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Abstract

Ordinary least squares provides the optimal linear approximation to the true regression function.

This paper investigates the Instrumental Variables (IV) version of this problem. The resulting

parameter is called the Optimal Linear IV Approximation (OLIVA). The OLIVA is invariant to the

distribution of the instruments. This paper shows that a necessary condition for standard inference

on the OLIVA is also sufficient for the existence of an IV estimand in a linear IV model. The necessary

regularity condition holds for a binary endogenous treatment, leading also to a LATE interpretation

with positive weights in a fully heterogeneous model. The instrument in the IV estimand is unknown

and may not be identified. A Two-Step IV (TSIV) estimator based on a Tikhonov regularized

instrument is proposed, which can be implemented by standard regression routines. We establish

the asymptotic normality of the TSIV estimator assuming neither completeness nor identification

of the instrument. As an important application of our analysis, we robustify the classical Hausman

test for exogeneity against misspecification of the linear model. Monte Carlo simulations suggest a

good finite sample performance for the proposed inferences.
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1 Introduction

The Ordinary Least Squares (OLS) estimator has an appealing nonparametric interpretation—it pro-

vides the optimal linear approximation (in a mean-square error sense) to the true regression function.

That is, the OLS estimand is a meaningful and easily interpretable parameter even under misspec-

ification of the linear model. Unfortunately, except in special circumstances (such as with random

assignment), this parameter does not have a causal interpretation. Commonly used estimands based

on Instrumental Variables (IV) do have a causal interpretation (see, e.g., Imbens and Angrist (1994)),

but do not share with OLS the appealing nonparametric interpretation (see, e.g., Imbens, Angrist and

Graddy (2000)). The main goal of our paper is to fill this gap and propose an IV analog to OLS.

The parameter of interest is thus the vector of slopes in the optimal linear approximation of the

structural regression function. We call this parameter the Optimal Linear IV Approximation (OLIVA).

We investigate regular identification of the OLIVA, i.e. identification with a finite efficiency bound,

based on the results in Severini and Tripathi (2012). The main contribution of our paper is to show

that the necessary condition for regular identification of the OLIVA is also sufficient for existence of an

IV estimand in a linear IV regression. That is, we show that, under a minimal condition for standard

inference, it is possible to obtain an IV version of OLS.

The identification result is constructive and leads to a Two-Step IV (TSIV) estimation strategy.

The necessary condition for regular identification is a conditional moment restriction that is used to

estimate a suitable instrument in a first step. The second step is simply a standard linear IV estimator

with the estimated instrument from the first step. The situation is analogous to optimal IV (see, e.g.,

Robinson (1976) and Newey (1990)), but more difficult due to the possible lack of identification of the

first step and the first step problem being statistically harder than a nonparametric regression problem.

To select an instrument among potentially many candidates we use Tikhonov regularization combined

with a sieve approach to obtain a Penalized Sieve Minimum Distance (PSMD) first step estimator

(cf. Chen and Pouzo (2012)). This choice is theoretically and empirically justified. Theoretically, a

Tikhonov instrument is shown to have certain sufficiency property explained below. Empirically, the

resulting PSMD estimator can be computed with standard regression routines. The TSIV estimator

is shown to be asymptotically normal and to perform favorably in simulations when compared with

alternative estimators, being competitive with the oracle IV under linearity of the structural model,

while robustifying it otherwise.

An important application of our approach is to a Hausman test for exogeneity that is robust to

misspecification of the linear model. This robustness comes from our TSIV being nonparametrically

comparable to OLS under exogeneity. The robust Hausman test is a standard t-test in an augmented

regression that does not require any correction for standard errors for its validity, as we show below.

Lochner and Moretti (2015) consider a different exogeneity test comparing the classical IV estimator

with a weighted OLS estimator when the endogenous variable is discrete. In contrast, our test compares

the standard OLS with our IV estimator–more in the spirit of the original Hausman (1978)’s exogeneity

test–while allowing for general endogenous variables (continuous, discrete or mixed). Monte Carlo

simulations confirm the robustness of the proposed Hausman test, and the inability of the standard

2



Hausman test to control the empirical size under misspecification of the linear model.

Our paper contributes to two different strands of the literature. The first strand is the nonpara-

metric IV literature; see, e.g., Newey and Powell (2003), Ai and Chen (2003), Hall and Horowitz

(2005), Blundell, Chen and Kristensen (2007), Horowitz (2007), Horowitz (2011), Darolles, Fan, Flo-

rens and Renault (2011), Santos (2012) and Chetverikov and Wilhem (2017), among others. Severini

and Tripathi (2006, 2012) discuss identification of linear functionals of the structural function without

assuming completeness. Their results on regular identification are adapted to the OLIVA below. San-

tos (2011) establishes regular asymptotic normality for weighted integrals of the structural function

in nonparametric IV, also allowing for lack of nonparametric identification of the structural function.

The OLIVA functional was not considered in Severini and Tripathi (2006, 2012) or Santos (2011). The

IV interpretation, the implementation and asymptotic normality proof for the TSIV, and the robust

Hausman tests complement the results given in the aforementioned references.

Our paper is also related to the Causal IV literature that interprets IV nonparametrically as a

Local Average Treatment Effect (LATE); see Imbens and Angrist (1994). A forerunner of our paper is

Abadie (2003). He defines the Complier Causal Response Function and its best linear approximation

in the presence of covariates. He also develops two-step inference for the resulting linear approximation

coefficients when the endogenous variable is binary. In this binary case, we show that the necessary

condition for regular identification of the OLIVA holds under a standard relevance condition, and

furthermore, that our IV estimator has a LATE interpretation with non-negative weights. We also

present an extension of this latter result to a correlated random coefficient model without monotonicity,

where we show that the OLIVA corresponds to a positively weighted average of individual treatment

effects; see Section 2.3.

When regular identification of the OLIVA does not hold, but the OLIVA is identified, we expect

our estimator to provide a good approximation to the OLIVA. This follows because (i) under irregular

identification of the OLIVA, the first step instrument approximately solves the first step conditional

moment, and (ii) small errors in the first step equation lead to small errors in the second step limit.1

The main contributions of this paper are thus the interpretation of the regular identification of

the OLIVA as existence of an IV estimand, the asymptotic normality of a TSIV estimator, and the

robust Hausman test. The identification, estimation and exogeneity test of this paper are all robust to

the lack of the identification of the structural function (i.e. lack of completeness) and the instrument.

Furthermore, the proposed methods are also robust to misspecification of linear model, sharing the

nonparametric interpretation of OLS, but in a setting with endogenous regressors.

The rest of the paper is organized as follows. Section 2 defines formally the parameter of interest

and its regular identification. Section 3 proposes a PSMD first step and establishes the asymptotic

normality of the TSIV. Section 4 derives the asymptotic properties of the robust Hausman test for

exogeneity. The finite sample performance of the TSIV and the robust Hausman test is investigated in

Section 5. Appendix A presents notation, assumptions and some preliminary results that are needed

for the main proofs in Appendix B. Appendix C reports tables for simulations on sensitivity analysis.

1We thank Andres Santos for making this point to us.
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2 Optimal Linear Instrumental Variables Approximations

2.1 Nonparametric Interpretation

Let the dependent variable Y be related to the p−dimensional vector X through the equation

Y = g(X) + ε, (1)

where E[ε|Z] = 0 almost surely (a.s), for a q−dimensional vector of instruments Z.

The OLIVA parameter β solves, for g satisfying (1),

β = arg min
γ∈Rp

E[
(

g(X) − γ′X
)2
], (2)

where henceforth A′ denotes the transpose of A. If E[XX ′] is positive definite, then

β ≡ β(g) = E[XX ′]−1E[Xg(X)]. (3)

When X is exogenous, i.e. E[ε|X] = 0 a.s., the function g(·) is the regression function E[Y |X = ·]
and β is identified and consistently estimated by OLS under mild conditions. In many economic

applications, however, X is endogenous, i.e. E[ε|X] 6= 0, and identification and estimation of (3)

becomes a more difficult issue than in the exogenous case, albeit less difficult than identification and

estimation of the structural function g in (1).

We first investigate regular identification of β in (1)-(2). The terminology of regular identification

is proposed in Khan and Tamer (2010), and refers to identification with a finite efficiency bound.

Regular identification of a parameter is desirable because it means possibility of standard inference

(see Chamberlain (1986)). The necessary condition for regular identification of β is

E[h(Z)|X] = X a.s, (4)

for an squared integrable h(·); see Lemma 2.1 below, which builds on Severini and Tripathi (2012). We

show that condition (4) is sufficient for existence of an IV estimand identifying β. That is, we show

that (4) implies that β is identified from a linear IV regression

Y = X ′β + U, E[Uh(Z)] = 0.

The IV estimand uses the unknown, possibly not unique, transformation h(·) of Z as instruments. We

propose below a Two-Step IV (TSIV) estimator that first estimates the instruments from (4) and then

applies IV with the estimated instruments. The proposed IV estimator has the same nonparametric

interpretation as OLS, but under endogeneity.

If the nonparametric structural function g is identified, then β is of course identified. Conditions for

point identification and consistent estimation of g are given in the references above on the nonparametric

IV literature. Asymptotic normality for continuous functionals of a point-identified g has been analyzed

in Ai and Chen (2003), Ai and Chen (2007), Carrasco, Florens and Renault (2006), Carrasco, Florens

and Renault (2014), Chen and Pouzo (2015) and Breunig and Johannes (2016), among others.
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Nonparametric identification of g is, however, not necessary for identification of the OLIVA; see also

Severini and Tripathi (2006, 2012). It is indeed desirable to obtain identification of β without requiring

completeness assumptions, which are known to be impossible to test (cf. Canay, Santos and Shaikh

(2013)). In this paper we focus on regular identification of the OLIVA without assuming completeness.

Inference under irregular identification is known to be less stable, see Chamberlain (1986), and it is

beyond the scope of this paper. See Babii and Florens (2018) for recent advances in this direction, and

Escanciano and Li (2013) for partial identification results.

Section 2.2 shows the necessity of the conditional moment restriction (4) for regular identification

of the OLIVA and Section 2.3 shows that this restriction holds when X is binary, leading to a LATE

interpretation with non-negative weights in a fully heterogeneous model.

2.2 Regular Identification of the OLIVA

We observe a random vector W = (Y,X,Z) satisfying (1), or equivalently,

r(z) := E[Y |Z = z] = E[g(X)|Z = z] := T ∗g, (5)

where T ∗ denotes the adjoint operator of T (the nonparametric analog of a transpose). Let G denote the

parameter space for g. Assume g ∈ G ⊆ L2(X) and r ∈ L2(Z), where henceforth, for a generic random

variable V, L2(V ) denotes the space of (measurable) square integrable functions of V, i.e. f ∈ L2(V ) if

‖f‖2 := E
[

|f(V )|2
]

<∞, and where |A| = trace (A′A)1/2 is the Euclidean norm.2

The next result, which follows from an application of Lemma 4.1 in Severini and Tripathi (2012),

provides a necessary condition for regular identification of the OLIVA. Define g0 := argming:r=T ∗g ‖g‖ .
Correct specification of the model guarantees that g0 is uniquely defined; see Engl, Hanke and Neubauer

(1996). Define ξ = Y − g0(X), Ω(z) = E[ξ2
∣

∣Z = z], and let SZ denote the support of Z. We consider

the following assumptions.

Assumption 1: (5) holds, g ∈ G ⊆ L2(X), r ∈ L2(Z), and E[XX ′] is finite and positive definite.

Assumption 2: 0 < infz∈SZ
Ω(z) ≤ supz∈SZ

Ω(z) <∞ and T is compact.

Assumption 3: There exists h(·) ∈ L2(Z) such that (4) holds.

Lemma 2.1 Let Assumptions 1-2 hold. If β is regularly identified, then Assumption 3 must hold.

The proof of Lemma 2.1 and other results in the text are gathered in Appendix B. Given the necessity

of Assumption 3 and its importance for our results it is useful to provide some discussion on it. The

first observation is that Assumption 3 may hold when L2−completeness of X given Z fails and g is thus

not identified (see Newey and Powell (2003) for discussion of L2−completeness). If Z has discrete finite

support, then L2−completeness of X given Z implies Assumption 3, but this assumption holds even

if completeness fails when X belongs to the span of the finite set of identified conditional probabilities

2When f is vector-valued, by f(V ) ∈ L2(V ) we mean that its components are all in L2(V ).
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of Z given X. When X is binary, Assumption 3 holds under a very mild condition, as shown below.

More generally, for X discrete, (4) becomes a finite system of equations, which makes the condition

more likely to hold, provided the support of Z is large enough relative to that of X; see next section

for precise conditions. When Z and X are continuous, we expect that Assumption 3 is testable when

the distribution of X given Z is not L2−complete (see Chen and Santos (2015)). We note that when

Assumption 3 does not hold two possibilities may arise: (i) β is identified, but has infinite efficiency

bound, and (ii) β is not identified. When β is identified and Assumption 3 fails, X belongs to the

closure of the range of T (see Severini and Tripathi (2012)), and thus our IV estimand can be made

arbitrarily close to β.

The main observation of this paper is that the necessary condition for regular identification of β is

also sufficient for existence of an IV estimand. This follows because by the law of iterated expectations,

Assumption 3 and E[ε|Z] = 0 a.s.,

β = E[XX ′]−1E[Xg(X)]

= E[E[h(Z)|X]X ′]−1E[E[h(Z)|X]g(X)]

= E[h(Z)X ′]−1E[h(Z)Y ],

which is the IV estimand using h(Z) as instruments for X. The following Proposition summarizes this

finding and shows that, although there are potentially many solutions to (4), the corresponding β is

unique.

Proposition 2.2 Let Assumptions 1-3 hold. Then, β is invariant to choice of the instruments h(Z).

Remark 2.1 By (4), E[h(Z)X ′] = E[XX ′]. Thus, non-singularity of E[h(Z)X ′] follows from that of

E[XX ′]. Thus, the strength of the instruments h(Z) is measured by the level of multicollinearity in X.

2.3 Interpretation With Unobserved Heterogeneity

As an important example, consider the case where the endogenous variable X is binary, like an en-

dogenous treatment indicator. In this case Assumption 3 is satisfied under a mild condition, as we now

show. Furthermore, a unique minimum norm solution to (4) can be easily characterized (see the proof

of Proposition 2.3) in terms of propensity scores. Minimum norm solutions will also play an important

role in our implementation of the continuous case as well.

Proposition 2.3 If X is binary, and the propensity score π(Z) = E[X|Z] is not constant, with

0 < E[π(Z)] < 1, then Assumption 3 holds. Moreover, there exists a unique solution of (4) of the form

h0(Z) = α+ γπ(Z), and this h0 is the unique minimum norm solution among all solutions of (4).

The last part of Proposition 2.3 is particularly important, as it implies that Condition 3 in Imbens

and Angrist (1994) is satisfied. This condition states that (i) for all z1, z2 in the support of Z, it follows

that π(z1) ≤ π(z2) implies either h0(z1) ≤ h0(z2) or h0(z1) ≥ h0(z2); and (ii) Cov(X,h0(Z)) 6= 0.

Both conditions are satisfied by h0 in Proposition 2.3 (note Cov(X,h0(Z)) = V ar(X) > 0). Hence,
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when other standard assumptions in Imbens and Angrist (1994) are satisfied (Conditions 1 and 2),

their Theorem 2 implies that our IV estimator has a LATE interpretation as a weighted average of

local average treatment effects with nonnegative weights. Thus, even when X is binary, and hence g is

linear, there could be benefits of using our IV estimand over the standard IV estimand on the basis of

the LATE interpretation.

Proposition 2.3 can be easily extended to the general discrete case (not necessarily binary). As-

sume X takes the values on the discrete set {x1, ..., xd}, d < ∞, with respective positive probabilities

Pr (X = xj) = πj, j = 1, ..., d. Define the propensity scores πj(z) := Pr (X = xj |Z = z) . The extension

of the condition in the binary case that the propensity score is not constant is that the random vector

Π = (π1(Z), ..., πd(Z))
′ is not perfectly multicollinear, so E[ΠΠ′] is positive definite. In that case, a

minimum norm solution to (4) is given by h0 = γ′Π where γ = (E[ΠΠ′])−1 S and S = (π1x1, ..., πdxd)
′.

We now investigate the interpretation of the OLIVA in a correlated random coefficient model of the

form

Yi = biXi + ai, (6)

where bi is the individual treatment effect, Xi is a possibly continuous endogenous variable, and ai is an

individual specific intercept. This model holds for the binary case, where bi = Yi(1)−Yi(0), ai = Yi(0),

and Yi(1), Yi(0) are the potential outcomes. We then obtain the following result.

Proposition 2.4 Let (6) and Assumption 3 hold. Assume that (i) 0 < E[X2
i ] <∞, (ii) E[h(Zi)ai] = 0

and (iii) h(Z) is uncorrelated with bi, conditional on Xi. Then, β = E[w(Xi)bi], where w(Xi) =

X2
i /E[X2

i ].

The assumptions (ii)-(iii) are mild exogeneity conditions. Proposition 2.4 does not require mono-

tonicity or conditional independence restrictions between bi and the endogenous variable Xi.

3 Two-Step Instrumental Variables Estimation

Proposition 2.2 suggests a TSIV estimation method where, first, an h is estimated from (4) and then,

an IV estimator is considered using the estimated h as instrument. To describe the estimator, let

{Yi,Xi, Zi}ni=1 be an independent and identically distributed (iid) sample of size n satisfying (1). The

TSIV estimator follows the steps:

Step 1. Estimate a function h satisfying E[h(Z)|X] = X a.s., say ĥn, as defined in (11) below.

Step 2. Run linear IV using instruments ĥn(Z) for X in Y = X ′β + U, i.e.

β̂ =

(

1

n

n
∑

i=1

ĥn(Zi)X
′
i

)−1(

1

n

n
∑

i=1

ĥn(Zi)Yi

)

, (7)

where ĥn is the first-step estimator given in Step 1.

For ease of exposition, we consider first the case where X and Z have no overlapping components

(i.e. no included exogenous or controls) and are continuous. We also analyze below the case of control

variables and discrete variables.

7



3.1 First-Step Estimation

To deal with the problem of lack of uniqueness of h, we consider a Tikhonov-type estimator. This

approach is commonly used in the literature estimating g, see Hall and Horowitz (2005), Carrasco,

Florens and Renault (2006), Florens, Johannes and Van Bellegem (2011), Chen and Pouzo (2012) and

Gagliardini and Scaillet (2012), among others. Chen and Pouzo (2012) propose a PSMD estimator

of g and show the L2−consistency of a solution identified via a strict convex penalty. These authors

also obtain rates in Banach norms under point identification. Our first-step estimator ĥn is a PSMD

estimator of the form considered in Chen and Pouzo (2012) when identification is achieved with an

L2-penalty. As it turns out, the Tikhonov-type or L2-penalty estimator is well motivated in our setting,

as we explain below. It implies that our instrument satisfies a certain sufficiency property.

Defining m(X;h) := E[h(Z)−X|X], we estimate the unique h0 satisfying h0 = limλ↓0 h0(λ), where

h0(λ) = argmin{||m(·;h)||2 + λ||h||2 : h ∈ L2(Z)},

and λ > 0. Assumption 3 guarantees the existence and uniqueness of h0, see Engl, Hanke and Neubauer

(1996). The function h0 is the minimum norm solution of (4), as in Proposition 2.3. The sufficiency

property mentioned above is that for any other solution h1 to (4), it holds that in the first stage

regression

X = c0 + α0h0(Z) + α1h1(Z) + V, (8)

α1 must be zero, as shown in the next Proposition.

Proposition 3.1 Let h0 defined as above, and let h1 be a different solution of (4). Then, α1 = 0 in

(8).

Having motivated the Tikhonov-type instrument, we introduce now its PSMD estimator. Let

En[g(W )] denote the sample mean operator, i.e. En[g(W )] = n−1
∑n

i g(Wi), let ||g||n =
(

En[|g(W )|2]
)1/2

be the empirical L2 norm, and let Ê[h(Z)|X] be a series-based estimator for the conditional mean

E[h(Z)|X], which is given as follows. Consider a vector of approximating functions

pKn(x) = (p1(x), ..., pKn(x))
′,

having the property that a linear combination can approximate E[h(Z)|X = x]. Then,

Ê[h(Z)|X = x] = pKn
′
(x)(P ′P )−1

n
∑

i=1

pKn(Xi)h(Zi),

where P = [pKn(X1), ..., p
Kn(Xn)]

′ and Kn → ∞ as n→ ∞.

Let H ⊂ L2(Z) denote the parameter space for h. Then, define the estimator

ĥn := argmin{||m̂(X;h)||2n + λn||h||2n : h ∈ Hn}, (9)

where Hn ⊂ H ⊆ L2(Z) is a linear sieve parameter space whose complexity grows with sample size,

m̂(Xi;h) = Ê(h(Z) − X|Xi), and λn is a sequence of positive numbers satisfying that λn ↓ 0 as

8



n ↑ ∞, and some further conditions given in the Appendix A. In our implementation Hn is the finite

dimensional linear sieve given by

Hn =







h : h =
Jn
∑

j=1

ajqj(·)







(10)

where qJn(z) = (q1(z), ..., qJn (z))
′ is a vector containing a linear sieve basis, with Jn → ∞ as n→ ∞.

To better understand the first step estimator and how it can be computed by standard methods

consider the approximation

X = E[h(Z)|X] ≈ E[a′qJn(Z)
∣

∣X] = a′E[qJn(Z)
∣

∣X],

which suggests a two step procedure to obtain ĥn : (i) first obtain the fitted values q̂(X) = Ê[qJ(Z)
∣

∣X]

by OLS; and then (ii) run Ridge regression X on q̂(X). Indeed, if we define Dn = En[q̂(X)X ′],

Q2n = En[q
J(Z)qJ(Z)′], and

Aλn
= En[q̂(X)q̂(X)′] + λnQ2n.

Then, the closed form solution to (9) is given by

ĥn(·) = D′
nA

−1
λn
qJ(·). (11)

This estimator can be easily implemented by an OLS and a standard Ridge regression steps: (i)

standardize qJn so that Q2n becomes the identity (simply multiply the original qJn by Q
−1/2
2n ); (ii) run

OLS qJn(Z) on pKn(X) and keep fitted values q̂(X); (iii) run standard Ridge regression of X on q̂(X);

the slope coefficient in the last regression is D′
nA

−1
λn
.

An alternative minimum norm approach requires choosing two sequences of positive numbers an

and bn and solving the program

h̃n := argmin{||h||2n : h ∈ Hn, ||m̂(X;h)||2n ≤ bn/an}.

This is the approach used in Santos (2011) for his two-step setting. We prefer our implementation,

since we only need one tuning parameter rather than two, and data driven methods for choosing λn

are available; see Section 3.3.

3.2 Second-Step Estimation and Inference

The following result establishes the asymptotic normality of β̂ and the consistency of its asymptotic

variance, which is useful for inference.

Define

m(W,β, h, g) = (Y −X ′β)h(Z) − (g(X) −X ′β)(h(Z) −X)

and

m0 = m(W,β, h0, g0)

9



The second term in m0 accounts for the asymptotic impact of estimating the instrument h0. When the

minimum norm structural function g0 is linear, like with a binary treatment, this second term is zero

and there will be no impact from estimating h0 on inference.

To estimate the asymptotic variance of β̂ is useful to estimate g0, the identified part of the structural

function. We introduce a Tikhonov-type estimator that is the dual of ĥn. Let ĝn(·) denote a PSMD

estimator of g0 given by

ĝn(·) = G′
nB

−1
λn
pK(·), (12)

with Gn = En[p̂(Z)Y ], p̂(Z) = Ê[pK(X)
∣

∣Z], Ê[g(X)|Z = z] = qJn
′
(z)(Q′Q)−1

∑n
i=1 q

Jn(Zi)g(Xi),

Q = [qJn(Z1), ..., q
Jn(Zn)]

′, P2n = En[p
K(X)pK(X)′], and Bλn

= En[p̂(Z)p̂(Z)
′] + λnP2n. For ease of

presentation, we use the same notation for the tuning parameters in ĥn and ĝn, although of course we

will use different tuning parameters Kn and Jn for estimating ĥn or ĝn, see Section 3.3 for issues of

implementation.

Theorem 3.2 Let Assumptions 1-3 above and Assumptions A1-A5, A6(i-iii) in the Appendix A hold.

Then, √
n(β̂ − β) −→d N(0,Σ),

where Σ = E[h0(Z)X
′]−1E[m0m

′
0]E[Xh0(Z)

′]−1. Furthermore, a consistent estimator for Σ is given

by

Σ̂ = En[ĥn(Zi)X
′
i]
−1En[m̂nim̂

′
ni]En[Xiĥ

′
n(Zi)]

−1, (13)

where m̂ni = m(W, β̂, ĥn, ĝn).

The assumptions in Theorem 3.2 are standard in the literature of two-step semiparametric estima-

tors. Theorem 3.2 can be then used to construct confidence regions for β and testing hypotheses about

β following standard procedures. The proof of Theorem 3.2 relies on new L2−rates of convergence for

ĥn and ĝn under partial identification of h and g (note that Chen and Pouzo (2012) rates are given

under point identification and Santos (2011) obtained related rates but for a weak norm).

3.3 Implementation

For implementation one has to choose the basis {pKn(X), qJn(Z)} and the tuning parameters {Kn, Jn, λn}.
The theory for estimating h0 requires that Kn ≥ Jn (for Aλn

to be invertible). In the simulations we

use cubic splines and study rules of the form Kn = cJn for several values of c such as 2 or 3, which

seem to work well. In practice, we recommend choosing first Jn, then set Kn = 2Jn and choose λn by

Generalized Cross-validation (cf. Wahba (1990)), λn = argminλ>0GCVn(λ), as follows. Note that

β̂ =
(

D′
nA

−1
λn
Q′X

)−1
D′

nA
−1
λn
Q′Y, (14)

where X = [X1, ...,Xn]
′ and Y = [Y1, ..., Yn]

′. Similarly, define Lλ = X
(

D′
nA

−1
λ Q′X

)−1
D′

nA
−1
λ Q′,

Ŷλ = LλY = (Ŷλ1, ..., Ŷλn)
′ and vλ = tr(Lλ). Then, the Generalized Cross-validation criteria for

estimating β̂ is

GCVn(λ) =
1

n

n
∑

i=1

(

Yi − Ŷλi
1− (vλ/n)

)2

.

10



We then propose the following algorithm for implementation:

Step 1. Choose the sieve basis (e.g. B-splines). Set Jn to small value (e.g. 4), set Kn = 2Jn and

compute λn = argminλ>0GCVn(λ).

Step 2. Compute ĥn following (11) and compute β̂.

Step 3. Switch the values of Jn and Kn (so now Jn = 2Kn) and compute ĝn as in (12).

Step 4. Compute m̂ni = m(W, β̂, ĥn, ĝn) and Σ̂ = En[ĥnX
′
i]
−1En[m̂nim̂

′
ni]En[Xiĥ

′
n]

−1.

In practice, we recommend to carry out sensitivity analysis with respect to {Kn, Jn, λn} in the

implementation above. Extensive simulations in Appendix C show that our methods are not sensitive

to the tuning parameters {Kn, Jn, λn}.3

3.4 Partial Effects Interpretation, Exogenous Controls and Discrete Variables

We start by providing a partial effects interpretation for subvectors of the OLIVA parameter β that

are analogous to OLS. Define X = (X ′
1,X

′
2)

′ and partition β accordingly as β = (β′1, β
′
2)

′. Suppose we

are only interested in β2. From standard OLS theory, we obtain

β2 = E[V2V
′
2 ]

−1E[V2g(X)],

where V2 is the OLS error from the regression of X2 on X1. This result could be used to obtain an

estimator of β2 that does not compute an estimator for β1 and that reduces the dimensionality of the

problem of estimating h (from the dimension of the original X to the dimension of X2), since now we

need the weaker condition

E[h(Z)| V2] = V2 a.s.

This method might be particularly useful when the dimension of X1 is large and g has a partly linear

structure

g(X) = β′1X1 + g2(X2), (15)

since then β2 = E[V2V
′
2 ]

−1E[V2g2(X)] can be interpreted as providing a best linear approximation to

g2. In this discussion, X1 could be endogenous variables that are of secondary interest.

Suppose now that there are exogenous variables included in the structural equation g. This means

X and Z have common components. Specifically, define X = (X ′
1,X

′
2)

′ and Z = (Z ′
1, Z

′
2)

′ where

X1 = Z1 denote the overlapping components of X and Z, with dimension p1 = q1. This is a very

common situation in applications, where exogenous controls are often used. In this setting a solution

of E[h(Z)|X] = X a.s. has the form h(Z) = (Z ′
1, h

′
2(Z))

′, where

E[h2(Z)|X] = X2 a.s. (16)

3Matlab and R code to implement the TSIV estimator is available from the authors upon request.
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Following the arguments of the general case, we could obtain an estimator given by ĥn = (Z ′
1, ĥ

′
2n)

′,

where

ĥ2n(·) = D′
2nA

−1
λn
qJ(·), (17)

and D2n := En[q̂(X)X ′
2]. This setting also covers the case of an intercept with no other common

components, where X1 = Z1 = 1 and q1 = 1. The asymptotic normality for β̂ continues to hold, with

no changes in the asymptotic distribution.

If the dimension of X and/or Z is high and the sample size is moderate, the method above may

not perform well due to the curse of dimensionality. We then recommend substituting (16) by

E[h2(Z2)|X2] = X2 a.s.

so that nonparametric estimation only involves functions pKn(X2) and qJn(Z2) for estimating h2.

To reduce the dimensionality in estimating g0 necessary for estimation of the asymptotic variance,

we implement the previous estimator for g but with bases {X1, p
Kn(X2)} and

{

qJn(Z2)
}

, which is

consistent with the specification in (15). This is the approach we recommend when there are many

controls.

Simplifications also occur when some variables are discrete. When the endogenous variable X

is discrete we do not need Kn → ∞, and we can choose pK as a saturated basis. For example, if

X = (1,X2) with X2 binary (a treatment indicator), we can take Kn = 2, p1(x) = 1, p2(x) = x2,

h0(z) = α + γπ(z), where the propensity score π(z) (and then α, γ) can be estimated by sieves, and

g0(x) = β0 + β1x2 ≡ β′x. Note that here we do not need to choose λ for estimating h. More generally,

if the support of X is {x1, ..., xd} then we can set Kn = d, and pj(x) = 1(x = xj). To compute the

minimum norm solution h0, we use Theorem 2, pg. 65, in Luenberger (1997) to conclude that h0 = γ′Π

as in Section 2, provided the matrix E[ΠΠ′] is invertible. If this matrix is not invertible we can apply

the Tikhonov-type estimator proposed above.

Similarly, when Z is discrete we do not need Jn diverging to infinity. As before, we can choose a

linear sieve Hn that is saturated and qJ(Z) could be a saturated basis for it. For example, if Z takes

J discrete values, {z1, ..., zJ}, we can take qj(z) = 1(z = zj).

In summary, all the different cases (with or without controls, nonparametric or semiparametric

structural functions, discrete or continuous variables) can be implemented in a similar fashion but under

different definitions of the approximation bases {pKn(X), qJn(Z)}. In all these cases, the formulas for

the asymptotic variance of β̂ are the same.

4 A Robust Hausman Test

Applied researchers are concerned about the presence of endogeneity, and they have traditionally

used tools such as the Hausman (1978)’s exogeneity test for its measurement. This test, however,

is uninformative under misspecification; see Lochner and Moretti (2015). The reason for this lack

of robustness is that in these cases OLS and IV estimate different objects under exogeneity, with

the estimand of standard IV depending on the instrument itself. As an important by-product of our
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analysis, we robustify the classic Hausman test of exogeneity against nonparametric misspecification

of the linear regression model.

The classical Hausman test of exogeneity (cf. Hausman (1978)) compares OLS with IV. If we use

the TSIV as the IV estimator, we obtain a robust version of the classical Hausman test, robust to the

misspecification of the linear model. For implementation purposes it is convenient to use a regression-

based test (see Wooldridge (2015), pg. 481). We illustrate the idea in the case of one potentially

endogenous variable X2 and several exogenous variables X1, with X1 including an intercept.

In the model

Y = β′1X1 + β2X2 + U, E[Uh(Z)] = 0, h(Z) = (X ′
1, h2(Z))

′,

the variable X2 is exogenous if Cov(X2, U) = 0. If we write the first-stage as

X2 = α′
1X1 + α2h2(Z) + V,

then exogeneity of X2 is equivalent to Cov(V,U) = 0. This in turn is equivalent to ρ = 0 in the least

squares regression

U = ρV + ξ.

A simple way to run a test for ρ = 0 is to consider the augmented regression

Y = β′X + ρV + ξ,

estimated by OLS and use a standard t− test for ρ = 0.

Since V is unobservable, we first need to obtain residuals from a regression of the endogenous

variable X2 on X1 and ĥ2n(Z), say V̂ . Then, run the regression of Y on X and V̂ . The new Hausman

test is a standard two-sided t-test for the coefficient of V̂ , or its Wald version in the multivariate

endogenous case. Denote the t-test statistic by tn. The benefit of this regression approach is that under

some regularity conditions given in Appendix A no correction is necessary in the OLS standard errors

because V̂ is estimated. Denote S = (X,V )′.

Assumption 4: The matrix E[SS′] is finite and non-singular.

Theorem 4.1 Let Assumptions 1-4 above and Assumptions A1-A6 in the Appendix A hold. Then,

under the the null of exogeneity of X2,

tn −→d N(0, 1).

The proof of Theorem 4.1 is involved and requires stronger conditions than that of Theorem 3.2.

In particular, for obtaining the result that standard OLS theory applies under the null hypothesis we

have used a conditional exogeneity assumption between U and Z, E[U |Z] = 0 a.s. Simulations below

show that, at least for the models considered, this assumption leads to a robust Hausman test that is

able to control the empirical size.

13



5 Monte Carlo

This section studies the finite sample performance of the proposed methods. Consider the following

Data Generating Process (DGP):











Y =
∑p

j=1Hj(X) + ε,

Z = s(D),

ε = ρεV + ζ,

(

X

D

)

∼ N

((

0

0

)

,

(

1 γ

γ 1

))

,

where Hj(x) is the j − th Hermite polynomial, with the first four given by H0(x) = 1, H1(x) = x,

H2(x) = x2 − 1 and H3(x) = x3 − 3x; V = X −E[X|Z], ζ is a standard normal, drawn independently

of X and D, and s is a monotone function given below. The DGP is indexed by p and the function s.

To generate V note

E[X|Z] = E[E[X|D]|Z] = γE[D|Z] = γs−1(Z),

where s−1 is the inverse of s. Thus, by construction Z is exogenous, E[ε|Z] = 0, while X is endogenous

because E[ε|X] = ρX, with ρ = ρε(1− γ2), ρε > 0 and −1 < γ < 1.

The structural function g is given by

g(x) =

p
∑

j=1

Hj(X),

and is therefore linear for p = 1, but nonlinear for p > 1. It follows from the orthogonality of Hermite

polynomials that the true value for OLIVA is β = 1.

Note also that the OLIVA is regularly identified, because h(Z) = s−1(Z)/γ solves

E[h(Z)|X] = X.

We consider three different DGPs, corresponding to different values of p and functional forms for s:

DGP1: p = 1 and s(D) = D (linear; s−1(Z) = Z);

DGP2: p = 2 and s(D) = D3 (nonlinear; s−1(Z) = Z1/3);

DGP3: p = 3 and s(D) = exp(D)/(1 + exp(D)) (nonlinear; s−1(Z) = log(Z)− log(1− Z));

Several values for the parameters (γ, ρ) will be considered: γ ∈ {0.4, 0.8} and ρ ∈ {0, 0.3, 0.9}. We

will compare the TSIV with OLS and standard IV (using instrument Z). For DGP1, h(Z) = γ−1Z

and hence the standard IV estimator with instrument Z is a consistent estimator for the OLIVA. The

standard IV then can be seen as an oracle (infeasible version of our TSIV) under DGP1, where h is

known rather than estimated. This allows us to see the effect of estimating h0 on inferences. For DGP2

and DGP3, IV is expected not to be consistent for the OLIVA. The number of Monte Carlo replications

is 5000. The sample sizes considered are n = 100, 500 and 1000.

Tables 1-3 report the Bias and MSE for OLS, IV and the TSIV for DGP1-DGP3, respectively.

Our estimator is implemented with B-splines, following the GCV described in (3.3) with Jn = 6 and
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Table 1: Bias and MSE for DGP 1.

ρ γ n BIAS OLS BIAS IV BIAS TSIV MSE OLS MSE IV MSE TSIV

0.0 0.4 100 -0.0021 -0.0019 0.0010 0.0109 0.0829 0.0554

500 0.0017 0.0025 0.0020 0.0021 0.0127 0.0105

1000 -0.0001 0.0018 0.0020 0.0010 0.0067 0.0054

0.8 100 -0.0030 -0.0040 -0.0040 0.0102 0.0163 0.0159

500 0.0001 -0.0004 -0.0004 0.0019 0.0030 0.0030

1000 0.0019 0.0025 0.0026 0.0010 0.0016 0.0016

0.3 0.4 100 0.2950 -0.0101 0.0841 0.0968 0.0908 0.0729

500 0.2993 0.0026 0.0347 0.0915 0.0145 0.0168

1000 0.3006 -0.0003 0.0189 0.0914 0.0071 0.0080

0.8 100 0.2956 -0.0107 0.0061 0.0987 0.0207 0.0216

500 0.2991 0.0009 0.0038 0.0918 0.0039 0.0039

1000 0.2987 -0.0023 -0.0012 0.0904 0.0019 0.0019

0.9 0.4 100 0.8993 -0.0827 0.1753 0.8213 0.1990 0.1569

500 0.9028 -0.0145 0.0421 0.8173 0.0295 0.0296

1000 0.8998 -0.0066 0.0231 0.8108 0.0130 0.0140

0.8 100 0.8965 -0.0186 0.0287 0.8270 0.0573 0.0571

500 0.8980 -0.0036 0.0030 0.8114 0.0108 0.0109

1000 0.8993 0.0031 0.0058 0.8111 0.0049 0.0050

Kn = 2Jn. Remarkably, for DGP1 in Table 1 our TSIV implemented with GCV performs comparably

or even better than IV (which does not estimate h and uses the true h). Thus, our estimator seems

to have an oracle property, performing as well as the method that uses the correct specification of the

model. As expected, OLS is best under exogeneity, but it leads to large biases under endogeneity. For

the nonlinear models DGP2 and DGP3, IV deteriorates because the linear model is misspecified. Our

TSIV performs well, with a MSE that converges to zero as n increases. The level of endogeneity does

not seem to have a strong impact on the performance of the TSIV estimator.

We have done extensive sensitivity analysis on the performance of the TSIV estimator. Tables 7-9

in Appendix C report the sensitivity of the estimator to different choices of tuning parameters, Jn, Kn

and λ. In each cell, the top element is for n = 100 and the bottom element is for n = 1000. From these

results, we see that the TSIV estimator is not sensitive to the choice of these parameters, within the

wide ranges for which we have experimented. This is consistent with the regular identification, which

means that the estimator should be robust to local perturbations of the tuning parameters. Likewise,

unreported simulations with other DGPs confirm the overall good performance of the proposed TSIV

under different scenarios.

Table 4 provides the results for coverage of confidence intervals based on the asymptotic normality

of the TSIV using the GCV-computed λn, along with that using 0.7λn and 0.9λn. The coverage is very

stable for the three choices of λ considered. The performance in DGP1 and DGP2 is fairly good, while

in DGP3 it noticeably improves when the sample size increases.

We now turn to the Hausman test. Practitioners often use the Hausman test to empirically evaluate

the presence of endogeneity. As mentioned above, the standard Hausman test is not robust to misspefi-
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Table 2: Bias and MSE for DGP 2.

ρ γ n BIAS OLS BIAS IV BIAS TSIV MSE OLS MSE IV MSE TSIV

0.0 0.4 100 0.0131 -0.0030 -0.0037 0.1009 0.6321 0.2226

500 0.0083 0.0216 0.0126 0.0213 0.1319 0.0479

1000 0.0021 0.0005 0.0034 0.0115 0.0764 0.0228

0.8 100 -0.0012 0.0001 -0.0001 0.0990 0.4559 0.1286

500 0.0015 0.0056 0.0032 0.0211 0.1261 0.0275

1000 0.0019 0.0084 0.0030 0.0113 0.0689 0.0154

0.3 0.4 100 0.2932 -0.0472 0.0605 0.1859 0.6167 0.2342

500 0.2874 -0.0325 0.0302 0.1023 0.1417 0.0594

1000 0.3008 -0.0135 0.0402 0.1013 0.0778 0.0331

0.8 100 0.3064 0.0083 0.0318 0.1987 0.4554 0.1400

500 0.3020 0.0078 0.0208 0.1114 0.1226 0.0289

1000 0.3046 0.0076 0.0248 0.1040 0.0647 0.0168

0.9 0.4 100 0.9053 -0.1359 0.2155 0.9270 1.0165 0.3615

500 0.8968 -0.0093 0.0794 0.8260 0.1619 0.0914

1000 0.8974 -0.0122 0.0493 0.8159 0.0817 0.0449

0.8 100 0.9095 -0.0117 0.0491 0.9425 0.5482 0.1921

500 0.8969 -0.0013 0.0226 0.8290 0.1405 0.0435

1000 0.8981 -0.0021 0.0271 0.8185 0.0753 0.0220

Table 3: Bias and MSE for DGP 3.

ρ γ n BIAS OLS BIAS IV BIAS TSIV MSE OLS MSE IV MSE TSIV

0.0 0.4 100 -0.0570 -1.5268 -0.0717 0.5023 381.7332 0.6817

500 -0.0021 -0.5039 -0.0346 0.1000 155.9296 0.1326

1000 -0.0014 -0.0365 -0.0378 0.0550 0.6179 0.0681

0.8 100 -0.0418 -0.4112 -0.1106 0.4795 2.6703 0.4935

500 -0.0096 -0.2270 -0.0411 0.1072 0.4192 0.1084

1000 -0.0113 -0.2150 -0.0330 0.0527 0.2452 0.0543

0.3 0.4 100 0.2899 -5.4825 0.0227 0.6475 28179.2626 0.8182

500 0.2882 -0.1335 0.0060 0.1878 1.5707 0.1571

1000 0.2887 -0.0822 0.0199 0.1351 0.6518 0.0926

0.8 100 0.2693 -0.3815 -0.0857 0.5906 11.1463 0.5498

500 0.3062 -0.1985 -0.0249 0.2061 0.4885 0.1221

1000 0.2951 -0.2166 -0.0246 0.1395 0.2512 0.0570

0.9 0.4 100 0.8470 1.4445 0.1675 1.1993 1772.3946 0.8970

500 0.8888 -0.3336 0.0449 0.9098 4.8599 0.2103

1000 0.8914 -0.1313 0.0158 0.8473 0.8558 0.0982

0.8 100 0.8341 -0.5724 -0.0917 1.1833 4.3735 0.6045

500 0.8749 -0.2933 -0.0566 0.8668 0.6084 0.1301

1000 0.8863 -0.2466 -0.0401 0.8380 0.2861 0.0681
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Table 4: 95% coverage for TSIV.

DGP1 DGP2 DGP3

ρ γ n 0.7cv 0.9cv 1.0cv 0.7cv 0.9cv 1.0cv 0.7cv 0.9cv 1.0cv

0.0 0.4 100 0.973 0.976 0.976 0.950 0.954 0.955 0.899 0.901 0.903

500 0.976 0.978 0.977 0.950 0.951 0.951 0.929 0.931 0.932

1000 0.971 0.973 0.973 0.954 0.957 0.956 0.931 0.931 0.930

0.8 100 0.964 0.965 0.966 0.929 0.929 0.931 0.837 0.837 0.838

500 0.957 0.957 0.957 0.941 0.942 0.944 0.902 0.905 0.905

1000 0.950 0.951 0.951 0.932 0.938 0.941 0.926 0.927 0.927

0.3 0.4 100 0.976 0.982 0.982 0.950 0.948 0.949 0.919 0.921 0.922

500 0.957 0.957 0.959 0.949 0.952 0.950 0.931 0.933 0.932

1000 0.964 0.965 0.965 0.938 0.939 0.938 0.936 0.936 0.934

0.8 100 0.945 0.945 0.946 0.917 0.920 0.920 0.858 0.861 0.862

500 0.944 0.941 0.941 0.946 0.946 0.946 0.917 0.920 0.921

1000 0.961 0.960 0.960 0.940 0.941 0.941 0.917 0.923 0.923

0.9 0.4 100 0.903 0.901 0.902 0.938 0.943 0.943 0.955 0.957 0.956

500 0.947 0.949 0.948 0.936 0.940 0.941 0.951 0.949 0.949

1000 0.943 0.942 0.942 0.925 0.929 0.932 0.950 0.951 0.951

0.8 100 0.931 0.930 0.930 0.920 0.921 0.921 0.899 0.898 0.898

500 0.938 0.937 0.935 0.949 0.949 0.949 0.918 0.920 0.921

1000 0.951 0.951 0.951 0.954 0.954 0.954 0.930 0.935 0.935

Table 5: Empirical Size of standard Hausman Test.

γ n DGP1 DGP2 DGP3

0.4 100 0.070 0.109 0.046

500 0.046 0.064 0.053

1000 0.064 0.072 0.059

0.8 100 0.067 0.223 0.094

500 0.065 0.134 0.524

1000 0.060 0.105 0.872

cation of the linear model, because in that case OLS and IV estimate different parameters (Lochner

and Moretti (2015)). We confirm this by simulating data from DGP1-DGP3 and reporting rejection

frequencies for the standard Hausman test for γ ∈ {0.4, 0.8} under the null hypothesis of ρ = 0. Table

5 contains the results. For DGP1, the rejection frequencies are close to the nominal level of 5% across

the different sample sizes, confirming the validity of the test under correct specification. However, for

DGP2 and DGP3 we observe large size distortions, as large as 82.2%. This shows that the standard

Hausman test is unreliable under misspecification of the linear model.

Table 5 reports rejection probabilities for the proposed robust Hausman test. In contrast to previous

results based on the standard IV, we observe that the empirical size is now controlled, with a type-I

error that is smaller for nonlinear models than for the linear model. The results for nonlinear models

do not contradict Theorem 4.1, because the conditional exogeneity assumption E[U |Z] = 0 a.s. does

not hold for these DGPs. Nevertheless, we see that the standard OLS theory delivers a robust test that

is able to control the size. Relaxing E[U |Z] = 0 a.s. is likely to require a correction of the standard

17



Table 6: Empirical Size and Power of robust Hausman Test.

ρ γ n DGP1 DGP2 DGP3

0.0 0.4 100 0.055 0.037 0.013

500 0.035 0.018 0.008

1000 0.038 0.007 0.016

0.8 100 0.059 0.015 0.013

500 0.050 0.004 0.003

1000 0.052 0.003 0.002

0.3 0.4 100 0.176 0.062 0.041

500 0.649 0.153 0.107

1000 0.915 0.290 0.222

0.8 100 0.929 0.324 0.519

500 1.000 0.710 0.993

1000 1.000 0.793 1.000

0.9 0.4 100 0.785 0.336 0.249

500 0.999 0.877 0.825

1000 0.999 0.974 0.985

0.8 100 0.993 0.923 0.991

500 1.000 0.934 1.000

1000 1.000 0.919 1.000

errors, and hence complicating the application of the Robust Hausman test. Given the simulations

results, we do not pursue this extension in this paper. We also report rejection probabilities under

the alternative. We observe an empirical power that increases with the sample size and the level

endogeneity, suggesting consistency against these alternatives for the proposed Hausman test.

Overall, these simulations confirm the robustness of the proposed methods to misspecification of

the linear IV model and their adaptive behaviour when correct specification holds. Furthermore, the

TSIV estimator seems to be not too sensitive to the choice of tuning parameters. Finally, the proposed

Hausman test is indeed robust to the misspecification of the linear model, which makes it a reliable

tool for economic applications. These finite sample robustness results confirm the claims made for the

TSIV estimator as a nonparametric analog to OLS under endogeneity.

6 Appendix A: Notation, Assumptions and Preliminary Results

6.1 Notation

Define the kernel subspace N ≡ {f ∈ L2(X) : T ∗f = 0} of the operator T ∗f(z) := E[f(X)|Z = z].

Let Ts(x) := E[s(Z)|X = x] denote the adjoint operator of T ∗ and let R(T ) := {f ∈ L2(X) :

∃s ∈ L2(Z), T s = f} its range. For a subspace V, V ⊥, V and PV denote, respectively, its orthogonal

complement, its closure and its orthogonal projection operator. Let ⊗ denote Kronecker product and

let Ip denote the identity matrix of order p.

Define the Sobolev norm ‖·‖∞,η as follows. Define for any vector a of p integers the differential

operator ∂ax := ∂|a|1/∂xa11 . . . ∂x
ap
p , where |a|1 :=

∑p
i=1 ai. Let X denote a finite union of convex,

18



bounded subsets of Rp, with non-empty interior. For any smooth function h : X ⊂ R
p → R and some

η > 0, let η be the largest integer smaller than η, and

‖h‖∞,η := max
|a|

1
≤η

sup
x∈X

|∂axh(x)|+ max
|a|

1
=η

sup
x 6=x′

|∂axh(x) − ∂axh(x
′)|

|x− x′|η−η .

Let H denote the parameter space for h, and define the identified set H0 = {h ∈ H : m(X,h) = 0 a.s.}.
The operator Th(x) := E[h(Z)|X = x] is estimated by

T̂ h(x) := Ê[h(Z)|X = x] =
n
∑

i=1

(

pKn
′
(x)(P ′P )−1pKn(Xi)⊗ h(Zi)

)

.

The operator T̂ is considered as an operator from Hn to Gn ⊆ L2(X), where Gn is the linear span

of {pKn(·)}. Let En[g(W )] denote the sample mean operator, i.e. En,W [g(W )] = n−1
∑n

i g(Wi), let

||g||2n,W = En[|g(W )|2], and let 〈f, g〉n,W = n−1
∑n

i=1 f(Wi)g(Wi) be the empirical L2 inner product.

We drop the dependence on W for simplicity of notation. Denote by T̂ ∗ the adjoint operator of T̂ with

respect to the empirical inner product. Simple algebra shows for p = 1,

〈

T̂ h, g
〉

n
= n−1

n
∑

i=1

h(Zi)p
Kn

′
(Xi)(P

′P )−1
n
∑

j=1

pKn(Xj)g(Xj)

=
〈

h, T̂ ∗g
〉

n
,

so T̂ ∗g = PHnÊ[g(X)|X = ·] = PHn T̂ g. A similar expression holds for p > 1.

With this operator notation, the first-step has the expression (where I denotes the identity operator)

ĥn =
(

T̂ ∗T̂ + λnI
)−1

T̂ ∗X̂, (18)

where X̂ = Ê[X|X = ·]. Similarly, define the Tikhonov approximation of h0

hλn
= (T ∗T + λnI)

−1 T ∗X. (19)

With some abuse of notation, denote the operator norm by

‖T‖ = sup
h∈H,‖h‖≤1

‖Th‖ .

Let G ⊆ L2(X) denote the parameter space for g. An envelop for G is a function G such that |g(x)| ≤
G(x) for all g ∈ G. Given two functions l, u, a bracket [l, u] is the set of functions f ∈ G such that

l ≤ f ≤ u. An ε-bracket with respect to ‖·‖ is a bracket [l, u] with ‖l − u‖ ≤ ε, ‖l‖ <∞ and ‖u‖ <∞
(note that u and l not need to be in G). The covering number with bracketing N[·](ε,G, ‖·‖) is the

minimal number of ε-brackets with respect to ‖·‖ needed to cover G. Define the bracketing entropy

J[·](δ,G, ‖·‖) =
∫ δ

0

√

logN[·](ε,G, ‖·‖)dε

Similarly, we define J[·](δ,H, ‖·‖). Finally, throughout C denotes a positive constant that may change

from expression to expression.
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Let W = (Y,X,Z) be a random vector defined on a probability space (Ω,B,P). For a measurable

function f we denote Pf :=
∫

fdP,

Pnf :=
1

n

n
∑

i=1

f (Wi) and Gnf :=
√
n (Pnf − Pf) .

6.2 Assumptions

The following assumptions are standard in the literature of sieve estimation; see, e.g., Newey (1997),

Chen (2007), Santos (2011), and Chen and Pouzo (2012).

Assumption A1: (i) {Yi,Xi, Zi}ni=1 is an iid sample, satisfying (1) with E[ε|Z] = 0 a.s and E[Y 2] <

∞; (ii) X has a compact support with E[|X|2] < ∞; (iii) Z has a compact support; (iv) the densities

of X and Z are bounded and bounded away from zero.

Assumption A2: (i) The eigenvalues of E[pKn(X)pKn(X)′] are bounded above and away from zero;

(ii) max1≤k≤Kn
‖pk‖ ≤ C and ξ2n,pKn = o(n), for ξn,p = supx

∣

∣pKn(x)
∣

∣ ; (iii) there is πn,p(h) such

that suph∈H
∥

∥E[h(Z)|X = ·]− π′n,p(h)p
Kn(·)

∥

∥ = O(K−αT
n ); (iv) there is a finite constant C, such that

suph∈H,‖h‖≤1 |h(Z)− E[h(Z)|X]| ≤ ρn,p(Z,X) with E[ |ρn,p(Z,X)|2
∣

∣

∣
X] ≤ C.

Assumption A3: (i) The eigenvalues of E[qJn(Z)qJn(Z)′] are bounded above and away from zero;

(ii) there is a sequence of closed subsets satisfying Hj ⊆ Hj+1 ⊆ H, H is closed, bounded and convex,

h0 ∈ H0, and there is a Πn(h0) ∈ Hn such that ‖Πn(h0)− h0‖ = o(1); (iii) suph∈Hn

∣

∣

∣
‖h‖2n − ‖h‖2

∣

∣

∣
=

oP (1); (iv) λn ↓ 0 and max{‖Πn(h0)− h0‖2 , c2n,T } = o(λn), where cn,T =
√

Kn/n +K−αT
n ; (v) Aλn

is

non-singular.

Assumption A4: (i) h0 ∈ R((T ∗T )αh/2) and g0 ∈ R((TT ∗)αg/2), αh, αg > 0; (ii) max1≤j≤Jn ‖qj‖ ≤ C

and ξ2n,jJn = o(n), for ξn,j = supz
∣

∣qJn(z)
∣

∣ ; (iii) supg∈G
∥

∥E[g(X)|Z = ·]− π′n,q(g)q
Jn(·)

∥

∥ = O(J
−αT∗
n ) for

some πn,q(g); (iv) supg∈G,‖g‖≤1 |g(X) − E[g(X)|Z]| ≤ ρn,q(Z,X) with E[ |ρn,q(Z,X)|2
∣

∣

∣
Z] ≤ C; (v)

λ−1
n cn = o(1), where cn = cn,T + cn,T ∗ and cn,T ∗ =

√

Jn/n+ J
−αT∗
n ; (vi) Bλn

is non-singular.

Assumption A5: (i) E[U2
∣

∣Z] < C a.s.; (ii) N[·](δ,G, ‖·‖) <∞ and J[·](δ,H, ‖·‖) <∞ for some δ > 0,

and G and H have squared integrable envelopes.

Assumption A6: (i) λ−1
n cn = o(n−1/4); (ii)

√
nλ

min(αh,2)
n = o(1) and

√
ncnλ

min(αh−1,1)
n = o(1); (iii)

h0 ∈ R(T ∗), E
[

|X − h0(Z)|4
∣

∣

∣
X
]

is bounded and V ar[h0(Z)|X] is bounded and bounded away from

zero; and (iv) E[U |Z] = 0 a.s.

For regression splines ξ2n,p = O(Kn), and hence A2(ii) requires K2
n/n→ 0, see Newey (1997). Assump-

tions A2(iii-iv) are satisfied if suph∈H ‖Th‖∞,ηh
<∞ with αT = ηh/q. Assumption A3(iii) holds under

mild conditions if for example suph∈H ‖h‖ < C. Assumption A4(i) is a regularity condition that is well
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discussed in the literature, see e.g. Florens, Johannes and Van Bellegem (2011). A sufficient condition

for Assumption A5(ii) is that for some ηh > q/2 and ηg > p/2 we have suph∈H ‖h‖∞,ηh
< ∞ and

supg∈G ‖g‖∞,ηg
<∞; see Theorems 2.7.11 and 2.7.1 in van der Vaart and Wellner (1996). Assumptions

A6 is standard.

6.3 Preliminary Results

In all the preliminary results Assumptions 1-3 in the text are assumed to hold.

Lemma A1: Let Assumptions A1-A3 hold. Then,
∥

∥

∥
ĥn − h0

∥

∥

∥
= oP (1).

Proof of Lemma A1: We proceed to verify the conditions of Theorem A.1 in Chen and Pouzo

(2012). Recall H0 = {h ∈ H : m(X,h) = 0 a.s.}. By Assumption A3, H0 is non-empty. The penalty

function P (h) = ||h||2 is strictly convex and continuous and ||m(·;h)||2 is convex and continuous. Their

Assumption 3.1(i) trivially holds sinceW = Ip. Their Assumption 3.1(iii) is A3(i-ii). Their Assumption

3.1(iv) follows from A3(ii) since

||m(·; Πn(h0))||2 ≤ ‖Πn(h0)− h0‖2 = o(1).

To verify their Assumption 3.2(c) we need to check

sup
h∈Hn

∣

∣

∣
‖h‖2n − ‖h‖2

∣

∣

∣
= oP (1) (20)

and
∣

∣

∣
‖Πn(h0)‖2 − ‖h0‖2

∣

∣

∣
= o(1).

The last equality follows because
∣

∣

∣
‖Πn(h0)‖2 − ‖h0‖2

∣

∣

∣
≤ C ‖Πn(h0)− h0‖ = o(1). Condition (20) is

our Assumption A3(iii). Assumption 3.3 in Chen and Pouzo (2012) follows from their Lemma C.2 and

our Assumption A2. Assumption 3.4 in Chen and Pouzo (2012) is satisfied for the L2 norm. Finally,

Assumption A3(iv) completes the conditions of Theorem A.1 in Chen and Pouzo (2012), and hence

implies that
∥

∥

∥
ĥn − h0

∥

∥

∥
= oP (1). �

Lemma A2: Let Assumptions A1-A4 hold. Then,
∥

∥

∥
ĥn − h0

∥

∥

∥
= OP (λ

min(αh,2)
n +λ−1

n cn) and ‖ĝn − g0‖ =

oP (λ
min(αg ,2)
n + λ−1

n cn).

Proof of Lemma A2: For simplicity of exposition we consider the case p = q = 1. The proof for

p > 1 or q > 1 follows the same steps. By the triangle inequality, with hλn
defined in (19),

∥

∥

∥
ĥn − h0

∥

∥

∥
≤
∥

∥

∥
ĥn − hλn

∥

∥

∥
+ ‖hλn

− h0‖ .

Under h0 ∈ R((T ∗T )αh/2), Lemma A1(1) in Florens, Johannes and Van Bellegem (2011) yields

‖hλn
− h0‖ = O(λmin(αh,2)

n ). (21)

With some abuse of notation, denote Âλn
=
(

T̂ ∗T̂ + λnI
)−1

. Then, arguing as in Proposition 3.14 of

Carrasco, Florens and Renault (2006), it is shown that

ĥn − hλn
= Âλn

T̂ ∗(X̂ − T̂ h0) + Âλn
(T̂ ∗T̂ − T ∗T )(hλn

− h0), (22)
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and thus,
∥

∥

∥
ĥn − hλn

∥

∥

∥
≤
∥

∥

∥
Âλn

∥

∥

∥

∥

∥

∥
T̂ ∗(X̂ − T̂ h0)

∥

∥

∥
+
∥

∥

∥
Âλn

∥

∥

∥

∥

∥

∥
T̂ ∗T̂ − T ∗T

∥

∥

∥
‖hλn

− h0‖ . (23)

As in Carrasco, Florens and Renault (2006),
∥

∥

∥
Âλn

∥

∥

∥
= OP (λ

−1
n ).

Since T̂ ∗ is a bounded operator
∥

∥

∥
T̂ ∗(X̂ − T̂ h0)

∥

∥

∥
= OP

(
∥

∥

∥
(X̂ − T̂ h0)

∥

∥

∥

)

= OP (cn,T ) ,

where recall cn,T = Kn/n + K−2αT
n , and where the second equality follows from an application of

Theorem 1 in Newey (1997) with y = x−h0(z) there. Note that Assumption 3 and Assumption A2(iv)

imply that V ar[y|X] is bounded (which is required in Assumption 1 in Newey (1997)). Also note

that the supremum bound in Assumption 3 in Newey (1997) can be replaced by our L2−bound in

Assumption A2(iii) when the goal is to obtain L2−rates.

On the other hand,
∥

∥

∥
T̂ ∗T̂ − T ∗T

∥

∥

∥
≤ OP

(
∥

∥

∥
T̂ ∗ − T ∗

∥

∥

∥

)

+OP

(
∥

∥

∥
T̂ − T

∥

∥

∥

)

(24)

and
∥

∥

∥
T̂ ∗ − T ∗

∥

∥

∥
≤ ‖PHn‖

∥

∥

∥
T̂ − T

∥

∥

∥
+ ‖PHn − T ∗‖

= OP

(
∥

∥

∥
T̂ − T

∥

∥

∥

)

+OP (cn,T ∗). (25)

We now proceed to establish rates for
∥

∥

∥
T̂ − T

∥

∥

∥
. As in Newey (1997), we can assume without loss of

generality that E[qJn(Z)qJn(Z)′] is the identity matrix. Then, by the triangle inequality,
∥

∥

∥
T̂ − T

∥

∥

∥
= sup

h∈H,‖h‖≤1

∥

∥

∥
T̂ h− Th

∥

∥

∥

≤ sup
h∈H,‖h‖≤1

∥

∥

∥
T̂ h− πn,p(h)p

Kn(·)
∥

∥

∥
+ sup

h∈H,‖h‖≤1

∥

∥E[h(Z)|X = ·]− πn,p(h)p
Kn(·)

∥

∥

≤ sup
h∈H,‖h‖≤1

‖π̂n,p(h) − πn,p(h)‖ +O(K−αT
n ),

where

π̂n,p(h) = (P ′P )−1
n
∑

i=1

pKn(Xi)h(Zi).

Write

π̂n,p(h) − πn,p(h) = Q−1
2nP

′εh/n+Q−1
2nP

′(Gh − Pπn,p(h))/n,

where εh = H − Gh, H = (h(Z1), ..., h(Zn))
′, and Gh = (Th(X1), ..., Th(Xn))

′. Similarly to the proof

of Theorem 1 in Newey (1997), it is shown that

sup
h∈H,‖h‖≤1

∥

∥Q−1
2nP

′εh/n
∥

∥

2
= OP (Kn/n),
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where we use Assumption A2(iv) to show that

sup
h∈H,‖h‖≤1

E[εhε
′
h

∣

∣X] ≤ CIn.

That is,

sup
h∈H,‖h‖≤1

E

[

∣

∣

∣
Q

−1/2
2n P ′εh/n

∣

∣

∣

2
∣

∣

∣

∣

X

]

= sup
h∈H,‖h‖≤1

E
[

εhP (P
′P )−1P ′εh

∣

∣X
]

/n

= sup
h∈H,‖h‖≤1

E
[

tr{P (P ′P )−1P ′εhε
′
h}
∣

∣X
]

/n

= sup
h∈H,‖h‖≤1

tr{P (P ′P )−1P ′E[εhε
′
h

∣

∣X]}/n

≤ Ctr{P (P ′P )−1P ′}/n
≤ CK/n

Similarly, by A2(iii)

sup
h∈H,‖h‖≤1

∥

∥Q−1
2nP

′(Gh − Pπn,p(h))/n
∥

∥ = OP (K
−αT
n ).

Then, conclude
∥

∥

∥
T̂ − T

∥

∥

∥
= OP (cn,T ),

∥

∥

∥
T̂ ∗T̂ − T ∗T

∥

∥

∥
= OP (cn), where cn = cn,T + cn,T ∗ , and by (23),

(24) and (25)
∥

∥

∥
ĥn − hλn

∥

∥

∥
= OP

(

λ−1
n cn

)

.

The proof for ĝn is the same and hence omitted. �

Define the classes

F = {f(y, x, z) = h(z)(y − x′β0) : h ∈ H}.
and

G = {g(y, x, z) = h(z)x : h ∈ H}.
Lemma A3:

(i) Assume 0 < E[|X|2] < C. Then, N[·](ǫ,G, ‖·‖1) ≤ N[·](ǫ/ ‖X‖2 ,H, ‖·‖2).

(ii) Assume V ar[Y −X ′β0|Z] is bounded. Then, J[·](δ,F , ‖·‖) < ∞ if J[·](δ,H, ‖·‖) < ∞ for some

δ > 0.

(iii) N[·](ǫ,H·G, ‖·‖1) ≤ N[·](Cǫ,H, ‖·‖2)×N[·](Cǫ,G, ‖·‖2).

Proof of Lemma A3: (i) Let [lj(Z)X,uj(Z)X] be an ǫ/E[|x|2] bracket for H. Then, by Cauchy-

Schwartz inequality

‖lj(Z)X − uj(Z)X‖1 ≤ ‖lj(Z)− uj(Z)‖ ‖X‖
≤ ǫ.

This shows (i). The proof of (ii) is analogous, and follows from

‖lj(Z)U − uj(Z)U‖ ≤ C ‖lj(Z)− uj(Z)‖ ≤ Cǫ,

where C is such that V ar[Y −X ′β0|Z] < C a.s. The proof of (iii) is standard and hence omitted. �
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7 Appendix B: Proofs of Main Results

Proof of Lemma 2.1: The n1/2-estimability of the OLIVA implies the n1/2-estimability of the vector-

valued functional

E[Xg(X)],

which in turn implies that of the functional

E[Xjg(X)],

for each component Xj of X (i.e. X = (X1, ...,Xp)
′). By Lemma 4.1 in Severini and Tripathi (2012),

the latter implies existence of hj ∈ L2(Z) such that

E[hj(Z)|X] = Xj a.s.

This implies Assumption 3 with h(Z) = (h1(Z), ..., hp(Z))
′. �

Proof of Proposition 2.2: We shall show that for any h(Z) ∈ L2(Z) such that

E[h(Z)|X] = X a.s.

the parameter β = E[h(Z)X ′]−1E[h(Z)Y ] is uniquely defined. First, it is straightforward to show that

for any such h, E[h(Z)X ′]−1 = E[XX ′]−1. Second, we can substitute Y = g0(X) + PN g(X) + ε, and

note that for all h, E[h(Z)PN g(X)] = 0, so that

E[h(Z)Y ] = E[h(Z)g0(X)]

= E[Xg0(X)],

for all h satisfying E[h(Z)|X] = X a.s. �

Proof of Proposition 2.3: We shall show that under the conditions of the proposition there exists a

h(Z) ∈ L2(Z) such that

E[h(Z)|X] = X a.s.

Denote π̄ = E[π(Z)]. For a binary X, and since 0 < π̄ < 1, the last display is equivalent to the system

E[Xh(Z)] = π̄ and E[(1 −X)h(Z)] = 0,

or

E[h(Z)] = π̄ and E[π(Z)h(Z)] = π̄.

Each equation from the last display defines a hyperplane in h. Since π(Z) is not constant, the normal

vectors 1 and π(Z) are linearly independent (not proportional). Hence, the two hyperplanes have an

non-empty intersection, showing that there is at least one h satisfying E[h(Z)|X] = X a.s.
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Moreover, by Theorem 2, pg. 65, in Luenberger (1997) the minimum norm solution is the linear

combination of 1 and π(Z) that satisfies the linear constraints, that is, h0(Z) = α + γπ(Z) such that

α and γ satisfy the 2× 2 system
{

α+ γπ̄ = π̄

απ̄ + γE[π2(Z)] = π̄.

Note that this system has a unique solution, since the determinant of the coefficient matrix is V ar(π(Z)) >

0. Then, the unique solution is given by

[

α

γ

]

=

[

1 π̄

π̄ E[π2(Z)]

]−1 [

π̄

π̄

]

=





π̄
(

1− π̄(1−π̄)
var(π(Z))

)

π̄(1−π̄)
var(π(Z))



 .

�

Proof of Proposition 2.4: Using E[h(Z)a] = 0, the conditional uncorrelation and (4), we can write

β = E[h(Z)X]−1E[h(Z)Y ]

= E[h(Z)X]−1E[h(Z)Xb] + E[h(Z)X]−1E[h(Z)a]

= E[E[h(Z)|X]X]−1E[E[h(Z)|X]XE[b|X]]

= E[X2]−1E[X2E[b|X]]

= E[w(X)b].

�

Proof of Proposition 3.1: Assume without loss of generality that X is scalar and note that, by

Engl, Hanke and Neubauer (1996), h1(Z) = h0(Z) + h⊥(Z), with Cov(h0(Z), h⊥(Z)) = 0. Thus, since

E[h0(Z)|X] = X and E[h1(Z)|X] = X, then E[h⊥(Z)|X] = 0 a.s., and hence

0 = Cov(X,h⊥(Z)) = α1V ar(h⊥(Z)),

and hence, if h1 6= h0 (i.e. V ar(h⊥(Z)) > 0) then α1 = 0. �

Proof of Theorem 3.2: Write

β̂ =
(

En

[

ĥn(Zi)X
′
i

])−1 (

En

[

ĥn(Zi)Yi

])

= β0 +
(

En

[

ĥn(Zi)X
′
i

])−1 (

En

[

ĥn(Zi)Ui

])

.

Note that

En

[

ĥn(Zi)X
′
i

]

= En

[

h0(Zi)X
′
i

]

+ oP (1)

= E
[

h0(Zi)X
′
i

]

+ oP (1), (26)
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where the first equality follows from Lemma A3(i), Lemma A1, Assumption A5 and ĥn ∈ H by an

application of a Glivenko-Cantelli´s argument, and the second equality follows from the Law of Large

Numbers.

Likewise, Lemma A3(ii), Lemma A1, Assumption A5(ii) and ĥn ∈ H, yields for f̂ = ĥn(Zi)Ui and

f0 = h0(Zi)Ui,

Gnf̂ = Gnf0 + oP (1),

since the class F is a Donsker class, see Theorem 2.5.6 in van der Vaart and Wellner (1996). Then,

√
n
(

β̂ − β0

)

=
(

E
[

h0(Zi)X
′
i

]

+ oP (1)
)−1

(√
nEn [h0(Zi)Ui] +

√
nP
[{

ĥn(Zi)− h0(Zi)
}

Ui

])

. (27)

We investigate the second term, which with the notation 〈h1, h2〉 = E[h1(Z)h2(Z)] can be written as

√
nP
[{

ĥn(Zi)− h0(Zi)
}

Ui

]

=
√
n
〈

ĥn − h0, u
〉

where u(z) = E[U |Z = z] is in L2(Z) by A5(i).

From the proof of Lemma A2, and in particular (21) and (22), and Assumption A6(ii),

√
n
〈

ĥn − h0, u
〉

=
√
n
〈

ĥn − hλn
, u
〉

+
√
n 〈hλn

− h0, u〉

=
√
n
〈

Âλn
T̂ ∗(X̂ − T̂ h0), u

〉

+OP

(√
ncnλ

min(αh−1,1)
n

)

+O
(√

nλmin(αh,2)
n

)

=
√
n
〈

Âλn
T̂ ∗(X̂ − T̂ h0), u

〉

+ oP (1) .

Next, we write

√
n
〈

Âλn
T̂ ∗(X̂ − T̂ h0), u

〉

=
√
n
〈

Aλn
T ∗(X̂ − T̂ h0), u

〉

+
√
n
〈(

Âλn
−Aλn

)

T ∗(X̂ − T̂ h0), u
〉

+
√
n
〈

Aλn

(

T̂ ∗ − T ∗
)

(T̂X − T̂ h0), u
〉

+
√
n
〈(

Âλn
−Aλn

)(

T̂ ∗ − T ∗
)

(X̂ − T̂ h0), u
〉

≡ C1n + C2n + C3n + C4n.

From the simple equality B−1−C−1 = B−1(C−B)C−1 we obtain Âλn
−Aλn

= Âλn

(

T ∗T − T̂ ∗T̂
)

Aλn
,

and from this and Lemma A2,

|C4n| = OP (
√
nλ−2

n c3n) = oP (1), by A6(i);

|C3n| = OP (
√
nλ−1

n c2n) = oP (1), by A6(i);

|C2n| = OP (
√
nλ−2

n c2n) = oP (1), by A6(i).

To analyze the term C1n we use Theorem 3 in Newey (1997) after writing

C1n =
√
n
〈

T̂ ϕ, vn

〉

,

where ϕ = X − h0 and vn = TAλn
T ∗U.
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Assumption A6(iii) implies Assumptions 1 and 4 in Newey (1997). Assumption A2 implies Assump-

tions 2 and 3 in Newey (1997) (with d = 0 there). Note that by Lemma A1(A.4) in Florens, Johannes

and Van Bellegem (2011)

‖vn‖ ≤ ‖TAλn
T ∗‖ ‖U‖ ≤ ‖U‖ <∞.

Hence, Assumption 7 in Newey (1997) holds with g0 = Tϕ there. Hence, Theorem 4 in Newey (1997)

applies to C1n to conclude from its proof that

C1n = − 1√
n

n
∑

i

vn(Xi)(h0(Zi)−Xi) + oP (1). (28)

Note that

T ∗U = E[Y − β′0X
∣

∣Z] = E[g0(X)− β′0X
∣

∣Z],

and furthermore, g0(X)− β′0X is in R((TT ∗)αg/2), αg > 0. Then,

1√
n

n
∑

i

vn(Xi)(h0(Zi)−Xi) =
1√
n

n
∑

i

(

g0(Xi)− β′0Xi

)

(h0(Zi)−Xi) + oP (1), (29)

since by Lemma A1 in Florens, Johannes and Van Bellegem (2011),

V ar

(

1√
n

n
∑

i

[

vn(Xi)−
(

g0(Xi)− β′0Xi

)]

(h0(Zi)−Xi)

)

≤ C
∥

∥vn(Xi)−
(

g0(Xi)− β′0Xi

)∥

∥

≤ Cλ
αg/2
n .

Thus, from (27), (28) and (29)

√
n
(

β̂ − β0

)

=
(

E
[

h0(Zi)X
′
i

])−1 √
nEn [m(Wi, β0, h0, g0)] + oP (1).

The asymptotic normality then follows from the standard Central Limit Theorem.

We now show the consistency of Σ̂ = En[ĥn(Zi)X
′
i]
−1En[m̂nim̂

′
ni]En[ĥn(Zi)X

′
i]
−1.Write, withm0i =

m(Wi, β, h0, g0),

En[m̂nim̂
′
ni]−En[m0im

′
0i] = En[m0i(m̂

′
ni−m′

0i)]+En[(m̂ni−m0i)m
′
0i]+En[(m̂ni−m0i)(m̂ni−m0i)

′] (30)

and

m̂ni −m0i = (Y − g0(Xi))
(

ĥn(Zi)− h0(Zi)
)

− (ĝn(Xi)− g0(Xi))
(

ĥn(Zi)−Xi

)

.

By Cauchy-Schwartz inequality and Assumption 2

∣

∣

∣

∣

En

[

m0i (Y − g0(Xi))
(

ĥn(Zi)− h0(Zi)
)′
]
∣

∣

∣

∣

2

≤ CEn

[

∣

∣

∣
ĥn(Zi)− h0(Zi)

∣

∣

∣

2
]

.

The class of functions

{|h(z)− h0|2 : h ∈ H}
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is Glivenko-Cantelli under the conditions on H, and thus En

[

∣

∣

∣
ĥn(Zi)− h0(Zi)

∣

∣

∣

2
]

= oP (1) by Lemma

A1. Likewise,

∣

∣

∣

∣

En

[

m′
0i (ĝn(Xi)− g0(Xi))

(

ĥn(Zi)−Xi

)′
]
∣

∣

∣

∣

2

≤ CEn

[

|ĝn(Xi)− g0(Xi)|2
]

= oP (1),

by Assumption A5(ii) and Lemma A1. Other terms in (30) are analyzed similarly, to conclude that

they are oP (1). Together with (26), this implies the consistency of Σ̂. �

Proof of Theorem 4.1: We first show that the OLS first-stage estimator α̂ = (α̂′
1, α̂2)

′ of α0 =

(α′
1, α2)

′ in the regression

X2 = α′
1X1 + α2ĥ2n(Z) + e,

satisfies
√
n(α̂ − α0) = OP (1). Note e = V − α2(ĥ2n(Z) − h20(Z)), and denote ĥn(Z) = (X ′

1, ĥ2n(Z))
′

and h0(Z) = (X ′
1, h20(Z))

′. Then,

√
n(α̂− α0) =

(

En

[

ĥ′nĥ
′
n

])−1 √
nEn

[

ĥne
]

.

Lemma A2 and a Glivenko-Cantelli´s argument imply En

[

ĥnĥ
′
n

]

= En [h0(Z)h
′
0(Z)]+ oP (1) = OP (1).

By
∥

∥

∥
ĥ2n − h20

∥

∥

∥
= oP (n

−1/4), it holds

√
nEn

[

ĥn(Z)e
]

=
√
nEn

[

ĥn(Z)V
]

− α2

√
nEn

[

ĥn(Z)(ĥ2n(Z)− h20(Z))
]

=
√
nEn [h0(Z)V ]− α2

√
nEn

[

h0(Z)(ĥ2n(Z)− h20(Z))
]

+
√
nEn

[

(ĥn(Z)− h0(Z))V
]

+ oP (1)

≡ A1 − α2A2 +A3 + oP (1).

The standard central limit theorem implies A1 = OP (1).

An empirical processes argument shows

A2 =
√
nE
[

h0(Z)(ĥ2n(Z)− h20(Z))
]

+ oP (1).

By A6(ii),

√
nE
[

h0(Z)(ĥ2n(Z)− h20(Z))
]

=
√
nE
[

h0(Z)(ĥ2n(Z)− hλn
(Z))

]

+
√
nE [h0(Z)(hλn

(Z)− h20(Z))]

=
√
nE
[

h0(Z)(ĥ2n(Z)− hλn
(Z))

]

+ oP (1).

While (22) and A6(ii) yield

A2 =
√
nE
[

h0(Z)Âλn
T̂ ∗(X̂ − T̂ h0)(Z)

]

+ oP (1)

=
√
nE
[

h0(Z)Aλn
T ∗(X̂ − T̂ h0)(Z)

]

+ oP (1)

≡ √
nE
[

v(Z)(X̂ − T̂ h0)(Z)
]

+ oP (1),
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where v(Z) = TAλn
h0(Z). By h0 ∈ R(T ∗), h0 = T ∗ψ for some ψ with ‖ψ‖ < ∞, then by Lemma

A1(A.4) in Florens, Johannes and Van Bellegem (2011)

‖v‖ ≤ ‖TAλn
T ∗‖ ‖ψ‖

≤ ‖ψ‖ <∞.

Then, by Theorem 3 in Newey (1997), A2 = OP (1). A similar argument as for A2 shows A3 = OP (1),

because E[V |Z] ∈ R(T ∗). Thus, combining the previous bounds we obtain
√
n(α̂− α0) = OP (1).

We proceed now with second step estimator. Denote Ŝ = (X, V̂ )′ and θ = (β′, ρ)′. Let θ̂ denote the

OLS of Y on Ŝ. Since, since under the null ρ = 0, then

θ̂ =
(

En

[

ŜŜ′
])−1

En

[

ŜY
]

= θ +
(

En

[

ŜŜ′
])−1

En

[

ŜU
]

= θ +
(

E
[

SS′
])−1

En [SU ] +
(

E
[

SS′
])−1

En

[

(Ŝ − S)U
]

+ oP (n
−1/2)

= θ +
(

E
[

SS′
])−1

En [SU ] + oP (n
−1/2),

where the last equality follows because

√
nEn

[

(V̂ − V )U
]

=
√
n(α̂− α0)

′En [h0(Z)U ] + α̂2

√
nEn

[

U(ĥ2n(Z)− h20(Z))
]

= OP (1) × oP (1) +OP (1)× oP (1),

with the term
√
nEn

[

U(ĥ2n(Z)− h20(Z))
]

being oP (1) because by A6(iv)

√
nEn

[

U(ĥ2n(Z)− h20(Z))
]

=
√
nP
[

U(ĥ2n(Z)− h20(Z))
]

+ oP (1)

= oP (1).

Thus, the standard asymptotic normality for the OLS estimator applies. �

8 Appendix C: Tables for Simulations
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λ

Kn = 2Jn Kn = 3Jn

Jn ρ γ 0 0.001 0.01 0.1 0.2 0.3 0.6 0 0.001 0.01 0.1 0.2 0.3 0.6

4 0 0.4 10.58 9.84 8.37 7.05 6.38 6.62 6.54 8.93 8.67 7.65 6.98 6.42 6.61 6.59

0.77 0.77 0.66 0.65 0.64 0.64 0.65 0.71 0.76 0.67 0.65 0.64 0.64 0.65

0.8 1.89 1.62 1.60 1.67 1.56 1.65 1.60 1.87 1.62 1.60 1.67 1.55 1.65 1.60

0.16 0.16 0.16 0.15 0.16 0.16 0.17 0.16 0.16 0.16 0.15 0.16 0.16 0.17

0.3 0.4 11.25 10.95 9.82 7.35 7.32 8.24 6.65 8.85 8.73 8.67 7.45 7.22 8.30 6.63

0.80 0.82 0.72 0.69 0.68 0.69 0.73 0.73 0.80 0.71 0.69 0.68 0.69 0.73

0.8 2.07 2.17 2.09 2.01 2.00 1.88 2.03 2.05 2.14 2.10 2.02 2.00 1.89 2.03

0.18 0.20 0.21 0.20 0.20 0.20 0.20 0.18 0.20 0.21 0.20 0.20 0.20 0.20

0.9 0.4 17.70 19.46 15.45 13.49 12.37 12.04 12.33 15.17 16.57 14.92 13.47 12.57 12.04 12.37

1.67 1.47 1.33 1.21 1.14 1.24 1.31 1.59 1.39 1.34 1.21 1.14 1.24 1.31

0.8 5.84 5.72 5.34 5.35 5.52 5.18 5.13 5.53 5.62 5.35 5.39 5.52 5.18 5.13

0.51 0.54 0.57 0.50 0.54 0.50 0.49 0.51 0.54 0.57 0.50 0.54 0.50 0.49

5 0 0.4 9.94 9.82 8.47 6.72 6.26 6.18 6.39 7.97 8.21 7.75 6.71 6.29 6.19 6.41

0.86 0.84 0.66 0.65 0.63 0.64 0.64 0.76 0.80 0.67 0.65 0.63 0.64 0.64

0.8 1.91 1.67 1.63 1.70 1.55 1.64 1.59 1.86 1.65 1.65 1.70 1.54 1.64 1.59

0.16 0.16 0.16 0.15 0.15 0.16 0.17 0.16 0.16 0.16 0.15 0.16 0.16 0.17

0.3 0.4 11.94 10.82 10.17 7.22 6.86 7.39 6.58 9.16 8.55 8.90 7.24 6.79 7.42 6.60

0.89 0.87 0.71 0.69 0.69 0.68 0.73 0.78 0.83 0.72 0.69 0.69 0.68 0.73

0.8 2.10 2.19 2.14 2.03 2.01 1.86 2.02 2.05 2.13 2.12 2.02 2.00 1.86 2.02

0.19 0.20 0.21 0.20 0.20 0.20 0.20 0.18 0.20 0.21 0.20 0.20 0.20 0.20

0.9 0.4 18.46 18.10 15.73 12.94 11.57 12.10 12.01 15.23 16.08 14.60 12.83 11.51 12.13 12.04

1.77 1.55 1.35 1.21 1.13 1.24 1.30 1.59 1.47 1.35 1.22 1.13 1.23 1.30

0.8 5.85 5.79 5.44 5.34 5.48 5.17 5.14 5.57 5.65 5.39 5.29 5.49 5.18 5.14

0.53 0.55 0.57 0.50 0.54 0.50 0.49 0.52 0.55 0.57 0.50 0.54 0.50 0.49

6 0 0.4 9.69 10.05 8.21 6.27 6.20 5.67 6.02 7.84 7.94 7.26 6.32 6.22 5.65 6.04

0.92 0.85 0.67 0.64 0.63 0.63 0.64 0.80 0.80 0.68 0.65 0.63 0.63 0.64

0.8 1.96 1.78 1.70 1.69 1.55 1.62 1.58 1.91 1.66 1.63 1.68 1.54 1.62 1.58

0.16 0.16 0.16 0.15 0.15 0.16 0.17 0.16 0.16 0.16 0.15 0.15 0.16 0.17

0.3 0.4 11.08 10.10 9.65 7.02 6.80 7.22 6.51 8.80 8.23 8.77 7.14 6.91 7.19 6.50

1.04 0.91 0.73 0.69 0.69 0.68 0.73 0.82 0.87 0.73 0.69 0.69 0.68 0.73

0.8 2.23 2.22 2.19 2.03 2.01 1.85 2.02 2.04 2.11 2.17 2.02 2.00 1.84 2.01

0.19 0.20 0.21 0.20 0.19 0.20 0.20 0.19 0.20 0.21 0.20 0.20 0.20 0.20

0.9 0.4 19.37 18.72 15.26 12.61 11.74 12.03 12.69 14.26 14.86 13.95 12.51 11.56 11.93 12.61

1.92 1.58 1.34 1.19 1.13 1.23 1.29 1.60 1.46 1.34 1.20 1.13 1.23 1.29

0.8 5.92 5.90 5.55 5.29 5.45 5.10 5.13 5.55 5.70 5.48 5.28 5.47 5.07 5.13

0.53 0.56 0.57 0.51 0.54 0.50 0.49 0.52 0.55 0.57 0.51 0.54 0.50 0.49

7 0 0.4 10.71 8.60 7.32 5.86 5.88 5.43 5.56 7.95 7.71 6.88 5.93 5.92 5.46 5.61

0.95 0.85 0.68 0.65 0.63 0.63 0.63 0.82 0.80 0.69 0.65 0.63 0.63 0.63

0.8 2.07 1.74 1.68 1.69 1.54 1.63 1.58 1.92 1.66 1.64 1.68 1.54 1.62 1.58

0.16 0.16 0.16 0.15 0.15 0.16 0.17 0.16 0.16 0.16 0.15 0.15 0.16 0.17

0.3 0.4 11.22 9.43 9.12 6.88 6.72 7.02 6.25 8.70 7.85 8.21 6.87 6.74 6.95 6.21

1.03 0.96 0.74 0.68 0.68 0.68 0.72 0.83 0.87 0.75 0.68 0.68 0.68 0.72

0.8 2.37 2.24 2.27 2.04 1.99 1.84 2.02 2.11 2.13 2.19 2.02 2.00 1.84 2.00

0.19 0.20 0.21 0.20 0.19 0.20 0.20 0.19 0.20 0.21 0.20 0.20 0.20 0.20

0.9 0.4 19.78 18.28 15.58 13.06 12.13 12.53 13.02 14.80 15.07 14.24 12.95 12.12 12.52 13.07

1.98 1.66 1.31 1.21 1.12 1.23 1.31 1.62 1.51 1.34 1.21 1.12 1.23 1.30

0.8 6.04 6.07 5.48 5.21 5.42 5.09 5.13 5.71 5.76 5.31 5.23 5.46 5.10 5.14

0.53 0.56 0.57 0.51 0.54 0.50 0.49 0.53 0.56 0.57 0.50 0.54 0.50 0.49

Table 7: Sensitivity analysis of MSE(×10−2) for DGP1.
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λ

Kn = 2Jn Kn = 3Jn

Jn ρ γ 0 0.001 0.01 0.1 0.2 0.3 0.6 0 0.001 0.01 0.1 0.2 0.3 0.6

4 0 0.4 36.49 34.99 31.23 32.82 36.11 36.04 38.73 33.99 34.41 32.02 33.59 35.61 35.98 38.43

3.49 3.13 3.32 4.86 5.26 5.30 6.15 3.66 3.38 3.55 4.86 5.22 5.24 6.11

0.8 13.80 15.88 15.68 17.08 16.79 17.37 17.46 14.79 17.27 16.49 18.05 17.41 17.91 17.74

2.25 2.22 2.45 2.58 2.68 2.95 2.87 2.42 2.37 2.63 2.78 2.81 3.06 2.93

0.3 0.4 41.70 34.96 34.40 36.76 37.38 38.83 37.93 39.48 31.79 34.65 37.43 37.12 38.59 37.64

3.64 3.36 3.14 4.72 5.43 5.42 6.02 3.88 3.58 3.30 4.69 5.35 5.36 5.93

0.8 15.21 16.66 15.59 17.44 17.60 18.77 20.40 16.19 17.29 16.70 18.43 18.17 19.27 20.63

2.50 2.41 2.33 2.57 2.68 2.93 3.16 2.62 2.58 2.50 2.77 2.83 3.06 3.22

0.9 0.4 51.43 56.95 41.81 43.76 41.78 48.76 48.29 43.82 49.86 42.62 44.71 42.08 48.78 48.02

4.30 4.56 4.44 5.28 6.07 6.09 6.29 4.05 4.62 4.67 5.26 6.05 6.02 6.23

0.8 23.87 22.37 20.47 20.34 19.39 21.47 24.11 23.58 22.94 20.95 21.22 19.69 22.05 24.62

3.28 2.91 2.74 3.09 3.56 3.28 3.48 3.21 2.96 2.90 3.27 3.71 3.40 3.54

5 0 0.4 32.80 36.47 29.03 31.08 32.71 32.21 34.81 30.60 32.29 29.12 31.74 32.92 32.35 34.69

3.46 3.10 3.08 4.46 4.72 5.27 5.52 3.46 3.22 3.26 4.46 4.67 5.16 5.46

0.8 12.60 14.56 13.88 15.41 15.28 15.86 15.66 13.05 15.26 14.59 16.41 15.77 16.34 15.91

1.62 1.54 1.70 1.74 1.90 2.04 2.26 1.75 1.62 1.84 1.83 1.97 2.07 2.29

0.3 0.4 46.68 32.80 32.50 32.72 32.27 36.03 35.73 43.05 32.18 33.01 33.73 32.99 35.84 35.78

3.77 3.19 2.94 4.31 4.76 5.24 5.77 3.49 3.42 3.14 4.28 4.70 5.19 5.69

0.8 13.90 15.09 14.25 16.12 15.98 16.98 18.18 14.54 15.85 14.93 16.86 16.60 17.28 18.46

1.84 1.83 1.69 1.79 1.93 2.19 2.19 1.81 1.90 1.78 1.90 1.99 2.23 2.22

0.9 0.4 49.09 54.26 38.87 38.62 38.08 44.49 42.72 41.66 42.61 38.63 39.38 38.44 45.13 42.81

4.62 4.37 4.09 4.82 5.33 5.57 6.04 4.04 4.33 4.29 4.80 5.24 5.48 5.97

0.8 21.56 20.61 18.54 18.11 18.29 20.63 22.32 21.22 20.74 18.80 18.96 18.62 21.05 22.91

2.54 2.37 2.26 2.30 2.56 2.57 2.64 2.42 2.29 2.32 2.38 2.65 2.65 2.67

6 0 0.4 53.93 29.47 27.59 28.54 29.66 30.13 32.74 33.06 27.94 29.22 29.64 30.07 30.51 33.01

3.34 2.99 2.92 4.19 4.52 4.77 5.21 3.01 3.24 3.17 4.14 4.47 4.69 5.12

0.8 12.60 14.28 13.17 15.08 14.98 15.34 14.86 12.88 14.92 13.97 15.90 15.39 15.81 15.12

1.71 1.48 1.62 1.74 1.86 2.06 2.10 1.62 1.55 1.74 1.82 1.89 2.11 2.12

0.3 0.4 40.03 29.34 29.99 30.17 29.78 33.68 33.86 35.84 27.83 31.29 31.79 30.68 33.82 34.03

3.62 3.14 2.67 4.05 4.60 4.70 5.21 3.47 3.11 2.83 4.00 4.57 4.67 5.14

0.8 13.62 14.06 13.98 15.77 15.40 16.48 17.31 14.11 14.52 14.67 16.34 15.92 16.83 17.53

1.83 1.64 1.54 1.78 1.85 2.10 2.27 1.73 1.71 1.64 1.85 1.89 2.13 2.30

0.9 0.4 60.72 46.57 35.46 36.41 35.46 40.62 41.88 42.88 38.53 35.39 37.34 36.13 41.08 42.29

4.39 4.33 3.84 4.62 5.21 5.24 5.61 3.87 4.20 4.05 4.64 5.14 5.19 5.53

0.8 20.90 20.27 17.87 17.85 17.71 19.02 21.84 20.17 20.08 18.06 18.60 18.12 19.42 22.26

2.41 2.22 1.94 2.19 2.59 2.45 2.50 2.27 2.12 1.98 2.24 2.64 2.49 2.54

7 0 0.4 117.41 29.85 26.96 27.86 28.58 28.32 31.52 33.51 28.19 27.72 29.50 29.26 28.74 31.74

3.25 3.05 2.79 4.05 4.24 4.62 5.09 3.38 3.09 3.05 4.05 4.22 4.56 5.01

0.8 12.54 14.01 12.92 14.70 14.49 14.82 14.59 12.75 14.55 13.54 15.36 14.91 15.23 14.85

1.46 1.36 1.54 1.58 1.74 1.87 1.95 1.44 1.37 1.63 1.63 1.77 1.91 1.97

0.3 0.4 43.41 29.13 30.90 29.18 29.03 32.56 33.17 31.83 28.27 31.45 30.96 29.74 33.54 33.57

3.43 2.90 2.67 3.90 4.14 4.46 5.16 3.35 3.02 2.84 3.84 4.08 4.42 5.10

0.8 14.24 14.29 13.88 15.25 15.23 15.98 16.62 14.43 14.31 14.37 15.98 15.67 16.34 16.84

1.59 1.54 1.44 1.59 1.76 1.98 1.94 1.57 1.55 1.51 1.65 1.79 2.01 1.97

0.9 0.4 77.30 44.87 34.52 34.60 34.92 38.92 40.54 53.12 37.77 34.27 35.77 35.30 39.87 40.83

4.78 4.18 3.84 4.28 4.85 5.06 5.35 3.95 4.21 3.96 4.30 4.83 5.01 5.30

0.8 20.53 19.65 16.80 17.38 16.84 18.61 21.06 19.57 19.96 17.00 18.32 17.28 18.87 21.40

2.29 2.12 2.00 2.00 2.27 2.29 2.43 2.09 2.07 2.03 2.03 2.30 2.33 2.45

Table 8: Sensitivity analysis of MSE(×10−2) for DGP2.

31



λ

Kn = 2Jn Kn = 3Jn

Jn ρ γ 0 0.001 0.01 0.1 0.2 0.3 0.6 0 0.001 0.01 0.1 0.2 0.3 0.6

4 0 0.4 89.50 79.24 86.87 85.35 89.05 93.34 107.17 90.67 82.94 89.85 87.03 89.82 94.38 107.13

7.64 7.80 7.65 9.97 9.82 9.73 11.02 7.96 8.21 7.92 9.91 9.81 9.68 11.00

0.8 53.60 47.34 51.40 48.01 53.19 54.75 49.33 53.39 47.18 50.88 48.33 52.86 54.43 49.25

5.00 4.96 4.73 5.25 5.27 5.64 5.80 5.04 5.04 4.80 5.27 5.30 5.64 5.82

0.3 0.4 82.01 81.80 77.76 87.58 89.50 106.04 90.46 82.71 83.17 81.33 89.08 89.96 105.42 90.14

7.68 8.17 8.88 9.52 11.00 10.64 10.21 7.89 8.46 9.06 9.47 10.94 10.56 10.19

0.8 55.98 51.81 52.21 52.12 56.89 55.73 49.28 55.34 51.92 52.10 52.34 56.79 55.43 48.96

5.80 5.85 5.38 5.47 6.11 6.14 6.09 5.85 5.92 5.46 5.52 6.13 6.18 6.09

0.9 0.4 97.77 96.58 101.87 102.88 106.35 122.48 126.38 102.13 98.56 104.74 104.85 107.05 122.36 124.53

9.99 8.99 9.52 10.55 11.78 12.66 12.69 9.93 9.09 9.76 10.53 11.72 12.61 12.65

0.8 64.62 62.55 66.26 61.41 63.56 63.49 60.79 63.63 62.49 65.04 60.96 63.21 62.92 60.36

6.17 6.03 6.79 7.14 7.44 7.18 7.60 6.24 6.08 6.88 7.16 7.46 7.18 7.61

5 0 0.4 88.84 79.45 87.03 80.84 84.82 94.25 105.07 91.18 83.15 91.48 83.97 86.96 96.56 105.12

7.58 7.96 7.72 10.00 9.97 9.85 11.45 8.16 8.20 7.94 9.91 9.94 9.79 11.41

0.8 53.51 47.52 51.81 48.51 53.95 55.35 50.87 53.70 46.67 52.31 48.97 53.81 54.85 50.42

5.07 5.03 4.79 5.32 5.36 5.76 5.91 5.12 5.13 4.86 5.39 5.37 5.76 5.91

0.3 0.4 81.37 74.98 75.92 81.46 87.46 103.16 92.33 85.74 79.16 79.95 85.07 88.91 104.55 92.32

7.46 7.77 8.69 9.43 11.13 10.78 10.40 7.99 8.13 8.98 9.37 11.06 10.71 10.36

0.8 55.68 51.65 52.02 51.98 57.78 56.88 50.81 55.93 51.62 51.85 52.42 57.58 56.71 50.72

5.86 5.95 5.44 5.58 6.24 6.21 6.26 5.91 6.03 5.53 5.62 6.25 6.24 6.26

0.9 0.4 96.89 94.77 96.32 99.18 104.32 119.06 123.94 96.91 95.00 97.44 102.57 105.87 119.05 123.89

9.59 8.78 9.24 10.47 11.90 12.90 12.97 9.66 9.28 9.60 10.43 11.85 12.83 12.91

0.8 63.97 62.13 65.43 61.15 63.98 63.78 61.76 63.33 62.07 64.64 60.71 64.02 63.28 61.24

6.29 6.15 6.86 7.28 7.57 7.31 7.75 6.36 6.21 6.99 7.29 7.58 7.31 7.77

6 0 0.4 86.06 77.41 71.12 79.02 81.58 90.28 102.63 86.40 80.97 81.00 81.98 84.73 92.78 103.54

7.69 7.76 7.75 9.91 9.97 9.84 11.74 7.98 8.18 7.97 9.84 9.89 9.76 11.67

0.8 53.87 46.98 51.86 48.59 54.17 55.23 51.42 54.67 46.77 52.37 49.05 54.67 54.88 51.14

5.09 5.10 4.86 5.41 5.44 5.88 6.05 5.14 5.19 4.91 5.48 5.48 5.88 6.05

0.3 0.4 76.92 74.25 75.31 80.21 86.00 99.48 87.68 83.40 79.15 80.89 83.99 88.55 103.19 87.78

7.67 7.90 8.48 9.37 11.09 10.83 10.60 8.24 8.22 8.83 9.27 10.97 10.77 10.53

0.8 55.46 51.27 51.85 51.97 57.86 57.62 51.55 56.03 50.96 51.81 52.06 58.13 57.56 51.55

5.90 6.05 5.51 5.68 6.34 6.33 6.41 5.95 6.09 5.62 5.72 6.33 6.35 6.39

0.9 0.4 95.32 94.26 92.09 98.61 99.25 115.32 122.08 95.61 92.97 95.75 100.82 100.28 115.61 123.20

9.42 8.98 9.19 10.48 11.96 13.03 13.20 9.69 9.15 9.49 10.30 11.86 12.91 13.11

0.8 63.90 61.49 65.11 60.39 63.88 63.52 61.84 63.14 61.26 64.76 60.31 63.73 63.42 61.50

6.39 6.25 7.01 7.40 7.68 7.45 7.91 6.44 6.31 7.08 7.38 7.67 7.43 7.90

7 0 0.4 84.62 75.74 69.21 76.80 78.68 89.40 98.63 85.16 80.13 77.55 80.96 82.60 91.46 100.63

7.72 7.71 7.62 9.82 9.94 9.85 11.80 8.13 8.05 7.97 9.80 9.85 9.73 11.68

0.8 54.26 47.25 52.15 48.55 54.52 55.30 51.60 54.84 46.79 52.37 49.09 55.11 55.00 51.47

5.08 5.14 4.87 5.47 5.46 5.91 6.10 5.19 5.22 4.98 5.53 5.50 5.90 6.10

0.3 0.4 72.10 74.49 73.88 79.47 85.55 100.92 85.44 78.83 77.45 81.06 82.28 87.01 103.07 85.78

7.86 7.70 8.40 9.33 11.04 10.74 10.62 8.03 8.09 8.78 9.26 10.93 10.66 10.54

0.8 55.32 51.55 51.33 51.80 58.06 57.40 51.56 55.42 50.94 51.98 52.07 58.23 57.67 51.71

5.88 6.06 5.51 5.70 6.37 6.36 6.47 5.98 6.11 5.63 5.75 6.36 6.39 6.45

0.9 0.4 90.60 90.58 91.68 98.10 98.24 111.18 119.73 91.37 91.41 92.91 101.61 100.15 113.37 121.70

9.62 9.17 8.97 10.35 11.92 13.01 13.11 9.86 9.26 9.24 10.18 11.76 12.85 12.99

0.8 62.05 60.28 65.22 59.96 63.60 63.41 62.21 62.24 60.52 65.19 60.12 63.37 63.10 61.89

6.43 6.23 7.02 7.37 7.70 7.51 7.98 6.43 6.28 7.10 7.36 7.69 7.48 7.95

Table 9: Sensitivity analysis of MSE(×10−2) for DGP3.
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