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Abstract

Regression discontinuity designs are used to estimate causal effects in settings where
treatment is determined by whether an observed running variable crosses a pre-specified
threshold. While the resulting sampling design is sometimes described as akin to a lo-
cally randomized experiment in a neighborhood of the threshold, standard formal anal-
yses do not make reference to probabilistic treatment assignment and instead identify
treatment effects via continuity arguments. Here we propose a new approach to iden-
tification, estimation, and inference in regression discontinuity designs that exploits
measurement error, or other noise, in the running variable. Under an assumption that
the measurement error is exogenous, we show how to estimate causal effects using a
class of linear estimators that weight treated and control units so as to balance a latent
variable of which the running variable is a noisy measure. We find this approach to
facilitate inference for familiar estimands from the literature, as well as policy-relevant
estimands that correspond to the effects of realistic changes to the existing treatment
assignment rule. We demonstrate the method with a study of retention of HIV patients,
and evaluate its performance using both simulated data and a regression discontinuity
design artificially constructed from test scores in early childhood.

1 Introduction

Regression discontinuity designs are a popular approach to causal inference that rely on
known, discontinuous treatment assignment mechanisms to identify causal effects [Hahn,
Todd, and van der Klaauw, 2001, Imbens and Lemieux, 2008, Thistlethwaite and Campbell,
1960]. More specifically, we assume existence of a running variable Zi ∈ R such that unit i
gets assigned treatment Wi ∈ {0, 1} whenever the running variable exceeds a cutoff c ∈ R,
i.e., Wi = 1 ({Zi ≥ c}). For example, in an educational setting where admission to a program
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hinges on a test score exceeding some cutoff, we could evaluate the effect of the program on
marginal admits by comparing outcomes for students whose test scores fell right above and
below the cutoff.

Explanations and qualitative justifications of identification in regression discontinuity
designs typically appeal to implicit, local randomization: There are many factors outside
of the control of decision-makers that determine the running variable Zi such that if some
unit barely clears the eligibility cutoff for the intervention then the same unit could also
plausibly have failed to clear the cutoff with a different realization of these chance factors
[Lee and Lemieux, 2010]. This is sometimes illustrated by reference to sampling error or
other errors in measurement that cause units to have a measured running variable just above
or just below the threshold. For example, again in our educational setting, there may be a
group of marginal students who might barely pass or fail pass the test due to unpredictable
variation in their test score, thus resulting in an effectively exogenous treatment assignment
rule. Likewise, medical assays frequently involve a degree of random measurement error,
whether because of sampling techniques or other sources of random variation [Bor et al.,
2014].

Most formal and practical approaches to identification, estimation, and inference for
treatment effects in regression discontinuity designs, however, do not use exogenous noise in
the running variable to drive inference. Instead, following Hahn, Todd, and van der Klaauw
[2001], the dominant approach relies on a continuity argument. As in Imbens and Lemieux
[2008], we assume potential outcomes {Yi(0), Yi(1)} such that Yi = Yi(Wi). Then, we can
identify a weighted causal effect τc = E

[
Yi(1)− Yi(0)

∣∣Zi = c
]

via

τc = lim
z↓c

E
[
Y
∣∣Z = z

]
− lim

z↑c
E
[
Y
∣∣Z = z

]
, (1)

provided that the conditional response functions µ(w)(z) = E
[
Y (w)

∣∣Z = z
]

are continu-
ous. Furthermore, if we are willing to posit quantitative smoothness bounds on µ(w)(z), e.g.,
we could assume µ(w)(z) to have a uniformly bounded second derivative, we can use this
continuity-based argument to derive confidence intervals for τc with well understood asymp-
totics [Armstrong and Kolesár, 2018, 2020, Calonico, Cattaneo, and Farrell, 2018, Calonico,
Cattaneo, and Titiunik, 2014, Cheng, Fan, and Marron, 1997, Imbens and Kalyanaraman,
2012, Imbens and Wager, 2019, Kolesár and Rothe, 2018].

Despite its appeal and rigorous justification, the continuity-based approach to regression
discontinuity inference does not satisfy the criteria for rigorous design-based causal inference
as outlined by Rubin [2008]. According to the design-based paradigm, even in observational
studies, a treatment effect estimator should be justifiable based on randomness in the treat-
ment assignment mechanism alone; the leading example of this paradigm is the analysis of
randomized controlled trials following Neyman [1923] and Rubin [1974]. In contrast, the
formal guarantees provided by the continuity-based regression discontinuity analysis often
take smoothness of µ(w)(z) as a primitive. While continuous measurement error in (or
“imprecise control” of) the running variable by units implies continuity of the conditional
expectation function [Lee, 2008], this result is not used in estimation and inference and, as
we show, only makes limited use of the identifying power of measurement error, perhaps
most notably for discrete running variables.

Here we propose a new approach to regression discontinuity inference—one that goes
back to the qualitative argument above used to justify regression discontinuity designs and
directly exploits noise in the running variable Zi for inference. Formally, we assume the
existence of a latent variable Ui, and that any variation in the running variable Zi around
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Ui is exogenous. For example, again revisiting our educational setting, we can take Ui to
be a measure of the student’s true ability; then the test score Zi is a noisy measurement
of Ui with well-documented psychometric properties. Likewise, in a medical setting, the
running variable Zi may be a measurement of an underlying condition Ui (e.g., CD4 counts);
such diagnostic measurements often have well-studied test-retest reliability. In both cases,
it is plausible that the measurements Zi are independent of relevant potential outcomes
conditional on the underlying quantity Ui.

Our main result is that, if the measurement error in Zi has a known distribution and
the measurement error is conditionally independent of potential outcomes, then we can
estimate weighted treatment effects. We then propose a practical approach to estimation
and inference in regression discontinuity designs that builds on this result. Unlike in the
classical regression discontinuity design, our inference is—at least in the case of bounded
outcomes—driven entirely by random treatment assignment induced by noise in Zi.

1.1 A latent variable model for regression discontinuity designs

Throughout this paper, we consider the classical sharp regression discontinuity design with
potential outcomes as described below:

Assumption 1 (Sharp regression discontinuity design). There are i = 1, ..., n independent
and identically distributed samples {Yi(0), Yi(1), Zi} ∈ R3 and a cutoff c ∈ R such that
units are assigned treatment according to Wi = 1 ({Zi ≥ c}). For each sample, we observe
pairs {Yi, Zi} with Yi = Yi(Wi).

The pre-requisite for applying our approach is the existence of domain-specific knowledge
about the distribution of the running variable Zi, as formalized in the following:1

Assumption 2 (Noisy running variable). There is a latent variable Ui with (unknown)
distribution G such that Zi

∣∣Ui ∼ p(·
∣∣Ui) for a known conditional density p(·

∣∣ ·) with
respect to a measure λ.

Qualitatively, we interpret the latent variable Ui in Assumption 2 as a true measure of
the property we want to use for treatment assignment, e.g., Ui could capture ability in an
educational setting or health in a medical one. The actual observed running variable Zi is
then a noisy realization of Ui. One common example of measurement error we consider in
this paper is Gaussian measurement error, i.e.,

Zi
∣∣Ui ∼ N

(
Ui, ν

2
)
, ν > 0; (2)

however, the assumption also accommodates discrete running variables, such as Zi
∣∣Ui ∼

Binomial(K,Ui) for some K ∈ N.
We also require for the additional noise to be exogenous. The assumption below formal-

izes this requirement in terms of an unconfoundedness condition following Rosenbaum and
Rubin [1983].

Assumption 3 (Exogeneity). The noise in Zi is exogenous, i.e., [{Yi(0), Yi(1)} ⊥⊥ Zi]
∣∣Ui.

1The idea that explicit structural modeling is valuable for causal inference has a long tradition in eco-
nomics, going back to Roy [1951] and Heckman [1979], with recent developments by e.g., Heckman and
Vytlacil [2005], Brinch, Mogstad, and Wiswall [2017] and Mogstad, Santos, and Torgovitsky [2018]. At a
high level, our work can be seen as connecting this tradition to the regression discontinuity design, and
demonstrating how structural assumptions enable inference of policy-relevant causal estimands.
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Z W Y

U

Z
∼ p(·
∣∣ U)

W = 1 ({Z ≥ c})

Figure 1: Graphical illustration of the sharp regression discontinuity design with a noisy
running variable. U is an unobserved latent variable with unknown distribution G and Z is
the running variable with known density p(· | U) conditionally on U . Treatment is assigned
deterministically as W = 1({Z ≥ c}) for a known cutoff c and Y = Y (W ) is the observed
response.

An implication of Assumption 3 is that

E
[
Yi
∣∣Ui, Zi

]
= α(Wi)(u), α(w)(u) = E

[
Yi(w)

∣∣Ui = u
]
, (3)

where the α(w)(u) are the response functions for the potential outcomes conditionally on
the latent variable u. Following Frangakis and Rubin [2002] we can think of u as indexing
over unobserved principal strata; see also Heckman and Vytlacil [2005].

A graphical illustration of our assumptions is presented in Figure 1. In view of Assump-
tions 2 and 3, the key argument for our identification, estimation and inference strategy is
captured by the following proposition.

Proposition 1. Suppose that E
[
Y 2
]
< ∞ and let γ+(·), γ−(·) be measurable functions of

Z with E
[
γ−(Z)2

]
,E
[
γ+(Z)2

]
< ∞ such that γ+(z) = 0 for z < c, γ−(z) = 0 for z ≥ c.

Then, under Assumptions 1, 2, and 3:

E [γ+(Z)Y ] = E
[
α(1)(U)h(U, γ+)

]
, E [γ−(Z)Y ] = E

[
α(0)(U)h(U, γ−)

]
, (4)

where

h(u, γ) :=

∫
γ(z)p(z | u)dλ(z). (5)

We will apply this result by choosing functions γ+, γ− and then averaging the response
Yi(1) of treated units with weights γ+(Zi) and the response Yi(0) of control units with
weights γ−(Zi). While there is no overlap between treated and control units in a regression
discontinuity design, Proposition 1 establishes that by weighting treated units by γ+ and
control units by γ− we may achieve balance in the latent variable, as long as h(·, γ+) ≈
h(·, γ−).

Our assumptions do not impose any restriction on G, which is a property of the pop-
ulation studied in the regression discontinuity design; however, we require some precise
knowledge about the noise distribution p(z

∣∣u). Such knowledge is a prerequisite for apply-
ing our approach and it may be available for example from test–retest data, prior modeling
of item-level responses to tests, a physical model for the measurement device, or biomedical
knowledge. All our results also remain valid if we work with a noise distribution p̂(z

∣∣u)
that underestimates the true noise level, in the sense that p(z

∣∣u) =
∫
p̂(z
∣∣u′)λ(u′

∣∣u) du′
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for some distribution function λ(u′
∣∣u) that captures the noise left out by p̂(·).2 For

example, if the true noise process involves heteroskedastic Gaussian measurement errors
Zi
∣∣Ui ∼ N

(
Ui, ν

2
i

)
, where Ui and νi may be correlated, then our approach would remain

valid if we posit a homoskedastic noise model Zi
∣∣Ui ∼ N

(
Ui, ν̂

2
)

so long as νi ≥ ν̂ almost
surely. This fact is helpful when choosing which noise model to use in practice: For example,
with Gaussian errors, one can estimate the noise scale ν̂2 by considering a conservative lower
bound on measurement reliability obtained via repeated measurement, e.g., in education via
repeatedly administering similar tests or in medicine by repeatedly administering the same
diagnostic.

1.2 Related work

As discussed above, the dominant approach to inference in regression discontinuity designs
is via continuity-based arguments that build on (1). Perhaps the most popular continuity-
based approach is to use local linear regression, and to estimate the treatment effect at
Zi = c via [Hahn, Todd, and van der Klaauw, 2001, Imbens and Lemieux, 2008]

τ̂c = argmin
τ

{
n∑

i=1

K

( |Zi − c|
hn

)(
Yi − a− τWi − β− (Zi − c)− − β+ (Zi − c)+

)2
}
, (6)

where K(·) is a weighting function, hn → 0 is a bandwidth, and a and β± are nuisance
parameters. In general, this approach can be used for valid estimation and inference of τc
provided the function µ(w)(z) is smooth and that hn decays at an appropriate rate; the
rate of convergence of τ̂c and appropriate choice of hn depend on the degree of smoothness
assumed. Notable results in this line of work, including robust confidence intervals and
data-adaptive choices for hn, include Armstrong and Kolesár [2020], Calonico, Cattaneo,
and Farrell [2018], Calonico, Cattaneo, and Titiunik [2014], Cheng, Fan, and Marron [1997],
Imbens and Kalyanaraman [2012] and Kolesár and Rothe [2018].

More recently, extensions have been considered to the continuity-based approaches to
regression discontinuity inference that improve over local linear regression (6) by directly
exploiting the assumed smoothness properties of µ(w)(z). Under the assumption that µ(w)(z)
belongs to a convex class, e.g., |µ′′(w)(z)| ≤ B for all z ∈ R, Armstrong and Kolesár [2018]

and Imbens and Wager [2019] use numerical convex optimization to derive minimax linear
estimators of τ̂c. This optimization-based approach also directly extends to more complex
regression discontinuity designs, e.g., where Zi is multivariate and the treatment assignment
is determined by a set A, i.e., Wi = 1 ({Zi ∈ A}).

One alternative approach to inference in regression discontinuity designs, which Catta-
neo, Frandsen, and Titiunik [2015], Li, Mattei, and Mealli [2015] and Mattei and Mealli
[2016] refer to as randomization inference, starts by positing a non-trivial interval I with
c ∈ I, such that

[Zi ⊥⊥ {Yi(0), Yi(1)}]
∣∣ {Zi ∈ I} . (7)

They then focus on the subset of units with Zi ∈ I, and perform classical randomized study
inference on this subset. Unlike the continuity-based analysis, this approach is design-based

2To check this fact, note that we can generate Zi|Ui by first drawing U ′i
∣∣Ui with distribution λ(u′

∣∣u),
and then drawing Zi|U ′i with distribution p̂(z

∣∣u′). Our analysis then goes through with Ui replaced by U ′i
(provided Assumption 3 still holds with U ′i). In general, underestimating the measurement error will result
in a loss of power (since it reduces the number of units that may plausibly both get treated or not treated
depending on the realization of Zi), but does not cause any conceptual problems (since our results will hold
regardless of the distribution of Ui, and in particular also hold for latent states distributed as U ′i).
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in the sense of Rubin [2008]. In practice, however, the assumption (7) is often unrealistic and
limits the applicability of methods relying on it [Sekhon and Titiunik, 2017]. One testable
implication of (7) is that µ(w)(z) should be constant over I for both w = 0 and 1, but
this structure rarely plays out in the data.3 Furthermore, it is not clear how to choose the
interval I used in (7) via the types of methods typically used for regression discontinuity
inference. There’s no data-driven way of discovering an interval I over which (7) holds that
is itself justified by randomization; conversely, if the interval I is known a-priori, then the
problem collapses to a basic randomized controlled trial where the regression discontinuity
structure ends up not being used for inference.

Knowledge of the presence of measurement error (or other noise) in running variables
is often mentioned [Bor et al., 2014, 2017, Fraga and Merseth, 2016, Harlow et al., 2020,
Lee, 2008], yet this side-information is typically not directly used for inference. In a rare
quantitative use of information about measurement error, Fraga and Merseth [2016] make
explicit use of margin of error statistics provided by the Census Bureau for the fraction
or size of a voting-aged population that has limited English proficiency; they report some
analyses using only units that are within a 90% margin of error of the cutoff. Trochim,
Cappelleri, and Reichardt [1991] studied measurement error under an assumed (e.g., linear)
outcome model, and showed that its presence does not induce bias.

Closer to our approach, Rokkanen [2015] considers the regression discontinuity design
under Assumptions 2 and 3. Instead of assuming prior knowledge of the noise distribution
p(· | u), Rokkanen [2015] assumes that for each unit in the design we observe at least two
noisy measurements Z ′i, Z

′′
i of the underlying latent variable Ui in addition to the running

variable Zi. While Rokkanen [2015] provides conditions for the nonparametric identification
of α(w)(·) in (3) and consequently of treatment effects, the estimation and inference strategy
posits strong parametric assumptions, namely joint normality of (Ui, Zi, Z

′
i, Z
′′
i ) and linearity

of α(w)(u) as a function of u.4 In contrast, in our work we assume knowledge of the noise
distribution through e.g., biomedical knowledge or test–retest data, however we impose no
parametric restrictions on G and α(w)(u). Furthermore, we develop a practical and intuitive
method for estimation and inference, that provides valid coverage even when treatment
effects are only partially identified (e.g., when p(· | u) is finitely supported).

We also note a connection between our result and a line of research on treatment effect
estimation under “biased allocation” or the “risk-based allocation design” [Bilodeau, 1997,
Finkelstein, Levin, and Robbins, 1996a,b, Robbins and Zhang, 1988, 1989, 1991, Robbins,
1993]. As discussed further by Cook [2008], these authors appear to have effectively rein-
vented the regression discontinuity design without being aware of the work of Thistlethwaite
and Campbell [1960] and subsequent developments. They focus on settings where sequential
measurements of the same quantity function as both the running variable and the outcome;
for example, Finkelstein et al. [1996b] discuss an application where patients with high blood
cholesterol are given a drug whose purpose is to lower cholesterol, and we are interested in
measuring the extent to which the drug succeeded in lowering the patients’ blood cholesterol
as measured at future visits. Then, in order to estimate treatment effects in this class of
problems, they posit a noise model similar to the one we use,5 together with a parametric

3Some authors, e.g., Sales and Hansen [2020], have argued that one can fix this issue by first de-trending
outcomes, and then assuming (7) on the residuals. Any such approach, however, relies on well specification
of the trend removal, and is thus no longer justified by randomization.

4Morell [2020] and Morell, Yang, and Liu [2020] consider fully parametric specifications for regression
discontinuity designs with latent variables and demonstrate their utility in education research.

5The line of work on “biased allocation” was motivated from an empirical Bayes [Robbins, 1956] inter-
pretation of the noise model in Assumption 2.
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model linking the unobserved types Ui with expected outcomes. Robbins and Zhang [1989]
study treatment effect estimation under what effectively amount to our Assumptions 2 and
3 as well as a requirement that noise is Gaussian and control potential outcomes are linked
to Ui via an additive shift:

Zi
∣∣Ui ∼ N

(
Ui, ν

2
)
, α(0)(u) = E

[
Yi(0)

∣∣Ui = u
]

= u+ c, c ∈ R. (8)

Meanwhile Robbins and Zhang [1991] consider a Poisson noise model for the running variable
together with a linear baseline model, α(0)(u) = cu for some c > 0. The strong parametric
assumptions on α(0)(u) play a central role in their approach and—while potentially plau-
sible in some applications involving sequential measurements of the same quantity—these
parametric assumptions are not appropriate in examples considered in this paper. Thus, the
methods developed in Robbins and Zhang [1988, 1989, 1991] and Finkelstein et al. [1996a,b]
do not provide a methodological baseline for our approach. However, from a conceptual
point of view, these papers present a notable yet largely overlooked chapter in the history
of regression discontinuity designs.

Li, Mercatanti, Mäkinen, and Silvestrini [2021] study the regression discontinuity design
with an ordinal running variable that, similar to our setting, is a noisy measurement of
a latent variable Ui. However, Li et al. [2021] assume that Ui is a linear function of ob-
served pre-treatment variables, and so inference can proceed by inverse-propensity weight-
ing [Rosenbaum and Rubin, 1983] with estimated propensities e(u) = P [Zi ≥ c | Ui = u].
In our setting, Ui is unobservable, and so, the propensities e(Ui) are inaccessible. Our ap-
proach to inference does not involve inverse-propensity weighting; rather, we need to solve
an integral equation in order to account for confounding.

A related, but distinct line of work studies the regression discontinuity design when the
running variable is unobserved, and instead a noisy measurement thereof is observed [Bar-
talotti, Brummet, and Dieterle, 2020, Davezies and Le Barbanchon, 2017, Dong and Kolesár,
2021, Pei and Shen, 2016, Yanagi, 2014, Yu, 2012]. Identification becomes subtle and esti-
mation can be difficult because of the perils of nonparametric estimation with measurement
error [Meister, 2009]. Instead, we use measurement error as our identifying assumption; that
is, the noise in our setup is beneficial for our estimation strategy rather than a barrier (and
we observe the running variable). We also note a wider literature dealing with measure-
ment error in causal inference beyond the regression discontinuity design, e.g., Pearl [2010],
Kuroki and Pearl [2014], Jiang and Ding [2020].

Finally, we contrast our setup with another design-based approach in which the cutoff,
rather than the running variable, has an exogenous random component. Ganong and Jäger
[2018] posit that the cutoff is randomly drawn according to a known distribution. This may
be plausible when the cutoff is set based on, e.g., aggregate statistics for a past year’s data
when there are random year-to-year fluctuations. In contrast to our approach, this hypo-
thetical experiment involves highly correlated treatment assignments for units with similar
values of the running variable, which should typically substantially decrease precision, as
has been observed in the context of spatial boundaries [Kelly, 2019]. In cases where there
is both known measurement error in the running variable (as we study) and the cutoff is
plausibly random, we can think of our approach as simply conditioning on the observed
cutoff, as is also common in other approaches to regression discontinuity designs.
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2 Ratio-form estimators and weighted treatment effects

In our approach to estimation and inference, motivated by Proposition 1, we consider ratio-
form estimators,

τ̂γ = µ̂γ,+ − µ̂γ,−, µ̂γ,+ =

∑
i γ+(Zi)Yi∑
i γ+(Zi)

, µ̂γ,− =

∑
i γ−(Zi)Yi∑
i γ−(Zi)

, (9)

where γ+, γ− are pre-specified weighting functions such that γ+(z) = 0 for z < c, γ−(z) =
0 for z ≥ c. (9) is a broad and intuitive class of estimators that includes, for example, the
difference-in-means of units that are close to the cutoff (with the choice γ+(z) = 1(z ∈
[c, c+ h]) and γ−(z) = 1(z ∈ [c− h, c)) for h > 0).

We seek to conduct inference for weighted treatment effects,

τw =

∫
w(u)

EG [w(U)]
τ(u) dG(u), w(·) ≥ 0, (10)

where τ(u) is the conditional average treatment effect (CATE) of the stratum with Ui = u,

τ(u) = E
[
Yi(1)− Yi(0)

∣∣Ui = u
]

= α(1)(u)− α(0)(u). (11)

In the next two sections we take the choice of γ+, γ− as pre-specified by the researcher
and seek to understand how to use the point estimate τ̂γ from (9) to form valid confidence
intervals for τw (10) by also accounting for potential bias. In Section 4, we make a concrete
recommendation for choosing γ+, γ−.

2.1 An asymptotic bias decomposition

We first derive the asymptotic limit of τ̂γ with fixed γ+(·), γ−(·) given n i.i.d. copies of
(Ui, Zi, Yi(0), Yi(1)) satisfying Assumptions 1-3.

Theorem 2. Suppose that Assumptions 1-3 hold and that E[γ+(Zi)
2], E[γ−(Zi)

2], E[Y 2
i ]

are finite. Then as n→∞, τ̂γ − θγ P−→ 0, where:

θγ = µγ,+ − µγ,−, µγ,+ =
E
[
α(1)(U)h(U, γ+)

]

E [h(U, γ+)]
, µγ,− =

E
[
α(0)(U)h(U, γ−)

]

E [h(U, γ−)]
. (12)

Proof. Apply the law of large numbers noting the result of Proposition 1 and that E [γ+(Z)] =
E [h(U, γ+)], E [γ−(Z)] = E [h(U, γ−)].

In view of Theorem 2 and the definition of τw in (10), we derive an asymptotic decom-
position of the bias in estimating τw through τ̂γ :

Corollary 3. Under the conditions of Theorem 2, the asymptotic bias θγ − τw can be
decomposed as:

Bias
[
γ±, τw; α(0)(·), τ(·), G

]
=

∫ (
h(u, γ+)

EG [h(U, γ+)]
− h(u, γ−)

EG [h(U, γ−)]

)
α(0)(u) dG(u)

︸ ︷︷ ︸
Confounding bias

+

∫ (
h(u, γ+)

EG [h(U, γ+)]
− w(u)

EG [w(U)]

)
τ(u)dG(u)

︸ ︷︷ ︸
CATE heterogeneity bias

.
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The bias decomposes into two terms. The first term, which we call ‘Confounding bias’,
corresponds to how well we are balancing units through their latent variable u and will be
small if h(·, γ+) ≈ h(·, γ−). The second term, which we call ‘CATE heterogeneity bias’ is
equal to zero in the following two cases: when the CATE τ(u) is constant as a function of
u, or when h(u, γ+) = w(u) for all u.

2.2 Examples of weighted treatment effects

The remainder of this section provides examples of statistical targets that may be expressed
as in (10).

Regression discontinuity parameter: One statistical target that may be of interest
is the standard regression discontinuity parameter τc as defined in (1). Interest in this
parameter may not arise directly from first principles; however, it has traditionally been a key
focus of the continuity-based inference literature, and obtaining estimates of this quantity
that rely only on implicit randomization via noise in Zi may be helpful in comparing our
approach to traditional approaches. To write τc as in (10), note that by Bayes’ rule,

τc = E
[
Yi(1)− Yi(0)

∣∣Zi = c
]

= E
[
τ(Ui)

∣∣Zi = c
]

=

∫
τ(u)p(c

∣∣u)dG(u)
/
f(c), (13)

where f(c) = fG(c) =
∫
p(c | u)dG(u) is the density of the running variable Zi at the cutoff

c. Thus, the representation from (10) holds with w(u) = p(c
∣∣u) and E [w(U)] = f(c).

Another closely related target is τc′ as defined in (13), but for some other value c′ 6= c
of the running variable. Formally, this approach again fits within our setting, with w(u) =
p(c′

∣∣u) and E [w(U)] = f(c′). Conceptually, estimating τc′ away from c involves extrapo-
lating treatment effects away from cutoff [Angrist and Rokkanen, 2015, Rokkanen, 2015].
Estimating τc′ away from the cutoff is also possible using continuity-based approaches, for
example by noting that τc′ ≈ τc + (dτc/dc) · (c′ − c) [Dong and Lewbel, 2015].

Changing the cutoff: As argued in Heckman and Vytlacil [2005], in many settings we
may be most interested in evaluating the effect of a policy intervention. One simple case of
a policy intervention involves changing the eligibility threshold, i.e., that standard practice
involves prescribing treatment to subjects whose running variable crosses c, but we are now
considering changing this cutoff to a new value c′ < c.6 For example, in a medical setting,
we may consider lowering the severity threshold at which we intervene on a patient. In
this case, we need to estimate the average treatment effect τπ of patients affected by the
treatment which, in this case, amounts to:

τπ = E
[
Yi(1)− Yi(0)

∣∣ c′ ≤ Zi < c
]

=

∫

[c′,c)

∫
τ(u)p(z

∣∣u)dG(u)dλ(z)

/∫

[c′,c)

dF (z), (14)

where F = FG is the marginal Z-distribution (i.e., the distribution with dλ-density f = fG).
By Fubini’s theorem, τπ can be written in the form (10) with weight function w(u) =∫

[c′,c)
p(z
∣∣u)dλ(z), E [w(U)] =

∫
[c′,c)

dF (z).

6We also note that the hypothetical experiment that Thistlethwaite and Campbell [1960] offer as analo-
gous to a regression discontinuity is equivalent to randomizing some units to a different threshold c′.
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Reducing measurement error: Another policy intervention of potential interest could
involve switching to a more (or less) accurate device for measuring Zi, thus changing the
noise level ν in the running variable. For example, one could imagine that a policy maker has
the option to reduce measurement error by using a new (potentially more expensive) mea-
surement device, and wants to know whether improved outcomes from more reproducible
targeting are worth the cost. Specifically, suppose that we currently assign treatment as
Wi = 1 ({Zi ≥ c}) for Zi

∣∣Ui ∼ N (Ui, ν
2), and are considering a switch to a new treatment

rule W ′i = 1 ({Z ′i ≥ c}) based on a measurement Z ′i
∣∣Ui ∼ N (Ui, ν

′2) with a different noise
level ν′. Writing Φν(·) for the standard normal cumulative distribution function with vari-
ance ν2, we see that the average treatment effect of patients who would be treated only with
implementation of the policy change,7 is equal to

E
[
Yi(1)− Yi(0)

∣∣W ′i > Wi

]
=

∫
τ(u) (1− Φν′ (c− u)) Φν (c− u) dG(u)∫

(1− Φν′ (c− u)) Φν (c− u) dG(u)
, (15)

which again is covered by (10).

3 Bias-aware confidence intervals

In the previous section, we discussed the asymptotic limit of the ratio-form estimator
from (9) and the bias in estimating causal effects in regression discontinuity designs. In
order to make use of such an estimator in practice, however, we also need to understand its
sampling distribution and to control the bias. In this section, we describe our approach to
inference.

We start by making the following additional assumption:8

Assumption 4 (Bounded response). The response Yi is bounded, Yi ∈ [0, 1].

We start by studying the asymptotic distribution of the weighted ratio estimator (9).
We treat the weighting kernels γ+, γ− as deterministic but allow them to vary with n, i.e.,
γ+ = γ

(n)
+ and γ− = γ

(n)
− . Our first formal result is the following central limit theorem.

Theorem 4 (Asymptotic normality of ratio-form estimators). Suppose that the pairs (Zi, Yi),
i = 1, . . . , n are independent and identically distributed with Yi ∈ [0, 1] (Assumption 4) and
such that infz Var

[
Yi
∣∣Zi = z

]
> 0. Further suppose that the sequence of weighting kernels

γ
(n)
+ and γ

(n)
− is deterministic,9 and that there exist β ∈ (0, 1/2), C,C ′ > 0 such that for all

n large enough:

sup
z

∣∣∣γ(n)
� (z)

∣∣∣ < CnβE
[
γ

(n)
� (Zi)

]
, sup

u

∣∣∣h(u, γ
(n)
� )

∣∣∣ < C ′E
[
γ

(n)
� (Zi)

]
, (16)

where � ∈ {+,−}. Then, τ̂γ = τ̂γ(n) is asymptotically normal, i.e.,

√
n (τ̂γ − θγ)

/√
Vγ ⇒ N (0, 1) ,

where θγ is defined in (12) and

Vγ = E
[
γ2

+(Zi) (Yi − µγ,+)
2
] /

E [γ+(Zi)]
2

+ E
[
γ2
−(Zi) (Yi − µγ,−)

2
] /

E [γ−(Zi)]
2
. (17)

7Here we assume that Zi, Z
′
i are independent conditionally on Ui.

8This assumption describes the most common use-case of our approach and streamlines exposition. It
may be relaxed as follows: there exist known functions LB,UB such that LB(u) ≤ α(0)(u), α(1)(u) ≤ UB(u)
for all u.

9It suffices for γ+, γ− to be independent of (Ui, Zi, Yi(0), Yi(1)) , 1 ≤ i ≤ n.
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We note that the condition on the response noise is mild. The assumption on γ+, γ−
is also easy to satisfy, and in particular the weights proposed in Section 4 will satisfy this
property, as well as other choices of weighting functions.10

Given our result from Theorem 4, we can design confidence intervals for τw from (10).
In doing so, we need to first account for the variance term Vγ as in (17):

Proposition 5. Under the assumptions of Theorem 4, Vγ can be consistently estimated
with the following plug-in estimator: V̂γ

/
Vγ = 1 + oP(1) for

V̂γ =

∑
i γ+(Zi)

2 (Yi − µ̂γ,+)
2

n
(

1
n

∑
i γ+(Zi)

)2 +

∑
i γ−(Zi)

2 (Yi − µ̂γ,−)
2

n
(

1
n

∑
i γ−(Zi)

)2 , (18)

where µ̂γ,+, µ̂γ,− are defined in (9).

Second, we need to account for the potential bias |bγ | = |θγ − τw|. Here, we will not
assume that the bias is negligible (i.e., we do not assume “undersmoothing”). Rather, we
will derive an upper bound B̂γ for the bias |bγ |. A challenge is that we do not know the
expectations in Corollary 3 precisely since they involve integrals over the latent variable Ui
and the unknown functions G, τ(·) and α(0)(·). To get around this issue, we instead seek to
bound the worst-case bias over any data-generating distribution that appears consistent with
the observed data for the running variable Zi. To this end, define the marginal distribution
function FG(·) of Zi when Ui ∼ G, FG(t) =

∫
1({z ≤ t})

∫
p(z | u)dG(u)dλ(z). Then let

Gn be the class of latent variable distributions that lead to marginal distributions FG that
lie within the Dvoretzky–Kiefer–Wolfowitz band [Massart, 1990] of the empirical measure

F̂n(t) = 1
n

∑n
i=1 1 (Zi ≤ t), i.e.,11

Gn =

{
G distrib. : sup

t∈R

∣∣∣FG(t)− F̂n(t)
∣∣∣ ≤

√
log (2/αn)

2n

}
, αn = min

{
0.05, n−

1
4

}
. (19)

We also consider the following sensitivity model for the CATE:

Sensitivity Model (Treatment effect heterogeneity). For M ∈ [0, 1], we define

TM =
{
τ(·)

∣∣ τ(u) = τ̄ + ∆(u) for τ̄ ∈ R and ∆(·) s.t. |∆(u)| ≤M
}
. (20)

We note that T0 = {constant CATE} and under Assumption 4,

T1 = {all CATE functions τ(·)} , T1/2 ⊃ {all CATE functions τ(·) ≥ 0} ,
and so the choice M = 1 may be used to avoid imposing any additional assumptions on het-
erogeneity, while M = 1/2 is a conservative choice if one is willing to impose a monotonicity
restriction.

Proposition 6. Assume the conditions from Theorem 4 are satisfied, as well as Assump-
tions 1-4. Furthermore suppose that τ(·) ∈ TM and that we upper bound the bias as,

B̂γ,M = sup
{∣∣Bias

[
γ±, τw; α(0)(·), τ(·), G

]∣∣ : G ∈ Gn, α(0)(·) ∈ [0, 1], τ(·) ∈ TM
}
. (21)

Then P[|bγ | ≤ B̂γ,M ]→ 1 as n→∞.
10For example, the local difference-in-means estimator with γ+(z) = 1(z ∈ [c, c + hn]), γ−(z) = 1(z ∈

[c − hn, c)) with hn → 0 will satisfy the condition when h−1
n = O(nβ) for β ∈ (0, 1/2) and the running

variable has a continuous Lebesgue density at the cutoff.
11More generally, any class of distributions Gn such that P [G ∈ Gn]→ 1 could be used instead, see Igna-

tiadis and Wager [2022] for further examples of such constructions.
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We explain in Supplement B.1 how to compute this bound on the bias. Finally, we build
confidence intervals for τ that are robust to estimation bias up to B̂γ,M following Imbens
and Manski [2004], Armstrong and Kolesár [2018], and Imbens and Wager [2019].

Corollary 7 (Valid confidence intervals). Assume the conditions from Theorem 4 are satis-
fied. Furthermore, suppose that Assumptions 1-4 are satisfied and that τ(·) ∈ TM . Consider
the confidence intervals:

τw ∈ τ̂γ±`α, `α = min
{
` : P

[∣∣∣b+ n−1/2V̂ 1/2
γ Z̃

∣∣∣ ≤ `
]
≥ 1− α for all |b| ≤ B̂γ,M

}
, (22)

where Z̃ is a standard Gaussian random variable, α ∈ (0, 1) is the significance level, and V̂γ
is an estimate of the sampling variance Vγ . Then, lim infn→∞ P [τw ∈ τ̂γ ± `α] ≥ 1− α.

Formally, our inference builds on the partial identification result stated in Corollary 3.
In general, we will consider sequences of weight functions in (9), that make the bias pro-
gressively smaller. As discussed further in Section 4, the choice of weighting functions is
governed by a bias–variance tradeoff, whereby reducing the worst-case bias entails increas-
ing the variance of the estimator (9). In some settings, e.g., when Zi|Ui has a binomial
distribution, treatment effects are only partially identified, and so it is not possible to get
zero bias—even asymptotically. For a further discussion of point versus partial identification
in regression discontinuity designs, see Section II.A of Imbens and Wager [2019].

3.1 Robustness to misspecification of CATE heterogeneity

Applying our result requires a specification of the sensitivity model (20). While one can
adopt the unrestrictive model T1, in this section we explore the robustness of our approach
to misspecification of the sensitivity model. More concretely, we suppose that the CATE
τ(·) is not constant as a function of u, yet we conduct inference using T0. In that case, our
intervals attain the correct coverage for the convenience-weighted treatment effect:

τh,+ :=

∫
h(u, γ+)

EG [h(U, γ+)]
τ(u) dG(u). (23)

This estimand may be of interest if we are not directly interested in treatment heterogeneity
[Crump, Hotz, Imbens, and Mitnik, 2009, Li, Morgan, and Zaslavsky, 2017, Imbens and
Wager, 2019, Kallus, 2020]. We formalize this result in the following corollary:

Corollary 8 (Valid confidence intervals for the convenience-weighted treatment effect).
Assume the conditions from Theorem 4 are satisfied, as well as Assumptions 1-4. Suppose
that τ(·) ∈ TM but we construct confidence intervals as in (22) using M ′ ≥ 0 instead of M
(say, M ′ < M). Then these confidence intervals satisfy:

lim inf
n→∞

P [τh,+ ∈ τ̂γ ± `α] ≥ 1− α,

where τh,+ is defined in (23).

If we are interested in the null hypothesis of no treatment effects:

H0 : τ(u) = 0 for all u,

then we can form a valid test by forming confidence intervals for τw under the sensitivity
model T0 and rejecting the null hypothesis when the resulting confidence interval does not
include 0.

12



4 Designing estimators via quadratic programming

Given a choice of weighting functions γ for (9), Propositions 5, 6 and Corollary 7 provided a
complete recipe for building valid confidence intervals. As discussed above, at this point, one
could already take weighting functions implied by various regression discontinuity estima-
tors, and use these results to build valid confidence intervals for τ that are directly justified
by noise-induced randomization. Existing weighting functions γ, however, were not designed
for this purpose, and so may not yield particularly short confidence intervals. Hence we now
turn to the problem of deriving weighting functions γ+, γ− with an eye towards making
confidence intervals obtained via Corollary 7 short.

Our strategy is to choose γ+, γ− by minimizing an approximate bound on the worst-
case mean-squared error of the estimator (9). Let w(·) be the latent weighting of the
estimand (10) and suppose we posit the sensitivity model TM . Furthermore, let F̄ (·) be a
guess or estimate of the marginal distribution FG(·) of Zi under Assumption 2 and let w̄(·)
be an estimate of the normalized latent weight w(·)/EG [w(U)]. We propose solving the
following quadratic program:12

min
γ±(·)

1

n

(∫
γ2
−(z) dF̄ (z) +

∫
γ2

+(z) dF̄ (z)

)
+ (t1 + t2)

2
(24a)

s.t. |h(u, γ+)− h(u, γ−)| ≤ t1, M |h(u, γ�)− w̄(u)| ≤ t2 for � ∈ {±} and all u (24b)∫
γ−(z)dF̄ (z) = 1,

∫
γ+(z)dF̄ (z) = 1 (24c)

γ−(z) = 0 for z ≥ c, γ+(z) = 0 for z < c (24d)

|γ�(z)| ≤ Cnβ for � ∈ {±} and all z. (24e)

In choosing F̄ (·) and w̄(·), we make use of the structure provided by Assumption 2, and
estimate G as Ḡ via nonparametric maximum likelihood [Kiefer and Wolfowitz, 1956] and
then we let F̄ (·) = FḠ(·) and w̄(·) = w(·)/EḠ [w(U)].

We next elaborate on the motivation behind optimization problem (24). The first
term in (24a) is a proxy for the variance of our estimator, motivated by the fact that
Var [γ�(Zi)Yi] ≤

∫
γ2
�(z) dF (z) for � ∈ {+,−}. The next term, (t1 + t2)2, seeks to approx-

imately bound the worst-case bias of the estimator. The bias is decomposed through the
triangle inequality into the two terms appearing in the bias-decomposition of Corollary 3; t1
in (24b) bounds the confounding bias and seeks to balance h(·, γ+) and h(·, γ−), while t2
bounds the CATE-heterogeneity bias and seeks to balance h with the normalized w(·). (24c)
is a normalization constraint, (24d) enforces that γ+, γ− assign weight only to treated, resp.
control units, and (24e) ensures that no single observation is given excessive influence.13

The following results shows that the resulting weights derived from optimization prob-
lem (24) satisfy the conditions of Theorem 4 and thus enable valid inference.

Proposition 9 (Sufficient condition for weighting kernels). Assume we derive γ± = γ
(n)
±

by solving optimization problem (24) for M > 0, where F̄ (·), w̄(·) are guesses for FG(·),
w(·)/EG [w(U)] or estimates based on a held-out sample. Furthermore, assume that F̄ as-
signs non-trivial mass to [c,∞) and that w̄(·) is bounded, i.e., there exists k > 1 such that

12An appropriately discretized version of this problem can be solved using standard convex optimization
software. In our implementation we use the MOSEK solver [ApS, 2020].

13In our implementation, we found that the constraint (24e) was never active, and so we omitted this
constraint from our numerical results below.
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Algorithm 1: Confidence intervals for treatment effects in regression discontinuity
designs identified via noise-induced randomization (NIR).

Input: Samples Zi, Yi,Wi, i = 1, .., n and RD cutoff c
Sensitivity model TM (20), M ∈ [0, 1]
Estimand of interest τw (10)
Nominal significance level α ∈ (0, 1)

1 Form a guess or estimate F̄ of the marginal Z-distribution and w̄(·) of the
normalized latent weighting function w(·)/EG [w(U)].

2 Solve the minimax quadratic program (24) to get γ+, γ−.
3 Form the point estimate τ̂γ as in (9).
4 Estimate the variance of τ̂γ by V̂γ as in (18).
5 Estimate the worst-case bias B̂γ by (21).
6 Form bias-aware confidence intervals at level α as in (22).

P[1/k < F̄ ([c,∞)) < 1− 1/k, supu |w̄(u)| < k]→ 1 as n → ∞ and that the expectation of

γ
(n)
+ , γ

(n)
− is asymptotically lower bounded by a strictly positive number, i.e., there exists

δ > 0 such that P[
∫
γ

(n)
� (z)dF (z) > δ, � ∈ {±}]→ 1 as n → ∞. Then the weights derived

from optimization problem (24) satisfy condition (16) from Theorem 4 on an event An with
P [An]→ 1 as n→∞.

Our approach is heuristic, and may not recover the optimal weights, i.e., weights that
would make the confidence intervals from Corollary 7 as short as possible, and we leave
the topic of minimax-optimal inference under noise-induced randomization to further work.
However, as evidenced by our numerical experiments, this heuristic appears to yield weight-
ing functions γ+, γ− that yield powerful inference in practice.

In practice, we use the full dataset to also form estimates for F̄ (·) and w̄(·); through-
out our simulations we have not observed any undercoverage thereby. We summarize our
approach to inference in Algorithm 1.

5 Noise-induced versus continuity-based inference?

As mentioned in the introduction, a standard approach to inference in regression discontinu-
ity designs relies on smoothness assumptions for the conditional response functions µ(w)(z).
Now, one can verify that noise in the running variable as in Assumption 2 implies smoothness
properties on the conditional response function: Under Assumptions 2–3,

µ(w)(z) = E
[
Yi(w)

∣∣Zi = z
]

=

∫
α(w)(u)p(z

∣∣u) dG(u)

/∫
p(z
∣∣u) dG(u), (25)

so if α(w)(u) is bounded and z 7→ p(z
∣∣u) is continuous, then by the dominated convergence

theorem we can show that µ(w)(z) is also continuous (see e.g., Lee [2008, Proposition 2]).

Furthermore, higher order differentiability of p(z
∣∣u) implies the same for µ(w)(z) (e.g., Dong

and Kolesár [2021, Lemma A.1.]).
Given this observation, it is natural to ask whether we can usefully exploit smoothness

induced by measurement error to drive inference using classical continuity-based methods.
Recall that many continuity-based methods, including Armstrong and Kolesár [2020], Im-
bens and Wager [2019] and Kolesár and Rothe [2018], rely on µ(w)(z) having a bounded
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second derivative to drive inference. To build a formal connection between our setting and
this line of work, we derive upper bounds on |µ′′(w)(z)| that are justified by (25). Formally,
we define the worst-case possible curvature at z among all data-generating distributions
satisfying Assumptions 2–4 with conditional density p(· | ·) such that the marginal density
of the running variable at z is lower bounded by ρ > 0:

Curv(z, ρ, p) := sup

{∣∣∣∣
d2µ(w)(z)

dz2

∣∣∣∣ : fG(z) =

∫
p(z | u)dG(u) ≥ ρ, α(w)(·) ∈ [0, 1]

}
. (26)

In (26) we constrain ourselves to marginal densities such that fG(z) ≥ ρ for ρ > 0, because
typically Curv(z, 0, p) =∞. In Supplement B.2, we explain how the quantity (26) may be
computed numerically for any sufficiently regular p. One can then use the upper bounds on
the second derivative of µ(w)(z) in (26) in conjunction with, e.g., the estimators of Imbens
and Wager [2019] and Armstrong and Kolesár [2020] that provide uniform inference for the
regression discontinuity parameter given a curvature bound on the response function. This
result may be of conceptual interest, as adaptively discovering the curvature of µ(w)(z) is
not possible in general [Armstrong and Kolesár, 2018].

In our applications and simulations below, however, bounds based on (26) appear to be
wider than our proposed ones that directly exploit the noise model on the running variable.
Thus, although measurement error does imply some smoothness in the running variable
µ(w)(z), this connection does not reduce the problem of accurate regression discontinuity
inference with measurement error to one of accurate continuity-based inference.

To provide intuition for (26), we provide analytic lower and upper bounds on (26) in the
case of Gaussian measurement error, i.e., with Zi | Ui ∼ N (Ui, ν

2) that quantify dependence
on the noise level ν and the lower bound ρ on the density. The lower bound for µ′′(w)(z) below
is obtained by considering a distribution G with two point masses symmetrically positioned
around the cutoff and a third point mass at the cutoff. Meanwhile, the upper bounds below
build on a lemma of Jiang and Zhang [2009].

Proposition 10. Suppose that Assumptions 2–4 hold with noise model Zi | Ui ∼ N
(
Ui, ν

2
)
,

where ν > 0. Then, µ(w)(z) is infinitely differentiable. Furthermore, for any point z ∈ R
and any 0 < ρ < 1/

√
2πν2:

− log(2πν2ρ2)

10ν2
≤ Curv(z, ρ, N (·, ν2)) ≤ −18 log(πν2ρ2)

ν2
.

6 Applications

6.1 Antiretroviral Therapy (ART) Eligibility and Retention

In this section, we apply our approach to a medical study. Bor et al. [2017] study 11, 306
patients in South Africa (in 2011–2012) who were diagnosed with HIV, and seek to un-
derstand whether immediately initiating antiretroviral therapy (ART) helps retain patients
in the medical system. Concretely, the response of interest Yi ∈ {0, 1} is an indicator of
retention of the i-th patient at 12 months measured by the presence of a clinic visit, lab
test, or ART initiation 6 to 18 months after the initial HIV diagnosis.

According to health guidelines used in South Africa at the time, an HIV-positive patient
should receive immediate ART if their measured CD4 count14 was below 350 cells/µL.

14CD4 cells are specialized immune system cells, and low CD4 count is indicative of poor immune function.
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Figure 2: CD4 counts (cells/µL) as a noisy running variable in a regression discontinuity
analysis. (a) Histogram of the running variable Zi in the dataset of Bor et al. [2017]. (b)
Differences (Zi − Z ′i)/

√
2 between repeated measurements in the dataset of Venter et al.

[2018], overlaid with a Gaussian probability density function.

This setting can naturally be analyzed as a regression discontinuity design,15 with running
variable Zi corresponding to the log of the CD4 count (in cells/µL) and a treatment cutoff
c = log(350).16 Figure 2(a) shows a histogram of Zi from Bor et al. [2017], with treatment
cutoff c denoted by a dashed line.

Bor et al. [2017] emphasize that CD4 count measurements are noisy; causes of this noise
include instrument imprecision and variability in the blood sample taken [see, e.g., Glencross
et al., 2008, Hughes et al., 1994, Wade et al., 2014]. They then use the existence of such
noise to qualitatively argue that treatment Wi = 1 ({Zi < c}) is effectively random close to
the cutoff c, thus strengthening the credibility of the regression discontinuity analysis.

Here, in contrast, we seek an explicitly randomization-based approach to estimating the
effect of ART on retention that is purely driven by measurement error in Zi. To this end,
we need to start by modeling this measurement error. Venter et al. [2018] provide pairs
of repeated measurements Zi, Z

′
i of the log CD4 count on 553 individuals (with measure-

ments taken in the same laboratory). Figure 2(b) compares a histogram of the normalized
differences (Zi −Z ′i)/

√
2 on the data of Venter et al. [2018] to a fitted Gaussian probability

density function with noise ν = 0.19.17 Henceforth in applying our approach, we assume
that measurement error in the log CD4 counts can be modeled as Zi | Ui ∼ N (Ui, ν

2), where
Ui is the true underlying log CD4 count of patient i.

We apply our noise-induced randomization (NIR) approach, with sensitivity model T0 to
test for the existence of any treatment effects (Section 3.1). We also consider the following
strategies to the problem.

15The compliance to this gudeline is not perfect, but, following Bor et al. [2017] we consider inference for
intention-to-treat effects.

16We discard the patients with zero CD4 count.
17We estimated the noise level ν = 0.19 using a robust method that ignores outliers by Winsorizing the

smallest and largest 5% of the normalized differences (Zi−Z′i)/
√

2 and rescaling so as to be unbiased under
Gaussian noise.
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Method 95% Confidence Interval

NIR (T0) 0.111 ± 0.102

optrdd, B = Curv(c, f̂(c), N (·, 0.192)) = 31.3 0.071 ± 0.130

optrdd, B = 1.46 (heuristic) 0.153 ± 0.080

rdrobust 0.170 ± 0.076

Table 1: Estimates and nominally 95% confidence intervals for the effect of ART on re-
tention rate of HIV patients, as given by our noise-induced randomization (NIR) method,
optimized regression discontinuity design (optrdd), robust nonparametric confidence interval
(rdrobust).

Our first baseline builds on the identifying assumption used for local linear regression,
i.e., that there is a constant B such that |µ′′(w)(z)| ≤ B for all w ∈ {0, 1} and z ∈ R. Many
different approaches of this type have been recently discussed in the literature, including
by Armstrong and Kolesár [2018, 2020], Imbens and Wager [2019] and Kolesár and Rothe
[2018]. Here, we consider the optimized regression discontinuity (optrdd) method of Imbens
and Wager [2019], which uses convex optimization to derive the minimax linear estimator
of τ under the assumed curvature bound.

The main difficulty in using optrdd is in choosing the curvature bound B. Being able to
choose a good B fundamentally requires further assumptions, because if all we can assume
is that |µ′′(w)(z)| ≤ B for some unknown B, then estimating B in a way that enables valid
yet adaptive inference is impossible [Armstrong and Kolesár, 2018]. Here, we consider two
approaches to choosing B. First, we consider a randomization-based approach and use the
curvature computation in (26) to obtain an upper bound B on curvature that is rigorously
justified given our noise model. Concretely, we estimate the marginal density of Zi at the
cutoff (f̂(c) = 0.57 using the nonparametric maximum likelihood estimator) and then let

B = Curv(c, f̂(c), N (·, 0.192)). Second, as recommended in Armstrong and Kolesár [2020],
we fit fourth-degree polynomials to µ(0)(z) and µ(1)(z), and take the largest estimated
curvature obtained anywhere. This approach is heuristic and not justified by the design
itself.

Our next baseline relies on higher-order smoothness for inference. This approach, which
has recently become popular in applications, involves first fitting the regression discontinu-
ity parameter via local linear regression as in (6), and then estimating and correcting for
its bias in a way that’s asymptotically justified under higher-order smoothness assumptions
[Calonico, Cattaneo, and Titiunik, 2014]. We implement this approach via the R package
rdrobust of Calonico, Cattaneo, and Titiunik [2015]. Relative to our first baseline, rdrobust
essentially uses higher-order smoothness assumptions to automate discovery of the curva-
ture of µ(w)(z); see Calonico, Cattaneo, and Farrell [2018] for further discussion. We run
rdrobust with all tuning parameters set to the default values.

We present the results in Table 1. While our inference using NIR is purely randomization-
based and only relies on the noise in the running variable Zi, the treatment effect estimate
remains significant at the 5% level. In contrast, using an upper-bound on curvature for
optrdd that is purely justified by the noise-model, we do not obtain significant results.
Noting the difficulty of accurately estimating curvature (especially in small samples), we
believe the ability of our method to deliver confidence intervals that are purely justified by
randomization to be potentially useful in practice.
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Figure 3: Noise-induced randomization analysis of a regression discontinuity design with
CD4 counts as the running variable. (a) γ± weights as function of the running variable z.
(b) Implied weighting of the latent variable h(·, γ+), h(·, γ−) as a function of the latent u.
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Figure 4: Scatterplot of the individual treatment effects Yi(1) − Yi(0) against the running
variable Zi, with data derived from the Early Childhood Longitudinal Study [Tourangeau
et al., 2015] as discussed in Section 6.2. We fit the ground truth treatment effect function
E
[
Yi(1)− Yi(0)

∣∣Zi = z
]
, shown as a line, using a smoothing spline.

In Figure 3 we show the weights γ± selected via quadratic programming and that were
used by the NIR approach (Section 4), and the implied weighting of the latent variable
h(·, γ+), h(·, γ−) as per (5). Units with Zi close to the cutoff are strongly upweighted, and
so we achieve approximate balance in terms of the latent Ui.

6.2 Test Scores in Early Childhood

We next consider the behavior of our method in a semi-synthetic regression discontinuity
design built using data from the Early Childhood Longitudinal Study [Tourangeau et al.,
2015]. This dataset has scaled mathematics test scores for n = 18, 174 children from kinder-
garten to fifth grade. Furthermore, each test score is accompanied by a noise estimate
obtained via item response theory; see Tourangeau et al. [2015] for further details.

We build a semi-synthetic regression discontinuity experiment using this dataset as fol-
lows, where each sample i = 1, . . . , n is built using the sequence of test scores from a single
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Figure 5: Regression discontinuity inference using our method (NIR) with data generated
as in Figure 4. (a) Estimates and 95% confidence intervals of the regression discontinuity
parameter (13), and (b) of the policy relevant parameter (14). Ic,c′ is the left-closed, right-
open interval between c and c′ when c 6= c′, and Ic,c′ = {c} for c = c′ = −0.2.

child. We set the running variable Zi to be the child’s kindergarten spring semester test
score, and set treatment as Wi = 1 ({Zi ≥ c}) for a cutoff c = −0.2. We then set control po-
tential outcomes Yi(0) ∈ {0, 1} to indicate whether the child’s test scores were above a = 0.5
in spring semester of their first grade, while Yi(1) ∈ {0, 1} measures the same quantity in
spring semester of their second grade; these are analogous to typically studied outcomes such
as passing subsequent examinations. Thus, the “treatment effect” Yi(1) − Yi(0) measures
the child’s improvement in “passing” the test (i.e., clearing the cutoff a = 0.5) between first
and second grades.

As shown in Figure 4, there is considerable heterogeneity in the regression discontinuity
parameter τc′ = E

[
Yi(1)− Yi(0)

∣∣Zi = c′
]

as we vary c′ away from the cutoff: For children
with either very good or very bad values of Zi the treatment effect is essentially 0 (since they
will pass or, respectively, fail to pass the cutoff a in both first and second grade with high
probability), while for students with intermediate values of Zi there is a large treatment
effect. We chose the parameters a and c in our construction of this data to accentuate this
type of heterogeneity.

Our main question here is whether our procedure is able to estimate this heterogeneity,
i.e., whether it can accurately recover variation in treatment effects away from the cutoff.
To this end, we consider two statistical targets: First, we consider estimation of the re-
gression discontinuity parameter (13) at c′ away from the cutoff, and second we consider
the policy-relevant parameter (14) quantifying the effect of changing the cutoff from c to c′.
When applying our method, we assume Gaussian errors in the running variable as in (2) and,
following the remark in the last paragraph of Section 1.1, we set ν = 0.2043 to match the low-
est noise estimate provided in the Early Childhood Longitudinal Study dataset [Tourangeau
et al., 2015]. To derive the point estimate and confidence intervals we run our method us-
ing sensitivity model T0.5. In the setting of this application, the monotonicity restriction
τ(·) ≥ 0 appears plausible, since the treatment effect measures the child’s improvement
between first and second grades, and in that case, as explained after (20), the sensitivity
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model T0.5 does not place any further restrictions on treatment effect heterogeneity. We also
construct confidence intervals centered at the same point estimates under sensitivity model
T0.3; this sensitivity model is plausible based on the treatment heterogeneity in the ground
truth individual treatment effects (Figure 4).

Results for both targets are shown in Figure 5. We see that our method is able to recover
heterogeneity. In both cases, the confidence intervals provided by our approach cover the
ground truth. Furthermore, as expected, they are narrowest near the cutoff c = −0.2, and
get wider as we move away from the cutoff.

7 Simulation Study

In order to complement the picture given by our applications, we consider a simulation
study to more precisely assess the performance of our method in terms of both its accuracy
and coverage. We consider a pair of data-generating distributions wherein Zi has discrete
support, and has a binomial distribution conditionally on the latent Ui. In both settings,
with n ∈ {1000, 2000, 10000}, we generate for i = 1, . . . , n:

Ui ∼ G = Uniform([0.5, 0.9]), Zi
∣∣Ui ∼ Binomial(K,Ui),

Wi = 1 ({Zi ≥ 0.6K}) , Yi(w) ∼ Bernoulli
(
E
[
Yi(w)

∣∣Ui
])
,

(27)

where the number of trials K is a simulation parameter that we vary. We consider two
different choices for E [Yi(w) | Ui] with null treatment effects τ(u) = 0:

E
[
Yi(w)

∣∣Ui = u
]

= 0.25 · 1 ({u < 0.6}) + 0.75 · 1 ({u ≥ 0.6}) , (28)

E
[
Yi(w)

∣∣Ui = u
]

= sin(9u)/3 + 0.4. (29)

We compare the following point estimates and 95% confidence intervals for the (null) treat-
ment effect.

• Noise-induced randomization (NIR) with p(· | u) = Binomial(K,u) and using
the sensitivity class T0 (cf. justification in Section 3.1).

• optrdd with curvature upper bound B specified as Curv(c, fG(c), p) (26), where fG(c)
is the true marginal pmf at c.18

• rdrobust as implemented in the R package rdrobust of Calonico, Cattaneo, and
Titiunik [2015] with default specification and taking the debiased estimate as the
point estimate.

We evaluate methods by computing the confidence interval coverage, the expected half-
length of confidence intervals and the mean absolute error (MAE). These metrics are com-
puted by averaging over 1,000 Monte Carlo replications.

18p(z | u) and µ(w)(z) are only defined at z ∈ {0, . . . ,K} and so µ′′(c) and Curv(c, fG(c), p) are ill-
defined. However, as explained by Kolesár and Rothe [2018] and Imbens and Wager [2019], inference using
optrdd with bound B is valid as long as there exists any function interpolating µ(w)(·) at z ∈ {0, . . . ,K}
that is twice differentiable and whose worst-case curvature is upper bounded by B. In our computation
of Curv(c, fG(c), p) we interpolate p(z | u) for z ∈ (0,K) (and consequently µ(w)(z) through (25)) as
p(z | u) = pB(u; z+1, K−z+1)− log(K+1), where pB(u;α, β) is the density of the Beta(α, β) distribution
at u ∈ (0, 1).
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K 5 10 25 50 100 200

n
=

1,
00

0

co
ve

ra
g
e optrdd 100.0% 99.8% 98.8% 98.0% 97.1% 96.5%

rdrobust – – 94.2% 94.5% 93.4% 93.4%

NIR 100.0% 97.1% 97.2% 97.6% 98.1% 98.6%

le
n

g
th

optrdd 0.452 0.383 0.347 0.344 0.370 0.423

rdrobust – – 0.352 0.376 0.353 0.342

NIR 0.433 0.220 0.228 0.257 0.303 0.398

M
A

E

optrdd 0.089 0.095 0.113 0.119 0.130 0.153

rdrobust – – 0.148 0.164 0.155 0.151

NIR 0.068 0.076 0.084 0.091 0.105 0.126

n
=

2,
0
00

co
ve

ra
ge optrdd 100.0% 100.0% 98.8% 98.5% 97.4% 96.6%

rdrobust – – 94.0% 94.0% 93.9% 92.8%

NIR 100.0% 95.4% 95.9% 96.8% 97.1% 97.5%

le
n

g
th

optrdd 0.396 0.325 0.280 0.273 0.287 0.322

rdrobust – – 0.244 0.261 0.246 0.239

NIR 0.333 0.161 0.160 0.178 0.207 0.258

M
A

E

optrdd 0.067 0.072 0.083 0.092 0.102 0.118

rdrobust – – 0.105 0.117 0.110 0.106

NIR 0.052 0.063 0.061 0.065 0.076 0.093

n
=

10
,0

00

co
ve

ra
g
e optrdd 100.0% 100.0% 100.0% 99.1% 98.3% 98.1%

rdrobust – – 94.0% 94.6% 94.4% 94.4%

NIR 100.0% 96.4% 95.9% 96.3% 96.0% 96.4%

le
n

gt
h optrdd 0.322 0.249 0.184 0.167 0.167 0.177

rdrobust – – 0.104 0.115 0.107 0.108

NIR 0.220 0.078 0.074 0.081 0.093 0.111

M
A

E

optrdd 0.030 0.033 0.038 0.047 0.056 0.063

rdrobust – – 0.044 0.050 0.047 0.048

NIR 0.021 0.030 0.029 0.031 0.036 0.043

Table 2: Simulation results in the binomial noise setting (27) with conditional response func-
tions (28) for different choices of sample size n and number of trials K. We compare three
methods (NIR, optrdd, rdrobust) and report the coverage of confidence intervals (“cover-
age”), the expected half-length of the confidence intervals (“length”) and the mean absolute
error (“MAE”). The best method in terms of expected half-length for each simulation set-
ting, when it also has at least 95% coverage, is shown in bold.
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K 5 10 25 50 100 200

n
=

1,
00

0

co
ve

ra
g
e optrdd 100.0% 100.0% 99.1% 99.3% 97.9% 98.6%

rdrobust – – – 95.0% 91.3% 93.4%

NIR 100.0% 97.6% 97.9% 98.6% 98.6% 99.5%

le
n

gt
h optrdd 0.418 0.346 0.294 0.280 0.288 0.320

rdrobust – – – 0.271 0.246 0.234

NIR 0.428 0.197 0.194 0.212 0.242 0.321

M
A

E

optrdd 0.081 0.080 0.087 0.088 0.098 0.104

rdrobust – – – 0.117 0.116 0.098

NIR 0.077 0.07 0.068 0.072 0.079 0.086

n
=

2,
00

0

co
ve

ra
ge optrdd 100.0% 100.0% 99.9% 99.0% 98.1% 98.5%

rdrobust – – 94.2% 93.9% 92.5% 92.8%

NIR 100.0% 98.0% 96.7% 97.9% 97.1% 98.9%

le
n

g
th

optrdd 0.372 0.298 0.240 0.225 0.227 0.247

rdrobust – – 0.183 0.187 0.171 0.164

NIR 0.329 0.143 0.135 0.144 0.163 0.203

M
A

E

optrdd 0.062 0.058 0.064 0.07 0.074 0.084

rdrobust – – 0.079 0.085 0.077 0.072

NIR 0.058 0.052 0.050 0.052 0.059 0.065

n
=

10
,0

00

co
ve

ra
g
e optrdd 100.0% 100.0% 100.0% 100.0% 99.0% 98.6%

rdrobust – – 94.9% 95.5% 93.3% 93.3%

NIR 100.0% 96.2% 96.6% 96.7% 97.0% 96.3%

le
n

g
th

optrdd 0.311 0.237 0.167 0.141 0.135 0.138

rdrobust – – 0.078 0.081 0.074 0.072

NIR 0.219 0.069 0.062 0.064 0.071 0.084

M
A

E

optrdd 0.038 0.033 0.030 0.035 0.040 0.046

rdrobust – – 0.033 0.036 0.033 0.032

NIR 0.038 0.027 0.024 0.024 0.027 0.031

Table 3: Simulation results in the binomial noise setting (27) with conditional response
functions (29). The results shown are analogous to the results of Table 2 (with a different
data generating process).
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The results of the simulation study are shown in Table 2 (response function (28)) and
Table 3 (response function (29)). All methods have approximately correct coverage, with
optrdd and NIR always achieving the nominal 95% level and rdrobust slightly undercov-
ering. We note that rdrobust and its distributional theory have been developed under the
assumption of a continuous rather than discrete random variable, but it nevertheless per-
forms reasonably well and the software furthermore detects the discreteness.19 NIR yields
the shortest confidence intervals in most settings. K determines the noise level; the smaller
K is the more effective noise there is in the running variable, and so the better our method
does (with the exception of the smallest K, namely K ≤ 10). This is in contrast to rdro-
bust, whose performance improves as K increases and the running variable becomes less
discrete, until at K = 200 it leads to shorter confidence intervals than NIR. As expected,
the confidence interval length decreases for all methods as the sample size n increases.

At a high level, this simulation experiment corroborates the claim that our method,
NIR, can flexibly turn assumptions about exogenous noise in the running variable Zi into a
practical, randomization-based procedure for inference in regression discontinuity designs.
We achieve nominal coverage across a wide variety of simulation settings. Our results
also point to the possibility that NIR may in fact result in improved power in settings
where running variables are discrete with known noise. This would not be unreasonable, as
continuity-based approaches were not necessarily designed for this setting,20 whereas NIR
can directly exploit structure of the binomial distribution. However, a detailed study of
the power (as opposed to feasibility) of randomization-based inference across settings of
practical interest is beyond the scope of this paper.

8 Discussion

Informal descriptions of regression discontinuity designs often appeal to an analogy to a
local randomized experiment, whereby units near the cutoff are as if randomly assigned to
treatment. In perhaps the most common version of this analogy, one posits that units near
the cutoff have had their running variable randomized [Cattaneo, Frandsen, and Titiunik,
2015]. However, this analogy is typically undermined by the clear relevance of the running
variable to the outcome—even within a region near the cutoff. Here, we proposed a new
approach to inference in regression discontinuity designs that formalizes measurement error
or other exogenous noise in the running variable Zi to capture the stochastic nature of the
assignment mechanism in regression discontinuity designs. In the presence of measurement
error, units are indeed randomly assigned to treatment—but with unknown, heterogeneous
probabilities determined by a latent variable of which Zi is a noisy measure. Our results
suggest that the pursuit of randomization-based inference in regression discontinuity designs
may be practical in applications; in other words, concerns about power need not necessarily
get in the way of a statistician who would prefer to rely on randomization-based inference
for conceptual reasons.

Regression discontinuity designs with known or estimable measurement error in the run-
ning variable arise in many settings. We have already considered applications to educational
and biomedical tests. Public policies that target interventions based on, e.g., proxy means

19For small K and n, rdrobust sometimes return an error, in which case we do not report its performance
in the tables. Furthermore, even when rdrobust does not return an error, it provides the user with the
informative warning “Mass points detected in the running variable”.

20Although, as discussed in Kolesár and Rothe [2018] they can rigorously be used in this setting given
appropriate interpretation.
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testing [e.g., Alatas, Banerjee, Hanna, Olken, and Tobias, 2012] may also readily admit
analysis with the noise-induced randomization approach. Even data ostensibly arising from
a complete census of a population may have measurement error in population totals or
characteristics [cf. Fraga and Merseth, 2016]. Furthermore, this approach is applicable to
settings where thresholds for statistical significance are used to make numerous decisions.

Finally, while this noise-induced randomization approach applies to many settings of
interest, we emphasize that is does not apply to all regression discontinuity designs, as some
running variables are not readily interpretable as having measurement error or other exoge-
nous noise. For example, numerous studies have used geographic boundaries as discontinu-
ities [Keele and Titiunik, 2014, Rischard, Branson, Miratrix, and Bornn, 2021], but it would
be questionable to model the location of a household in space as having meaningful mea-
surement error (rather, it may be more plausible to argue that the location of the boundary
itself is random [Ganong and Jäger, 2018]). Likewise, analyses of close elections—a central
example of regression discontinuity designs in political science and economics [Caughey and
Sekhon, 2011, Lee, 2008]—may not allow for a natural noise model for Zi that would arise
from, e.g., noisy counting of the number of ballots cast for each candidate, though perhaps
there are other sources of exogenous noise [e.g., weather, Gomez, Hansford, and Krause,
2007, Cooperman, 2017]. These considerations call attention to the limits of the proposed
approach, but also highlights a difference in the foundational assumptions required for iden-
tification, estimation, and inference in regression discontinuity designs with a noisy running
variable versus the assumptions required when the running variable is noiseless.

Software

All numerical results in this paper are reproducible with the code in the following Github
repository: https://github.com/nignatiadis/noise-induced-randomization-paper.
There we provide an implementation of the proposed methods as a package in the Julia pro-
gramming language [Bezanson et al., 2017] that depends, among others, on JuMP.jl [Dun-
ning et al., 2017].
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Luke J Keele and Roćıo Titiunik. Geographic boundaries as regression discontinuities.
Political Analysis, 23(1):127–155, 2014.

Morgan Kelly. The standard errors of persistence. CEPR Discussion Paper DP13783, 2019.

Jack Kiefer and Jacob Wolfowitz. Consistency of the maximum likelihood estimator in the
presence of infinitely many incidental parameters. The Annals of Mathematical Statistics,
pages 887–906, 1956.

Arlene KH Kim. Minimax bounds for estimation of normal mixtures. Bernoulli, 20(4):
1802–1818, 2014.

Roger Koenker and Jiaying Gu. REBayes: Empirical Bayes mixture methods in R. Journal
of Statistical Software, 82(8):1–26, 2017.

27



Michal Kolesár and Christoph Rothe. Inference in regression discontinuity designs with a
discrete running variable. American Economic Review, 108(8):2277–2304, 2018.

Hiroshi Konno and Natsuroh Abe. Minimization of the sum of three linear fractional func-
tions. Journal of Global Optimization, 15(4):419–432, 1999.

Manabu Kuroki and Judea Pearl. Measurement bias and effect restoration in causal infer-
ence. Biometrika, 101(2):423–437, 2014.

David S Lee. Randomized experiments from non-random selection in US House elections.
Journal of Econometrics, 142(2):675–697, 2008.

David S Lee and Thomas Lemieux. Regression discontinuity designs in economics. Journal
of Economic Literature, 48(2):281–355, 2010.

Fan Li, Alessandra Mattei, and Fabrizia Mealli. Evaluating the causal effect of university
grants on student dropout: Evidence from a regression discontinuity design using principal
stratification. The Annals of Applied Statistics, 9(4):1906–1931, 2015.

Fan Li, Kari Lock Morgan, and Alan M Zaslavsky. Balancing covariates via propensity score
weighting. Journal of the American Statistical Association, pages 1–11, 2017.
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A Proofs

A.1 Proof of Proposition 1

Proof: Conditioning on the latent variable U , we find that

E
[
γ+(Z)Y

∣∣U
] (i)

= E
[
γ+(Z)Y · 1 ({Z ≥ c})

∣∣U
]

(ii)
= E

[
γ+(Z)Y (1) · 1 ({Z ≥ c})

∣∣U
]

(iii)
= E

[
Y (1)

∣∣U
]

︸ ︷︷ ︸
α(1)(U)

E
[
γ+(Z)1 ({Z ≥ c})

∣∣U
]

︸ ︷︷ ︸
h(U,γ+)=

∫
γ+(z)p(z | U) dλ(z)

In (i) we used that γ+(z) = 0 for z < c, in (ii) we used the fact that Y = Y (1) for Z ≥ c
by Assumption 1 and in (iii) we used exogeneity of the noise (Assumption 3). Finally, the
expression for E

[
γ+(Z)1 ({Z ≥ c})

∣∣U
]

= E
[
γ+(Z)

∣∣U
]

follows from Assumption 2. By

iterated expectation we thus find that E [γ+(Z)Y ] = E
[
α(1)(U)h(U, γ+)

]
. The proof for γ−

is analogous.

A.2 Proof of Corollary 3

Proof. Noting that τ(U) = α(1)(U) − α(0)(U), this is proved by direct algebraic manipula-
tion.

A.3 Proof of Theorem 4

Proof. Notation: We write En [·] to denote empirical averages, i.e., for a function h(·), we
write:

En [h(Zi)] =
1

n

n∑

i=1

h(Zi).

We omit dependence on n of the weighting kernels. We only prove a central limit theorem
for µ̂γ,+. The CLT for µ̂γ,− and τ̂γ = µ̂γ,+ − µ̂γ,− follow similarly.

CLT for
∑
i γ+(Zi) (Yi(1)− µγ,+): We seek to prove the following central limit theorem:

∑n
i=1 γ+(Zi)(Yi(1)− µγ,+)√

nE
[
γ+(Zi)2 (Yi(1)− µγ,+)

2
] ⇒ N (0, 1) .

We first note that the numerator has expectation 0, since:

E [γ+(Zi)(Yi(1)− µγ,+)] = E [γ+(Zi)Yi(1)]− E [γ+(Zi)]
E [γ+(Zi)Yi(1)]

E [γ+(Zi)]
= 0.

In the last step, we used the fact that by (12):

µγ,+ =
E
[
α(1)(U)h(U, γ+)

]

E [h(U, γ+)]
. (S1)
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But by Proposition 1 we also have that E
[
α(1)(U)h(U, γ+)

]
= E [γ+(Zi)Yi(1)], while an

analogous argument as in the proof of Proposition 1 demonstrates that E [h(U, γ+)] =
E [γ+(Zi)].

Next we will check the condition of Lyapunov’s central limit theorem. Let
¯
σ2 :=

infz Var
[
Yi
∣∣Zi = z

]
> 0.

Var [γ+(Zi) (Yi(1)− µγ,+)] ≥ E
[
Var

[
γ+(Zi) (Yi(1)− µγ,+)

∣∣Zi
]]

= E
[
γ+(Zi)

2 Var
[
Yi(1)− µγ,+

∣∣Zi
]]

= E
[
γ+(Zi)

2 Var
[
Yi(1)

∣∣Zi
]]

= E
[
γ+(Zi)

2 Var
[
Yi
∣∣Zi
]]

≥
¯
σ2E

[
γ+(Zi)

2
]
.

(S2)

In the penultimate line we used the fact that Yi(1) = Yi on {Zi ≥ c} and that γ+(z) = 0 for
z < c. We next bound µγ,+ in (S1). First, since Yi ∈ [0, 1] by Assumption 4, it also follows
that α(1)(U) ∈ [0, 1] almost surely. Thus:

|µγ,+| =
∣∣∣∣∣
E
[
α(1)(U)h(U, γ+)

]

E [γ+(Zi)]

∣∣∣∣∣ ≤
E [|h(U, γ+)|]
E [γ+(Zi)]

≤ supu |h(u, γ+)|
E [γ+(Zi)]

≤ C ′,

for n large enough. Then, for q > 0 (and n large enough) we have that:

E
[
|γ+(Zi) (Yi(1)− µγ,+)|2+q

]
≤ (C ′ + 1)2+qE

[
|γ+(Zi)|2+q

]

≤ (C ′ + 1)2+q · sup
z
|γ+(z)|q · E

[
γ+(Zi)

2
]
.

So:

nE
[
|γ+(Zi) (Yi(1)− µγ,+)|2+q

]

(nVar [γ+(Zi) (Yi(1)− µγ,+)])
(2+q)/2

≤ (C ′ + 1)2+q · supz |γ+(z)|q · E
[
γ+(Zi)

2
]

nq/2 ·
¯
σ2+q · E [γ+(Zi)2]

(2+q)/2

≤
(
C ′ + 1

¯
σ

)2+q

· supz |γ+(z)|q

nq/2 · E [γ+(Zi)2]
q/2

≤
(
C ′ + 1

¯
σ

)2+q

· supz |γ+(z)|q
nq/2E [γ+(Zi)]

q

≤
(
C ′ + 1

¯
σ

)2+q

·
(
Cnβ−1/2

)q
→ 0 as n→∞.

This proves the central limit theorem.

Estimation of normalization factor: Here we prove that En [γ+(Zi)]
/
E [γ+(Zi)] =

1 + oP(1). For any ε > 0, by Chebyshev’s inequality:

P [|En [γ+(Zi)]− E [γ+(Zi)]| ≥ εE [γ+(Zi)]] ≤
Var [γ+(Zi)]

nε2E [γ+(Zi)]
2

≤ supz γ+(z)2

nε2E [γ+(Zi)]
2

≤
(
C

ε
· nβ−1/2

)2

→ 0 as n→∞.
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CLT for µ̂γ,+: Note that

µ̂γ,+ − µγ,+ =

n∑

i=1

γ+(Zi)(Yi(1)− µγ,+)
/ n∑

i=1

γ+(Zi).

The above display, along with our preceding result, and Slutsky yield the CLT:

√
n (µ̂γ,+ − µγ,+)√

E
[
γ+(Zi)2 (Yi(1)− µγ,+)

2
] /

E [γ+(Zi)]
2

⇒ N (0, 1) .

A.4 Proof of Proposition 5

Proof. The proof here continues from the argument used for the proof of Theorem 4. As
we did there, we only prove the result for the variance of µ̂γ,+, the result for τ̂γ follows
analogously. In the proof of Theorem 4 we already showed that En [γ+(Zi)]

/
E [γ+(Zi)] =

1 + oP(1). It thus suffices to show that:

En
[
γ+(Zi)

2 (Yi(1)− µ̂γ,+)
2
] /

E
[
γ+(Zi)

2 (Yi(1)− µγ,+)
2
]

= 1 + oP(1). (S3)

We start by arguing that:

En
[
γ+(Zi)

2 (Yi(1)− µγ,+)
2
] /

E
[
γ+(Zi)

2 (Yi(1)− µγ,+)
2
]

= 1 + oP(1). (S4)

First:

Var



En
[
γ+(Zi)

2 (Yi(1)− µγ,+)
2
]

E
[
γ+(Zi)2 (Yi(1)− µγ,+)

2
]


 =

Var
[
γ+(Zi)

2 (Yi(1)− µγ,+)
2
]

n · E
[
γ+(Zi)2 (Yi(1)− µγ,+)

2
]2

≤
E
[{
γ+(Zi)

2 (Yi(1)− µγ,+)
2
}
·
{
γ+(Zi)

2 (Yi(1)− µγ,+)
2
}]

n · E
[
γ+(Zi)2 (Yi(1)− µγ,+)

2
]2

≤ (C ′ + 1)2 supz |γ+(z)|2

nE
[
γ+(Zi)2 (Yi(1)− µγ,+)

2
] → 0 as n→∞.

Note that we verified that the last expression converges to 0 as n → ∞ during the verifi-
cation of Lyapunov’s condition in the proof of Theorem 4. It follows that the asymptotic
convergence in (S4) holds in L2, thus also in probability. It remains to show that the feasible
estimator in (S3) is asymptotically equivalent. We have the decomposition:

γ+(Zi)
2 (Yi(1)− µ̂γ,+)

2 − γ+(Zi)
2 (Yi(1)− µγ,+)

2

= γ+(Zi)
2 (µ̂γ,+ − µγ,+)

2
+ 2γ+(Zi)

2 (Yi(1)− µγ,+) (µγ,+ − µ̂γ,+) .

From the CLT of Theorem 4, we know that:

(µ̂γ,+ − µγ,+)
2

= OP

(
n−1E

[
γ+(Zi)

2 (Yi(1)− µγ,+)
2
]/

E [γ+(Zi)]
2

)
= OP

(
n−1+2β

)
= oP(1),
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and so:

En
[
γ+(Zi)

2
]

E
[
γ+(Zi)2 (Yi(1)− µγ,+)

2
] · (µ̂γ,+ − µγ,+)

2
= OP(1) · oP(1) = oP(1).

The fact that the first term is OP(1) follows by arguing with Chebyshev’s inequality. First
note that from (S2), we know that E[γ+(Zi)

2 (Yi(1)− µγ,+)
2
] ≥

¯
σ2E[γ+(Zi)

2] and so it
suffices to show that En

[
γ+(Zi)

2
]
/E
[
γ+(Zi)

2
]

is OP(1). Indeed this term is also 1 + oP(1),
since for any ε > 0:

P
[∣∣En

[
γ+(Zi)

2
]
− E

[
γ+(Zi)

2
]∣∣ ≥ εE

[
γ+(Zi)

2
]]
≤ Var

[
γ+(Zi)

2
]

nε2E [γ+(Zi)2]
2

≤ supz γ+(z)2

nε2E [γ+(Zi)]
2 ·

E
[
γ+(Zi)

2
]

E [γ+(Zi)2]

≤
(
C

ε
· nβ−1/2

)2

→ 0 as n→∞.

This proves the first term is negligible. To show that the second term is negligible, our basic
argument is that

En
[
γ+(Zi)

2 (Yi(1)− µγ,+)
]

E
[
γ+(Zi)2 (Yi(1)− µγ,+)

2
] · (µ̂γ,+ − µγ,+) = OP(1) · oP(1) = oP(1),

and it remains to prove that the first term is indeed OP(1). By Cauchy-Schwarz
∣∣En

[
γ+(Zi)

2 (Yi(1)− µγ,+)
]∣∣ = |En [γ+(Zi) · γ+(Zi) (Yi(1)− µγ,+)]|

≤
(
En
[
γ+(Zi)

2
])1/2 (En

[
γ+(Zi)

2 (Yi(1)− µγ,+)
2
])1/2

But the above is the product of two OP(E[γ+(Zi)
2(Yi(1)− µγ,+)2]1/2) terms (as we showed

above), so we conclude upon dividing by E[γ+(Zi)
2(Yi(1)− µγ,+)2].

A.5 Proof of Proposition 6

Proof. Consider the event {G ∈ Gn}. On this event, by definition we have |bγ | ≤ B̂γ,M This
implies that {G ∈ Gn} ⊂ {|bγ | ≤ B̂γ,M} and so P[|bγ | ≤ B̂γ,M ] ≥ P [G ∈ Gn]. It thus suffices
to show that the RHS converges to 1 as n→∞. By construction of Gn in (19) and Massart’s
tight constant for the DKW inequality [Massart, 1990], it holds that

P [G ∈ Gn] ≥ P
[
sup
t∈R

∣∣∣F (t)− F̂n(t)
∣∣∣ ≤

√
log (2/αn)

/
(2n)

]
≥ 1− αn.

Since αn → 0, we conclude the proof.

A.6 Proof of Corollary 7

By Theorem 4, Proposition 5, and Slutsky, we have that
√
n (τ̂γ − τw − bγ)

V̂
1/2
γ

⇒ N (0, 1) ,

S4



where bγ = θγ − τw by definition. So, letting Z̃ ∼ N (0, 1) independent of everything else:

P [τw ∈ τ̂γ ± `α] = P [−`α − bγ ≤ τ̂γ − τw − bγ ≤ `α − bγ ]

= P
[
−√nV̂ −1/2

γ (`α + bγ) ≤ √nV̂ −1/2
γ (τ̂γ − τw − bγ) ≤ √nV̂ −1/2

γ (`α − bγ)
]

(i)
= E

[
P
[
−√nV̂ −1/2

γ (`α + bγ) ≤ Z̃ ≤ √nV̂ −1/2
γ (`α − bγ)

∣∣ V̂γ , B̂γ,M , τ̂γ
]]

+ o(1)

= E
[
P
[
−`α ≤ bγ + n−1/2V̂ 1/2

γ Z̃ ≤ `α
∣∣ V̂γ , B̂γ,M , τ̂γ

]]
+ o(1)

(ii)

≥ E [1− α] + o(1)

= 1− α+ o(1).

In (i) we used the fact that the central limit theorem implies that the distribution function
of the (asymptotic) pivot converges to the standard normal distribution function Φ(·) uni-

formly. In (ii) we used the definition of `α in (22) and the fact that P[|bγ | ≤ B̂γ,M ]→ 1 as
n→∞.

A.7 Proof of Corollary 8

Let τh,+ be defined as in (23). We will show that

∣∣Bias
[
γ±, τh,+; α(0)(·), τ(·), G

]∣∣ ≤ B̂γ,M ′ ,

where B̂γ,M ′ is defined as in (21) for the estimand τw (rather than τh,+). We make this

dependence explicit by writing B̂γ,M ′ = B̂γ,M ′,τw . The “CATE heterogeneity bias” in
Corollary 3 vanishes for τh,+, i.e.,

Bias
[
γ±, τh,+; α(0)(·), τ(·), G

]
=

∫ (
h(u, γ+)

EG [h(U, γ+)]
− h(u, γ−)

EG [h(U, γ−)]

)
α(0)(u) dG(u).

However, the “CATE heterogeneity bias” also vanishes when τ(·) ∈ T0 (for any choice of
estimand τw), so that:

∣∣Bias
[
γ±, τh,+; α(0)(·), τ(·), G

]∣∣ =
∣∣Bias

[
γ±, τw; α(0)(·), τ(·), G

]∣∣ , when τ(·) ∈ T0.

Taking the supremum on the RHS over α(0)(·) ∈ [0, 1], τ(·) ∈ T0 and G ∈ Gn demonstrates
that: ∣∣Bias

[
γ±, τh,+; α(0)(·), τ(·), G

]∣∣ ≤ B̂γ,0,τw ≤ B̂γ,M ′,τw .
The conclusion follows as in the proofs of Proposition 6 and Corollary 7.

A.8 Proof of Proposition 9

Proof. We provide the argument for γ+ = γ
(n)
+ ; the argument for γ− = γ

(n)
− is analogous.

First note that maxz |γ+(z)| > 0 must hold, otherwise constraint (24c) of the optimization
problem would not be satisfied. For convenience we define the events:

Bn,1 =

{
1/k < F̄ ([c,∞)) < 1− 1/k, sup

u
|w̄(u)| < k

}
, Bn,2 =

{∫

[c,∞)

γ+(z)dF (z) > δ

}
.
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Next, let C be as in (24e) and C̃ = C/δ. Then, on the event Bn,2 we have that:

sup
z
|γ+(z)| ≤ Cnβ ≤ C̃nβ · δ < C̃nβ

∫

[c,∞)

γ+(z)dF (z).

Next, we will bound |h(u, γ+)| on the event Bn,2. Consider the weighting kernel γ̃+(z) =
1({z ≥ c})/F̄ ([c,∞)) and γ̃−(z) = 1({z < c})/(1 − F̄ ([c,∞))). This is a feasible solution
under the constraints of optimization problem (24), since supu |γ̃�(u)| ≤ 1/k ≤ Cnβ , � ∈
{+,−} on Bn,2 (and n large enough),

∫
γ̃−(z)dF̄ (z) = 1 and

∫
γ̃+(z)dF̄ (z) = 1. We upper

bound the objective of the optimization problem for that choice of weighting kernel. First,
the variance-proxy term in the objective is equal to

[
F̄ ([c,∞))−1 + (1− F̄ ([c,∞)))−1

]
/n

which is ≤ 2k/n ≤ 1 for n large enough. On the other hand, note that we also have that:

|h(u, γ̃+)| =
∣∣∣∣∣F̄ ([c,∞))−1 ·

∫

[c,∞)

p(z | u)dλ(z)

∣∣∣∣∣ ≤ F̄ ([c,∞))−1 ≤ k,

and similarly |h(u, γ̃−)| ≤ k. Hence by the triangle inequality we may bound the “t1” term
of the variance objective as 2k, and similarly for the “t2” term (recall that |w̄(u)| ≤ k on
Bn,2). Thus the objective of the whole optimization problem is upper bounded by 1 + 16k2.
Thus, the objective for the optimal γ± in (24b) must be ≤ 1 + 16k2, which implies in
particular for the optimal γ±:

M |h(u, γ+)− w̄(u)| ≤
√

1 + 16k2 ≤ 5k.

Thus:

sup
u
|h(u, γ+)| ≤ sup

u
{|h(u, γ+)− w̄(u)|+ |w̄(u)|} ≤ 5k/M + k ≤ 6k/M.

We conclude that for C̃ as above and C̃ ′ = 6k/(Mδ), it holds that:

P
[
sup
z

∣∣∣γ(n)
+ (z)

∣∣∣ < C̃nβE
[
γ

(n)
+ (Zi)

]
, sup

u

∣∣∣h(u, γ
(n)
+ )

∣∣∣ < C̃ ′E
[
γ

(n)
+ (Zi)

]]

≥ P [Bn,1 ∩Bn,2]→ 1 as n→∞.

A.9 Proof of Proposition 10

Proof. For the first result, note that µ(w)(z) may in fact be extended to an analytic func-
tion across all of C, cf. Kim [2014]. We proceed with the quantitative claims and first
note that it suffices to consider the standard normal case, i.e., ν = 1. To see this, take
Zi
∣∣Ui ∼ N

(
Ui, ν

2
)
. Then Z̃i = Zi/νi

∣∣Ui ∼ N (Ui/νi, 1) and we may apply the results to
Z̃i. Concretely, let m̃ : R 7→ R be an arbitrary function and m : z 7→ m̃(z/ν) = m̃(z̃). This
defines a bijection between functions that enables us to translate results for Z̃i into results
for Zi and vice versa (by applying the chain rule). It only remains to express the density f̃(z̃)
of Z̃i at z̃ = z/ν in terms of the density f of Zi; by transformation we have f̃(z̃) = ν · f(z).
Furthermore, we derive all of our results for µ(0)(z); the arguments for µ(1)(z) are identical.

S6



Upper bound: Fix c̃ > 0. Let α̃(0)(u) = c̃ + α(0)(u) ∈ [c̃, 1 + c̃]. Let H � G be the
probability measure with

dH

dG
(u) =

α̃(0)(u)∫
α̃(0)(u)dG(u)

,

and write h(z) =
∫
ϕ(z − u)dH(u). Then:

µ(0)(z) = E
[
α(0)(Ui)

∣∣Zi = z
]

= E
[
α̃(0)(Ui)

∣∣Zi = z
]
− c̃ =

h(z) ·
∫
α̃(0)(u)dG(u)

f(z)
− c̃.

Taking the derivative:

d

dz
µ(0)(z) =

∫
α̃(0)(u)dG(u)·

(
h′(z)

f(z)
− h(z)

f(z)
· f
′(z)

f(z)

)
=

∫
α̃(0)(u)dG(u)·h(z)

f(z)
·
(
h′(z)

h(z)
− f ′(z)

f(z)

)
.

We next bound the three terms appearing in the expression above. First, we already saw

that
∫
α̃(0)(u)dG(u) · h(z)

f(z) = µ(0)(z) + c̃ with µ(0)(z) ∈ [0, 1] and so this term is upper

bounded in absolute value by 1+ c̃. Next, by Lemma A.1. in Jiang and Zhang [2009] (which
we state and prove at the end of this section for self-containedness) it holds that:

∣∣∣∣
f ′(z)

f(z)

∣∣∣∣ ≤
√
− log(2πf2(z)),

∣∣∣∣
h′(z)

h(z)

∣∣∣∣ ≤
√
− log(2πh2(z)).

It remains to lower bound h(z)/f(z):

h(z) =

∫
α̃(0)(u)ϕ(z − u)dG(u)∫

α̃(0)(u)dG(u)
≥ c̃

1 + c̃
·
∫
ϕ(z − u)dG(u) =

c̃

1 + c̃
· f(z).

Applying the triangle inequality and putting everything together:

∣∣∣∣
d

dz
µ(0)(z)

∣∣∣∣ ≤ inf
c̃>0

{
(1 + c̃) ·

(
√
− log(2πf2(z)) +

√
− log

(
2πc̃2

(1 + c̃)2
f2(z)

))}
.

Taking c̃ = 1 +
√

2 and noting that 2(1 + c̃) < 7 leads to the bound:

∣∣∣∣
d

dz
µ(0)(z)

∣∣∣∣ ≤ 7
√
− log(πf2(z)).

Continuing, the second derivative of µ(0)(z) is equal to:

µ′′(0)(z) =
(
µ(0)(z) + c̃

)
·
{(

h′′(z)

h(z)
+ 1

)
−
(
f ′′(z)

f(z)
+ 1

)}
− 2µ′(0)(z) ·

f ′(z)

f(z)
.

Applying Lemma A.1. in Jiang and Zhang [2009] a second time we find that:

0 ≤ f ′′(z)

f(z)
+ 1 ≤ − log(2πf2(z)), 0 ≤ h′′(z)

h(z)
+ 1 ≤ − log(2πh2(z)).

Using the fact that
∣∣µ(0)(z) + c̃

∣∣ ≤ 1 + c̃, that we already bounded |µ′(0)(z)|, f ′(z)/f(z)
above, and the triangle inequality we conclude.
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Lower bound: Without loss of generality, we consider the case that z = 0. Let δu denote
the point mass measure at {u}. We take G = 1−w

2 · (δ−t + δt) + w · δ0 for parameters
w ∈ [0, 1], t > 0 which we will specify later and α(0)(u) = 1 (u = 0). Then:

f(z) =
1− w

2
· (ϕ(z − t) + ϕ(z + t)) + w · ϕ(z), µ(0)(z) = w · ϕ(z)

f(z)
.

To simplify notation we write µ(·) = µ(0)(·). By direct calculation we can verify that

µ′′(0) = −wϕ(0)f(0) + ϕ(0)f ′′(0)

f2(0)
, f ′′(0) = (1− w)(t2 − 1)ϕ(t)− wϕ(0).

Next choose w = ϕ(t), so that f(0) = (1 + ϕ(0)− ϕ(t))ϕ(t) and

µ′′(0) = −ϕ(0)
(1− ϕ(t)) · t2

(1 + ϕ(0)− ϕ(t))2
.

Finally, we pick t so that ϕ(t) = ρ. It then holds in particular that f(0) ≥ ρ and using the
fact that ϕ(t) ∈ (0, 1/

√
2π], we get:

|µ′′(0)| ≥ 1

10
t2 =

1

10
(− log(2πρ2)).

A.9.1 Lemma A.1. in Jiang and Zhang [2009]

Lemma A.1. (Jiang and Zhang [2009]). Let G be a distribution on R, let ϕ be the standard
normal density function and let fG(z) =

∫
ϕ(z − u)dG(u) be the density of the convolution

G ? ϕ. Then:

0 ≤
(
f ′G(z)

fG(z)

)2

≤ f ′′G(z)

fG(z)
+ 1 ≤ − log

(
2πf2

G(z)
)
.

Proof. Let U ∼ G and Z | U ∼ N (U, 1). We may verify the following three equalities:

E [U − z | Z = z] =
f ′G(z)

fG(z)
, E

[
(U − z)2 | Z = z

]
=
f ′′G(z)

fG(z)
+ 1,

E
[√

2π exp
(
(U − z)2/2

)
| Z = z

]
= 1/fG(z).

Then, by Jensen’s inequality:

(
f ′G(z)

fG(z)

)2

= E [U − z | Z = z]
2 ≤ E

[
(U − z)2 | Z = z

]
=
f ′′G(z)

fG(z)
+ 1.

Next, define the convex function h(x) =
√

2π exp(x/2) with inverse h−1(y) = log(y2/(2π)).
Applying Jensen’s inequality again, we see that:

f ′′G(z)

fG(z)
+ 1 ≤ h−1

(
E
[
h
(
(U − z)2

)
| Z = z

])
= h−1(1/fG(z)) = − log

(
2πf2

G(z)
)
.
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B Computational details

B.1 Computation of worst-case bias

B.1.1 Notation

In this section we explain how to compute the worst-case bias in (21). The main idea behind
our optimization algorithm is to define A(0), resp. T as the signed measure that is absolutely
continuous with respect to G with density α(0)(u), resp. τ(u). We will parameterize the
optimization problem in terms of optimization variables that represent G, A(0) and T . To
simplify notation, we define the following linear functionals:

Lh,+(H) =

∫
h(u, γ+)dH(u),

Lh,−(H) =

∫
h(u, γ−)dH(u),

Lw(H) =

∫
w(u)dH(u).

Then we can write:

Bias
[
γ±, τw; α(0)(·), τ(·), G

]
=
Lh,+(A(0)) + Lh,+(T )

Lh,+(G)
− Lh,−(A(0))

Lh,−(G)
− Lw(T )

Lw(G)
, (S5)

a sum-of-ratios of linear functionals. We propose solving:

sup
G,A(0),T

Lh,+(A(0)) + Lh,+(T )

Lh,+(G)
− Lh,−(A(0))

Lh,−(G)
− Lw(T )

Lw(G)
(S6a)

s.t. G ∈ Gn, (S6b)

0 ≤ dA(0)

dG
(u) ≤ 1 for all u, (S6c)

0 ≤ dT

dG
(u) ≤ 2M for all u. (S6d)

We explain why this problem is equivalent to the problem we care about solving in (21).
There are two observations:

1. We first show that it suffices to reduce attention to T (·) satisfying (S6d) instead of
more general T (·) that satisfy the heterogeneity constraint in (20). Fix G, A(0) and
T that are feasible for (21). Let τ̄ be such that |dT (u)/dG− τ̄ | ≤ M and define
Ť = τ̄ · G + T . Then dŤ (u)/dG = dT (u)/dG + τ̄ ∈ [0, 2M ]. Hence G,A(0), Ť are

also feasible. Furthermore, we may check that (G,A(0), T ) and (G,A(0), Ť ) lead to the
same value of the objective Bias [γ±, τw; ·, ·, ·] in (S5).

2. We next show that we may ignore the absolute value in (21). Fix feasible G, A(0)

and T . Suppose we replace A(0) and T byǍ(0) = G−A(0) and Ť = 2M ·G− T . Then
dǍ(0)(u)/dG = 1− dA(0)(u)/dG ∈ [0, 1], and so the constraint (S6c) will continue to
be satisfied and similarly, dŤ (u)/dG = 2M − dT (u)/dG ∈ [0, 2M ], and so the con-
straint (S6d) will also continue to be satisfied. Hence G, Ǎ(0) and Ť also are feasible
and we may further check that the objective value switches sign compared to its orig-
inal value and retains its absolute value. Thus optimization problem (S6) is implicitly
maximizing the absolute value of the objective.
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B.1.2 Optimizing the sum-of-ratios objective

We now explain how (S6) may be solved numerically.S1 First, we may reduce the number
of ratios in the objective by the Charnes and Cooper [1962] transformation, as follows:

sup
Ǧ,Ǎ(0),Ť,ξ

Lh,+(Ǎ(0)) + Lh,+(Ť )− Lh,−(Ǎ(0))

Lh,−(Ǧ)
− Lw(Ť )

Lw(Ǧ)
(S7a)

s.t. Ǧ ∈
{
ξ · G̃ : G̃ ∈ Gn

}
, (S7b)

0 ≤ dǍ(0)

dǦ
(u) ≤ 1 for all u, (S7c)

0 ≤ dŤ

dǦ
(u) ≤ 2M for all u, (S7d)

Lh,+(Ǧ) = 1, (S7e)

ξ ≥ 0. (S7f)

The optimization variables are ξ ≥ 0, Ǧ, Ǎ(0), and Ť . Their interpretation is as follows:

ξ = 1/Lh,+(G), Ǧ = ξ ·G, Ǎ(0) = ξ ·A(0), and Ť = ξ ·T . Next consider solving (S7) subject
to the additional linear constraints that

Lh,−(Ǧ) = ζ, Lw(Ǧ) = κ,

for fixed values of ζ, κ. In more detail, let:

L(ζ, κ) = sup
Ǧ,Ǎ(0),Ť,ξ

Lh,+(Ǎ(0)) + Lh,+(Ť )− 1

ζ
Lh,−(Ǎ(0))−

1

κ
Lw(Ť ) (S8a)

s.t. (S7b), (S7c), (S7d), (S7e), (S7f), (S8b)

Lh,−(Ǧ) = ζ, (S8c)

Lw(Ǧ) = κ. (S8d)

For fixed values of ζ, κ, the above is a linear program. Thus we may solve (S7) by profiling
over ζ and κ and repeatedly solving (S8). Formally, let:

¯
ζ = inf

Ǧ,Ǎ(0),Ť,ξ

{
Lh,−(Ǧ)

}
s.t. (S7b), (S7c), (S7d), (S7e), (S7f),

and ζ̄ = sup
Ǧ,Ǎ(0),Ť,ξ

{
Lh,−(Ǧ)

}
s.t. (S7b), (S7c), (S7d), (S7e), (S7f).

(S9)

Furthermore, for ζ ∈ [
¯
ζ, ζ̄], let:

¯
κ(ζ) = inf

Ǧ,Ǎ(0),Ť,ξ

{
Lw(Ǧ)

}
s.t. Lh,−(Ǧ) = ζ, (S7b), (S7c), (S7d), (S7e), (S7f),

and κ̄(ζ) = sup
Ǧ,Ǎ(0),Ť,ξ

{
Lw(Ǧ)

}
s.t. Lh,−(Ǧ) = ζ, (S7b), (S7c), (S7d), (S7e), (S7f).

(S10)
Then the worst-case bias we are interested in is equal to:

sup
{

sup {L(ζ, κ) : κ ∈ [
¯
κ(ζ), κ̄(ζ)]} : ζ ∈

[
¯
ζ, ζ̄

] }
. (S11)

S1Such sum-of-ratios optimization problems have been studied in the optimization literature, see e.g.,
Benson [2007], Konno and Abe [1999] and references therein.
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B.1.3 Discretization considerations

To turn the above construction into a practical computational algorithm, we need to solve
optimization problems (S8), (S9), and (S10), as well as solve the profiling task (S11). We
will achieve this by finely discretizing. We refer to Ignatiadis and Wager [2022, Supplement
D] for a more detailed discussion regarding discretization considerations and describe our
implementation choices here.

Instead of optimizing over the space of all distributions for the latent variable U , we
optimize over all distributions supported on the equidistant finite grid from amin to amax

with B points:

K(B, amin, amax) =

{
amin, amin +

amax − amin

B
, amin + 2

amax − amin

B
, . . . , amax

}
. (S12)

Our default choice uses B = 499, amin = min {Z1, . . . , Zn}, amax = max {Z1, . . . , Zn} for
Gaussian noise distributions and B = 399, amin = 10−4 and amax = 1− 10−4 for Binomial
noise (the latter choice of amin, amax for the Binomial empirical Bayes problem is used by
default in Koenker and Gu [2017]).

By enumerating the grid elements as K(B, amin, amax) = {u1, . . . , uB+1}, we may rep-
resent every distribution G supported on this set by the probabilities gj = PG [U = uj ]
assigned to uj . The gj lie on the probability simplex. Furthermore, we may represent Ǧ by
ǧj , which satisfy:

B+1∑

j=1

ǧj = ξ, ǧj ≥ 0.

Analogously, we may represent Ť, Ǎ(0) by (B + 1)-dimensional vectors and we only need
to apply the constraints in (S7c) and (S7d) for u ∈ K(B,L,U). Hence, after the afore-
mentioned discretization, all of (S8), (S9), and (S10) turn into finite-dimensional linear
programs that we optimize using the MOSEK solver [ApS, 2020].

To solve the profiling problem (S11), instead of considering all ζ ∈ [
¯
ζ, ζ̄], we only consider

ζ ∈ K(49,
¯
ζ, ζ̄). Meanwhile, for each such ζ we discretize [

¯
κ(ζ), κ̄(ζ)] as an equidistant grid

with distance between grid points of at most
¯
ζ/5. Hence we solve the discretized (S11) by

solving a finite number of linear programs.

B.2 Computation of worst-case curvature

The construction for optimizing the worst-case curvature is very similar to the construction
in Supplement B.1, i.e., after profiling we reduce the optimization problem to a sequence of
linear programming tasks. We provide a sketch here.

Our starting point is the ratio representation (25) of µ(·) = µ(w)(·) (omitting the sub-
script (w) henceforth), which we may write as:

µ(z) =
N(z)

D(z)
,

where N(·), resp. D(·) are the numerator, resp. denominator in (25). Then, assuming
N(·), D(·) are twice differentiable, we get by the chain rule that:

µ′′(z) =
N ′′(z)

D(z)
− 2

N ′(z)D′(z)

D2(z)
− N(z)D′′(z)

D2(z)
+ 2

N(z)(D′(z))2

D(z)3
.
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The absolute value of the above is the quantity we seek to maximize. The critical observation
now is that all ofD(z), D′(z), D′′(z) are linear functionals ofG. Similarly, N(z), N ′(z), N ′′(z)
are linear functionals of A, defined as the measure � G with dA(u)/dG = α(w)(u). Apply-
ing the Charnes and Cooper [1962] transformation (as we did in Supplement B.1) we may
rescale the optimization variables G and A as Ǧ, Ǎ, such that

∫
p(z | u)dǦ(u) = 1. Writing

Ň(·), Ď(·) for the corresponding numerator and denominator

Ň(·) =

∫
p(· | u)dǍ(u), Ď(·) =

∫
p(· | u)dǦ(u),

we get by the above transformation that Ď(z) = 1, and hence:

µ′′(z) = Ň ′′(z)− 2Ň ′(z)Ď′(z)− Ň(z)Ď′′(z) + 2Ň(z)(Ď′(z))2. (S13)

To conclude we use a profiling argument as in Supplement B.1. Concretely, fix κ, ζ and
consider the linear (in the optimization variables) constraints:

Ď′(z) = ζ, Ď′′(z) = κ.

Under these constraints, we have that:

µ′′(z) = Ň ′′(z)− 2ζŇ ′(z)− κŇ(z) + 2ζ2Ň(z).

This objective is linear in the optimization variables (for fixed values of ζ, κ) and so we can
maximize/minimize it with respect to the constraints by linear programming.
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