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Abstract

We develop a tractable dynamic Roy model in which infinitely-lived workers choose occu-

pations to maximize their lifetime utility. In our setting, a worker’s human capital is driven

by his labor market choices, given idiosyncratic occupation-specific productivity shocks and

the costs of switching occupations. We characterize the equilibrium assignment of workers

to jobs and show that the resulting evolution of aggregate human capital across occupations

ultimately determines the long-run rate of growth of the economy. We then use our model to

quantitatively study the impact of labor-saving technical changes on workers’ occupational

choices and on the economy’s income inequality, job polarization and long-run growth.
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1 Introduction

Technological and organizational advances that expand production possibilities are often biased

against a subset of occupations –and, possibly, against a large number of workers. The introduction

of such advances can substantially disrupt the ongoing reassignment of workers across jobs, a

process that occurs naturally according to the comparative advantage of each worker. Labor

market disruptions of this nature have been highlighted by recent works –which we discuss below–

that single out the introduction of new forms of capital, e.g., computers, robots, automation,

AI, and off-shoring, as the key drivers of the observed increase in earnings inequality and job

polarization. Basing their analysis on static Roy models, these papers capture how comparative

advantage and self-selection shape the heterogeneous impacts across workers, but abstract from

dynamic aspects of occupational choices and human capital accumulation, which, as we show

in this paper, are crucial to determine the the long-run rate of growth of the economy and the

ultimate impact on inequality and on the welfare of workers.

In this paper, we develop a dynamic Roy model of occupational choice with human capital

accumulation and use it to explore the general equilibrium effects of new technologies on the labor

market. In our model, infinitely-lived workers can switch occupations in any period to maximize

their lifetime utility. In our setting, a worker’s human capital is driven by his labor market

choices, given idiosyncratic occupation-specific productivity shocks and the costs of switching

occupations. We first characterize the equilibrium assignment of workers to jobs. A key result is

that the resulting evolution of aggregate human capital across occupations ultimately determines

the long-run rate of growth rate of the economy. We then use the model to quantitatively study

how worker’s individual occupation choices change with the introduction of new technologies, and

in turn how this choices shape the equilibrium allocation of workers to different jobs, the dynamics

of aggregate human capital, the behavior of earnings inequality, the evolution of the labor share,

and the welfare of the different workers in the economy.

The paper has a number of methodological contributions. First, we fully characterize the so-

lution of the recursive problem of a worker under standard CRRA preferences when the worker

is subject to a large number of labor market opportunities shocks in every period affecting her

comparative advantage in different occupations. Thus, we bridge recent quantitative work that

uses static assignment Roy models with extreme-value shocks with the standard recursive mod-

els for households in macroeconomics. In this way, our model generates transition probabilities

across occupations over time. Second, we fully characterize the asymptotic behavior of aggregate

economies implied by the individual dynamic occupation choices of workers. For any given vector

of skill prices, we show that the economy converges to a unique invariant distribution of workers.

Although the Roy model has been studied and used in great length, we uncover important new

features which are present only in a dynamic context. We show that, generically, the reallocation

of workers to occupations combined with the accumulation of occupational human capital leads

to sustained growth over time for the economy. The growth rate in our model is endogenously
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determined by the equilibrium occupational choices, and thus, changes in economic conditions

that alter worker’s choices affect the long-run growth rate of the economy. Third, we embedded

the workers’ problem in a fairly rich general equilibrium environment where different types of

workers are allocated to different tasks in production. We derive a very transparent and tractable

aggregation that arises from the assignment of workers to tasks. Then, we show the existence of

a competitive-equilibrium balanced-growth path, and for a simple version of our model we can

also characterize uniqueness. Fourth, by incorporating two forms of physical capital, we provide

a quantitative framework to study the impact of automation and other labor-saving technologi-

cal improvements on the earnings of different occupations. Our model of production and tasks

generates an intuitive expression that directly links the labor share of the economy with wages,

rental rates and the productivity of different types of labor and capital, allowing us to study the

effects of technology on the labor share of the economy. Fifth, we extend recent dynamic-hat-

algebra methods and show they can be used with more general preferences (CRRA) and with

human capital accumulation. As with other hat-algebra methods, the advantage is a substantially

reduced set of calibrated parameters needed for the quantitative application of the model. Sixth,

we discuss a variety of relevant extensions of our baseline model, ranging from workers’ age and

ex-ante heterogeneity, endogenous on-the-job training and occupation-specific automation.

Using our model we make a number of substantial contributions. Mapping our model to the

moments observed in the 1970s for the U.S. economy, we account for the changes in employment

across occupations and the increase in earnings inequality that arise from labor-saving technolog-

ical advances. An important change observed in U.S. labor markets in the past few decades is

the polarization of skills in the labor market. That is, the decline of employment in middle-skill

occupations, like manufacturing and production occupations, and the growth of employment in

both high and low-skill occupations, like managers and professional occupations on one end, and

assisting or caring for others on the other. Using our model we show how some labor-saving

technical improvements can jointly explain the increase in polarization, earnings inequality and

occupational mobility in U.S. labor markets.

In addition, our dynamic model highlights the long-lasting impact of permanent, but once-

and-for-all technological changes. Indeed, in our dynamic setting, once-and-for-all changes in

automation or other technological changes can lead to sustained growth effects. Our quantitative

exercise highlight how this growth effect changes the conclusion on earnings inequality and welfare.

We emphasize that the welfare and inequality implications for technological changes can be vastly

richer than those obtained in other settings as they originate not only from changes in skills prices

in each period but also on changes in the equilibrium growth rate of earnings. Thus, on the one

hand, the positive impact on some workers is not only due to higher level of earnings but also from

a faster growth. On the other hand, some workers can be worse-off due to lower levels of earnings

and a higher rate at which they change occupations. These aspects are fully incorporated in our

exercises.

3



We first consider the individual worker’s problem. Section 2 studies the dynamic problem of

a worker that chooses occupations to maximize lifetime utility. Taking as given a vector of skill

prices or unitary wages per occupation, we assume that each period each worker is subject to

idiosyncratic labor market opportunities. On the basis of these labor market opportunities, the

choice of occupations not only determines the earnings for the next period but also the impact of

the human capital of the worker for subsequent occupation choices. Assuming standard CRRA

preferences and extreme value (Frechet) distributed labor market opportunities, we characterize

the Bellman equation of the worker. We show that the resulting distribution of the value function

is closely related to one of the three extreme value distributions, Frechet, Gumbel or Weibull,

depending on whether the coefficient of relative risk aversion is lower than, equal to or higher than

one, respectively. In all these cases, conditions for existence and uniqueness are provided. Simple

recursion formulas ensue, which makes for trivial computations. The worker’s decision problem

induces very simple formulas for the transition probabilities of workers across human capital and

the law of motion for individual human capital and earnings, which we later use to calibrate the

model.

From the worker’s individual occupation choices we derive the law of motion for the population

of workers across occupations. For any given positive vector of skills prices, we show that there

exists a unique invariant distribution of workers. More interestingly, we also show that a simple

aggregation property holds, which allows us to write down the transition matrix for the vector

of aggregate human capital across occupations. We show that the human capital of the country

cannot settle down to an invariant state, and instead, necessarily, grows over time. The dominant

eigenvalue of the aggregate human capital transition matrix is always unique, positive and real

and it governs the long-run growth rate of the economy. In other words, we show that our dynamic

Roy model with human capital accumulation provides a novel endogenous channel for aggregate

growth. We examine how changes in the relative price of skills leads to differences in the assignment

of workers to jobs, the evolution of human capital and in turn the long-run growth of the economy.

In Section 3 of the paper we embed the previous analysis in a dynamic general equilibrium

model. We assume that output is produced using two forms of physical capital. The first physical

capital is in the form of structures and other capital complementary to workers. The second form

of physical capital is in the form of machines or some types of equipment, which directly compete

and may substitute workers in production. In our setting, output is produced by performing a

large set of tasks. An assignment of workers and machines to the different tasks is presented, where

the costs of the different factors, relative to their underlying productivity, governs which tasks are

performed by machines and which are done by different types of workers. We characterize the

labor-share of the economy as a simple function of wages in different occupations, rental rates, and

labor and machine productivity and show how changes in this variable affect the labor share. The

equilibrium production assignment of tasks-workers-machines gives rise to a transparent and very

tractable aggregation of the economy. Over time, the accumulation of both forms of capital are
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determined by standard Euler equations, as in the neoclassical growth model. More novel, however,

given a constant productivity terms for both capital stocks and for the vector of human capital, the

underlying long-run growth rate of the economy is determined by the transition matrix of human

capital, as derived from the dynamic occupation choices of workers. We show the existence, and

in a simple case uniqueness, of the competitive-equilibriumn balanced-growth path (BGP) of the

economy. As noted above, the growth rate is endogenously determined by the Perron root of the

transition matrix, and thus, it endogenously changes with permanent but once-and-for all changes

in the vector of relative productivities. Thus, changes in the economy’s growth rate lie at the

heart of the impact of automation and other technological changes.

In Section 4 we examine the dynamic response of the economy to changes in the productivity

of machines and workers in different occupations. Here, we extend the recent dynamic hat algebra

methods to a larger set of preferences and to human capital accumulation. The main advantage

of these methods is that they avoid the estimation or calibration of a large number of parameters,

and instead use moments that can be readily retrieved from the data, lowering the burden of the

computational problem.

Related Literature:

Our work is related to a growing but already extensive literature in labor economics and macroeco-

nomics that argues that recent changes in technology have had an asymmetric impact on workers,

leading to job polarization and increased earnings inequality. In the careful summary of this liter-

ature by Acemoglu and Autor (2011), the authors state that “recent technological developments

have enabled information and communication technologies to either directly perform or permit

the off-shoring of a subset of the core job tasks previously performed by middle-skill workers, thus

causing a substantial change in the returns to certain types of skills and a measurable shift in the

assignment of skills to tasks.” Using the cross-section of U.S. commuting zones, Autor and Dorn

(2013) also find strong empirical support for the asymmetric effects of computerization across

occupations and skills. Our paper follows on these authors and uses a task-based framework for

analyzing the effect of new technologies on the labor market and their impact on the distribution

of earnings. In our model, a worker’s human capital evolves endogenously as a result of past

labor market decisions. We provide analytic and quantitative results concerning the impact of

labor-saving technologies from the 1970s onward on U.S. workers and their occupational decisions,

human capital accumulation, and earnings inequality.

Krusell, Ohanian, Rios-Rull, and Violante (2000) study how skill-biased technical change affect

the skill premium and earnings inequality. They argue that the sharp reduction in the price

of equipment jointly with capital-skill complementarity differences can account for a significant

fraction of the increase in inequality between education groups. In their paper, labor markets are

segmented by education, and workers cannot switch across those markets. Our model does not have

such a segmentation, as labor markets assign all the workers to different occupations according
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to comparative advantage. Also, in our model workers accumulate human capital, which they

can reallocate across the different occupations. While at the cost of human capital depreciation,

occupation mobility provides an “escape” from the adverse effects that technological innovations

may have for the earnings in some occupations.

Kambourov and Manovskii (2009) argue that wage inequality and occupational mobility are

intimately related. They use a general equilibrium model with occupation-specific human capital

and compare economies with different levels of occupational mobility. In our model, workers

self-select into occupations according to their implied expected lifetime values, and comparative

advantage and relative production costs determine skill prices and workers’ allocation. Then, we

compute the transition between balanced-growth paths (BGP) from an economy initially as of

the late 1970s to the current time and analyze the effects of the technological innovation for the

behavior of inequality and growth.

Our paper contributes to the growing quantitative literature that has successfully applied

static Roy models with Frechet distributed shocks to diverse topics, and bridges this literature

with standard dynamic quantitative macro models.1 Some of the prominent examples of these

papers include the following: Lagakos and Waugh (2013) show that the selection of workers can

explain why productivity differences across countries are twice as large in agriculture than outside

agriculture. Hsieh, Hurst, Jones, and Klenow (2013) show how discrimination frictions in the

labor market across workers with different race and gender has amounted to substantial aggregate

misallocation and productivity costs for the U.S. economy as a whole. Galle, Rodŕıguez-Clare,

and Yi (2017) finds that international trade of goods with China increases average welfare, but

some groups of workers experience welfare losses as high as five times the average gain. Burstein,

Morales, and Vogel (2018) find that the combination of computerization and shifts in occupation

demand account for roughly 80% of the rise in the skill premium, with computerization alone

accounting for roughly 60%. All in all, our simple recursive methods can be applied to extend

this type of models to dynamic contexts, explicitly considering the lifetime implications of staying

in a low paying occupation or switching to a better labor market at the expense of a temporary

mismatch of their human capital. To be sure, it is straightforward to extend our model to capture

ex-ante heterogeneity and age-dependent choices, both of which are salient aspects in the literature

on human capital accumulation.

Our paper closely relates to Acemoglu and Restrepo (2018) and Acemoglu and Restrepo (2017)

who study how machines and industrial robots affect different workers and labor markets. They

argue that this type of technological advance may explain part of the decline in the labor share

highlighted in Karabarbounis and Neiman (2013). We extend the assignment model of tasks to

workers and machines of Acemoglu and Restrepo (2018) to multiple types of workers and derive a

straightforward expression for the labor share which we use for our quantitative exercise on how

new technologies may displace labor from some tasks.

1Recent quantitative Roy models build on the original analytic insights of Eaton and Kortum (2002).
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Our paper is in the same spirit as Adao, Beraja, and Pandalai-Nayar (2018). They develop a

Roy model in which, before entering labor markets, workers choose which skills to acquire. Once

they entered labor markets, workers can choose among two occupations in every period. In their

model, overlapping generations of workers have different skills and thus select into occupations

differently despite facing the same skills prices. Then, they use the model to understand how

economies adjust to an asymmetric technological advance, the speed of the adjustment and the

impact on income inequality. Instead, our paper emphasizes the evolution of a worker’s human

capital after he has entered the labor markets and how future valuations and not only current

payouts determine occupation switches. Moreover, we emphasize how the workers’ reallocation

ultimately determine the long-run growth of the overall economy and highlight how once-and-for-

all technological innovations may permanently affect the growth rate by switching workers from

low-growth occupations to faster growth ones.

Finally, we apply the recent dynamic-hat-algebra methods of Caliendo, Dvorkin, and Parro

(2019) which hugely reduce the number of parameters needed to calibrate or estimate the model

and perform quantitative counterfactual experiments. We extend the work of these authors to

allow for more general preferences (CRRA instead of log-preferences) and human capital accumu-

lation. Moreover, we show existence (and uniqueness in simple cases) of the competitive general-

equilibrium balanced-growth path, describing how the response of human capital accumulation

drives the transitional and long-run dynamics after an innovation disrupts the initial equilibrium.

2 A Canonical Worker’s Problem

We consider an infinite horizon maximization problem for a worker with standard preferences. At

any time t = 0, 1, 2, ..., the utility of the worker is given by

Ut =
(ct)

1−γ

1− γ
+ E

[

∞
∑

s=1

βs (ct+s)
1−γ

1− γ

]

,

where 0 < β < 1 is a discount factor (which accounts for a constant survival probability) and

γ ≥ 0 is the coefficient of relative risk aversion (CRRA.) For γ = 1, we interpret the flow utility

to be logarithmic, i.e. ln ct.

The worker starts each period t = 1, 2, ... attached to one of j = 1, ..., J occupations, carrying

over from the previous period an absolute level of human capital h > 0. Available for the next

period, the worker realizes a vector ǫt =
[

ǫ1t , ǫ
2
t , ...ǫ

ℓ
t...,ǫ

J
t

]

∈ R
J
+ of labor market opportunities.

Each entry in the vector corresponds the labor market opportunity in the respective occupation.

On the basis of these opportunities, the worker chooses to either stay in the current occupation j

or to move to an alternative occupation ℓ.

Switching occupations entails costs (or returns) which we specify as follows: A J × J human

capital transferability matrix, with strictly positive entries, τjℓ, determines the fraction of the
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human capital h that can be transferred from the current occupation j to a new occupation ℓ. On

average, there is depreciation if τjℓ < 1 or positive accumulation if τjℓ > 1. The diagonal terms,

τjj, may be higher than one, capturing learning-by-doing, i.e. the accumulated experience capital

of a worker as he spends more time in an occupation j. These diagonal terms τjj may vary by

occupation j. The off-diagonal terms τjℓ may be less than one to capture a potential mismatch

between the human capital acquired in one occupation and the productivity of the worker in a

different occupation. Still, some of the off-diagonal terms could be greater than one, capturing skill

transferability and cross-occupation training or upgrading. In our specification, these occupation-

switching costs have a permanent impact on the human capital of the worker for all future periods

and for all future occupation choices.2

The human capital of the worker evolves according to the labor market opportunities ǫt and

the occupation choice of the worker. Given a level of human capital, h, a current occupation j,

and a vector ǫt ∈ R
J
+ of labor market opportunities, the vector

ht τj,· ⊗ ǫt ∈ R
J
+,

describes how many efficient units of labor services, or effective human capital, the worker can

provide for each of the alternative occupations ℓ = 1, ..., J . Here the operator ⊗ denotes an

element-by-element multiplication. After choosing which occupation to take, the scale of the

human capital level for the worker for the next period would be

ht+1 = htτjt,ℓt+1 ǫℓ,t, (1)

where jt and ℓt+1 indicate, respectively, the occupations at period t and t+ 1.

To set up our framework, in this section we focus on the canonical worker’s problem given

a time-invariant vector of strictly positive (and finite) wages per unit of human capital w =
[

w1,w2,...wℓ...,wJ
]

. Therefore, the worker’s earnings for the period given her current occupation

j are wjht. In our model, workers are dynamic optimizers, with their human capital returns as

their sole source of income in every period. Therefore, the worker’s consumption for each period

is simply the current earnings wjht.

We now set up the problem of the worker recursively, and provide additional structure to

derive a sharp characterization of the optimal choices. Denote by V (j, h, ǫ) the expected life-time

discounted utility of the worker. The Bellman Equation (BE) that defines this value function is,

V (j, h, ǫ) =
(wj h)

1−γ

1− γ
+ βmax

ℓ
{Eǫ′V [ℓ, h′, ǫ′]} , (2)

where Eǫ′ [·] is the expectation over the next period’s vector of job market opportunities and h′ is

2In Appendix D we extend the model to allow for both, transitional and permanent costs of switching occupa-
tions.
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given by equation (1.)

To characterize this BE, we first show that it can be factorized, i.e. its value can be decomposed

into a factor that depends only on the current occupation and labor market realizations, (j, ǫ),

and another factor that depends only on the absolute level of human capital, h. This can be

done for any generic distribution for the labor market shocks ǫ for which an expectation satisfies

a boundedness condition. In all what follows, we assume that ǫ is distributed independently over

time and across workers, and that all the required moments involving ǫ are finite and well defined.

First, note that if occupation ℓ is chosen, then, the next period human capital is h′ = h τjℓǫℓ.

Then, observe that the period utility function is homogeneous of degree 1 − γ in h. Therefore,

under the hypothesis that the value V (j, h, ǫ) is homogeneous of degree 1 − γ in h, for any

pair (j, ǫ), it can be factorized into a real value v (j, ǫ) and a human capital factor h1−γ , i.e.,

V (j, h, ǫ) = v (j, ǫ)h1−γ.3 Under this hypothesis, the Bellman Equation (2) becomes

v (j, ǫ)h1−γ =

(

(wj)
1−γ

1− γ
+ β max

ℓ

{

Eǫ′ [v (ℓ, ǫ
′)]
(

τj,ℓǫ
ℓ
)1−γ

}

)

h1−γ.

Simplifying out the term h1−γ we end up with

v (j, ǫ) =
(wj)

1−γ

1− γ
+ βmax

ℓ

{

(

τj,ℓǫ
ℓ
)1−γ

Eǫ′ [v (ℓ, ǫ
′)]
}

, (3)

which verifies the factorization hypothesis. Therefore, the characterization of V (j, h, ǫ) boils down

to the characterization of v (j, ǫ), a random variable that depends on each realization ǫ. For all

occupations j = 1, ...J , denote by vj the conditional expectation of this random variable, i.e.,

vj ≡ Eǫ [v (j, ǫ)] .

Using this definition, and taking the expectation Eǫ [·] in both the right- and left-hand sides of

(3), the equation reduces to a recursion on vj:

vj =























(wj)
1−γ

1−γ
+ βEǫ maxℓ

[{

[

τj,ℓ ǫ
ℓ
]1−γ

vℓ
}]

, for γ 6= 1,

lnwj + βEǫ

[

maxℓ

{

vℓ +
ln(τj,ℓǫℓ)

1−β

}]

, for γ = 1.

(4)

For all γ ≥ 0, the following lemma establishes simple conditions on the stochastic behavior of

the labor market opportunities of workers, that guarantee the existence and uniqueness of values

v ∈ R
J that solve (4). All along, we assume that τj,ℓ > 0 for all j, ℓ and that the support of ǫℓ is

[0,∞) for all ℓ.

3For the logarithmic case, γ = 1, V (j, h, ǫ) = uj + β
[

maxℓ

{

vℓ +
[ln(h)+ln(τj,ℓǫℓ)]

1−β

}]

, as shown in the appendix.
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Depending on the value of γ, and for each j = 1, ..., J , we define the terms, Φj as follows:

Φj ≡











Eǫ maxℓ
{

[τj,ℓ ǫℓ]
1−γ} , for 0 ≤ γ < 1,

Eǫ maxℓ {ln (τj,ℓǫℓ)} , for γ = 1.

Eǫ minℓ

{

[τj,ℓ ǫℓ]
1−γ} , for γ > 1.

Also, conditioning on the relevant definition of Φj for each γ, we define

Φ̄ = max
j

Φj.

The following lemma shows that if the average labor market opportunities available to workers are

bounded, as summarized by bounds on Φ̄, then, we can guarantee that the dynamic programming

problem (4) has a unique and well-defined solution.

Lemma 1 Let w ∈ R
J
+ be the vector of unitary wages across all occupations J . Assume that

preferences are characterized by a CRRA γ ≥ 0 and that the matrix τj,ℓ and labor market oppor-

tunities ǫ satisfy the assumptions above. Then: (a) for all 0 < γ 6= 1, if βΦ̄ < 1, then there exists

a unique, finite v ∈ R
J that solves vj =

(wj)
1−γ

1−γ
+ βEǫ maxℓ

[{

[

τj,ℓ ǫ
ℓ
]1−γ

vℓ
}]

for all j. Moreover,

if γ < 1, the fixed point v is positive (v ∈ R
J
+) and if γ > 1, the fixed point v is negative (v ∈ R

J
−
).

(b) For the special case of log preferences, γ = 1, if −∞ < Φj < +∞, ∀j, and β < 1, then, there

exists a unique, finite v ∈ R
Jsuch that vj = lnwj + βEǫ

[

maxℓ

{

vℓ +
ln(τj,ℓǫℓ)

1−β

}]

for all j.

The proofs for this and all other analytic results in this paper are in Appendix A.

This lemma only verifies existence and uniqueness of the conditional expectations vj, while

the realization ǫ of the labor market opportunities determines the actual realized value v (j, ǫ). In

what follows we impose additional structure so we can characterize the behavior of v (j, ǫ) and

the optimal occupation choices derived for the solution to the dynamic programming problem of

workers. To this end, we add the assumption that each element in the vector of labor market

opportunities ǫ is distributed according to an extreme value distribution. Specifically, we impose

that in each period, the labor market opportunity ǫℓ shocks for each labor market ℓ, are each

independently distributed according to a Frechet distribution with scale parameter λℓ > 0, and

curvature α > 1. Notice that the curvature parameter is the same for all occupations but the

scale parameters are allowed to vary across occupations.

Having impossed a Frechet distribution for ǫ, define for all pairs j, ℓ ∈ J × J ,

Ωjℓ =











τ
(1−γ)
jℓ vℓ, for γ 6= 1,

ln τjℓ
1−β

+ vℓ, for γ = 1.

(5)
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Then, the normalized BE can be succinctly rewritten as

v (j, ǫ) =



















uj + βmaxℓ

{

Ωjℓ

(

ǫℓ
)1−γ

}

, for γ 6= 1,

uj + βmaxℓ

{

Ωjℓ +
ln(ǫℓ)
1−β

}

, for γ = 1.

(6)

We now provide a simple result that indicates that given any admissible vector v ∈ R
J ,

regardless of whether it is or not the fixed point of the BE (4), the resulting random variable

v (j, ǫ) is closely related to one of the extreme value distributions: (a) if 0 ≤ γ < 1, then v (j, ǫ)

is related to a Frechet with curvature parameter α/ (1− γ); (b) if γ = 1, then v (j, ǫ) is related

to a Gumbel with shape parameter 1/α; (c) if γ > 1, then v (j, ǫ) is related to a Weibull with

curvature parameter α/ (γ − 1).

Lemma 2 Derived Distributions. Let ǫℓ be a random variable distributed Frechet with scale

parameter λℓ > 0 and curvature α > 1, i.e. its c.d.f. is Fǫ (ǫ) = e
−

(

ǫ
λℓ

)

−α

. Define:

xℓ ≡

{

(

ǫℓ
)1−γ

for 0 ≤ γ 6= 1

ln
(

ǫℓ
)

for γ = 1.

Then xℓ is distributed as follows:

xℓ ∼















Frechet
(

α
1−γ

, (λℓ)
1−γ
)

for 0 ≤ γ < 1,

Gumbel
(

1
α
, ln (λℓ)

)

for γ = 1,

Weibull
(

α
γ−1

, (λℓ)
γ−1
)

for γ > 1.

It follows that the terms in curly brackets in (6), with the product of Ω and the transformation

of ǫ with respect to the CRRA parameter, will follow one these distributions.

We now complete the characterization of the worker’s problem, under the assumption that all

the entries of ǫ are independently Frechet distributed. The following theorem provides a simple,

sharp characterization for the fixed point problem vj that solves (4) and for the optimal occupations

decision of workers.

Theorem 1 Individual Problems. Assume for all ℓ = 1, ...J , the shocks ǫℓ are independently

distributed Frechet with shape α > 1 and scales λℓ > 0. Assume also that all wℓ are strictly positive

and that either (i) γ 6= 1 and βΦ̄ < 1 or (ii) γ = 1, β < 1 and −∞ < Φj < +∞ for all j. Then:

(i) If 0 ≤ γ < 1, the expected values vj for j = 1, ..., J solve the fixed point problem

vj =
(wj)

1−γ

1− γ
+ β Γ

(

1−
1− γ

α

)

[

J
∑

ℓ=1

(

vℓ
)

α
1−γ (τjℓλℓ)

α

]

1−γ
α

.
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A finite solution v ∈ R
J
+ for this BE exists and is unique. Moreover, the proportion of workers

switching from occupation j to occupation ℓ at the end of the period is given by:

µ (j, ℓ) =

[

λℓτjℓ
(

vℓ
)

1
1−γ

]α

∑J
k=1

[

λkτjk (vk)
1

1−γ

]α .

(ii) If γ = 1 the expected values vj for j = 1, ..., J , solve the fixed point problem

vj = log(wj) +
β

α (1− β)
log

[

J
∑

ℓ=1

exp
(

α (1− β)vℓ + α log(τjℓ) + α log(λℓ) + ακ
)

]

,

where κ is Euler’s constant. A solution v ∈ [v, v̄]J for this BE exists and is unique. Moreover, the

proportion of workers that switch from occupation j to occupation ℓ is given by:

µ (j, ℓ) =
exp

(

α (1− β)vℓ + α log(τjℓ) + α log(λℓ) + ακ
)

∑J
k=1 exp (α (1− β)vk + α log(τjk) + α log(λk) + ακ)

.

(iii) If γ > 1, the expected values vj for j = 1, ..., J solve the fixed point problem

vj =
(wj)

1−γ

1− γ
− β Γ

(

1−
1− γ

α

)

[

J
∑

ℓ=1

(−vℓ)
α

1−γ (τjℓλℓ)
α

]

1−γ
α

.

A solution v ∈ [v, 0]J for this BE exists and is unique. Moreover, the proportion of workers

switching from occupation j to occupation ℓ at the end of the period is given by:

µ (j, ℓ) =

[

λℓτjℓ
(

−vℓ
)

1
1−γ

]α

∑J
k=1

[

λkτjk (−vk)
1

1−γ

]α .

2.1 Implied Distributions of Workers and Human Capital

We now describe how the occupation choices of each worker shape up the limiting behavior of

the cross-section distribution of workers and aggregate human capital (and earnings) across the J

occupations in this economy.

Distribution of Workers Across Occupations. Notice that the homogeneity of the value

function implies that the transitions µj,ℓ are independent of the human capital level h of the

worker. Let θt =
[

θ1t , ..., θ
J
t

]

denote the J × 1 vector indicating the mass of workers in each of the

occupations j = 1, 2, ..., J at time t. As in this section we are taking the vector of wages w as time

invariant the transition matrix µ is also time invariant. Therefore, the evolution of θ is described

by following equation,

θt+1 = µT θt.
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where superscript T indicates the transpose.

Under the assumptions that τj,ℓ > 0, every entry of the stochastic matrix µ is positive, i.e.

for all j, ℓ, µ (j, ℓ) > 0. This is a basic mixing condition and from standard results for Markov

chains (e.g. Theorem 11.2. in Stokey, Lucas and Prescott, 1989) there exists a unique invariant

distribution

θ∞ = µT θ∞, (7)

and the economy will converge to it from any initial distribution θ0.

Distribution of Aggregate Human Capital Across Occupations. Given that the indi-

vidual labor market opportunities or productivity shocks for all workers are distributed Frechet, a

continuous distribution with full support in the positive reals, then the aggregate human capital

assigned to occupation j is given by,

Hj
t = θjt

∫

∞

0

hφj
t(dh),

where φj
t(·) denotes the positive measure that describes the distribution of human capital levels h

across the workers in occupation j in period t.

Characterizing the evolution of Hj
t over time suffices to determine the general equilibrium of

the economy as we discuss in the following section. Towards that end, we first characterize the

conditional expectation of the shocks ǫℓ for those workers that switch from any occupation j to

any occupation ℓ:

Lemma 3 For all non-negative γ 6= 1, the expectation of the labor market opportunity shock ǫℓ of

workers switching from j to ℓ is given by,

E
[

ǫℓ|Ωjℓ ǫ
1−γ
ℓ = max

k

{

Ωjℓǫ
1−γ
k

}

]

= Γ

(

1−
1

α

)

λℓ [µ (j,ℓ)]−
1
α , (8)

where µ (j,ℓ) is the corresponding occupation switching probabilities as derived in Theorem 1.

A worker with human capital h in occupation j will switch to occupation ℓ at the end of the

period with probability µ (j,ℓ), bringing an average Γ
(

1− 1
α

)

τjℓ λℓ [µ (j,ℓ)]−
1
α h of human capital

skills to that occupation. Define M to be the transition matrix of aggregate human capital, with

j, ℓ element defined as:

M (j,ℓ) = Γ

(

1−
1

α

)

τjℓ λℓ [µ (j,ℓ)]1−
1
α .

The matrix M is time invariant when wages are constant over time. The linearity in h allows an

easy aggregation of human capital in each occupation and also to characterize the law of motion

for aggregate human capital. Let Ht =
[

H1
t , H

2
t , ..., H

J
t

]

be the vector of aggregate human capital

across all occupations j in period t. Then, for time t+ 1, that vector evolves according to

Ht+1 = MT Ht.
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It is worth remarking that we can characterize the evolution of the average (or total) skills of

workers across the different occupations, without having to solve for the cross-section distribution

of skills and earnings. This result is useful since we can easily solve for the aggregate supply

of efficient units of labor in each occupation at each t. The matrix M is strictly positive, i.e.

M (j,ℓ) > 0. Then, from the Perron-Frobenius theorem,4 the largest eigenvalue of M is always

simple (multiplicity one), real and positive. Moreover, the associated eigenvector to this so-called

Perron root, which we denote by GH , has all its coordinates, hj, j = 1, ..., J , strictly positive.

Moreover, in the limit, the behavior of all Hj
t will converge to

Hj
t+1 = GHH

j
t ,

for all j = 1, ...J . This is precisely the definition of a balanced-growth path (BGP) for the vector

of aggregate human capital {Ht}
∞

t=0. Notice that the model can naturally generate a positive

Perron eigenvalue GH > 0, i.e. sustained growth of the human capital of the workers, even if the

unitary wages wj and the cross-section distribution of workers θ∞ remains constant, and even if

the average realization ǫℓ in each occupation is equal to one. The engine of growth here is that

workers continuously select the most favorable labor market opportunities.5

We summarize the results for the implied population dynamics of workers and human capital

aggregates, {θt, Ht}
∞

t=0 in the following proposition.

Proposition 2 Assume that the unitary wage vector is strictly positive, w ∈ R
J
++, and that the

conditions for Theorem 1 hold. Then: (a) There exists a unique invariant distribution of workers,

i.e., θ∞ = µ θ∞, with θj
∞

> 0 and
∑J

j=1 θ
j
∞

= 1. Moreover, the sequence {θt}
∞

t=0 induced by

(7) converges to θ∞ from any initial distribution θ0. (b) There is a unique BGP of aggregate

human capital across occupations, Hj
t /H

1
t = hj for all j, where hj is equal to the ratios of the jth

coordinate to the first coordinate of the Perron eigenvector. Moreover, the economy converges to

Hj
t+1 = GHH

j
t from any initial vector H0 ∈ R

J
+.

The problem of the worker presented so far can be easily extended to capture worker hetero-

geneity along permanent characteristics (gender, race, formal education) as well as age. As shown

in Appendix D, the setting can be quite flexible in allowing differences in group specific param-

eters (λgroup
ℓ , τ groupjℓ ), thus allowing differentiating between the human capital accumulation that

arises from labor market experience from other factors that affect the human capital of workers.

Extending the model for age differences would capture differences in the horizon of workers and

their dynamic valuation of switching occupations.

4See for example, Gantmacher (2000), Theorems 1 and 2 of Ch.XIII, Vol. II, page 53.
5This result is reminiscent of the mechanism in the models by Luttmer (2007) and Lucas and Moll (2014) in

which selection on favorable realization of idiosyncratic shocks endogenously generates growth at the aggregate
level. Note however that in our model it is possible for a worker to get a realization of shocks ǫ below one for all
components, which implies that human capital will decrease for this individual if τ ≤ 1.
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In the Section 4, we embed the workers’ problem into a production economy, and extend the

results derived here to characterize the general equilibrium of such an environment. Then, in

Section 5, we use the model to quantitatively examine the dynamics of occupation choices, income

inequality and growth in the U.S. economy. Before doing all of that, it is informative to illustrate

the dynamic implications of our dynamic Roy model taking the wages as exogenously given.

2.2 Numerical Illustrations

In this section, we illustrate the key mechanisms of the model. We center our discussion around

two main dimensions. First, we highlight the importance of the worker’s dynamic considerations

for occupation choices for the aggregate allocation of labor across jobs types and for the long run

growth of the economy. To this end, we will examine the asymptotic behavior, i.e. the invariant

distributions and growth rates, of economies that differ in the discount rate, ranging from an

economy where workers do not value the future, β = 0, to a more standard macro model where

β is much closer to one. Second, we examine the impact of changes in the relative wages across

occupations that differ in their growth potential and degree of flexibility.

For both exercises, we set the curvature of the shocks ǫj to α = 6.5 and normalize all the shape

parameter to be the same, e.g. λj = 1 for all j. We use γ = 2, a standard value for the CRRA of

workers. We consider a simple economy with three types of jobs, J = 3. The first occupation has

high wages but low growth. The second occupation has low wages but high flexibility and the third

has low wages but high growth. Given the normalization λj = 1, the model captures the wage

levels of jobs with the vector w = [w1, w2, w3]′, their growth potential with the diagonal terms τjj

of the matrix τ , and the flexibility of each occupation with the off-diagonal terms τj,ℓ for ℓ 6= j.

In the first exercise, we consider economies in which w1 is higher than w2 and w3, to capture

the notion that jobs 1 have higher skill prices. In particular, we set

w = [1.75, 1, 1]′ ,

In the second exercise, we vary w1, holding w2 = w3 = 1. In both exercises, we set τ to

τ = τ (j, ℓ) =







1.00 0.75 0.50

0.95 1.00 0.95

0.50 0.75 1.075






.

Clearly, occupation 1 has no average growth upside. Jobs in occupation 1 are not flexible either,

since switching to occupations 2 or 3 entail a loss of 25% or 50%, respectively, of the worker’s

human capital. On the contrary, occupation 3, entails a high average growth rate in skills, 7.5%

per period. These jobs are as inflexible as those in occupation 1, entailing switching costs of

25% or 50% of a worker’s human capital that moves to occupations 2 or 3, respectively. Finally,

occupation 2 pays low wages but is much more flexible. A worker in such an occupation that

15



moves to jobs in occupations 1 or 3 would only lose 5% of his human capital.

2.2.1 The Worker’s Dynamic Valuation of Occupations

We first explore the relevance of dynamic considerations in the occupation decisions of workers

for the resulting aggregate allocations and growth rate of the economy. To this end, we fix the

unitary wage vector to w = [1.75, 1, 1]′, and consider economies that vary only in the discount

factor β of workers, which we allow to be any feasible β ∈ [0, 1] .6
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Figure 1: Occupation Choices, Aggregate Allocations and Growth

The upper two panels in Figure 1 shows the associated invariant distribution of workers θj (left)

and of human capital Hj (right) associated to the different values of β. In one extreme, when

workers are myopic about the future –or static optimizers, most of them take jobs in occupation

1, and similarly, almost all of the economy’s human capital is allocated to that occupation. In

the other extreme, when workers have a more quantitatively relevant discount factor, i.e. β above

0.9 for an annual model, the opposite is true: most workers and human capital is allocated to

6For some β values close to 1, the conditions for for the problem of workers to be well defined are violated.
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occupation 3. In the first case, workers only value the current wage and disregard completely the

potential to move in the future to other jobs, given by jobs 2, and the potential to grow, as given

by occupations 3. In the second case, those future valuations are crucial in the decision of workers

for their occupations. The value of future growth and mobility flexibility explain why, when β is

around 0.95 most of the workers and human capital are allocated to occupations 2 and 3, with

respective shares around 20% and 70%, leaving 10% for the stagnant jobs in occupation 1.

More interestingly, the lower panels of Figure 1 display the average earnings of workers in

each occupation (left) and the implied growth rate of the aggregate economy (right) for the BGP

associated each value of β. Contrary to standard static Roy models with Frechet distribution, the

average earnings, wj ·Hj/θj, do not equate across occupations. This is due to two key aspects of

our dynamic setting. First, a direct force: workers value an occupation not only because of their

current wage, but also for the valuation of their potential future growth and flexibility to move.

Second, a general equilibrium force: in every period, all workers are attached to an occupation, and

the net return to move to other occupations must account for the net losses involved in switching.

These two forces explain vividly the occupation earnings differences observed in the left-lower

panel. When workers are myopic, they do not value growth and flexibility in their jobs. Then,

current wages are the only valuation and on average only those with very high relative realizations

of ǫ1 or ǫ2 would move to those occupations. Moreover, as shown by the upper-left panel, when β

is close to zero, most workers (in the invariant distribution) end up in occupation 1. For them, to

switch to 1, the labor market opportunity ǫ1 must be high enough to compensate for the loss of

human capital entailed by such a switch, which in this example is 50%. A similar, but less drastic

compensation is at work for switchers to occupation 2.

For the more quantitatively relevant cases of β, we observe that jobs with higher growth

(occupation 1) or higher flexibility (occupation 2) both exhibit lower equilibrium average wages

than the stagnant jobs in occupation 1. In this case, both the direct and general equilibrium

forces explain these outcomes. On the one hand, the workers’ valuations of jobs include both their

growth and future flexibility potential. On the other hand, most workers are already in occupation

3, and for them to switch to occupation 1, even if it is to exploit a relatively high opportunity ǫ1,

would entail a substantial loss human capital.

Finally, the lower-right panel of Figure 1 shows a positive relationship between the growth rate

for the aggregate human capitals Hj
t and the discount factor of workers β. In our specific example,

economies with myopic workers would barely grow over time, but in economies with standard

values for β, most workers would be engaged in fast growing occupations, leading to a high growth

rate for the economy.

In general, as workers look beyond current payments and also attach value to the potential

future growth (and to future flexibility) of occupations, the human capital of workers growth

faster, precisely because they engage in occupations that foster their opportunities to grow. The

pattern that associates aggregate growth to the workers’ valuations of their individual growth
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opportunities is entirely missing in static Roy models, quite general in our framework, and a

central theme of our paper.

2.2.2 Relative Wages, Reallocation and Growth

We now explore how changes in the relative wages of occupations impact the long-run growth and

allocations of the economy. To this end, we set the discount factor β = 0.95, a standard value

for an annual model and compare the invariant allocations associated to economies in which the

unitary wages for the first (low growth) occupation from 1/5, to a much higher value, 5. For each

of these values of w1, we compute the implied growth rate of the economy, i.e. the Perron root of

the matrix M associated to that w1. To complement the discussion, we also compute the implied

mobility of workers and human capital, which in the BGP can be measured as the fraction of

workers and human capital that gets reallocated from each occupation to a different one:

mobility of workers = 1−
J
∑

j=1

µ (j, j) θbgp(j),

mobility of human capital = 1−

∑J
j=1 M (j, j)Hbgp(j)

GH

,

where θbgp(j) and Hbgp(j) are the asymptotic (invariant) shares of workers and human capital in

occupations j along the BGP associated to each value for w1.
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Figure 2: Aggregate Growth and Reallocation for Different Relative Wages

Figure 2 shows the implied growth rate (right axis) and the degree of mobility of workers and

human capital (left axis) in the BGP associated to each w1. First of all, notice that there is an

overall negative relationship between the unitary salary of the stagnant and rigid occupation, w1,

and the overall growth of the economy. The intuition for this result is straightforward: when those
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occupations pay really high wages, most workers would end up forgoing their growth opportunities.

More interestingly, the effects on the growth rate can be substantial even if β = 0.95 and the future

is highly valued by workers.

The comparison of the implied reallocation of workers and human capital across the BGP of the

different economies is also interesting. When wages in occupation 1 are very high, most workers are

allocated into that occupation, and mobility to occupations 2 and 1 is low. Similarly, when wages

in occupation 1 are really low, most workers would be in occupations 2 and 3, and overall mobility

would be low as well. Interestingly, the growth rate of the overall economy can be increasing in the

wage of the low-growth occupations, because those occupations provide additional labor market

opportunities and workers avoid having to opt for very low realizations of ǫ2, ǫ3.

3 The General Equilibrium Model

We now set up our general equilibrium environment. First, we specify the production of final goods,

which defines the demand for the different types of labor and capital and the production price

of final goods. Second, we define competitive equilibria, where the price of goods, labor services

and capital clear all markets. Third, we provide a sharp characterization of the intratemporal

equilibrium conditions. Finally, we prove the existence of balance growth path (BGP) equilibria,

and discuss the sources of growth in this economy, which includes the sustained accumulation of

skills of workers as they switch occupations over their life-cycle.

3.1 The Environment

3.1.1 Production

We consider multiple types of workers and physical capital as factors of production of final goods.

Our setting encompasses features of the standard neoclassical model and of recent models of substi-

tution between workers and machines (e.g. Acemoglu and Restrepo (2018)), both of them within

a worker-task assignment model (e.g. Costinot and Vogel (2010).) First, as in standard macro

models, we allow for some forms of physical capital to operate as a complementary factor of all

forms of labor. Second, as in Acemoglu and Restrepo (2018), we also allow some forms of physical

capital (machines) to compete with workers in the performance of tasks. As Costinot and Vogel

(2010), different types of workers must be be assigned across multiple production tasks according

to their comparative advantage, which is determined in general equilibrium. The resulting multi-

dimensional production setting allows for technological changes that have a heterogeneous impact

on the different types of labor.

Consider an economy with a single final good, which is produced according to a Cobb-

Douglas over some forms of physical capital, Kt, which encompasses structures and some forms of
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equipement, and a bundle of tasks, Qt,

Yt = (Kt)
ϕ (Qt)

1−ϕ ,

where 0 < ϕ < 1. The bundle of tasks Qt is given by a CES production function defined over

many tasks. The provision of quantities qt(x) ≥ 0 for each task x in the continuum [0, 1], give

raise to a bundle of tasks Qt in the amount

Qt =

(
∫ 1

0

[qt(x)]
η−1
η dx

)

η
η−1

,

at time t. The quantity qt (x) of each task x is performed using different types of labor and/or

capital (machines.) In particular, extending the framework of Acemoglu and Restrepo (2018), we

assume that machines and all the j = 1, ...J types of labor are perfect substitutes to each other in

the production of each task x. The production function of qt(x) is described by

qt(x) = zMt (x)Mt(x) +
J
∑

j=1

zjt (x)H
j
t (x), (9)

where zjt (x) is the productivity of labor type j in task x, and zMt (x) is the productivity of machines

in task x. Here, Hj
t (x) and Mt(x) are total effective units of labor j and machines used in task x.

For tractability, we assume that for all x ∈ [0,1] and periods t, the productivities of all labor

types j and machines, respectively, zjt (x) and zMt (x) are distributed i.i.d. Frechet. We assume

that across all labor types j and machines, the productivity distributions have a common shape

parameter ν > 1 and heterogeneous scale parameters Aj
t > 0 and AM

t > 0. In this way we can

use the results in Eaton and Kortum (2002) to further characterize optimal demands of factors of

production for the different tasks and the over production cost of the good as we discuss below.

3.1.2 Capital Owners

We assume a that both forms of physical capital, machines Mt and structures and other equipment

Kt are owned by a separate set of households. These households, which we call these households

‘capital owners,’ have a constant population with measure 1. Capital owners have standard pref-

erences, given by

UK
t =

∞
∑

s=0

βt

(

cKt
)1−γ

1− γ
, (10)

where, for simplicity, we have assumed that the discount factor β and the CRRA γ have the same

values as those of the workers, however, we need to assume γ > 0 for an interior solution on the

investment problem.

Capital owners rent out both forms of physical capital to firms, taking as given the rental price
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of machines, rMt and of structures and other equipment, rKt . We follow Lucas and Prescott (1971)

and Eaton et al (2016) and assume that both forms of capital accumulate over time according to

Kt+1 =
(

1− δK
)

Kt + ξK
(

IKt
)̟K (Kt)

1−̟K , and (11)

Mt+1 =
(

1− δM
)

Mt + ξM
(

IMt
)̟M (Mt)

1−̟M . (12)

Here, δK and δM are both in [0, 1], and are the depreciation rates of the two forms of capital.

The parameters ̟K , ̟M are both in (0, 1], and give raise to curvature in investment, reducing

the return to investments IKt , IMt as they grow relative to the respective the pre-existing capital

stocks. Both investments IKt , IMt are in units of the final good. The strictly positive terms ξK

and ξM capture investment specific productivities.

Capital owners can freely borrow or lend at the gross (real) interest rate Rt. We denote by

Bt the net financial position of the representative capital owner in period t. In terms of financial

markets, below we consider two polar cases. First, we consider a small open economy in the

interest rate Rt in every period is taken exogenous from international capital markets. Second, we

consider a closed economy equilibrium in which Bt = 0 for all periods.

3.2 Competitive Equilibria

We assume all labor, capital and goods markets are perfectly competitive. Taking as given the

sequence
{

Pt, w
j
t , r

K
t , rMt , Rt

}∞

t=0
of goods prices, the unitary skill price for jobs of all types j =

1, ..., J and the rental rate of both forms of capital, firms and households maximize their current

profits and expected lifetime utilities, respectively. To formally define competitive equilibrium in

this environment, we first define the individual problems of firms and workers and outline the

market clearing conditions.

3.2.1 Workers’ Optimization and Labor Supply

The maximization problem of each of the workers is simply the time-varying extension of the

problem characterized in Section 2. For brevity, we consider here only the case of γ > 1, as the

other cases are similar. In any event, for every t, j and h, the expected normalized values
{

vℓt
}J

ℓ=1

solve the problem recursion:

vjt =
(wj

t )
1−γ

1− γ
− β Γ

(

1−
1− γ

α

)

[

J
∑

ℓ=1

(−vℓt+1)
α

1−γ (τjℓλℓ)
α

]

1−γ
α

, (13)

and the optimal occupation choices, i.e. transitions from any j to any ℓ are given by

µt (j, ℓ) =

[

λℓτjℓ
(

−vℓt+1

)
1

1−γ

]α

∑J
k=1

[

λkτjk
(

−vkt+1

)
1

1−γ

]α , (14)
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where
{

vℓt+1

}J

ℓ=1
solves the problem for the subsequent period. Similarly, the transition matrix for

aggregate human capital from occupation j to occupation ℓ for the time-varying case is simply

Mt (j, ℓ) = Γ

(

1−
1

α

)

τjℓ λℓ [µt (j, ℓ)]
1− 1

α . (15)

The implied laws of motion for the population of workers and aggregate human capital across

occupations are, respectively

θt+1 = µT
t θt, (16)

and

Ht+1 = MT
t Ht, (17)

for initially given θ0 and H0.

3.2.2 Firms’ Optimization and Labor Demand

In this setting, productivity differences and the linearity of qt(x) ensures that, except for a measure

zero, each of the tasks will be provided by only one type of labor j or by only machines, according

to their comparative advantage. To see this, let wj
t be the unitary price of effective labor j and

rMt be the rental rate of a machine at time t. Because of perfect substitution, the minimum cost

of producing qt(x) units of task x is

Ct [q (x)] = q(x)×min

{

w1
t

z1t (x)
,
w2

t

z2t (x)
, . . . ,

wJ
t

zJt (xi)
,

rMt
zMt (x)

}

. (18)

Clearly, the ratios between factor prices and productivities determine whether one of the labor

types or machines will take care of a particular task.7 Optimizing firms will minimize the cost of

producing the aggregate bundle of tasks. The unitary cost, CQ
t , is the solution of the program:

CQ
t = min

qt(x)

∫ 1

0

C [qt (x)] dx s.t.

(
∫ 1

0

[qt(x)]
η−1
η dx

)

η
η−1

= 1. (19)

Finally, given the rental price rKt for physical capital Kt, and the unitary cost of tasks CQ
t , the

competitive price of final goods is simply given by

Pt =
[

ϕ−ϕ (1− ϕ)ϕ−1] (rKt
)ϕ
(

CQ
t

)1−ϕ

. (20)

The next proposition characterizes the solution of the firms’ optimization problem:

7Acemoglu and Restrepo (2018) considers two factor economies, i.e. machines and one type of labor. Here,
we consider a multidimensional setting where cutoffs and the assignments of workers and machines to tasks are
randomly determined for tractability.
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Proposition 2 Assume zjt (x) and zMt (x) are distributed i.i.d. Frechet, all with shape parameter

ν > 1 and heterogenous scale parameters: Aj
t > 0 for labor type j and AM

t > 0 for machines.

Then, for all tasks x, the probability that labor from occupation j implement the tasks is

πj
t =

(wj
t )

−ν(Aj
t)

ν

(rMt )−ν(AM
t )ν +

∑J
ℓ=1(w

ℓ
t)

−ν(Aℓ
t)

ν
, (21)

while the probability that the task is implemented by machines is

πM
t =

(rt)
−ν(AM

t )ν

(rMt )−ν(AM
t )ν +

∑J
ℓ=1(w

ℓ
t)

−ν(Aℓ
t)

ν
. (22)

The resulting unitary cost of producing the aggregate bundle of tasks, Qt, is

CQ
t = Γ

(

1 +
1− η

ν

)
1

1−η

[

(rMt )−ν(AM
t )ν +

J
∑

ℓ=1

(wℓ
t)

−ν(Aℓ
t)

ν

]−1/ν

. (23)

Moreover, the competitive price the final goods is given by

Pt = Φ0

(

rKt
)ϕ

[

(rMt )−ν(AM
t )ν +

J
∑

ℓ=1

(wℓ
t)

−ν(Aℓ
t)

ν

]

ϕ−1
ν

, (24)

where Φ0 ≡
Γ(1+ 1−η

ν )
1−ϕ
1−η

ϕϕ(1−ϕ)1−ϕ > 0.

3.2.3 Capital Owners

Given an initial level of both forms of physical capital,K0 > 0,M0 > 0, the initial financial position

B0 and the sequence of good prices, capital rental rates, and interest rates,
{

Pt, r
K
t , rMt , Rt

}

∞

t=0
,

define the budget constraint, for any period t, as

rMt
Pt

Mt +
rKt
Pt

Kt +RtBt = cKt + IKt + IMt +Bt+1, (25)

where the laws of motion for Mt and Kt are given (12), (11), respectively.

Proposition 3 Under the conditions just stated, the program of consumption, investments and

capital stocks,
{

cKt , I
K
t , IMt , Kt+1,Mt+1, Bt+1

}

∞

t=0
, that maximizes (10) is characterized by a stan-
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dard transversality condition, and three Euler equations that can be written as:

Rt+1 = β−1

(

cKt+1

cKt

)γ

, (26)

rKt+1

Pt+1

=
Rt+1

(

IKt
Kt

)1−̟K

−
[

(1−̟M)
(

Kt+2

Kt+1

)

+
(

1− δK
)

̟K

] (

IKt+1

Kt+1

)1−̟K

̟KξK
, (27)

rMt+1

Pt+1

=
Rt+1

(

IMt
Mt

)1−̟M

−
[

(1−̟M)
(

Mt+2

Mt+1

)

+
(

1− δM
)

̟M

] (

IMt+1

Mt+1

)1−̟M

̟MξM
. (28)

Having characterized the individual optimality conditions of all agents in the economy, we now

define and characterize the competitive equilibria in this economy.

3.2.4 Competitive Equilibrium

The aggregate demand for each type of labor j, for structures and other equipment, and for

machines is as follows: The total payments to workers in occupation j is given by

wj
t H

j
t = (1− ϕ) πj

t Pt Yt. (29)

Similarly, the total payments for the rental of machines is

rMt Mt = (1− ϕ) πM
t Pt Yt. (30)

Finally, the total payments for the rental of structures and other equipment is

rKt Kt = ϕPt Yt.

Having laid out the individual optimization problems and the market clearing conditions, we

define a competitive equilibrium as follows:

Definition 1 Given an initial population of workers and their human capital,
{

θj0, H
j
0

}J

j=1
, initial

stocks of machines and other physical capital {M0, K0}, and exogenous sequences
{

Aj
t , A

m
t

}∞

t=0

an equilibrium is (i) a price system
{

wj
t , Pt, r

K
t , rMt , Rt

}∞

t=0
, (ii) individual worker occupation

decisions
{

vjt ,µt

}∞

t=0
, (iii) individual firm tasks-allocation choices

{

πj
t , π

M
t

}∞

t=0
, (iv) aggregate

vectors of workers and human capital across occupations, stocks of machines and other physical

capital, {θt, Ht,Mt, Kt}
∞

t=0, and, (v) aggregate output, worker and human capital reallocations,

and flows of investments and of consumption of the owners of capital,
{

Yt, µt, Mt, I
K
t , IMt , cKt

}

∞

t=0

such that: (a) Given
{

wj
t , Pt, r

K
t , rMt

}∞

t=0
, the workers lifetime optimization

{

vjt ,µt

}∞

t=0
are given

by (13) and (14); the firms optimize production, i.e.
{

πj
t , π

M
t , Pt

}∞

t=0
are given by (21), (22),

and (24); and capital owners invest optimally, i.e. according to (25), (27), and (28.) (b) factor
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markets clear, i.e. (29), (30) hold for every t, and (c) the population of workers and human

capital allocation evolve according to (16) and (17 .)

We now characterize the prices that clear the market in every period given an exogenous level

for productivities
{

Aj
t , A

M
t

}

, and some pre-determined levels of aggregate supplies Hj
t , Mt and Kt.

3.3 Static Market Clearing Conditions

We now consider the intratemporal equilibrium conditions, which, taking as given the period’s

stock of physical and human capital:

The following proposition characterizes the intratemporal equilibrium conditions:

Proposition 3 Aggregation, Intratemporal Equilibrium. Given pre-determined aggregate

variables,
{

Kt, Mt, H
j
t

}

, the intratemporal competitive equilibrium condition imply that the ag-

gregate output of tasks and final goods {Qt, Yt} and the equilibrium prices of
{

Kt, Mt, H
j
t

}

, are

given as follows: (a) the total output of bundles of tasks, Qt, is

Qt = Γ

(

1 +
1− η

ν

)
1

η−1

[

(

AM
t Mt

)
ν

1+ν +
∑

ℓ

(

Aℓ
tH

ℓ
t

)
ν

1+ν

]
1+ν
ν

; (31)

(b) the total output of goods,Yt, is

Yt = Γ

(

1 +
1− η

ν

)

(1−ϕ)
η−1

(Kt)
ϕ

[

(

AM
t Mt

)
ν

1+ν +
J
∑

ℓ=1

(

Aℓ
tH

ℓ
t

)
ν

1+ν

]

(1+ν)(1−ϕ)
ν

. (32)

(c) The equilibrium real rental rate of capital ρKt ≡ rKt /Pt, is

ρKt = ϕΓ

(

1 +
1− η

ν

)
1−ϕ
η−1

[

(

AM
t

Mt

Kt

)
ν

1+ν

+
J
∑

ℓ=1

(

Aℓ
t

Hℓ
t

Kt

)

ν
1+ν

]

(1+ν)(1−ϕ)
ν

. (33)

(d) The equilibrium real rental rate of machines ρMt ≡ rMt /Pt, is

ρMt ≡ (1− ϕ) Γ

(

1 +
1− η

ν

)
1−ϕ
η−1
(

Kt

Mt

)ϕ
[

(

AM
t

)
ν

1+ν +
J
∑

ℓ=1

(

Aℓ
t

Hℓ
t

Mt

)

ν
1+ν

]

1−ϕ(1+ν)
ν

(

AM
t

)
ν

1+ν . (34)

(e) The real unitary wages for occupations j = 1, ..., J , ωj
t ≡ wj

t/Pt,are

ωj
t = (1− ϕ) Γ

(

1 +
1− η

ν

)
1−ϕ
η−1
(

Kt

Hj
t

)ϕ
[

(

AM
t

Mt

Hj
t

)
ν

1+ν

+
J
∑

ℓ=1

(

Aℓ
t

Hℓ
t

Hj
t

)

ν
1+ν

]

1−ϕ(1+ν)
ν

(

Aj
t

)

ν
1+ν .

(35)
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These simple aggregation results, which are derived in the appendix, will be used later in our

characterization for the equilibrium dynamics of the model. We first examine stationary environ-

ments, balanced growth paths, and then examine the dynamic evolution of the economy after a

shock that changes the relative productivity of machines and workers of different occupations.

Discussion: Implications for the Labor Share

Some results are worth highlighting. In particular, the expressions in Proposition 2 together with

equilibrium conditions (29) and (30) characterize the labor share of the economy as a function of

the levels of technology A, wages and rental rate, a result we highlighted in the introduction. In

particular, the labor share of the economy is equal to 1−
[

(1− ϕ)πM
t + ϕ

]

. While ϕ, the share of

income devoted to structures in our model, is constant, the share of equipment (1−ϕ)πM
t depends

endogenously on technology, wages and the rental rate, and, for example, an increase in AM
t will

lead to a decrease in the labor share. Similar to Acemoglu and Restrepo (2018), the labor share of

our economy depends on how efficient are machines in performing differnet tasks relative to labor.

In our case, we have several different types of labor, yet the analysis remains tractable.

3.4 Dynamics

We now consider the dynamic behavior of the economy. We first consider the time-invariant equi-

libria, when the economy follows a balanced-growth paths (BGP). We then consider the behavior

of the economy outside the BGP, that is, the dynamic equilibrium responses of the economy to

changes in, for example, the underlying productivities of both labor and machines.

3.4.1 Balanced Growth Paths (BGP)

Consider now an economy in which the productivity of factors remain constant over time Aj >

0, AM > 0. A time invariant equilibrium would accrue when all the prices of physical and

human capital remain constant. The intratemporal equilibrium conditions for real factor prices
(

ρK , ρM , ωj
)

of all factors must remain constant and satisfy

ρK = ϕΓ

(

1 +
1− η

ν

)
1−ϕ
η−1

[

(

AM M

K

)
ν

1+ν

+
J
∑

ℓ=1

(

AℓH

K

)
ν

1+ν

]

(1+ν)(1−ϕ)
ν

, (36)

ρM = (1− ϕ) Γ

(

1 +
1− η

ν

)
1−ϕ
η−1
(

K

M

)ϕ
[

(

AM
)

ν
1+ν +

J
∑

ℓ=1

(

AℓH
ℓ

M

)

ν
1+ν

]

1−ϕ(1+ν)
ν

(

AM
)

ν
1+ν , (37)

ωj = (1− ϕ) Γ

(

1 +
1− η

ν

)
1−ϕ
η−1
(

K

Hj

)ϕ
[

(

AM M

Hj

)
ν

1+ν

+
J
∑

ℓ=1

(

AℓH
ℓ

Hj

)

ν
1+ν

]

1−ϕ(1+ν)
ν

(

Aj
)

ν
1+ν ,(38)

where K/M , M/Hℓ and Hℓ/Hj are the factor ratios that must remain constant over time.
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As shown in the previous section, even with stationary prices, the aggregate human capital

in each of the occupations j may grow over time. Hence, instead of looking for steady states,

we now characterize the set of balanced-growth paths (BGP) where at constant rates, i.e. for all

j = 1, ..., J and t ≥ 0, we can write:
Hj

t+1

Hj
t

= GH ,

for some gross growth GH > 0. The equilibrium growth rate GH is determined as follows. First,

given real wages {ωj}
J
j=1, workers solve a time invariant BE, which for γ > 1 has the form

vj =
(ωj)1−γ

1− γ
− β Γ

(

1−
1− γ

α

)

[

J
∑

ℓ=1

(−vℓ)
α

1−γ (τjℓλℓ)
α

]

1−γ
α

,

exactly as as in Theorem 1. The formulae for µ and M are the same as in Section 2, and therefore,

the growth rate of all forms of human capital Hj will be govern by the Perron root of M, which,

as shown there, is unique, real and strictly positive. Second, given a growth rate GH , the Euler

equations (27) and (28) of capital owners require that the rental rates of both forms of physical

capital satisfy

ρK =

[

R−
(

1− δK
)

̟K − (1−̟K) (GH)
]

̟KξK

[

GH −
(

1− δK
)

ξK

]

1−̟K
̟K

, (39)

ρM =

[

R−
(

1− δM
)

̟M − (1−̟M) (GH)
]

̟MξM

[

GH −
(

1− δM
)

ξM

]

1−̟M
̟M

. (40)

where we have used that the investment-to-capital ratios consistent with GH are given by IK/K =
{[

GH −
(

1− δK
)]

/ξK
}

1
̟K and IM/M =

{[

GH −
(

1− δM
)]

/ξM
}

1
̟M .

Here, we consider two possibilities: (a) Small Open Economies (SOE): where the interest rate

is exogenously given R = R∗. In this case, the consumption of the capital owners will also grow

at a constant rate, cKt+1/c
K
t = (βR∗)

1
γ , but this growth rate needs not be equal to the growth rate

GH . (b) Closed Economies: In this case, the growth rate GH also determines the interest rate,

R = β−1 (GH)
γ in equations (39) and (40.)

For concreteness, we use the following definition.

Definition 2 A BGP is a vector of factor prices
(

ρK , ρM , ωj
)

, an interest rate R, a growth rate

GH , a positive vector H ∈ R
J
++ of aggregate human capitals, a positive pair (K,M) of physical

capital and individual solutions for the workers problems {v, µ,M} such that: (a)
(

ρK , ρM , ωj
)

solve the intratemporal conditions (36), (37) and (38) for H,K,M ; (b) The growth rate GH is

the Perron root of M and H is the eigenvector associated to that root. (c) Given GH and H,

ρK , ρM satisfy the Euler equations (39) and (40.) (d) Given ωj, {v, µ} solves the individual

worker’s optimal occupation choice problem and M is the associated transition function for the
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aggregate human capital. If (1) R = R∗ for some exogenous R∗ > 1, then the BGP is also BGP

equilibrium for a small open economy. If instead (2) R = β−1 (GH)
γ, then the above BGP

is also a BGP equilibrium for a closed economy.

The most familiar case is that of a SOE under the standard investment model, i.e. ̟K =

̟M = 1. In that case the rental rates of both capitals are uniquely pinned down by ρK =
[

R∗ − 1 + δK
]

/ξK and ρM =
[

R∗ − 1 + δM
]

/ξM and independent of the growth rate GH . Yet, al-

beit the values for the parameters ̟K , ̟M and the distinction between open and closed economies

may be important for the equilibrium allocations, proving existence and uniqueness of a BGP in

this economy, does not really really matter, since, as we show in the appendix, the structure of

the model implies that the behavior of both Mt and Kt is driven by the behavior of Ht. In the

appendix we provide a proof of the following:

Theorem 2 Consider an economy that satisfies the parameter restrictions laid out above. More-

over, assume a constant, strictly positive vector of productivities
(

{Aj}
J
j=1 , A

M
)

, and that the

conditions for Theorem 1 hold. Then: (a) There exist a time invariant {v, µ} that solve the in-

dividual worker’s problem. (b) The transition matrix µ has a invariant distribution of workers,

i.e., θ∞ = µT θ∞, with θj
∞

> 0 and
∑J

j=1 θ
j
∞

= 1. (c) There is exists an equilibrium BGP.

Proving uniqueness of the BGP has been more elusive for the general case. We can easily

verify fairly lax sufficient conditions for the case of two occupations, i.e. J = 2 where the Gross

Substitutes property holds. We present the details in Appendix A.8

3.5 Transitions: Dynamic Hat Algebra

Having established the conditions for a BGP, in this section we examine the implied dynamics of

the model outside a BGP. To this end, in this section we extend the Dynamic Hat Algebra (DHA)

methods of Caliendo, Dvorkin, and Parro (2019) to a model with general CRRA preferences,

human capital accumulation and endogenous growth.

Proposition 3 Dynamic Hat Algebra. If initial allocations of workers and human capi-

tal across occupations, θjt−1 > 0, Hj
t−1 > 0, transition matrices of workers and human capital,

µt−1,Mt−1, and factor payments are all observed, and the values for the discount factor β, the

CRRA coefficient γ, and the curvature parameters α and ν, are estimated or calibrated, then:

(a) the sequential equilibrium of this economy can be written in changes relative to the BGP. (b)

Given an unanticipated change in machines or workers’ productivity levels,
(

{Aj}
J
j=1 , A

M
)

, we

can compute the sequential equilibrium of this economy in changes relative to the new BGP. (c)

For both (a) and (b), it is not necessary to know the value of all other parameters as long as they

remain constant.

8 For the general case, we have an iterative algorithm to check uniqueness. In our computational exercises and
under our preferred calibration, we use different initial guesses and always obtain the same BGP.
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The proof of the proposition is in Appendix B, where we also lay down the equations that

describe the model in changes relative to a BGP.

Using dynamic-hat-algebra methods is particularly convenient for the computation of the model

for two reasons. First, the levels of a large set of parameter values, like τ , λ, A are not needed to

calibrate the model o to perform counterfactual analysis, only the changes in these parameters are

required. This implies that the calibration exercise is less demanding. Second, the level of many

of the model’s endogenous variables are not needed and the initial and terminal values for many

endogenous variables expressed in changes are easy to characterize.

4 Technological Advances and the U.S. Labor Markets

In this section, we use our model to quantitatively explore whether a sequence of labor-saving

technological changes (LSTC) can jointly account for two salient trends in the U.S. economy, as

observed during the last forty years. On the one hand, the output share of labor has declined

substantially, around 5% as documented by Karabarbounis and Neiman (2013) since 1980. On the

other hand, there has been a remarkable polarization in employment and earnings in U.S. labor

markets and an increase in overall wage inequality, as summarized by Acemoglu and Autor (2011).

Like these authors, we highlight technological changes as an explanation for production shifts from

workers to machines. However, our emphasis is on the ensuing reallocation of workers from some

occupations that are losing their race with machines to other occupations that are winning it. We

first describe our sources of data and our calibration strategy. In particular, we justify our use of

observed data for the U.S. in the 1970s as an initial equilibrium BGP, explaining the moments we

match. Then, we describe how we set the values for some key parameters. Next, we describe how

we use data on the relative price of equipment and occupation shares to calibrate the sequence of

LSTC hitting the economy since the early 1980s. The comparison of the model with LSTC vs.

the underlying economy without them enables us to ascertain how much the model replicates the

increased inequality observed in the data since 1980.

4.1 Data and Initial Equilibrium

We assume that a BGP of our economy well approximates the equilibrium conditions of the U.S.

economy by the end of the 1970s to. To match the initial equilibrium conditions of our model to

the U.S. at that time, we use a reliable source of microdata of occupational mobility and earnings

dynamics with a panel dimension. Following Kambourov and Manovskii (2013), we use the Panel

Study of Income Dynamics (PSID) which from 1968 to 1980 has been corrected to avoid occupation

miss-classifications and spurious switches. Typically, the choice of the level of disaggregation

for occupations has to balance computational costs and sample sizes of available data. Given

the relatively small sample of the PSID, the latter is the limiting constraint for our exercise.
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Table 1: U.S. in the 1970s: Workers Occupational Transition Matrix µ−1

From \To Managers Profess. Service Sales Office Construct’n Repair Product’n Moving

Managers 0.91 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01
Profess. 0.03 0.88 0.02 0.01 0.01 0.01 0.03 0.02 0.01
Service 0.03 0.02 0.85 0.01 0.01 0.01 0.03 0.02 0.02
Sales 0.04 0.03 0.03 0.79 0.02 0.01 0.04 0.03 0.02
Office 0.04 0.03 0.02 0.02 0.80 0.01 0.04 0.02 0.02
Construct’n 0.06 0.05 0.04 0.03 0.03 0.67 0.07 0.04 0.03
Repair 0.02 0.01 0.01 0.01 0.01 0.00 0.92 0.01 0.01
Product’n 0.03 0.02 0.02 0.01 0.01 0.01 0.03 0.86 0.01
Moving 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.02 0.82

We calibrate our model to nine broad occupations: (1) Management, business, and financial

operations occupations; (2) Professional and related occupations; (3) Service occupations; (4)

Sales and related occupations; (5) Office and administrative support occupations; (6) Construction

and extraction occupations; (7) Installation, maintenance, and repair occupations; (8) Production

occupations; and (9) Transportation and material moving occupations.9 For brevity, in what

follows, we refer to these occupations simply as Managers, Professionals, Service, Sales, Office,

Construction, Repair, Production, and Transportation, respectively. We take a period in our

model to represent a year. Then, we estimate the yearly occupational mobility matrix µ using the

Poisson Maximum-Likelihood methods proposed by Silva and Tenreyro (2006).10

Table 1 reports the estimated matrix µ for the U.S. economy in the 1970s. As expected, there is

substantial persistence in occupation choices, as can be seen in the diagonal of the estimated matrix

µ which exceedingly dominates the off-diagonal terms. There is also substantial variation in the

degree of persistence across the different occupations. On the upper end, 91% of managers remain

in managerial occupations for the following year. On the lower end, just 67% of construction

workers stay in those jobs, and a non-negligible percentage of them move to other occupations.

We similarly estimate the matrix M, using the information on earnings dynamics for occu-

pational switchers and stayers. Consistent with the BGP in our model, we assume that unitary

wages are invariant in a BGP, and hence, the source of earnings growth in the initial BGP is

only the change in the human capital of workers. Moreover, as with other Roy models, we cannot

distinguish the level of unit wages w and the total number of efficiency units of labor (or units

of human capital) h across occupations. We proceed by normalizing the initial vector of unitary

wages w to be all equal to one and estimate the matrix M by the product of the matrix of aver-

age earnings changes for occupational switchers and stayers by occupation and the matrix µ, as

9We exclude farming, fishing, and forestry occupations, because they account for a minimal share of U.S.
employment and the PSID includes very few observations in the sample.

10In this way, the small size of our sample for some transitions would have less influence in our estimated moments
than on the estimates directly using shares from the data, i.e., using bin estimators. We obtain similar results using
a logit estimator as in Kambourov and Manovskii (2008).
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Table 2: U.S. in the 1970s: Human Capital Occupational Transition Matrix M−1

From \To Managers Profess. Service Sales Office Construct. Repair Product’n Moving

Managers 0.93 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.01
Profess. 0.03 0.91 0.02 0.01 0.01 0.01 0.03 0.02 0.01
Service 0.03 0.02 0.87 0.01 0.01 0.01 0.03 0.02 0.02
Sales 0.05 0.03 0.03 0.82 0.02 0.01 0.05 0.03 0.02
Office 0.04 0.03 0.02 0.02 0.82 0.01 0.04 0.03 0.02
Construct. 0.07 0.05 0.04 0.03 0.03 0.69 0.07 0.04 0.03
Repair 0.02 0.01 0.01 0.01 0.01 0.00 0.93 0.01 0.01
Product. 0.03 0.02 0.02 0.01 0.01 0.01 0.03 0.86 0.01
Moving 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.02 0.83

Table 3: U.S. in the 1970s: BGP Shares of Workers and Human Capital Across Occupations

Managers Profess. Service Sales Office Construct Repair Product’n. Moving
Workers: 0.23 0.14 0.09 0.05 0.05 0.02 0.26 0.10 0.06
Human Capital: 0.24 0.14 0.10 0.05 0.06 0.02 0.25 0.09 0.06

implied by our model.11 Table 2 reports the initial BGP M estimated from the data.

As expected, there are similarities between the matrices M−1 and the matrix µ. However,

recall that M−1 is not a stochastic matrix. Indeed, its largest eigenvalue is 1.023, implying that

our initial BGP has a growth rate of 2.3% per year. Moreover, notice that the ratio between

each entry of the matrix M with the corresponding entry of the matrix µ gives an estimate of

the expected (average) evolution of human capital for the occupational switchers, conditional on

switching. The range for this ratio is between 0.96 and 1.16.

From the estimated transition matrices µ−1 and M−1, we can compute the implied shares of

workers and of aggregate human capital distributed across occupations. The first one is the unique

invariant distribution associated to µ−1, while the second one is the eigenvector associated to the

Perron root of M−1, normalized to add to 1. Table 3 reports these estimated share in the initial

BGP.

We can informally test the assumption that the economy is initially in a BGP by comparing

the actual data on employment shares, θ0, and earnings share –or share of human capital by

occupation– with those implied by the estimated transition matrices. Figure 3 provides the two

comparisons. We can see that the allocations in the data and the ones implied by the mobility

matrices are very highly correlated and are of roughly the same magnitude, laying very close to

the 45-degree line.

We calibrate the risk aversion parameter γ to 2, a typical value in the macroeconomics liter-

ature. Similarly, we calibrate the discount rate β to 0.95, a standard value for an annual model.

The parameter α directly affects the dynamics of earnings and, other things equal has a direct inci-

dence on the amount of earnings inequality. We assume a value of 25 which implies that permanent

11 This normalization is inconsequential for the results since any other normalization for w would lead to a
different level of the individual components of the vector of human capital H.
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Figure 3: Data vs BGP implied allocations

earnings shocks at the individual level do not have a large variance, consistent with the empirical

literature on earnings dynamics (Lillard & Willis, 1978; MaCurdy, 1982). Over time, however, the

accumulation of these shocks can generate substantial inequality in the cross-section.12

We use information on National Income and Product Accounts and input output tables to

calibrate the share of income going to structures and going to equipment ϕ and (1−ϕ)πM
0 . Given

our previous assumptions, there is a direct link between the initial shares of income by occupations

(1− ϕ)πj
0 and the aggregate human capital by occupation Hj

0 .

The parameter ν governs the degree of dispersion in the productivity of the different types of

labor and machines in the production of tasks. We set ν to 4 and analyze how our results change

as we vary the value for this parameter.

12In the model presented in the previous sections, agents have infinite lifetimes. While we showed that the
first moment of the distribution of human capital is well defined under some parameter restrictions, the whole
distribution of human capital and earnings may not stabilize over time. In Appendix C we present a model
with stochastic death. In this case, the worker has a slightly lower discount factor, but otherwise, it is identical.
We assume that entering individuals are initially assigned to the same occupation as the individuals exiting the
economy. However, we assume that the cross-section of these new entrants has the same average human capital but
much smaller variance. With this modification, we preserve all of the formulas we presented in the previous section
on the evolution of the mass of workers and human capital over occupations still hold under these assumptions but
we achieve a stationary distribution of human capital in our simulations.
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4.2 The Effects of an Asymmetric Labor-Saving Technological Change

Having set up the economy in a BGP as of 1980, we now use the model to capture the response to a

long-lasting episode of labor-saving (LSTC) that may be asymmetric across the workers in different

occupations. To this end, we use the information contained in the relative price of equipment and

on the employment shares of the different occupations. We calibrate the LSTC as a change in

the sequences of Aj
t and AM

t from t = 1 to t = 30, i.e., changes from 1980 to 2010. We assume

perfect foresight on behalf of workers and capital owners in the economy. Specifically, we start the

economy at time 0, 1980, assuming that up to that date, all agents had not anticipated the change

in future TFP. Then, at t = 1, all agents receive the information of the sequence of current and

future LSTC changes and act accordingly, i.e., workers choose occupations according to the new

equilibrium sequence {vjt}
∞

t=1, and capital owners invest in structures and equipment according to

the equilibrium sequence of {ρMt , ρKt }
∞

t=1. Appendix B describes in detail our formulation of the

equilibrium conditions of the economy in relative differences from the initial BGP.

We use the relative price of equipment as the critical piece of information to obtain the under-

lying sequence {AM
t }30t=1 with which we feed the model. The Euler equation for the investment in

equipment, (28), implies an inverse relationship between the rental rate rMt and investment-specific

productivity ξMt . Thus, we follow the literature on skill-biased technical change and use data on

the price of the investment in equipment relative to the price of consumption to calibrate the

evolution of labor-saving technology from 1980 to 2010. However, instead of using an exogenous

change in ξMt , we use (22) and the relationship between ξMt , rMt and AM
t , to derive the required

time series for AM
t . In this way, the model matches the downward trend in the price of equipment.

We use the observed share of earnings by occupations and expressions 21 and 22 to compute

the ratio in {Aj
t}

30
t=1 relative to the series of {AM

t }30t=1 obtained above. For brevity, in what follows

we report our results adopting the grouping proposed by Foote and Ryan (2015): managerial

and professional jobs are classified as “non-routine cognitive,” service jobs are classified as, “non-

routine manual,” sales and office jobs are classified as “routine cognitive.” Finally, construction,

repair, production, and transportation jobs are all grouped as “routine manual.”

The recent literature (Acemoglu & Restrepo, 2018; Karabarbounis & Neiman, 2013) argues

that the decrease in the labor share in the United States and around the world over the last few

decades may be driven by technological change that is biased towards machines. Figure 4.2 shows

the evolution of the capital share in our model along the transition. The red line shows the level of

the capital share in an economy without the LSTC, that is, the original BGP, while the blue line

shows the evolution of the capital share with the LSTC. We see that the capital share increases by

one percentage point over the first 30-year period, with a modest decrease after that. It is worth

highlighting that our LSTC shock is asymmetric and labor productivity increases at a faster pace

in some occupations (non-routine) than the increase in machines productivity. Because of this, the

behavior of the the capital share is not mechanically driven by the increase in machines’ LSTC.

From the lens of our model, the data clearly shows that the sequence of LSTC has had an
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asymmetric effect across different occupations, since the ratios of Aj
t/A

M
t vary differently across the

different occupations j = 1, ..., J. Effectively, what we have is that for non-routine occupations,

Aj
t > Am

t . Using the phrase in Acemoglu and Restrepo (2018), the man wins the race over

machines in these cases. However, for routine occupations, Aj
t < Am

t and the man loses the race

with machines during the 30-year period. Figure 5 shows the changes in the employment shares

of the four broad occupation groups induced by the calibrated LSTC. The largest impact is in

routine-manual occupations, composed of construction, installation and repair, transportation and

production, with a sharp reduction in the employment share of ten percentage points, which is

consistent with the changes observed in the data since 1980. Similarly, the employment share of

routine-cognitive occupations, such as sales and administrative support also falls, but the decrease

is more moderate.

On the other hand, non-routine occupations, which in the data are typically the polar opposites

in terms of wage levels, see the employment share increase. the increase is more pronounced for

the cognitive non-routine occupations, such as management, business, professionals and technical

occupations, with a share 13 percentage points higher due to the shock, than non-routine manual

occupations, which comprises services occupations, with an increase in the share of almost 3

percentage points. In addition,the polarizarion of earnings growth follows a similar pattern: non-

routine cognitive and manual occupations experience the largest growth rate after the shock, while
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Figure 5: Evolution of employment shares by broad occupation groups

routine occupations display the lowest growth rate. All these movements are in line with those

found in the data by Autor and Dorn (2013).

Figure 6 reports the implied responses in the aggregate human capital allocated to the different

occupations. Consistent with the response of employment shares, non-routine occupations (blue

for cognitive, black for manual) increase. For routine-cognitive (red) the aggregate human capital

is substantially reduce, while the response fo routine-manual (magenta) the response is mixed.

Finally, we examine the response of income inequality to a labor-saving technical change. To

this end, we simulate individual earnings histories for a large panel of workers using our model.

The change in unit wages due to technology alters the occupational decisions of workers and their

evolution of human capital. Figure 4.2 shows the evolution of two different measures of inequality.

The left panel of the figure shows the standard deviation of log-earnings with the LSTC shocks

(red-dashed line) than the bechmark case without them (blue-solid line). The right panel shows

the ratio of the 90-10 and 75-25 ratios for the distribution of earnings.

Overall, the figure shows that during the 30 years episode of LSTC, inequality in the economy

rises. The change in relative terms subsides over time. In absolute terms, as shown by Figure 4.2,
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the LSTC increase both average earnings and absolute dispersion. Yet, the impact of LSTC goes

beyond the absolute levels of incomes, since, as we have emphasized in this paper, the growth

rate of the economy depends on the allocation of workers and human capital across occupations.

In this simple exercise, once the economy has stabilized in a new BGP, the growth rate increases

from the initial 2.3 % to a slightly higher 2.4 %.

36



1980 1985 1990 1995 2000 2005 2010

years

0.373

0.374

0.375

0.376

0.377

0.378

0.379

0.38

0.381

0.382

0.383

s
td

 o
f 
lo

g
 e

a
rn

in
g
s

std log incomes

Baseline

LSTC

1980 1985 1990 1995 2000 2005 2010

years

2.34

2.35

2.36

2.37

2.38

2.39

2.4

2.41

ra
ti
o
 9

0
/1

0

1.475

1.48

1.485

1.49

1.495

1.5

1.505

1.51

ra
ti
o
 7

5
/2

5

Percentile Ratios

75/25 Baseline

 75/25 LSTC

Figure 7: Evolution of earnings inequality

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5
Distributions in 1995

Baseline

LSTC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5
Distributions in 2010

Baseline

LSTC

Figure 8: Earnings Distributions, with and without LSTC

5 Conclusion

We develop a dynamic Roy model of occupational choice with human capital accumulation and

use it to explore the general equilibrium effects of new technologies on the labor market. In our

model, infinitely-lived workers can switch occupations in any period to maximize their lifetime

utility. In our setting, a worker’s human capital is driven by his labor market choices, given

idiosyncratic occupation-specific productivity shocks and the costs of switching occupations. We

first characterize the equilibrium assignment of workers to jobs. A key result is that the resulting

evolution of aggregate human capital across occupations ultimately determines the long-run rate

of growth of the economy. We then use the model to quantitatively study how worker’s individual

occupation choices change with the introduction of new technologies, and in turn how this choices

shape the equilibrium allocation of workers to different jobs, the dynamics of aggregate human

capital, the behavior of earnings inequality, the evolution of the labor share, and the welfare of
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the different workers in the economy.

The paper has a number of methodological contributions. First, we fully characterize the so-

lution of the recursive problem of a worker under standard CRRA preferences when the worker

is subject to a large number of labor market opportunities shocks in every period affecting her

comparative advantage in different occupations. Thus, we bridge recent quantitative work that

uses static assignment Roy models with extreme-value shocks with the standard recursive mod-

els for households in macroeconomics. In this way, our model generates transition probabilities

across occupations over time. Second, we fully characterize the asymptotic behavior of aggregate

economies implied by the individual dynamic occupation choices of workers. For any given vector

of skill prices, we show that the economy converges to a unique invariant distribution of workers.

Although the Roy model has been studied and used in great length, we uncover important new

features which are present only in a dynamic context. We show that, generically, the reallocation

of workers to occupations combined with the accumulation of occupational human capital leads

to sustained growth over time for the economy. The growth rate in our model is endogenously

determined by the equilibrium occupational choices, and thus, changes in economic conditions

that alter worker’s choices affect the long-run growth rate of the economy. Third, we embedded

the workers’ problem in a fairly rich general equilibrium environment where different types of

workers are allocated to different tasks in production. We derive a very transparent and tractable

aggregation that arises from the assignment of workers to tasks. Then, we show the existence of

a competitive-equilibrium balanced-growth path, and for a simple version of our model we can

also characterize uniqueness. Fourth, by incorporating two forms of physical capital, we provide

a quantitative framework to study the impact of automation and other labor-saving technologi-

cal improvements on the earnings of different occupations. Our model of production and tasks

generates an intuitive expression that directly links the labor share of the economy with wages,

rental rates and the productivity of different types of labor and capital, allowing us to study the

effects of technology on the labor share of the economy. Fifth, we extend recent dynamic-hat-

algebra methods and show they can be used with more general preferences (CRRA) and with

human capital accumulation. As with other hat-algebra methods, the advantage is a substantially

reduced set of calibrated parameters needed for the quantitative application of the model. Sixth,

we discuss a variety of relevant extensions of our baseline model, ranging from workers’ age and

ex-ante heterogeneity, endogenous on-the-job training and occupation-specific automation.

Using our model we make a number of substantial contributions. Mapping our model to the

moments observed in the 1970s for the U.S. economy, we account for the changes in employment

across occupations and the increase in earnings inequality that arise from labor-saving technolog-

ical advances. An important change observed in U.S. labor markets in the past few decades is

the polarization of skills in the labor market. That is, the decline of employment in middle-skill

occupations, like manufacturing and production occupations, and the growth of employment in

both high and low-skill occupations, like managers and professional occupations on one end, and
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assisting or caring for others on the other. Using our model we show how some labor-saving

technical improvements can jointly explain the increase in polarization, earnings inequality and

occupational mobility in U.S. labor markets.

In addition, our dynamic model highlights the long-lasting impact of permanent, but once-

and-for-all technological changes. Indeed, in our dynamic setting, once-and-for-all changes in

automation or other technological changes can lead to sustained growth effects. Our quantitative

exercise highlight how this growth effect changes the conclusion on earnings inequality and welfare.

We emphasize that the welfare and inequality implications for technological changes can be vastly

richer than those obtained in other settings as they originate not only from changes in skills prices

in each period but also on changes in the equilibrium growth rate of earnings. Thus, on the one

hand, the positive impact on some workers is not only due to higher level of earnings but also from

a faster growth. On the other hand, some workers can be worse-off due to lower levels of earnings

and a higher rate at which they change occupations. These aspects are fully incorporated in our

exercises.

Our theory opens a number of exciting avenues for future research. International trade, off-

shoring, and migration policies, can alter the demand for workers in different occupations in

an asymmetric fashion. Our model highlights how these type of changes affect not only the

distribution of workers and human capital in different occupations, but also affect the long-run

growth of the economy.
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