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Abstract

Ordinary least squares provides the optimal linear approximation to the true regression function.
This paper investigates the Instrumental Variables (IV) version of this problem. The resulting
parameter is called the Optimal Linear IV Approximation (OLIVA). The OLIVA is invariant to the
distribution of the instruments. This paper shows that a necessary condition for standard inference
on the OLIVA is also sufficient for the existence of an IV estimand in a linear IV model. The necessary
regularity condition holds for a binary endogenous treatment, leading also to a LATE interpretation
with positive weights in a fully heterogeneous model. The instrument in the I'V estimand is unknown
and may not be identified. A Two-Step IV (TSIV) estimator based on a Tikhonov regularized
instrument is proposed, which can be implemented by standard regression routines. We establish
the asymptotic normality of the TSIV estimator assuming neither completeness nor identification
of the instrument. As an important application of our analysis, we robustify the classical Hausman
test for exogeneity against misspecification of the linear model. Monte Carlo simulations suggest a
good finite sample performance for the proposed inferences.
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1 Introduction

The Ordinary Least Squares (OLS) estimator has an appealing nonparametric interpretation—it pro-
vides the optimal linear approximation (in a mean-square error sense) to the true regression function.
That is, the OLS estimand is a meaningful and easily interpretable parameter even under misspec-
ification of the linear model. Unfortunately, except in special circumstances (such as with random
assignment), this parameter does not have a causal interpretation. Commonly used estimands based
on Instrumental Variables (IV) do have a causal interpretation (see, e.g., Imbens and Angrist (1994)),
but do not share with OLS the appealing nonparametric interpretation (see, e.g., Imbens, Angrist and
Graddy (2000)). The main goal of our paper is to fill this gap and propose an IV analog to OLS.

The parameter of interest is thus the vector of slopes in the optimal linear approximation of the
structural regression function. We call this parameter the Optimal Linear IV Approximation (OLIVA).
We investigate regular identification of the OLIVA, i.e. identification with a finite efficiency bound,
based on the results in Severini and Tripathi (2012). The main contribution of our paper is to show
that the necessary condition for regular identification of the OLIVA is also sufficient for existence of an
IV estimand in a linear IV regression. That is, we show that, under a minimal condition for standard
inference, it is possible to obtain an IV version of OLS.

The identification result is constructive and leads to a Two-Step IV (TSIV) estimation strategy.
The necessary condition for regular identification is a conditional moment restriction that is used to
estimate a suitable instrument in a first step. The second step is simply a standard linear IV estimator
with the estimated instrument from the first step. The situation is analogous to optimal IV (see, e.g.,
Robinson (1976) and Newey (1990)), but more difficult due to the possible lack of identification of the
first step and the first step problem being statistically harder than a nonparametric regression problem.
To select an instrument among potentially many candidates we use Tikhonov regularization combined
with a sieve approach to obtain a Penalized Sieve Minimum Distance (PSMD) first step estimator
(cf. Chen and Pouzo (2012)). This choice is theoretically and empirically justified. Theoretically, a
Tikhonov instrument is shown to have certain sufficiency property explained below. Empirically, the
resulting PSMD estimator can be computed with standard regression routines. The TSIV estimator
is shown to be asymptotically normal and to perform favorably in simulations when compared with
alternative estimators, being competitive with the oracle IV under linearity of the structural model,
while robustifying it otherwise.

An important application of our approach is to a Hausman test for exogeneity that is robust to
misspecification of the linear model. This robustness comes from our TSIV being nonparametrically
comparable to OLS under exogeneity. The robust Hausman test is a standard t-test in an augmented
regression that does not require any correction for standard errors for its validity, as we show below.
Lochner and Moretti (2015) consider a different exogeneity test comparing the classical IV estimator
with a weighted OLS estimator when the endogenous variable is discrete. In contrast, our test compares
the standard OLS with our IV estimator—more in the spirit of the original Hausman (1978)’s exogeneity
test—while allowing for general endogenous variables (continuous, discrete or mixed). Monte Carlo

simulations confirm the robustness of the proposed Hausman test, and the inability of the standard



Hausman test to control the empirical size under misspecification of the linear model.

Our paper contributes to two different strands of the literature. The first strand is the nonpara-
metric IV literature; see, e.g., Newey and Powell (2003), Ai and Chen (2003), Hall and Horowitz
(2005), Blundell, Chen and Kristensen (2007), Horowitz (2007), Horowitz (2011), Darolles, Fan, Flo-
rens and Renault (2011), Santos (2012) and Chetverikov and Wilhem (2017), among others. Severini
and Tripathi (2006, 2012) discuss identification of linear functionals of the structural function without
assuming completeness. Their results on regular identification are adapted to the OLIVA below. San-
tos (2011) establishes regular asymptotic normality for weighted integrals of the structural function
in nonparametric IV, also allowing for lack of nonparametric identification of the structural function.
The OLIVA functional was not considered in Severini and Tripathi (2006, 2012) or Santos (2011). The
IV interpretation, the implementation and asymptotic normality proof for the TSIV, and the robust
Hausman tests complement the results given in the aforementioned references.

Our paper is also related to the Causal IV literature that interprets IV nonparametrically as a
Local Average Treatment Effect (LATE); see Imbens and Angrist (1994). A forerunner of our paper is
Abadie (2003). He defines the Complier Causal Response Function and its best linear approximation
in the presence of covariates. He also develops two-step inference for the resulting linear approximation
coefficients when the endogenous variable is binary. In this binary case, we show that the necessary
condition for regular identification of the OLIVA holds under a standard relevance condition, and
furthermore, that our IV estimator has a LATE interpretation with non-negative weights. We also
present an extension of this latter result to a correlated random coefficient model without monotonicity,
where we show that the OLIVA corresponds to a positively weighted average of individual treatment
effects; see Section 2.3.

When regular identification of the OLIVA does not hold, but the OLIVA is identified, we expect
our estimator to provide a good approximation to the OLIVA. This follows because (i) under irregular
identification of the OLIVA, the first step instrument approximately solves the first step conditional
moment, and (ii) small errors in the first step equation lead to small errors in the second step limit.!

The main contributions of this paper are thus the interpretation of the regular identification of
the OLIVA as existence of an IV estimand, the asymptotic normality of a TSIV estimator, and the
robust Hausman test. The identification, estimation and exogeneity test of this paper are all robust to
the lack of the identification of the structural function (i.e. lack of completeness) and the instrument.
Furthermore, the proposed methods are also robust to misspecification of linear model, sharing the
nonparametric interpretation of OLS, but in a setting with endogenous regressors.

The rest of the paper is organized as follows. Section 2 defines formally the parameter of interest
and its regular identification. Section 3 proposes a PSMD first step and establishes the asymptotic
normality of the TSIV. Section 4 derives the asymptotic properties of the robust Hausman test for
exogeneity. The finite sample performance of the TSIV and the robust Hausman test is investigated in
Section 5. Appendix A presents notation, assumptions and some preliminary results that are needed

for the main proofs in Appendix B. Appendix C reports tables for simulations on sensitivity analysis.

"We thank Andres Santos for making this point to us.



2 Optimal Linear Instrumental Variables Approximations

2.1 Nonparametric Interpretation

Let the dependent variable Y be related to the p—dimensional vector X through the equation
Y =g(X) +e, (1)

where E|[e| Z] = 0 almost surely (a.s), for a g—dimensional vector of instruments Z.
The OLIVA parameter ( solves, for g satisfying (1),

B = arg min E{(g(X) ~ v X)7, (2)

where henceforth A’ denotes the transpose of A. If E[X X'] is positive definite, then
B =Blg) = BIXXT ' E[Xg(X)]. (3)

When X is exogenous, i.e. Ele| X| = 0 a.s., the function ¢(-) is the regression function E[Y|X = ‘]
and [ is identified and consistently estimated by OLS under mild conditions. In many economic
applications, however, X is endogenous, i.e. E[¢| X] # 0, and identification and estimation of (3)
becomes a more difficult issue than in the exogenous case, albeit less difficult than identification and
estimation of the structural function g in (1).

We first investigate regular identification of 8 in (1)-(2). The terminology of regular identification
is proposed in Khan and Tamer (2010), and refers to identification with a finite efficiency bound.
Regular identification of a parameter is desirable because it means possibility of standard inference

(see Chamberlain (1986)). The necessary condition for regular identification of S is
E[h(Z)| X] =X as, (4)

for an squared integrable h(-); see Lemma 2.1 below, which builds on Severini and Tripathi (2012). We
show that condition (4) is sufficient for existence of an IV estimand identifying 5. That is, we show

that (4) implies that S is identified from a linear IV regression
Y =X'8+1U, E[UKh(Z)] = 0.

The IV estimand uses the unknown, possibly not unique, transformation h(-) of Z as instruments. We
propose below a Two-Step IV (TSIV) estimator that first estimates the instruments from (4) and then
applies IV with the estimated instruments. The proposed IV estimator has the same nonparametric
interpretation as OLS, but under endogeneity.

If the nonparametric structural function g is identified, then [ is of course identified. Conditions for
point identification and consistent estimation of g are given in the references above on the nonparametric
1V literature. Asymptotic normality for continuous functionals of a point-identified g has been analyzed
in Ai and Chen (2003), Ai and Chen (2007), Carrasco, Florens and Renault (2006), Carrasco, Florens
and Renault (2014), Chen and Pouzo (2015) and Breunig and Johannes (2016), among others.



Nonparametric identification of ¢ is, however, not necessary for identification of the OLIVA; see also
Severini and Tripathi (2006, 2012). It is indeed desirable to obtain identification of 8 without requiring
completeness assumptions, which are known to be impossible to test (cf. Canay, Santos and Shaikh
(2013)). In this paper we focus on regular identification of the OLIVA without assuming completeness.
Inference under irregular identification is known to be less stable, see Chamberlain (1986), and it is
beyond the scope of this paper. See Babii and Florens (2018) for recent advances in this direction, and
Escanciano and Li (2013) for partial identification results.

Section 2.2 shows the necessity of the conditional moment restriction (4) for regular identification
of the OLIVA and Section 2.3 shows that this restriction holds when X is binary, leading to a LATE

interpretation with non-negative weights in a fully heterogeneous model.

2.2 Regular Identification of the OLIVA

We observe a random vector W = (Y, X, Z) satisfying (1), or equivalently,
r(z) =E[Y|Z =z =FE[g(X)| Z ==z :=T"g, (5)

where T™ denotes the adjoint operator of 7' (the nonparametric analog of a transpose). Let G denote the
parameter space for g. Assume g € G C Lo(X) and r € Lo(Z), where henceforth, for a generic random
variable V, Lo(V') denotes the space of (measurable) square integrable functions of V, i.e. f € Lo(V) if
171> = E [|f(V)|2} < 00, and where |A| = trace (A’A)l/2 is the Euclidean norm.?

The next result, which follows from an application of Lemma 4.1 in Severini and Tripathi (2012),
lgll -
Correct specification of the model guarantees that gg is uniquely defined; see Engl, Hanke and Neubauer
(1996). Define £ =Y — go(X), Q(2) = E[£2| Z = z], and let Sz denote the support of Z. We consider

the following assumptions.

provides a necessary condition for regular identification of the OLIVA. Define gg := arg ming.,—7+

Assumption 1: (5) holds, g € G C Ly(X), r € Lao(Z), and E[X X'] is finite and positive definite.
Assumption 2: 0 < inf.cs, Q(2) <sup,cs, 2(2) < oo and T is compact.

Assumption 3: There exists h(-) € La(Z) such that (4) holds.

Lemma 2.1 Let Assumptions 1-2 hold. If 3 is regqularly identified, then Assumption 8 must hold.

The proof of Lemma 2.1 and other results in the text are gathered in Appendix B. Given the necessity
of Assumption 3 and its importance for our results it is useful to provide some discussion on it. The
first observation is that Assumption 3 may hold when Ls—completeness of X given Z fails and ¢ is thus
not identified (see Newey and Powell (2003) for discussion of Ly—completeness). If Z has discrete finite
support, then Lo—completeness of X given Z implies Assumption 3, but this assumption holds even

if completeness fails when X belongs to the span of the finite set of identified conditional probabilities

*When f is vector-valued, by f(V) € L2(V) we mean that its components are all in La(V).



of Z given X. When X is binary, Assumption 3 holds under a very mild condition, as shown below.
More generally, for X discrete, (4) becomes a finite system of equations, which makes the condition
more likely to hold, provided the support of Z is large enough relative to that of X; see next section
for precise conditions. When Z and X are continuous, we expect that Assumption 3 is testable when
the distribution of X given Z is not Ly—complete (see Chen and Santos (2015)). We note that when
Assumption 3 does not hold two possibilities may arise: (i) § is identified, but has infinite efficiency
bound, and (ii) § is not identified. When f is identified and Assumption 3 fails, X belongs to the
closure of the range of T' (see Severini and Tripathi (2012)), and thus our IV estimand can be made
arbitrarily close to .

The main observation of this paper is that the necessary condition for regular identification of [ is
also sufficient for existence of an IV estimand. This follows because by the law of iterated expectations,
Assumption 3 and E[e] Z] =0 a.s.,

8 =EXX'E[Xg(X)]
= E[E[1(Z)| X]X'| ' E[E[1(Z)| X]g(X))]
= E[W(Z)X'| ' E[h(Z)Y],

which is the IV estimand using h(Z) as instruments for X. The following Proposition summarizes this
finding and shows that, although there are potentially many solutions to (4), the corresponding 3 is

unique.
Proposition 2.2 Let Assumptions 1-3 hold. Then, (3 is invariant to choice of the instruments h(Z).

Remark 2.1 By (/), E[h(Z)X'] = E[XX']. Thus, non-singularity of E[h(Z)X'] follows from that of
E[XX']. Thus, the strength of the instruments h(Z) is measured by the level of multicollinearity in X .

2.3 Interpretation With Unobserved Heterogeneity

As an important example, consider the case where the endogenous variable X is binary, like an en-
dogenous treatment indicator. In this case Assumption 3 is satisfied under a mild condition, as we now
show. Furthermore, a unique minimum norm solution to (4) can be easily characterized (see the proof
of Proposition 2.3) in terms of propensity scores. Minimum norm solutions will also play an important

role in our implementation of the continuous case as well.

Proposition 2.3 If X is binary, and the propensity score w(Z) = E[X|Z] is not constant, with
0 < E[n(Z)] < 1, then Assumption 3 holds. Moreover, there exists a unique solution of (4) of the form

ho(Z) = a+yn(Z), and this hg is the unique minimum norm solution among all solutions of (4).

The last part of Proposition 2.3 is particularly important, as it implies that Condition 3 in Imbens
and Angrist (1994) is satisfied. This condition states that (i) for all z1, z5 in the support of Z, it follows
that m(z1) < m(z2) implies either hg(z1) < ho(z2) or ho(z1) > ho(z2); and (ii) Cov(X, ho(Z)) # 0.
Both conditions are satisfied by hg in Proposition 2.3 (note Cov(X,ho(Z)) = Var(X) > 0). Hence,



when other standard assumptions in Imbens and Angrist (1994) are satisfied (Conditions 1 and 2),
their Theorem 2 implies that our IV estimator has a LATE interpretation as a weighted average of
local average treatment effects with nonnegative weights. Thus, even when X is binary, and hence g is
linear, there could be benefits of using our IV estimand over the standard IV estimand on the basis of
the LATE interpretation.

Proposition 2.3 can be easily extended to the general discrete case (not necessarily binary). As-
sume X takes the values on the discrete set {x1,...,24}, d < 0o, with respective positive probabilities
Pr(X =x;) =7, j = 1,...,d. Define the propensity scores m;(z) := Pr (X = z;| Z = z). The extension
of the condition in the binary case that the propensity score is not constant is that the random vector
I = (m(2),...,mq(Z))" is not perfectly multicollinear, so E[IIII'] is positive definite. In that case, a
minimum norm solution to (4) is given by ho = 7'II where v = (E[IIIT']) "' S and S = (7121, ..., Tazaq)'-

We now investigate the interpretation of the OLIVA in a correlated random coefficient model of the
form

Y = b;X; + a;, (6)
where b; is the individual treatment effect, X; is a possibly continuous endogenous variable, and a; is an
individual specific intercept. This model holds for the binary case, where b; = Y;(1) — Y;(0), a; = Y;(0),
and Y;(1),Y;(0) are the potential outcomes. We then obtain the following result.

Proposition 2.4 Let (6) and Assumption 3 hold. Assume that (i) 0 < E[X?] < oo, (ii) E[h(Z;)ai] = 0
and (iii) h(Z) is uncorrelated with b;, conditional on X;. Then, 5 = E[w(X;)b;], where w(X;) =
X2/E[X?).

The assumptions (ii)-(iii) are mild exogeneity conditions. Proposition 2.4 does not require mono-

tonicity or conditional independence restrictions between b; and the endogenous variable X;.

3 Two-Step Instrumental Variables Estimation

Proposition 2.2 suggests a TSIV estimation method where, first, an h is estimated from (4) and then,
an IV estimator is considered using the estimated h as instrument. To describe the estimator, let
{Y;, Xi, Z;}7 | be an independent and identically distributed (iid) sample of size n satisfying (1). The
TSIV estimator follows the steps:

Step 1. Estimate a function h satisfying E[h(Z)| X] = X a.s., say hy, as defined in (11) below.

Step 2. Run linear IV using instruments iln(Z) for X inY = X'8+U, ie.

n -1 n
A 1 . 1 -
= (=Y h@xt) (=D a2y ),
p= (A k) (L3 h@y) @
where h,, is the first-step estimator given in Step 1.

For ease of exposition, we consider first the case where X and Z have no overlapping components
(i.e. no included exogenous or controls) and are continuous. We also analyze below the case of control

variables and discrete variables.



3.1 First-Step Estimation

To deal with the problem of lack of uniqueness of h, we consider a Tikhonov-type estimator. This
approach is commonly used in the literature estimating g, see Hall and Horowitz (2005), Carrasco,
Florens and Renault (2006), Florens, Johannes and Van Bellegem (2011), Chen and Pouzo (2012) and
Gagliardini and Scaillet (2012), among others. Chen and Pouzo (2012) propose a PSMD estimator
of g and show the Lo—consistency of a solution identified via a strict convex penalty. These authors
also obtain rates in Banach norms under point identification. Our first-step estimator hy, is a PSMD
estimator of the form considered in Chen and Pouzo (2012) when identification is achieved with an
Lo-penalty. As it turns out, the Tikhonov-type or Lo-penalty estimator is well motivated in our setting,
as we explain below. It implies that our instrument satisfies a certain sufficiency property.

Defining m(X; h) := E[h(Z) — X|X], we estimate the unique hg satisfying ho = limy o ho()), where

ho(A) = argmin{[|m(;; h)|[* + Alh[[* : h € La(2)},

and A > 0. Assumption 3 guarantees the existence and uniqueness of hg, see Engl, Hanke and Neubauer
(1996). The function hg is the minimum norm solution of (4), as in Proposition 2.3. The sufficiency
property mentioned above is that for any other solution hj to (4), it holds that in the first stage
regression

X:C()—i-aoho(Z)—i-alhl(Z)-i-v, (8)

a1 must be zero, as shown in the next Proposition.

Proposition 3.1 Let hg defined as above, and let hy be a different solution of (4). Then, a; = 0 in

(8).

Having motivated the Tikhonov-type instrument, we introduce now its PSMD estimator. Let
1/2
E,[g(W)] denote the sample mean operator, i.e. E,[g(W)] =n~1Y " g(W;), let ||g]| = (En[\g(W)\2])

be the empirical Ly norm, and let E[h(Z)| X] be a series-based estimator for the conditional mean

E[h(Z)| X], which is given as follows. Consider a vector of approximating functions

!/

p(z) = (p1(2), ., px, (2))

having the property that a linear combination can approximate E[h(Z)| X = z|. Then,
BWZ)| X = a] = "' (@) (P'P)74 3 ™ (Xi)h(Z0),
i=1

where P = [pf»(Xy),...,p%" (X)) and K,, — 0o as n — oc.
Let H C Ly(Z) denote the parameter space for h. Then, define the estimator
by = argmin{ ||/ (X; )2 + Ma||hl)% - h € Hy}, (9)

where H,, C H C Lo(Z) is a linear sieve parameter space whose complexity grows with sample size,
m(Xs;h) = E(h(Z) — X|X;), and A, is a sequence of positive numbers satisfying that A, | 0 as



n T oo, and some further conditions given in the Appendix A. In our implementation H,, is the finite

dimensional linear sieve given by
JIn
Hp=qh:h= Zajqj(-) (10)

where ¢7"(2) = (q1(2), ..., qJ, (2))" is a vector containing a linear sieve basis, with J,, — 00 as n — oo.
To better understand the first step estimator and how it can be computed by standard methods

consider the approximation
X = E[h(Z)| X] = Eld'¢™(2)| X] = dE[¢"(Z)| X],

which suggests a two step procedure to obtain hy, : (i) first obtain the fitted values §(X) = E[¢”(Z )| X]
by OLS; and then (ii) run Ridge regression X on ¢(X). Indeed, if we define D, = E,[§(X)X],
Qaon = Eulq’(2)q7(2)'], and

A, = Enla(X)a(X)'] + MQan.

Then, the closed form solution to (9) is given by
ha () = DA (). (11)

This estimator can be easily implemented by an OLS and a standard Ridge regression steps: (i)
standardize ¢’» so that Qo, becomes the identity (simply multiply the original ¢/ by Q;nl / 2); (ii) run
OLS ¢’*(Z) on p®n(X) and keep fitted values ¢(X); (iii) run standard Ridge regression of X on ¢(X);
the slope coefficient in the last regression is D;A;j.

An alternative minimum norm approach requires choosing two sequences of positive numbers a,,

and b,, and solving the program
hy = argmin{||h||2 : h € Hy, [|m(X;h)||2 < bn/an}.

This is the approach used in Santos (2011) for his two-step setting. We prefer our implementation,
since we only need one tuning parameter rather than two, and data driven methods for choosing A\,

are available; see Section 3.3.

3.2 Second-Step Estimation and Inference

The following result establishes the asymptotic normality of B and the consistency of its asymptotic
variance, which is useful for inference.
Define

m(W, B,h,g) = (Y = X'B)W(Z) — (9(X) — X'B)(W(Z) — X)
and
mo = m(W, 3, ho, g0)



The second term in mg accounts for the asymptotic impact of estimating the instrument hg. When the
minimum norm structural function gq is linear, like with a binary treatment, this second term is zero
and there will be no impact from estimating hq on inference.

To estimate the asymptotic variance of B is useful to estimate gg, the identified part of the structural
function. We introduce a Tikhonov-type estimator that is the dual of h,. Let §,(-) denote a PSMD
estimator of gg given by

gn(-) = G, By [p" (), (12)
with Gy, = Eu[p(Z)Y], p(2) = B[pK(X)| 2, Blg(X)|Z = 2] = ¢™' (:)(@QQ) Xy ¢ (Zi)g(Xy),
Q = [¢"(Z1), ... " (Z,)], Pan = Eu[p"(X)pX(X)], and By, = E,[p(2)p(Z)'] + A\uPoy. For ease of
presentation, we use the same notation for the tuning parameters in h, and Jn, although of course we
will use different tuning parameters K, and .J, for estimating izn or g, see Section 3.3 for issues of

implementation.

Theorem 3.2 Let Assumptions 1-3 above and Assumptions A1-Ab5, A6(i-iii) in the Appendiz A hold.
Then,

V(B = B) —a N(0, ),
where 3 = E[ho(Z2) X' E[mom{)E[Xho(Z)'|7L. Furthermore, a consistent estimator for ¥ is given
by

Y= En[iln(Zi)Xz{]_lEn[mnim%i]En[Xih;(Zi)]_l, (13)
where 1hn; = m(W, B, hn, gn)-

The assumptions in Theorem 3.2 are standard in the literature of two-step semiparametric estima-
tors. Theorem 3.2 can be then used to construct confidence regions for 5 and testing hypotheses about
B following standard procedures. The proof of Theorem 3.2 relies on new Lo—rates of convergence for
hyn and §, under partial identification of & and g (note that Chen and Pouzo (2012) rates are given

under point identification and Santos (2011) obtained related rates but for a weak norm).

3.3 Implementation

For implementation one has to choose the basis {p*" (X), ¢’*(Z)} and the tuning parameters { K,,, J,,, \n }.
The theory for estimating hg requires that K, > J, (for Ay, to be invertible). In the simulations we
use cubic splines and study rules of the form K, = cJ, for several values of ¢ such as 2 or 3, which
seem to work well. In practice, we recommend choosing first J,,, then set K,, = 2.J,, and choose \,, by
Generalized Cross-validation (cf. Wahba (1990)), A\, = arg miny~o GCV,,()\), as follows. Note that

b= (DAL Q'X) ™ DLATIQY, (14)

where X = [Xy,.., X, and Y = [V, ..., ¥,,)'. Similarly, define Ly = X (D,A;'Q'X) ™' D,A;'Q,
Yy = L)Y = (}7,\1,...,1?)\”)’ and vy = tr(Ly). Then, the Generalized Cross-validation criteria for

estimating B is

n - 3 . 2
v - 13 ()

1=1

10



We then propose the following algorithm for implementation:

Step 1. Choose the sieve basis (e.g. B-splines). Set J, to small value (e.g. 4), set K,, = 2J, and
compute )\, = argminy~g GCV,,(\).

Step 2. Compute h,, following (11) and compute £.
Step 3. Switch the values of J,, and K,, (so now J,, = 2K,,) and compute §, as in (12).

Step 4. Compute m,; = m(W, ﬁ, i}n,gn) and 3 = En[ﬁnXZ’]_lEn[mmm;Z]En[X,ﬁ’n]_l

In practice, we recommend to carry out sensitivity analysis with respect to {K,, J,, A} in the
implementation above. Extensive simulations in Appendix C show that our methods are not sensitive

to the tuning parameters {K,, J,, \n}.>

3.4 Partial Effects Interpretation, Exogenous Controls and Discrete Variables

We start by providing a partial effects interpretation for subvectors of the OLIVA parameter 5 that
are analogous to OLS. Define X = (X1, X)) and partition § accordingly as 8 = (8], 85)". Suppose we

are only interested in By. From standard OLS theory, we obtain
B2 = E[VaV3]  E[Vag(X)],

where V5 is the OLS error from the regression of X9 on Xj. This result could be used to obtain an
estimator of By that does not compute an estimator for 57 and that reduces the dimensionality of the
problem of estimating h (from the dimension of the original X to the dimension of X5), since now we
need the weaker condition

E[h(Z)| V5] = V5 aus.

This method might be particularly useful when the dimension of X7 is large and ¢ has a partly linear

structure
9(X) = 81 X1 + 92(X2), (15)

since then Sy = E[VaVy] ' E[Vag2(X)] can be interpreted as providing a best linear approximation to
go. In this discussion, X; could be endogenous variables that are of secondary interest.

Suppose now that there are exogenous variables included in the structural equation g. This means
X and Z have common components. Specifically, define X = (X1, X)) and Z = (Z],Z})" where
X1 = Z; denote the overlapping components of X and Z, with dimension p; = ¢;. This is a very
common situation in applications, where exogenous controls are often used. In this setting a solution
of E[h(Z)| X] = X a.s. has the form h(Z) = (Z],h5(Z))’, where

E[he(2)] X] = X3 aus. (16)

3Matlab and R code to implement the TSIV estimator is available from the authors upon request.
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Following the arguments of the general case, we could obtain an estimator given by iy = (z1, Aén)’ ,

where
hon() = D3, A3 (), (17)
and Do, := E,[§(X)X}]. This setting also covers the case of an intercept with no other common
components, where X1 = Z; = 1 and ¢; = 1. The asymptotic normality for ﬁ continues to hold, with
no changes in the asymptotic distribution.
If the dimension of X and/or Z is high and the sample size is moderate, the method above may

not perform well due to the curse of dimensionality. We then recommend substituting (16) by
E[hg(Zg)’ Xg] = X2 a.s.

so that nonparametric estimation only involves functions p’"(X,) and ¢’#(Z) for estimating hs.
To reduce the dimensionality in estimating gy necessary for estimation of the asymptotic variance,
we implement the previous estimator for g but with bases {X1,p®"(X5)} and {qJ"(Zg)}, which is
consistent with the specification in (15). This is the approach we recommend when there are many
controls.

Simplifications also occur when some variables are discrete. When the endogenous variable X
is discrete we do not need K, — oo, and we can choose p’ as a saturated basis. For example, if
X = (1,X3) with X5 binary (a treatment indicator), we can take K, = 2, pi(x) = 1, pa(z) = x9,
ho(z) = o+ ym(z), where the propensity score 7(z) (and then a,~) can be estimated by sieves, and
go(x) = By + P12 = f'z. Note that here we do not need to choose A for estimating h. More generally,
if the support of X is {x1,...,24} then we can set K, = d, and pj(x) = 1(x = z;). To compute the
minimum norm solution hg, we use Theorem 2, pg. 65, in Luenberger (1997) to conclude that hg = /I
as in Section 2, provided the matrix E[IIII] is invertible. If this matrix is not invertible we can apply
the Tikhonov-type estimator proposed above.

Similarly, when Z is discrete we do not need .J,, diverging to infinity. As before, we can choose a
linear sieve #,, that is saturated and ¢”(Z) could be a saturated basis for it. For example, if Z takes
J discrete values, {z1, ..., 25}, we can take g;(z) = 1(z = z;).

In summary, all the different cases (with or without controls, nonparametric or semiparametric
structural functions, discrete or continuous variables) can be implemented in a similar fashion but under
different definitions of the approximation bases {p®"(X),¢’*(Z)}. In all these cases, the formulas for

the asymptotic variance of ﬁ are the same.

4 A Robust Hausman Test

Applied researchers are concerned about the presence of endogeneity, and they have traditionally
used tools such as the Hausman (1978)’s exogeneity test for its measurement. This test, however,
is uninformative under misspecification; see Lochner and Moretti (2015). The reason for this lack
of robustness is that in these cases OLS and IV estimate different objects under exogeneity, with

the estimand of standard IV depending on the instrument itself. As an important by-product of our
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analysis, we robustify the classic Hausman test of exogeneity against nonparametric misspecification
of the linear regression model.

The classical Hausman test of exogeneity (cf. Hausman (1978)) compares OLS with IV. If we use
the TSIV as the IV estimator, we obtain a robust version of the classical Hausman test, robust to the
misspecification of the linear model. For implementation purposes it is convenient to use a regression-
based test (see Wooldridge (2015), pg. 481). We illustrate the idea in the case of one potentially
endogenous variable Xs and several exogenous variables X7, with X including an intercept.

In the model

Y =BXi+5/Xo+U,  E[UNZ) =0, i(Z) = (X1,ha(2))’,
the variable Xs is exogenous if Cov(Xs,U) = 0. If we write the first-stage as
Xo = O/le + OéQhQ(Z) +V,

then exogeneity of X3 is equivalent to Cov(V,U) = 0. This in turn is equivalent to p = 0 in the least
squares regression
U=pV+E.

A simple way to run a test for p = 0 is to consider the augmented regression
Y =f'X +pV +¢,

estimated by OLS and use a standard ¢ — test for p = 0.

Since V is unobservable, we first need to obtain residuals from a regression of the endogenous
variable X5 on X and ﬁgn(Z ), say V. Then, run the regression of Y on X and V. The new Hausman
test is a standard two-sided t-test for the coefficient of V, or its Wald version in the multivariate
endogenous case. Denote the t-test statistic by ¢,,. The benefit of this regression approach is that under
some regularity conditions given in Appendix A no correction is necessary in the OLS standard errors
because V is estimated. Denote S = (X, V).

Assumption 4: The matrix E[SS’] is finite and non-singular.

Theorem 4.1 Let Assumptions 1-4 above and Assumptions A1-A6 in the Appendix A hold. Then,
under the the null of exogeneity of X,

tn, —qa N(0,1).

The proof of Theorem 4.1 is involved and requires stronger conditions than that of Theorem 3.2.
In particular, for obtaining the result that standard OLS theory applies under the null hypothesis we
have used a conditional exogeneity assumption between U and Z, E[U| Z] = 0 a.s. Simulations below
show that, at least for the models considered, this assumption leads to a robust Hausman test that is

able to control the empirical size.
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5 Monte Carlo

This section studies the finite sample performance of the proposed methods. Consider the following
Data Generating Process (DGP):

P :
V=311 Hj(X) +e, Y 0 1y
Z = s(D), ~ N , ,
D 0 v 1
€= p€V + C7

where H;(z) is the j — th Hermite polynomial, with the first four given by Ho(z) = 1, Hi(z) = z,
Hy(x) = 22 — 1 and H3(z) = 23 — 32; V = X — E[X| Z], ( is a standard normal, drawn independently
of X and D, and s is a monotone function given below. The DGP is indexed by p and the function s.

To generate V note
B[X|Z] = E[E[X|D]| Z] = yE[D| Z] = vs~'(2),

where s~! is the inverse of 5. Thus, by construction Z is exogenous, E|[¢| Z] = 0, while X is endogenous
because E[e| X] = pX, with p = p-(1 —+?), p- >0 and —1 < v < 1.

The structural function g is given by

g(:E) = ZHJ(X)v

J=1

and is therefore linear for p = 1, but nonlinear for p > 1. It follows from the orthogonality of Hermite
polynomials that the true value for OLIVA is 5 = 1.
Note also that the OLIVA is regularly identified, because h(Z) = s~(Z)/v solves

E[h(2)]| X] = X.
We consider three different DGPs, corresponding to different values of p and functional forms for s:
DGP1: p=1and s(D) = D (linear; s~(2) = 2);
DGP2: p=2and s(D) = D? (nonlinear; s—'(Z) = Z'/3);
DGP3: p =3 and s(D) = exp(D)/(1 + exp(D)) (nonlinear; s~(Z) = log(Z) — log(1 — 2));

Several values for the parameters (v, p) will be considered: ~ € {0.4,0.8} and p € {0,0.3,0.9}. We
will compare the TSIV with OLS and standard IV (using instrument Z). For DGP1, h(Z) = vy~ 'Z
and hence the standard IV estimator with instrument Z is a consistent estimator for the OLIVA. The
standard IV then can be seen as an oracle (infeasible version of our TSIV) under DGP1, where h is
known rather than estimated. This allows us to see the effect of estimating hg on inferences. For DGP2
and DGP3, IV is expected not to be consistent for the OLIVA. The number of Monte Carlo replications
is 5000. The sample sizes considered are n = 100, 500 and 1000.

Tables 1-3 report the Bias and MSE for OLS, IV and the TSIV for DGP1-DGP3, respectively.
Our estimator is implemented with B-splines, following the GCV described in (3.3) with J, = 6 and
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Table 1: Bias and MSE for DGP 1.

P n BIAS.OLS BIASIV BIAS. TSIV MSE_.OLS MSE.IV MSE_TSIV
0.0 04 100 -0.0021 -0.0019 0.0010 0.0109 0.0829 0.0554
500 0.0017 0.0025 0.0020 0.0021 0.0127 0.0105

1000 -0.0001 0.0018 0.0020 0.0010 0.0067 0.0054

0.8 100 -0.0030 -0.0040 -0.0040 0.0102 0.0163 0.0159
500 0.0001 -0.0004 -0.0004 0.0019 0.0030 0.0030

1000 0.0019 0.0025 0.0026 0.0010 0.0016 0.0016

0.3 04 100 0.2950 -0.0101 0.0841 0.0968 0.0908 0.0729
500 0.2993 0.0026 0.0347 0.0915 0.0145 0.0168

1000 0.3006 -0.0003 0.0189 0.0914 0.0071 0.0080

0.8 100 0.2956 -0.0107 0.0061 0.0987 0.0207 0.0216
500 0.2991 0.0009 0.0038 0.0918 0.0039 0.0039

1000 0.2987 -0.0023 -0.0012 0.0904 0.0019 0.0019

0.9 04 100 0.8993 -0.0827 0.1753 0.8213 0.1990 0.1569
500 0.9028 -0.0145 0.0421 0.8173 0.0295 0.0296

1000 0.8998 -0.0066 0.0231 0.8108 0.0130 0.0140

0.8 100 0.8965 -0.0186 0.0287 0.8270 0.0573 0.0571
500 0.8980 -0.0036 0.0030 0.8114 0.0108 0.0109

1000 0.8993 0.0031 0.0058 0.8111 0.0049 0.0050

K, = 2J,. Remarkably, for DGP1 in Table 1 our TSIV implemented with GCV performs comparably
or even better than IV (which does not estimate h and uses the true h). Thus, our estimator seems
to have an oracle property, performing as well as the method that uses the correct specification of the
model. As expected, OLS is best under exogeneity, but it leads to large biases under endogeneity. For
the nonlinear models DGP2 and DGP3, IV deteriorates because the linear model is misspecified. Our
TSIV performs well, with a MSE that converges to zero as n increases. The level of endogeneity does
not seem to have a strong impact on the performance of the TSIV estimator.

We have done extensive sensitivity analysis on the performance of the TSIV estimator. Tables 7-9
in Appendix C report the sensitivity of the estimator to different choices of tuning parameters, .J,,, K,
and A. In each cell, the top element is for n = 100 and the bottom element is for n = 1000. From these
results, we see that the TSIV estimator is not sensitive to the choice of these parameters, within the
wide ranges for which we have experimented. This is consistent with the regular identification, which
means that the estimator should be robust to local perturbations of the tuning parameters. Likewise,
unreported simulations with other DGPs confirm the overall good performance of the proposed TSIV
under different scenarios.

Table 4 provides the results for coverage of confidence intervals based on the asymptotic normality
of the TSIV using the GCV-computed A, along with that using 0.7\, and 0.9),,. The coverage is very
stable for the three choices of A considered. The performance in DGP1 and DGP2 is fairly good, while
in DGP3 it noticeably improves when the sample size increases.

We now turn to the Hausman test. Practitioners often use the Hausman test to empirically evaluate

the presence of endogeneity. As mentioned above, the standard Hausman test is not robust to misspefi-
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Table 2: Bias and MSE for DGP 2.

p ol n BIAS_.OLS BIASIV BIAS TSIV MSE_OLS MSEIV MSE_TSIV
0.0 0.4 100 0.0131 -0.0030 -0.0037 0.1009 0.6321 0.2226
500 0.0083 0.0216 0.0126 0.0213 0.1319 0.0479
1000 0.0021 0.0005 0.0034 0.0115 0.0764 0.0228
0.8 100 -0.0012 0.0001 -0.0001 0.0990 0.4559 0.1286
500 0.0015 0.0056 0.0032 0.0211 0.1261 0.0275
1000 0.0019 0.0084 0.0030 0.0113 0.0689 0.0154
0.3 0.4 100 0.2932 -0.0472 0.0605 0.1859 0.6167 0.2342
500 0.2874 -0.0325 0.0302 0.1023 0.1417 0.0594
1000 0.3008 -0.0135 0.0402 0.1013 0.0778 0.0331
0.8 100 0.3064 0.0083 0.0318 0.1987 0.4554 0.1400
500 0.3020 0.0078 0.0208 0.1114 0.1226 0.0289
1000 0.3046 0.0076 0.0248 0.1040 0.0647 0.0168
09 04 100 0.9053 -0.1359 0.2155 0.9270 1.0165 0.3615
500 0.8968 -0.0093 0.0794 0.8260 0.1619 0.0914
1000 0.8974 -0.0122 0.0493 0.8159 0.0817 0.0449
0.8 100 0.9095 -0.0117 0.0491 0.9425 0.5482 0.1921
500 0.8969 -0.0013 0.0226 0.8290 0.1405 0.0435
1000 0.8981 -0.0021 0.0271 0.8185 0.0753 0.0220
Table 3: Bias and MSE for DGP 3.
p ol n BIAS_.OLS BIASIV BIAS_TSIV MSE_OLS MSE_IV MSE_TSIV
0.0 0.4 100 -0.0570 -1.5268 -0.0717 0.5023 381.7332 0.6817
500 -0.0021 -0.5039 -0.0346 0.1000 155.9296 0.1326
1000 -0.0014 -0.0365 -0.0378 0.0550 0.6179 0.0681
0.8 100 -0.0418 -0.4112 -0.1106 0.4795 2.6703 0.4935
500 -0.0096 -0.2270 -0.0411 0.1072 0.4192 0.1084
1000 -0.0113 -0.2150 -0.0330 0.0527 0.2452 0.0543
0.3 0.4 100 0.2899 -5.4825 0.0227 0.6475 28179.2626 0.8182
500 0.2882 -0.1335 0.0060 0.1878 1.5707 0.1571
1000 0.2887 -0.0822 0.0199 0.1351 0.6518 0.0926
0.8 100 0.2693 -0.3815 -0.0857 0.5906 11.1463 0.5498
500 0.3062 -0.1985 -0.0249 0.2061 0.4885 0.1221
1000 0.2951 -0.2166 -0.0246 0.1395 0.2512 0.0570
09 04 100 0.8470 1.4445 0.1675 1.1993 1772.3946 0.8970
500 0.8888 -0.3336 0.0449 0.9098 4.8599 0.2103
1000 0.8914 -0.1313 0.0158 0.8473 0.8558 0.0982
0.8 100 0.8341 -0.5724 -0.0917 1.1833 4.3735 0.6045
500 0.8749 -0.2933 -0.0566 0.8668 0.6084 0.1301
1000 0.8863 -0.2466 -0.0401 0.8380 0.2861 0.0681
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Table 4: 95% coverage for TSIV.

DGP1 DGP2 DGP3

p ol n 0.7cv. 0.9cv  1.0cv 0.7cv  09cv 1.0cv 0.7cv  0.9cv  1.0cv
0.0 04 100 0973 0976 0976 0.950 0.954 0.955 0.899 0.901 0.903
500 0976 0978 0977 0950 0.951 0.951 0.929 0.931 0.932

1000 0.971 0973 0.973 0.954 0.957 0.956 0.931 0.931 0.930

0.8 100 0.964 0.965 0.966 0.929 0.929 0.931 0.837 0.837 0.838
500 0.957 0.957 0.957 0.941 0.942 0.944 0.902 0.905 0.905

1000 0.950 0.951 0.951 0.932 0.938 0.941 0.926 0.927 0.927

0.3 04 100 0976 0.982 0.982 0.950 0.948 0.949 0.919 0.921 0.922
500 0.957 0.957 0.959 0.949 0.952 0.950 0.931 0.933 0.932

1000 0.964 0.965 0.965 0.938 0.939 0.938 0.936 0.936 0.934

0.8 100 0.945 0.945 0.946 0.917 0.920 0.920 0.858 0.861 0.862
500 0.944 0.941 0.941 0.946 0.946 0.946 0.917 0.920 0.921

1000 0.961 0.960 0.960 0.940 0.941 0.941 0.917 0.923 0.923

0.9 04 100 0.903 0901 0.902 0.938 0943 0.943 0.955 0.957 0.956
500 0.947 0.949 0.948 0.936 0.940 0.941 0.951 0.949 0.949

1000 0.943 0.942 0.942 0.925 0.929 0.932 0.950 0.951 0.951

0.8 100 0.931 0.930 0.930 0.920 0.921 0.921 0.899 0.898 0.898
500 0.938 0.937 0.935 0.949 0.949 0.949 0.918 0.920 0.921

1000 0.951 0.951 0.951 0.954 0.954 0.954 0.930 0.935 0.935

Table 5: Empirical Size of standard Hausman Test.

v n DGP1 DGP2 DGP3
04 100 0070 0.109 0.046
500 0.046  0.064  0.053
1000 0064 0.072  0.059
0.8 100 0067 0223 0.094
500 0.065 0.134 0.524
1000  0.060 0.105 0.872

cation of the linear model, because in that case OLS and IV estimate different parameters (Lochner
and Moretti (2015)). We confirm this by simulating data from DGP1-DGP3 and reporting rejection
frequencies for the standard Hausman test for v € {0.4,0.8} under the null hypothesis of p = 0. Table
5 contains the results. For DGP1, the rejection frequencies are close to the nominal level of 5% across
the different sample sizes, confirming the validity of the test under correct specification. However, for
DGP2 and DGP3 we observe large size distortions, as large as 82.2%. This shows that the standard
Hausman test is unreliable under misspecification of the linear model.

Table 5 reports rejection probabilities for the proposed robust Hausman test. In contrast to previous
results based on the standard IV, we observe that the empirical size is now controlled, with a type-I
error that is smaller for nonlinear models than for the linear model. The results for nonlinear models
do not contradict Theorem 4.1, because the conditional exogeneity assumption E[U|Z] = 0 a.s. does
not hold for these DGPs. Nevertheless, we see that the standard OLS theory delivers a robust test that

is able to control the size. Relaxing E[U|Z] = 0 a.s. is likely to require a correction of the standard
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Table 6: Empirical Size and Power of robust Hausman Test.

p ~y n DGP1 DGP2 DGP3
00 04 100 0.055 0.037 0.013
500 0.035 0.018  0.008

1000 0.038  0.007  0.016

08 100 0.059 0015 0013
500 0.050  0.004 0.003

1000 0.052  0.003  0.002

03 04 100 0176 0.062 0.041
500 0.649 0.153  0.107

1000 0.915  0.290  0.222

08 100 0929 0324 0519
500 1.000 0.710  0.993

1000 1.000  0.793  1.000

0.9 04 100 0.785 0.336 0.249
500 0.999 0.877  0.825

1000 0.999  0.974  0.985

08 100 0.993 0923 0.991
500 1.000 0.934  1.000

1000 1.000  0.919  1.000

errors, and hence complicating the application of the Robust Hausman test. Given the simulations
results, we do not pursue this extension in this paper. We also report rejection probabilities under
the alternative. We observe an empirical power that increases with the sample size and the level
endogeneity, suggesting consistency against these alternatives for the proposed Hausman test.
Overall, these simulations confirm the robustness of the proposed methods to misspecification of
the linear IV model and their adaptive behaviour when correct specification holds. Furthermore, the
TSIV estimator seems to be not too sensitive to the choice of tuning parameters. Finally, the proposed
Hausman test is indeed robust to the misspecification of the linear model, which makes it a reliable
tool for economic applications. These finite sample robustness results confirm the claims made for the

TSIV estimator as a nonparametric analog to OLS under endogeneity.

6 Appendix A: Notation, Assumptions and Preliminary Results

6.1 Notation

Define the kernel subspace N = {f € Lo(X) : T*f = 0} of the operator T*f(z) := E[f(X)| Z = z].
Let Ts(z) := E[s(Z)| X = z] denote the adjoint operator of T and let R(T) := {f € Ls(X) :
Js € Ly(Z),Ts = f} its range. For a subspace V, V+, V and Py denote, respectively, its orthogonal
complement, its closure and its orthogonal projection operator. Let ® denote Kronecker product and
let I, denote the identity matrix of order p.

Define the Sobolev norm ||-[|,, as follows. Define for any vector a of p integers the differential

operator 9% := 9l /0x{* ... 0z, where |a|; := > a;. Let X denote a finite union of convex,
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bounded subsets of R?, with non-empty interior. For any smooth function A : X C RP — R and some

n > 0, let n be the largest integer smaller than 7, and

Oh(x) — ()|

1]l oy = |max sup |02h(z)| + max sup —

al,<n zex laly=n w4z |z

Let H denote the parameter space for h, and define the identified set Ho = {h € H : m(X,h) =0 a.s.}.
The operator Th(z) := E[h(Z)| X = z] is estimated by

Thix) = BIWZ)| X =] = 3 (5 @)(P'P) 5 (X:) @ b))
i=1

The operator 1" is considered as an operator from H,, to G, C Ly(X), where G, is the linear span
of {pfn(-)}. Let E,[g(W)] denote the sample mean operator, i.e. E,w[g(W)] = n=1> " g(W;), let
||g||iW = BE,[lgW)[*], and let (f, Dnw = n=t3°"  f(Wi)g(W;) be the empirical Lo inner product.
We drop the dependence on W for simplicity of notation. Denote by T* the adjoint operator of T with

respect to the empirical inner product. Simple algebra shows for p =1,
(Th,g) =n=" > W(Z)p" ' (X)(P'P)™ Y PR (X,)9(X;)
i=1 j=1

SER

so T*g = Py, E[g(X)| X =] = Py, Tg. A similar expression holds for p > 1.
With this operator notation, the first-step has the expression (where I denotes the identity operator)

= (1T 4 0,0) 17X, (18)
where X = E[X| X = ]. Similarly, define the Tikhonov approximation of hg

ha, = (T*T + A\, 1) ' T* X. (19)
With some abuse of notation, denote the operator norm by

T = sup [T
heH, ||h||<1
Let G C Ly(X) denote the parameter space for g. An envelop for G is a function G such that |g(x)| <
G(z) for all g € G. Given two functions [,u, a bracket [I,u] is the set of functions f € G such that
I < f <wu. An e-bracket with respect to ||-|| is a bracket [, u] with ||l —u|| <e, ||I|| < oo and |Jul] < oo
(note that u and [ not need to be in G). The covering number with bracketing Ni,(e, G, ||-]|) is the

minimal number of e-brackets with respect to ||-|| needed to cover G. Define the bracketing entropy

é
Ty6.6.1) = [ flog Niy(e.G. 1)

Similarly, we define Jj;(0,H, [-||). Finally, throughout C' denotes a positive constant that may change

from expression to expression.
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Let W = (Y, X, Z) be a random vector defined on a probability space (2, B,P). For a measurable
function f we denote Pf := [ fdP,

n

Pof ==Y f(W;) and Gy f := v/n (P, f — Pf).

i=1

6.2 Assumptions

The following assumptions are standard in the literature of sieve estimation; see, e.g., Newey (1997),
Chen (2007), Santos (2011), and Chen and Pouzo (2012).

Assumption A1l: (i) {Y;, X;, Z;}", is an iid sample, satisfying (1) with E[¢| Z] = 0 a.s and E[Y?] <
oo; (ii) X has a compact support with E[|X|?] < co; (iii) Z has a compact support; (iv) the densities

of X and Z are bounded and bounded away from zero.

Assumption A2: (i) The eigenvalues of E[p®"(X)p®(X)'] are bounded above and away from zero;
(i) maxj<p<k, ||lpkl| < C and 572”0 n = o(n), for &, = sup, |p""(x)|; (iii) there is m,,(h) such
that supy,cy | E[M(Z)| X =] — P (1)|| = O(K,;*T); (iv) there is a finite constant C, such that
SuPper, n<1 11(2) — E[W(Z)] X]l S pn,p(ZvX) with E[|pn,(Z, X)|*| X] < C.

Assumption A3: (i) The eigenvalues of E[q’"(Z)q’"(Z)'] are bounded above and away from zero;
(ii) there is a sequence of closed subsets satisfying #; C ;11 € H, H is closed, bounded and convex,
ho € Ho, and there is a II,,(hg) € H, such that ||IL,(hg) — hol| = o(1); (iii) suppey,, HhH2 - Hh||2 =
op(1); (iv) A, 1 0 and max{||IL, (ko) — ho|? =C%,T} = 0(\n), where ¢, 7 = /K, /n+ K;°7T; (v) Ay,

non-singular.

Assumption A4: (i) hy € R((T*T)*/?) and go € R((TT*)*'?), a, ag > o' <ii> maxqun lg;l <
and €2 1, = o{n), for &.; = sup, |7 (2)] : (i) supyeg || E[g(X)| Z = ] — 7 (a)a™ (]| = O™ for
some 7Tn,q(9)§ (IV) SUPgeg, |lgll<1 ‘g( ) — [g(X)’Z” < pn,Q(Z7X) with E[’pn,q Z,X) ’ ‘Z < G5 (v)
A te, = o(1), where ¢, = ¢ + cpp+ and cpr = \/Jp/n+ Jp “T7; (vi) By, is non-singular.

Assumption A5: (i) E[U?| Z] < C as.; (ii) Niy(6,G, ||]|) < oo and Jyj(8,H, ||]|) < oo for some & > 0,
and G and ‘H have squared integrable envelopes.

Assumption A6: (i) A;lcn o(n=14); (ii) \/_)\mm(ah’ = o(1) and \/ﬁcn)\fm(ah_l’l) = o(1); (iii)
meR@mEUX—m
zero; and (iv) F[U| Z] =0 a.s.

] is bounded and Var[ho(Z)| X] is bounded and bounded away from

For regression splines ¢ , = O(Ky), and hence A2(ii) requires K /n — 0, see Newey (1997). Assump-
tions A2(iii-iv) are satisfied if suppey [|Th|| ., < 0o With ar = n,/q. Assumption A3(iii) holds under
mild conditions if for example supycq ||| < C. Assumption A4(i) is a regularity condition that is well
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discussed in the literature, see e.g. Florens, Johannes and Van Bellegem (2011). A sufficient condition
for Assumption A5(ii) is that for some 7, > ¢/2 and ny > p/2 we have supyey |7y, < oo and

Sup,eg || g||oo,ng < 00; see Theorems 2.7.11 and 2.7.1 in van der Vaart and Wellner (1996). Assumptions
A6 is standard.

6.3 Preliminary Results

In all the preliminary results Assumptions 1-3 in the text are assumed to hold.

Lemma A1l: Let Assumptions A1-A3 hold. Then, Hﬁn — hoH =op(1).

Proof of Lemma A1l: We proceed to verify the conditions of Theorem A.1 in Chen and Pouzo
(2012). Recall Hy = {h € H : m(X,h) = 0 a.s.}. By Assumption A3, H( is non-empty. The penalty
function P(h) = ||h||? is strictly convex and continuous and ||m(-; h)||? is convex and continuous. Their
Assumption 3.1(i) trivially holds since W = I,. Their Assumption 3.1(iii) is A3(i-ii). Their Assumption

3.1(iv) follows from A3(ii) since
[[m (5 T (o) < [ (o) — hol|* = o(1).
To verify their Assumption 3.2(c) we need to check
sup 142 = [0I°| = op(1) (20)
heHn
and
[ITLa () I” = 1ol | = o(1).

The last equality follows because ‘HHn(ho)H2 - Hh0|]2‘ < C||I,(ho) — hol| = o(1). Condition (20) is
our Assumption A3(iii). Assumption 3.3 in Chen and Pouzo (2012) follows from their Lemma C.2 and
our Assumption A2. Assumption 3.4 in Chen and Pouzo (2012) is satisfied for the Ly norm. Finally,
Assumption A3(iv) completes the conditions of Theorem A.1 in Chen and Pouzo (2012), and hence
iln — h()H = Op(l). [ |

implies that ‘

Lemma A2: Let Assumptions A1-A4 hold. Then, ||A,, — hOH = Op(/\?i“(ah’2)+A;1cn) and [|gn — gol| =

OP()\TH(%Q) + A ten).

Proof of Lemma A2: For simplicity of exposition we consider the case p = ¢ = 1. The proof for

p>1or g > 1 follows the same steps. By the triangle inequality, with hy, defined in (19),

|

Under hg € R((T*T)**/?), Lemma A1(1) in Florens, Johannes and Van Bellegem (2011) yields

hp — By,

] <

+ 1A, = holl -

7, = holl = O(AFn2), (21)

- . ~1
With some abuse of notation, denote Ay, = (T T4 A1 ) . Then, arguing as in Proposition 3.14 of
Carrasco, Florens and Renault (2006), it is shown that

T*(X — Tho) + A, (T"T — T*T)(hy, — ho), (22)



and thus,

As in Carrasco, Florens and Renault (2006),

N P T [ N N

A

Ay

n

‘:(L%A;U.

Since T is a bounded operator

| = Tho)| = 0r ([|X = Tno)])
= Op (1),

where recall ¢, 7 = K,/n + K, 2ar - and where the second equality follows from an application of
Theorem 1 in Newey (1997) with y = x — ho(z) there. Note that Assumption 3 and Assumption A2(iv)
imply that Var[y| X] is bounded (which is required in Assumption 1 in Newey (1997)). Also note
that the supremum bound in Assumption 3 in Newey (1997) can be replaced by our Ls—bound in
Assumption A2(iii) when the goal is to obtain Lo—rates.

On the other hand,

fr2 o] <on

) +on (J2-1) o

and

-

< 1P |||7 =T + 1P, =T

:opwf—ﬂb+0m%py (25)

We now proceed to establish rates for HT — TH . As in Newey (1997), we can assume without loss of

generality that E[q’"(Z)q’"(Z)'] is the identity matrix. Then, by the triangle inequality,

HT—TH = sup HTh—ThH
heH,||h]<1
< s [ Th—mp(p )|+ sup [[BIZ)X = ] = map ()
heH,||h]<1 heH,||h|I<1
< sup | @pp(h) — map(h)]| + O(KL ),
heH,||h|<1
where .
fnp(h) = (P'P)™1>  pM(Xi)h(Z;).
i=1
Write

fnp(h) = Tnp(h) = Qo Plen/n + Q3 P'(G — Prnp(h)) /m,

where ¢, = H — G, H = (h(Z4),...,h(Z,)), and Gy, = (Th(X4),...,Th(X,,))’. Similarly to the proof
of Theorem 1 in Newey (1997), it is shown that

sup || Qo Pen/n||? = Op(K,/n),
heH,||h||<1
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where we use Assumption A2(iv) to show that
sup  Elepey,| X] < CIL.
heM,||h||<1
That is,
2
sup F “Q;nlmP/ah/n‘
heH, ||h]|<1

X} = sup FE [EhP(P/P)_1P/6h|X] /n
heH, ||h||<1

= sup E[tr{P(P'P)'Pepe}| X] /n
heM,||n||<1

= sup tr{P(P'P)"'P'Elepe}| X]}/n
heM,||h]|<1

< Ctr{P(P'P)"'P'}/n
< CK/n
Similarly, by A2(iii)

sup HQ;,LIP'(G;L — Pﬂnm(h))/nH = Op(K, 7).
heH,||h]I<1

Then, conclude HT - TH = Op(car), ‘
(24) and (25) ‘

The proof for g, is the same and hence omitted. H

T — T*TH = Op(cp), where ¢, = ¢, 1 + ¢p 1+, and by (23),

i‘Ln — h)\n = OP (A;lcn) .

Define the classes
F={f(y,2,2) = h(z)(y —2'Bo) : h € H}.
and
G ={g(y,2,2) = h(z)z : h € H}.
Lemma A3:

(i) Assume 0 < E[X|*] < C. Then, Nyj(e,G, |Ill;) < Nij(e/ | Xl 1, [I-llo)-

(ii) Assume Var[Y — X'fo| Z] is bounded. Then, Ji (3, F,|-|) < oo if J;j(6,H,]-]]) < oo for some
0> 0.

(111) N[-}(@H'gv ””1) < N[.](CG,H, H”2) X N[}(Cev g, H”2)

Proof of Lemma A3: (i) Let [[;(Z)X,u;(Z)X] be an ¢/E[|z|*] bracket for H. Then, by Cauchy-

Schwartz inequality

15(2)X = u (Z) X[y < [115(2) = w3 ()] | Xl

<ee.
This shows (i). The proof of (ii) is analogous, and follows from
1L5(2)U —ui(Z2)U| < C|l;(2) = ui(2)|| < Ce,

where C'is such that Var[Y — X'fy| Z] < C a.s. The proof of (iii) is standard and hence omitted. B
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7 Appendix B: Proofs of Main Results

Proof of Lemma 2.1: The n'/2-estimability of the OLIVA implies the n'/2-estimability of the vector-
valued functional
E[Xg(X)],

which in turn implies that of the functional
E[X;g9(X)],

for each component X; of X (ie. X = (Xy,...,X,)’). By Lemma 4.1 in Severini and Tripathi (2012),
the latter implies existence of h; € Lo(Z) such that

Elhi(2)| X] = X as.

This implies Assumption 3 with h(Z) = (h1(Z),...,hy,(Z)). B

Proof of Proposition 2.2: We shall show that for any h(Z) € La(Z) such that
E[h(Z)| X] =X as.

the parameter 3 = E[h(Z)X'|7'E[h(Z)Y] is uniquely defined. First, it is straightforward to show that
for any such h, E[h(Z)X']"! = E[XX']7!. Second, we can substitute Y = go(X) + Pyg(X) + ¢, and
note that for all h, E[h(Z)Pyg(X)] = 0, so that

for all h satisfying F[h(Z)] X] = X a.s. B

Proof of Proposition 2.3: We shall show that under the conditions of the proposition there exists a
h(Z) € La(Z) such that
E[h(Z)| X] =X as.

Denote 7 = E[n(Z)]. For a binary X, and since 0 < 7 < 1, the last display is equivalent to the system
E[Xh(Z)] =7 and E[(1 — X)h(Z)] =0,

E[NZ)] = 7 and E[n(Z)h(Z)] = 7.

Each equation from the last display defines a hyperplane in h. Since 7(Z) is not constant, the normal
vectors 1 and 7(Z) are linearly independent (not proportional). Hence, the two hyperplanes have an

non-empty intersection, showing that there is at least one h satisfying F[h(Z)| X] = X a.s.
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Moreover, by Theorem 2, pg. 65, in Luenberger (1997) the minimum norm solution is the linear
combination of 1 and 7(Z) that satisfies the linear constraints, that is, ho(Z) = o + ym(Z) such that
« and -y satisfy the 2 x 2 system

O+ YT ="
ot +vE[r?(Z)] = 7.
Note that this system has a unique solution, since the determinant of the coefficient matrix is Var(n(Z2)) >

0. Then, the unique solution is given by

al 1 = R
y| | ® ER2) 7
[ _ (. &(-n)

_ T (1 U(IT(W(Z)))

7(1—7) :
i var(mw(Z))

Proof of Proposition 2.4: Using E[h(Z)a] = 0, the conditional uncorrelation and (4), we can write

E[MZ)X]" E[W(Z)Y]
ZE[h(Z) |7 E[n(Z)X0)] + E[MZ)X] ™' E[h(Z)a]
= BIE[MZ)| X]X]7' B[E[n(Z)| X]X E[b] X]]
= BIX?| 7 B[X?E[b] X]]
= Efw(X)b].

Proof of Proposition 3.1: Assume without loss of generality that X is scalar and note that, by
Engl, Hanke and Neubauer (1996), h1(Z) = ho(Z) + h,(Z), with Cov(ho(Z),h 1 (Z)) = 0. Thus, since
E[ho(Z)| X] = X and E[h1(Z)| X] = X, then E[h(Z)| X] =0 a.s., and hence

0=Cov(X,h,(Z)) =arVar(h,(2)),
and hence, if hy # ho (i.e. Var(h, (Z)) > 0) then oy =0. B

Proof of Theorem 3.2: Write

5= (Bn

[@ox])” (B [fni]

(o) (o ]

Note that

E, [izn(zi)X;] = B, [ho(Z)X!] + 0p(1)
= E [ho(Z:)X]] + op(1), (26)
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where the first equality follows from Lemma A3(i), Lemma Al, Assumption A5 and h, € H by an
application of a Glivenko-Cantelli’s argument, and the second equality follows from the Law of Large
Numbers.
Likewise, Lemma A3(ii), Lemma A1, Assumption A5(ii) and h,, € H, yields for f = h,(Z;)U; and
fo = ho(Z:)Ui,
Gnf = Gufo +op(1),

since the class F is a Donsker class, see Theorem 2.5.6 in van der Vaart and Wellner (1996). Then,
Vi (8= 80) = (B [ho(Z)X{] +0p(1) ™ (VABn [ho(Z)U) + VP [{hn(Z) = ho(Z) } UI] ) . (27)
We investigate the second term, which with the notation (hy, hs) = E[h1(Z)ho(Z)] can be written as
VnP Hiln(zi) - hO(Zi)} Ui] = \/ﬁ<iln - ho,u>

where u(z) = E[U| Z = z| is in Ly(Z) by A5(i).
From the proof of Lemma A2, and in particular (21) and (22), and Assumption A6(ii),

~

\/ﬁ<ﬁn . ho,u> - ﬁ<hn . h)\n,u> /b, — ho,u)
= Vi (Ap, (X = Tho),u) + Op (Vac, X =10 40 (Vaxgin(en2)
— <AAnT*(X - Tho),u> +op(1).

Next, we write

I
Q
S
_l_
Q
3
_l_
Q
3
_l_
Q
S

From the simple equality B~' —C~' = B~!(C'— B)C~" we obtain A, — Ay, = A, <T*T - T*T) Ay,

and from this and Lemma A2,
|Can| = Op (v, cp)

(Cul = Op (VA 2)
(Conl = Op(vAX;22)

op(1), by A6(i);
op(1), by A6(i);
op(1), by A6(i).

To analyze the term Cy,, we use Theorem 3 in Newey (1997) after writing
Cin=+vn <Tgp, vn> ,

where ¢ = X — hg and v, = T'A), T*U.
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Assumption A6(iii) implies Assumptions 1 and 4 in Newey (1997). Assumption A2 implies Assump-
tions 2 and 3 in Newey (1997) (with d = 0 there). Note that by Lemma A1(A.4) in Florens, Johannes
and Van Bellegem (2011)

[onll < [[TAN T U] < U] < oo.

Hence, Assumption 7 in Newey (1997) holds with gy = T'¢ there. Hence, Theorem 4 in Newey (1997)

applies to C1, to conclude from its proof that
1 n
Cln = _%ZZ:Un(XZ)(hO(ZZ) —XZ') +OP(1). (28)

Note that
T*U = EY - 8,X| 2] = Elgo(X) — B4X| 2],

and furthermore, go(X) — (X is in R((TT*)*/?), ag > 0. Then,
1 & 1 <& ,
7 Z:Un(Xi)(ho(Zi) - X;) = 7n 22: (90(X:) — B Xi) (ho(Zi) — Xi) + op(1), (29)
since by Lemma Al in Florens, Johannes and Van Bellegem (2011),

Var (% Z [on(X3) = (90(X3) — 85.X:)] (ho(Z1) - X») < O o) — (90(X0) — 50X |
<oxe?,
Thus, from (27), (28) and (29)
Vi (B = o) = (B [ho(Z)X{]) ™" VaEw [m(Wa. fo. ho, o)) + 0p (1).

The asymptotic normality then follows from the standard Central Limit Theorem.
We now show the consistency of 3 = E,, [ﬁn(Zi)Xg]_lEn [T, ;| En [iln(Zi)X{]_l. Write, with mg; =
m(WZ7 57 h07 90)7

En[mmm/m]_En[mOZmE)z] = En[mOi(m;zi_mE)i)]+En[(mm'_mOi)mé)i]+En[(mni_m0i)(mni_m0i)/] (30)

and
i —moi = (Y — go(X;)) (ﬁn(Zz’) - ho(Zz')) — (Gn(Xi) — 90(X3)) (ﬁn(Zz') - X,~> :

By Cauchy-Schwartz inequality and Assumption 2

E, [mm‘ (Y = g0(X3)) (ﬁn(zi) - hO(Zi))/}

The class of functions
{Ih(2) — hol* - h € H}
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is Glivenko-Cantelli under the conditions on H, and thus £, [ hn(Z;) — ho(Z;)

A1l. Likewise,

2
} = op(1) by Lemma

2

5 [ (0,060 ~ 006 (20~ ) ]| < €B 19060 — u(x00]

:OP(1)7

by Assumption A5(ii) and Lemma A1l. Other terms in (30) are analyzed similarly, to conclude that
they are op(1). Together with (26), this implies the consistency of 3. B

Proof of Theorem 4.1: We first show that the OLS first-stage estimator & = (&}, a2)" of ap =
(o), a2)" in the regression
Xy = O/le + OégilQn(Z) + e,

satisfies \/n(& — ag) = Op(1). Note e = V — ag(hon(Z) — hao(Z)), and denote hy,(Z) = (X!, hon(Z))
and ho(Z) == (Xi,hgo(Z)), Then,

Vila — ag) = <En [ﬁ;ﬁgb_l VnEn [ﬁne} :
Lemma A2 and a Glivenko-Cantelli’s argument imply F,, [ﬁnﬁg] = E, [ho(Z)hy(Z)] +op(1) = Op(1).
By Hﬁgn — hgoH = 0p(n_1/4), it holds
VAEy |ha(Z)e| = VB, [h(2)V | = aaviBy |h(Z) (hou(2) ~ ho(2))

= VnE, [ho(Z)V] — azv/nkE, [ho(Z)(izgn(Z) - hzo(Z))} +VnE, [(ﬁn(Z) —ho(Z)V| +0p(1)

= A — Ay + Ag + Op(l).

The standard central limit theorem implies A; = Op(1).

An empirical processes argument shows
Ay = VRE [ho(Z)(han(Z) = hao(2))] + 0p(1).
By A6(ii),
VIE |ho(Z)(hon(Z) = hao(2))| = VRE [ho(Z)(han(Z) = B, (2))| + VE [ho(Z) (ha, (Z) = hao(Z)]
= VnE [ho(Z)(han(Z) = b, (2))] + 0p(1).

While (22) and A6(ii) yield

A = /B [ho(2) Ay, T*(X = Tho)(2)| + 0p(1)

— /nE [ho(Z)AAnT*(X _ Tho)(Z)] +op(1)

= ViE [u(2)(X — Tho)(2)] +op(1),
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where v(Z) = T Ay, ho(Z). By ho € R(T*), ho = T*¢ for some ¢ with ||1| < oo, then by Lemma
A1(A.4) in Florens, Johannes and Van Bellegem (2011)

[0l < [T AN, T[]l

< [l < o0

Then, by Theorem 3 in Newey (1997), Ay = Op(1). A similar argument as for Ay shows As = Op(1),
because E[V| Z] € R(T*). Thus, combining the previous bounds we obtain /n(& — ag) = Op(1).

We proceed now with second step estimator. Denote S = (X, V) and 0 = (8, p)'. Let 6 denote the
OLS of Y on S. Since, since under the null p =0, then

0= (£.[58]) " B, [5Y]

where the last equality follows because

VIE, [(V = V)U] = V(@ = a0) En [ho(2)U] + dav/nEy [U(han(Z) — hao(2))
= Op(l) X Op(l) + Op(l) X Op(l),

with the term /nE, [U(ﬁgn(Z) - hgo(Z))] being op(1) because by A6(iv)

VAE, |Uhzn(2) = hao(2))| = /P [Ulhan(2) = ho(2))] + 0p (1)
= Op(l).

Thus, the standard asymptotic normality for the OLS estimator applies. ll

8 Appendix C: Tables for Simulations
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K, =2J, K, =3J,
o p 0 0.001  0.01 0.1 0.2 0.3 0.6 0 0.001  0.01 0.1 0.2 0.3 0.6
4 0 04 1058 984 837 705 638 6.62 654 893 867 T7.65 698 642 6.61 6.59
0.77 077 066 065 064 064 065 071 076 0.67 065 064 0.64 0.65
08 1.8 162 160 167 156 1.65 1.60 187 1.62 1.60 1.67 155 1.65 1.60
0.16 016 016 015 016 016 017 016 016 0.16 0.15 016 0.16 0.17
03 04 11.25 1095 982 735 732 824 6.65 88 873 867 745 722 830 6.63
080 082 072 069 068 069 073 073 080 071 069 068 069 0.73
0.8 207 217 209 201 200 1.8 203 205 214 210 2.02 200 189 203
018 020 021 020 020 020 020 018 020 021 020 020 020 020
09 04 1770 1946 1545 1349 1237 12.04 1233 15.17 16.57 14.92 13.47 1257 12.04 12.37
1.67 147 133 121 114 124 131 159 139 1.34 121 114 124 131
0.8 584 572 534 535 552 518 513 553 562 535 539 552 518 513
0.51 054 057 050 054 050 049 051 054 057 050 054 050 0.49
5 0 04 994 982 847 6.72 626 618 639 797 821 775 671 629 619 6.41
086 084 066 065 063 064 064 07 080 0.67 065 063 0.64 0.64
08 191 167 163 170 155 1.64 159 186 1.65 1.65 1.70 154 1.64 1.59
0.16 016 016 015 015 016 017 016 016 0.16 015 016 0.16 0.17
0.3 04 11.94 1082 1017 722 68 739 658 916 855 890 7.24 679 742 6.60
089 087 071 069 069 068 073 078 08 072 069 069 068 0.73
0.8 210 219 214 203 201 186 2.02 205 213 212 2.02 200 18 202
019 020 021 020 020 020 020 018 020 021 020 020 0.20 0.20
09 04 1846 18.10 15.73 1294 11.57 1210 12.01 1523 16.08 14.60 12.83 11.51 12.13 12.04
177 155 135 121 113 124 130 159 147 135 122 113 123 130
08 58 579 544 534 548 517 514 557 565 539 529 549 518 514
053 055 057 050 054 050 049 052 055 057 050 054 050 0.49
6 0 04 969 1005 821 627 620 567 6.02 78 794 726 632 622 565 6.04
092 08 067 064 063 063 064 080 080 0.68 0.65 063 0.63 0.64
08 19 1.78 1.70 169 155 162 158 191 166 163 1.68 154 1.62 1.58
0.16 016 016 015 015 016 017 016 016 0.16 0.15 015 0.16 0.17
0.3 04 11.08 10.10 965 7.02 680 722 651 880 823 877 714 691 719 6.50
1.04 091 073 069 069 068 073 082 087 073 069 069 068 0.73
08 223 222 219 203 201 18 202 204 211 217 202 200 1.84 201
019 020 021 020 019 020 020 019 020 021 020 020 020 0.20
09 04 1937 1872 1526 12.61 11.74 12.03 12.69 14.26 14.86 13.95 1251 11.56 11.93 12.61
192 158 134 119 113 123 129 160 146 134 120 113 123 129
08 592 590 555 529 545 510 513 555 570 548 528 547 507 513
053 056 057 051 054 050 049 052 055 057 051 054 050 049
7 0 04 1071 860 732 586 588 543 556 795 771 688 593 592 546 5.61
095 085 068 065 063 063 063 082 080 0.69 065 063 0.63 0.63
08 207 174 168 169 154 1.63 158 192 166 1.64 168 154 1.62 1.58
0.16 016 016 015 015 016 017 016 016 016 0.15 015 0.16 0.17
03 04 11.22 943 912 688 672 702 625 870 785 821 687 6.74 695 6.21
1.03 09 074 0.68 0.68 068 072 083 087 075 068 0.68 0.68 0.72
08 237 224 227 204 199 184 202 211 213 219 202 200 1.84 2.00
019 020 021 020 019 020 020 019 020 021 020 020 020 0.20
09 04 19.78 1828 1558 13.06 12.13 1253 13.02 14.80 15.07 14.24 1295 12.12 1252 13.07
198 166 1.31 121 112 123 131 162 151 1.3¢ 121 112 123 1.30
0.8 6.04 6.07 548 521 542 509 513 571 57 531 523 546 510 5.14
053 056 057 051 054 050 049 053 056 057 050 054 050 0.49

Table 7: Sensitivity analysis of MSE(x1072) for DGP1.
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K, =2J, K, =3J,
Jo op 0 0.001  0.01 0.1 0.2 0.3 0.6 0 0.001  0.01 0.1 0.2 0.3 0.6
4 0 04 3649 3499 31.23 32.82 36.11 36.04 38.73 33.99 34.41 32.02 33.59 35.61 3598 38.43
3.49 313 332 48 526 530 6.15 3.66 338 355 486 522 524 6.11
0.8 13.80 15.88 15.68 17.08 16.79 17.37 1746 14.79 17.27 16.49 18.05 1741 1791 17.74
2.25 222 245 258 268 295 287 242 237 263 278 281 3.06 293
0.3 04 41.70 3496 3440 36.76 37.38 38.83 37.93 3948 31.79 34.65 37.43 37.12 38.59 37.64
3.64 336 314 472 543 542 6.02 3838 358 330 469 535 536 593
0.8 1521 16.66 15.59 17.44 17.60 18.77 20.40 16.19 1729 16.70 18.43 1817 19.27 20.63
2.50 241 233 257 268 293 316 262 258 250 277 283 3.06 3.22
0.9 04 5143 56.95 41.81 43.76 41.78 48.76 4829 43.82 49.86 42.62 44.71 42.08 48.78 48.02
4.30 4.56 444 528 6.07 6.09 629 405 4.62 467 526 6.05 6.02 6.23
0.8 2387 2237 2047 20.34 19.39 21.47 2411 23.58 2294 20.95 21.22 19.69 22.05 24.62
3.28 291 274 3.09 356 328 348 321 296 290 327 371 340 3.54
5 0 04 3280 3647 29.03 31.08 32.71 3221 3481 30.60 3229 29.12 31.74 3292 32.35 34.69
3.46 3.10 3.08 446 472 527 552 346 322 326 446 4.67 516 546
0.8 12.60 14.56 13.88 15.41 15.28 15.86 15.66 13.05 1526 14.59 16.41 1577 16.34 15.91
1.62 154 170 174 190 204 226 1.7 162 1.8 183 197 207 229
0.3 04 46.68 32.80 3250 3272 3227 36.03 3573 43.06 32.18 33.01 33.73 3299 35.84 35.78
3.77 3.19 294 431 476 524 577 349 342 314 428 470 519 5.69
0.8 1390 15.09 14.25 16.12 1598 16.98 18.18 14.54 15.85 14.93 16.86 16.60 17.28 18.46
1.84 1.83 169 179 193 219 219 181 190 1.78 190 199 223 222
09 04 49.09 5426 38.87 38.62 38.08 44.49 4272 41.66 42.61 38.63 39.38 3844 45.13 4281
4.62 437 409 482 533 557 6.04 4.04 433 429 480 524 548 597
0.8 21.56 20.61 1854 1811 18.29 20.63 22.32 21.22 20.74 18.80 18.96 18.62 21.05 2291
2.54 237 226 230 256 257 264 242 229 232 238 265 265 2.67
6 0 04 5393 2947 2759 2854 29.66 30.13 32.74 33.06 27.94 29.22 29.64 30.07 30.51 33.01
3.34 299 292 419 452 477 521 3.01 324 317 414 447 469 5.12
0.8 12.60 14.28 13.17 15.08 14.98 15.34 14.86 12.88 14.92 13.97 1590 1539 15.81 15.12
1.71 148 162 1.74 186 206 210 1.62 155 1.74 182 189 211 212
0.3 04 40.03 29.34 29.99 30.17 29.78 33.68 33.86 35.84 27.83 31.29 31.79 30.68 33.82 34.03
3.62 3.14 267 405 460 470 521 347 311 283 400 457 467 514
0.8 13.62 14.06 13.98 15.77 1540 16.48 17.31 14.11 14.52 14.67 16.34 15.92 16.83 17.53
1.83 1.64 154 178 1.8 210 227 173 1.71 164 1.8 189 213 230
09 04 60.72 46.57 3546 36.41 3546 40.62 41.88 42.88 38.53 3539 37.34 36.13 41.08 42.29
4.39 433 384 462 521 524 561 3.87 420 4.05 464 514 519 553
0.8 2090 20.27 17.87 17.85 17.71 19.02 21.84 20.17 20.08 18.06 18.60 18.12 19.42 22.26
241 222 194 219 259 245 250 227 212 198 224 264 249 254
7 0 04 11741 2985 26.96 27.86 28.58 28.32 31.52 33.51 2819 27.72 29.50 29.26 28.74 31.74
3.25 3.05 279 405 424 462 509 338 3.09 3.05 405 422 456 501
0.8 1254 14.01 1292 14.70 14.49 14.82 14.59 12.75 14.55 13.54 15.36 14.91 15.23 14.85
1.46 136 154 158 1.74 187 195 144 137 163 163 177 191 1.97
0.3 04 4341 29.13 30.90 29.18 29.03 32.56 33.17 31.83 28.27 31.45 30.96 29.74 33.54 33.57
3.43 290 267 390 414 446 516 335 3.02 284 384 4.08 442 5.10
0.8 1424 14.29 1388 15.25 15.23 1598 16.62 14.43 14.31 14.37 15.98 15.67 16.34 16.84
1.59 154 144 159 176 198 194 157 155 151 165 1.79 201 197
0.9 04 7730 44.87 34.52 34.60 34.92 3892 40.54 53.12 37.77 34.27 3577 3530 39.87 40.83
4.78 418 384 428 485 506 535 395 421 396 430 483 501 530
0.8 20.53 19.65 16.80 17.38 16.84 18.61 21.06 19.57 19.96 17.00 18.32 17.28 18.87 21.40
2.29 212 200 2.00 227 229 243 209 207 203 203 230 233 245

Table 8: Sensitivity analysis of MSE(x1072) for DGP2.
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K, =2J, K, =3J,
o op 0 0.001  0.01 0.1 0.2 0.3 0.6 0 0.001  0.01 0.1 0.2 0.3 0.6
4 0 04 8950 7924 86.87 8535 89.05 93.34 107.17 90.67 8294 89.85 87.03 89.82 94.38 107.13
764 7.80 7.65 9.97 9.82 9.73 11.02 7.96 8.21 7.92 9.91 9.81 9.68 11.00
0.8 53.60 47.34 51.40 48.01 53.19 54.75 4933 53.39 47.18 50.88 4833  52.86  54.43  49.25
5.00  4.96 4.73 5.25 5.27 5.64 5.80 5.04 5.04 4.80 5.27 5.30 5.64 5.82
0.3 04 8201 81.80 77.76 87.58 89.50 106.04 90.46  82.71 83.17 81.33 89.08 89.96 105.42 90.14
7.68  8.17 8.88 9.52 11.00  10.64  10.21 7.89 8.46 9.06 9.47 10.94  10.56  10.19
0.8 5598 51.81 52.21 5212  56.89  55.73  49.28 5534 51.92 5210 5234  56.79 5543  48.96
5.80 5.85 5.38 5.47 6.11 6.14 6.09 5.85 5.92 5.46 5.52 6.13 6.18 6.09
09 04 97.77 96.58 101.87 102.88 106.35 122.48 126.38 102.13 98.56 104.74 104.85 107.05 122.36 124.53
9.99  8.99 9.52 10.55  11.78  12.66  12.69 9.93 9.09 9.76 10.53  11.72 12,61  12.65
0.8 64.62 62.55 66.26 61.41 63.56 63.49 60.79 63.63 6249 65.04 60.96 6321 62.92 60.36
6.17  6.03 6.79 7.14 7.44 7.18 7.60 6.24 6.08 6.88 7.16 7.46 7.18 7.61
5 0 04 8884 7945 87.03 80.84 84.82 9425 105.07 91.18 83.15 9148 8397 86.96 96.56 105.12
7.58  7.96 7.72 10.00 9.97 9.85 11.45 8.16 8.20 7.94 9.91 9.94 9.79 11.41
0.8 53.51 4752 51.81 4851 5395 55.35 50.87 53.70 46.67 52.31 4897 53.81 54.85  50.42
5.07  5.03 4.79 5.32 5.36 5.76 5.91 5.12 5.13 4.86 5.39 5.37 5.76 5.91
0.3 04 8137 7498 7592 8146 87.46 103.16 9233 85.74 79.16 79.95 85.07 88.91 104.55 92.32
746  7.77 8.69 9.43 11.13  10.78  10.40 7.99 8.13 8.98 9.37 11.06  10.71  10.36
0.8 55.68 51.65 52.02 51.98 57.78 56.88 50.81 5593 51.62 51.85 5242 57.58 56.71  50.72
5.86  5.95 5.44 5.58 6.24 6.21 6.26 5.91 6.03 5.53 5.62 6.25 6.24 6.26
09 04 96.89 9477 96.32 99.18 104.32 119.06 123.94 96.91 95.00 97.44 102.57 105.87 119.05 123.89
9.59  8.78 9.24 10.47 1190 12,90 1297 9.66 9.28 9.60 1043  11.85 1283 1291
0.8 6397 62.13 6543 61.15 6398 63.78 61.76 63.33 62.07 64.64 60.71 64.02 63.28 61.24
6.29  6.15 6.86 7.28 7.57 7.31 7.75 6.36 6.21 6.99 7.29 7.58 7.31 7.7
6 0 04 8606 7741 71.12 79.02 81.58 90.28 102.63 86.40 80.97 81.00 81.98  84.73  92.78 103.54
769 7.76 7.75 9.91 9.97 9.84 11.74 7.98 8.18 797 9.84 9.89 9.76 11.67
0.8 53.87 46.98 51.86 4859  54.17  55.23 51.42  54.67 46.77 5237 49.05 54.67 54.88 51.14
5.09  5.10 4.86 5.41 5.44 5.88 6.05 5.14 5.19 4.91 5.48 5.48 5.88 6.05
03 04 7692 7425 7531 80.21 86.00 99.48 87.68 8340 79.15 80.89 8399 88.55 103.19 87.78
7.67  7.90 8.48 9.37 11.09  10.83  10.60 8.24 8.22 8.83 9.27 10.97  10.77  10.53
0.8 5546 51.27 51.85 51.97 57.86 57.62 51.55 56.03 50.96 51.81 52.06 58.13  57.56  51.55
590  6.05 5.51 5.68 6.34 6.33 6.41 5.95 6.09 5.62 5.72 6.33 6.35 6.39
09 04 9532 9426 92.09 98.61 99.25 11532 122.08 95.61 9297 95.75 100.82 100.28 115.61 123.20
9.42  8.98 9.19 10.48 1196 13.03  13.20 9.69 9.15 9.49 10.30  11.86 1291  13.11
0.8 63.90 61.49 65.11 60.39 63.88 63.52 61.84 63.14 61.26 64.76 60.31 63.73  63.42  61.50
6.39  6.25 7.01 7.40 7.68 7.45 7.91 6.44 6.31 7.08 7.38 7.67 7.43 7.90
7 0 04 8462 7574 6921 76.80 7868 89.40 98.63 8.16 80.13 77.55 80.96 82.60 91.46 100.63
772 771 7.62 9.82 9.94 9.85 11.80 8.13 8.05 7.97 9.80 9.85 9.73 11.68
0.8 54.26 4725 52.15 4855 54.52  55.30 51.60 54.84 46.79 52.37  49.09  55.11  55.00 51.47
5.08 5.14 4.87 5.47 5.46 5.91 6.10 5.19 5.22 4.98 5.53 5.50 5.90 6.10
03 04 7210 7449 7388 7947 85.55 100.92 8544 7883 77.45 81.06 8228 87.01 103.07 85.78
7.86  7.70 8.40 9.33 11.04  10.74  10.62 8.03 8.09 8.78 9.26 1093  10.66  10.54
0.8 55.32 51.55 51.33 51.80 58.06 57.40 51.56 5542 50.94 51.98 52.07 5823  57.67 51.71
5.88  6.06 5.51 5.70 6.37 6.36 6.47 5.98 6.11 5.63 5.75 6.36 6.39 6.45
0.9 04 90.60 90.58 91.68 98.10 98.24 111.18 119.73 91.37 91.41 9291 101.61 100.15 113.37 121.70
9.62  9.17 8.97 10.35 1192 13.01 13.11 9.86 9.26 9.24 10.18  11.76  12.85 12.99
0.8 62.06 60.28 65.22 59.96 63.60 6341 6221 6224 60.52 65.19 60.12 63.37 63.10 61.89
6.43  6.23 7.02 7.37 7.70 7.51 7.98 6.43 6.28 7.10 7.36 7.69 7.48 7.95

Table 9: Sensitivity

analysis of MSE(x1072) for DGP3.
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