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Abstract

We propose a method to assess the sensitivity of econometric analyses to the
removal of a small fraction of the sample. Analyzing all possible data subsets of
a certain size is computationally prohibitive, so we provide a finite-sample metric
to approximately compute the number (or fraction) of observations that has the
greatest influence on a given result when dropped. We call our resulting metric the
Approximate Maximum Influence Perturbation. Our approximation is automat-
ically computable and works for common estimators (including OLS, IV, GMM,
MLE, and variational Bayes). We provide explicit finite-sample error bounds on
our approximation for linear and instrumental variables regressions. At minimal
computational cost, our metric provides an exact finite-sample lower bound on sen-
sitivity for any estimator, so any non-robustness our metric finds is conclusive. We
demonstrate that the Approximate Maximum Influence Perturbation is driven by a
low signal-to-noise ratio in the inference problem, is not reflected in standard errors,
does not disappear asymptotically, and is not a product of misspecification. Several
empirical applications show that even 2-parameter linear regression analyses of ran-
domized trials can be highly sensitive. While we find some applications are robust,
in others the sign of a treatment effect can be changed by dropping less than 1% of
the sample even when standard errors are small.

∗We thank Avi Feller, Jesse Shapiro, Michael Kremer, Peter Hull, Tetsuya Kaji, Heather Sarsons,
Kirill Borusyak and the authors of all of our applications for their insightful comments and suggestions.
All mistakes are our own. Corresponding Author: Rachael Meager, reachable at r.meager@lse.ac.uk.
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1 Introduction
Ideally, policymakers will use economics research to inform decisions that affect peo-
ple’s livelihoods, health, and well-being. Yet study samples may differ from the tar-
get populations of these decisions in non-random ways, perhaps because of practical
challenges in obtaining truly random samples without any missing or compromised
data, or because populations generally differ across time and geographic locations.
When these deviations from the ideal random sampling exercise are small, one might
think that the conclusions from economic studies would still hold in the populations
affected by policy. It therefore seems prudent to ask whether a small percentage of a
study’s sample — or a handful of data points — has been instrumental in determin-
ing its findings. In this paper we provide a finite-sample, automatically-computable
metric of how dropping a small amount of data can change empirical conclusions.
We show that the sensitivity to potentially non-random deviations from the target
population is not captured by conventional standard errors. We show that certain
empirical results from high-profile studies in economics can be reversed by removing
less than 1% of the sample even when standard errors are small, and we investigate
why.

There are several reasons to care about whether empirical conclusions are sub-
stantially influenced by small percentages of the finite sample. In practice, even
if we can sample from the population of direct interest, small percentages of our
intended random samples are often missing; either surveyors and implementers can-
not find them, or they refuse to answer our questions or follow our instructions
(“suggestions”), or their answers get lost or garbled during data processing. As this
missingness cannot safely be assumed random, researchers might like to know how
threatening this non-random data leakage could be to their analysis, i.e. whether
their substantive conclusions could conceivably be overturned by that missing hand-
ful of data points. Similarly, consumers of research who are concerned about poten-
tially non-random errors in sample construction at any stage of the analysis might
be interested in this metric as a measure of the exposure of a study’s conclusions
to this concern. Conclusions that are highly influenced by a small handful of data
points are more exposed to adverse events during data analysis, including p-hacking,
even if these errors are unintentional.

Yet even if researchers could construct a perfectly random sample from a given
study population, in practice we will never see that population again. The target
population for our policy decisions is always different from the study population,
if only because the world may change in the time between the research and the
decision. And social scientists often aspire to uncover generalizable truths about
the world and to make policy recommendations that would apply more broadly than
to a single study population.

In this paper, then, we propose to directly measure the extent to which a small
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fraction of a data sample has influenced the central claims or conclusions of a study.
For a particular fraction α (e.g., α = 0.001), we propose to find the set of no more
than 100α% of all the observations that effects the greatest change in an estima-
tor when those observations are removed from the sample — and to report this
change. For example, suppose we were to find a statistically-significant average
increase in household consumption after implementing some economic policy inter-
vention. Further suppose that, by dropping 0.1% of the sample (often fewer than
10 data points), we instead find a statistically-significant average decrease in con-
sumption. Then it would be challenging to argue that this intervention would yield
consumption increases in even slightly different populations.

To quantify this sensitivity, one could consider every possible fraction 1 − α of
the data, and re-run the original analysis on all of these data subsets. But this
direct implementation is computationally prohibitive.1 Consider a small data set
with N = 100 data points and α = 0.05. If the original data analysis took one
second to run, this proposal would take over 871 days to run; see Section 2 for more
detail. The computation is dramatically more expensive in larger data sets. So
instead of directly re-running the data analysis over these data subsets, we instead
propose to use an approximation. Our approximation works for common estimators
— including GMM, OLS, IV, and MLE. Roughly, we give each data point a weight
and apply a Taylor expansion in the weights (Section 2.1 and Section 2.2). We
show that our approximation is fast, automatable, and easy to use (Section 2.4). In
particular, our approximation does not require running any additional data analyses
beyond the original.

We use theoretical analyses, simulation studies, and applied examples to show
that our approximation works. We provide exact, calculable finite sample bounds
on performance for OLS and IV estimators, and we show that the approximation
error is low when the percentage of the sample removed is small (Section 3.2.2).
Moreover, for the cost of a single additional data analysis, we can provide an exact
lower bound on the worst-case change in an analysis upon removing 100α% of the
data (Section 3.2.1). We check that our metric flags combinations of data points
that reverse empirical conclusions when removed (Section 4). For example, in the
Oregon Medicaid study (Finkelstein et al., 2012), we can identify a subset containing
less than 1% of the original data that controls the sign of the effects of Medicaid on
certain health outcomes. In the Mexico microcredit study (Angelucci et al., 2015),
we find a single observation, out of 16,500, that controls the sign of the ATE on
household profit.

We investigate the source of this sensitivity when it arises, and we show that it is
not captured in conventional standard errors. We find that a result’s exposure to the
influence of a small fraction of the sample need not reflect a model misspecification

1Indeed, Young (2019) finds it computationally prohibitive to re-run their analysis when leaving out
every possible subset of two data points.
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problem in the classical sense. Sensitivity according to our metric can arise even if
the model is exactly correct and the data set large, if there is a low signal-to-noise
ratio: that is, if the strength of the claim (signal) is small relative to the size of an
estimator of the standard deviation in the asymptotic distribution of the quantity
of interest (noise) (Section 3.1.1). In OLS this “noise” is large when we have data
points exhibiting a combination of high leverage and large ε̂n (Section 3.1.6). This
noise can be large even when standard errors are small, because unlike standard
errors it does not disappear as N grows large (Section 3.1.4) and because it is
influenced by distributional shape while standard errors reflect only distributional
scale (Section 3.1.3).

We examine several applications from empirical economics papers and find that
the sensitivity captured by our metric varies considerably across analyses in practice.
We find that certain results across the applications we examine are robust up to 5%
and even 10% removal. But we also find cases where the sign and significance of
certain estimated treatment effects can be reversed by dropping less than 1% of the
sample. We sometimes see this reversal even when the t-statistics are very large and
inference is very precise, as in the Oregon Medicaid RCT (Finkelstein et al., 2012),
in Section 4.1. In Section 4.2, we show that trimming outliers in the outcome data
does not necessarily reduce sensitivity by examining the Progresa Cash Transfers
RCT (Angelucci and De Giorgi, 2009). In Section 4.4, we show that the Bayesian
approach does not necessarily eliminate this sensitivity by examining a Bayesian
hierarchical analysis of seven Microcredit RCTs (Meager, 2020).

We recommend that researchers compute and report our metric as a complement
to standard errors but also to other robustness checks. For instance, since our
approximation is fundamentally local due to the Taylor expansion, practitioners
may also consider global sensitivity checks such as those proposed by Leamer (1984,
1985); Sobol (2001); Saltelli (2004) or the breakdown frontiers approach of He et al.
(1990); Masten and Poirier (2020). Our method is also no substitute for tailored
robustness checks designed by researchers to investigate specific concerns about
sensitivity of results to certain structures or assumptions. And practitioners may
benefit from robustifying their analysis (Mosteller and Tukey, 1977; Hansen and
Sargent, 2008; Chen et al., 2011) even if they pass our check. Our metric is also
complementary to classical robustness measures, although we are able to connect
our metric to these measures via the influence function. By interpreting our metric
as a seminorm on the empirical influence function in Section 3.3.3, we can contrast
with the gross error sensitivity, which underlies more classical robustness notions, in
Section 3.3.4. We see that gross error sensitivity is set up for designing estimators
and arbitrary adversarial perturbations to the population distribution, whereas our
metric is set up for assessing sensitivity to dropping a small subset of the data at
hand once an analysis has been performed. We do not yet recommend any specific
alterations to common inferential procedures based on our metric, but we believe
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this direction is promising for future research.

2 A proposed metric
Suppose we observe N data points d1, . . . , dN . For instance, in a regression problem,
the nth data point might consist of covariates xn and response(s) yn, with dn =
(xn, yn). Consider a parameter θ ∈ RP of interest. Typically we estimate θ via
some function θ̂ of our data. The central claim of an empirical economics paper
is typically focused on some attribute of θ, such as the sign or significance of a
particular effect or quantity. A frequentist analyst might be worried if removing
some small fraction α of the data were to

• Change the sign of an effect.

• Change the significance of an effect.

• Generate a significant result of the opposite sign.

To capture these concerns, we define the following quantities:

Definition 1. Let the Maximum Influence Perturbation be the largest possible
change induced in the quantity of interest by dropping no more than 100α% of the
data.

We will often be interested in the set that achieves the Maximum Influence
Perturbation, so we call it the Most Influential Set.

And we will be interested in the minimum data proportion α ∈ [0, 1] required
to achieve a change of some size ∆ in the quantity of interest, so we call that α the
Perturbation-Inducing Proportion. We report NA if no such α exists.

In general, to compute the Maximum Influence Perturbation for some α, we
would need to enumerate every data subset that drops no more than 100α% of
the original data. And, for each such subset, we would need to re-run our entire
data analysis. If m is the greatest integer smaller than 100α, then the number of
such subsets is larger than

(N
m

)
. For N = 100 and m = 5,

(N
m

)
= 75,287,520. So

computing the Maximum Influence Perturbation in even this simple case requires
re-running our data analysis over 75 million times. If each data analysis took 1
second, computing the Maximum Influence Perturbation would take over 871 days
to compute. Indeed, the Maximum Influence Perturbation, Most Influential Set,
and Perturbation-Inducing Proportion may all be computationally prohibitive even
for relatively small analyses.

2.1 Setup: Notation and Assumptions

To address this computational issue, we propose to use a (fast) approximation in-
stead. We will see, for the cost of one additional data analysis, our approximation
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can provide a lower bound on the exact Maximum Influence Perturbation. More
generally we provide theory and experiments to support the quality of our approx-
imation. We provide open-source code and show that our approximation is fully
automatable in practice (Section 2.4).

Our approximation is akin to a Taylor expansion, so it will require certain aspects
of our estimator to be differentiable. We summarize our assumptions here, and we
note that many common analyses satisfy these assumptions — including, but not
limited to, OLS, IV, GMM, MLE, and variational Bayes.

Assumption 1. θ̂ is a Z-estimator; that is, θ̂ is the solution to the following esti-
mating equation,2 where G(·, dn) : RP → RP is a twice continuously differentiable
function and 0P is the column vector of P zeros.

N∑
n=1

G(θ̂, dn) = 0P . (2.1)

Assumption 2. φ : RP → R, which we interpret as a function that takes the full
parameter θ and returns the quantity of interest from θ, is continuously differen-
tiable.

For instance, the function that picks out the p-th effect from the vector θ, φ(θ) =
θp, satisfies this assumption.

To form our approximation, we introduce a vector of data weights, ~w = (w1, . . . , wN ),
where wn is the weight for the nth data point. We recover the original data set by
giving every data point a weight of 1: ~w = ~1 = (1, . . . , 1). We can denote a subset
of the original data as follows: start with ~w = ~1; then, if the data point indexed
by n is left out, set wn = 0. We can collect weightings corresponding to all data
subsets that drop no more than 100α% of the original data as follows:

Wα := {~w : No more than bαNc elements of ~w are 0 and the rest are 1} .

Our main idea will be to form a Taylor expansion of our quantity of interest φ as a
function of the weights, rather than recalculate φ for each data subset (i.e., for each
reweighting).

To that end, we first reformulate our setup, now with the weights ~w; note that
we recover the original problem (for the full data) above by setting ~w = ~1 in what
follows. Let θ̂(~w) be our parameter estimate at the weighted data set described by
~w. Namely, θ̂(~w) is the solution to the weighted estimating equation

N∑
n=1

wnG(θ̂(~w), dn) = 0P . (2.2)

2Sometimes Eq. 2.1 is associated with “M-estimators” that optimize a smooth objective function,
since those M-estimators typically take the form of a Z-estimator. However, some Z-estimators, such
as instrumental variables regression, do not optimize any particular empirical objective function, so the
notion of Z-estimator is in fact more general.
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We allow that the quantity of interest φ may depend on ~w not only via the esti-
mator θ, so we write φ(θ, ~w) with φ(·, ·) : RP × RN → R and will use the short-
hand φ(~w) := φ(θ̂(~w), ~w). We require that φ(·, ·) be continuously differentiable
in both its arguments. For instance, φ(θ, ~w) = θp to pick out the p-th compo-
nent of θ. Or, to consider questions of statistical significance, we may choose
φ(θ, ~w) = θp + 1.96σp(θ, ~w), where σp(θ, ~w) is an estimate of the standard error
depending smoothly on θ and ~w; this example is our motivation for allowing the
more general ~w dependence in φ(θ, ~w).

With this notation in hand, we can restate our original goal as solving

~w∗∗ := arg max
~w∈Wα

(
φ(~w)− φ(~1)

)
. (2.3)

Here we focus on positive changes in φ since negative changes can be found by
reversing the sign of φ and using −φ instead. In particular, the non-zero indices
of ~w∗∗ correspond to the Most Influential Set: Sα := {n : ~w∗∗n = 0}. And Ψα =
φ(~w∗∗)− φ(~1) is the Maximum Influence Perturbation. The Perturbation Inducing
Proportion is the smallest α that induces a change of at least size ∆: α∗∆ := inf{α :
Ψα > ∆}.

2.2 A Tractable Approximation

Our approximation, then, centers on a first-order Taylor expansion (and thus linear
approximation) in φ(~w) around ~w = ~1:

φ(~w) ≈ φlin(~w) := φ(~1) +
N∑
n=1

(wn − 1)ψn, with ψn := ∂φ(~w)
∂wn

∣∣∣∣
~w=~1

. (2.4)

We can in turn approximate the Most Influential Set as follows.

~w∗∗ ≈ ~w∗ := arg max
~w∈Wα

(
φlin(~w)− φ(~1)

)
(2.5)

= arg max
~w∈Wα

N∑
n=1

(wn − 1)ψn = arg max
~w∈Wα

∑
n:wn=0

(−ψn) . (2.6)

To compute ~w∗ (analogous to the ~w∗∗ that determines the exact Most Influential
Set), we compute ψn for each n. Then we choose ~w∗ to have entries equal to zero
at the bαNc indices n where ψn is most negative (and to have entries equal to
one elsewhere). Analogous to the Perturbation Inducing Proportion, we can find
the minimum data proportion α required to achieve a change of some size ∆: i.e.,
φlin(~w)− φ(~1) > ∆. In particular, we iteratively remove the most negative ψn (and
the index n) until the ∆ change is achieved; if the number of removed points is
M , the proportion we report is α = M/N . Recall that finding the exact Maximum
Influence Perturbation, Most Influential Set, and Perturbation-Inducing Proportion
required running a data analysis more than

( M
bαNc

)
times. By contrast, our approx-
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imation requires running just the single original data analysis, N additional fast
calculations to compute each ψn, and finally a sort on the ψn values.

We define our approximate quantities, as detailed immediately above, as follows.

Definition 2. The Approximate Most Influential Set is the set Ŝα of at most 100α%
data indices that, when left out, induce the biggest approximate change φlin(~w) −
φ(~1); i.e., it is the set of data indices left out by ~w∗: Ŝα := {n : ~w∗n = 0}.

TheApproximate Maximum Influence Perturbation Ψ̂α is the approximate change
observed at ~w∗: Ψ̂α := φlin(~w∗)− φ(~1).

The Approximate Perturbation Inducing Proportion α̂∗∆ is the smallest α needed
to cause the approximate change φlin(~w) − φ(~1) to be greater than ∆. That is,
α̂∗∆ := inf{α : Ψ̂α > ∆}. We report NA if no α ∈ [0, 1] can effect this change.

Moreover, for the cost of a single additional data analysis, we can compute φ(~w∗)
exactly — and therefore we can compute φ(~w∗)− φ(~1), which forms a lower bound
on the exact Maximum Influence Perturbation.

2.2.1 Calculating the influence scores

To finish describing our approximation, it remains to detail how to compute ψn =
∂φ(~w)
∂wn

∣∣∣
~w=~1

from Eq. 2.4. We will refer to the quantity ∂φ(~w)
∂wn

∣∣∣
~w
as the influence score

of data point n for φ at ~w, since it is the empirical influence function evaluated
at the datapoint dn. We further discuss the connection with influence functions in
Section 3.3 and here detail how to compute the ψn as part of our approximation.
First, the chain rule gives

∂φ(~w)
∂wn

∣∣∣∣
~w

= ∂φ(θ, ~w)
∂θT

∣∣∣∣
θ̂(~w), ~w

∂θ̂(~w)
∂wn

∣∣∣∣∣
~w

+ ∂φ(θ, ~w)
∂wn

∣∣∣∣
θ̂(~w), ~w

. (2.7)

The derivatives of φ(·, ·) can be calculated using automatic differentiation software
such as Python’s autograd library (Maclaurin et al., 2015; Baydin et al., 2017).
And once we have θ̂(~1) from running the original data analysis, we can evaluate
these derivatives at ~w = ~1: e.g., ∂φ(θ, ~w)

∂θT

∣∣∣
θ̂(~1), ~w=~1

.

The term ∂θ̂(~w)
∂wn

∣∣∣∣
~w=~1

requires slightly more work since θ̂(~w) is defined implic-
itly. We follow standard arguments from the statistics and mathematics literatures
(Krantz and Parks, 2012; Hampel, 1974) to show how to calculate it below.

Start by considering the more general setting where θ̂(~w) is the solution to the
equation γ(θ̂(~w), ~w) = 0P . We assume γ(·, ~w) is continuously differentiable with full-
rank Jacobian matrix; then the derivative ∂θ̂(~w)

∂wn

∣∣∣∣
~w
exists by the implicit function

theorem (Krantz and Parks, 2012, Theorem 3.3.1). We can thus use the chain rule
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and solve for ∂θ̂(~w)
∂wn

∣∣∣∣
~w
; here 0P×N is the P ×N matrix of zeros.

0P×N = dγ(θ̂(~w), ~w)
d~wT

∣∣∣∣∣
θ̂(~w), ~w

= ∂γ(θ, ~w)
∂θT

∣∣∣∣
θ̂(~w), ~w

dθ̂(~w)
d~wT

∣∣∣∣∣
~w

+ ∂γ(θ, ~w)
∂ ~wT

∣∣∣∣
θ̂(~w), ~w

(2.8)

⇒ dθ̂(~w)
d~wT

∣∣∣∣∣
~w

= −
(
∂γ(θ, ~w)
∂θT

∣∣∣∣
θ̂(~w), ~w

)−1
∂γ(θ, ~w)
∂ ~wT

∣∣∣∣
θ̂(~w), ~w

, (2.9)

where we can take the inverse by our full-rank assumption.
When we apply the general setting above to our special case γ(θ, ~w) =

∑N
n=1wnG(θ, dn),

we find

dθ̂(~w)
d~wT

∣∣∣∣∣
~w

= −
(

N∑
n=1

wn
∂G(θ, dn)
∂θT

∣∣∣∣
θ̂(~w), ~w

)−1 (
G(θ̂(~w), d1), . . . , G(θ̂(~w), dN )

)
,

(2.10)

which can again be computed with automatic differentiation software.

2.3 An OLS regression

Before continuing, we illustrate our method with an example. Econometricians of-
ten analyze causal relationships — the focus of applied microeconomics — using
linear regressions estimated via ordinary least squares (OLS). When using OLS, a
researcher rarely believes the conditional mean dependence is truly linear. Rather,
researchers use linear regression since it allows transparent and straightforward esti-
mation of an average treatment effect or local average treatment effect. Researchers
often invoke the law of large numbers to justify the focus on the sample mean. They
invoke the central limit theorem to justify the use of Gaussian confidence intervals
— even in the absence of a finite-sample Gaussianity assumption on the regression
errors. In the remainder of this section we show that just a single data point can
have outsize influence on regression parameters in the finite sample even when the
full sample is large.

In view of this central methodology, consider linear mean regression of some out-
come yn on some explanatory variable xn estimated via OLS. Suppose for simplicity
that these variables have been demeaned and that relevant other factors have been
partialed out of yn. We use the model y = θTx + ε and take dn = (xn, yn). Then
the (weighted) OLS estimate θ̂(w) solves the weighted estimating equation (Eq. 2.2)
with

G(θ, dn) = xn(yn − θTxn). (2.11)
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It follows that the (weighted) OLS estimate is

θ̂(w) =
(

N∑
n=1

wnxnx
T
n

)−1 N∑
n=1

wnynxn. (2.12)

Applying Eq. 2.10 yields

dθ̂(~w)
dwn

∣∣∣∣∣
~w=~1

= −
(

N∑
m=1

wmxmx
T
m

)−1

wnxn(yn − θ̂(~w)Txn)

∣∣∣∣∣∣
~w=~1

= −
(

N∑
m=1

xmx
T
m

)−1

xn(yn − θ̂(~1)Txn)

(2.13)

One might expect that in large samples there ought not to be a small number of
data points that wholly determine the results of an OLS regression. We now show
that this intuition is misplaced: ψn can be very large in practice. Consider as an
example the set of seven randomized controlled trials of expanding access to micro-
credit discussed by Meager (2019). For illustrative purposes we single out the study
with the largest sample size: Angelucci et al. (2015). This study has approximately
16,500 households. A full treatment of all seven studies is in Sections 4.3 and 4.4
along with tables and figures of the results discussed below.

We consider the headline results on household business profit regressed on an
intercept and a binary variable indicating whether a household was allocated to the
treatment group or to the control group. Let Yik denote the profit measured for
household i in site k, and let Tik denote their treatment status. We first estimate
the following model via ordinary least squares:

Yik = β0 + β1Tik + εik. (2.14)

We confirm the main findings of the study in estimating an average treatment
effect (ATE) of -4.55 USD PPP per 2 weeks, with a standard error of 5.88. Here,
our parameter is θ = (β0, β1). We are interested in whether we can change the sign
of β1 from negative to positive, so we take φ(θ) = β1. We then compute ψn for each
data point in the sample, which takes less than 2 seconds in R via Python using our
implementation below.

Examining ~ψ, we find that one household has ψn = 4.95; removing that single
household should flip the sign if the approximation is accurate. In this case we can
manually remove the data point and re-run the regression. We indeed find that the
ATE is now 0.4 with a standard error of 3.19. Moreover, by removing 15 households
we can generate an ATE of 7.03 with a standard error of 2.55: a significant result
of the opposite sign. These results and comparable analyses for other microcredit
RCTs are presented in Section 4.3.

How is it possible for the absence of a single household to flip the sign of an
estimate that was ostensibly based on all the information from a sample of 16,500?
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The fact that the original estimate was statistically insignificant plays a role here,
but it is not decisive, and we find examples of statistically significant results that
can be overturned by removing less than 1% of the sample in Section 4.1 and
Section 4.2. One might also suspect that this sensitivity arises because sample
means are non-robust in the Huber sense, but using sample means is not decisive
either: we find applications in which it is necessary to remove more than 10% of
the sample to change the sign, and we can simulate cases in which no amount of
removal will change the sign (Section 3.1.2). We also investigate the results of fitting
a Bayesian hierarchical model with a more realistic data-generating process to the
set of seven experiments and find that taking a Bayesian approach does not resolve
the sensitivity either (Section 4.4). Instead, we will see that both our theory and
simulations suggest that the major determinant of this sensitivity is the signal-to-
noise ratio in the data (Section 3.1.1).

2.4 Automated implementation

We provide an open-source software implementation in R using Python’s auto-
matic differentiation capacity under the hood. Our implementation automatically
computes the Approximate Most Influential Set, Approximate Maximum Influence
Perturbation, and the Approximate Perturbation Inducing Proportion for a range
of problems. The most computationally expensive part of computing ~ψ is usually
computing the partial derivative

∑N
n=1 ∂G(θ, dn)/∂θ and its inverse, but this com-

putation is common to all functions φ. So these values need only be computed once
to investigate a wide range of quantities of interest.

Our package is available on Github in the repository rgiordan/zaminfluence.
Currently, we handle OLS and IV regression fully automatically, including weighted
versions and robust or clustered standard errors. The package can handle general
Z-estimators if the user provides a Python implementation of the estimating equa-
tion G and functions of interest φ. We also facilitate automatically re-running a
regression after removing the Approximate Most Influential Set. Thus, the user can
obtain a lower bound on the exact Maximum Influence Perturbation or check the
quality of the approximation in their application.

To illustrate the ease of use of the package, consider the microcredit example
from the previous section. Suppose we have a linear regression for which we care
about the estimated coefficient on a variable called “treatment.” Once the researcher
has run the regression using R’s lm() function and defined the resulting object as
e.g. reg_fit, the user need only run the following to compute and rank the ~ψ, where
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the function of interest is the “treatment” regressor.

reg_influence <- ComputeModelInfluence(reg_fit)

grad_df <- GetTargetRegressorGrads(reg_influence, "treatment")

influence_dfs <- SortAndAccumulate(grad_df)

The object influence_dfs produces all of the following: a dataframe of the
influence scores, the associated change in the coefficient from both individual re-
moval and cumulative removal in rank order, the row at which one can locate the
data point in the original dataset, and other metrics. If the researcher is specifically
interested in how many data points she needs to remove to change the sign of the
result, the significance of the result, or to generate a result of the opposite sign, she
would then run the following to produce a table of results similar to those we show
in our applications.

GetRegressionTargetChange(influence_dfs, "num_removed")

Further details and options for these functions can be found at the online repos-
itory.

2.5 Example functions of interest

We end this section with some concrete examples of functions of interest. Recall
from the start of Section 2 that we are often interested in whether we can change the
sign, significance, or both sign and significance of an estimator. Figure 3 illustrates
how we might choose φ to answer these questions given an estimator θ̂ and an
estimate of the standard error, σ̂/

√
N .

Suppose we are interested in the p-th component of θ̂ and that, as in the Figure 3,
θ̂p is positive and statistically significant.

To make θ̂p change sign, we can take

φ(θ, ~w) =− θp. (Change sign) (2.15)

We use −θp instead of θp since we have defined φ as a function that we are trying to
increase (cf. Eq. 2.3 and the discussion after). Increasing φ(θ̂p,~1), for φ in Eq. 2.15,
by an amount ∆ = θ̂p is equivalent to θ̂p changing sign from positive to negative.

To make θ̂p statistically insignificant, we wish to take the lower bound of the
confidence interval to 0. To that, we can take

φ(θ, ~w) =−
(
θp −

1.96√
N
σ̂p(θ, ~w)

)
. (Change significance) (2.16)

As in the previous case, we choose Eq. 2.16 with a leading negative sign because we
have defined φ as a function that we are trying to increase (cf. Eq. 2.3). Increasing
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φ(θ̂p,~1), for φ in Eq. 2.16, by an amount ∆ = θ̂p− 1.96√
N
σ̂p is equivalent to θ̂p becoming

statistically insignificant.
Similarly, we can effect a change in both sign and significance by taking

φ(θ, ~w) =−
(
θp + 1.96√

N
σ̂p(θ, ~w)

)
(Change sign and significance)

and ∆ = θ̂p + 1.96√
N
σ̂p.

We have written σ̂p(θ, ~w) to emphasize that standard errors are typically given
as functions of θ and the weights ~w. The sandwich covariance matrix described in
Section 3.1.1 is one such example. There are generally several reasonable ways one
might define the dependence of standard errors on the weights. For example, one
might reasonably define the standard error to be σ̂p(θ, ~w)/

√∑N
n=1wn rather than

σ̂p(θ, ~w)/
√
N . See Section 3.1.1 for further discussion of this subtle point.

3 Underlying theory and interpretation
We next provide the theory to support and understand the behavior of the Approx-
imate Maximum Influence Perturbation. First, in Section 3.1, we provide intuition
for which aspects of the data and inference problem determine when and how a
small fraction of the sample can have a large influence on empirical conclusions
detectable by the Approximate Maximum Influence Perturbation. In Section 3.2,
we check the quality of our approximation and discuss cases where the approxima-
tion may struggle (Section 3.2.3). Finally, we connect the Approximate Maximum
Influence Perturbation to existing work on influence functions in Section 3.3.

3.1 What determines robustness?

We next explore a number of natural hypotheses about what might or might not
determine robustness according to the Approximate Maximum Influence Perturba-
tion. Throughout this section, we will often just write “robustness” as shorthand
for robustness under our metric. For simplicity, in this section we will consider
only functions of interest φ that do not depend explicitly on the weights, i.e., for
which all of the weight dependence is through the optimal parameter θ̂(~w). From
simulation experiments, we will see that the signal-to-noise ratio drives robustness
(Section 3.1.1). The same experiments will show that analyses can be robust by
the Approximate Maximum Influence Perturbation even if they are not Huber ro-
bust (Section 3.1.2). Heavy tails can cause non-robustness insofar as they cause
high noise in the signal-to-noise, but (once this noise is controlled for) having a
few outliers does not drive non-robustness (Section 3.1.3). Taking N →∞ does not
guarantee robustness, though it does take the standard error to zero (Section 3.1.4).
It will follow that statistical non-significance is inherently non-robust (Section 3.1.5).
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We conclude by focusing on the special case of linear regression; we will see that
particular points are influential if they have simultaneously both high leverage and
a large-magnitude residual (Section 3.1.6).

3.1.1 Signal-to-noise drives robustness of the Approximate Maxi-
mum Influence Perturbation

We first define the signal, noise, and signal-to-noise ratio (Section 3.1.1.1). We then
show via simulation experiments that the signal-to-noise ratio drives robustness in
Section 3.1.1.2. The interested reader can see a more formal definition of noise in
Section 3.1.1.3 and a proof that the noise can also be expressed as the scale of the
influence scores in Section 3.1.1.4.

3.1.1.1 Defining the signal-to-noise ratio

There are two components in the signal-to-noise ratio: the signal and the noise.

Definition 3. The signal is ∆, the size of change of interest in our quantity of
interest; see Definitions 1 and 2.

The noise σ̂ψ is the estimator of the scaled asymptotic standard deviation of our
quantity of interest found by combining the sandwich covariance estimator with the
delta method; we define it formally in Section 3.1.1.3.

The signal-to-noise ratio is their ratio: ∆/σ̂ψ.

Finally, we note that the squared noise σ̂2
ψ can alternatively be expressed as

σ̂2
ψ = N

∥∥∥~ψ∥∥∥2

2
. (3.1)

In other words, the limiting variance is the same as the scale of the influence scores,
and, all else equal, larger scale on the influence scores means larger changes can be
effected through dropping fewer points.

We will find Eq. 3.1 useful to calculate the noise in practice, as we see in our
simulation experiments below (Section 3.1.1.2). We prove the equivalence from
Eq. 3.1 in Section 3.1.1.4.

3.1.1.2 An ordinary least squares simulation to see that signal-to-
noise drives robustness

Here we demonstrate via a simulation experiment how signal-to-noise drives robust-
ness according to the Approximate Maximum Influence Perturbation. We will see
that even an OLS estimator applied to data simulated from a classic Gaussian linear
model can be either robust or non-robust, depending on the signal-to-noise ratio.

We set up our simulation experiment as follows. For n ∈ {1, . . . , N}, we simulate
regressors xn ∈ R independently from a Gaussian with mean 0 and some variance
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σ2
X . Let X be the N -long vector (or N × 1 matrix) with xn as the nth entry. We

simulate noise εn independently from a Gaussian with mean 0 and some variance
σ2
ε . Given some scalar β, we set yn ∈ R as yn = βxn + εn. Finally we let φ = θ̂,

where θ̂ is the OLS estimator under the model

yn = θxn + εn. (3.2)

Consider attempting to change the sign of the OLS estimate of θ by removing 1%
of the sample. The signal in this case is the magnitude of θ̂, since one must effect a
change of that magnitude in θ̂ to put it on the opposite side of zero (cf. Definition 3
and Section 2.5). The noise in this case is given by the sandwich covariance estimate
(cf. Eq. 3.7)

σ̂2
ψ =

1
N

∑N
n=1 x

2
n(yn − xnθ̂)2(

1
N

∑N
n=1 x

2
n

)2 , (3.3)

which tends to the ratio σ2
ε /σ

2
X as N → ∞. Note that, in our usage, “noise” does

not refer only to the variability of the residuals, σ2
ε , but to the variability of the

estimator θ̂, which depends on the relative variability of the residuals and regressors.
Our intuition supports that the ratio σ2

ε /σ
2
X forms the relevant noise for our purposes

here: reducing σX reduces the richness of the variation in our covariate of interest,
and increasing σε increases the unexplained variation in the inference problem.

First, we investigate a robust case. We choose σX = 12.3, σε = 1.2, β = −1, and
N = 10,000. The OLS estimate is close to the true parameter value: θ̂ = −1.00071
with a standard error of 0.00195. We now calculate the Approximate Maximum
Influence Perturbation with α = 0.01. We find that even adversarially removing 1%
of the sample produces a change in θ̂ of only about 0.0038 (1/3 of 1% of the original
estimate of θ̂). This analysis is robust. In fact, there are data subsets that could be
removed to change the sign or significance, as there will necessarily be unless there
is full separation in the support of the outcome data associated with the covariate
of interest. But here they are sufficiently large that they cannot be detected by our
linear approximation. In particular, first notice that the map α 7→ Ψ̂α is concave
since Ψ̂α is the cumulative sum of sorted values. Then Ψ̂1 ≤ 100Ψ̂0.01 = 0.38. That
is, even if we remove 100% of the data (α = 1), we make an approximate predicted
change of at most 0.38 units. Given θ̂ = −1.00071, this change is not enough to
affect the sign of the estimate. Figure 1 depicts the exact value of θ̂ as we vary
the proportion α of points removed. Adversarial removal in one direction gives the
upper red line; in the other gives the lower red line. The light blue shaded area
gives the 95% confidence interval. We can see that up to 20% removal, sign and
significance of the result are unchanged.

Even keeping the same general setup, and fixing θ = −1 (so that the signal θ̂,
will remain approximately the same), the empirical results can become non-robust
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if we increase the noise. According to Eq. 3.3, decreasing σX and increasing σε

generates more noise. In what follows, we keep N = 10,000 and vary σX ∈ (0, 4]
and σε ∈ (0, 12.5]. In Figure 2, we make a heatmap with σX on the horizontal axis
and σε on the vertical axis. We plot (as a heatmap) the resulting proportion of the
data α necessary to effect a change in (left) sign or (right) significance; the middle
plot shows the proportion necessary to effect a significant conclusion of the opposite
sign. That is, we plot the Approximate Perturbation Inducing Proportion α̂∗∆ for
the appropriate ∆ in each case. We plot gray for NA, when the linear approximation
is not able to detect a proportion suitable to make the change. Across all three plots,
we see that the cases with a large σX relative to σε are robust, while those with a
large σε relative to σX are non-robust. Note that, even in this simulated example,
there are many cases where removing less than 1% of the sample can generate a
significant conclusion of the opposite sign, despite the fact that the regression model
is exactly correct and the data is exactly Gaussian. While the inference here is still
valid for the population from which the perfectly random sample is drawn, our
metric shows that this analysis is exposed to substantial risk should the sampling
procedure be compromised, or should the population change in even minor ways.

A key corollary is that, in general, it is neither misspecification nor gross outliers
that causes non-robustness according to the Approximate Maximum Influence Per-
turbation, except insofar as these features decrease the signal-to-noise ratio. Perfect
observations from correctly specified models can give rise to non-robust estimators
if they attempt to estimate a small effect from noisy data.

3.1.1.3 A formal definition of the noise

We now formally define the noise. To that end, we first consider the scaled asymp-
totic distribution of our estimator θ̂ and then use that to establish the scaled asymp-
totic standard deviation of our quantity of interest φ. Let θ0 := limN→∞ θ̂ be the
limit of our sequence of Z-estimators. Then, under standard regularity conditions,
√
N(θ̂ − θ0) converges in distribution to a mean-zero multivariate normal distribu-

tion. And the sandwich covariance matrix, described next, is a consistent estimator
of the covariance of this distribution (Van der Vaart, 2000, Theorem 5.23, Example
5.25); for more discussion, see Appendix B, particularly Eq. B.7 in Section B.3.

Σ̂θ(~w) := NH(~w)−1S(~w)H(~w)−1,where (3.4)

H(~w) :=
N∑
n=1

wn
∂G(θ, dn)

∂θ

∣∣∣∣
θ=θ̂(~w)

(3.5)

S(~w) :=
N∑
n=1

wnG(θ̂(~w), dn)G(θ̂(~w), dn)T (3.6)

More precisely, Σ̂θ(~1) gives a consistent estimator of the limiting variance of
√
N(θ̂−

θ0) under standard regularity conditions. In the case of linear models, Σ̂θ(~1) is also
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known as the “robust” standard error covariance.
Though our definition of the noise here requires only Σ̂θ(~1) and not the fully

general Σ̂θ(~w), we have written Eq. 3.4 with general weights ~w so that we can
include it as part of a quantity of interest φ to evaluate the sensitivity of statistical
significance (cf. Section 2.5). For general weight vectors, whether Σ̂θ(~w) should
be normalized by N or

∑N
n=1wn, and whether S(~w) should be weighted by w2

n

or wn, are subtle questions that depend on whether you consider reweighting to
be a perturbation of the objective function or empirical distribution, respectively.
The question is ultimately one of semantics, and throughout the present paper we
prefer the definition given in Eq. 3.4, though we use definitions that match previous
authors when analyzing previously published work.3

Next we consider the scaled limiting distribution of our quantity of interest,
√
N(φ(θ̂, ~w) − φ(θ0, ~w)) as N → ∞. By an application of the delta method, this

limiting distribution will be mean-zero univariate normal, and the following quantity
consistently estimates its variance:

σ̂2
ψ(~w) := ∂φ(θ, ~w)

∂θT

∣∣∣∣
θ̂(~w), ~w

Σ̂θ(~w) ∂φ(θ, ~w)
∂θ

∣∣∣∣
θ̂(~w), ~w

. (3.7)

As with θ̂ = θ̂(~1), we will take σ̂2
ψ with no argument to mean σ̂2

ψ = σ̂2
ψ(~1). Finally,

we define σ̂ψ to be the noise.

3.1.1.4 The noise is also the scaled influence-score norm

We now establish the equivalence in Eq. 3.1. To that end, observe from Eq. 2.10,
together with the definitions in Eq. 3.5 and Eq. 3.6, that

N∑
n=1

dθ̂(~w)
dwn

∣∣∣∣∣
~w

dθ̂(~w)T

dwn

∣∣∣∣∣
~w

= H(~w)−1S(~w)H(~w)−1 = 1
N

Σ̂θ(~w). (3.8)

We next apply Eqs. 2.7 and 2.4 with the observation that the last term in Eq. 2.7
will be zero, since we assume for this section that φ has no dependence on ~w beyond
via θ̂(~w). In this case,

ψn := ∂φ(~w)
∂wn

∣∣∣∣
~w=~1

= ∂φ(θ,~1)
∂θT

∣∣∣∣∣
θ=θ̂(~1)

dθ̂(~w)
dwn

∣∣∣∣∣
~w=~1

3For example, the lm function in R normalizes by N rather than
∑N

n=1 wn, but weights with wn rather
than w2

n. Putting these choices together arguably forms an incoherent mix of perturbing the objective
function and empirical distribution. When comparing with previous authors who used standard errors
computed from lm, we compute standard errors to match lm despite this incoherency. In contrast, the R
function sandwich::vcovCL (Zeileis et al., 2020) matches our Eq. 3.4.
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So we then find

N
N∑
n=1

ψ2
n = N

N∑
n=1

∂φ(θ,~1)
∂θT

∣∣∣∣∣
θ=θ̂(~1)

dθ̂(~w)
dwn

∣∣∣∣∣
~w=~1

dθ̂T (~w)
dwn

∣∣∣∣∣
~w=~1

∂φ(θ,~1)
∂θT

∣∣∣∣∣
θ=θ̂(~1)

= ∂φ(θ,~1)
∂θT

∣∣∣∣∣
θ=θ̂(~1)

Σ̂θ(~1) ∂φ(θ,~1)
∂θ

∣∣∣∣∣
θ=θ̂(~1)

= σ̂2
ψ,

where the final line follows from Section 3.1.1.3 and is the desired result.

3.1.2 An estimator can be non-Huber-robust but robust under the
Approximate Maximum Influence Perturbation

Averages are well-known to be non-robust in the Huber sense of “gross error sen-
sitivity” (Huber, 1983; Kim and White, 2004), so one may be tempted to assume
this issue explains the reason for non-robustness in our OLS example (Section 2.3).
But we note that, in fact, the robustness we examine here is distinct from Huber
robustness. Recall that gross error sensitivity concerns the influence that an ex-
tremely large change in the value of a small fraction of the data set would have on
the inference. In the Approximate Maximum Influence Perturbation, we are con-
cerned only with dropping a small fraction of the data. Indeed, as our simulation
results in Figure 2 and Section 3.1.1 show, there are many cases when a mean is
highly robust to the small perturbations considered by the Approximate Maximum
Influence Perturbation. Indeed, our results show cases where one must remove over
30% or more of the sample to change the significance of the result. And there are
many cases where there is no local perturbation that could effect changes to sign or
significance.

3.1.3 How heavy tails and outliers affect robustness

A common intuition is that heavy tails and outliers may drive non-robustness. There
are at least two hypotheses for why a heavy-tailed distribution might be non-robust:
(1) it produces large noise in the data or (2) it generates a few data points relatively
far from the majority of data points. We here break down the Approximate Max-
imum Influence Perturbation Ψ̂α into terms relating to both hypotheses. We find
that while large noise in the data drives non-robustness, the shape of a distribution
is less of a determinant — and operates in perhaps unexpected directions.

First we decompose the Approximate Maximum Influence Perturbation into
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noise and shape factors. From the definition of Ψ̂α,

Ψ̂α =
∑
n∈Ŝα

−ψn = σ̂ψ ·

− 1
N

∑
n∈Ŝα

Nψn
σ̂ψ

 = σ̂ψΓα, (3.9)

where Γα := − 1
N

∑
n∈Ŝα

γn and γn := Nψn
σ̂ψ

(3.10)

Here σ̂ψ is the noise, defining the scale of the data, and Γα describes a notion of
shape. Our results in Section 3.1.1 are in accordance with hypothesis (1) above: a
large noise σ̂ψ leads to a large Ψ̂α.

Counter to hypothesis (2) above, we will see that Γα is lower (and hence Ψ̂α is
lower) when there are a few extreme influence scores. To that end, we first establish
that the γn summands that make up Γα have empirical mean zero and empirical
variance one. In particular, by Eq. 2.1, we have

∑N
n=1G(θ̂(~1), dn) = 0; then, by

Eq. 2.10,
∑N
n=1 ψn =

∑N
n=1

∂θ̂(~w)
∂wn

∣∣∣∣
~w=~1

= 0.4 It follows that
∑N
n=1 γn = 0. And,

recalling that σ̂2
ψ = N‖~ψ‖22 (see Eq. 3.1), we have 1

N

∑N
n=1 γ

2
n = 1.

We compare influence scores ψn for a light-tailed distribution and heavy-tailed
distribution in Figure 4; each distribution is scaled to have unit variance. We
leave out M = 4 data points, shown in red. The heavy-tailed distribution has one
large negative entry, but the other entries are correspondingly smaller due to the
constraint 1

N

∑N
n=1 γ

2
n = 1. By contrast, the light-tailed distribution has a moderate

number of fairly large entries. The result is that, summed over the four left-out
points, the total Γα is larger for the light-tailed distribution than for the heavy-
tailed distribution. Hence, for the same noise, we expect a larger Γα for the light-
tailed distribution than for the heavy-tailed distribution here — and thus a larger
Approximate Maximum Influence Perturbation for the light-tailed distribution.

In fact, the Γα are bounded — unlike the noise σ̂ψ, which can range widely. We
show in Appendix C that the following (finite-sample) bound holds:

|Γα| ≤
√
α(1− α). (3.11)

The worst case Γα = α(1−α) is obtained when all of the influence scores ψn, across
n ∈ Ŝα, are equal to each other. That is, when there are a few dominating influence
scores at the extreme ranks, Γα is smaller than when there are nearly equal influence
scores. Taking (e.g.) α = 0.01 (i.e., removing 1% of datapoints) Eq. 3.11 gives the
bound: Γα ≤ 0.0995.

We have seen that, perhaps unexpectedly, having a few extreme influence scores
can reflect more robustness than having nearly equal influence scores. But even
more to the point, we find that Γα does not vary much across common distributions
and ultimately may not affect robustness much at all. Indeed, note that in Figure 4,

4The influence scores in fact sum to zero for any statistical functional that does not depend explicitly
on N .
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Distribution Γα
1 Worst case 0.0995
2 Normal 0.0266
3 Exponential 0.0460
4 Flipped exp 0.0099
5 T(10) 0.0300
6 T(3) 0.0408
7 T(2) 0.0361
8 Cauchy 0.0022
9 Uniform 0.0172
10 Binary(0.01) 0.0299
11 Binary(0.1) 0.0299
12 Binary(0.5) 0.0301

Table 1: Values of Γα with α = 0.01 calculated from 1,000,000 simulated data points
from each respective distribution.

the two Approximate Maximum Influence Perturbation values are similar.
We next simulate data by drawing γn directly from several common distributions

and calculate Γα for each set of simulated data, with α = 0.01. In each case, we
generate N = 1,000,000 random data points from the distribution. See Table 1.
We see that the resulting range of Γα values in Table 1 is relatively small. Since
Ψ̂α = σ̂ψΓα, the robustness is largely determined by the scale σ̂ψ rather than the
shape Γα.

3.1.4 N →∞ does not guarantee robustness

Consider a small, fixed α as N → ∞; then we expect both Γα and σ̂ψ to converge
to non-zero quantities. Hence we expect Ψ̂α to converge to a non-zero quantity.

First, under standard conditions, σ̂ψ → σψ > 0. Next, observe that (up to
rounding error in the number of left-out points αN),

Γα = − 1
N

∑
n∈Ŝα

γn = − α

|Ŝα|

∑
n∈Ŝα

γn

Conditional on σ̂ψ, which converges to a constant, the term − 1
|Ŝα|

∑
n∈Ŝα γn is a

sample average of |Ŝα| observations, all of which typically have the same sign for
α � 1/2. Consequently, we expect that Γα converges to a non-zero constant as
well.

This observation also allows us to compare using the Approximate Maximum
Influence Perturbation to using the standard error, for the purpose of assessing
robustness. To illustrate, choose α = 0.01, and consider some scalar estimator θ. If
the estimator θ is sufficiently regular, the traditional Gaussian asymptotic approach
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to quantifying uncertainty yields the (approximate) two-sided 95% interval

θ̂ − θ0 ∈
{
−1.96√

N
σ̂ψ,

1.96√
N
σ̂ψ

}
. (3.12)

Due to the
√
N in the denominator, this interval shrinks to zero as N gets very

large.
Now consider the Approximate Maximum Influence Perturbation approach. Let

Γ+
0.01 denote the shape parameter for a target function φ(θ, ~w) = θ, and Γ−0.01 the

shape parameter for φ(θ, ~w) = −θ. Applying the decomposition from Eq. 3.9, we
find that the uncertainty implied by the Approximate Maximum Influence Pertur-
bation is

θ̂(~w)− θ̂ ∈ {−Γ−0.01σ̂ψ,Γ
+
0.01σ̂ψ}. (3.13)

By the arguments above, the width of this interval does not shrink to zero as
N →∞.

We see that there may be genuine sensitivities to small perturbations of the data
set even in very large samples. These sensitivities would be masked by examining
only standard errors or relying on classical Gaussian asymptotics for estimators.

3.1.5 Statistical non-significance is non-robust

We have seen that the sensitivity captured by the Ψ̂α does not disappear asymp-
totically; this observation prompts a corollary that non-significance exhibits an in-
herent non-robustness. To see this non-robustness, take a particular Ψ̂α. Observe
that when a result is statistically non-significant, there will generally be some N for
which we are able to move the parameter estimate far enough away from zero that
the result becomes significant.

Significant results, by contrast, do not exhibit this inherent non-robustness —
except in the case where the point estimates are small relative to the size of Ψ̂α so
that the signal-to-noise ratio is small.

These observations are not particular to the Approximate Maximum Influence
Perturbation in the sense that they would apply equally to any robustness measure
that did not disappear asymptotically.

3.1.6 Simultaneous high leverage and large residual value yield a
large influence score

We next focus on linear regression. In this case, we will see that high leverage or a
large-magnitude residual alone would not guarantee a large influence score — but
the confluence of these events will.

Let X be the N × P matrix whose nth row is xn. Let Y be the N × 1 column
vector of yn values. We take the data to be de-meaned. Leverage is often loosely
defined as the extent to which results hinge on a single data point — but is formally
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defined as the “influence” (in the colloquial sense) of the observed outcome data
Y on the predicted values Ŷ : hnn := ∂ŷn

∂yn
. For linear regression, define the “hat

matrix” H = X(XTX)−1XT . In this case, the leverage of yn on its fitted value ŷn
is the nth diagonal of the hat matrix:

hnn = xTn (XTX)−1xn. (3.14)

Next we write the influence score of the nth data point with φ(β, ~w) = ŷn for
comparison.

ψn = ∂ŷn(~w)
∂wn

∣∣∣∣
~w=~1

=
(
∂β̂(~w)
∂wn

∣∣∣∣∣
~w=~1

)T
xn = (yn − β̂(~1)xn)xTn (XTX)−1xn. (3.15)

We see, then, that the influence score ψn is the residual εn = yn− β̂(~1)xn times the
leverage hnn. This expression formalizes the conceptual link made by Chatterjee
and Hadi (1986) between influence, leverage, and large values of εn. Note that large
values of εn indicate that data point n is a kind of outlier. When both leverage and
residual are large in magnitude, the influence score will be as well.

The univariate regression case may be particularly familiar, so we detail that
special case next. In univariate regression, the leverage is

hnn = x2
n∑N

n=1 x
2
n

. (3.16)

The influence score is

ψn = ∂ŷn(~w)
∂wn

∣∣∣∣
~w=~1

= ∂β̂(~w)
∂wn

∣∣∣∣∣
~w=~1

xn = xn
xnεn∑N
n=1 x

2
n

= hnnεn,

which again is the leverage times the residual.

3.2 Bounds on approximation error

In what follows, we first reiterate that, for any problem where performing estimation
a second time is not prohibitively costly, a user can directly provide a lower bound
on the exact Maximum Influence Perturbation (Section 3.2.1). Then we provide
theoretical bounds on the quality of our linear approximation for φ in IV and OLS
(Section 3.2.2), as well as a discussion of cases where the approximation may struggle
(Section 3.2.3).

3.2.1 An exact lower bound on the Maximum Influence Perturba-
tion

Here we show how to provide an exact lower bound on the Maximum Influence
Perturbation when one is willing to incur the cost of a second estimation. To
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establish the lower bound, we first find the Approximate Most Influential Set Ŝα
using the techniques described above. Let ~w∗∗ be the exact Most Influential Set,
and let ~w∗ be the weight vector with all ones except with zeros at the indices in
Ŝα. We run the estimation procedure an extra time to recover φ(~w∗). Then, by
definition,

Ψα = φ(~w∗∗)− φ(~1) = max
~w∈Wα

(
φ(~w)− φ(~1)

)
≥ φ(~w∗)− φ(~1).

Since φ(~w∗) − φ(~1) is a lower bound for Ψα, we can use the Approximate Most
Influential Set in this way to conclusively demonstrate non-robustness. However,
this lower bound will be most useful if it is close to the exact Maximum Influence
Perturbation Ψα. And we also want to understand how much we can trust any
findings suggesting that a data analysis is robust. So we next focus on bounding
error in our approximation.

3.2.2 Finite sample and asymptotic bounds on the approximation
error for IV and OLS

Our key result in Section 3.2.2 below is the final application of Lemma 1, which pro-
vides a finite-sample upper bound on the error between our approximation φlin(~w)
and the exact φ(~w). We also provide an upper bound on the difference φ(~w)−φ(~1)
in Lemma 1, since this difference gives the relevant scale for considering the error
of the linear approximation. All of our bounds here focus on the special case of IV
and OLS. We conjecture similar results may hold for more general Z-estimators.

We first state our bounds in Section 3.2.2.1. Before our key result in Sec-
tion 3.2.2.1, we provide intermediate and analogous bounds on a linear approxi-
mation of the parameter (Theorem 1) since these will be useful, due to the chain
rule, in establishing bounds on the final quantity of interest. And we show how our
finite-sample results translate into asymptotic statements in Corollaries 1 and 2. We
conclude by providing discussion and interpretation of the bounds in Section 3.2.2.2.

3.2.2.1 Statement of the error bounds

We begin by setting up notation for the IV and OLS cases. For n ∈ {1, . . . , N},
consider regressors xn ∈ RP , instruments zn ∈ RP , and responses yn ∈ R. The
following estimating equation encompasses both IV regression and OLS.

G(θ, ~w) = 1
N

N∑
n=1

wn(yn − θTxn)zn. (3.17)

In particular, we recover OLS by taking zn = xn.
Now recall from Eq. 2.7 that, by the chain rule, φlin(~w) depends on the linear
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approximation to the optimal parameters,

θ̂lin(~w) = dθ̂(~w)
d~wT

∣∣∣∣∣
~1

(~w −~1) + θ̂.

The principal theoretical task is showing the accuracy of θ̂lin(~w) as an approximation
to θ̂(~w), which we show in Theorem 1. The accuracy of φlin(~w) as an approximation
to φ(~w) will then follow from smoothness assumptions on φ in Lemma 1.

In what follows, we denote the operator norm of a matrix (i.e., its largest eigen-
value) by ‖·‖op.

Theorem 1. Let ~w be any vector whose entries are either zero or one. Define
the following quantities, which can all be computed from θ̂(~1) without running any
additional regressions:5

S := {n : wn = 0} , α := |S|
N
, ξ1 :=

∥∥∥∥∥ 1
|S|

∑
n∈S

znx
T
n

∥∥∥∥∥
2

,

Cop :=

∥∥∥∥∥∥
(

1
N

N∑
n=1

znx
T
n

)−1∥∥∥∥∥∥
op

, ξ2 :=
∥∥∥∥∥ 1
|S|

∑
n∈S

zn(yn − θ̂(~1)Txn)
∥∥∥∥∥

2

,

C̃op := 3
2Cop, B :=

∥∥∥φlin(~w)− φ(~1)
∥∥∥

2
+ 2α2C̃2

opξ1ξ2

1− 2α2C̃2
opξ

2
1

.

If αCopξ1 ≤ 1
3 , then we conclude

∥∥∥θ̂(~w)− θ̂lin(~w)
∥∥∥

2
≤ α22C̃2

opξ1 (ξ2 + Bξ1) and∥∥∥θ̂(~w)− θ̂(~1)
∥∥∥

2
≤ αCop(ξ2 + Bξ1).

Both bounds in Theorem 1 depend on Lemma 2 of Appendix D, which asserts
that all of the assumptions for applying the bounds of Giordano et al. (2019) are
satisfied. The first bound then follows from Giordano et al. (2019, Corollary 3)
and Giordano et al. (2019, Lemma 10). The second result follows from Giordano
et al. (2019, Corollary 2). The precise statement of Lemma 2 is slightly notationally
burdensome, so we leave its statement and proof to Section D.1.

Next, we state a result that can be combined with Theorem 1 to control φ(~w).

Lemma 1. Let ~w be given such that
∥∥∥~w −~1∥∥∥

2
≤ αN , and let Bθ be a given convex,

compact set containing both θ̂ and θ̂(~w). Define the normalized weights ~ω := N−1 ~w,
and let Bω denote a convex, compact set containing both N−1 ~w and N−1~1.

Assume that φ is continuously differentiable in θ and ~w on Bθ × Bω. Assume
that the partial derivatives ∂φ(θ, ~w)

∂θ

∣∣∣
θ, ~w

and ∂φ(θ, ~w)
∂~ω

∣∣∣
θ, ~w

are Lipschitz on Bθ×Bω with

5The constant Cop requires the smallest eigenvalue of the matrix 1
N

∑N
n=1 znx

T
n . This matrix is

typically factorized in order to evaluate θ̂(~1), e.g. using a QR decomposition. This factorization can then
be re-used to efficiently estimate Cop via the power method (Trefethen and Bau, 1997, Sections II, V).
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constants Lθ and Lω, respectively, in the distance induced by the norm

‖(θ, ~ω)‖ = ‖θ‖2 + ‖~ω‖2 .

Choose any finite constants Cdiff , Clin Cθ, and Cω such that
∥∥∥θ̂(~w)− θ̂

∥∥∥
2
≤ Cdiffα and

∥∥∥θ̂(~w)− θ̂lin(~w)
∥∥∥

2
≤ Clinα

2

sup
θ∈Bθ,~ω∈Bω

∥∥∥∥∥ ∂φ(θ, ~w)
∂θ

∣∣∣∣
θ,N~ω

∥∥∥∥∥
2
≤ Cθ and sup

θ∈Bθ,~ω∈Bω

∥∥∥∥∥ ∂φ(θ,N~ω)
∂~ω

∣∣∣∣
θ,N~ω

∥∥∥∥∥
2
≤ Cω.

Then
∣∣∣φ(~w)− φ(~1)

∣∣∣ ≤ (CθCdiff + Cω)α.

and
∣∣∣φ(~w)− φlin(~w)

∣∣∣ ≤ (Lθ (Cdiff + 1)Cdiff + CθClin + Lω (Cdiff + 1))α2.

For a proof of Lemma 1, see Section D.2.
From the finite-sample bounds of Theorem 1 and Lemma 1, we can also derive

the following asymptotic results by applying the finite-sample results to each N as
N →∞.

Corollary 1. For each N , choose any sequence of weight vectors ~w(N) with corre-
sponding α(N) such that limN→∞ α(N) = 0. Each of the constants from Theorem 1
now depends on N . Assume that each of the Cop(N), ξ1(N), and ξ2(N) are eventu-
ally uniformly bounded as N → ∞. Assume that there exists an N0 such that, for
all N > N0, α(N)Cop(N)ξ1(N) ≤ 1

3 holds. Then, as N →∞,
∥∥∥θ̂(~w)− θ̂lin(~w)

∥∥∥
2

= O(α2)→ 0∥∥∥θ̂lin(~w)− θ̂(~1)
∥∥∥

2
= O(α)→ 0.

Corollary 2. Let the conditions of Corollary 1 hold, and suppose that there exists a
compact set Bθ containing θ̂(~w), θ̂lin(~w), and θ̂(~1) for all N . Let the assumptions of
Lemma 1 hold for Bθ, specifically that φ is continuously differential with Lipschitz
partial derivatives. Then, as N →∞,

∣∣∣φ(~w)− φlin(~w)
∣∣∣ = O(α2)→ 0∣∣∣φ(~w)− φ(~1)
∣∣∣ = O(α)→ 0.

3.2.2.2 Interpretation of the bounds

The bounds of Theorem 1 and Lemma 1 hold for the observed data at hand. Im-
portantly, Theorem 1 applies to any ~w, including ~w that are chosen adversarially,
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as long as ~w satisfies the (inexpensive-to-check) regularity condition αCopξ1 ≤ 1
3 .

Indeed we choose ~w adversarially in the present paper. For well-behaved functions
φ, one can immediately apply Theorem 1 with Lemma 1 to derive corresponding
bounds for the function of interest.

Our results show that the upper bound on the error in our linear approximations
is O(α2), but the difference that we are trying to approximate is upper bounded only
by O(α). Together, these rates form the essence of why the linear approximation
provides reliable robustness estimates; in particular, the rates together suggest that
the error in the linear approximation is O(α) smaller than the difference it is trying
to approximate, and so gives a good approximation for small α. Technically we
need a lower bound on

∥∥∥φ(~w)− φ(~1)
∥∥∥

2
to ensure it does not decrease even more

quickly than a positive constant times α. But the discussion in Sections 3.1.3
and 3.1.4 suggests that, for the ~w that give rise to our robustness metrics, we
expect

∥∥∥φ(~w)− φ(~1)
∥∥∥

2
will typically be lower bounded by some constant times α.

Recall the decomposition of Eq. 3.9, which gives φlin(~w)− φ(~1) = Ψ̂α = σ̂ψΓα. We
expect that the noise estimate σ̂ψ converges to a non-zero constant, and, by the
reasoning in Section 3.1.4, we expect Γα converges to α times a non-zero constant
as well. Since the error of the linear approximation is upper bounded by O(α2), it
follows that actual difference is also lower bounded by a term of order α.

Note that the assumption in Theorem 1 that αCopξ1 ≤ 1
3 essentially requires that

the regressors in the left-out set are not too large relative to the average regressors,
particularly as α → 0. For example, when the regressors and instruments are
bounded (i.e., maxn∈[N ] ‖xn‖2 and maxn∈[N ] ‖zn‖2 are bounded for all N), then
αCopξ1 ≤ 1

3 will always hold for sufficiently small α.
Note that, for sequences of α that do not go to zero, the error

∣∣∣φlin(~w)− φ(~w)
∣∣∣
2

does not go to zero in general. However, the bounds of Theorem 1 still apply, and
we expect the error to be small for small α.

Though it may not be easy to produce explicit error bounds for general Z-
estimators (beyond IV and OLS), we expect that the scaling we find in Corollary 1
as α→ 0 to be similar given the results in Giordano et al. (2019).

3.2.3 Cases to Approach with Caution

In virtually all cases we examine in our applications in Section 4, we manually re-run
the analysis without the data points in the removal set Ŝα; in doing so, we find that
the change suggested by the approximation is indeed achieved in practice. We find
this agreement even when up to 10% of the data is removed. However, there are
some notable cases in which it is advisable to approach the Approximate Maximum
Influence Perturbation with caution, and we discuss these next.

First and foremost, large changes to the data set are unlikely to yield good
approximations due to the Taylor expansion; here “large” might be on the order of
removing 30% of the data. The quality of our approximation rests on the similarity
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between the exact function and its linearization. We do not view poor approximation
at very large α as a major drawback for our robustness metric — since analysts
are typically concerned with robustness to small changes. We are unlikely to be
concerned about the Maximum Influence Perturbation or its approximation when
removing a third of the sample.

We may also detect that the Approximate Maximum Influence Perturbation is
incorrect when it reports that there is no feasible way to effect a particular change;
i.e., when α̂∗∆ = NA. We might investigate, for example, a sign change on the
treatment effect estimated in a randomized controlled trial. It might be true that
α∗∆ = NA if there is complete separation in the sample across the treatment and
control groups; i.e., every outcome for every individual in the treatment group lies
above (respectively, below) those of every individual in the control group. Other-
wise, there must be some proportion of the data that can be removed to effect the
sign change. When the linear approximation cannot find any set of points whose
removal could reverse the desired result, Ψ̂α is likely not a good approximation for
Ψα for the large α that would be required to produce such a substantial change
in Ψα. However, note that for small α, we expect that Ψ̂α will provide a good
approximation of Ψα. So, when α̂∗∆ = NA, we may still confidently assert that there
is no small α that could reverse our result.

Another case in which the Ψ̂α can fail is that of bounded parameters whose true
value lies near the boundary. Because the linearization of θ̂d(~w) is not bounded,
the approximation can diverge from the truth when the true θ and original θ̂ are
bounded — and will tend to do so near the boundary itself. For linear regression on
a continuous outcome, this issue is not a concern for the regression coefficients, but
it is a concern for the estimation of associated variance parameters. This concern
can also arise in many Bayesian models that use bounds on parameters to improve
estimation. And in hierarchical models, variances at different levels may be used for
shrinkage as well as inference, and the hypervariances could be quite small in prac-
tice. It can help to linearize the problem using unconstrained reparameterizations
(e.g., linearly approximating the log variance rather than variance). However, as
we discuss in Section 4.4, simply transforming to an unconstrained space is still not
guaranteed to produce accurate approximations near the boundary in the original,
constrained space.

3.3 The influence function

In this section, we review the influence function Hampel (1974, 1986) and use it
to connect our metric to, and contrast our metric with, existing concepts. First,
we show that the equivalence between the noise σ̂ψ in our signal-to-noise ratio
and the 2-norm on the influence function, proven in Section 3.1.1.4, is a natural
consequence of the asymptotic theory of statistical functionals. Next, we will show
that the Approximate Maximum Influence Perturbation is itself a seminorm on the
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influence function: namely, a supremum over tail means. This interpretation will
allow us to contrast our metric with the gross error sensitivity, which is the∞-norm
of the influence function.

3.3.1 Influence function setup

Before moving to our main results, we review the definition of the influence function
and its particular form for Z-estimators. The influence function IF(d;T, F ) measures
the effect on a statistic T of adding an infinitesimal amount of mass at point d to
some base or reference data distribution F (Reeds, 1976; Hampel, 1986). Let δd be
the probability measure with an atom of size 1 at d. Then

IF(d;T, F ) := lim
ε↘0

T (εδd + (1− ε)F )− T (F )
ε

.

Now we look at the specific case of Z-estimators. First, we consider a general-
ization of our estimating equation in Eq. 2.2. In this section of the paper, we define
θ̂(F ) as the solution to ∫

G(θ̂(F ), d)dF (d) = 0, (3.18)

as in (Hampel, 1986, Section 4.2c, Def. 5). Eq. 2.1 is the special case of Eq. 3.18
where we set F = F̂N , and F̂N is the empirical distribution function; that is, F̂N
puts weight N−1 on each data point d1, . . . , dN . So θ̂(F̂N ) in this notation would be
the solution of Eq. 2.1. Similarly, if we set F to be the distribution function putting
weight N−1wn at data point dn, we recover Eq. 2.2 from Eq. 3.18.

Before we can express the influence function for Z-estimators, we establish our
statistic. As before, we will choose some quantity of interest φ. In Section 2.1, we
allowed φ to have both θ and ~w dependence: φ(θ, ~w). In this section, for simplicity
of exposition, we restrict our attention to φ(F ) := φ(θ̂(F ),~1). In particular, φ
may depend on ~w (here, more generally, the dependence is on F ) via θ̂ but not in
other, additional ways.6 Then, the influence function in the particular case of the
Z-estimator can be written:

IF(d;φ, F ) = − ∂φ(θ,~1)
∂θT

∣∣∣∣∣
θ̂(F )

∫ ∂G(θ, d̃)
∂θ

∣∣∣∣∣
θ̂(F )

dF (d̃)

−1

G(θ̂(F ), d). (3.19)

3.3.2 The noise is the norm of the empirical influence function

In Section 3.1.1.4, we showed that the sandwich covariance estimator of the limiting
variance of φ(~1), after scaling by

√
N , was equal to N times the 2-norm of our

6As in ordinary calculus in Euclidean space, allowing for explicit F dependence in φ requires adding
only an additional influence function describing the dependence of φ(θ, F ) on F with θ held fixed. This is
slightly notationally burdensome and not typical in the analysis of the influence functions for Z-estimators,
so we omit this dependence for simplicity.
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influence vector, N
∥∥∥~ψ∥∥∥2

2
. We now show that this equality is a natural consequence of

the asymptotic theory of statistical functionals (Mises, 1947; Reeds, 1976; Hampel,
1986).

In the notation before this section, our quantity of interest on the full data set
was called φ(~1); in the notation of this section, we have established above that
we will write the same quantity as φ(F̂N ). The latter notation, which emphasizes
the empirical distribution function, makes it especially clear that φ(F̂N ) will vary
as N varies. Let φ0 := plimN→∞φ(F̂N ). Then we are interested in the limiting
distribution of

√
N(φ(F̂N )− φ0) as N →∞.

As discussed in Section 3.1.1, we expect this limiting distribution to be normal,
since φ(F̂N ) it is a Z estimator. However, we also may also expect asymptotic
normality based on the limiting distribution of smooth functionals of the empirical
distribution. In particular, the limiting standard deviation of a statistic T is given
by the norm ‖IF(d;φ, F )‖2 (Hampel, 1986, Eq. 2.1.8) in the following sense:

√
N(T (F̂N )− T (F )) N (0, ‖IF( · ;T, F )‖22),

where ‖IF( · ;T, F )‖22 =
∫

IF(d;T, F )2dF (d). So the limiting standard deviation of
√
N(φ(F̂N )− φ0) is ‖IF( · ;φ, F )‖2.
A natural estimator of ‖IF( · ;φ, F )‖2 is the same quantity, but with the empir-

ical distribution substituted for the population distribution:
∥∥∥IF( · ;φ, F̂N )

∥∥∥
2
. We

will now show that this estimator is precisely our delta method standard deviation
σ̂ψ =

∥∥∥IF( · ;φ, F̂N )
∥∥∥

2
=
√
N
∥∥∥~ψ∥∥∥

2
.

First, combine the definition of the influence score ψn := ∂φ(~w)
∂wn

∣∣∣
~w=~1

(Eq. 2.4)
with Eq. 2.7 and Eq. 2.10 and the notation of the current section to write

ψn =

 ∂φ(θ,~1)
∂θT

∣∣∣∣∣
θ̂(F̂N )

 ·
−

N ∫
∂G(θ, d̃)
∂θ

∣∣∣∣∣
θ̂(F̂N )

dF̂N (d̃)

−1

G(θ̂(F̂N ), dn)

 .
(3.20)

Note that final term in Eq. 2.7 is zero here since we assume no dependence of φ on
~w beyond the dependence via θ̂. By comparing Eq. 3.20 to Eq. 3.19, we conclude
that

ψn = 1
N

IF(dn;φ, F̂N ). (3.21)

Using Eq. 3.7, it follows that

σ̂2
ψ = N‖~ψ‖22 = N

N∑
n=1

ψ2
n = 1

N

N∑
n=1

IF(dn;φ, F̂N )2

=
∫

IF(d;φ, F̂N )2dF̂N (d) =
∥∥∥IF( · ;φ, F̂N )

∥∥∥2

2
,
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as was to be shown.

3.3.3 The Approximate Maximum Influence Perturbation is a semi-
norm on the empirical influence function

We have previously seen that our Approximate Maximum Influence Perturbation
metric is driven by both the signal and noise, σ̂ψ (Section 3.1.1). We have just
shown that the σ̂ψ corresponds to a 2-norm of the influence function, applied at
the empirical distribution F̂N . We will now see that in fact the Approximate Maxi-
mum Influence Perturbation corresponds to a (different) seminorm on the influence
function, also applied at the empirical distribution F̂N .

First, for a particular choice of measure F and strictly positive scalar α, we
define the seminorm we will use as follows:

‖f‖F,α := sup
S:F (S)≤α

−
∫
S
f(d)dF (d).

Next, we establish that ‖·‖F,α is, in fact, a seminorm. To do so, we check the
two standard conditions of a seminorm. (1) Homogeneity follows from linearity of
the integral. Namely, for any scalar c, ‖cf‖F,α = |c| · ‖f‖F,α. (2) Subadditivity of
‖·‖F,α follows from subadditivity of the supremum:

‖f + g‖F,α = sup
S:F (S)≤α

−
∫
S

(f(d) + g(d)) dF (d)

≤
(

sup
S:F (S)≤α

−
∫
S
f(d)dF (d)

)
+
(

sup
S:F (S)≤α

−
∫
S
g(d)dF (d)

)
= ‖f‖F,α + ‖g‖F,α ,

We conclude that ‖·‖F,α is a seminorm.
While non-negativity follows from the two conditions of a seminorm, we can also

establish it directly. Since F is a measure and α is strictly positive, S = ∅ satisfies
F (S) = 0 ≤ α. Then −

∫
S=∅ f(d)dF (d) = 0, so ‖f‖F,α ≥ 0. For ‖·‖F,α to be a

norm (not just a seminorm), we would also need that ‖f‖F,α = 0 implies f = 0.
But for a discrete F with atoms of size strictly greater than α, this implication will
not necessarily hold. As a concrete example, consider a measure F with M atoms
of size 1/M with 1/M > α; then ‖F‖F,α = 0 since every S satisfying the condition
F (S) ≤ α has F (S) = 0, but F 6= 0. We will see the relevance of this example as
we focus on the discrete choice F = F̂N below.

Finally, we show that our Approximate Maximum Influence Perturbation metric
Ψ̂α (Definition 2) is equal to

∥∥∥IF( · ;φ, F̂N )
∥∥∥
F̂N ,α

. Since F̂N puts weight N−1 at

each data point dn, the constraint F̂N (S) ≤ α effectively restricts to all subsets
of at most bαNc data points. That is, we obtain the integral in the seminorm by
summing − 1

N IF( · ;φ, F̂N ) over any such subset. Using Eq. 3.21, we conclude that
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the supremum collects the data points with the most negative influence scores σ̂ψ.
But this construction is exactly the Approximate Maximum Influence Perturbation,
as seen in Definition 2 and the final line of Eq. 2.5.

As above, we see that if α < 1/N (equivalently, N > 1/α), then
∥∥∥IF( · ;φ, F̂N )

∥∥∥
F̂N ,α

=
0. Reasonably, with a data set of size N , we cannot expect to detect sensitivity to
leaving out less than 1/N proportion of the data. In general, we recommend using
an α that allows removal of at least one data point from the data set.

3.3.4 Comparison of the Approximate Maximum Influence Pertur-
bation to the gross error sensitivity

The gross error sensitivity of a statistical function is defined as supd |IF(d;φ, F )|,
or, equivalently, ‖IF(d;φ, F )‖∞ (Hampel, 1986, Eq. 2.1.13). Now that we have
expressed our Approximate Maximum Influence Perturbation metric as a seminorm,
we can see two key differences between our metric and the gross error sensitivity: (1)
our metric uses the empirical influence function rather than the population influence
function as the argument to its seminorm, and (2) our metric integrates over the
empirical distribution function whereas the gross error sensitivity takes the infinity
norm of the influence function.

Regarding (1), note that a central goal of classical robust statistics is to design
estimators for which the gross error sensitivity is bounded. When the goal is design-
ing estimators, rather than applying the gross sensitivity directly as an evaluation
metric, using the population distribution may be seen as a strength. By contrast,
our goal in the present paper is to evaluate sensitivity for the data we saw and the
estimator we chose, not an idealized population or asymptotic limit. For this goal,
we see our use of the empirical influence function as a strength.

Regarding (2), note that — by using the infinity norm — the gross error sensi-
tivity measures the worst possible change in our statistic that could result from a
small change to the population distribution function at a single point. By contrast,
we are not concerned with corrupted data, much less adversarially corrupted data.
In our setting, we allow that it is possible for all of our data to come from the same
population distribution and even for the presumed population distribution to be an
adequate description of the data we have collected. And yet it could still be the case
that our conclusions are sensitive to dropping just a few data points — i.e., sensitive
according to our metric. In this case, we would still be concerned about the broader
implications of our conclusions, as we outlined at the start of this manuscript.
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4 Applied experiments

4.1 The Oregon Medicaid experiment

In this subsection we show that even the conclusions of empirical analyses that
display very little classical uncertainty can be sensitive to the removal of less than
1% of the sample. We consider the Oregon Medicaid study (Finkelstein et al.,
2012). We focus on the impact of Medicaid on health outcomes. These empirical
analyses exhibit standard errors that are small relative to effect size; against a null
hypothesis of no effect, the p values are small: 0.019, 0.009, and the remaining five
values rounded to 0.001 or smaller. We find that some results are robust up to the
removal of 5% of the sample. But in others, removing less than 1% and even less
than 0.05% of the sample will produce a significant result of the opposite sign to
the full-sample analysis.

4.1.1 Background and replication

First we provide some context for the analysis and results of Finkelstein et al.
(2012). In early 2008, the state of Oregon opened a waiting list for new enrollments
in its Medicaid program for low-income adults. Oregon officials then drew names by
lottery from the 90,000 people who signed up, and those who won the lottery could
sign up for Medicaid along with any of their household members. This setup created
a randomization into treatment and control groups at the household level. The
Finkelstein et al. (2012) study measures outcomes one year after the treatment group
received Medicaid. About 25% of the treatment group did indeed have Medicaid
coverage by the end of the trial (a somewhat low compliance rate). The main
analysis both investigates treatment assignment as treatment itself (“intent to treat”
or ITT analysis) and uses treatment assignment as an instrumental variable for take-
up of insurance coverage (“local average treatment effect” or LATE analysis).

The outcomes of interest are grouped into health care use indicators, compliance
with recommended preventative care, financial strain related to medical expendi-
tures, and health outcomes themselves (both physical and mental). We here focus
on the final group: health outcomes, which appear in Panel B from Table 9 of
Finkelstein et al. (2012). Each of these J outcomes is denoted by yihj for individual
i in household h for outcome type j. The data sample to which we have access
consists of survey responders (N = 23,741); some responders are from the same
household. All regressions include a set of covariates Xih including household size
fixed effects, survey wave fixed effects, and the interaction between the two. They
also include a set of optional demographic and economic covariates Vih. To infer
the Intention-to-treat (ITT) effects of winning the Medicaid lottery, the authors
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estimate the following model via OLS:

yihj = β0 + β1LOTTERYh + β2Xih + β3Vih + εihj .

To infer the Local Average Treatment Effects (LATE) of taking up Medicaid on
compliers, the authors employ a Two Stage Least Squares strategy. The first stage
is:

INSURANCEih = δ0 + δ1LOTTERYh + δ2Xih + δ3Vih + νihj .

The second stage is:

yihj = π0 + π1INSURANCEih + π2Xih + π3Vih + µihj .

All standard errors are clustered on the household, and all regressions are weighted
using survey weights defined by the variable “weight_12m”. We have access to the
following seven variables, presented in Panel B of Table 9 in the following order: a
binary indicator of a self-reported measure of health being good/very good/excellent
(not fair or poor), a binary indicator on self-reported health not being poor, a binary
indicator on health being about the same or improving over the last six months, the
number of days of good physical health in the past 30 days, the number of days on
which poor physical or mental health did not impair usual activities, the number
of days mental health was good in the past 30 days, and an indicator on not being
depressed in last two weeks. We replicate Panel B of Table 9 of Finkelstein et al.
(2012) exactly, both for the ITT effect (β̂1) for the entire population and for the
LATE on compliers (π̂1). In both cases, the results show very strong evidence for
positive effects on all health measures, with most p values well below 0.01.

4.1.2 Applying our metric

Consider first the ITT analysis, which Finkelstein et al. (2012) conducted with a
variety of control variables. For each health outcome in Panel B from Table 9 of
Finkelstein et al. (2012), we apply our metric to assess how many data points one
need remove to change the sign, the significance, and produce a significant result of
the opposite sign. Table 4 summarizes our results, with all fixed effects and controls
included and clustering at the household level. The table demonstrates that there
are variables for which the sign can be changed by removing 0.05% of the data or
less, or around 100 data points in a sample of approximately 22,000. It typically
requires the removal of around 1% of the data to produce a significant result of the
opposite sign — although some of the results are more robust and require almost 5%
removal to be reversed. In Figure 6, we show how results vary with the proportion
of points removed.

Consider now the LATE analysis, which Finkelstein et al. (2012) performed
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using the two-stage-least-squares estimator. Table 5 shows the results of applying
our metric to this analysis, with all fixed effects and controls included and with
clustering at the household level. We find that the robustness of the IV results is very
similar to the ITT case. Recent authors including Young (2019) have suggested that
the uncertainty intervals for IV may be more poorly calibrated than the intervals for
OLS. The fact that we find IV to be similarly robust, under our metric, to OLS does
not contradict this conclusion. Young (2019) examines whether test size and power
are close to nominal when data are sampled from a static population, and find that
finite-sample inference for IV based on limiting normal approximations may not
perform in line with asymptotic theory. We assess whether a statistic or function of
interest to an analyst (typically interesting because the analyst accepts its validity,
often based on asymptotic arguments) can be meaningfully altered by removing a
few data points. Recall from Section 3.1 that even correctly specified models can
be non-robust in terms of our metric when there is a low signal-to-noise ratio in
the analysis problem. Similarly, confidence intervals that are robust to dropping
influential points may yet have poor asymptotic coverage because they were formed
under unrealistic assumptions. The two modes of failure for classical inference are
orthogonal, though both may be a concern.

4.1.3 Checking approximation quality

Our results above were generated using our linear approximation to the combinato-
rial problem. To check the accuracy of the linear approximation, we re-run with the
implicated data points removed. In this application, we find that our approximation
always delivers the reversal of the results that it aims to deliver.

In the ITT case, we consider the impact of Medicaid on each of the seven out-
comes. We re-run each regression after manually removing the data points in the
Approximate Most Influential Set, Ŝα̂∗∆ . Table 6 shows the results. We see that,
even when 5% of the sample is removed, the linear approximation here still reliably
uncovers combinations of data points that can deliver the claimed changes. As dis-
cussed above, the observed difference with the Approximate Most Influential Set
removed forms a lower bound on the sensitivity. In particular, it may have been
possible to discover a smaller set of points achieving the same change in results.
But to check whether there is such a smaller set of points, one would need to solve
the full (and prohibitively expensive) combinatorial optimization problem across all
sufficiently small data subsets.

We similarly check the linear approximation for the LATE analyses. In this
case, Table 7 shows the results of re-running the analyses with the points in Ŝα̂∗∆
removed. The linear approximations in these cases also perform well.
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4.2 Cash transfers

In this subsection we show that removing outliers may not protect an empirical
analysis from displaying sensitivity to removal of less than 1% of the sample. To
that end, we now apply our techniques to examine the robustness of the main anal-
ysis from Angelucci and De Giorgi (2009), one of the flagship studies showing the
impact of cash transfers on ineligible households, also known as “spillover effects.”
The authors employ a randomized controlled trial to study the impact of Progresa,
a social program giving cash gifts to eligible poor households in Mexico. The ran-
domization occurs at the village level. Therefore, the authors can study not only
the main effect on the poor households selected to receive Progresa but also the
impact on the non-eligible “non-poor” households located in the same villages as
Progresa-receiving poor households. The analysis on the poor households is very
robust, but the analysis on the non-poor households – whom the trimming protocol
actually affects – is less robust.

4.2.1 Background and replication

The main results of the paper show that there are strong positive impacts of Progresa
on total household consumption measured as an index both for eligible poor house-
holds and for the non-eligible households; see Table 1 of Angelucci and De Giorgi
(2009). This variable is denoted C_indit for household i in time period t. The
authors study three different time periods separately to detect any change in the
impact between the short and long term. They further condition on a large set
of variables (household poverty index, land size, head of household gender, age,
whether speak indigenous language, literacy; at the locality level, poverty index
and number of households) to ensure a fair comparison between households in the
treatment and control villages. In this case these controls are important; the effects
on the “nonpoor” households are significant at the 5% level when the controls are
included, but they are only significant at the 10% level in a simple regression on a
dummy for treatment status.

The full data for the paper is available on the website of the American Economic
Review due to the open-data policies of the journal and the authors. We are able
to successfully replicate the results of their analysis with the controls and without,
and we proceed with the controls in this exercise as their preferred specification.
We consider the time periods indexed as t = 8, 9, 10 in the dataset provided, though
we note that the authors do not rely on the results at t = 8 as these are very early-
stage. We employ K control variables, where Xitk is the kth variable for household
i in period t. Then we run the following regression:

C_indit = β0 + β1treatpoor,i + β2treatnonpoor,i +
K∑
k=1

β2+kXitk + εit.
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We are able to exactly replicate the results of Table 1 of Angelucci and De Giorgi
(2009), which all show positive effects. We focus on the latter two time periods,
as households had received only partial transfers in the first time period — but we
show all three for completeness.

4.2.2 Applying our metric

We apply our approximate metric to perform a sensitivity analysis to assess how
many data points one need remove to change the sign, the significance, or to generate
a significant result of the opposite sign to that found in the full sample. Table 3
shows our results. We find that the inferences on the direct effects are quite robust,
but the inferences on the indirect effects are more sensitive. For the analysis of the
poor (“treatp”), one typically needs to remove around 5% and even up to 10% of
the sample to effect these changes. For the analysis of the nonpoor (“treatnp”), one
need remove less than 0.5% of the data to make these large changes, and removing
only 3 data points in a sample of approximately 10,000 households can change the
significance status for both t = 9 and t = 10. These differential robustness results
likely reflect the differential signal to noise ratio that one might expect comparing
direct and indirect effects. Our results also suggest the merits of a cautious approach
to the spillovers literature more broadly.

In truncating the consumption variable, the authors of this study made what is
typically considered a conservative choice in view of classical robustness concerns.
Knowing that conditional mean estimates are sensitive to large data values, they
deleted households with consumption indices greater than 10,000 units from the
analysis (and both of these households were in the treatment group). The robustness
of the direct effects on the poor households is not generated by the truncation
because they are not in the truncated set. As our results show, even the truncated
analysis remains non-robust for the nonpoor households. These observations further
support our discussion in Section 3.1.6; namely, in the case of OLS linear regression,
it is not simply large values of the outcome that produce large influence scores.
Rather large regression errors combined with high leverage produce large influence
scores. Hence, truncating based on large values of the outcome does not necessarily
remove the highest influence data points for a given analysis.

4.2.3 Checking approximation quality

We again check the quality of our approximation. Table 3 shows the results of
manually re-running each analysis after removing the implicated data points. In
most cases the linear approximation correctly identifies a combination of data points
that can make the claimed changes to the conclusions of the study. When the
approximation falls short and does not actually result in as much change as claimed,
we can see that it is nevertheless very close to achieving the claimed reversal.
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4.3 Seven RCTs of microcredit: Linear regression anal-
ysis

We now show that even a simple 2-parameter linear model that performs a com-
parison of means between the treatment and control group of a randomized trial
can be highly sensitive. To that end, we consider the analysis from seven random-
ized controlled trials of expanding access to microcredit, first aggregated in Meager
(2019). In the next subsection, we will consider a Bayesian hierarchical model to
see whether a Bayesian approach alleviates the sensitivity detected here.

4.3.1 Background

Each of the seven microcredit studies was conducted in a different country, and each
study selected certain communities to randomly receive greater access to microcre-
dit. Researchers either built a branch, or combined building a branch with some
active outreach, or randomly selected borrowers among those who applied. The se-
lected studies are: Angelucci et al. (2015), Attanasio et al. (2015), Augsburg et al.
(2015), Banerjee et al. (2015), Crépon et al. (2015), Karlan and Zinman (2011),
and Tarozzi et al. (2015). Six of these studies were published in a special issue of
the American Economics Journal: Applied Economics on microcredit. All seven
studies together are commonly considered to represent the most solid evidence base
for understanding the impact of microcredit.

We first follow the original studies and Meager (2019) in analyzing the impact of
this access itself as the treatment of interest. The studies range in their sample sizes
from around 1,000 households in Mongolia (Attanasio et al., 2015) to around 16,500
households in Mexico (Angelucci et al., 2015). We consider the headline results on
household business profit regressed on an intercept and a binary variable indicating
whether a household was allocated to the treatment group or to the control group.
For household i in site k, let Yik denote the profit measured, and let Tik denote the
treatment status. We estimate the following model via ordinary least squares:

Yik = β0 + βTik + εik. (4.1)

It is hard to imagine a more straightforward analysis. This regression model
compares the means in the treatment and control groups and estimates the dif-
ference as β̂. With a sample size of 1,000 or 16,500 and a typical econometrics
education, one might believe that the resulting estimate of these two means — and
thus their difference — would be highly accurate. We follow Meager (2019) in omit-
ting the control variables or fixed effects from the regressions in order to examine
the robustness of this fundamental procedure. But in principle this omission should
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make no difference to the estimate β̂, and indeed it does not (Meager, 2019).7

4.3.2 Applying our metric

We now analyze the robustness of the microcredit results for household profit to
the removal of a small fraction of the data. Our results appear in Table 8. In
this set of studies, we see that removing a small number of data points can change
the sign, the significance, and generate a result of the opposite sign that would be
deemed significant at the 5% level. As discussed in Section 2.3, the largest study
is among the most sensitive; a single data point among the 16,561 households in
Mexico determines the sign. To change both the sign and significance — that is,
to turn Mexico’s noisy negative result into a “strong” positive result — one need
remove only 15 data points, i.e. less than 0.001% of the sample. Mongolia, the
smallest study in terms of sample size, is among the most robust in terms of sign
changes; it takes 2% of the sample to change the sign. The Philippines has the
largest standard error yet is the most robust in terms of our ability to generate a
significant result of the opposite sign, which would require the removal of more than
5% of the sample. Figure 7 illustrates how removing different proportions of data
change the results in each case.

It may seem unsurprising that some of these results are highly non-robust, as
they are all non-significant. Yet some of these non-significant results are more
robust than some of the significant results in the Cash Transfers and Oregon Med-
icaid examples; consider the Philippines study, for example. It might also seem
natural to implicate the fat tails of the household profit variable, a phenomenon
well-documented by Meager (2020) and known to reduce the efficiency of the mean
as an estimator of location. But we have shown in Section 3.1.3 that fat tails gener-
ally matter most in their role in generating outcome data with very large scale, so
in what follows we focus on scale issues. Moreover, in Section 3.1 we showed that
what matters is not the absolute scale but the relative scale of the estimated effect
size and the tails of the influence function.

To show that it is relative scale of the data and β̂ that matters, not the abso-
lute scale, we now provide an examination of the much less variable outcome, and
see that it reveals a similar sensitivity to the profit outcome. We consider house-
hold consumption spending on temptation goods such as alcohol, chocolate, and
cigarettes. This variable had a much smaller scale than household profits, and Mea-
ger (2019) estimated it with the greatest precision of all six considered variables.
Table 10 shows the results of applying our approximate metric to these analyses.

7The omission may in principle make a difference to the inference on β by affecting the standard errors.
However, it turns out that in these studies the additional covariates make very little difference to the
standard errors. We also do not cluster the standard errors at the community level for the same reason;
the results are not substantially changed. Running the regression above in each of the seven studies
delivers almost identical results to the preferred specification, as it should if intracluster correlations are
weak and covariates are not strongly predictive of household profit.
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While these analyses are somewhat more robust than the profit analyses, the dif-
ference is not large. Mongolia and India are now faring quite well, but it is still
possible to change the sign of many of the estimates by removing around 1% of each
sample or less. And it is possible to generate a “strong” result of the opposite sign
by removing 2% of the data or less. Understanding that the relative scale is what
matters rather than the absolute scale, it is not surprising that the temptation anal-
ysis is only marginally more robust than the profit analysis; the temptation analysis
also had by far the smallest estimated β̂ of all variables.

4.3.3 Checking approximation quality

We again test how well our linear approximation performs. Table 9 shows the results
of manually re-running the profit analysis with the largest influence points removed.
Table 11 shows the re-run results for the temptation analysis. The desired reversals
are always attained for both variables. Again, we emphasize that it is possible that
there are sets of fewer points that lead to even greater changes. But, as we have
seen, this single re-run of the analysis offers a lower bound on the sensitivity. In
this case, we see substantial changes when the percentage of removed points is very
small, so the lower bound property guarantees that the true sensitivity is high.

4.4 Seven RCTs of microcredit: Bayesian hierarchical
tailored mixture model

In this subsection, we show that the results of Bayesian analyses can also display
major sensitivity to the removal of a small fraction of the sample. We specifically
focus on the tailored mixture model from Meager (2020). One might hope that any
of the following might alleviate sensitivity: the use of hierarchical Bayesian evidence
aggregation, the regularization from incorporation of priors, or the somewhat more
realistic data-generating process captured in this specific tailored likelihood. Indeed,
the approach of Meager (2020) was specifically motivated by the desire to capture
important features of the data-generating process such as fatter tails. We find that
instead, the average effects remain sensitive according to our metric. But we also
find that the estimated variance in treatment effects across studies is somewhat
more robust than these averages.

4.4.1 Background

Following Meager (2020), we fit the model to all the data from the seven RCTs.
We model each of the seven distributions using a spike at zero and two lognormal
tail distributions, one for the positive realizations of profit and one for the nega-
tive realizations. Within the model, microcredit can affect the proportion of data
assigned to each of these three components as well as affecting the location and
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scale of the lognormal tails. There is a hierarchical shrinkage element to the model
for each parameter. The hypervariances of the treatment effects are of particular
interest because these capture the variation in effects across studies; this variation
provides information about the transportability of results across settings. Here we
will focus on the treatment effect of microcredit on the location parameters of the
tail distributions.

The models in the original paper were fit via Hamiltonian Monte Carlo (HMC)
in the software package Stan (Carpenter et al., 2017). It is possible to compute the
Approximate Maximum Influence Perturbation for HMC, or for any Markov Chain
Monte Carlo method, using the tools of Bayesian local robustness (Gustafson, 2000),
but the sensitivity of simulation-based estimators is beyond the scope of this paper.
However, there are ways to estimate Bayesian posteriors via optimization; perhaps
the most notable among these are Variational Bayes (VB) techniques (Blei et al.,
2016). Therefore, to proceed in this section, we fit the model using a variant of
Automatic Differentiation Variational Inference (ADVI) (Kucukelbir et al., 2017)
and apply our sensitivity analysis to the ADVI estimates. Specifically, we apply the
version of ADVI described in Giordano et al. (2018, Section 5.2). Since the poste-
rior uncertainty estimates of vanilla ADVI are notoriously inaccurate, we estimated
posterior uncertainty using linear response covariances, again from Giordano et al.
(2018, Section 5.2). We verified that the posterior means and covariance matrices
of the ADVI and MCMC procedures agreed closely.

4.4.2 Applying our metric

Within our VB implementation, we compute the influence score ψn for each data
point. Consider the effect of microcredit on the location parameter of the positive
tail of profit, where the majority of the data in the samples is located. For each
of the seven countries, Figure 8 shows the changes that one can make by removing
data points successively from the most influential point in order of decreasing in-
fluence. We consider the removal of up to 1% of the total sample for each of the
individual treatment effects on the means of the positive tails; the results are similar
for the negative tails. The light blue bands in this case show the central 95% pos-
terior interval. While a Bayesian analyst is not generally concerned with statistical
significance, our analyst might be concerned that these marginal posteriors show a
large sensitivity to the removal of a small fraction of the sample.8 Parameter value
regions that had a posterior mass of less than 2% in the original analysis can end
up with a posterior mass of 50% when we remove only 1% of the sample.

The hypermeans and hypervariances for these location parameters are somewhat
more robust than the country-specific parameters, and the hypervariances even more
than the hypermeans. Figure 9 shows the change in the posterior marginals for these
parameters for both the negative and positive tails. The hypervariances are some-

8And indeed, she is.
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what more robust, as the removal of 1% of the sample would not materially alter
the original paper’s conclusions about effect heterogeneity across settings. This
observation is quite interesting since, from a conventional robust statistics view-
point, variances tend to be highly non-robust statistics. Our finding of a somewhat
more robust hypervariance suggests that while it is possible to change the individual
treatment effects by changing certain points, there must be different points removed
for the different effects. It is easy to move each of the treatment effects around indi-
vidually, but it is harder to move all of them in different directions away from each
other by removing only a small part of the sample. Thus, the aggregate conclusions
are somewhat more robust than the individual conclusions of the papers on which
the analysis is based, although they are still somewhat sensitive.

4.4.3 Checking approximation quality

We again check the accuracy of our approximation. In this case, we uncover an
instance where the approximation fails. We took the function of interest to be the
log of the hypervariance and attempted make it as negative as possible. That is,
we tried to find a set of points which, once removed, would make the hypervariance
close to zero. Though the Approximate Maximum Influence Perturbation suggests
that such a change is possible, Figure 10 shows that the actual estimator diverges
as the hypervariance approaches the boundary at zero. In future work, it might be
interesting to explore higher-order approximations to see if they might resolve this
issue.

5 Conclusion
There are different ways of quantifying the dependence between the sample and the
conclusions of statistical inference. While the idea of dependence on the vagaries of
finite sample realisation has become synonymous with standard errors in frequentist
statistics, the notions are equivalent only under a certain paradigm that considers
a hypothetical random resampling exercise for the purpose of evaluating a specific
parameter within a given model. Yet this hypothetical exercise may not always
adequately capture all the data sensitivity relevant to applied social science. Indeed,
much of 20th century statistics, with its focus on standard errors and sampling
uncertainty, was motivated by randomized agricultural trials. In these cases, the
difference in yield across multiple fields is well-modeled by independent sampling
variation. Contrast with microcredit, where we do not believe the statistical model
is an exact description of the true data-generating process. And in microcredit, the
average effect is but a convenient summary; if the average profit were to increase
slightly through one individual becoming wealthy while leaving all others destitute,
one could consider the intervention a failure. By contrast, if a single plant produced
an entire harvest’s worth of corn, the outcome would still be desirable, if strange.
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We here posit that there are other ways of conceiving of and quantifying the
dependence of empirical results on the sample data, beyond standard errors. Sensi-
tivity under our metric does not necessarily imply a problem with the sample. But
the goal of inference is not to learn about the sample, but rather to learn about the
population. Moreover in practice researchers often wish to conceive of that popula-
tion in a relatively broad manner. If minor alterations to the sample can generate
major changes in the inference, and we know the environment in which we do eco-
nomics is changing all the time, we ought to be less confident that we have learned
something fundamental about this broader population we seek to understand, for
whom we ultimately seek to make policy. This conclusion does not necessarily mean
that the original analysis is invalid according to classical sampling theory — and we
do not recommend that researchers abandon the original full-sample results. How-
ever, reporting our metric alongside standard errors would improve our ability to
understand and interpret the findings of a given analysis.

Working within an established general framework for local sensitivity, we have
provided a computable metric, the Approximate Maximum Influence Perturbation,
to quantify robustness to small perturbations of data in a finite sample. The Approx-
imate Maximum Influence Perturbation can be computed automatically for many
common analysis methods, and the quality of the approximation can be checked in
practice at the cost of one additional data analysis. We find that common methods
for data analysis in economics can, and often do, display important sensitivities to
small fractions of the data. These sensitivities are present in all of the empirical
applications we studied here, even when the inferential procedures are straightfor-
ward, although to differing extents. In many cases, removing less than 1% of the
sample data can generate a strong, statistically significant result of the opposite
sign to that claimed in the study.

However, we do find more-robust cases in certain applications, suggesting that
applied economic analyses do differ in their sensitivities according to the Approx-
imate Maximum Influence Perturbation. Analyses that are more robust are not
obviously identifiable in terms of having smaller standard errors or fatter tails or
inferior significance status. This observation confirms our theoretical findings that
the sensitivity measured by Approximate Maximum Influence Perturbation is not
captured by conventional metrics of sampling uncertainty. Instead, the sensitivity
we analyze appears to be largely driven by the relative scale of the outcome and
regressors as well as the size of their covariation, a set of factors succinctly captured
in the signal to noise ratio for the given statistical problem. This intuition is also
distinct from that underlying general Huber or robust statistics; indeed, we have
shown that conditional means can perform well if the signal to noise ratio is high.
We thus recommend that our metric be routinely computed and reported.

It now seems desirable to develop new statistical methods to address the pres-
ence of this kind of sensitivity, and moreover, to develop these methods in view of
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the actual goals and uses of economics research rather than relying on a classical
resampling paradigm that bears little resemblance to the practice of applied social
science.
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6 Figures

Table 2: Number of Data Points Affecting Conclusions of Cash Transfers Analysis

Case N Change Sign Change Significance Change Both
treatnp, t=10 4, 266 30 3 101
treatnp, t=9 3, 838 21 3 53
treatnp, t=8 4, 624 5 17 28
treatp, t=10 10, 518 697 435 1, 049
treatp, t=9 9, 630 345 146 653
treatp, t=8 10, 936 252 83 520

Table 3: Manual Re-Runs Of The Cash Transfers Analysis

Case Beta (SE) Re-run for sign Re-run for significance Re-run for both
treatnp, t=10 21.49 (9.41) -0.57 (6.75) 16.26 (8.93) -11.96 (6.84)
treatnp, t=9 22.85 (10) -0.37 (7.54) 16.51 (9.11) -11.83 (7.11)
treatnp, t=8 -5.44 (7.13) 0.26 (6.41) -12.97 (6.78) 10.44 (5.86)
treatp, t=10 33.86 (4.47) -2.56 (3.54) 4.81 (3.68) -11.34 (3.99)
treatp, t=9 27.92 (5.77) -1.38 (4.41) 7.08 (4.55) -11.26 (4.78)
treatp, t=8 17.31 (4.59) -0.66 (3.75) 7.28 (4.1) -9.11 (3.67)
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Table 4: Number of Data Points Affecting Conclusions of Oregon Medicaid Table 9 ITT
Results

Outcome N Change Sign Change Significance Change Both
health_genflip_bin_12m 23, 361 286 163 422
health_notpoor_12m 23, 361 156 101 224

health_chgflip_bin_12m 23, 407 198 106 292
notbaddays_tot_12m 21, 881 74 11 147
notbaddays_phys_12m 21, 384 88 20 166
notbaddays_ment_12m 21, 601 124 42 216
nodep_screen_12m 23, 147 123 43 225

Table 5: Number of Data Points Affecting Conclusions of Oregon Medicaid Table 9 IV
Results

Outcome N Change Sign Change Significance Change Both
health_genflip_bin_12m 23, 361 275 162 383
health_notpoor_12m 23, 361 155 100 219

health_chgflip_bin_12m 23, 407 197 106 292
notbaddays_tot_12m 21, 881 73 10 145
notbaddays_phys_12m 21, 384 87 20 165
notbaddays_ment_12m 21, 601 123 42 215
nodep_screen_12m 23, 147 123 42 220
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Table 8: Number of Data Points Affecting Conclusions of Microcredit Profit Analysis

Country N Change Sign Change Significance Change Both
Mexico 16, 560 1 14 15
Mongolia 961 16 2 38
Bosnia 1, 195 14 1 40
India 6, 863 6 1 32

Morocco 5, 498 11 2 30
Philippines 1, 113 9 10 63
Ethiopia 3, 113 1 45 66

Table 9: Manual Re-Runs Of The Microcredit Profit Analysis

Country Beta (SE) Re-run for sign Re-run for significance Re-run for both
Mexico -4.55 (5.88) 0.4 (3.19) -10.96 (5.57) 7.03 (2.55)
Mongolia -0.34 (0.22) 0.02 (0.18) -0.44 (0.22) 0.36 (0.15)
Bosnia 37.53 (19.78) -2.23 (15.63) 43.73 (18.89) -34.93 (14.32)
India 16.72 (11.83) -0.5 (8.22) 22.89 (10.27) -16.64 (7.54)

Morocco 17.54 (11.4) -0.57 (9.92) 21.72 (11) -18.85 (9.01)
Philippines 66.56 (78.13) -4.01 (57.2) 155.89 (77.37) -135.41 (53.51)
Ethiopia 7.29 (7.89) -0.05 (2.51) 15.36 (7.76) -8.75 (1.85)

Table 10: Number of Data Points Affecting Conclusions of Microcredit Temptation Anal-
ysis

Country N Change Sign Change Significance Change Both
Mexico 16, 435 12 14 55
Mongolia 961 3 12 162
Bosnia 996 10 1 33
India 6, 827 41 8 85

Morocco 5, 487 3 14 23

Table 11: Manual Re-Runs Of The Microcredit Temptation Analysis

Country Beta (SE) Re-run for sign Re-run for significance Re-run for both
Mexico -0.08 (0.09) 0 (0.09) -0.18 (0.09) 0.18 (0.09)
Mongolia 1.52 (2.1) -0.03 (0.97) 4.21 (2.08) -7.37 (2.41)
Bosnia -5.8 (2.82) 0.39 (2.13) -4.87 (2.69) 5.13 (1.98)
India -1.64 (0.58) 0.04 (0.51) -1.05 (0.54) 1.06 (0.49)

Morocco -0.42 (0.72) 0.05 (0.67) -1.35 (0.67) 1.25 (0.6)
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Figure 1: Simulation results for linear regression. Values of β̂ are on the vertical axis;
values of α (proportion of the data removed) are on the horizontal axis. The dark blue
line shows the original β̂ value. The red lines show how β̂ can be altered by adversarial
removal in both directions; the light blue shaded area is the 95% confidence interval.

Figure 2: Simulation results for linear regression at differing scales of σX and σε. A darker
red colour indicates a highly sensitive analysis, in which only a small proportion of the
sample needs to be removed to effect these three major changes: generating the opposite
sign (left), changing the significance (right), and generating a significant result of the
opposite sign (middle). A lighter red colour indicates greater robustness. The grey areas
indicate Ψ̂α = NA, a failure of the linear approximation to locate any way to effect these
changes.
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Figure 3: Illustration of the ∆ required to effect a change of significance, sign, or both
sign and significance of a positive, statistically significant effect. By definition, φ is a
function of interest that we are trying to increase, so φ would be taken to be the negative
of the illustrated quantities.
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Figure 4: Simulations. Illustrative distributions of ~γ with traditionally-defined heavy
and light tails. Here, N = 20, α = 0.2, and M = 4. For both plots, ∑N

n=1 γ
2
n = 1.
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Figure 5: Cash Transfers Analysis. Values of β̂ are on the vertical axis; values of α
(proportion of the data removed) are on the horizontal axis. The dark blue line shows
the original β̂ value. The red lines show how β̂ can be altered by adversarial removal in
both directions; the light blue shaded area is the 95% confidence interval.
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Figure 6: Oregon Medicaid Analysis. Values of β̂ are on the vertical axis; values of α
(proportion of the data removed) are on the horizontal axis. The dark blue line shows
the original β̂ value. The red lines show how β̂ can be altered by adversarial removal in
both directions; the light blue shaded area is the 95% confidence interval. In this case,
the light blue shaded area is almost indistinguishable from the red lines.
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Figure 7: Microcredit Analysis: Linear. Values of β̂ are on the vertical axis; values of α
(proportion of the data removed) are on the horizontal axis. The dark blue line shows
the original β̂ value. The red lines show how β̂ can be altered by adversarial removal in
both directions; the light blue shaded area is the 95% confidence interval.
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Figure 8: Microcredit Analysis: Bayesian Hierarchical. We first consider the 7 study-
specific treatment effects on the location parameter of the positive tail of profit (within the
lognormal specification). Parameter values are on the vertical axis; values of α (proportion
of the data removed) are on the horizontal axis. The dark blue line shows the original
marginal posterior mean value. The red lines show how the marginal posterior mean can
be altered by adversarial removal in both directions; the light blue shaded area is the
central 95% posterior interval.
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Figure 9: Microcredit Analysis: Bayesian Hierarchical. We now consider the hypermean
and hypervariance of the treatment effect on the location parameter of the positive tail of
profit (first row) and the negative tail of profit (second row). Parameter values are on the
vertical axis; values of α (proportion of the data removed) are on the horizontal axis. The
dark blue line shows the original marginal posterior mean value. The red lines show how
the marginal posterior mean can be altered by adversarial removal in both directions; the
light blue shaded area is the central 95% posterior interval.

Figure 10: Comparison of the change in the posterior indicated by the approximation with
the actual change in the hypervariance (here of the negative tail) achieved by re-running
the analysis with the data points removed.

55



References
Angelucci, M. and De Giorgi, G. (2009). Indirect effects of an aid program: How

do cash transfers affect ineligibles’ consumption? American Economic Review,
99(1):486–508.

Angelucci, M., Karlan, D., and Zinman, J. (2015). Microcredit impacts: Evidence
from a randomized microcredit program placement experiment by Compartamos
Banco. American Economic Journal: Applied Economics, 7(1):151–82.

Attanasio, O., Augsburg, B., De Haas, R., Fitzsimons, E., and Harmgart, H. (2015).
The impacts of microfinance: Evidence from joint-liability lending in Mongolia.
American Economic Journal: Applied Economics, 7(1):90–122.

Augsburg, B., De Haas, R., Harmgart, H., and Meghir, C. (2015). The impacts
of microcredit: Evidence from Bosnia and Herzegovina. American Economic
Journal: Applied Economics, 7(1):183–203.

Banerjee, A., Duflo, E., Glennerster, R., and Kinnan, C. (2015). The miracle of mi-
crofinance? Evidence from a randomized evaluation. American Economic Jour-
nal: Applied Economics, 7(1):22–53.

Baydin, A., Pearlmutter, B., Radul, A., and Siskind, J. (2017). Automatic dif-
ferentiation in machine learning: A survey. The Journal of Machine Learning
Research, 18(1):5595–5637.

Blei, D., Kucukelbir, A., and McAuliffe, J. D. (2016). Variational inference: A
review for statisticians. arXiv preprint arXiv:1601.00670.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic
programming language. Journal of Statistical Software, 76(1).

Chatterjee, S. and Hadi, A. (1986). Influential observations, high leverage points,
and outliers in linear regression. Statistical Science, 1(3):379–393.

Chen, X., Tamer, E., and Torgovitsky, A. (2011). Sensitivity analysis in semipara-
metric likelihood models. Cowles Foundation discussion paper.

Crépon, B., Devoto, F., Duflo, E., and Parienté, W. (2015). Estimating the impact
of microcredit on those who take it up: Evidence from a randomized experiment
in Morocco. American Economic Journal: Applied Economics, 7(1):123–50.

Finkelstein, A., Taubman, S., Wright, B., Bernstein, M., Gruber, J., Newhouse, J.,
Allen, H., Baicker, K., and Group, O. H. S. (2012). The Oregon health insurance
experiment: Evidence from the first year. The Quarterly Journal of Economics,
127(3):1057–1106.

56



Giordano, R., Broderick, T., and Jordan, M. I. (2018). Covariances, robustness and
variational Bayes. The Journal of Machine Learning Research, 19(1):1981–2029.

Giordano, R., Jordan, M. I., and Broderick, T. (2019). A higher-order Swiss army
infinitesimal jackknife. arXiv preprint arXiv:1907.12116.

Gustafson, P. (2000). Local robustness in Bayesian analysis. In Robust Bayesian
Analysis, pages 71–88. Springer.

Hampel, F. (1974). The influence curve and its role in robust estimation. Journal
of the American Statistical Association, 69(346):383–393.

Hampel, F. (1986). Robust statistics: the approach based on influence functions,
volume 196. Wiley-Interscience.

Hansen, L. and Sargent, T. (2008). Robustness. Princeton University Press.

He, X., Jurečková, J., Koenker, R., and Portnoy, S. (1990). Tail behavior of re-
gression estimators and their breakdown points. Econometrica: Journal of the
Econometric Society, pages 1195–1214.

Huber, P. (1983). Minimax aspects of bounded-influence regression. Journal of the
American Statistical Association, 78(381):66–72.

Karlan, D. and Zinman, J. (2011). Microcredit in theory and practice: Using
randomized credit scoring for impact evaluation. Science, 332(6035):1278–1284.

Kim, T. and White, H. (2004). On more robust estimation of skewness and kurtosis.
Finance Research Letters, 1(1):56–73.

Krantz, S. and Parks, H. (2012). The implicit function theorem: History, theory,
and applications. Springer Science & Business Media.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. (2017). Au-
tomatic differentiation variational inference. The Journal of Machine Learning
Research, 18(1):430–474.

Leamer, E. (1984). Global sensitivity results for generalized least squares estimates.
Journal of the American Statistical Association, 79(388):867–870.

Leamer, E. (1985). Sensitivity analyses would help. The American Economic Re-
view, 75(3):308–313.

Maclaurin, D., Duvenaud, D., and Adams, R. (2015). Autograd: Effortless gradients
in numpy. In ICML 2015 AutoML Workshop, volume 238.

Masten, M. and Poirier, A. (2020). Inference on breakdown frontiers. Quantitative
Economics, 11(1):41–111.

57



Meager, R. (2019). Understanding the average impact of microcredit expansions:
A Bayesian hierarchical analysis of seven randomized experiments. American
Economic Journal: Applied Economics, 11(1):57–91.

Meager, R. (2020). Aggregating distributional treatment effects: A Bayesian hier-
archical analysis of the microcredit literature. LSE working paper.

Mises, R. (1947). On the asymptotic distribution of differentiable statistical func-
tions. The Annals of Mathematical Statistics, 18(3):309–348.

Mosteller, F. and Tukey, J. (1977). Data Analysis and Regression: A Second Course
In Statistics. Pearson, USA.

Reeds, J. (1976). On the definition of von Mises functionals. PhD thesis, Statistics,
Harvard University.

Saltelli, A. (2004). Global sensitivity analysis: An introduction. In Proc. 4th Inter-
national Conference on Sensitivity Analysis of Model Output (SAMO ’04), pages
27–43.

Sobol, I. (2001). Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-
3):271–280.

Tarozzi, A., Desai, J., and Johnson, K. (2015). The impacts of microcredit: Evidence
from Ethiopia. American Economic Journal: Applied Economics, 7(1):54–89.

Trefethen, L. and Bau, D. (1997). Numerical linear algebra, volume 50. Siam.

Van der Vaart, A. (2000). Asymptotic statistics, volume 3. Cambridge University
Press.

Young, A. (2019). Consistency without inference: Instrumental variables in practical
application. http://personal.lse.ac.uk/YoungA/CWOI.pdf. Accessed: 2020-11-
27.

Zeileis, A., Köll, S., and Graham, N. (2020). Various versatile variances: An object-
oriented implementation of clustered covariances in R. Journal of Statistical
Software, 95(1):1–36.

58



Appendix A Motivating Examples
Example 1 (Linear regression). Let yn denote the response and xn denote the
regressors for linear regression. In this case, dn = (yn, xn) and the regression coef-
ficient solves Eq. 2.2 with G(θ, dn) = xn(yn − xTnθ). This can be thought of as a
method of moments estimator imposing the condition that the residuals yn − xTnθ
be orthogonal to the regressors.

Example 2 (Smooth optimization problems). Suppose that f(θ, dn) ∈ R is a three-
times continuously differentiable objective function, and we wish to find θ solving
θ̂ := argminθ 1

N

∑N
n=1 f(θ, dn). Under appropriate regularity conditions, the opti-

mization problem is equivalent to satisfying the first order condition 1
N

∑N
n=1

∂f(θ,dn)
∂θ

∣∣∣
θ̂

=

0. So the optimization problem is equivalent to Eq. 2.2 with G(θ, dn) = ∂f(θ,dn)
∂θ

∣∣∣
θ
.

Regression is, of course, a special case of a smooth optimization problem, as are
generalized method of moments estimators. Many common econometrics methods
can be cast as optimization problems, but not all, as the following example shows.

Example 3 (Instrumental variables). Suppose we have responses yn, regressors
xn, and instruments zn. Then dn = (yn, xn, zn) and the instrumental variables
(IV) estimator θ solves Eq. 2.2 with G(θ, dn) = zn(yn − θTxn). Note that the
IV estimator does not, in general solve an optimization problem. It if did, then
1
N

∑N
n=1 ∂G(θ, dn)/∂θ = 1

N

∑N
n=1 znx

T
n would be the Hessian matrix of the objective

function, but this is impossible, because 1
N

∑N
n=1 znx

T
n is not symmetric in general.

Example 4 (Sequences of optimization problems). Suppose that θ = (θ1, θ2), and
we estimate θ1 by first solving an optimization problem

θ̂1 := argminθ1
1
N

N∑
n=1

f1(θ1, dn),

and then use θ̂1 as a hyperparameter for a subsequent optimization problem:

θ̂2 := argminθ2
1
N

N∑
n=1

f2(θ̂1, θ2, dn).

Jointly, this is equivalent to solving Eq. 2.2 with

G(θ, dn) =

 1
N

∑N
n=1

∂f1(θ1,dn)
∂θ1

∣∣∣
θ1

1
N

∑N
n=1

∂f2(θ1,θ2,dn)
∂θ2

∣∣∣
θ1,θ2

 .
Example 5 (Sample mean). A simple sample mean is a case where Sα and Ψα

are analytically tractable. Let ~x be a vector of N scalar observations, and let
G(θ, xn) = θ − xn, so that θ̂ = 1

N

∑N
n=1 xn. The re-weighted estimate is given by

θ̂(~w) =
∑N
n=1wnxn/

∑N
n=1wn. We will take φ(θ, ~w) = θ. Without loss of generality,
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Figure 11: A graph of Example 5 for 1 ≤M ≤ 100 using 1000 standard normal datapoints.
The horizontal blue line shows the original sample mean, and the red curve shows θ̂(~w)
as more and more points are left out. The vertical black line shows that the sign of θ̂(~w)
changes when 10 points are left out.

let ~x be sorted so that x1 ≤ x2 ≤ . . . ≤ xN . When there are N ′ points remaining
in the sample, the effect on θ̂ of removing datapoint n is −xn/N ′. Consequently,
the most influential datapoint to remove is always the most negative observation
remaining, so Sα = {1 . . .M}, θ̂(~w∗) = 1

N−M
∑N
n=M+1 xn, and Ψα = θ̂(~w∗)− θ̂.

Figure 11 shows this analysis for 1000 standard normal datapoints which hap-
pened to have a sample mean of −0.026. We took M ≤ 100 (α < 10%). The
difference between the red curve, which shows θ̂(~w), and the horizontal blue line,
which shows θ̂, is Ψα for increasingM . The re-weighted θ̂(~w) crosses zero atM = 10
(α = 1%). If the conclusions of an analysis rested on the fact that the sign of θ̂ were
negative, one would take ∆ = 0.026 and find that M = 10 sufficed to produce a
change of size ∆ and overturn the analysis. If 1% of the sample were not considered
too large, then the analysis would not be considered robust.

Example 6 (Linear regression). Consider linear regression as defined in Example 1.
In this case,

θ̂(~w) =
(

N∑
n=1

wnxnx
T
n

)−1 N∑
n=1

wnynxn.

The fact that the weights occur in the
(∑N

n=1wnxnx
T
n

)−1
term mean that the

ordering of the datapoints’ influence depends on which datapoints have already
been removed. For example, suppose that the regressors would be nearly colinear
were it not for two similar datapoints, x1 and x2. The effect of removing only one
of x1 or x2 alone might be small, but the effect of removing both of them could be
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very large. For this reason, exactly computing Sα and Ψα for linear regression is
hard in general.

Note that if one were to “fix” the regressors in the re-weighting, defining the
weighted estimating equation

1
N

N∑
n=1

xn
(
wnyn − xTn θ̂(~w)

)
= 0,

then Sα and Ψα would have closed forms as in Example 5. For the remainder of the
paper we take the view that removing a datapoint involves removing the regressor
as well, though which is most appropriate depends on the context.

Example 7 (Optimization.). In the setting of Example 2, the Jacobian of G(θ, dn)
is the Hessian of the objective function f(θ, dn), and Eq. 2.10 takes the form

dθ̂(~w)
d~wT

∣∣∣∣∣
~w

=−

 N∑
n=1

wn
∂2f(θ, ~w)
∂θ∂θT

∣∣∣∣∣
θ̂(~w), ~w

−1(
∂f(θ, d1)

∂θ

∣∣∣∣
θ̂(~w)

, . . . ,
∂f(θ, dN )

∂θ

∣∣∣∣
θ̂(~w)

)
.

Note that, in order for Eq. 2.10 to apply, the Hessian matrix must be non-degenerate
at θ̂(~w), ~w.

Example 8 (A component of θ̂.). When φ simply picks out one entry of the vector
θ, i.e. φ(θ) = θp, then ψn is simply the (p, n)-th entry of the matrix dθ̂(~w)/d~wT .

Appendix B Asymptotic Properties of the In-
fluence Function

B.1 Covariance of M-estimators: standard and robust
versions.

Suppose we have an objective function, g, that decomposes as a sum over datapoints,
dn, n = 1, ..., N . Let x = (d1, ..., dN ). Let an estimate of the parameter θ ∈ RP be
defined as a root of the summed objective function, i.e.,

θ̂ := θ such that
N∑
n=1

g (dn, θ) =: G (x, θ) = 0. (B.1)

By definition, G
(
θ̂, x

)
= 0. The MLE of smooth likelihoods is such an estimator,

where g is the gradient of the log likelihood. Let θ0 denote the “true” value (that
is, the root of Eq. B.1). Assume all the smoothness and regularity you need, Taylor
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expand a single term around θ0, and evaluate at θ̂ to get

0 = G
(
x, θ̂

)
= G (x, θ0) + dG

dθT

∣∣∣∣
θ0

(
θ̂ − θ0

)
+O

(∥∥∥θ̂ − θ0
∥∥∥2
)
⇒

θ̂ − θ0 = −
(
dG

dθT

∣∣∣∣
θ0

)−1

G (x, θ0) +O

(∥∥∥θ̂ − θ0
∥∥∥2
)
. (B.2)

This is sort of a “master formula”, of which different regression standard errors arise
as special cases.

B.2 Correctly specified likelihoods

First, suppose that g is the gradient of a correctly specified log likelihood, ` (dn, θ).
Then

g (dn, θ) = ∇` (dn, θ)

G (x, θ0) =
N∑
n=1
∇` (dn, θ0)

dG

dθT

∣∣∣∣
θ0

=
N∑
n=1
∇2` (dn, θ0)

By standard properties of correctly-specified likelihoods,

E [∇` (dn, θ)] = 0, (B.3)

and

Cov (∇` (dn, θ0)) = I, (B.4)

where I is the Fisher information. By the law of large numbers, and again a property
of correctly-specified likelihoods,

1
N

dG

dθT

∣∣∣∣
θ0

= 1
N

N∑
n=1
∇2` (dn, θ0) = E

[
∇2` (dn, θ0)

]
→ −I. (B.5)

By the Central limit theorem,

1√
N
G (x, θ0) = 1√

N

N∑
n=1
∇` (dn, θ0) dist→ N (0,Cov (∇` (dn, θ0))) = N (0, I) . (B.6)
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By smoothness assumptions, O
(√

N
∥∥∥θ̂ − θ0

∥∥∥2
)
→ 0. Putting this all together in

Eq. B.2,

√
N
(
θ̂ − θ0

)
= −

(
1
N

dG

dθT

∣∣∣∣
θ0

)−1 1√
N
G (x, θ0) +O

(√
N
∥∥∥θ̂ − θ0

∥∥∥2
)

dist→ I−1N (0, I)

= N
(
0, I−1

)
.

Typically, I−1 is estimated with the negative inverse Hessian of the log likelihood,
i.e., the “observed Fisher information”:

Î := − 1
N

N∑
n=1
∇2`

(
dn, θ̂

)
= − 1

N

dG

dθT

∣∣∣∣
θ̂

.

I will briefly observe that this could be motivated by considering the non-asymptotic
sensitivity estimator at θ̂ rather than θ0. The formal difference is merely forming
the Taylor expansion around θ̂ and not θ0. The conceptual difference is interesting,
but beyond the scope.

B.3 Robustness to misspecification.

Let us consider how results change if the likelihood is not correct. In this case, we
are simply calculating the asymptotic behavior of a smooth optimization problem.
The results of Section B.2 used the fact that the model was correctly specified in two
places. First, it was used in Eq. B.3. This is not a particularly material assumption;
we simply define the “true” θ0 as the one for which Eq. B.3 is true. Less benign is
the assumption that the quantity I in Eq. B.4 and Eq. B.5 is the same. This is not,
in general, true. Let us define

E
[
∇2` (dn, θ0)

]
:= −H.

Then, everything else follows as before, except we get

V = E [Cov (∇` (dn, θ0))] ,

where the dn is drawn according to whatever distribution generates your data –
they must be independent, but might not be identically distributed. And then,

√
N
(
θ̂ − θ0

)
dist→ H−1N (0, V )

= N
(
0, H−1V H−1

)
. (B.7)
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Now we need to estimate two different quantities.

Ĥ := − 1
N

N∑
n=1
∇2`

(
dn, θ̂

)

V̂ := 1
N

N∑
n=1
∇`
(
dn, θ̂

)
∇`
(
dn, θ̂

)T
. (B.8)

Now, V̂ is the sample variance of the observed scores (using the fact that 1
N

∑N
n=1∇`

(
dn, θ̂

)
=

0 by definition). In Section B.2 we effectively assumed that Ĥ = V̂ . In finite sam-
ple, even this is not necessarily true; it was motivated in Section B.2 by purely
asymptotic assumptions.

Note that, in regression problems, ∇`
(
dn, θ̂

)
is given by

` (dn, θ) = 1
2
(
yn − dTnθ

)2

∇`
(
dn, θ̂

)
= dn

(
yn − dTn θ̂

)
.

This shows that Eq. B.7 is in fact the standard heteroskedasticity-consistent robust
standard error for regressions.

B.4 Robustness to within-group covariances.

Finally, let us consider grouping data together. Both Section B.2 and Section B.3
required that d1, ..., dN be independent of one another. Otherwise, the expected
score covariance as measured by Eq. B.5 or by Eq. B.8 is not the same variance to
be used in the Central limit theorem, Eq. B.6.

As a first step, note that, even when the d1, ..., dN are believed to be independent,
there is in fact a choice to be made. For if d1, ..., dN are independent, then the
pairs (d1, d2) , (d3, d4) , ..., (dN−1, dN ) are also independent. So it is perfectly well-
motivated to write

zm = (d2m+1, d2m+2) , for m = 1, ..., N2

` (z, θ) =
M∑
m=1

` (zm, θ)

=
M∑
m=1

(` (d2m+1, θ) + ` (d2m+2, θ))

=
N∑
n=1

` (dn, θ)

= ` (x, θ) (B.9)
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and so replace Eq. B.8 with

V̂paired := 1
M

M∑
m=1
∇`
(
zm, θ̂

)
∇`
(
zm, θ̂

)T
(B.10)

= 1
N/2

N/2−1∑
m=0

(
∇`
(
d2m+1, θ̂

)
+∇`

(
d2m+2, θ̂

)) (
∇`
(
d2m+1, θ̂

)
+∇`

(
d2m+2, θ̂

))T
.

The existence of cross-terms in Eq. B.10 shows that V̂paired is not equal to V̂ in
Eq. B.8, though if the dn are truly independent then the difference disappears
asymptotically. The same argument could be made for any grouping, or, indeed,
groupings of different sizes where you imagine that the group size is independent
and random.

We see no reason to use V̂paired if you believe that d1, ..., dN are independent.
However, if you believe that some of the dn are dependent within a certain grouping,
but that the groups are independent of one another, then you can simply re-write
the problem using these groups:

zm =
(
dgm(1), ..., dgm(Nm)

)
, for m = 1, ...,M,

and use the reasoning of Section B.3 applied to the grouped random variables as in
Eq. B.10. A simple example is the problem we’re considering, where the groups are
villages, and the dn are observations for people. The objective function is unchanged,
as seen in Eq. B.9. The score covariance estimator will be noisier in general, since it
contains the cross-terms that would otherwise be absent in Eq. B.8. But this may
be a small price to pay for a correct model specification.

Appendix C Bounds on the shape parameter

As this is α times the truncated mean of a non-generate distribution, Γ+
α will not

tend to 0 as N increases. Indeed, it will remain large to the extent that this truncated
mean is large, which occurs when the scale of the γn variable is large. In fact, it
is possible to derive an upper bound on this object, to understand the worst-case
scenario of maximal sensitivity for a fixed N and α given some observed standard
errors σε. Consider the problem of choosing {γn}Nn=1 to maximize Γ+

α subject to the
two constraints that N−1∑N

n=1 γ
2
N = 1 and N−1∑N

n=1 γN = 0. For a given α and
N , what matters is the value of the influence scores of the data points we are going
to discard: this is the set for which n ∈ Ŝα, and we denote members of this set by
γm for m = 1, 2, ...M where applicable. Thus the Lagrangian form of the problem
that defines the worst case scenario is

L = inf
λµ,λσ

max
{γn}Nn=1

(
M∑
m=1

γm + λµ

N∑
n=1

γn + 1
2(

N∑
n=1

γ2
n −N)

)
(C.1)
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Taking first order conditions with respect to both some candidate γm and some
retained γn (with slight abuse of notation),

1 + λµ + λσγm = 0

λµ + λσγn = 0

Summing over the indices in the first equation and plugging in the constraint∑N
n=1 γn = 0 gives λµ = −M/N = −α. Squaring the second equation and summing

over the indices and using the constraint
∑N
n=1 γ

2
n = N delivers λ2

σ = α(1− α).
Putting these together, and employing the negative root of λσ, we have

γm =−(1 + λµ)
λσ

= 1− α√
α(1− α)

=
√

1− α
α

This is the worst possible value of some candidate γm. Thus, plugging that into the
definition of Γ+

α , in general it turns out that

Γ+
α ≤

√
α(1− α) (C.2)

and that this upper bound is attained when exactly M values are omitted and when
γm from these omitted points all take the same value.

Appendix D IV and OLS Proofs

D.1 Proof of Theorem 1

In this section we prove the key step in Theorem 1 using the results from Giordano
et al. (2019), which we will abbreviate as HOIJ. For example, we will refer to
Giordano et al. (2019, Assumption 1) as HOIJ Assumption 1. Additionally, for this
section only, we will exclusively use the notation of Giordano et al. (2019). Our
Section 3.2 draws the connection between this section’s notation and the notation
of the rest of the present paper.

Suppose we observe regressors, xn ∈ RP , instruments zn ∈ RP , and responses,
yn ∈ R, for n = 1, . . . , N . We assume that the observations are exchangeable. It will
be convenient to define the residual εn(θ) := θTxn − yn. Our estimating equation
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partial derivatives are then

G(θ, ~w) := = 1
N

N∑
n=1

wnεn(θ)zn

d1
θG(θ, ~w) =H(θ, w) := 1

N

N∑
n=1

wnznx
T
n

dkθG(θ, ~w) =0 for k > 1.

We now consider each of the assumptions and conditions of HOIJ Section 4.1 in this
context, proving the following lemma:

Lemma 2. Under the assumption αCopξ1 ≤ 1
3 of Theorem 1 of Section 3.2, HOIJ As-

sumptions 1-5 are satisfied with ρ = 1/3 and

Ωθ(B) :=
{
θ :
∥∥∥θ − θ̂∥∥∥

2
< B

}
with

B =

∥∥∥θ̂IJ
1 (w)− θ̂

∥∥∥
2

+ 2α2C̃2
opξ1ξ2

1− 2α2C̃2
opξ

2
1

> 0.

Proof. For HOIJ Assumption 1, we will use HOIJ Lemma 8 to choose a suitable
value of B once the other constants are established.

HOIJ Assumption 2 follows immediately by inspection, as the estimating equa-
tion is linear in θ.

In this case, H(θ, 1N ) = Ĥ = 1
N

∑N
n=1 znx

T
n does not depend on θ. So HOIJ As-

sumption 3 is satisfied with

HOIJ Assumption 3: Cop :=
∥∥∥Ĥ−1

∥∥∥
op
.

HOIJ Assumption 4 is satisfied for k ≥ 2 with Mk = 0. For k = 1, we observe again
that d1

θG(θ, 1N ) does not depend on θ, and so we can take

HOIJ Assumption 4: M1 :=
∥∥∥Ĥ∥∥∥

2

M2 :=0, . . . .

Note that HOIJ Assumption 4 does not require control for k = 0.
HOIJ Assumption 5 is more involved and depends on the types of weights we

are considering. Let us adopt the notation of Section 3.2 that w is zero in entries
indexed by a set N ⊆ [N ] and one otherwise. It will turn out to be convenient to
define the following quantities (which match the definitions of Theorem 1 but in the
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present section’s notation).

α := |N |
N

ξ1 :=

∥∥∥∥∥∥ 1
|N |

∑
n∈N

znx
T
n

∥∥∥∥∥∥
2

ξ2 :=

∥∥∥∥∥∥ 1
|N |

∑
n∈N

εn(θ̂)zn

∥∥∥∥∥∥
2

.

The stochastic and asymptotic behavior of ξ1 and ξ2 will obviously depend on how
the weights w are chosen and on the tail behavior of xn and yn.

For k ≥ 2, we can take λk = 0. For k = 1, d1
θG(θ, w) is again independent of θ,

so we have

sup
θ∈Ωθ(B)

∥∥∥d1
θG(θ, w)− d1

θG(θ, 1N )
∥∥∥

2
= αξ1.

For k = 0, we must rely on the definition of Ωθ(B).

sup
θ∈Ωθ(B)

‖G(θ, w)−G(θ, 1N )‖2

=α sup
θ∈Ωθ(B)

∥∥∥∥∥ 1
|N |

N∑
n=1

εn(θ)zn

∥∥∥∥∥
2

=α sup
θ∈Ωθ(B)

∥∥∥∥∥ 1
|N |

N∑
n=1

(
εn(θ) + εn(θ̂)− εn(θ̂)

)
zn

∥∥∥∥∥
2

≤α

 sup
θ∈Ωθ(B)

∥∥∥∥∥∥(θ − θ̂)T 1
|N |

∑
n∈N

znx
T
n

∥∥∥∥∥∥
2

+ ξ2


≤α (Bξ1 + ξ2) .

We can then make use of HOIJ Lemma 1 to set

HOIJ Assumption 5 : λ0 :=α (Bξ1 + ξ2)

λ1 :=αξ1

λ2 :=0, . . .

Next, we turn to HOIJ Condition 1, for which we will require that

HOIJ Condition 1: ρ := Copλ1 + C2
opM2λ0 = αCopξ1 < 1.

Should HOIJ Condition 1 fail to be satisfied, then our bounds cannot be applied,
essentially because d1

θG(θ, w) is not smooth enough to guarantee the strong convex-
ity of H(w̃) using HOIJ Lemma 2. Supposing that HOIJ Condition 1 is satisfied
with ρ < 1, we define C̃op := 1

1−ρCop as in HOIJ Lemma 2. In Theorem 1, we take
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ρ = 1/3, for reasons to be described below.
Finally, we can calculate the approximation and error bounds (though we cannot

use the bounds to control the error until we have chosen B to satisfy HOIJ Lemma 8).
Let us consider kIJ = 1 for simplicity. We have

θ̂IJ
1 (w) = θ̂ + δ1

wθ̂(1N )

= θ̂ + α

(
1
N

N∑
n=1

xnx
T
n

)−1
1
|N |

∑
n∈N

xnεn(θ̂) (HOIJ Equation 3)∥∥∥θ̂IJ
1 (w)− θ̂(w)

∥∥∥
2
≤C̃3

opM2λ
2
0 + 2C̃2

opλ1λ0 + C̃3
opλ2λ

2
0 (HOIJ Corollary 3)

=2α2C̃2
opξ1(Bξ1 + ξ2).

In order to apply HOIJ Lemma 8 to show that Ωθ(B) satisfies HOIJ Assumption 1,
it will suffices to choose B so that

B >
∥∥∥θ̂IJ

1 (w)− θ̂
∥∥∥

2
+ 2α2C̃2

opξ1(Bξ1 + ξ2)⇔

B >

∥∥∥θ̂IJ
1 (w)− θ̂

∥∥∥
2

+ 2α2C̃2
opξ1ξ2

1− 2α2C̃2
opξ

2
1

. (D.1)

As long as 2α2C̃2
opξ

2
1 < 1, a positive solution to Eq. D.1 exists and can be readily

computed from the data at hand.
Recall that, to satisfy HOIJ Condition 1 above, we took ρ = αCopξ1 < 1. Noting

this fact allows the interpretation of Eq. D.1 as an additional, stricter condition on
ρ, since

2α2C̃2
opξ

2
1 ≤1⇔(

ρ

1− ρ

)2
<

1
2 ⇔

ρ

(
1 + 1√

2

)
<

1√
2
⇔

ρ <
1

1 +
√

2
< 1.

Consequently, to satisfy both HOIJ Condition 1 and HOIJ Lemma 8, it suffices to
have

αCopξ1 <
1

1 +
√

2
, (D.2)

which can be satisfied by requiring αCopξ1 < ρ := 1/3, the value assumed in Theo-
rem 1.
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D.2 Proof of Lemma 1

Proof. For a fixed φ, θ̂, and ~w, define the linear interpolation functions of a scalar
t ∈ [0, 1],

θ(t) :=θ̂ + t(θ̂(~w)− θ̂)

~ω(t) :=N−1
(
~1 + t(~w −~1)

)
,

and then define the function Φ(t) as

Φ(t) :=φ(θ(t), N~ω(t)).

Thus, Φ(1) = φ(~w) and Φ(0) = φ(~1). By the fundamental theorem of calculus,

Φ(1)− Φ(0) =
∫ 1

0

∂Φ(t)
∂t

∣∣∣∣
t=t′

dt′ ⇒ (D.3)∣∣∣φ(~w)− φ(~1)
∣∣∣ ≤ sup

t′∈[0,1]

∣∣∣∣ ∂Φ(t)
∂t

∣∣∣∣
t=t′

∣∣∣∣.
By the chain rule,

∂Φ(t)
∂t

∣∣∣∣
t

= ∂φ(θ, ~w)
∂θT

∣∣∣∣
θ(t),N~ω(t)

(θ̂(~w)− θ̂) + ∂φ(θ,N~ω)
∂~ωT

∣∣∣∣
θ(t),N~ω(t)

N−1(~w −~1). (D.4)

So, by the triangle inequality and the Cauchy-Schwartz,
∣∣∣φ(~w)− φ(~1)

∣∣∣ ≤Cθ ∥∥∥θ̂(~w)− θ̂
∥∥∥

2
+ CωN

−1
∥∥∥~w −~1∥∥∥

2

≤ (CθCdiff + Cω)α.

proving the first result.
Next, recall from Eqs. 2.4 and 2.7 that

φlin(~w)− φ(~1) = ∂φ(θ, ~w)
∂θT

∣∣∣∣
θ̂,~1

(θ̂lin(~w)− θ̂) + ∂φ(θ,N~ω)
∂~ωT

∣∣∣∣
θ̂,~1
N−1(~w −~1).
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Combining with Eqs. D.3 and D.4,

φ(~w)− φlin(~w)

=
(∫ 1

0

∂φ(θ, ~w)
∂θT

∣∣∣∣
θ(t),N~ω(t)

dt

)
(θ̂(~w)− θ̂)− ∂φ(θ, ~w)

∂θT

∣∣∣∣
θ̂,~1

(θ̂lin(~w)− θ̂) +(∫ 1

0

∂φ(θ,N~ω)
∂~ωT

∣∣∣∣
θ(t),N~ω(t)

dt

)
N−1(~w −~1)− ∂φ(θ,N~ω)

∂~ωT

∣∣∣∣
θ̂,~1
N−1(~w −~1)

=
(∫ 1

0

∂φ(θ, ~w)
∂θT

∣∣∣∣
θ(t),N~ω(t)

dt− ∂φ(θ, ~w)
∂θT

∣∣∣∣
θ̂,~1

)
(θ̂(~w)− θ̂) +

∂φ(θ, ~w)
∂θT

∣∣∣∣
θ̂,~1

(θ̂(~w)− θ̂lin(~w)) +(∫ 1

0

∂φ(θ,N~ω)
∂~ωT

∣∣∣∣
θ(t),N~ω(t)

dt− ∂φ(θ,N~ω)
∂~ωT

∣∣∣∣
θ̂,~1

)
N−1(~w −~1).

By the Lipschitz property of the partial derivatives,

sup
t∈[0,1]

∥∥∥∥∥ ∂φ(θ, ~w)
∂θ

∣∣∣∣
θ(t),N~ω(t)

dt− ∂φ(θ, ~w)
∂θ

∣∣∣∣
θ̂,~1

∥∥∥∥∥
2

≤Lθ sup
t∈[0,1]

(∥∥∥θ(t)− θ̂∥∥∥
2

+
∥∥∥~ω(t)−~1

∥∥∥
2

)
.

≤Lθ
(∥∥∥θ̂(~w)− θ̂

∥∥∥
2

+N−1
∥∥∥~w −~1∥∥∥

2

)
.

≤Lθ (Cdiff + 1)α,

with analogous reasoning giving

sup
t∈[0,1]

∥∥∥∥∥ ∂φ(θ,N~ω)
∂~ω

∣∣∣∣
θ(t),N~ω(t)

dt− ∂φ(θ,N~ω)
∂~ω

∣∣∣∣
θ̂,~1

∥∥∥∥∥
2
≤Lω (Cdiff + 1)α.

Applying these Lipschitz bounds, together with the triangle inequality and Cauchy-
Schwartz, then give

∣∣∣φ(~w)− φlin(~w)
∣∣∣ ≤Lθ (Cdiff + 1)α · Cdiffα+ CθClinα

2 + Lω (Cdiff + 1)α · α

≤ (Lθ (Cdiff + 1)Cdiff + CθClin + Lω (Cdiff + 1))α2,

which proves the second result.
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