREE-1model also gives rise to an endogenousmeasure of consumer confidence. Agents
endogenously construct a hidden factor that they believe drives the movements in aggregate
variables. I refer to the agents’ estimate of the hidden factor as “consumer confidence.” The
consumer confidence increases the most with increases in investment, hours, the rental rate of
capital, consumption, and income; it decreases themost with increases in taxes; and it is largely
unaffected by changes in the values of shocks, inflation, the real wage, and the nominal interest
rate. Positive supply and demand shocks both lead to increases in the consumer confidence and
co-movements in aggregate variables. A change in consumer confidence thus works both as an

1I assume a neoclassical capital-adjustment cost à la Hayashi (1982) and not an investment-adjustment cost like the
one assumed inChristiano, Eichenbaum, and Evans (2005), Smets andWouters (2007), and theDSGE literature that follows
them.
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amplificationmechanism and as a propagationmechanism for the fundamental shocks that hit
the economy.

Related Literature. This paper contributes to several lines of research in macroeconomics,
game theory, behavioral economics, and econometrics. It builds on the literature on Bayesian
inference under misspecification that goes back to the seminal work of Berk (1966).2 In parallel
to Berk’s analysis of Bayesian inference, a literature going back to Huber (1967) has studied
the asymptotic properties of the quasi-maximum-likelihood estimator (QMLE) under misspec-
ification.3 My convergence results contribute to this literature by weakening the regularity
assumption needed for convergence to that of asymptotic mean stationarity.

Esponda andPouzo (2016a) adaptBerk’s notionofmisspecification to games. They introduce
into an otherwise-standard static game the possibility that the players’ models are misspecified
and propose the solution concept of Berk–Nash equilibrium. In a Berk–Nash equilibrium,
players play optimally given their beliefs, and beliefs minimize the weighted Kullback–Leibler
divergence against the equilibriumdistribution of play. Meanwhile, Esponda and Pouzo (2016b)
adapt Berk–Nash equilibrium to Markov decision problems and show that Bayesian learning
leads the agent’s belief to concentrate on the set of models that minimize another version of
the Kullback–Leibler divergence. In related work, Fudenberg, Romanyuk, and Strack (2017)
consider active learning and information acquisition by an agent with a misspecified model,
showing that whether the agent’s belief converges may depend on her discount rate; Heidhues,
Koszegi, and Strack (2018) studymisspecified learning by an overconfident agent and show that
overconfidencemay systematically lead her away from the correct belief about the fundamental;
and Gagnon-Bartsch, Rabin, and Schwartzstein (2018) propose channeled attention as a reason
why an agent may not abandon her misspecified models in the face of mounting evidence that
themodels are misspecified.

This paper extends the analysis of Esponda and Pouzo to recursive dynamic general-
equilibrium macro settings with a continuum of agents and continuous actions, observables,
and state variables. What distinguishes general-equilibrium settings from games is the
simultaneous determination of aggregate observables (such as prices) and the agents’ choices
(such as quantities consumed) through price-taking behavior and market clearing conditions.4
I adapt and generalize the notion of Berk–Nash equilibrium tomacro settings, innovating along
several dimensions. First, I exploit the recursive structure of the economy and the Markovian

2Berk showed that the posterior distribution of a Bayesian observer concentrates on the set of models that minimize
the Kullback–Leibler divergence, where the Kullback–Leibler divergence given a candidate distribution is defined as the
expected value (under the true distribution) of the log-likelihood ratio of the true distribution against the candidate
distribution. Bunke and Milhaud (1998), Kleijn and Van Der Vaart (2006), and Shalizi (2009) extend the result of Berk by
providing conditions for theweak convergence of posterior distributions and considering infinite-dimensionalmodels and
non-i.i.d. observations.

3Other important contribution to the analysis of QMLE include Pfanzagl (1969), White (1982), and Vuong (1989). A
central finding of this literature is the convergence of QMLE to amodel that minimizes the Kullback–Leibler divergence.

4It is important to note, however, that I do not assume that the economy isWalrasian. The flexible framework studied in
the paper can embed frictions such as nominal rigidities and non-competitive behavior such asmonopolistic competition.
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structure of Bayes’ rule to cast the dynamics ofmacro aggregates and beliefs, jointly, as aMarkov
chain over an infinite-dimensional space. Second, I generalize the definition of equilibrium to
allow for ergodic distributionsover aggregates andbeliefs andweaken thenotionof convergence
to that of empirical distributions. Third, I use results from the theory of continuous Markov
chains over general state spaces to establish the convergence of empirical distributions and
concentration of beliefs under weak continuity and asymptotic mean stationarity conditions.
Finally, I prove that learning in the macroeconomic settings considered in this paper leads the
agents tominimize a newversion of theweightedKullback–Leibler divergence, where theweight
is now given by the temporary equilibrium of the economy.

This paper also contributes to the literature that studies the implications of misspecification
as a manifestation of bounded rationality in macroeconomics. This literature goes back to
the work of Bray (1982) and Bray and Savin (1986) on restricted-perceptions equilibrium. In
a restricted-perceptions equilibrium, misspecification takes the form of agents dropping some
relevant variables from their regressions. Hommes and Sorger (1998) and Branch andMcGough
(2005) consider agents whose models are misspecified due to their use of linear equations to
approximate non-linear equilibrium relationships. Agents in Krusell and Smith (1998) also
have a misspecified model of the economy. They believe that current and future prices do not
depend on anything but the first few moments of the wealth distribution. Marcet and Sargent
(1989a,b), Sargent (1999), andMarcet and Nicolini (2003) consider agents who learn about their
environment given a misspecified model according to which observations are generated from
a stochastic process with a persistent hidden component.5 Besides unifying these models and
nesting them as special cases, this paper endogenizes the parameters of the agents’ learning
rules: while the Kalman gain used by agents is a free parameter in the adaptive-learning
literature, it is determined endogenously in a CREE and varies with changes in policy. The
CREE thus incorporates a version of the Lucas critique.6 This paper also contributes to the
adaptive-learning literature by proposing a generalization of least-squares learning in which
agents update their beliefs using QMLE.

Agents with preferences that exhibit ambiguity aversion (as in Gilboa and Schmeidler, 1989)
or robustness concerns (as in Hansen and Sargent, 1995, 2001a,b) also entertain a set of models,
some of them misspecified.7 In the robustness approach of Hansen and Sargent, agents’ set

5Other related papers in the learning literature include Cho, Williams, and Sargent (2002), Bullard and Mitra (2002),
Orphanides andWilliams (2005), Preston (2005), Bullard, Evans, and Honkapohja (2008), Adam andMarcet (2011), Eusepi
and Preston (2011), Malmendier and Nagel (2016), Adam, Marcet, and Beutel (2017), and Eusepi and Preston (2018a). See
Eusepi and Preston (2018b) for a recent survey of the literature.

6EvansandRamey (2006) alsoprovideconditionsunderwhichmonetarypolicy is subject to theLucas critique inamodel
with adaptive expectations.

7Gilboa andSchmeidler (1989) proposemax-minexpectedutility as a formalizationof ambiguity aversionandapossible
resolution to the Ellsberg (1961) paradox. Epstein and Schneider (2003) extend the axiomatic approach of Gilboa and
Schmeidler to dynamic settings. See Maccheroni, Marinacci, and Rustichini (2006) and Strzalecki (2011) for axiomatic
foundations for the robustpreferencesofHansenandSargent and Ilut andSchneider (2014) for abusiness-cycle application
with ambiguity-averse agents.
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of models typically consists of a benchmark model and a surrounding set of models that are
difficult to distinguish with finite data. Agents acknowledge the possibility of misspecification
and are assumed to follow decision rules that perform well given any model in their set. As
such, preference for robustness offers a substitute for high risk aversion in generating realistic
risk premia.8 In contrast, agents in a CREE behave optimally assuming that the model that
best describes their observations is the true model of the world. Ambiguity aversion may
asymptotically vanish as agents learn—as shownbyMarinacci (2002) andEpstein and Schneider
(2007).9 But agents in a CREE do not settle on the correct model because of their misspecified
prior, despite having access to an infinite sequence of observations. In short, while in the
robustness literature thedeviation fromrational expectations captures a lackof data anda fear of
misspecification, the deviation in a CREE is due to reality beingmore complex than what agents
can perceive.

A close cousin of misspecification is lack of identification. A model is misspecified if it
does not contain the true probability distribution; it is unidentified if it includes (wrong)
probability distributions that are indistinguishable from the true probability distribution along
the equilibrium path. Fudenberg and Levine (1993)’s self-confirming equilibrium is the leading
way of thinking about the lack of identification in game theory and macroeconomics.10 While
agents’ models can be both misspecified and unidentified in this paper, my focus is model
misspecification.

A number of behavioral biases such as sentiments (Barberis, Shleifer, and Vishny, 1998),
analogy-based expectations (Jehiel, 2005), cursedness (Eyster and Rabin, 2005), and gambler’s
andhot-hand fallacies (Rabin andVayanos, 2010) can alsobe viewedasparticular cases ofmodel
misspecification. In Appendix C, I show how several examples of misspecification from the
existing literature can be seen as special cases of the framework of this paper.

The idea behind CREE is related to the concept of rational inattention put forward by Sims
(2003) and used to study business cycles byMankiw and Reis (2002),Maćkowiak andWiederholt
(2009, 2015), Alvarez, Lippi, and Paciello (2015), and Afrouzi (2017), among others. Both CREE
and rational inattention impose restrictions on the agents’ expectations, and both notions
propose selection criteria for choosing an expectation from the constrained set. The restriction
in rational-inattentionmodels is an information-flowconstraint, whereas the selection criterion
is often utilitymaximization or theminimization of discountedmean squared errors. This paper

8See Hansen, Sargent, and Tallarini (1999) for an application of robust preferences to the permanent income model
and asset pricing. Other contributions to the robustness literature include Anderson, Sargent, and Hansen (2003), Hansen
and Sargent (2005, 2007), Hansen, Sargent, Turmuhambetova, andWilliams (2006), Woodford (2010), Karantounias (2013),
Bhandari, Borovicka, and Ho (2017), Hansen and Sargent (2017), and Hansen, Szoke, Han, and Sargent (2018). See Hansen
and Sargent (2008) for a thorough treatment.

9See also Zimper andMa (2017) who show that ambiguity aversionmay not vanish if the decisionmaker is “stubborn.”
10See also Fudenberg and Levine (2009), who study the relationship between self-confirming beliefs and the Lucas

critique, Primiceri (2006) for an explanation of the US inflation in the 1960s and 1970s using self-confirming equilibrium,
and Battigalli, Cerreia-Vioglio, Maccheroni, Marinacci, and Sargent (2016), who propose a general framework for studying
self-confirming policies inmacroeconomics.
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generalizes rational inattentionby considering arbitrary constraints on the agents’ set ofmodels.
It proposes the selection criterion of CREE as a micro-founded and tractable alternative to the
selection criterion of rational inattention.11

Finally, the applied contribution of the paper is closely connected to a literature that em-
phasizes how noisy information can be the source of inertia and hump-shaped dynamics in
macroeconomic models (e.g., Sims, 2003, Woodford, 2003a, Mankiw and Reis, 2002, Nimark,
2008, Angeletos and Huo, 2018). Both in that literature and the medium-scale model studied in
Section 6 of this paper, the agents solve a Kalman filtering problem with an unobservable state,
and this is the source of persistence and hump-shaped dynamics. But while in that literature the
measurement error is exogenously imposed in the form of noisy information, inmy application
it is endogenously chosen by the agents as a byproduct of theirmisspecification. Related is also a
literature thatuses incomplete informationand/or ambiguity towarda theoryof howconfidence
matters over the business cycle (e.g., Angeletos, Collard, and Dellas, 2018, Benhabib, Wang, and
Wen, 2015, Ilut and Saijo, 2016, Bhandari, Borovicka, and Ho, 2017).

Outline. The rest of the paper is organized as follows: Section 2 introduces the general
framework. Section 3 introduces the notions of temporary equilibrium and CREE. Section 4
presents Bayesian and adaptive learning foundations for the solution concept of CREE. Section
5 studies a special case of the general framework inwhich agents entertain hidden factormodels
and provides conditions under which misspecification can lead to amplification or dampening
of shocksand tohistorydependence. Section6proposesabusiness-cyclemodelwithagentswho
have hidden factor models and studies the implications of misspecification for business-cycle
fluctuations. Section 7 concludes. Appendix A presents examples of standardmacromodels and
illustrates how they can bemapped to the general framework of Section 2. Appendix B provides
additionalmathematicaldetails for thehidden factormodel. AppendixCpresentsa list ofmodels
of bounded rationality from the literature and shows that they can be viewed as instances of
misspecification. AppendixDpresents additional details on the business-cyclemodel described
in the body of the paper. Appendix E presents somemathematical definitions and the proofs of
the main results. An Online Appendix contains the standard calculations for the business-cycle
model as well as additional theoretical results.

2 General Framework

In this section, I present the general framework that is used in the remainder of the paper. The
framework aims to strike a balance between generality and tractability. In Subsection 2.1, I
11Maćkowiak, Matejka, and Wiederholt (2017) show that rational-inattention models can be represented as state-space

models in which the variance of the “measurement error” is lower-bounded by a variable that depends on the agent’s
amount of attention. In Appendix C, I use the result of Maćkowiak et al. (2017) to show that the rational-inattention
restriction on expectations can be viewed as a special case of the general formulation of model misspecification in this
paper.
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describe the economic environment—consisting of preferences, general-equilibrium require-
ments, and thedistributionof shocks. To simplify thenotationandclarify themaincontributions
of the paper, I restrict my attention to representative-agent economies. In Appendix A, I give
examples of workhorse macro models and show that they can be mapped to the framework
of Subsection 2.1. I also illustrate how a heterogeneous-agent model can be cast as a special
case of my baseline representative-agent framework by an appropriate redefinition of variables.
Extensions to other heterogeneous-agent models are straightforward.

In Subsection 2.2, I formally define what I mean by a constrained set of models for the agent.
The formulation is sufficiently general to allow for (almost) arbitrary constraints on the agent’s
models. In Appendix C, I show how a wide range of deviations from rational expectations—
includingmodels of adaptive learning, sentiments, extrapolative expectations, gambler’s fallacy,
and rational inattention—can be seen as particular examples of such constraints.

The followingmathematical definitions areused throughout thepaper: transitionprobability
and invariant distribution. Givenmeasurable spaces (Ω1, F1) and (Ω2, F2), functionK : Ω1×F2 →

[0, 1] is a transition probability from Ω1 to Ω2 if (i) the mapping ω1 7→ K (B |ω1) is measurable
for any set B ∈ F2 and (ii) K (·|ω1) is a probability distribution over (Ω2, F2) for any ω1 ∈ Ω1. A
probability distribution ρoverΩ is an invariant distribution for the transition probabilityK from
Ω to itself if

∫
K (B |ω)ρ(dω) = ρ(B) for anymeasurable set B ⊆ Ω.

2.1 Economic Environment

The representative agent chooses a sequence {xt }
∞
t=1 of choice variables tomaximize theexpected

present-discounted value of her payoffs:

max
{xt }

∞
t=1

E

[
∞∑

t=1
βt−1u(xt−1, xt , yt )

]
, (1)

given x0 and subject to constraints

xt ∈ Γ(xt−1, yt ) t = 1, 2, . . . (2)

where β ∈ (0, 1) is the discount factor, u is the per-period utility function, and Γ is a correspon-
dence that determines the agent’s choice set as a function of the choice xt−1 made by the agent
in the previous period and an observable yt . The observable yt is a vector consisting of all the
variables that are observed by the agent, can affect her optimal choices by shifting her payoffs or
changing her choice set, and are outside of the agent’s control.12

Problem (1)–(2) would be identical to the canonical dynamic decision problem studied in
Chapter 9 of Stokey and Lucas (1989) but for two important differences. First, the operator E

12The assumption that the agent’s choices do not affect the values of the observable variable implies that the agent has
no incentive to engage in active learning or experimentation. This assumption distinguishes the paper from the literature
onmisspecified learning in games such as Fudenberg, Romanyuk, and Strack (2017).
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represents the agent’s subjective expectation about the path {yt }
∞
t=1 of the observables. It can in

general bedifferent than themodel-implied (rational) expectation. Themodelingandanalysis of
theevolutionof theagent’s subjective expectation is the focusof the theorypart of thispaper. The
second difference concerns the determination of the observable yt . I deviate from the textbook
dynamic decision problem by allowing yt to have endogenous elements (such as prices) that are
determined in equilibrium and are required to be consistent with the agent’s choices.

These consistency requirements are expressed parsimoniously bymeans of a functionG of x

and y that is required to be identically equal to zero in equilibrium. In any equilibrium and at all
times, xt and yt are required to satisfy

G (xt , yt , zt ) ≡ 0, (3)

where zt is a state variable that is predetermined as of period t . The state variable in period t is
distributed according to

zt ∼ Π(·|yt−1, zt−1), (4)

conditional on the values of the observable and the state variable in period t − 1. The state
variable zt may have exogenous and endogenous components that represent variables such as
exogenous shocks or the capital stock of the economy. I assume that zt is not observable to the
agent. But note that this assumption is without loss of generality: any observable state variable
can be included in the vector yt .

The functionG can be used to express two distinct types of consistency requirements. First,
it can be used to express general equilibrium conditions such as market-clearing conditions.
Second, it can be used to make the value of the observable yt a function of the predetermined
state variable. The latter consistency requirements canbe used tomodel persistence in the value
of (exogenous or endogenous) observable variables.

In Appendix A, I provide examples of textbookmacroeconomicmodels and discuss how they
can bemapped to the general framework of this section by appropriate choices of x , y , z ,Π, Γ,u ,
β, andG .

2.2 The Agent’s Models

I endow the representative agent with a set of models for the economy. A model consists of
a probability distribution over the infinite sequence {yt }

∞
t=0 of observables. The agent’s set

of models may be correctly specified—containing the data-generating process that arises in
equilibrium—or it may bemisspecified.

I impose two weak assumptions on the set of models for the agent. First, I assume that
the agent only entertains models according to which the sequence {yt }

∞
t=0 is a Markov chain

(possibly over an infinite-dimensional space). Given the flexibility in choosing the domain of
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y , this assumption is without any serious loss of generality.13 I also simplify the analysis by
assuming that the agent’s model is parametric, i.e., can be parametrized by a finite number
of real-valued variables. This is in keeping with the overwhelming majority of the papers in
economic theory and econometrics that study the implications of model misspecification.14
These two restrictions are sufficiently strong to enable me to prove general results while being
sufficiently permissive to allow the framework to embed many interesting cases that arise in
applications.

A set of parametricMarkovianmodels for the agent is fully described by a pair (Θ, Q ), whereΘ
is a subset of a finite-dimensional Euclidean space andQ is a function that maps parameters to
transitionprobabilities. Givenparameter θ ∈ Θ, theagentbelieves that yt is distributedaccording
to

yt ∼ Q θ(·|yt−1), (5)

conditional on yt−1 being the realization of the observable in period t − 1. Given any probability
distribution µy0 for y0, the transition probability Q θ induces a probability distribution over the
space of sequences {yt }

∞
t=0. Whenever the mapping Q is clear from the context, I refer to θ as a

model and to the setΘ as the agent’s constrained set of models (or simply the agent’s models).
In the next two sections, I remain agnostic about the nature of the constraints on the agent’s

set of models. Doing so allows me to establish general theoretical results that are valid given
arbitrary specifications of the agent’s models. Appendix C illustrates how a number of models
of bounded rationality can be cast as particular specifications of the set Θ. In Sections 5 and 6, I
specialize the agent’s set of models to be induced by hidden factor models.

An economy is defined as an economic environment together with a set of parametric
Markovianmodels for the agent.

Definition 1. An economy is a tupleE = (X, Y, Z, Π, Γ, u, β, G, Θ, Q ), withX ,Y , andZ denoting the
domains of the choice variable x , the observable y , and the state variable z . An initial condition
for the economyE consists of initial values (x0, y0, z0) for the choice variable, the observable, and
the state.

2.3 Technical Assumptions

I next state the weak technical assumptions that are maintained throughout the paper. More
substantive assumptions are explicitly stated in the paper as numbered assumptions and are
invoked in the results that use them. The sets X , Y , and Z are nonempty compact subsets
of metric spaces with the corresponding Borel sigma-algebras denoted by X, Y, and Z. The
13In particular, any probability distribution overΩN, whereΩ denotes a Borel space, can be expressed as aMarkov chain

with state spaceΩN.
14Examples include White (1982), Vuong (1989), Esponda and Pouzo (2016a,b), and Fudenberg, Romanyuk, and Strack

(2017). For a paper in statistics that deals with the complexities arising in Bayesian estimation of nonparametric
misspecifiedmodels, see Kleijn and Van Der Vaart (2006).
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functionu : X ×Y ×Y → R and the correspondence Γ : X ×Y � X aremeasurable. The function
Π : Y ×Z ×Z → [0, 1] is a transitionprobability fromY ×Z toZ . The functionG (x, y, z ) takes values
in Rk , with k denoting the number of general-equilibrium consistency requirements. The set Θ
is a nonempty compact subset of a finite-dimensional Euclidean space. The set∆Θof probability
distributions over Θ is endowed with the topology of weak convergence and the corresponding
Borel sigma-algebra B(∆Θ). For any θ ∈ Θ, the function Q θ : Y × Y → [0, 1] is a transition
probability fromY to itself. For any y− ∈ Y , there exists a sigma-finite measure ζ onY such that,
for all θ ∈ Θ, the probability distributionQ θ(·|y−) is absolutely continuous with respect to ζ with
the density denoted by qθ(·|y−). The family of functions {θ 7→ qθ(y |y−)}y− is equicontinuous for
any y ∈ Y , and the family of functions {qθ(·|·)}θ∈Θ is equicontinuous. The density qθ(·|·) is strictly
positive and bounded for all θ ∈ Θ.

3 Equilibrium

This section introduces the solution concept of constrained-rational-expectations equilibrium.
As a stepping stone, I fix the agent’s expectations anddefinea recursive temporary equilibrium.15

3.1 Recursive Temporary Equilibrium

It ismore convenient toworkwith the recursive representation of problem (1)–(2). I assume that
the principle of optimality holds so that the recursive and sequential problems are equivalent.16
Givenmodel θ for the agent, her Bellman equation is given by

V (x−, y, θ) = max
x ∈Γ(x−,y )

[
u(x−, x, y ) + β

∫
V (x, y ′, θ)Q θ(dy ′ |y )

]
. (6)

This is a standardBellmanequation—except for the fact that theexpectation is takenwith respect
to the agent’s subjectivemodel for the transition probability of y . Let x(x−, y, θ) denote the policy
correspondence

x(x−, y, θ) ≡ argmax
x ∈Γ(x−,y )

[
u(x−, x, y ) + β

∫
V ∗(x, y ′, θ)Q θ(dy ′ |y )

]
, (7)

whereV ∗(x−, y, θ) is the unique fixed point of the functional equation (6).
A recursive temporary equilibrium is defined as a transition probability that is consistent

with the optimality condition (7), the general-equilibrium requirement (3), and the transition
probability for the state variable given in (4).
15The idea of temporary equilibrium goes back to the writings of Hicks (1939) and Lindahl (1939). It has been extensively

developed in the context of Arrow–Debreu economies by Grandmont (1977, 1982). See Woodford (2013) for a discussion
of temporary equilibria in the context of modernmonetary models and Farhi andWerning (2017) for an application in the
context of a heterogeneous-agent new-Keynesian economy. The notion of recursive temporary equilibrium, defined in this
paper, is tightly linked to the notion of the “Markov process of temporary equilibrium” introduced by Hildenbrand and
Grandmont (1974). In particular, a recursive temporary equilibrium generates a random process for equilibrium variables
that is a Markov process of temporary equilibrium.
16See Stokey andLucas (1989, ch. 9) for conditions on the fundamentals that guarantee theprinciple of optimality tohold.
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Definition 2. Given an economy E, a recursive temporary equilibrium is a transition probability
T from X ×Y × Z × Θ to X ×Y × Z such that for any x−, y−, z−, θ,

(i) the agent’s decisions are optimal:

x ∈ x(x−, y, θ) forT -almost all (x, y );

(ii) the general-equilibrium requirements are satisfied:

G (x, y, z ) = 0 forT -almost all (x, y, z );

(iii) and the distribution of the state variable is consistent with the given transition probability:

T (B |x−, y−, z−, θ) = Π(B |y−, z−) for anymeasurable set B ⊆ Z .

It will prove useful to introduce a straightforward generalization of recursive temporary
equilibrium that allows for the agent to assign positive probabilities to more than one model.
When the agent’s belief is non-degenerate, one has to take a stand on what the agent believes
about the evolution of her own future expectations. I assume that the agent anticipates updating
her belief using Bayes’ rule. Due to the Markovian structure of Bayes’ rule, the optimization
problemof the agent can still bewritten as a Bellman equation. But now I alsomust keep track of
the belief as a state variable (since it changes over time). Suppose the agent’s belief in the current
period is given by λ ∈ ∆Θ. The agent’s optimization problem can be represented as the following
Bellman equation:

V (x−, y, λ) = max
x ∈Γ(x−,y )

[
u(x−, x, y ) + β

∫
V (x, y ′, λ ′)Q θ(dy ′ |y )λ(dθ)

]
, (8)

where λ ′ = φ(λ, y, y ′) is the Bayesian update of λ conditional on observing the transition from y

to y ′; more formally, the mapping φ : (λ, y, y ′) 7→ λ ′ is defined by letting, for any measurable set
B ⊆ ∆Θ,

λ ′(B) =

∫
B

qθ(y
′ |y )λ(dθ)∫

qθ(y ′ |y )λ(dθ)
. (9)

The continuity and full-support assumptionsmadeonq guarantee that theBayesianupdate φ(λ,
y, y ′) is always well-defined and finite.17 I let x(x−, y, λ) denote the policy correspondence given
the Bellman equation (8). The following definition generalizes Definition 2 to accommodate
non-degenerate beliefs and Bayesian updating:

Definition 2′. Given an economy E, a Bayesian recursive temporary equilibrium is a transition
probabilityT from X ×Y × Z × ∆Θ to itself such that for any x−, y−, z−, λ−,
17See Lemma E.1 for a proof.
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(i) the agent’s decisions are optimal:

x ∈ x(x−, y, λ) forT -almost all (x, y, λ);

(ii) the general-equilibrium requirements are satisfied:

G (x, y, z ) = 0 forT -almost all (x, y, z );

(iii) the distribution of the state variable is consistent with the given transition probability:

T (B |x−, y−, z−, λ−) = Π(B |y−, z−) for anymeasurable set B ⊆ Z ;

(iv) and the agent updates her belief using Bayes’ rule:

λ = φ(λ−, y−, y ) forT -almost all (y, λ).

For brevity, I refer to a Bayesian recursive temporary equilibrium simply as a temporary equilib-
riumwhenever there is no risk of confusion.

A Bayesian recursive temporary equilibriummaps the value of equilibrium variables (x−, y−,

z−)and theagent’sbelief in thepreviousperiod λ− to thedistributionof equilibriumvariables and
the agent’s belief in the current period. The distribution of equilibrium variables is consistent
with the optimality and consistency requirements, and the agent’s belief is updated by Bayes’
rule.

Definition 2′ reduces to Definition 2 when the prior λ− is given by a degenerate distribution
1θ for somemodel θ ∈ Θ. This is a simple consequence of the fact that the Bayesian update φ(1θ,
y, y ′) of a degenerate prior 1θ is equal to the prior itself, regardless of the values of y and y ′.

A temporary equilibrium is a mapping according to which the agent maximizes her utility
given her expectations and the consistency requirements are satisfied. Existence of temporary
equilibrium is, therefore, a necessary condition for the existence of equilibrium. I maintain the
following assumption throughout the paper:

Assumption 0. There exists a temporary equilibriumT for the economy E.

I also assume that the temporary equilibrium is continuous to ensure that the economy is
well-behaved. The following continuity assumption requires themappingT to be continuous:

Assumption 1. The mapping (λ−, x−, y−, z−) 7→ T (·|x−, y−, z−, λ−) is continuous, where the
topology on X × Y × Z × ∆Θ is the product topology and the topology on ∆(X × Y × Z × ∆Θ) is
induced by the total variation norm.18
18More formally,∆(X ×Y ×Z ×∆Θ) is taken as a subset of ca(X ×Y ×Z ×∆Θ), the Banach space of countably additive signed

measures over X ×Y × Z × ∆Θwith the total variation norm. Assumption 1 is the counterpart of the continuity assumption
made in Proposition 5.6 of Futia (1982).
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The temporary equilibrium summarizes the fundamentals of the economy other than the
agent’s set of models.19 I take it as the starting point of my analysis in the rest of this section
and in Section 4.

3.2 Constrained-Rational-Expectations Equilibrium

The description of equilibrium is complete once a temporary equilibrium is supplemented
with a procedure for the determination of the agent’s expectation. In a rational-expectations
equilibrium, this is donebyassuming that the agent’s expectation coincideswith the equilibrium
distribution. I relax the rational-expectations assumption by requiring the agent’s expectation
to be the probability distribution among the ones allowed by her constrained set of models that
comes closest to the distribution of observables. The notion of distance I use is a generalized
version of the Kullback–Leibler divergence.20 In Section 4, I provide two learning foundations
for this choice.

Definition3. Givena temporaryequilibriumT andaprobabilitydistribution µ overX ×Y ×Z×∆Θ,
the Kullback–Leibler divergence of model θ fromT is defined as

H (Q θ, T, µ) ≡ −

∫ ∫
log (qθ(y |y−))T (dy |x−, y−, z−, λ−)µ(dx− × dy− × dz− × dλ−). (10)

H (Q θ, T, µ) is ameasureof thedistancebetween the transitionprobabilityT and the transition
probability Q θ. The inner integral in (10) is a measure of the distance between distributions
Q θ(·|y−) and T (·|x−, y−, z−, λ−) over Y , taking as given the past value (x−, y−, z−, λ−). The outer
integral takes an average of the distance between Q θ(·|y−) and T (·|x−, y−, z−, λ−) by integrating
over (x−, y−, z−, λ−) according to the probability measure µ. That H (Q θ, T, µ) is a measure of the
distance between transition probabilities is best seen by considering the case where Θ contains
a parameter θ∗ for which Q θ∗(·|y−) = T (·|x−, y−, z−, λ−) almost everywhere and for µ-almost
all (x−, y−, z−, λ−). The parameter θ∗ is then a minimizer of the Kullback–Leibler divergence.
When Θ does not contain such a θ∗ parameter, the Kullback–Leibler divergence is minimized
by parameters θ for whichQ θ is the most similar toQ θ∗ . The following lemma establishes some
basic properties of this measure of distance:

Lemma 1. H (Q θ, T, µ) is finite and well-defined. Themapping θ 7→ H (Q θ, T, µ) is continuous.

I can now define the solution concept of constrained-rational-expectations equilibrium.
19To be more precise, the temporary equilibrium does depend on the mapping Q but it does not depend on the

constrained set of modelsΘ.
20TheKullback–Leibler divergence is commonly used in statistics as ameasure of the fit of amodel. The Kullback–Leibler

divergence of Qθ from the true probability distribution P is often normalized by adding a constant. This is to ensure that
the divergence is equal to zero when Qθ = P . I define the Kullback–Leibler divergence without the normalization. This
ensures that the Kullback–Leibler divergence is well-defined and finite under weaker assumptionswithout affecting the set
of models thatminimize the Kullback–Leibler divergence. The non-normalized version of the Kullback–Leibler divergence
is sometimes referred to as cross entropy. For more on the Kullback–Leibler divergence, cross entropy, and related topics,
see Gray (2011).
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Definition 4. Given an economyE and a temporary equilibriumT forE, a constrained-rational-
expectations equilibrium (CREE) consists of a triple (T, µ∗, Θ∗), where µ∗ is a probability distribu-
tion over X ×Y × Z × ∆Θ andΘ∗ ⊆ Θ is a closed set, such that

(i) µ∗ is an invariant distribution forT ;

(ii) Θ∗ = argminθ∈Θ H (Q θ, T, µ∗);

(iii) and µ∗ is supported on X ×Y × Z × ∆Θ∗.

WhenΘ∗ is a singleton, I refer to the equilibrium as a pure CREE.

The objects that appear in the definition of equilibrium have intuitive interpretations. The
transitionprobabilityT describes theprobability of transitioning from (xt−1, yt−1, zt−1, λt−1) to (xt ,

yt , zt , λt ) at any time t . The probability distribution µ∗ describes the unconditional distribution
of the tuple (xt , yt , zt , λt ) of the choice, observable, and state variables and the agent’s belief at
any point in time. The setΘ∗ is the set of models that the agent finds plausible.

The CREE describes a stationary environment in which the agent only considers a subset
of models plausible and equilibrium variables follow a stationary process. The agent’s belief is
concentrated on the set ofmodels that best describe her observations in the sense ofminimizing
the Kullback–Leibler divergence. And the distribution of equilibriumvariables is consistentwith
the agent’s belief, utility maximization by the agent, and the general equilibrium consistency
requirements.

A CREE can be seen as the limit point in which the agent has learned all that can be
learned from her observations, and the economy no longer experiences transitional dynamics
originating from learning. In Section 4, I formalize this intuition by establishing that CREE arises
in the limit as the agent learns about her environment.

To get more intuition for the solution concept of CREE, it is instructive to consider a world
in which the agent’s set of models is unconstrained; that is, any transition probability Q from
Y to itself is a model considered possible by the agent. The minimizer of the Kullback–Leibler
divergence is then the transition probability Q ∗ that agrees with the temporary equilibrium
transitionprobabilityT almost everywhere and for µ∗-almost all (x−, y−, z−, λ−). But this is exactly
the requirement for a (recursive) rational-expectations equilibrium. CREEextends thedefinition
of a rational-expectations equilibrium by allowing for the agent’s model to rule out any suchQ ∗.
The CREE selection then calls for the agent to choose a transition probabilityQ θ that is closest to
the equilibrium transition probability.

The solution concept of CREE is related to Berk–Nash equilibrium, proposed by Esponda and
Pouzo (2016a) in the context of static games and extended by Esponda and Pouzo (2016b) to
Markov decision problems. Both solution concepts require the agent’s belief to be supported
on the set of models that minimize a version of the Kullback–Leibler divergence from the
equilibrium distribution of observables. But there are two major differences between these
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solution concepts. First, while both CREE and Berk–Nash equilibrium define the Kullback–
Leibler divergence as the weighted expected value of log-likelihoods, the weighting is different
between the two solution concepts. It is by the endogenous distribution of actions in Esponda
and Pouzo (2016a) and by an exogenous transition probability and an endogenous distribution
in Esponda and Pouzo (2016b). In this paper by contrast, the log-likelihoods are weighted by the
temporary equilibrium of the economy. These different choices reflect differences in the nature
of the economic environment, but they all have foundations in Bayesian learning. Second, while
each agent has a unique belief in a Berk–Nash equilibrium, the agent’s belief in a CREE is drawn
from an ergodic distribution at any point in time. This relaxation enables me to establish the
convergence of Bayesian equilibrium to a CREE under two weak regularity assumptions. Pure
CREE comes closer to Berk–Nash equilibrium by restricting the agent’s belief to belong to a
singleton.

The following theorem shows that Definition 4 is not vacuous by establishing that a CREE
exists in any well-behaved economy.

Theorem 1. If the economy E has a temporary equilibrium T that satisfies Assumption 1, then a
CREE exists.

ACREE always exists if the economy has a continuous temporary equilibrium. The existence
of a temporary equilibrium is clearly necessary for the existence of a CREE. Continuity of the
temporary equilibrium, on the other hand, is a weak requirement that ensures that themapping
whose fixed point defines a CREE is well defined. A pure CREE exists if the agent’s model
additionally satisfies a convexity requirement. The statement and proof of the result on the
existence of a pure CREE has been relegated to the Online Appendix.

4 Learning Foundations of CREE

In this section, I provide two learning foundations for the solutionconceptofCREE. Ifirstprovide
conditions under which Bayesian learning leads the economy to converge to a CREE. I then
argue that adaptive learning also leads the agent’s belief to concentrate on the set of models
that best describe her observations in the sense of minimizing the Kullback–Leibler divergence
from the equilibriumdistribution of observables. These results provide learning foundations for
the solution concept of CREE and the choice of Kullback–Leibler divergence as the measure of
the fit of a model. They also establish a formal connection between the Bayesian and adaptive
approaches to learning. Readers interested inapplicationsofCREEmaydirectly skip toSection5.

4.1 Bayesian Learning

A natural way of modeling learning is by assuming that the agent is Bayesian. A Bayesian agent
hasa subjectiveprior λ0 ∈ ∆Θoverher set ofmodels andupdatesherbelief over timeusingBayes’
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rule. Recall that a temporary equilibrium characterizes the evolution of equilibrium variables
and the agent’s belief. It readily leads to the following equilibrium definition

Definition 5. Given an economyE and a temporary equilibriumT forE, a Bayesian equilibrium
with initial conditions (x0, y0, z0) for theeconomyandprior λ0 for theagent consistsof a sequence
of adapted random variables {xt , yt , zt , λt }

∞
t=0 with probability distribution P such that

P
(
(xt , yt , zt , λt ) ∈ B |{xs, ys, zs, λs }

t−1
s=0

)
= T (B |xt−1, yt−1, zt−1, λt−1)

for anymeasurable set B and all t ≥ 1.

The definition of Bayesian equilibrium is quite natural. The agent behaves optimality, the
consistency conditions are satisfied, the distribution of the state is consistent with the given
transition probability, and the agent has a prior belief λ0 over her set of models and updates
her belief using Bayes’ rule. The existence of a Bayesian equilibrium is a trivial corollary of the
assumption that a temporary equilibrium exists. Moreover, since a Bayesian equilibrium is the
Markov chain with transition probability T and initial state (x0, y0, z0, λ0), it is unique almost
surely.

Proposition 1. Consider an economy E and a temporary equilibrium for E. For any initial
condition (x0, y0, z0) for the economy and any prior λ0 for the agent, there exists a Bayesian
equilibrium; the Bayesian equilibrium is unique up to sets of measure zero.

Bayesian equilibrium is closely related to the internally-rational-expectations equilibrium
(IREE) of Adam andMarcet (2011). Just as in Adam andMarcet (2011), I assume that agents have
an internally-consistent belief systems about the path of yt , choose their actions optimally given
their beliefs, and update their beliefs using Bayes’ rule. But I additionally assume that agents can
only entertainMarkovian and parametricmodels, and I focus on equilibria that have a recursive
structure.21 The restriction to parametric and recursive models provides enough structure to
prove general learning results for Bayesian equilibrium.

Despitebeing internally consistentandwell-grounded in theBayesianparadigm, thesolution
concept of Bayesian equilibrium has two practical drawbacks. First, the modeler has to keep
track of the agent’s belief as a state variable. This results in a large increase in the size of the
state space. Second, the agent’s prior over the set of models is a free parameter. This would be
a minor nuisance if the equilibrium outcomes were not too sensitive to the choice of the prior.
But, as Adam andMarcet (2011) argue, even small changes in the agents’ priors can lead to large
changes in the short-run economic outcomes.

The solution concept of CREE addresses these drawbacks while providing a good approxi-
mation to the long-run behavior of economy under Bayesian learning. As the agent updates
21Although IREE isdefinedwithoutany reference toaparametricmodel, parametricmodels areoftenused inapplications

of the IREE. In particular, AdamandMarcet (2011) use a parametricmodel in their application of the IREE solution concept
to asset pricing. Other applied papers that follow the IREE approach, e.g., Adam, Kuang, andMarcet (2012), Adam,Marcet,
and Nicolini (2016), Adam,Marcet, and Beutel (2017), and Gerko (2017) also all use parametric models.
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her belief about the model of the economy, the effect of the prior vanishes and the agent’s
belief concentrates on the set of models with minimal Kullback–Leibler divergence from the
equilibrium distribution. When that set is a singleton (i.e., in a pure CREE), one can additionally
drop the belief from the description of a CREE. The learning result presented next provides
sufficient conditions for a Bayesian equilibrium to converge to a CREE.

Theobservation that enables a sharp learning resultunder relativelyweakassumptions is that
a Bayesian equilibrium isMarkovian: a Bayesian equilibriumwith initial condition (x0, y0, z0) for
the economy and prior λ0 for the agent is theMarkov chain over X ×Y ×Z ×∆Θwith initial value
(x0, y0, z0, λ0) and transition probabilityT . This is the consequence of theMarkovian structure of
the economy and the fact that Bayes’ rule is Markovian.

I impose two weak regularity conditions on the transition probability T . The first condition
is the continuity condition stated in Assumption 1. The second condition is a condition called
asymptotic mean stationarity. Given a Bayesian equilibrium {xt , yt , zt , λt }

∞
t=0 with probability

distribution P, let µt denote the probability distribution over X ×Y × Z × ∆Θ defined as

µt (B) ≡ P
({
(xt , yt , zt , λt ) ∈ B

})
, (11)

and define µt as

µt (B) ≡
1
t

t−1∑
s=0

µs (B), (12)

where B denotes an arbitrary measurable subset of X ×Y × Z × ∆Θ. The probability distribution
µt is the time average of the distribution of equilibrium variables up to time t . Asymptotic mean
stationarity requires this time average to stabilize.

Definition 6. A temporary equilibrium T for economy E is asymptotically mean stationary if
for any initial condition (x0, y0, z0) for the economy and any prior λ0 for the agent, µt converges
weakly to someprobability distribution µ overX ×Y ×Z ×∆Θ and themapping (x0, y0, z0, λ0) 7→ µ

is continuous.

Asymptotic mean stationarity is a much weaker requirement than stationarity. The latter
requires theprobability distribution µt to be independent of time t . For generic initial conditions
(x0, y0, z0) for the economy and priors λ0 for the agent, the Bayesian equilibrium will not be
stationary. Asymptotic mean stationarity, on the other hand, only requires the time average of
the sequence of probability distributions {µt }t to eventually stabilize. It is consistent with awide
range of stochastic processes including those with transitional dynamics and deterministic and
stochastic cycles—as long as the cycles themselves occur with some statistical regularity. It rules
out cycles whose frequencies slowly decrease over time.

Whether asymptotic mean stationarity is satisfied only depends on the fundamentals of
the economy as summarized by the temporary equilibrium T . In particular, it is equivalent to
the requirement that the transition probability T satisfies a condition known as uniform mean
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stability—which is automatically satisfied for transitionprobabilitiesonfinite state spaces.22 The
transition probability T does not need to satisfy any stronger conditions (such as aperiodicity,
irreducibility, or ergodicity).

The main result of this subsection establishes that continuity and asymptotic mean station-
arity are sufficient for a Bayesian equilibrium to converge to a CREE:

Theorem 2. Consider an economy E and a temporary equilibrium T that satisfies Assumption
1 and is asymptotically mean stationary, let {xt , yt , zt , λt }

∞
t=0 be a Bayesian equilibrium with

probability distributionP, and letΘ0 denote the support of the agent’s prior λ0. WithP-probability
one, there exists a probability distribution µ∗ over X ×Y ×Z ×∆Θ and a closed setΘ∗ ⊆ Θ0 such that

(a) for any setsU1 ⊂ K ⊂ U2 ⊆ X ×Y × Z × ∆Θ such thatU1, U2 are open and K is closed,

µ∗(U1) ≤ lim inf
t→∞

1
t

t−1∑
s=0

1{(xs, ys, zs, λs ) ∈ K } ≤ lim sup
t→∞

1
t

t−1∑
s=0

1{(xs, ys, zs, λs ) ∈ K } ≤ µ∗(U2);

(b) for any open neighborhoodU ofΘ∗,

lim
t→∞

λt (U ) = 1;

(c) and the triple
(
T, µ∗, Θ∗

)
constitutes a CREE given the set of modelsΘ0 for the agent.

The theoremprovides a learning foundation for the choice of Kullback–Leibler divergence as
thenotionof distance in thedefinitionof aCREE. Part (a) shows that the empirical distributionof
equilibrium variables eventually stabilizes with µ∗ denoting the long-run empirical distribution.
Parts (b) and (c) establish that the agent’s belief asymptotically concentrates on the set ofmodels
Θ∗ that minimize the Kullback–Leibler divergence from the equilibrium distribution. Taken
together, the three parts of the theorem establish that the long-run behavior of equilibrium
variables in a Bayesian equilibrium are indistinguishable from the behavior observed in a CREE.

The theorem is related to the results of Esponda and Pouzo (2016a,b) on Bayesian learning
foundations of Berk–Nash equilibrium. But while my result, Theorem 2 of Esponda and Pouzo
(2016a), and Theorem 2 of Esponda and Pouzo (2016b) all provide learning foundations for
the choice of Kullback–Leibler divergence as the notion of distance, the results are different
in their assumptions. Esponda and Pouzo (2016a) establish that any stable (i.e., convergent)
strategy profile is a Berk–Nash equilibrium,whereas Esponda andPouzo (2016b) establish that if
the strategy profile and the empirical distribution of the state-choice pair are both convergent,
then the limit constitutes a Berk–Nash equilibrium. In contrast, I prove the convergence
of the empirical distribution of equilibrium variables under the assumption of asymptotic
22For a Markov chain over a finite-state space with transition matrix N and initial distribution π0, the sum 1

t π
′
0
∑t−1

s=0 N s

converges to a limit, with the limit a continuous function of π0. But this conclusion does not necessarily hold for transition
probabilities over infinite-dimensional spaces. Uniform mean stability is the assumption that it does. See Jamison (1965)
or Futia (1982) for a discussion of uniformmean stability and related topics.
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mean stationarity. Stability is an assumption on the convergence of random variables, while
asymptoticmeanstationarity is anassumptionon theprobabilitydistributions fromwhich those
random variables are drawn.

Theorem2 is also different from the results of Esponda andPouzo (2016a,b) in its conclusion.
It establishes the convergence of empirical distributions under asymptoticmean stationarity—a
conclusion that has no counterpart in Esponda and Pouzo (2016a,b). The results are also differ-
ent because of differences in the definition of CREE and Berk–Nash equilibrium. While CREE
allows for the agent’s belief to fluctuate among the set of models that minimize the Kullback–
Leibler divergence, the agent’s belief is constant in a Berk–Nash equilibrium. Consequently, the
notion of convergence in Theorem2 is weaker than that of Esponda and Pouzo: my result proves
the convergence of the distribution of beliefs to an ergodic distribution. In theOnline Appendix,
I provide identifiability and convexity assumptions under which the agent’s belief converges to
a degenerate distribution over somemodel θ∗ and the Bayesian equilibrium converges to a pure
CREE.

The proof relies on the observation that a Bayesian equilibrium can be represented as a
Markov chain and a law-of-large-numbers (LLN) result forMarkov chains due to Breiman (1960)
and Jamison (1965). The result of Jamison (1965) requires the transition probability of a Markov
chain to be continuous and uniformly mean stable. Continuity follows Assumption 1, while
uniform mean stability is a consequence of asymptotic mean stationarity. The LLN of Jamison
(1965) then implies that the time average of f (xt , yt , zt , λt ) converges for any continuous function
f . The first part of the theorem is proved by using Urysohn’s lemma to bound the indicator
function by continuous functions and applying the LLN of Jamison. The second part follows a
standard argument from Bayesian statistics. In particular, I extend Bunke and Milhaud (1998)’s
proof of the concentrationofmeasureon the set ofminimalKullback–Leibler divergence for i.i.d.
observations to the case where observations follow a Markov chain. I use the LLN established
previously to show that expected distance of θ at time t from the set ofminimal Kullback–Leibler
divergence converges to zero as t goes to infinity, where the expectation is taken with respect to
the agent’s belief at t . This conclusion immediately implies the concentration-of-measure result
in the second part of the theorem. The detailed proof is presented in Appendix E.

That the agent’s belief asymptotically concentrates on a set is not sufficient to guarantee the
convergence of her belief. Rather, without additional assumptions, it is generally not possible
to rule out the agent’s belief fluctuating among a set of models that are not identified given
the agent’s observations.23 In the Online Appendix, I show that under appropriate convexity
and identifiability assumptions, the agent’s belief converges to a point mass and the Bayesian
equilibrium converges to a pure CREE.
23For an early example of the failure of convergence of the Bayesian posterior when the parameter is not identifiable,

see Diaconis and Freedman (1986). For an example of the cycling of beliefs under misspecified learning in an economic
context, see Nyarko (1991).
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4.2 Adaptive Learning

An alternative to the Bayesian approach to learning is the adaptive-learning approach ofMarcet
and Sargent (1989a) and Evans and Honkapohja (2012). This approach assumes that agents
estimate their models using a frequentist procedure (almost always ordinary least-squares
estimation). In this subsection, I use the approach of adaptive learning in the context of
the general framework of Section 2 and show that adaptive learning also leads the agent’s
belief to concentrate on the set of models with minimum Kullback–Leibler divergence from the
equilibrium distribution.

In the adaptive-learning approach, one has to make several choices with no obvious an-
swers.24 First, when the agents’ expectations about events in the far future matter for their
decisions, one has to take a stand on what agents believe about their own future expectations.
This issue is often dealt with using the anticipated-utility approach of Kreps (1998): agents
behave as if they will never change their expectations—even though they do so in equilibrium.25
I follow the anticipated-utility approach.

Second, one has to specify the procedure used by agents tomap their observations to a point
estimate for their models. The papers in the adaptive-learning literature often assume least-
squares learning; that is, agents estimate the coefficients of their models using ordinary least
squares (OLS) estimators. In the general framework studied in this paper, a model consists of a
probability distribution over future values of observables—rather than being a set of coefficients
in a linear regression. As a result, the agent cannot estimate her model using an OLS estimator.
I instead make the natural assumption that the agent estimates her model using a quasi-
maximum-likelihood estimator. When the agent’s set of models only consists of linear models
with normal error terms, the quasi-maximum-likelihood estimator coincides with the OLS
estimator.

Definition 7. The function θ 7→ Lt
(
{ys }

t
s=0, θ

)
≡

∏t
s=1 qθ(ys |ys−1) is called the quasi-likelihood

function given {ys }
∞
s=0. Any maximizer θ̂t ∈ argmaxθ∈Θ Lt

(
{ys }

t
s=0, θ

) of the quasi-likelihood
function is a quasi-maximum-likelihood estimator (QMLE) for θ given {ys }

t
s=0.

With the definition of QMLE in hand, I can define an adaptive equilibrium:

Definition 8. Given an economyE and a temporary equilibriumT forE, an adaptive equilibrium
with initial conditions (x0, y0, z0) for the economy and initial estimate θ̂0 for the agent’s model
consists of adapted random variables {xt , yt , zt , θ̂t }

∞
t=0 with probability distribution P such that

(i) P
(
(xt , yt , zt ) ∈ B

��{xs, ys, zs, θ̂s

}t−1
s=0

)
= T

(
B
��xt−1, yt−1, zt−1, 1θ̂t−1

)
for any measurable set B and

all t ≥ 1;
24For a discussion of the issues of arbitrariness arising in the adaptive-learning approach, see Adam andMarcet (2011).
25The alternative to anticipated-utility learning is the so-called Euler-equation learning. See Preston (2005) for a

discussion of the issues that arise in the adaptive-learning approach when the long-horizon expectations matter. For a
discussionofanticipatedutility andEuler-equation learningapproaches, see the surveyarticleofEusepi andPreston (2011).
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(ii) θ̂t is a measurable QMLE for θ given {ys }
t
s=0 for all t ≥ 1;

In an adaptive equilibrium, the agent acts at time t as if she is certain thatmodel θ̂t is the right
model. In other words, the agent’s belief is always degenerate. As in a Bayesian equilibrium,
the agent behaves optimally given her (now degenerate) belief, the consistency conditions are
satisfied, and the distribution of the state is consistent with the given transition probability. The
difference between an adaptive equilibrium and a Bayesian equilibrium comes from Condition
(ii): in an adaptive equilibrium, the agent’s belief at time t is given by the degenerate distribution
over a QMLE θ̂t for θ given the history of her observations.

Note the cognitive dissonance exhibited by the agent in an adaptive equilibrium. Condition
(i) requires the agent to act optimally under the assumption that she will update her belief using
Bayes’ rule, and a degenerate belief remains unchanged after the application of Bayes’ rule. Yet
Condition (ii) requires the agent to re-estimate hermodel at time t +1 given the information that
becomes newly available to her. This internally inconsistent behavior on the part of the agent—
behaving as if shewill not update her belief but updatingher belief—is a quirk of the anticipated-
utility approach to adaptive learning.

The following existence result is a corollary of the existence of a temporary equilibrium and
standard results on the existence of a QMLE:26

Proposition 2. Consider an economy E and a temporary equilibrium for E. For any initial
condition (x0, y0, z0) for the economy and initial estimate θ̂0 for the agent’s model, an adaptive
equilibrium exists.

An appropriate notion of asymptotic mean stationarity is again sufficient for the concen-
tration of beliefs on the set of models with minimal Kullback–Leibler divergence from the
equilibrium distribution. But while Bayesian equilibria have a recursive structure, adaptive
equilibria in general do not. This is due to the fact that a QLME does not necessarily have a
recursive representation.27 Consequently, I can no longer appeal to the recursive structure of
equilibrium to state the asymptotic-mean-stationarity assumption in terms of the temporary
equilibrium of the economy. I instead have the following definition:

Definition 9. An adaptive equilibrium {xt , yt , zt , θ̂t }
∞
t=0 with probability distribution P is asymp-

totically mean stationary if the random process {xt , yt , zt , θ̂t }
∞
t=0 is asymptotically mean station-

ary.28

Asymptotic mean stationarity is the requirement that the long-run behavior of equilibrium
variables exhibits some statistical regularity. It is much weaker than stationary and a necessary
26The existence of a measurable QMLE follows from the compactness of Θ, the continuity of qθ(y |y−) in θ for all (y−, y ),

and themeasurability of qθ(y |y−). See, for instance, White (1994, p. 16).
27A special case of the QMLE that does have a recursive representation is the OLS estimator.
28See Appendix E for a formal definition of asymptotic mean stationarity for general random processes.
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condition for the law of large numbers to hold.29 The following theorem establishes the
convergence properties of adaptive equilibrium under asymptotic mean stationarity:

Theorem 3. Consider an economy E, a temporary equilibrium T for E, and an asymptotically-
mean-stationary adaptive equilibrium {xt , yt , zt , θ̂t }

∞
t=0 with probability distribution P. With P-

probability one, there exists a probability distribution µ∗ over X ×Y × Z × Θ such that

(a) for anymeasurable set B ⊆ X ×Y × Z × Θ,

lim
t→∞

1
t

t−1∑
s=0

1{(xs, ys, zs, θ̂s ) ∈ B} = µ∗(B) (13)

(b) the Kullback–Leibler divergence given the agent’s estimate satisfies

lim
t→∞

H (Q θ̂t
, T, µ∗) = min

θ∈Θ
H (Q θ, T, µ∗);

(c) moreover, ifminθ∈Θ H (Q θ, T, µ∗) = {θ∗}, then the triple (T, µ∗, {θ∗}) is a pure CREE given the set
of modelsΘ for the agent.30

The theorem is the adaptive-learning counterpart to Theorem 2. The first part establishes
the convergence of the empirical frequency of equilibrium variables. The second part proves
that the agent’s point estimate converges to the set ofmodels thatminimize theKullback–Leibler
divergence from the long-run distribution of observables. But unlike in a Bayesian equilibrium,
in an adaptive equilibrium, the long-run economic outcomes do not necessarily coincide with
outcomes in a CREE. This is because in a CREE the agent updates her belief using Bayes’ rule,
whereas in an adaptive equilibrium she uses QMLE to estimate hermodel. Still, the third part of
the theoremshows that—when themodelwithminimalKullback–Leiblerdivergence isunique—
an adaptive equilibrium resembles a (pure) CREE in the long-run. In the Online Appendix, I
provide convexity and identifiability assumptions that are sufficient to guarantee that themodel
withminimal Kullback–Leibler divergence is unique.

Theorems 2 and 3 suggest that the CREE is a natural extension of the rational-expectations
equilibrium to scenarios where agents are constrained to choose a model θ belonging to some
setΘ thatmaynot contain the true equilibriumprobability distribution. The theorems show that
inferenceby such constrained agents leads them to choosemodels thatminimize anovel version
of the Kullback–Leibler divergence.

Theorems 2 and 3 also establish a formal link between Bayesian and adaptive approaches
to learning. They show that, in the long run, both approaches select temporary equilibria that
belong to the class of CREEs. Moreover, if the CREE is unique—as is the case in the application
29See Corollary 8.2 of Gray (2009) for a formal result that establishes the necessity of asymptoticmean stationarity for the

law of large numbers to hold.
30Any probability distribution µ∗ over X × Y × Z × Θ is a probability distribution over X × Y × Z × ∆Θ that only assigns

positive probability to degenerate beliefs overΘ.
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I consider in Section 6—both approaches select the same temporary equilibrium. The long-
run behavior of the economy is then independent of the details of the learning process; it only
depends on the fundamentals of the economy and themodels considered plausible by agents.

5 Misspecification in Hidden Factor Models

I next consider a special case of the general framework of Section 2 inwhich the agent entertains
linear-Gaussianhidden factormodels. I use this specificationof theagent’s set ofmodels toargue
that bounded rationality in the form ofmisspecification can lead to amplification or dampening
of shocks and to history dependence. In Section 6, I use a similar hidden factor model to
quantitatively study the implications of bounded rationality for business-cycle fluctuations.

5.1 A Canonical Model

I consider a set ofmodels for the agent according towhich observables are linear functions of an
unobservable state. The agent believes that there is an underlying state ωt ∈ R

d that follows the
Markov process

ωt = Aωt−1 + εωt , (14)

where A ∈ Rd×d is a stable matrix and εωt ∈ Rd is i.i.d. N(0, Σω).31 The vector of observables
ot ∈ R

n is a linear function of ωt :
ot = B ′ωt + εot , (15)

where B ∈ Rd×n , εot ∈ Rn is i.i.d. N(0, Σo), and B ′ denotes the transpose of B .32 Hidden factor
models are also known as state-space models and hidden Markov models.33 I use the terms
hidden state and factor interchangeably when referring toωt . In Appendix C, I show how several
behavioral models can be viewed as instances of hidden factor models in which matrices A, B ,
Σω, and Σo have been constrained.

The agent’s set of models is parameterized by the tuple θ = (A, B, Σω, Σo). Matrices A and Σω
parametrize the agent’s view of the persistence and volatility of the factors and the correlations
between different factors. MatrixB captures the agent’s view of the contribution of each factor to
31A squarematrix is stable if its eigenvalues all lie inside the unit circle.
32Since εωt and εot are assumed tobedistributedaccording tonormaldistributions,whichdonothave compact supports,

the application considered in this section is not strictly speaking a special case of the framework of Section 2. But the proofs
of the theoretical results can be extended to the non-compact case by assuming that the probability distributions that arise
in equilibriumare tight andappealing toProkhorov’s theorem. Theassumptionsmaintained in this section (that the shocks
follows stationary processes and that agents only entertain stationarymodels) guarantee that any probabilitymeasure that
arises in equilibrium is tight.
33Hidden factor models are extensively used in engineering and economics. See the handbook chapter of Stock and

Watson (2016) for a thorough exposition on the theory and application of factor models in macroeconomics. They are
also used in the Bayesian and adaptive learning literatures as the rationale for the use of constant-gain learning rules.
A number of behavioral models such as Barberis, Shleifer, and Vishny (1998)’s model of sentiments, Rabin and Vayanos
(2010)’smodel ofGambler’s fallacy, andmodels of rational inattention (e.g.,Maćkowiak,Matejka, andWiederholt, 2017) can
also be expressed as hidden factor models in which the agents’ models have been constrained by behavioral assumptions.
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every observable. It can be seen as representing the “loading” of observables ondifferent factors.
The random variable εot is often referred to as the “measurement error” in the literature. In the
current framework, equations (14) and (15) are not structural equations—they only exist in the
mind of the agent—so εot is not a measurement error in the usual sense. But for the sake of
consistencywith existingworks, I refer to εot as themeasurement error and to Σo as the variance-
covariancematrix of themeasurement error.

Hidden factor models can be seen as canonical representations of stationary stochastic
processes. In particular, the Wold representation theorem implies that any stationary ARMA
process with Gaussian innovations has a representation in the form of equations (14) and (15).
But the representation is, in general, not unique. For instance, one can always scale both a
factor and the loading of observables on the factor without changing the agent’s forecasts of
observables.34 I assume in the rest of this section that matrices (A, B, Σω, Σo) are normalized in
such a way that the representation in (14) and (15) is unique.35

The agent’s models can be expressed in the recursive form of Section 2 by defining

yt ≡ (ot , ot−1, . . . ) (16)

to be the history of realizations of ot . The transition probability Q θ is defined by a stationary
Kalman filter. The agent believes that ot+1 is normally distributed with a variance-covariance
matrix that is only a function of A, B , Σω, and Σo and a conditionalmean that is given by Et [ot+1] =

B ′ω̂t . The vector ω̂t ≡ ω̂t+1 |t ∈ Rd is the agent’s estimate of ωt , defined recursively as

ω̂t = (A − K B ′)ω̂t−1 + K ot , (17)

where K is the matrix of “Kalman gains.” More generally, the agent’s conditional expectation of
ot+s at time t is given by

Et [ot+s ] = B ′As−1ω̂t .

See Appendix B for details of how a hidden factor model can bemapped to themodel of Section
2 and an explicit expression for thematrix of Kalman gains.

5.2 Amplification, Dampening, and History Dependence

I next studyhowreplacing rational expectationswithahidden factormodel for theagent changes
the response of the economy to shocks. For the sake of concreteness, I consider a simple
linear economy with one decision variable, one state variable, and one shock. The temporary
34More generally, θ = (A, B, Σω, Σo ) is observationally indistinguishable from θ̃ = (Ã, B̃, Σ̃ω, Σo ) whenever there exists an

invertible matrixU such that Ã = U AU −1, B̃ = (U −1)′B , and Σ̃ω = UΣωU ′. See Gevers and Wertz (1984) for a discussion of
identification of state-spacemodels and a canonical parameterization.
35One can, for instance, normalize A to be a diagonal stable matrix and normalize Σω to be a correlationmatrix.
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equilibrium is described by the following equations:

xt = C ot + Et

[
∞∑

s=1
βsC ot+s

]
, (18)

ot = (xt , zt )
′, (19)

zt = ρzt−1 + εt , (20)

where xt is the choice variable, zt is the state variable, εt is an i.i.d. N(0, σ2
ε) shock, C = (c, 1) is a

vector of constants that depends on the fundamentals of the economywith c ∈ (0, 1), and ρ ∈ [0,
1) is the persistence of the state variable. Equation (18) is the optimality condition for the agent,
(19) is the general-equilibrium consistency requirement, and (20) is the equation describing the
transition probability for the state variable.

The rational-expectations equilibrium of the economy is easy to characterize using standard
techniques:

xREEt =
1

1 − c − βρ
zt . (21)

Themultiplier 1/(1 − c − βρ) is the usual Keynesianmultiplier, adjusted to account for the effect
of the persistence of the state variable on the agent’s expectations. Note that, in the rational-
expectations equilibrium, xt is independent of past values of the state variable conditional on its
current value zt .

The rational-expectations equilibrium can be represented as a hidden factor model of the
form (14) and (15). Let ωREE

t = zt , AREE = ρ, BREE = (1/(1 − c − βρ), 1), ΣREEω = σ2
ε , and ΣREEo = 0,

where0denotes the zeromatrix. AnyvectorK = (kx, kz ) satisfyingkx/(1−c− βρ)+kz = ρ is a vector
of (optimal) Kalman gains given (AREE, BREE, ΣREEω , Σ

REE
o ). I setK REE = (ρ(1− c − βρ), 0). With these

definitions, equations (14) and (15) are equivalent to equations (20) and (21), which describe the
rational-expectations equilibrium. The following proposition is a trivial generalization of this
observation:

Proposition 3. Any stationary rational-expectations equilibrium of a linear economy with nor-
mally distributed shocks can be represented as a hidden factormodel in the form of equations (14)
and (15).

This proposition establishes that the restriction to hidden factor models does not rule out
rational-expectations equilibriaby itself. Deviations fromtheREEbenchmarkonly arisebecause
of additional constraints on the agent’s set ofmodels. Those are direct restrictions onmatrices A,
B , Σω, and Σo in learning, rational inattention, and behavioralmodels such as Rabin andVayanos
(2010). They arise froma constraint on thenumber of factors in the application that comes in the
next section. In the rest of this subsection, I remain agnostic about the source of the deviation
from the REE and study the response of the economy to shocks taking θ = (A, B, Σω, Σo) as given.
The next subsection focuses on the endogenous determination of θ.
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The response of the economy to shocks given the hidden factor model can be found by
combining the agent’s forecasts with the temporary equilibrium relationships. Substituting for
Et [ot+s ] in (18) and using the definition ot , I get

xCREEt =
1

1 − c − βC B ′(I − βA)−1kx

[
βC B ′(I − βA)−1(A −K B ′)ω̂t−1 +

(1+ βC B ′(I − βA)−1kz
)
zt

]
. (22)

Equation (22) is different from (21) in three ways. First, the part in the Keynesianmultiplier that
captures the general-equilibriumeffects of changes in expectations is βρ in theREEand βC B ′(I −

βA)−1kx in a CREE. In the latter, a unit increase in xt leads the agent to increase her estimate ofωt

by kx units. This leads to a βC B ′(I − βA)−1kx unit increase in xt . Second, the coefficient capturing
the direct effect of changes in zt on the agent’s choices is 1 in the REE and 1 + βC B ′(I − βA)−1kz

in a CREE. A unit change in the value of the state variable leads to a kz -unit change in the agent’s
estimates of ωt in a CREE. This in turn leads to an additional βC B ′(I − βA)−1kz unit change in
the agent’s action. Third, unlike equation (21), equation (22) generally has a backward-looking
term: even conditional on the value of the state variable at time t , the agent’s action in a CREE
may depend on the past realizations of shocks as summarized by ω̂t−1.

These deviations from the rational-expectations benchmark can lead to amplification or
dampening of shocks. Whether shocks are amplified or dampened relative to the rational-
expectations benchmark depends on the constraints on the agent’s set of models and themodel
selected in the CREE.

Proposition 4. Consider the linear economy described in equations (18)–(20) and a linear-
Gaussian hidden factor model for agents as in (14) and (15). If

C B ′(I − βA)−1
( 1
1 − c − βρ

kx + kz

)
Q

ρ

1 − c − βρ
(23)

in a CREE, then
∂xCREEt

∂εt
Q
∂xREEt

∂εt
.

The right-hand side of equation (23) is a constant that only depends on the fundamentals of
the economy. The left-hand side depends on the agent’s selectedmodel through its dependence
on kx , kz , B , and A. It is increasing in all four. Larger values of kx and kz imply that the agent’s
estimatesof thehiddenstates aremore sensitive tochanges inobservables; a largerB implies that
theagent’s actionsaremoresensitive tochanges inherestimatesof thehiddenstates; anda larger
A implies that the agent perceives the hidden states to bemore persistent. All three contribute to
larger responses of the economy to shocks.36

The deviation from the rational-expectations benchmark can also lead to history depen-
dence. Let et ≡ xt − E[xt |zt ] denote the part of the choice variable at time t that is not explained
36Note however that K is not independent of matrices A and B . It is determined by Bayes’ rule given parameters A, B , Σω,

and Σo of the agents’ model. See Appendix B for details.
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by the value of the state variable at time t , where E denotes expectation with respect to the
equilibrium probability distribution. One can think of et as the residual from a linear regression
ofxt on zt . I use et as themeasureofhistorydependence. The followingpropositioncharacterizes
the extent of history dependence as a function of the parameters of the agent’s model that are
selected in a CREE:

Proposition 5. In the linear economy described in equations (18)–(20),

eREEt ≡ 0.

If agents have a linear-Gaussian hidden factor model as in (14) and (15),

eCREEt =
βC B ′(I − βA)−1

1 − c − βC B ′(I − βA)−1kx

∞∑
s=1
(A − K B ′)s (kx xt−s + kz zt−s ) . (24)

The first part of the proposition shows that the REE of the linear economy does not exhibit
history dependence. The second part establishes that the economy exhibits history dependence
for generic models for the agent—it is only when A − K B ′ = 0, as in the REE, that there is no
history dependence. More formally, for almost any perturbation (Ã, B̃, Σ̃ω, Σ̃o) of the parameters
of the agent’s model away from their rational-expectations values, the temporary equilibrium
in which the agent’s expectations are induced by (Ã, B̃, Σ̃ω, Σ̃o) exhibits history dependence. The
lack of history dependence in theREE is therefore not robust to the possibility that the agent’s set
of models is misspecified.

5.3 The CREE

A (pure) CREE is defined via the mapping from the agent’s model to the distribution of the
observable and themapping from the distribution of the observable to the agent’s model. I start
by describing the first mapping. Suppose that the agent puts probability one on some model θ,
and let ζt = (o

′
t , ω̂

′)′ denote the vector consisting of the observable and the agent’s estimate ω̂t of
the hidden state. Equations (17) and (22) can be combined to express ζt as a VAR(1) process:

ζt = Aζ(θ)ζt−1 +Cζ(θ)εt . (25)

Equation (25) and the assumption that the shock is normally distributed imply that ζt is normally
distributed at all times. Therefore, the stationary distribution of ζt is fully described by the
autocovariancematrices

Ξζ,s (θ) = Eθ[ζt ζ
′
t−s ], (26)

where Eθ denotes the expectation with respect to the probability distribution over {ζt }t induced
by equation (25) and the distribution of the shock. Matrices {Ξζ,s (θ)}s can be recursively
computed in terms of matrices Aζ(θ) and Cζ(θ) and the variance σ2

ε of the shock. I let {Ξs (θ)}s ,
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where Ξs (θ) ≡ Eθ[ot o ′t−s ], denote the corresponding autocovariance matrices for the vector of
observables.

The mapping from the distribution of observables to the agent’s model is given by the
minimization of the Kullback–Leibler divergence. In Appendix B, I show that the Kullback–
Leibler divergence givenmodel θ and autocovariancematrices {Ξs }s for observables is given by

H ({Ξs }s, θ) = −
1
2 log

(
det

(
Ω
−1

))
+

n

2 log (2π) +
1
2tr

(
Ω
−1
Ξ0

)
−

∞∑
s=1

tr
(
Ω
−1
Ξs K ′ (A ′ − BK ′)s−1 B

)
+
1
2
∞∑

s=1

∞∑
τ=1

tr
(
Ω
−1B ′ (A − K B ′)s−1 K Ξτ−s K ′ (A ′ − BK ′)τ−1 B

)
, (27)

where Ω is the variance-covariance matrix of the agent’s perceived forecast errors. In a CREE,
the agent’s beliefs are concentrated on the set Θ({Ξs }s ) ≡ argminθ∈Θ H ({Ξs }s, θ) of models that
minimize the Kullback–Leibler divergence from the distribution of observables.

A pure CREE is defined by the fixed point of themappings θ 7→ {Ξs (θ)}s and {Ξs }s 7→ Θ({Ξs }s )

defined in the previous two paragraphs. It consists of a model θ∗ and autocovariance matrices
{Ξ∗s }s for observables such that θ∗ ∈ Θ({Ξ∗s }s ) and {Ξ∗s }s = {Ξs (θ

∗)}s . The agent selects themodel θ∗
thatminimizes theKullback–Leiblerdivergence, and thedistributionofobservables is consistent
with the agent’s optimal actions given the fundamentals of the economy and her expectations.
TheCREE clearly depends on the agent’s constrained set ofmodelsΘ. In AppendixC, I argue that
models such as rational inattention, gambler’s fallacy, and adaptive-learning models constrain
the setΘ by imposing direct restrictions onmatrices A, B , Σω, and Σo .

The alternative I pursue in the remainder of this paper is a novel form of bounded rationality
where the only constraint is on the number of factors entertained by agents. They are otherwise
free to choose matrices A, B , Σω, and Σo to minimize the Kullback–Leibler divergence from the
distribution of their observations. This constraint captures an intuitive behavioral assumption:
agents canonly conceive low-dimensionalmodels. It is inspiredby researchbyStockandWatson
(2016) and Angeletos, Collard, and Dellas (2018), among others, who show that the business-
cycle fluctuations in a large number of aggregate variables can be attributed to fluctuations in a
small number of hidden factors.

I refer to the special caseofCREEwhere the agents’models are givenbyd-factorhidden factor
models as a CREE-d . The parameter d is a structural parameter that captures the complexity
of the agents’ models, with higher values of d corresponding to more complex models of the
economy. I use CREE-d as the model of bounded rationality in the business-cycle application
of the next section.

6 A Business-Cycle Model with CREE-d

In this section, I study a standard medium-scale new-Keynesian model in which the agents’
models of the economy are constrained. I use this exercise to argue that bounded rationality
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in the form of model misspecification improves the empirical fit of the model, that it is a micro-
founded substitute for add-ons such as exogenous habit formation, price and wage indexation,
and investment-adjustment costs, and that it leads to novel economic insights.37

6.1 The Economic Environment

The economy is a new-Keynesian model with capital, neoclassical capital-adjustment costs,
price and wage rigidities, and six shocks: a total factor productivity (TFP) shock, a discount-
factor shock, a price-markup shock, a wage-markup shock, a monetary-policy shock, and
a government-spending shock. The model can alternatively be seen as a DSGE model à la
Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007) with the following
bells and whistles dropped: (i) habit formation in consumption, (ii) wage and price indexation,
(iii) the capital-utilization margin, and (iv) the shock to the marginal product of investment.
I also replace investment-adjustment costs with a neoclassical capital adjustment cost. The
specification of price and markup shocks is closest to Justiniano, Primiceri, and Tambalotti
(2010), whose analysis I follow.

6.1.1 Final-good producers

The final goodYt is produced by competitive firms by combining a continuum of intermediate
goods, indexed by i , according to the CES production function

Yt =

[∫ 1

0
Yt (i )

1
1+λpt di

]1+λpt

.

The elasticity λpt follows the following AR(1) process

log(1 + λpt ) = (1 − ρp ) log(1 + λp ) + ρp log(1 + λp,t−1) + εpt ,

where εpt is i.i.d.N(0, σ2
p ). Profitmaximization and the zero-profit condition imply that theprice

of the final good is given by the price index

Pt =

[∫ 1

0
Pt (i )

1
λpt di

] λpt

,

where Pt (i ) denotes the price of the intermediate good i . The demand for good i is given by the
isoelastic demand schedule

Yt (i ) =

(
Pt (i )

Pt

)− 1+λpt
λpt

Yt . (28)
37A number of recent papers in macroeconomics have proposed deviations from the benchmark of full-information

rational-expectations aswaysof improving thepredictionsof thebaselinenew-Keynesianmodel. Examples includeGarcia-
Schmidt and Woodford (2015), Gabaix (2016), Farhi and Werning (2017), Angeletos and Lian (2018), Woodford (2018),
and Angeletos and Huo (2018). In related work, Acemoglu and Jensen (2018) characterize the robust predictions of the
neoclassical growthmodel in the presence of behavioral biases.
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6.1.2 Intermediate-goods producers

Amonopolist produces each intermediate good i according to the production function

Yt (i ) = max
{

zt Kt (i )
α (
γt Lt (i )

)1−α
− γt F, 0

}
,

whereKt (i ) and Lt (i )denote the capital and labor input of the firm, F is a fixed cost of production,
chosen so that profits are zero along the balanced growth path, γ is the exogenous rate of labor-
augmenting technological progress, and zt is the stationary part of TFP that follows the AR(1)
process

log zt = ρz log zt−1 + εzt ,

where εzt is i.i.d. N(0, σ2
z ).

Intermediate-good producers are subject to nominal frictions à la Calvo. Each period
the price of a randomly-selected fraction ξp of intermediate goods is fixed. The remaining
intermediate-goods producers choose their prices Pt (i ) optimally by maximizing the present-
discounted value of future profits,

Et

[
∞∑

s=0
ξs

p
βsΛt+s

Λt

(
Pt (i )Yt+s (i ) −Wt+s Lt+s (i ) − rt+s Kt+s (i )

)]
,

subject to the demand curve (28), where Λt is the marginal utility of nominal income,Wt is the
nominal wage, and rt is the rental rate of capital. The operator Et denote the expectation with
respect to the intermediate-good producers’ subjective expectation at time t about the path
{Λt+s,Wt+s, rt+s, Pt+s, Yt+s, λp,t+s, zt+s }s ≥1 of variables that the producers take as given.

6.1.3 Investment firms

The capital stock of the economy is owned by investment firms. The firms take the rental rate
of capital and the price of the final good as given andmaximize the present-discounted value of
profits

Et

[
∞∑

s=0
βs
Λt+s (rt Kt − Pt It )

]
,

subject to the physical capital accumulation equation

Kt+1 = (1 − δ)Kt + It − S

(
It

Kt

)
Kt . (29)

I assume that the adjustment cost satisfies S = S ′ = 0 and S ′′ > 0 along the balanced growth
path. Note that the adjustment cost is a neoclassical adjustment cost and not an investment-
adjustment cost that is commonplace in the DSGE literature.38 I assume that no spotmarket for
capital exists.39
38The investment-adjustment-cost specification replaces S(It /Kt−1)Kt−1 with S(It /It−1)It−1. It leads to an Euler equation

for investment that has a backward-looking term.
39Since this is a representative-agentmodel, this assumption is immaterial in the rational-expectations equilibrium. But

in a CREE, investment depends on expectations about the entire future path of returns to capital when there is no capital
market, whereas it only depends on the rental rate of capital and its price in the next period with a spot market for capital.
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6.1.4 Employment agencies

There is a continuum of households. Each household is amonopolistic supplier of a specialized
type of labor, index by j . A competitive employment agency combines specialized labor into a
homogeneous labor input using the CES function

Lt =

[∫ 1

0
Lt (j )

1
1+λwt dj

]1+λwt

,

where λwt is a wage-markup shock that follows the ARMA(1) process

log(1 + λwt ) = (1 − ρw ) log(1 + λw ) + ρw log(1 + λw,t−1) + εwt

with εwt i.i.d. N(0, σ2
w ).

Profit maximization by employment agencies and the zero-profit condition imply that the
price of the homogeneous good is given by the wage index

Wt =

[∫ 1

0
Wt (j )

1
λwt

] λwt

,

and the demand for the labor of type j is given by the isoelastic curve

Lt (j ) =

(
Wt (j )

Wt

)− 1+λwt
λwt

Lt . (30)

6.1.5 Labor unions

Wages are set by a continuumof labor unions, also indexed by j , each representing a household.
Each period a randomly-selected fraction ξw of unions cannot freely set the wage of the house-
hold they represent. The nominal wages of those households grow at the deterministic growth
rate of TFP, γ.40 The remaining fraction of labor unions set the optimal wageWt (j ) bymaximizing

Et

[
∞∑

s=0
ξs

w β
s

(
−ψt+sϕ

Lt+s (j )1+ν

1 + ν + Λt+sWt (j )Lt+s (j )

)]
subject to (30), whereΛt is themarginal utility of nominal income.

6.1.6 Households

I assume that there exists a competitive insurance agency that fully insures households against
fluctuations in their labor incomeresulting fromthe inability of laborunions to reset thenominal
wage. Therefore, the equilibrium labor income of each household is equal toWt Lt , the average
labor income in the economy.
40Since there is technological progress, absent this assumption, there would be no balanced growth path without wage

dispersion. Note that this is different than the assumption of wage indexation that is common in the DSGE literature: I do
not assume the wage to be indexed to the current inflation rate.
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Each household takes the labor income and the streamof profits from the ownership of firms
as given and chooses consumption and saving in government bonds to maximize the utility
function

Et

[
∞∑

s=0
βsψt+s

(
log(Ct+s ) − ϕ

Lt+s (j )
1+ν

1 + ν

)]
,

subject to a no-Ponzi condition and the nominal budget constraint

Pt Ct +Tt + Bt ≤ Rt−1Bt−1 +Wt Lt + Πt , (31)

whereCt is consumption, It is investment,Tt denotes lump-sumtaxes,Bt is holdingofone-period
government bonds, Rt is the gross nominal interest rate, Πt denotes profits from the ownership
of firms, and ψt is a discount-factor shock that follows the AR(1) process

logψt = ρψ logψt−1 + εψt ,

with εψt i.i.d. N(0, σ2
ψ). The operator Et denotes the expectation with respect to the household’s

subjective belief about the path {ψt+s, Lt+s,Wt+s, Pt+s, Tt+s, Rt+s, Πt+s }s ≥1 of aggregate and idiosyn-
cratic observables that enter her decision problem.

6.1.7 The government

Themonetary policy sets the nominal interest rate following a Taylor rule
Rt

R
=

(
Rt−1

R

) ρR (πt

π

)φπ(1−ρR )

ηmt ,

where R is the steady-state gross nominal interest rate.41 ηmt is a monetary policy shock that
follows the AR(1) process

log ηmt = ρm log ηm,t−1 + εmt ,

where εmt is i.i.d. N(0, σ2
m).

Government spendingGt is exogenous, with gt ≡ Gt /γ
t given by the following AR(1) process:

log gt = (1 − ρg ) log g + ρg log gt−1 + εg t

and εg t i.i.d.N(0, σ2
g ). Government finances spending by issuing short-termnominal bonds and

levying lump-sum taxes on households. The nominal government budget constraint is given by

Rt−1Bt−1 + Pt Gt −Tt = Bt , (32)

whereTt denotes nominal taxes. Taxes follow a tax rule that ensures that the real value of public
debt (i.e., Bt /Pt γ

t ) remains constant over time.42
41In the new-Keynesian literature, it is often assumed that the monetary authority responds both to changes in the

inflation rate and to changes in the output gap. The right notion of an output gap in a CREE is not clear. The monetary
authority may define the output gap relative to the flexible price allocation where agents re-estimate their model, the one
in which the agents’ models are unchanged, or the rational-expectations flexible price allocation. I bypass the question of
how the output gap ought to be defined by assuming that themonetary authority only responds to changes in the inflation
rate.
42Ricardian equivalence does not necessarily hold in a CREE. The timing of taxes and the value of the outstanding public
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6.1.8 Market clearing

The aggregate resource constraint is given by

Ct + It +Gt = Yt .

6.2 Log-Linear Temporary Equilibrium

I start by characterizing the log-linearized temporary equilibrium of the economy under arbi-
trary specification of expectations. As the first step, I characterize the non-linear equilibrium
conditions. I then characterize a balanced growth path (BGP) along which prices are constant
and output, consumption, investment, government spending, capital stock, the real wage, and
the public debt all grow at rate γ, the deterministic growth rate of labor productivity. Finally, I
log-linearize the equilibrium conditions around the BGP. The calculations are tedious and are
relegated to the Online Appendix.

Away from rational expectations, one agent’s optimality conditions cannot be simplified
using other equilibrium conditions that are not necessarily respected by the agent’s expectation
operator—conditions such as other agents’ optimality conditions and resource constraints.43
For instance, the optimality condition of firms resetting their prices cannot be combined
with the evolution of the price index to obtain the standard recursive version of the Phillips
curve. Likewise, the households’ optimality conditions cannot be combined with the aggregate
resource constraint to obtain the standard recursive consumption-Euler equation.

I instead combine the households’ first-order optimality conditions with their budget con-
straints and the no-Ponzi condition to obtain the following version of the permanent-income
hypothesis:

ĉt = βψ̂t +
b

c

1 − β
β

(
R̂t−1 + b̂t−1 − π̂t

)
+ (1 − β)

(x

c
x̂t −

τ

c
τ̂t

)
− βR̂t

+ Et

[
∞∑

s=1
βs

(
(1 − β)x

c
x̂t+s − (1 − β)

τ

c
τ̂t+s − (1 − β)ψ̂t+s − β

x − τ

c
R̂t+s +

x − τ

c
π̂t+s

)]
. (33)

where lowercase letterswithhats denote log-deviations from theBGPand lowercase letterswith-
out hats denote the steady state values, π denotes the inflation rate, x denotes the households’
total income from labor and the ownership of firms, and τ denotes their real tax burden.

Equation (33) has an intuitive interpretation. The first term is the direct effect of a discount-
factor shock on consumption. The second term captures the wealth effect from changes in the
public debt and the revaluation of government bonds. The third term is consumption out of
debt might therefore both affect the response of the economy to shocks. See also Eusepi and Preston (2018a), where the
authors use an adaptive learning framework to study the effects of the level of public debt on the transmission ofmonetary
policy.
43Preston (2005) is the first to make this point in the context of adaptive-learning models. See, also, Woodford (2003b,

p. 272) for a discussion.
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changes in the current disposable income,with 1− β themarginal propensity to consume (MPC).
The fourth term is the intertemporal substitution effect from changes in the nominal interest
rate. The term on the second line is consumption out of changes in the expected permanent
income, with 1 − β theMPC.

Investment is given by

ît = k̂t +
1
χ

(
−ψ̂t + ĉt

)
+ Et

[
∞∑

s=1
βs

(1 − β
χβ

ψ̂t+s −
1 − β
χβ

ĉt+s +
1
χ

( 1
β
−
1 − δ
γ

)
ρ̂t+s

)]
, (34)

where ρ denotes the rental rate of capital and χ is a constant that captures the convexity of the
adjustment cost. Note that investment depends on the expected infinite presented-discounted
value of the rental rate of capital, where the discount rate depends on consumption and the
discount factor-shock. If there existed a market where firms could trade capital, investment
wouldonly dependon the investmentfirms’ expectationof theprice of capital in thenext period.
While the two expressions would coincide under rational expectations, under constrained-
rational expectations, they only coincide in knife-edge cases.

Price and wage inflation are described by two Phillips curves that relate the current values
of inflation rate and the wage index to the intermediate-goods’ producers and the labor unions’
expectations about the paths of observables. In particular, price inflation is described by

π̂t = κ
(
λ̂pt + αρ̂t + (1 − α)ŵt − ẑt

)
+ Et

[
∞∑

s=1
ξs

p β
s

(1 − ξp

ξp
π̂t+s + κ

(
λ̂p,t+s + αρ̂t+s + (1 − α)ŵt+s − ẑt+s

))]
, (35)

where κ is a constant. The wage index is given by

ŵt = ξw (ŵt−1 − π̂t ) + κw

(
λ̂wt + νL̂t + ĉt

)
+ κw (νw − 1)ŵt (36)

+ Et

[
∞∑

s=1
ξs

w β
s
(
(1 − ξw )π̂t+s + κw

(
λ̂wt + νL̂t + ĉt

)
+ κw (νw − 1)ŵt+s

)]
, (37)

where νw and κw are constants. The remaining log-linearized equilibrium conditions are
relatively standard. They are presented in Appendix D.1.

6.3 The Agents’ Models

I assume that all agents have perfect foresight about the balanced growth path of the economy.
So I only need to specify the expectations of intermediate-goods producers, investment firms,
labor unions, and households about the paths {π̂s, λ̂ps, ρ̂s, ŵs, ẑs }s , {ψ̂s, ĉs, ρ̂s }s , {π̂s, λ̂w s, L̂s,

ĉs, ŵs }s , and {x̂s, τ̂s, ψ̂s, R̂s, π̂s }s , respectively, of log deviations from the BGP. For simplicity,
I assume that all agents have the same model of the economy. Therefore, each model θ
must determine the expectations about the paths

{
x̂s, τ̂s, ψ̂s, R̂s, π̂s, ρ̂s, ŵs, ẑs, λ̂ps, λ̂w s, L̂s, ĉs

}
s
of

36



observables that enter the problems of intermediate-goods producers, investment firms, labor
unions, or households. I further enrich the set of agents’ observations by assuming that they also
observe aggregate investment and government spending. So agents are all assumed to observe
and form expectations about the following vector of observables:

os ≡

(
x̂s, τ̂s, ψ̂s, R̂s, π̂s, ρ̂s, ŵs, ẑs, λ̂ps, λ̂w s, L̂s, ĉs, îs, ĝs

) ′
∈ Rn . (38)

Although the elements of os are interdependent in equilibrium, the agents may not be aware
of equilibrium relationships, and so they may believe in combinations of variables that are
inconsistent with equilibrium relationships. This is the manifestation of the possibility that the
agents’ expectationsmay not coincide with rational expectations.

I assume that the agents can only entertain d-factor linear-Gaussian hidden factormodels as
inSection5. Theagentsbelieve that thereared underlying factors thatdetermine themovements
in theobservable economic variables. Thed-factormodel fully describes the agents’ constrained
setof expectations. Agents canentertainanyexpectation inducedby suchamodel,withdifferent
choices corresponding to different ways of constructing the factors. With d = 2, for instance,
the agents can choose one factor to capture the movements in real variables and the other to
capture movements in nominal variables. Or they can pick a factor to account for the long-run
movements in the observables and one factor to account for the short-runmovements. Or they
can pick the factors by principal component analysis. The solution concept of CREE provides a
systematic way of determining the equilibrium factors picked by the agents. In the rest of this
section, I focus on the case where d = 1.

6.4 Calibration and the SolutionMethod

The model has two classes of parameters. The first class consists of structural parameters such
as the discount factor β and the capital share in theCobb–Douglas production function α. These
parameters need to be estimated or calibrated by the economist analyzing the model. The
second class consists of the parameters of the agents’model, namely,matrices A,B , Σω, Σo . These
arenot free parameters that need to be estimated by the economist. Rather, they are determined
endogenously in a CREE.

The parameters of the agents’ model are not identified without further normalization. I
ensure that the agents do not face any identification problem by normalizing A to be a diagonal
matrix with diagonal elements between zero and one and normalizing Σω to be a correlation
matrix. Thesenormalizationsdonot introduceany restrictionson the setΘofmodels considered
by the agents. I additionally assume that Σo is a multiple of the identity matrix I . That is, the
agents believe themeasurement errors to be i.i.d. across different observables. This assumption
does restrict the set Θ. But doing so significantly reduces the number of parameters the agents
need to estimate in the CREE-d , thus making the model more tractable. It also allows me
to include variables in the vector of observables ot that are co-linear in equilibrium. This
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normalization leaves the agents with d + dn + d(d − 1)/2 = 15 parameters to estimate. It is
important to note that, just as in REE, the agents estimate their model using an infinitely large
sample generated by the model economy—and not the data used by the economist to calibrate
the structural parameters.

The algorithm that finds a CREE-d consists of an inner loop and an outer loop. In the
inner loop, the distribution of observables is fixed. The agents estimate the parameters of their
model byminimizing the Kullback–Leibler divergence from the distribution of observables. The
inner loopusesIPOPT, an interior-point optimization software, tominimize theKullback–Leibler
divergence. To speed up the computation, exact first and second derivatives are provided to
the algorithm using an automatic differentiation software. The outer loop is a standard fixed-
point iteration loop. It iterates on the parameters of the agents’ model and the distribution of
observables until a fixed point corresponding to a CREE-d is reached.

The structural parameters of the model can in principle be estimated using standard tech-
niques. Although CREE-d is more tractable than models of rational inattention, the compu-
tational cost of estimating a CREE-d is still hundreds of times higher than that of a rational-
expectations equilibrium. So as a first pass, I calibrate the structural parameters of the model
to standard values from the new-Keynesian and DSGE literatures. Doing so has the additional
benefit of not giving CREE-d any advantage over the REE in matching the business-cycle
moments.44

Themodel is calibratedataquarterly frequency. Following the textbookofGalí (2008), I set the
discount factor to β = 0.99, the capital share in the production function to α = 1/3, the inverse of
the Frisch elasticity of labor supply to ν = 1, the elasticity of substitution between intermediate
goods to 6—this corresponds to a steady state price markup of λp = 0.20—the elasticity of
substitution between differentiated labor types to 4.5—corresponding to a steady state wage
markup of about λw = 0.29—the Calvo parameter for prices to ξp = 2/3, the Calvo parameter
for wages to ξw = 3/4. The quarterly depreciation rate of capital is set to δ = 0.025, the value
commonlyused in the literature. Twoparameters of themodel havenocounterparts in theDSGE
literature. The public debt-to-GDP ratio is irrelevant in rational-expectations models where
Ricardian equivalence holds. I set it to b/g = 0.50. This is roughly equal to the corresponding
value for the US economy in the period 1950–2007. The convexity of the capital-adjustment
cost is set to S ′′ = 20, following the original estimate of Hayashi (1982). This value is on the
higher end of the spectrum but within the range of values considered in the literature.45 The
remaining parameters are set to the state-of-the-art DSGE estimates obtained by Sala (2015)
by performing Bayesian estimation in the frequency domain. Table 1 lists the values of all the
structural parameters. Note that there are no parameters for the agents’ expectations.
44Examples of estimated DSGEmodels with learning includeMilani (2007) and Slobodyan andWouters (2012).
45See Cooper and Haltiwanger (2006) for a discussion of different estimates of the capital-adjustment cost.
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parameter description value source
Preferences, technology, nominal rigidities
β discount rate 0.99 Gali (2008)
ν inverse Frisch elasticity of labor supply 1.0 Gali (2008)
α capital share 1/3 Gali (2008)
ξp price rigidity 2/3 Gali (2008)
ξp wage rigidity 3/4 Gali (2008)
λp steady state price markup 0.20 Gali (2008)
λw steady state wagemarkup 0.29 Gali (2008)
γ steady state growth rate 1.01 Sala (2015)
δ depreciation rate 0.025 Sala (2015)
χ convexity of capital adjustment cost 20 Hayashi (1982)
g /y government spending as share of GDP 0.20 Sala (2015)
b/y public debt to GDP ratio 0.50 FRED

Monetary policy
ρR persistence of monetary policy 0.80 Sala (2015)
φπ Taylor rule coefficient on inflation 2.05 Sala (2015)

Persistence of shocks
ρz TFP 0.21 Sala (2015)
ρψ discount-factor shock 0.67 Sala (2015)
ρp price-markup shock 0.65 Sala (2015)
ρw wage-markup shock 0.33 Sala (2015)
ρm monetary-policy shock 0.30 Sala (2015)
ρg government-spending shock 0.93 Sala (2015)

Standard deviation of shocks
σz TFP 0.90 Sala (2015)
σψ discount-factor shock 0.30 Sala (2015)
σp price-markup shock 0.08 Sala (2015)
σw wage-markup shock 0.13 Sala (2015)
σm monetary-policy shock 0.23 Sala (2015)
σg government-spending shock 0.40 Sala (2015)

Table 1. Calibrated parameters
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6.5 Results

Figure 1 illustrates the endogenous vector of Kalman gains. A longer bar for an observable
signifies that the agents’ estimate of the hidden factor is more sensitive to changes in that
observable. Note that only the relative magnitudes of the bars are meaningful—the hidden
factor can be scaled without changing the agents’ forecasts of observables. The agents’ estimate
of the hidden factor increases the most with changes in investment, hours, the rental rate of
capital, consumption, and income; it decreases themost with increases in taxes; and it is largely
unaffectedbychanges in thevalueof the shocks, the realwage, the inflation rate, and thenominal
interest rate. Theagents’ estimateof thehidden factor is a summaryof thevaluesof real aggregate
variables; it captures the agents’ unidimensional viewof the state of the economy. As such, I refer
to the agents’ estimate ω̂t as “consumer confidence.”46 Note that no data on expectations have
been used to construct this measure. Rather, it emerges as agents try to find the hidden factor
that best describes their equilibrium observations.

Figures2–7plot the responseof theeconomytoshocks in theREEand theCREE-1. Thefigures
reveal several noteworthy facts about how the economy responds to shocks. First, unlike in the
REE, in the CREE-1, shocks to TFP and the monetary policy lead to hump-shaped responses
of real variables. The consumer confidence also exhibits a hump-shaped impulse response to
TFP and monetary-policy shocks. Second, a positive shock to the discount factor leads to a
simultaneous increase in income, output, consumption, hours, and investment in the CREE-
1. In contrast, in the REE, investment falls. Third, an increase in government spending leads
to a simultaneous increase in income, output, consumption, hours, and investment in the
CREE-1. In the REE, in contrast, consumption falls following a positive government-spending
shock. Therefore, neither of the demand shocks of the economy can generate business-cycle-
like movements in the real variables in the REE, but they both do so in the CREE-1. Fourth, the
response of the economy to a government-spending shock ismore persistent in theCREE-1 than
in the REE. Finally, the CREE-1 dampens the response of the economy to a wage-markup shock
relative to the REE benchmark.

7 Conclusion

This paper proposes model misspecification as a unified expression of bounded rationality in
macroeconomics. It argues that a number of models of bounded rationality previously studied
in the literature can be represented as particular cases of model misspecification.

I propose the solution concept of CREE as the generalization of the rational-expectations
equilibrium to the case where agents’ models are constrained to a misspecified set. In a CREE,
agents may not have the correct model of the economy, but they do the best they can given
46Ilut and Schneider (2014) and Angeletos et al. (2018) also construct endogenousmeasures of consumer confidence.
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their misspecified models and their observations. A CREE exists under weak conditions. It is
reached in the limit as agents learn about their environment. It incorporates a version of the
Lucas critique and is well-suited for counterfactual policy analysis.

I use a special case of CREE to study a business-cycle model in which agents can only
entertain factormodels with a small number of factors. The calibrated economy exhibits hump-
shaped impulse responses to shocks and demand-driven co-movements in aggregate variables.
The model also gives rise to an endogenous measure of consumer confidence with striking
resemblance tomeasures of consumer confidence constructed using survey expectations.

Constrained rationality emerges from the quantitative exercise as a parsimonious and plau-
sible alternative to the battery of frictions needed in the business-cycle literature to improve the
empirical fit of standard models. The exercise illustrates the portability and tractability of the
solution concept of CREE. It can be readily incorporated in existing macro models to enrich the
dynamics of agents’ expectations and improve the realism and empirical fit of our models.
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Figure 1. The vector of Kalman gains
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Figure 2. Impulse responses to the TFP shock
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Figure 3. Impulse responses to the discount-factor shock
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Figure 4. Impulse responses to the price-markup shock
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Figure 5. Impulse responses to the wage-markup shock
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Figure 6. Impulse responses to themonetary-policy shock
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Figure 7. Impulse responses to the government-spending shock
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A Examples of the Economic Environment

In this appendix, I show how several benchmark macro models can be mapped to the abstract
general-equilibrium economy introduced in Section 2.

A.1 The Lucas Asset-PricingModel

Consider a representative-agent asset-pricing model with a single perishable consumption
good in each period and an infinitely-lived Lucas tree. The representative agent has standard
time-separable preferences with the flow utility in period t given by u(ct , ψt ), where ct denotes
consumption and ψt ∈ R is a taste shifter. The tree is in fixed unit supply and yields a random
dividend dt in period t . The representative agent also receives an exogenously given stream of
labor income, with the realized value of labor income in period t denoted by wt . Let pt denote
the price of the tree in period t (in terms of the consumption good), and let st denote the agent’s
holding of the tree. I let xt = (ct , st )

′ and yt = (ψt , dt , wt , pt )
′. The constraints on the choice of the

agent are represented by the correspondence Γ, defined as

Γ(xt−1, yt ) =
{

xt : ct + st pt ≤ st−1(pt + dt ) +wt

}
∩

{
xt : s ≤ st ≤ s

}
,

where s and s are lower andupperboundson theagent’s holdingof the tree. The state variable z is
an underlying shock that follows aMarkov process withMarkov kernelΠ; that is, zt is distributed
according to Π(·|zt−1) conditional on the history of shocks {zs }

t−1
s=0. Note that since z is allowed to

belong to a general Borel space Z , it can be used to represent any stationary ARMA process. The
functionG : X ×Y × Z → R4 is a vector-valued function that is given by:

G1(xt , yt , zt ) = ψt − Ψ(zt ),

G2(xt , yt , zt ) = dt −D(zt ),

G3(xt , yt , zt ) = wt −W (zt ),

G4(xt , yt , zt ) = st − 1,

where Ψ,D , andW are functions that map the underlying shock to the values of the taste shifter,
dividend, and labor income. The last element of G is used to represent the market clearing
condition for the tree. The goodmarket clears byWalras’ law.

A.2 A Heterogeneous-Agent New-KeynesianModel

As a richer example, consider a heterogeneous-agent new-Keynesianmodel à laWerning (2015)
in which the monetary authority controls the real interest rate and output is determined by
aggregate demand.

There is a finite set of household types indexed by i ∈ I , with type i representing fraction
αi of the population. Types may differ in their flow utility functions, labor income, borrowing
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constraints, and their models of the economy, but I assume different types to all have the same
discount factor β. The flow utility function of households of type i is given by ui (cit , ψit ), where
cit denotes consumption and ψit ∈ R is a taste shifter. Households of type i face the following
budget constraints:

cit + sit pt +
bit

Rt
≤ si,t−1(pt + dt ) +wit + bi,t−1,

where sit denotes thehousehold’s holding of a Lucas tree, pt anddt denote theprice anddividend
of the tree, respectively, bit denotes the holding of a riskless one-period bond,Rt denotes the real
interest rate paid on the bond between periods t and t + 1, and wit denotes the labor income.
I assume that households of a given type all have identical initial holdings of the tree and the
riskless bond. Agents of type i are also subject to the following borrowing constraints:

bit + sit pt ≥ b it ,

where b it is a borrowing limit. I letCt denote the aggregate output in the economy.
The information available to a household of type i is represented by some vector y i

t that
contains a subset of the elements of the vector((

c i
jt , s i

jt , b
i
jt

)
j,i
,
(
ψi

jt , w
i
jt , b

i
jt

)
j ∈I
, d i

t , p i
t , R i

t , C
i
t

)
,

with the superscript i used to indicate that a variable is a “copy” that appears in the information
set of households of type i . Copies of variables that directly enter the households’ optimization
problems (i.e., ψi

it , w i
it , b i

it , d i
t , p i

t , and R i
t ) are always assumed to be included in y i

t , and thus,
to be observable to households of type i . The model considered by the households of type i is
represented by a parameter set Θi and a mapping Q i , where, for every θi ∈ Θi , Q iθi is a Markov
kernel over the space of all y i with density qiθi (with respect to the Lebesguemeasure).

I can equivalently represent the decisions of households as being made by a representative
agent who cares about all households but cannot transfer resources or information between
households. Let xit = (cit , sit , bit ), xt = (xit )i ∈I , and yt =

(
y i

t

)
i ∈I . The representative agent’s flow

utility function is given by
u(xt , yt ) =

∑
i ∈I

ui
(
cit , ψ

i
it

)
.

Since the representative agent is unable to transfer resources from one household type to
another, the weight assigned to different household types in the representative agent’s utility
function is irrelevant; I have simply chosen a utility function that weights all household types
equally. Theconstraints facedby the representativeagentare representedby thecorrespondence
Γ defined as

Γ(xt−1, yt ) =
{

xt : xit ∈ Γi
(
xi,t−1, y i

t

)}
,

where

Γi
(
xi,t−1, y i

t

)
=

{
xit : cit + sit p i

t + bit ≤ si,t−1(p i
t + d i

t ) +w i
it + R i

t−1bi,t−1
}
∩

{
xit : bit + sit p i

t ≥ b i
it

}
.
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The representative agent’smodel of the economy is given by the parameter spaceΘ =∏
i ∈I Θi

and themapping θ 7→ Q θ, for θ = (θi )i ∈I , for which the density qθ is given by

qθ(yt |yt−1) =
∏
i ∈I

qiθi

(
y i

t |y
i
t−1

)
.

Theproduct structure entails that, from thepoint of viewof the representative agent, realizations
of y i are statistically independent of those of y j for all j , i—although in equilibrium y i

t and y j
t

include copies of the same set of variables, and so, are dependent. This is the manifestation of
the assumption that households of different types do not share information with one another
and thus face separate inference problems.

Finally, the state variable z is an underlying shock that belongs to a general Borel space Z and
follows aMarkovprocesswithMarkov kernelΠ. The taste shifters, dividends, labor incomes, and
borrowing constraints are all random variables that depend on the realized value of the shock.
I assume that Rt , the real interest rate at time t , is also a random variable that only depends on
zt . In other words, the real interest rate is determined by themonetary authority as a function of
monetary policy shocks that are included in z and whose values are determined outside of the
model.

The consistency requirements are imposed by means of a functionG (xt , yt , zt ) that needs to
be equal to zero for all t . I describe the function G simply by enumerating the expressions that
are required to be equal to zero in any equilibrium. Consistency of different copies of choice and
endogenous variables with one another and with the realized value of the shock requires

ψi
jt − Ψj (zt ) = 0 ∀i, j ∈ I ,

w i
jt −Wj (Ct , zt ) = 0 ∀i, j ∈ I ,

b i
jt − Bj (Ct , zt ) = 0 ∀i, j ∈ I ,

d i
t −D(Ct ) = 0 ∀i ∈ I ,

R i
t − R(zt ) = 0 ∀i ∈ I ,

c i
jt − c jt = 0 ∀i, j ∈ I ,

s i
jt − sjt = 0 ∀i, j ∈ I ,

b i
jt − b jt = 0 ∀i, j ∈ I ,

where Ψj ,Wj , Bj ,D , and R are functions. By definition, aggregate income,Ct , must satisfy∑
i ∈I

αiWi (Ct , zt ) +D(Ct ) −Ct = 0.

Andmarket clearing for the consumption good, the Lucas tree, and bonds require that∑
i ∈I

αi cit −Ct = 0,
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∑
i ∈I

αi sit − 1 = 0,∑
i ∈I

αi bit = 0.

This completes themapping of the economy to the general framework of Section 2.

B Hidden Factor Models and the Kalman Filter

The expressions presented in this section are instances of standard results on Kalman filtering
that can be found, among other places, in Anderson and Moore (2005) and Hamilton (1994,
ch. 13). In the first subsection, I characterize theKullback–Leibler divergence in the general case.
In the secondsubsection, I consider a special casewhereagents considerone-dimensional factor
models with i.i.d. measurement errors and simplify the Kullback–Leibler divergence.

B.1 The General Case

Agents are assumed to have a linear-Gaussian hidden-factor model of the economy that is
described by the following equations:

ωt = Aωt−1 + εωt ,

ot = B ′ωt + εot ,

where ωt , εωt ∈ Rd , ot , εot ∈ Rn , A ∈ Rd×d , B ∈ Rd×n , εωt is i.i.d. N(0, Σω), and εot is i.i.d. N(0, Σo).
All of the eigenvalues of matrix A are assumed to be inside the unit circle.

Conditional on {os }
t
s=−∞, agents believe that the hidden state variable ωt+1 is normally

distributed with mean ω̂t ≡ ω̂t+1 |t and variance-covariance matrix Σ̂ω, where Σ̂ω is the unique
positive semidefinite symmetric matrix that satisfies the following algebraic Riccati equation

Σ̂ω = A
(
Σ̂ω − Σ̂ωB

(
B ′Σ̂ωB + Σo

)−1
B ′Σ̂ω

)
A ′ + Σω, (B.1)

ω̂t is defined recursively as
ω̂t = (A − K B ′)ω̂t−1 + K ot , (B.2)

K ∈ Rd×n is the Kalman gain defined as

K ≡ AΣ̂ωB
(
B ′Σ̂ωB + Σo

)−1
, (B.3)

and A ′ denotes the transpose of matrix A.47
Since the eigenvalues of A are strictly smaller than 1 in magnitude by assumption, equation

(B.2) can be solved backward to get ω̂t =
∑∞

s=0(A − K B ′)s K ot−s .48 Thus, conditional on {os }
t
s=−∞,

47See, for instance, equations (1.2), (4.2), and (4.4) in Chapter 4 of Anderson andMoore (2005).
48See, for instance, Anderson andMoore (2005, p. 77).
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agents believe that the observable ot+1 is normally distributed with mean ôt+1 |t = B ′ω̂t and
variance-covariancematrix

Ω ≡ B ′Σ̂ωB + Σo . (B.4)

More generally, conditional on yt = (ot , ot−1, . . . ), agents believe that themean of ot+s is given by

ôt+s |t = B ′As−1ω̂t = B ′As−1
∞∑
τ=0
(A − K B ′)τK ot−τ (B.5)

for any s ≥ 1.
The agents’model canbe cast in the canonical formof Section 2bydefining yt ≡ (ot , ot−1, . . . ).

The vector yt consists of the entire history of realizations of the vector of observables os for s ≤ t .
According to the agents’ model, the sequence {yt } is a (first-order) time-homogeneous Markov
chain. In particular, conditional on yt = (ot , ot−1, . . . ), agents believe that yt+1 = (ot+1, yt ), where
ot+1 is normally distributed with mean ôt+1 |t =

∑∞
s=0 B ′(A − K B ′)s K ot−s and variance-covariance

matrixΩ.
The agents’ model can be described by a parameter setΘ and amappingQ . Let Θ̃ denote the

set of all tuples θ = (A, B, Σω, Σo) such that A has all of its eigenvalues in the unit circle and Σω and
Σo are variance-covariance matrices. The parameter set Θ is a (possibly strict) subset of Θ̃. Any
parameter θ ∈ Θ defines aMarkov kernelQ θ overY ≡ RN as follows. Given any yt = (ot , ot−1, . . . ),
let νyt denote themeasure overY , defined by setting, for all measurable sets E1 ⊆ Rn and E2 ⊆ Y ,

νyt (E1 × E2) = ν̃(E1)1 {yt ∈ E2} ,

where ν̃ denotes the n-dimensional Lebesgue measure. Q θ(·|yt ) is absolutely continuous with
respect to the sigma-finite measure νyt with the log-density given by

log(qθ(yt+1 |yt )) = −
1
2 log (det (Ω)) −

n

2 log (2π)

−
1
2

(
ot+1 −

∞∑
s=0

B ′(A − K B ′)s K ot−s

) ′
Ω
−1

(
ot+1 −

∞∑
s=0

B ′(A − K B ′)s K ot−s

)
,

where K and Ω are defined in equations (B.3) and (B.4), respectively, and det(Ω) denotes the
determinant of matrixΩ.

The Kullback–Leibler divergence ofmodel θ = (A, B, Σω, Σo) from a distributionP for the path
{ot }

∞
t=−∞ of observables is equal to

H (P, θ) = −
1
2 log

(
det

(
Ω
−1

))
+

n

2 log (2π)

+
1
2tr

(
Ω
−1E

[(
ot+1 −

∞∑
s=0

B ′ (A − K B ′)s K ot−s

) (
ot+1 −

∞∑
s=0

B ′ (A − K B ′)s K ot−s

) ′])
, (B.6)
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where E denotes the expectation with respect to P and tr denotes the trace of a matrix (i.e., the
sum of its diagonal elements). Expanding the last term in equation (B.6), I get

H (P, θ) = −
1
2 log

(
det

(
Ω
−1

))
+

n

2 log (2π) +
1
2tr

(
Ω
−1
Ξ0

)
−

∞∑
s=1

tr
(
Ω
−1
Ξs K ′ (A ′ − BK ′)s−1 B

)
+
1
2
∞∑

s=1

∞∑
τ=1

tr
(
Ω
−1B ′ (A − K B ′)s−1 K Ξτ−s K ′ (A ′ − BK ′)τ−1 B

)
, (B.7)

where I am using the linearity of the trace operator and

Ξs ≡ E
[
ot o ′t−s

]
is the autocovariancematrix of vector ot at lag s ∈ Z.

The calculation in the paragraph establishes that the Kullback–Leibler divergence given the
distribution P for the sequence {ot }

∞
t=−∞ of observables only depends on the autocovariance

matrices of ot at different lags. With some abuse of notation, I let H ({Ξs }s ∈Z, θ) denote the
Kullback–Leibler divergence given the sequence of autocovariancematrices {Ξs }j ∈Z.

B.2 The One-Factor Model

I next consider a special case of the hidden-factor model of the previous subsection. Agents
believe that the hidden factor is one dimensional and the measurement errors are independent
and identically distributed across observables. Thematrix A is then equal to some scalar a ∈ [−1,
1] and the matrix Σo is equal to σ2

o I for some σo > 0, where I denotes the identity matrix. Recall
by equation (B.7) that the Kullback–Leibler divergence is given by

H (P, θ) = −
1
2 log det

(
Ω
−1

)
+

n

2 log (2π) +
1
2tr

(
Ω
−1
Ξ0

)
−

∞∑
s=1

tr
(
Ω
−1
Ξs K ′ (A ′ − BK ′)s−1 B

)
+
1
2
∞∑

s=1

∞∑
τ=1

tr
(
Ω
−1B ′ (A − K B ′)s−1 K Ξτ−s K ′ (A ′ − BK ′)τ−1 B

)
.

When the hidden factor is one dimensional, the above expression can be simplified further.
Define

M ≡ D ′Ξζ0D − 2D ′
(
I − (A − K B ′)Aζ

)−1
AζΞζ0DK ′B +

(
1 − (A − K B ′)2

)−1
B ′K D ′Ξζ0DK ′B

+ 2(A − K B ′)
(
1 − (A − K B ′)2

)−1
B ′K D ′

(
I − (A − K B ′)Aζ

)−1
AζΞζ0DK ′B .

Then,

H (P, θ) =
1
2 log det (Ω) +

n

2 log (2π) +
1
2tr

(
Ω
−1M

)
.
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Without loss of generality I can normalize the hidden factor to have Σ̂ω = 1. The matrix Ω then
simplifies to

Ω = B ′B + σ2
o I .

Thematrix-determinant lemma implies that

log det(Ω) = log
(
1 + BΣ−1o B ′

)
+ 2n log(σo),

where recall that n denotes the number of observables. Define

v ≡
1
σo

B ′.

Then,
1
2 log det(Ω) =

1
2 log (1 + v ′v ) + n log(σo).

The Sherman–Morrison formula implies that

Ω
−1 = Σ−1o −

Σ−1o B ′BΣ−1o

1 + BΣ−1o B ′
=

1
σ2

o

(
I −

vv ′

1 + v ′v

)
.

Therefore, the Kullback–Leibler divergence can be written as

H (P, θ) =
1
2 log (1 + v ′v ) + n log(σo) +

n

2 log (2π) +
1
2
1
σ2

o

tr
((

I −
vv ′

1 + v ′v

)
M

)
.

The vector of Kalman gains is given by

K = ABΩ−1 =
av ′

σo

(
I −

vv ′

1 + v ′v

)
=

av ′

σo(1 + v ′v )
.

Therefore,
B ′K = K ′B =

a

1 + v ′v
vv ′,

and

A − K B ′ = A ′ − BK ′ =
a

1 + v ′v
.

Minimizing the Kullback–Leibler divergence with respect to a , B , and σo is equivalent to mini-
mizing it with respect to a , v , and σo . ThematrixM only depends on v . Therefore, the first-order
condition with respect to σo is given by

nσ−1o − σ
−3
o tr

((
I −

vv ′

1 + v ′v

)
M

)
= 0.

It is easy to verify that the second-order condition is also satisfied. Solving the above equation
for σo , I get

(σ∗o)
2 =

1
n
tr

((
I −

vv ′

1 + v ′v

)
M

)
.
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Substituting in the Kullback–Leibler divergence, I get

H (P, θ) =
1
2 log (1 + v ′v ) +

n

2 log tr
((

I −
vv ′

1 + v ′v

)
M

)
+ constant.

Using the expression forM , the above expression can be simplified to

H (P, θ) =
1
2 log (1 + v ′v )

+
n

2 log
(
tr (

D ′Ξζ0D
)
−

1 + v ′v − a2

(1 + v ′v )2 − a2
v ′D ′

[
I + 2

(
I −

a

1 + v ′v
Aζ

)−1 a

1 + v ′v
Aζ

]
Ξζ0Dv

)
+ constant.

Define

γ =
1

1 + v ′v
,

u =
v
√

v ′v
.

Then,

H (P, θ) = −
1
2 log(γ) +

n

2 log
(
tr (

D ′Ξζ0D
)
−
(γ−1 − a2)(γ−1 − 1)

γ−2 − a2
u ′D ′

[
I + 2 (

I − γaAζ
)−1

γaAζ
]
Ξζ0Du

)
+ constant.

Minimizing the Kullback–Leibler divergence with respect to a and v is equivalent to minimizing
the following expressionwith respect to γ, a , andu subject to the constraints that a, γ ∈ [0, 1] and
u ′u = 1:

− log(γ) + n log
(
tr (

D ′Ξζ0D
)
−
(1 − a2γ)(1 − γ)

1 − a2γ2
u ′D ′

[
I + 2 (

I − γaAζ
)−1

γaAζ
]
Ξζ0Du

)
.

This is the expression that is used in the quantitative exercise.

C Special Cases from the Literature on Bounded Rationality

In this appendix, I show how several boundedly-rational models of expectation formation can
be viewed as imposing particular constraints on the set of models entertained by the agent. For
the sake of exposition, in this appendix, I assume that the observable yt follows an exogenous
Markov process.49

C.1 Covariance-Stationary VARs

Consider an agent who believes that the observable variable follows a covariance-stationary
VAR(p) process with normal innovations. Let ỹt ∈ Rl denote the finite-dimensional vector of
49This can be done formally by letting Π(·|y−, z−) = Π(·|z−) for all y−, z− andG (x, y, z ) = y − z ; that is, the state variable z

follows aMarkov process and the observable is equal to the state variable at all times.
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observables at time t . The agent’s set of models is parametrized by the VAR coefficients θ1, θ2,
. . . , θp ∈ Rl×l and the variance-covariance matrix of innovations, which I denote by θ0 ∈ Rl×l .
Given parameter θ = (θ0, θ1, . . . , θp ), the probability that ỹt belongs to a set B̃ ⊆ Rl is given by

Q̃ θ(B̃ |ỹt−1, . . . , ỹt−p ) = Φθ0
({
ε : θ1ỹt−1 + · · · + θp ỹt−p + ε ∈ B

})
,

where ε denotes the innovation andΦθ0 denotes the l-dimensional normal probability distribu-
tion with mean zero and variance-covariance matrix θ0. I assume that the agent only considers
parameters θ for which θ0 belongs to some compact subset Θ0 of the set of symmetric and
positive-definite l × l matrices. This assumption guarantees that any θ0 considered by the agent
is a proper variance-covariancematrix.

The set ofmodels considered by the agent can be expressed in theMarkovian formof Section
2. Let yt = (ỹt , ỹt−1, . . . , ỹt−p+1) ∈ Y ≡ Rl×p , and let Br ⊆ Rl be an arbitrary set for r = 1, . . . , p.
Undermodel θ for the agent, the probability that yt belongs to the setB = B1×· · ·×Bp conditional
on yt−1 = (ỹt−1, . . . , ỹt−p ) is given by

Q θ(B |yt−1) = Q̃ θ(B1 |ỹt−1, . . . , ỹt−p )1
{
(ỹt−1, . . . , ỹt−p+1) ∈ B2 × · · · × Bp

}
,

where1 denotes the indicator function. The expression above defines aMarkov kernel overY for
any θ. The set of parameters is given by Θ = Θ0 × Θ̃, where Θ0 is the set of variance-covariance
matrices specified above and Θ̃ is the closure of the set of all tuples (θ1, . . . , θp ) for which the
VAR(p) process with autoregressive coefficients θ1, . . . , θp is covariance stationary.50 The set Θ
and themapping θ 7→ Q θ defined above constitute a well-defined set of models for the agent.

The agent’s set of models may or may not contain the true data-generating process. When ỹt

can be represented as a VAR(p) process with normally distributed innovations, the agent’s set of
models is correctly specified; if ỹt does not have a VAR(p) representation or if the innovations are
not normally distributed, then the agent’s set of models is misspecified.51

More generally, the agent’s set of models is said to be misspecified whenever Θ does not
contain a parameter θ for which the probability distribution induced by Q θ coincides with the
true data-generating process. In the rest of this appendix, I show that a number of deviations
from the rational-expectations benchmark that have been previously proposed in the literature
can be viewed as examples of misspecification by imposing appropriate constraints on the
agent’s set of models.

C.2 Restricted Perceptions Equilibrium

Suppose that the agent in the previous subsection only considers a strict subset ΘRP of Θ to be
plausible. This is the starting point of the literature on restricted-perceptions equilibrium (RPE)
50The parameters on the boundary of Θ̃ do not correspond to covariance stationary VAR processes. If the agent believes

that the process for ỹt is strictly covariance stationary, then one has to replace Θ̃with some compact subset contained in its
interior.
51Note, however, that if the innovations are not normally distributed but the agent’s optimal choices only depend on her

beliefs about the first moment of observables, thenmisspecification does not affect the agent’s optimal choices.
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that goes back to Bray (1982).52 The setΘRP is used to express the analyst’s a priori knowledge of
the type of expectations that may be reasonably entertained by agents.

A particular case that is the focus ofmuch of the RPE literature is one inwhich the agent does
not make use of some elements of vectors ỹt−1, . . . , ỹt−p ∈ R

l when forecasting ỹt . For the sake of
argument, let me assume that ỹt = (ỹ1t , . . . , ỹlt ) and that the agent believes the values of {ỹ j s }s<t

for j ∈ J to have no predictive power for (ỹkt )k< J . The observables (ỹ j s )j ∈ J , may, for example,
represent shocks (such as TFP) or state variables (such as the capital stock) that do not directly
appear in the agent’s optimization problem—even though they may affect other variables that
do. The constraint on the agent’s model can be expressed by setting

ΘRP =
{
θ = (θ0, . . . , θp ) ∈ Θ : [θr ]k j = 0 ∀k < J, ∀r = 1, . . . , p

}
,

where [θr ]k j denotes the element ofmatrix θr that is in row k and column j . Themapping θ 7→ Q θ

is simply the restriction of themapping from the previous example to the setΘRP.

C.3 Extrapolative Expectations

Another special case of the restricted-perceptions equilibrium is the model of extrapolative
expectations à la Fuster, Laibson, and Mendel (2010) and Fuster, Hebert, and Laibson (2012).53
Theassumption in thosepapers is that agents formtheir forecastsusing fewer lagsof thevectorof
observables than what is needed in a rational-expectations equilibrium. In particular, it is often
assumed that agents use a single lag to form their expectations. Extrapolative expectations can
be cast as a special case of the framework of Section 2 by constraining the set of parameters to
belong to

ΘEE =
{
θ = (θ0, . . . , θp ) ∈ Θ : θr = 0 ∀r > 1

}
,

and defining Q θ to be the restriction of the mapping θ 7→ Q θ, defined in the context of the
unrestricted VAR(p) model in subsection C.1, to the constrained setΘEE.

C.4 Consistent Expectations

In the consistent-expectations equilibrium of Hommes and Sorger (1998) and Branch and
McGough (2005), agents’ perceptions of economic variables are based on linear models, even
though the true model of the economy may be nonlinear. Consistent perceptions are easily
embedded in the general framework of Section 2. Suppose that the observable variable yt

belongs to some compact Banach space Y . Consistent perceptions are modeled by assuming
that, according to the agent’s model, the probability that the observable yt belongs to set B is
52Other notable contribution to the literature on RPE include Bray and Savin (1986) and Branch (2004). For more on the

RPE solution concept, see Chapter 13 of Evans and Honkapohja (2012).
53For relatedmodels and applications of extrapolative expectations, see Hirshleifer (2001), Hirshleifer, Li, and Yu (2015),

and Barberis, Greenwood, Jin, and Shleifer (2015).
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given by
Q θ(yt−1, B) = Pθ0

({
ε : Aθ1yt−1 + ε ∈ B

})
,

where Pθ0 is a parametric probability distribution for the shock ε, Aθ1 is a linear operator, which
is parameterized by some parameter θ1, and θ = (θ0, θ1) is the parameter of the agent’s model.54

C.5 Analogy-Based Expectations, Cursedness, and CorrelationMisperception

Another class of deviations from rational expectations are those capturing the misperception
of correlations among observables. In the analogy-based-expectations equilibrium (ABEE) of
Jehiel (2005) and cursed equilibrium of Eyster and Rabin (2005), players in a game are modeled
asneglecting thedependenceof theiropponents’ actionson their information. Ellis andPiccione
(2017) generalize this idea by allowing for arbitrary patterns of correlationmisperception, while
Spiegler (2016) generalizes it by using Bayesian networks to model more general errors of
statistical inference.55

Correlation misperception on the part of agents can also be viewed as particular constraints
on the agents’ set ofmodels.56 For the sake of exposition, I simplify other aspects of themodel by
considering an agentwhobelieves the vector of observables yt ∈ R

l to be i.i.d. over time. By Sklar
(1959)’s theorem, any distribution for yt can be expressed in terms of marginal distributions of
yt j for j = 1, . . . , j and a copula C : [0, 1]l → [0, 1] that captures the dependence relationships
among components of yt .57 Suppose that the agent believes that themarginal distribution of yt j

is given by Q θj and the copula describing the dependence relationships is given by Cθ0 , where
θ0, θ1, . . . , θl are parameters that belong to subsetsΘ0, Θ1, . . . , Θl of Euclidean spaces.

This formulation allowsme to restrict thedependence relationships among components of yt

without restricting the marginal distributions. In particular, it may be the case that, for all j , the
setΘj contains aparameter θj forwhichQ θj coincideswith the truedistributionof yt j , while there
exists no θ0 ∈ Θ0 for which the copula Cθ0 describes the true dependence relationship among
elements of yt . Fully-cursed expectations are modeled by assuming that Θ0 is a singleton {θ∗0}
such thatCθ∗0

is the independence copula, i.e.,Cθ∗0
(y1, . . . , yl ) =

∏l
j=1 y j for all y = (y1, . . . , yl ) ∈ Y .

Constraints on the agent’s view of the dependence relationships among variables can also
be expressed in a number of other ways. If the agent believes yt to be normally distributed, for
example, then the agent’s model can be parameterized using parameters θl = (µl, σ

2
l ), which

capture themean and variance of themarginals, and parameter θ0, which is the l × l correlation
54Since yt is assumed to belong to a compact Banach space, theMarkovian structure is without loss of generality as yt can

be defined as yt = (ỹt , ỹt−1, . . . ), the infinite history of realizations of ỹt .
55See also Eyster and Piccione (2013) for an asset-pricing application in a model that is formally close to the ABEE and

Eyster, Madarasz, andMichaillat (2017) for an application of the cursed equilibrium in a new-Keynesianmodel.
56The observation that correlation misperception is a form of model misspecification is not new. Esponda and Pouzo

(2016a) formulate analogy-based expectations as a special type of misspecification in a game-theoretical context and
formally establish that the ABEE is a special case of their more general Berk–Nash Equilibrium concept.
57Formore on copula theory, see Nelsen (2006).

59



matrix. Fully cursed expectations are then captured by assuming that Θ0 = {θ∗0}, where θ∗0 is the
identity matrix.

One can also use this parametrization to study more subtle forms of correlation mispercep-
tion. Suppose, for instance, that the agent believes yt to be a normally-distributed vector and
the correlation between any two components of yt to be either 0, +1, or −1.58 This belief can be
represented by assuming that the setΘ0 from the previous paragraph is constrained to be the set
of l × l matrices with diagonal elements equal to +1 and off-diagonal elements belonging to the
set {0, +1, −1}. In a CREE, the correlations perceived by the agent are determined as endogenous
functions of the economic environment and the rules followed by policymakers.

C.6 Sentiments, Law of Small Numbers, and Gambler’s Fallacy

Another class of behavioral biases considers agentswhobelieve that an underlying state exhibits
more mean reversion than it actually does. Barberis, Shleifer, and Vishny (1998)’s theory of
sentiments, Rabin (2002)’s theory of the “law of small numbers,” and Rabin and Vayanos (2010)’s
theory of gambler’s fallacy are related works that all consider variations on this general theme.
For the sake of concreteness, I focus on Rabin and Vayanos (2010), which can be most easily
mapped to the linear-Gaussian hidden factor model of Appendix B.

Rabin and Vayanos (2010) consider an agent who observes an observable ot whose distribu-
tion depends on an underlying state zt . The observable is given by ot = zt + εt , where zt follows
an AR(1) process and εt is a normally distributed i.i.d. measurement error. While εt does not
exhibit anymean reversion given the truedata-generatingprocess, the agent only considers a set
of misspecifiedmodels according to which εt is mean reverting. This misspecification leads the
agent to underreact to short streaks in the observable, overreact to longer ones, and underreact
to very long ones.

Rabin and Vayanos show that the agent’s models can be written as linear-Gaussian hidden
factormodels. In particular, the agent’s set ofmodels can bewritten as a special case of the set of
models in Appendix B, in which the hidden state ωt is a two-dimensional vector, the matrix A is
given by

A =
(
ρ 0
0 δρ − αρ

)
,

the vector C is given by C = (ρ, −αρ)′, and innovations εωt and εot are jointly normal with
E[εωt ε

′
ωt ] = Σω, E[εot ε

′
ot ] = Σo , and E[εωt ε

′
ot ] = Σωo .59 Parameters α, δ, ρ, Σω, Σo , and Σωo

parameterize the agent’s model.
Gambler’s fallacy is modeled as a constraint on the parameter α. In the true data-generating

58This form of bounded rationality is in the spirit of intuitive heuristics put forward by Kahneman and Tversky as ways
people seem to deal with complex probabilistic situations. Kahneman and Tversky (1982a) argue that “people rely on
heuristic principles which reduce the complex tasks of assessing probabilities and predicting values to simpler judgmental
operations. In general, these heuristics are quite useful, but sometimes they lead to severe and systematic errors.” See, also,
Kahneman and Tversky (1972) for the results of lab experiments that document some of these heuristics.
59Note that in contrast to themodels of Appendix B, εωt and εot may be correlated in Rabin and Vayanos (2010).
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process, α is equal to zero. But an agent who is subject to gambler’s fallacy has a doctrinaire
belief that α > 0. Rabin and Vayanos (2010) assume that the remaining parameters of the
agent’s models are chosen endogenously using a (quasi)-maximum-likelihood estimator given
an infinitely long sequence of observations. Their selection rule thus coincides with the CREE
selection criterion.

C.7 Constant-Gain Learning

Constant-gain learning rules, such as Marcet and Sargent (1989a), can also be seen as instances
of model misspecification.60 An agent who performs constant-gain learning cares about some
unknown state ωt and updates her estimate ω̂t of the state using the following update rule:

ω̂t = ω̂t−1 + k (ot − ôt ), (C.1)

where k is the gain parameter, ot is an observable, and ôt is the agent’s estimate of the observable
basedonher information at time t −1. In adaptive-learningmodels, the gaink is a freeparameter
that is calibrated by the economist. So the updating rule (C.1) canbe viewed as an instance of the
“update step” of a Kalman filter, described in equation (B.2), in which parameters A, B , and K are
given particular values.

A constant-gain learning rule with a calibrated gain does two things from the perspective of
thispaper. First, it constrains theagents’ set ofmodels to the set of hidden factormodels. Second,
it selects a model from the constrained set that corresponds to the calibrated value of the gain.
The solution concept of CREE-d introduce in Section 5 and used in the application of Section 6
also does the former. But rather than calibrating the gain parameter, it allows the agent to choose
it endogenously to best fit the distribution of observables.

While calibrating the gain parameter could improve the fit of a model, it may lead to policy
prescriptions that are subject to the Lucas critique: changes in policy may lead the agents to
change the gains they use. The solution concept of CREE-d does not face this difficulty. As the
parametersofpolicy vary, agents endogenously change theKalmangains theyuse toupdate their
expectations as they learn about the new policy regime.

C.8 Rational Inattention

Sims (2003)’s rational inattention can also be seen as an instance of model misspecification.
Rationally inattentive agents can condition their actions only on noisy signals of the aggregate
observables—with an information-flow constraint limiting the informativeness of the agents’
signals. More formally, rational inattention requires the average mutual information between
an agent’s stream of signals and the stream of observables to be upper-bounded by a parameter
60Othernotable examplesofmodelswhereagentsuseconstant-gain learning rules includeSargent (1993), Sargent (1999),

Cho,Williams, andSargent (2002),Marcet andNicolini (2003), Adam,Kuang, andMarcet (2012), Adam,Marcet, andNicolini
(2016), and Adam,Marcet, and Beutel (2017).
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κ, which measures the agent’s limited amount of attention.61 The agent selects her signals to
optimize an objective function. The objective function is either the agent’s expected payoff (as
inMaćkowiak andWiederholt, 2015) or the present-discounted value of themean squared errors
(as inMaćkowiak, Matejka, andWiederholt, 2017).

I use the results of Maćkowiak et al. (2017) to cast rational inattention as an instance of
misspecification. They show that, when the observable variable follows a stationary ARMA
process with normally distributed innovations, one can restrict attention to signals that have a
state space representation of the form (14) and (15). They also show that the information-follow
constraint can be expressed as follows:

1
2 log2 det (Ω) −

1
2 log2 det

(
Σ̂ω

)
≤ κ,

where log2 denotes base 2 logarithm and Ω and Σ̂ω are matrices defined in equations (B.4) and
(B.1), respectively. By restrictingmatricesΩ and Σ̂ω, the information-flow constraint restricts the
parameters of the agents’ models.

In addition to constraining the agents’ set ofmodels, rational attention also offers a selection
criterion given the agents’ constrained sets of models. The selection criterion of rational inat-
tention is generically different than that of CREE. The latter is computationally more tractable
than the former—modern DSGEmodels can be easily modified to incorporate CREE. It also has
Bayesian and adaptive learning foundations. The rational-inattention constraint on the set of
models can be combinedwith the CREE selection criterion to develop amodel that captures the
intuitive idea of inattention while maintaining the analytical tractability and learning founda-
tions of CREE.

C.9 Non-BayesianModels of Updating

Another literature in behavioral economics, going back to the representativeness heuristic of
Kahneman and Tversky (1972), considers deviations fromBayesian updating. Notable examples
includebase-rate neglect (KahnemanandTversky, 1982a), confirmationbias (Rabin andSchrag,
1999), local thinking (Gennaioli and Shleifer, 2010), and diagnostic expectations (Bordalo,
Gennaioli, andShleifer, 2018). Models of non-Bayesianupdating are strictly speakingnot special
cases of the framework considered in this paper. This is due to the fact that agents have internally
consistent (i.e., Bayesian) belief systems in a CREE. However, Molavi (2018) establishes that
(almost) any seemingly non-Bayesian sequence of beliefs is observationally indistinguishable
from a sequence of beliefs that is generated through the application of Bayes’ rule over a larger
state space.62
61Rational inattention has several closely related formulations. Here, I followMaćkowiak et al. (2017).
62This observational indistinguishability is not a finite-sample phenomenon. In particular, it holds even if the external

observer directly observes the underlying population distribution of beliefs. The observer can only rule out Bayesian
rationality if there exist a pair (µt−1, µt ), where µt denotes the agent’s time-t belief about the payoff-relevant variable, such
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D Additional Details for the Business-Cycle Model of Section 6

Standard calculations have been relegated to the Online Appendix.

D.1 Temporary-EquilibriumRelationships

The log-linear permanent income equation is given by

ĉt = βψ̂t +
b

c

1 − β
β

(
R̂t−1 − π̂t

)
+ (1 − β)

(x

c
x̂t −

τ

c
τ̂t

)
− βR̂t

+ Et

[
∞∑

s=1
βs

(
(1 − β)x

c
x̂t+s − (1 − β)

τ

c
τ̂t+s − (1 − β)ψ̂t+s − β

x − τ

c
R̂t+s +

x − τ

c
π̂t+s

)]
. (D.1)

Households’ income is given by
x̂t =

y

x
ŷt −

i

x
ît . (D.2)

The discount-factor shock follows the exogenous process

ψ̂t = ρψψ̂t−1 + εψt . (D.3)

Investment is given by

ît = k̂t +
1
χ

(
−ψ̂t + ĉt

)
+ Et

[
∞∑

s=1
βs

(1 − β
χβ

ψ̂t+s −
1 − β
χβ

ĉt+s +
1
χ

( 1
β
−
1 − δ
γ

)
ρ̂t+s

)]
. (D.4)

Capital evolves according to

k̂t =
1 − δ
γ

k̂t−1 +
(
1 − 1 − δ

γ

)
ît−1. (D.5)

Government spending follows the exogenous process

ĝt = ρg ĝt−1 + εg t , (D.6)

and output is given by
ŷt =

c

y
ĉt +

i

y
ît +

g

y
ĝt . (D.7)

Inflation is given by

π̂t = κ
(
λ̂pt + αρ̂t + (1 − α)ŵt − ẑt

)
+ Et

[
∞∑

s=1
ξs

p β
s

(1 − ξp

ξp
π̂t+s + κ

(
λ̂p,t+s + αρ̂t+s + (1 − α)ŵt+s − ẑt+s

))]
, (D.8)

where
κ ≡
(1 − ξp )(1 − ξp β)

ξp

that (i) the pair (µt−1, µt ) is realized with positive probability according to the population distribution of beliefs and (ii) µt

is not absolutely continuous with respect to µt−1. See Shmaya and Yariv (2016) for a related “anything goes” result.
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is a constant, TFP follows the exogenous process

ẑt = ρz ẑt−1 + εzt , (D.9)

and themarkup shock follows the exogenous process

λ̂pt = ρp λ̂p,t−1 + εpt . (D.10)

The real wage is given by

ŵt = ξw (ŵt−1 − π̂t ) + κw

(
λ̂wt + νL̂t + ĉt

)
+ κw (νw − 1)ŵt (D.11)

+ Et

[
∞∑

s=1
ξs

w β
s
(
(1 − ξw )π̂t+s + κw

(
λ̂wt + νL̂t + ĉt

)
+ κw (νw − 1)ŵt+s

)]
. (D.12)

where
κw ≡

(1 − ξw )(1 − ξw β)

νw

is a constant, and the wagemarkup shock λ̂wt follows the exogenous process

λ̂wt = ρw λ̂w,t−1 + εwt . (D.13)

Hours are given by
L̂t =

1
1 − α

[
y

y + F
ŷt − αk̂t − ẑt

]
, (D.14)

and the rental rate of capital by
ρ̂t = ŵt + L̂t − k̂t . (D.15)

The nominal interest rate follows the interest-rate rule

R̂t = ρR R̂t−1 + (1 − ρR )φπ π̂t + η̂mt , (D.16)

wheremonetary-policy shock follows the exogenous process

η̂mt = ρm η̂m,t−1 + εmt . (D.17)

Finally, taxes follow the tax rule

τ̂t =
g

τ
ĝt +

b

βτ

(
R̂t−1 − π̂t

)
. (D.18)

D.2 Constrained-Rational-Expectations Equilibrium

I next characterize the CREE when the agents’ models are given by factor models with d factors.
Equation (D.1) can be written in vector form as

ĉt = βψ̂t +
b

c

1 − β
β

(
R̂t−1 + b̂t−1 − π̂t

)
+ (1 − β)

(x

c
x̂t −

τ

c
τ̂t

)
− βR̂t +

∞∑
s=1

βsv ′c Et [ot+s ] ,
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where vc ∈ R
n is a vector of constants. Using equation (B.5) to substitute for Et [ot+s ], I get

ĉt = βψ̂t +
b

c

1 − β
β

(
R̂t−1 + b̂t−1 − π̂t

)
+ (1 − β)

(x

c
x̂t −

τ

c
τ̂t

)
− βR̂t + βv ′c B ′(I − βA)−1ω̂t , (D.19)

where I denotes the identity matrix. Likewise, equations (D.4), (D.8), and (D.12) can be written
as

ît = k̂t +
1
χ

(
−ψ̂t + ĉt

)
+ βv ′i B ′(I − βA)−1ω̂t , (D.20)

π̂t = κ
(
λ̂pt + αρ̂t + (1 − α)ŵt − ẑt

)
+ ξp βv ′πB ′(I − ξp βA)−1ω̂t , (D.21)

ŵt = ξw (ŵt−1 − π̂t ) + κw

(
λ̂wt + νL̂t + ĉt

)
+ κw (νw − 1)ŵt + ξw βv ′w B ′(I − ξw βA)−1ω̂t , (D.22)

where vi, vπ, vw ∈ R
n are constants.

ζt ≡

(
x̂t , ŷt , ĉt , ît , L̂t , k̂t , R̂t , η̂mt , ĝt , τ̂t , π̂t , ŵt , ρ̂t , ẑt , λ̂pt , λ̂wt , ψ̂t , ω̂t

) ′
.

Equations (17), (D.2), (D.3), (D.4)–(D.9), (D.10), (D.5)–(D.18), and (D.19)–(D.22) can be written in
vector form as

ζt = Φζζt + Ãζζt−1 + C̃ζεt , (D.23)

where
εt ≡

(
εzt , εψt , εpt , εwt , εmt , εg t

) ′ (D.24)

is the vector of the 6 shocks that hit the economy. Assuming that I − Φζ is invertible, I can solve
(D.23) for ζt to get

ζt = Aζζt−1 +Cζεt , (D.25)

where

Aζ ≡ (I − Φζ)
−1Ãζ,

Cζ ≡ (I − Φζ)
−1C̃ζ .

Note that matrices Aζ and Cζ are functions of the fundamentals of the economy and the
parameters of the agents’ model as summarized by (A, B, K ).

Equation (D.23) can be used to compute the autocovariancematrices of ζt . Let

Ξζs ≡ E
[
ζt ζ
′
t−s

]
denote the autocovariance matrix of ζt at lag s ∈ Z, where E is the probability distribution
induced on paths of ζt by equation (D.23) and the stationary distribution of {εt }t . Assuming that
ζt is a stationary process (and so the eigenvalues of Aζ are inside the unit circle),Ξζ0 is the unique
solution to the following equation:

Ξζ0 = AζΞζ0A ′ζ +CζΣC ′ζ,
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where
Σ ≡ diag

(
σ2

z , σ
2
ψ, σ

2
p, σ

2
w, σ

2
m, σ

2
g , σ

2
τ

)
is the covariancematrix of shocks; Ξζs is given, for s > 0, as

Ξζs = As
ζΞζ0;

and Ξζs is given, for s < 0, as
Ξζs = Ξ

′
ζ,−s .

I can use the above expressions to compute the autocovariance matrices of ot . The vector ot

can be written as
ot = D ′ζt ,

where D ∈ R(21+d)×n is a vector of zeros and ones, with Di j = 1 whenever the j th element of ot is
equal to the i th element of ζt . It is easy to see that

Ξs ≡ E
[
ot o ′t−s

]
= D ′Ξζs D .

It is now easy to characterize a CREE. The equilibrium consists of the tuple (A∗, B∗, Σ∗ω, Σ
∗
o),

which parameterize the agents’ model, and the stationary distribution of endogenous random
variables as summarized by the sequence {Ξ∗s }s ∈Z of autocovariance matrices. Agents take
{Ξ∗s }s ∈Z as given and chooses (A∗, B∗, Σ∗ω, Σ

∗
o) to solve

(A∗, B∗, Σ∗ω, Σ
∗
o) ∈ argmin

(A,B,Σω,Σo )

H
(
{Ξ∗s }s ∈Z, θ

)
,

where H is the Kullback–Leibler divergence, defined in (B.7), and {Ξ∗s }s ∈Z is the sequence of
autocovariancematrices given (A∗, B∗, Σ∗ω, Σ

∗
o).

E Proofs

I first present somemathematical definitions that are used in the proofs of the results.

Dynamical Systems and Ergodic Theory

Thedefinitionspresented in this subsectioncanbe found inGray (2009). Adiscrete-timeabstract
dynamical system is a tuple (Ω, B, ρ, ϕ) where (Ω, B) is measurable space, ρ is a probability
measure on (Ω, B), and ϕ : Ω→ Ω is a measurable mapping. Given a dynamical system (Ω, B, ρ,
ϕ), a measurable function f : Ω→ R is invariant if f (ϕ(ω)) = f (ω) for all ω ∈ Ω; a measurable set
B ∈ B is invariant if its indicator function 1B is invariant.

Given a dynamical system (Ω, B, ρ, ϕ) and a measurable set B ∈ B, the set ϕ−1(B) is the
measurable set defined as ϕ−1(B) ≡

{
ω ∈ Ω : ϕ(ω) ∈ B

}
. Likewise, the measurable sets ϕ−t (B)

are defined recursively as ϕ−t (B) ≡ ϕ−1
(
ϕ−t+1(B)

) for all t . The dynamical system is asymptotically
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meanstationary if, for everymeasurable setB ∈ B, the limit ρ(B) = limt→∞
1
t

∑t−1
s=0 ρ (ϕ

−s (B))exists.
The function ρ : B → [0, 1], whenwell-defined, is a probability distribution over (Ω, B), which is
called the stationary distribution of the dynamical system.

A discrete-time random process is a sequence of random variables ξ0, ξ1, . . . all defined on
some common probability space (O, O, P ) and taking values in some measurable space (Ξ, F ).
Any random process defines a dynamical system as follows. Let (Ω, B) = (

ΞN, F N
) . Any element

of Ω is an infinitely-long sequence ω = (ω0, ω1, . . . ), where ωt ∈ Ξ for all t . Let ρ denote the
probability distribution of the random process ξ0, ξ1, . . . ; that is, for any measurable set B ∈ B,
define ρ(B) as ρ(B) ≡ ρ

({
o ∈ O : (

ξ0(o), ξ1(o), . . .
)
∈ B

}) . And let ϕ : Ω → Ω be the measurable
mapping defined as ϕ : (ω0, ω1, . . . ) 7→ (ω1, ω2, . . . ). In other words, the mapping ϕ shifts
the sequence “to the left” in time. The tuple (Ω, F , ρ, ϕ) constructed above is the dynamical
system corresponding to the random process ξ0, ξ1, . . . . A random process is asymptotically
mean stationary if the corresponding dynamical system is asymptotically mean stationary. A
probability distribution ρ over (Ω, B) = (

ΞN, F N
) is a stationary distribution of the random

process if it is the stationary distribution of the corresponding dynamical system defined above.

Proof of Lemma 1

That the Kullback–Leibler divergence is well-defined and finite is due to the assumption that
qθ(·|·) is positive and bounded. The continuity of the mapping θ 7→ H (Q θ, T, µ) is a consequence
of the assumption that the mapping θ 7→ log (qθ(y |y−)) is continuous for all y−, y and the
dominated convergence theorem. �

Proof of Theorem 1

I prove the theoremusing the Fan–Glicksberg fixed-point theorem. DefineΨ ≡ ∆(X ×Y ×Z ×∆Θ).
The space Ψ is given the topology induced by the total variation norm. Since X ,Y , Z , and Θ are
nonempty compact subsets ofmetric spaces,Ψ is anonempty compact convex subset of a locally
convexHausdorff space. Inwhat follows I define a correspondence F : Ψ � Ψ such that anyfixed
point µ∗ of F defines a CREE and show that F has closed graph and nonempty convex values.
The theorem then immediately follows theFan–Glicksbergfixed-point theorem. Throughout the
proof, I fix a temporary equilibriumT satisfying Assumption 1.

I start bydefining anauxiliary correspondence. Givenany closed set Θ̃ ⊆ Θ, letba(Θ̃) ≡ ba(X ×

Y ×Z×∆Θ̃)denote theBanachspaceofboundedandcountablyadditivemeasuresonX×Y ×Z×∆Θ̃.
The transition probabilityT defines a linear operator T : ba(Θ̃) → ba(Θ̃) as follows:

(Tµ) (B) =

∫
X×Y ×Z×∆Θ

T (B |x−, y−, z−, λ−)µ(dx− × dy− × dz− × dλ−),

where B denotes an arbitrary measurable subset of X ×Y × Z × ∆Θ̃. That Tmaps any µ ∈ ba(Θ̃)

to an element of ba(Θ̃) is by the definition ofT and the fact that Bayes’ rule always maps a belief
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supported on Θ̃ to a belief supported on Θ̃. SinceT is continuous byAssumption 1 andX ×Y ×Z ×

∆Θ̃ is a compactmetric space, for any Θ̃, there exists a nonempty convex compact set of invariant
probabilities Ξ(Θ̃) ⊆ ∆(X ×Y × Z × ∆Θ̃) such that Tµ = µ for all µ ∈ Ξ(Θ̃).63

Define the correspondence F : Ψ � Ψ as

F (µ) = Ξ

(
argmin

θ∈Θ

H
(
Q θ, T, µ

))
.

Suppose µ∗ is a fixed point of the correspondence F . It is easy to see that µ∗, T , and Θ∗ ≡
argminθ∈Θ H

(
Q θ, T, µ∗

) constitute a CREE. Moreover, by the argument above, F has nonempty
convex values. So to prove the theorem, I only need to show that F has closed graph.

I do sobyfirst proving thatH
(
Q θ, T, µ

) is continuous in µ and θ. Since (µ, θ)belongs to ametric
space, to establish the continuity of H

(
Q θ, T, µ

) , it is sufficient to show that whenever (µk, θk )

converges to (µ, θ) for a sequence {(µk, θk )}k , the sequence H
(
Q θk , T, µk

) converges to H
(
Q θ, T,

µ
) . By definition,

H
(
Q θ, T, µ

)
= −

∫ ∫
log (qθ(y |y−))T (dy |x−, y−, z−, λ−)µ(dx− × dy− × dz− × dλ−).

Since µk converges to µ in total variation distance and qθ(y |y−) is bounded,H
(
Qϑ, T, µk

)
→ H

(
Qϑ,

T, µ
) uniformly in ϑ. On the other hand, since the mapping θ 7→ qθ(y− |y ) is continuous for all y−,

y ∈ Y , the function sequence qθk (·|·) converges to qθ(·|·) pointwise. Therefore, by the dominated
convergence theorem, H

(
Q θk , T, µ

)
→ H

(
Q θ, T, µ

) for any µ. The uniform convergence of H
(
Qϑ,

T, µk
) toH

(
Qϑ, T, µ

) and the convergenceofH
(
Q θk , T, µ

) toH
(
Q θ, T, µ

) together imply thatH
(
Q θk ,

T, µk
) converges toH

(
Q θ, T, µ

) .
I can now show that F has closed graph. Let {µk }k and {µ ′k }k be two convergent sequences

in Ψ such that µ ′k ∈ F (µk ) for all k , and let µ = limk→∞ µk and µ ′ = limk→∞ µ ′k . To prove that F

has closed graph, I need to show that µ ′ ∈ F (µ). That µ ′ = Tµ ′ is a trivial consequence of the
assumption that µ ′k = Tµ ′k for all k . So I only need to show that µ ′ is supported on X × Y × Z ×

∆

(
argminθ∈Θ H

(
Q θ, T, µ

))
. Continuity ofH established above and the Bergemaximum theorem

imply that the mapping µ 7→ argminθ∈Θ H
(
Q θ, T, µ

)
is upper hemicontinuous. Fix an arbitrary

open neighborhoodU of argminθ∈Θ H
(
Q θ, T, µ

)
. By upper hemicontinuity of argminθ∈Θ H

(
Q θ,

T, µ
)
, there exists some K such that, if k ≥ K , then argminθ∈Θ H

(
Q θ, T, µk

)
⊆ U . Since µ ′k ∈ F (µk )

for all k ,
µ ′k ∈ ∆

(
X ×Y × Z × ∆

(
argmin

θ∈Θ

H
(
Q θ, T, µk

)))
.

Therefore, µ ′k ∈ ∆ (X ×Y × Z × ∆U ), and so µ ′k (X ×Y × Z × ∆U ) = 1, for all k ≥ K . Since
µ ′k → µ ′ in total variation norm, µ ′ (X ×Y × Z × ∆U ) = 1. The assumption that U is an
arbitrary neighborhood of argminθ∈Θ H

(
Q θ, T, µ

)
then implies that µ ′ is supported onX ×Y ×Z ×

63See, for instance, Theorem 19.18 of Aliprantis and Border (2006).
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∆

(
argminθ∈Θ H

(
Q θ, T, µ

))
. This establishes that µ ′ ∈ F (µ), thus proving that F has closed graph.

Appealing to Fan–Glicksberg fixed-point theorem completes the proof of the theorem. �

Statement and Proof of Lemma E.1

Lemma E.1. φ(λ−, y−, y ) is well-defined and finite and the mapping (λ−, y−) 7→ φ(λ−, y−, y ) is
continuous for all y .

Proof. Since qθ(y |y−) > 0 for all (θ, y−, y ), the Bayesian update φ(λ−, y−, y ) is well-defined
and finite. To show the continuity of φ, it is sufficient to show that

∫
B

qθ(y |y−)λ−(dθ) and∫
qθ(y |y−)λ−(dθ)are continuous functionsof (λ−, y−). I only show thecontinuityof the latter as the

proof of the continuity of the former is identical. SinceY × ∆Θ is ametric space, to show that the
mapping (λ−, y−) 7→

∫
qθ(y |y−)λ−(dθ) is continuous for all y , it is sufficient to show that whenever

(λk,−, yk,−) → (λ−, y−) as k → ∞, it is the case that
∫

qθ(y |yk,−)λk,−(dθ) →
∫

qθ(y |y−)λ−(dθ).
Since the mapping y− 7→ qθ(y |y−) is continuous for all θ and y , the sequence qθ(y |yk,−) converges
to qθ(y |y−) pointwise. Since the family {θ 7→ qθ(y |y−)}y−∈Y is equicontinuous, Arzelà–Ascoli
theorem implies that qθ(y |yk,−) converges to qθ(y |y−) uniformly in θ. On the other hand, by the
definition of weak convergence, for any ỹ−, ỹ ∈ Y , the sequence

∫
qθ(ỹ |ỹ−)λk,−(dθ) converges to∫

qθ(ỹ |ỹ−)λ−(dθ) as k goes to infinity. Therefore,
∫

qθ(y |yk,−)λk,−(dθ) →
∫

qθ(y |y−)λ−(dθ). This
proves that φ(λ−, y−, y ) is a continuous function of (λ−, y−). �

Statement and Proof of Lemma E.2

Lemma E.2. Consider an economy E and a temporary equilibrium T that satisfies Assumption
1 and is asymptotically mean stationary. In any Bayesian equilibrium, with P-probability one,
there exists an invariant probability distribution µ∗ for T such that, for any continuous function
f : (X ×Y × Z × ∆Θ)2 → R,

lim
t→∞

1
t

t∑
s=1

f (xs−1, ys−1, zs−1, λs−1, xs, ys, zs, λs )

=

∫
f (x−, y−, z−, λ−, x, y, z, λ)T (dx × dy × dz × dλ |x−, y−, z−, λ−)µ

∗(dx− × dy− × dz− × dλ−).

(E.1)

Proof. Given any function f : (X ×Y × Z × ∆Θ)2 → R, define the function f̄ : X ×Y × Z × ∆Θ→ R

as

f̄ (x, y, z, λ) ≡

∫
f (x, y, z, λ, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |x, y, z, λ).

I first show that f̄ is a continuous function for any continuous f . Since (X ×Y ×Z ×∆Θ)2 is ametric
space, to show that f̄ is a continuous function of (x, y, z, λ), it is sufficient to show that whenever
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(xk, yk, zk, λk ) → (x, y, z, λ) as k →∞,∫
f (xk, yk, zk, λk, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |xk, yk, zk, λk )

→

∫
f (x, y, z, λ, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |x, y, z, λ).

Since f is a continuous function over a compact space, the family of functions {f (xk, yk, zk, λk,

x ′, y ′, z ′, λ ′)}k is uniformly bounded. On the other hand, by Assumption 1, the mapping (x, y,

z, λ) → T (·|x, y, z, λ) is continuous with respect to the total variation norm on the space of
countably additive measures over X ×Y × Z × ∆Θ. Therefore,∫

f (xk, yk, zk, λk, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |xk, yk, zk, λk )

−

∫
f (xk, yk, zk, λk, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |x, y, z, λ) → 0.

Consequently,

lim
k→∞

∫
f (xk, yk, zk, λk, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |xk, yk, zk, λk )

= lim
k→∞

∫
f (xk, yk, zk, λk, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |x, y, z, λ).

But since f is continuous by assumption,

f (xk, yk, zk, λk, x ′, y ′, z ′, λ ′) → f (x, y, z, λ, x ′, y ′, z ′, λ ′)

for all x ′, y ′, z ′, and λ ′. The fact that f is bounded and the dominated convergence theorem then
imply that

lim
k→∞

∫
f (xk, yk, zk, λk, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |x, y, z, λ)

=

∫
f (x, y, z, λ, x ′, y ′, z ′, λ ′)T (dx ′ × dy ′ × dz ′ × dλ ′ |x, y, z, λ).

This proves that f̄ is continuous whenever f is continuous.
Next note that, since {xs, ys, zs, λs }

∞
s=0 is a Bayesian equilibrium with probability distribution

P,
f̄ (xt−1, yt−1, zt−1, λt−1) = E[f (xt−1, yt−1, zt−1, λt−1, xt , yt , zt , λt )|{xs, ys, zs, λs }

t−1
s=0]

for all t . Furthermore, since X × Y × Z × ∆Θ is compact, f and f̄ are bounded whenever f is
continuous. Therefore, by Loéve (1960, p. 387), with P-probability one,64

lim
t→∞

1
t

t∑
s=1

[
f (xs−1, ys−1, zs−1, λs−1, xs, ys, zs, λs ) − f̄ (xs−1, ys−1, zs−1, λs−1)

]
→ 0.

64The result in Loéve (1960) establishes that 1t
∑t−1

s=0 (Xt − E [Xt |Xt−1, . . . , X0]) = 0 withP-probability one for any sequence
of bounded random variables {Xt }.
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So to prove the lemma, it is sufficient to show that, with P-probability one, there exists an
invariant probability distribution µ∗ for T such that, for any continuous function f̄ : X × Y ×

Z × ∆Θ→ R,

lim
t→∞

1
t

t−1∑
s=0

f̄ (xs, ys, zs, λs ) =

∫
f̄ (x, y, z, λ)µ∗(dx × dy × dz × dλ).

I do so by showing that assumptions of Theorem 3.2 of Jamison (1965) are satisfied and
applying the theorem.65 By an argument identical to the one presented in the first paragraph of
the proof, the transition probability T maps any continuous function to a continuous function,
that is, T is Feller. The transition probability T is also uniformly stable in mean. To see this,
note that the assumption that the temporary recursive equilibrium T is asymptotically mean
stationary immediately implies that Condition (d) in Theorem 1.1 of Jamison (1965) is satisfied.
So Theorem 1.1 of Jamison, which is a result establishing the equivalence of asymptotic mean
stationarity and uniformmean stability, guarantees thatT is uniformly stable in mean. Lemma
E.2 is then an immediate consequence of part (a) of Lemma 1.3 and Theorem 3.2 in Jamison. �

Proof of Part (a) of Theorem 2

Since X ×Y × Z × ∆Θ is a metric space, by Urysohn’s Lemma, there exists a continuous function
f : X ×Y × Z × ∆Θ→ R such that

1{(x, y, z, λ) ∈ K } ≤ f (x, y, z, λ) ≤ 1 {(x, y, z, λ) ∈ U2}

for all (x, y, z, λ) ∈ X ×Y × Z × ∆Θ. Therefore,

1
t

t−1∑
s=0

1{(xs, ys, zs, λs ) ∈ K } ≤
1
t

t−1∑
s=0

f (xs, ys, zs, λs ).

So by Lemma E.2,

lim sup
t→∞

1
t

t−1∑
s=0

1{(xs, ys, zs, λs ) ∈ K } ≤ lim
t→∞

1
t

t−1∑
s=0

f (xs, ys, zs, λs )

=

∫
f (x, y, z, λ)µ∗(dx × dy × dz × dλ).

On the other hand,∫
f (x, y, z, λ)µ∗(dx × dy × dz × dλ) ≤

∫
1 {(x, y, z, λ) ∈ U2} µ∗(dx × dy × dz × dλ) = µ∗

(
U2

)
.

This establishes the rightmost inequality. By an identical argument,

lim sup
t→∞

1
t

t−1∑
s=0

1{(xs, ys, zs, λs ) ∈ K } ≤ µ∗
(
U 1

)
,

65Theorem 3.2 of Jamison (1965) is a law-of-large-numbers result. Together with Jamison’s Lemma 1.3, it establishes
that for any transition probability M that is Feller and uniformly stable in mean and for any initial distribution µ0 and
almost all realizations of theMarkov chainwith initial distribution µ0 and transition probabilityM , there exists an invariant
distribution µ forM such that the time-average of any continuous function of the chain converges to its expectation under
µ.
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where K and U 1 denote the complements of K and U1, respectively, in X × Y × Z × ∆Θ. This
establishes the leftmost inequality. �

Proof of Part (b) of Theorem 2

To simplify the expressions, I introduce some notation. Fix an arbitrary (x0, y0, z0, λ0), a Bayesian
equilibrium {xt , yt , zt , λt }

∞
t=0 with probability distribution P and initial condition (x0, y0, z0, λ0),

and a realization of {xt , yt , zt , λt }
∞
t=1 for which (E.1) holds. By Lemma E.2, the set of such {xt , yt ,

zt , λt }
∞
t=1 has P-probability one. Let µ∗ be the corresponding invariant probability distribution

forT , and define

Θ
∗ ≡ argmin

θ∈Θ

H ∗(θ),

d∗(θ) ≡ min
ϑ∈Θ∗
‖θ − ϑ‖,

where I useH ∗(θ) as a shorthand forH
(
Q θ, T, µ∗

) and ‖ · ‖ denotes a normon the Euclidean space.
For any ε > 0, define

Θ
∗
ε ≡ {θ ∈ Θ : d∗(θ) ≥ ε} ,

and let

H ∗ε ≡ inf
θ∈Θ∗ε

H ∗(θ),

H ∗0 ≡ min
θ∈Θ

H ∗(θ).

It is easy to see thatΘ∗ is nonempty and compact, d∗(θ) is well-defined, themapping θ 7→ d∗(θ) is
continuous, the setΘ∗ε is compact, andH ∗ε > H ∗0 .

I start by establishing that, for any ε > 0,

lim inf
t→∞

1
t
inf
θ∈Θ∗ε

{
t∑

s=1
− log (qθ(ys |ys−1))

}
≥ H ∗ε . (E.2)

Since the mapping θ 7→ log(qθ(y |y−)) is continuous for all y−, y and Y is compact, by the
dominated convergence theorem, for any θ ∈ Θ∗ε , there exists an open ballBη(θ) of radius η = η(θ,
ε) centered at θ such that∫

inf
ϑ∈Bη (θ)

{
− log (qϑ(y |y−))

}
T (dy |x−, y−, z−, λ−)µ

∗(dx− × dy− × dz− × dλ−)

≥ −

∫
log (qθ(y |y−))T (dy |x−, y−, z−, λ−)µ

∗(dx− × dy− × dz− × dλ−) − ε

= H ∗(θ) − ε,

where the equality is by the definition of H ∗. Since Θ∗ε is compact, it can be covered by a finite
number J of such balls: Bηj (θj ), where j = 1, . . . , J . Define

γs j ≡ inf
θ∈Θ∗ε∩Bηj (θj )

{
− log (qθ(ys |ys−1))

}
.
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Given that γs j is the infimum of a family of equicontinuous functions, it is continuous. An
application of Lemma E.2 then establishes that, for all j = 1, . . . , J ,

lim
t→∞

1
t

t∑
s=1

γs j ≥ H ∗(θj ) − ε.

On the other hand,
H ∗(θj ) ≥ min

j
H ∗(θj ) ≥ H ∗ε .

Finally, note that

1
t
inf
θ∈Θ∗ε

{
t∑

s=1
− log (qθ(ys |ys−1))

}
≥
1
t
min

j

t∑
s=1

γs j = min
j

1
t

t∑
s=1

γs j .

Thus,

lim inf
t→∞

1
t
inf
θ∈Θ∗ε

{
t∑

s=1
− log (qθ(ys |ys−1))

}
≥ H ∗ε − ε.

Noting that ε > 0 is arbitrary establishes (E.2).
I now proceed to prove part (b) of the theorem. Without loss of generality, assume that

supp λ0 = Θ. To prove the theorem, it is sufficient to show that

lim
t→∞

∫
Θ

d∗(θ)λt (dθ) = 0. (E.3)

By Bayes’ rule, ∫
Θ

d∗(θ)λt (dθ) =

∫
Θ

d∗(θ)
∏t

s=1 qθ(ys |ys−1)λ0(dθ)∫
Θ

∏t
s=1 qθ(ys |ys−1)λ0(dθ)

.

I can write the above equation as∫
Θ

d∗(θ)λt (dθ) =

∫
Θ

d∗(θ)Lt (θ)λ0(dθ)∫
Θ

Lt (θ)λ0(dθ)
,

where Lt (θ) is defined as

Lt (θ) =

t∏
s=1

qθ(ys |ys−1) = exp
(

t∑
s=1

log (qθ(ys |ys−1))

)
.

Recall that
Θ
∗
ε = {θ ∈ Θ : d∗(θ) ≥ ε},

and define
Θ
∗

δ ≡ {θ ∈ Θ : d∗(θ) < δ}.

For any ε > 0 and δ > 0, ∫
Θ

d∗(θ)λt (dθ) ≤ ε +C

∫
Θ∗ε

Lt (θ)λ0(dθ)∫
Θ
∗

δ
Lt (θ)λ0(dθ)

,
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whereC ≡ maxθ∈Θ d∗(θ) is finite due to the compactness ofΘ and the continuity of d∗(θ) in θ. Let
α ≡

(
H ∗ε −H ∗0

)
/2 > 0 and multiply both the numerator and the denominator of the fraction on

the right-hand side of the above equation by exp (
t
(
H ∗0 + α

) ) to get∫
Θ

d∗(θ)λt (dθ) ≤ ε +C
e t (H ∗0+α)

∫
Θ∗ε

Lt (θ)λ0(dθ)

e t (H ∗0+α)
∫
Θ
∗

δ
Lt (θ)λ0(dθ)

. (E.4)

Since ε > 0 is arbitrary, it is sufficient to show that thenumerator of the fractionon the right-hand
side goes to zero for any ε > 0 and its denominator goes to infinity for some δ > 0.

I first consider the numerator. Define

`t (θ) ≡ − log (Lt (θ)) =

t∑
s=1
− log(qθ(ys |ys−1)),

and note that

e t (H ∗0+α)
∫
Θ∗ε

Lt (θ)λ0(dθ) =
∫
Θ∗ε

exp
(
t

[
H ∗0 + α −

1
t
`t (θ)

] )
λ0(dθ)

≤ λ0
(
Θ
∗
ε

) sup
θ∈Θ∗ε

exp
(
t

[
H ∗0 + α −

1
t
`t (θ)

] )
≤ λ0

(
Θ
∗
ε

) exp (
t

[
H ∗0 + α −

1
t
inf
θ∈Θ∗ε

`t (θ)

] )
.

Equation (E.2) then implies that

lim sup
t→∞

e t (H ∗0+α)
∫
Θ∗ε

Lt (θ)λ0(dθ)

≤ λ0
(
Θ
∗
ε

) exp (
t

[
H ∗0 + α − lim inf

t→∞

1
t
inf
θ∈Θ∗ε

`t (θ)

] )
= 0.

This proves that the numerator goes to zero.
Next consider the denominator. By Fatou’s lemma,

lim inf
t→∞

e t (H ∗0+α)
∫
Θ
∗

δ

Lt (θ)λ0(dθ)

≥

∫
Θ
∗

δ

lim inf
t→∞

exp
(
t

[
H ∗0 + α −

1
t
`t (θ)

] )
λ0(dθ)

≥ λ0
(
Θ
∗

δ

)
inf
θ∈Θ

∗

δ

{
lim inf

t→∞
exp

(
t

[
H ∗0 + α −

1
t
`t (θ)

] )}
.

For any δ > 0, the set Θ∗δ is open. Furthermore, by assumption, λ0 has full support over Θ, so
λ0

(
Θ
∗

δ

)
> 0 for any δ > 0. Therefore, to prove that the above expression goes to infinity, it is

sufficient to show that δ > 0 can be chosen such that

inf
θ∈Θ

∗

δ

{
lim inf

t→∞
exp

(
t

[
H ∗0 + α −

1
t
`t (θ)

] )}
= +∞. (E.5)
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Since qθ(y |y−) is continuous in (y−, y ), by Lemma E.2, for any θ ∈ Θ∗δ,

lim inf
t→∞

exp
(
t

[
H ∗0 + α −

1
t
`t (θ)

] )
= lim inf

t→∞
exp (

t
[
H ∗0 + α −H ∗(θ)

] )
.

Therefore,

inf
θ∈Θ

∗

δ

{
lim inf

t→∞
exp

(
t

[
H ∗0 + α −

1
t
`t (θ)

] )}
= lim inf

t→∞
exp

(
t inf
θ∈Θ

∗

δ

[
H ∗0 + α −H ∗(θ)

] )
.

SinceH ∗(θ) is continuous in θ and α > 0 by Lemma 1, I can choose δ to be sufficiently small that

inf
θ∈Θ

∗

δ

[
H ∗0 + α −H ∗(θ)

]
> 0.

Picking such a δ > 0 establishes (E.5) and completes the proof of part (b). �

Proof of Part (c) of Theorem 2

Let µ∗ and Θ∗ be as in the proof of the first two parts. The triple (
T, µ∗, Θ∗

) trivially satisfies
Conditions (i) and (ii) for a CREE. I next show that it also satisfies Condition (iii). Let U1 be
an arbitrary open neighborhood of Θ∗, and U1 be an open set and K be a closed set such that
Θ∗ ⊂ U2 ⊂ K ⊂ U1. By part (a) of the theorem,

µ∗(X ×Y × Z × ∆U1) ≥ lim sup
t→∞

1
t

t−1∑
s=0

1{(xs, ys, zs, λs ) ∈ X ×Y × Z × ∆K }

≥ lim sup
t→∞

1
t

t−1∑
s=0

1{λs ∈ ∆U2}.

SinceU2 is an open neighborhood of Θ∗, part (b) of the theorem implies that λt (U2) → 0 as t →

∞. Therefore, lim supt→∞
1
t

∑t−1
s=0 1{λs ∈ ∆U2} = limt→∞

1
t

∑t−1
s=0 1{λs ∈ ∆U2} = 1. Since U1 is an

arbitrary open neighborhood of Θ∗, the probability distribution µ∗ is supported on X ×Y × Z ×

∆Θ∗. �

Statement and Proof of Lemma E.3

Lemma E.3. Consider an economy E and an asymptotically mean stationary adaptive equilib-
rium {xt , yt , zt , θ̂t }

∞
t=0 for E with probability distribution P. With P-probability one, there exists a

probability distribution µ∗ over X × Y × Z × Θ such that, for any bounded measurable function
f : (X ×Y × Z )2 × Θ→ R,

lim
t→∞

1
t

t∑
s=1

f (xs−1, ys−1, zs−1, θs−1, xs, ys, zs )

=

∫
f (x−, y−, z−, θ−, x, y, z )T (dx × dy × dz |x−, y−, z−, θ−)µ

∗(dx− × dy− × dz− × dθ−). (E.6)
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Proof. The proof relies on the ergodic decomposition theorem for asymptotically mean sta-
tionary dynamical systems as presented in part (g) of Theorem 8.3 of Gray (2009). Let Ω =
(X ×Y ×Z ×Θ)N and let F = (

X×Y ×Z×B(Θ)
)N, whereB(Θ) denotes the Borel sigma-algebra on

Θ. Since X ×Y ×Z ×Θ is a compactmetric space andX,Y,Z, andB(Θ) are Borel sigma-algebras,
F is a countably-generated sigma-algebra. Furthermore, the dynamical system defined on (Ω,
F ) by the adaptive equilibrium is asymptotically mean stationary by assumption. Therefore, by
Theorem8.3ofGray (2009), forP-almostall {xt , yt , zt , θ̂t }

∞
t=0, thereexists aprobabilitydistribution

ρ over (X ×Y × Z )2 × Θ such that

lim
t→∞

1
t

t∑
s=1

f (xs−1, ys−1, zs−1, θ̂s−1, xs, ys, zs )

=

∫
f (x−, y−, z−, θ−, x, y, z )ρ(dx− × dy− × dz− × dθ− × dx × dy × dz ) (E.7)

for any boundedmeasurable function f .
Let µ∗ denote themarginal of ρ over (x−, y−, z−, θ−). Since (X ×Y × Z )2 ×Θ is a compactmetric

space, there exists a µ∗-almost everywhere unique transition probabilityM from X ×Y ×Z ×Θ to
X ×Y × Z such that ρ(B− × B) =

∫
B−

M (B |x−, y−, z−, θ−)µ(dx− × dy− × dz− × dθ−) for all measurable
sets B− ⊆ X × Y × Z × Θ and B ⊆ X × Y × Z .66 So to prove the lemma, I only need to show that
M (B |x−, y−, z−, θ−) = T (B |x−, y−, z−, θ−) for any measurable set B ⊆ X × Y × Z and µ∗-almost all
(x−, y−, z−, θ−). I do so in the rest of the proof.

Fix some arbitrary B ⊆ X ×Y ×Z and B− ⊆ X ×Y ×Z ×Θ. By equation (E.7), withP-probability
one,

1
t

t∑
s=1

1
{
(xs−1, ys−1, zs−1, θ̂s−1, xs, ys, zs ) ∈ B− × B

}
− ρ(B− × B) → 0. (E.8)

Since
{

xs, ys, zs, θ̂s

}∞
s=0 is an adaptive equilibrium, by definition,

1̄

(
xt−1, yt−1, zt−1, θ̂t−1

)
≡ E

[
1
{
(xt−1, yt−1, zt−1, xt , yt , zt ) ∈ B− × B

}
|
{

xs, ys, zs, θ̂s

}t−1
s=0

]
= T

(
B |xt−1, yt−1, zt−1, θ̂t−1

)
1

{
(xt−1, yt−1, zt−1, θ̂t−1) ∈ B−

}
, (E.9)

where the first equality is a definition. By Loéve (1960, p. 387), with P-probability one,

1
t

t∑
s=1

[
1

{
(xs−1, ys−1, zs−1, θ̂s−1, xs, ys, zs ) ∈ B− × B

}
− 1̄

(
xs−1, ys−1, zs−1, θ̂s−1

)]
→ 0. (E.10)

66This is a consequence of the disintegration theorem. See, Faden (1985) for a statement and proof.
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On the other hand, equations (E.7) and (E.9) imply that, with P-probability one,
1
t

t∑
s=1

1̄

(
xs−1, ys−1, zs−1, θ̂s−1

)
=

∫
T (B |x−, y−, z−, θ−)1 {(x−, y−, z−, θ−) ∈ B−} ρ(dx− × dy− × dz− × dθ−)

=

∫
B−

T (B |x−, y−, z−, θ−) ρ(dx− × dy− × dz− × dθ−). (E.11)

Equations (E.8), (E.10), and (E.11) imply that

ρ(B− × B) =

∫
B−

T (B |x−, y−, z−, θ−) ρ(dx− × dy− × dz− × dθ−)

=

∫
B−

T (B |x−, y−, z−, θ−) µ∗(dx− × dy− × dz− × dθ−),

where the second equality is by the definition of µ∗. But by construction,

ρ(B− × B) =

∫
B−

M (B |x−, y−, z−, θ−)µ
∗(dx− × dy− × dz− × dθ−).

Since B− is arbitrary, the last two equalities guarantee thatM (B |x−, y−, z−, θ−) = T (B |x−, y−, z−, θ−)

for µ∗-almost all (x−, y−, z−, θ−). Noting that B ⊆ X × Y × Z was an arbitrary measurable set
completes the proof of the lemma. �

Proof of Part (a) of Theorem 3

Fix an arbitrary (x0, y0, z0, θ̂0), an adaptive equilibrium {xt , yt , zt , θ̂t }
∞
t=0 with probability distri-

bution P and initial condition (x0, y0, z0, θ̂0), and a realization of {xt , yt , zt , θ̂t }
∞
t=1 for which (E.6)

holds. By Lemma E.3, the set of such {xt , yt , zt , θ̂t }
∞
t=1 has P-probability one. An application of

Lemma E.3 with f (x−, y−, z−, θ−, x, y, z ) = 1{(x−, y−, z−, θ−) ∈ B} leads to

lim
t→∞

1
t

t−1∑
s=0

1{(xs, ys, zs, θ̂s ) ∈ B} = µ∗(B).

�

Proof of Part (b) of Theorem 3

Throughout theproof, fix anarbitrary (x0, y0, z0, θ̂0), an adaptive equilibrium {xt , yt , zt , θ̂t }
∞
t=0with

probability distributionP and initial condition (x0, y0, z0, θ̂0), and a realization of {xt , yt , zt , θ̂t }
∞
t=1

for which (E.6) holds. By Lemma E.3, the set of such {xt , yt , zt , θ̂t }
∞
t=1 has P-probability one.

I start by proving that a uniform law-of-large-numbers result holds. By assumption, the
mapping θ 7→ log(qθ(y |y−)) is continuous for all y−, y and log(qθ(y |y−)) is bounded. Therefore,
by the dominated convergence theorem, for all θ ∈ Θ and ε > 0, there exists an open ball Bη(θ) of
radius η = η(θ, ε) centered at θ such that∫ (

sup
ϑ∈Bη (θ)

{
− log(qϑ(y |y−))

}
− inf
ϑ∈Bη (θ)

{
− log(qϑ(y |y−))

})
ρ(dy− × dy ) ≤ ε, (E.12)
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where ρ is the probability distribution over (X ×Y × Z )2 × Θ defined as

ρ(B− × B) ≡

∫
B−

T (B |x−, y−, z−, θ−)µ
∗(dx− × dy− × dz− × dθ−).

SinceΘ is compact, it canbe coveredbyafinitenumber J of suchballs: Bηj (θj ), where j = 1, . . . , J .
Define

γs j ≡ sup
ϑ∈Bηj (θj )

{
− log(qϑ(ys |ys−1))

}
.

Since γs j is bounded, by Lemma E.3, for all j = 1, . . . , J ,

lim
t→∞

1
t

t∑
s=1

γs j =

∫
sup

ϑ∈Bηj (θj )

{
− log(qϑ(y |y−))

}
ρ(dy− × dy ). (E.13)

For any t ≥ 1, define

Ht (θ) ≡
1
t

t∑
s=1
− log(qθ(ys |ys−1))

to be the quasi-log-likelihood function. Note that

sup
θ∈Θ

{
Ht (θ) −H (Q θ, T, µ∗)

}
= max

j
sup

ϑ∈Bηj (θj )

{
Ht (ϑ) −H (Qϑ, T, µ∗)

}
≤ max

j

{
1
t

t∑
s=1

γs j −

∫
inf

ϑ∈Bηj (θj )

{
− log(qϑ(y |y−))

}
ρ(dy− × dy )

}
, (E.14)

where I am using the fact that ρ(dy− × dy ) = T (dy |y−)µ∗(dy−) by definition. By equation (E.13), for
any ε > 0 and j = 1, . . . , J , there exist some time τj = τj (ε) such that for all t ≥ τj ,�����1t t∑

s=1
γs j −

∫
sup

ϑ∈Bηj (θj )

{
− log(qϑ(y |y−))

}
ρ(dy− × dy )

����� ≤ ε .
Therefore, for all t ≥ τ ≡ maxj τj ,

max
j

{
1
t

t∑
s=1

γs j −

∫
inf

ϑ∈Bηj (θj )

{
− log(qϑ(y |y−))

}
ρ(dy− × dy )

}
≤

∫ (
sup

ϑ∈Bηj (θj )

{
− log(qϑ(y |y−))

}
− inf
ϑ∈Bηj (θj )

{
− log(qϑ(y |y−))

})
ρ(dy− × dy ) + ε

≤ ε + ε,

where the second inequality is by (E.12). Thus, by (E.14), for all t ≥ τ,

sup
θ∈Θ

{
Ht (θ) −H (Q θ, T, µ∗)

}
≤ ε + ε .
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By an identical argument, there exists a time τ′ such that for all t ≥ τ′,

sup
θ∈Θ

{
H (Q θ, T, µ∗) −Ht (θ)

}
≤ ε + ε .

Therefore, since ε, ε > 0 were arbitrary,

lim
t→∞

sup
θ∈Θ
|Ht (θ) −H (Q θ, T, µ∗)| = 0.

This establishes the uniform law-of-large-numbers result.
Since Ht (θ) − H (Q θ, T, µ∗) → 0 uniformly in θ, for any ε > 0, there exists some τ such that for

all t ≥ τ,
Ht (θ) −H (Q θ, T, µ∗) +

ε

2 ∀θ ∈ Θ.
In particular, for any θ∗ ∈ argminH (Q θ, T, µ∗),

Ht (θ
∗) < H (Q θ∗, T, µ∗) +

ε

2 .

Since θ̂t minimizesHt (θ),
Ht (θ̂t ) ≤ Ht (θ

∗).

Thus, for all t ≥ τ,
Ht (θ̂t ) < H (Q θ∗, T, µ∗) +

ε

2 .

On the other hand, sinceHt (θ) −H (Q θ, T, µ∗) → 0 uniformly in θ, for all t ≥ τ,

H (θ̂t , T, µ∗) < Ht (θ̂t ) +
ε

2 .

The last two displays imply that

H (θ̂t , T, µ∗) −H (Q θ∗, T, µ∗) < ε

Noting that ε is arbitrary completes the proof of this part of the theorem. �

Proof of Part (c) of Theorem 3

I need to show that the triple (
T, µ∗, {θ∗}

) satisfiesConditions (i)–(iii) for being aCREE. Condition
(ii) is trivially satisfied. Part (b) of the theorem—in conjunction with the fact that H (Q θ, T, µ∗) is
continuous in θ, established inLemma1, and theassumptions that argminθ∈Θ H (Q θ, T, µ∗) = {θ∗}

andΘ is compact—implies that θ̂t → θ∗. Part (a) of the theorem then implies that µ∗ is supported
on X ×Y × Z × {θ∗}. This conclusion establishes Condition (iii).

So I only need to show that µ∗ is an invariant distribution forT . LetB1 ⊆ X ×Y ×Z andB2 ⊆ ∆Θ

be arbitrary measurable sets. Since µ∗ is supported on X ×Y × Z × {θ∗} and the Bayesian update
of the degenerate belief on θ∗ is equal to the degenerate belief on θ∗,∫

T (B1 × B2 |x−, y−, z−, θ−)µ
∗(dx− × dy− × dz− × dθ−)

= {1θ∗ ∈ B2}
∫

T (B1 |x−, y−, z−, θ
∗)µ∗(dx− × dy− × dz−).
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On the other hand, by part (a) of the theorem,∫
T (B1 |x−, y−, z−, θ

∗)µ∗(dx− × dy− × dz−) = lim
t→∞

1
t

t∑
s=1

1{(xs, ys, zs ) ∈ B1}

= lim
t→∞

1
t

t∑
s=1

1{(xs1, ys−1, zs−1) ∈ B1} = µ∗(B1),

where the last equality is again by part (a). But since µ∗ is supported on X ×Y × Z × {θ∗},

µ∗(B1 × B2) = µ∗(B1){1θ∗ ∈ B2}.

Therefore, ∫
T (B1 × B2 |x−, y−, z−, θ−)µ

∗(dx− × dy− × dz− × dθ−) = µ∗(B1 × B2).

Since B1 and B2 are arbitrary, the last display establishes that µ∗ is an invariant distribution for
T . �
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