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ABSTRACT. We propose an instrumental variables method for estimation in linear models with endoge-
nous regressors in the high-dimensional setting where the sample size n can be smaller than the number
of possible regressors K, and L > K instruments. We allow for heteroscedasticity and we do not need
a prior knowledge of variances of the errors. We suggest a new procedure called the STIV (Self Tuning
Instrumental Variables) estimator, which is realized as a solution of a conic optimization program.
The main results of the paper are upper bounds on the estimation error of the vector of coefficients in
£p-norms for 1 < p < oo that hold with probability close to 1, as well as the corresponding confidence
intervals. All results are non-asymptotic. These bounds are meaningful under the assumption that
the true structural model is sparse, i.e., the vector of coefficients has few non-zero coordinates (less
than the sample size n) or many coefficients are too small to matter. In our IV regression setting,
the standard tools from the literature on sparsity, such as the restricted eigenvalue assumption are

inapplicable. Therefore, for our analysis we develop a new approach based on data-driven sensitivity
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characteristics. We show that, under appropriate assumptions, a thresholded STIV estimator correctly
selects the non-zero coefficients with probability close to 1. The price to pay for not knowing which
coefficients are non-zero and which instruments to use is of the order y/log(L) in the rate of conver-

gence. We extend the procedure to deal with high-dimensional problems where some instruments can

be non-valid. We obtain confidence intervals for non-validity indicators and we suggest a procedure,

which correctly detects the non-valid instruments with probability close to 1.
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1. INTRODUCTION

Endogeneity is one of the most important issues in empirical economic research. Consider the

linear model
(1.1) yi=axlp 4, i=1,...,n,

where z; are vectors of explanatory variables of dimension K x 1, w; is a zero-mean random error
possibly correlated with x;, and 8* is an unknown parameter. We denote by =z, £k = 1,..., K,
the components of x;. The regressors x;; are called endogenous if they are correlated with u; and
they are called exogenous otherwise. Without loss of generality, we assume that the endogenous
variables are x1;, ..., %, i for some kepq < K. It is well known that endogeneity occurs, for example,
when a regressor correlated both with y; and regressors in the model is unobserved; in the errors-
in-variables model when the measurement error is independent of the underlying variable; when a
regressor is determined simultaneously with the response variable y;; in treatment effect models when
the individuals can self-select to the treatment (see, e.g., Wooldridge (2002)). The quantities of
interest that we would like to estimate are the components 3 of 3*. They characterize the partial
effect of the variable x; on the outcome y; for fixed other variables.

Having access to instrumental variables makes it possible to identify the coefficients 3} in such
a setting. A random vector z; of dimension L x 1 with L > K will be called a vector of instrumental

variables (or instruments) if it satisfies

where E[-] denotes the expectation. Throughout the paper, we assume that the exogenous variables
serve as their own instruments, which means that the components zj; of z; satisfy z; = xy;, where

' =kena+1,1=1,..., K — kenqa. We consider the problem of inference on the parameter 3* from n
T

independent realizations (yi,a:T zi), i =1,...,n. We allow these observations and the unobserved

10
error terms u; to be heteroscedastic.
In this paper, we are mainly interested in the high-dimensional setting where the sample size

n is small compared to K, and one of the following two assumptions is satisfied:
(i) only few coefficients 3} are non-zero (3* is sparse),
(i) most of the coefficients 3} are too small to matter (3* is approzimately sparse).

In this setting, the system of equations (L.2]) provides more moment conditions than observations, and

B* cannot be identified by usual instrumental variables methods. Even if L = K and the observations
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are identically distributed, the empirical counterpart of the matrix E[z; 27 | has rank at most min(n, K)
and is not invertible for K > n. To our knowledge, no estimator for this setting is currently available.

Cross-country or cross-states regressions are typical situations where one may want to use
high-dimensional procedures. The sample size is usually small and one may want to include many
variables. Economic theory is indeed not always explicit about the variables that belong to the true
model (see, e.g., Sala-i-Martin (1997) concerning development economics). Cross-country regressions
are widely used in macroeconomics, development economics or international finance. One possible
application is the estimation of Engle curves using aggregate data where the total expenditure is
endogenous and we consider as regressors various transformations of the total expenditure. There
are other contexts in economics where high-dimensional methods can be used. For example, it is
notably hard to obtain adequate data (legal issues, etc.) in contract economics and the researcher
may be interested in studying contracts between governors and public firms or state regulations of
private telecommunications company, etc. Even in contexts where sample sizes are relatively large,
the full search over the models is exponentially hard in the number of parameters. High-dimensional
methods can be extremely useful for this purpose since they provide computationally feasible methods
of variable selection. There are indeed many cases where the theory asks for a rich and flexible
specification. The list of possible regressors quickly increases when one considers interactions between
variables or wants to explore the IV-regression in nonparametric setting using linear combinations
of elementary functions to approximate the nonparametric function of interest. One may also want
to control for many variables when there is a rich heterogeneity or to justify exclusion restrictions
and the validity of instruments. Finally, even in cases where the theory is explicit and the selection
of variables is not a priori an issue, it becomes important in a stratified analysis when models are
estimated in small population sub-groups (for example, in estimating models by cells as defined by
the value of an exogenous discrete variable).

Statistical inference under the sparsity scenario when the dimension is larger than the sam-
ple size is now an active and challenging field. The most studied techniques are the Lasso, the
Dantzig selector (see, e.g., Candés and Tao (2007), Bickel, Ritov and Tsybakov (2009), Belloni and
Chernozhukov (2011a); more references can be found in the recent books by Bithlmann and van de
Geer (2011), as well as in the lecture notes by Koltchinskii (2011), Belloni and Chernozhukov (2011b)),
and the Bayesian-type methods (see Dalalyan and Tsybakov (2008), Rigollet and Tsybakov (2011)
and the papers cited therein). In recent years, these techniques became a reference in several ar-

eas, such as biostatistcs and imaging. Some first applications are now available in economics. Thus,
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Belloni and Chernozhukov (2011a) study the ¢;-penalized quantile regression and give an application
to cross-country growth analysis. Belloni and Chernozhukov (2010) present various applications of
the Lasso to economics including wage regressions, in particular, the selection of instruments in such
models. Belloni, Chernozhukov and Hansen (2010) use the Lasso to estimate the optimal instruments
with an application to the impact of eminent domain on economic outcomes. Caner (2009) stud-
ies a Lasso-type GMM estimator. Rosenbaum and Tsybakov (2010) deal with the high-dimensional
errors-in-variables problem where the non-random regressors are observed with error and discuss an
application to hedge fund portfolio replication. The high-dimensional setting in a structural model
with endogenous regressors that we are considering here has not yet been analyzed. Note that the
direct implementation of the Lasso or Dantzig selector fails in the presence of a single endogenous re-
gressor as the zero coefficients in the structural equation (II]) do not correspond to the zero coefficients
in a linear projection type model.

The main message of this paper is that, in model (II]) containing endogenous regressors, the
high-dimensional vector of coefficients can be estimated together with proper confidence intervals
using instrumental variables. This is achieved by the STIV estimator (Self Tuning Instrumental
Variables estimator) that we introduce below. Based on it, we can also perform variable selection.
All our results are non-asymptotic and provide meaningful bounds when either (i) or (ii) above holds
and log(L) is small as compared to n. In particular, they can be used in the still troublesome case
K <n < L, i.e., for models with relatively small number of variables and relatively large number of
instruments. As exemplified by Angrist and Krugger (1991), under a stronger notion of exogeneity
which is based on a zero conditional mean assumption, considering interactions of instruments or
functionals of instruments can lead to a large amount of instruments. This is related to the many
instruments literature (see, e.g., Andrews and Stock (2007) for a review). Important problems in this
context are selection of instruments (see, e.g., Donald and Newey (2001), Hall and Peixe (2003), Okui
(2008), Bai and Ng (2009), and Belloni and Chernozhukov (2011b)), estimation of optimal instruments
(see, e.g., Amemiya (1974), Chamberlain (1987), Newey (1990), and Belloni, Chen, Chernozhukov et
al. (2010)) or various other issues in the many instruments asymptotics (see, e.g., Chao and Swanson
(2005), Hansen, Hausman and Newey (2008), Hausman, Newey, Woutersen et al. (2009)). The number
of instruments can be much larger than the sample size. Carrasco (2008), building on Carrasco and
Florens (2000, 2008), analyzes this setting in the inverse problems framework and proposes a suitable
regularization method. The STIV estimator also leads to a smoothing procedure which is able to

handle this case.



5

The STIV estimator is an extension of the Dantzig selector of Candes and Tao (2007). Like
the Square-root Lasso of Belloni, Chernozhukov and Wang (2010), the STIV estimator is a pivotal
method independent of the variances of the errors, which are allowed to be heteroscedastic. The
implementation of the STIV estimator corresponds to solving a conic optimization program. The
results of this paper extend those on the Dantzig selector (see Candeés and Tao (2007), Bickel, Ritov
and Tsybakov (2009) and further references in Bithlmann and van de Geer (2011)) in several ways: By
allowing for endogenous regressors when instruments are available, by working under weaker sensitivity
assumptions than the restricted eigenvalue assumption of Bickel, Ritov and Tsybakov (2009), by
imposing weak distributional assumptions, by introducing a procedure independent of the noise level
and by providing finite sample confidence intervals.

We present basic definitions and notation in Section 2] and we introduce the STIV estimator
in Section [Bl In Section [ we present the sensitivity characteristics, which play a major role in our
error bounds and confidence intervals. They provide a generalization of the restricted eigenvalues
to non-symmetric and non-square matrices. The main results on the STIV estimator are given in
Section Bl In Section [6l we consider the setting where some instruments might be non-valid and we
wish to detect this. Section [7] discusses some special cases and extensions, in particular, the STIV
procedure with estimated linear projection type instruments, akin to two-stage least squares. Section
considers computational issues and presents a simulation study. All the proofs are given in the
appendix. Also in the appendix, we compare our sensitivity analysis to the more standard one based

on restricted eigenvalues in the case of symmetric square matrices.

2. BASIC DEFINITIONS AND NOTATION

We set Y = (y1,...,92)", U = (uy,...,u,)", and we denote by X and Z the matrices of
dimension n x K and n x L respectively with rows x;f and z;f, i=1,...,n

The sample mean is denoted by E,,[-]. We use the notation

n
by & 1 b A
EH[XI?U]:EZ%%Z'UM En| = Zzlz Ui,
i=1

where zy; is the kth component of vector x;, and zj; is the ith component of z; for some k € {1,..., K},
le{l,...,L}, a>0,b>0. Similarly, we define the sample mean for vectors; for example, E,,[U X] is

a row vector with components E,,[U Xy]. We also define the corresponding population means:

E[X{UY & = ZE% E[ZfU% 2 — ZEzh
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and set
A A
T = MaAX |zkil,  zix = max En

fork=1,...,K,l=1,...,L. We denote by Dx and Dy the diagonal K x K (respectively, L x L)
matrices with diagonal entries :1:,;*1, k=1,...,K (respectively, zl_*l, l=1,...,L).

For a vector f € RX let J(B) = {k € {1,...,K} : B, # 0} be its support, i.e., the set
of indices corresponding to its non-zero components S;. We denote by |J| the cardinality of a set
J C{l,...,K} and by J¢ its complement: J¢ = {1,..., K} \ J. The subset of indices {1,..., K}
corresponding to endogenous regressors is denoted by Jenq. The £, norm of a vector A is denoted by
|Alp, 1 < p < oo For A = (Aq,...Ax)T € RE and a set of indices J C {1,..., K}, we consider
)T

Ay 2 (A Ngesys -5 Axligesy)”, where 1y, is the indicator function. For a vector 8 € RE | we set

sign(ﬁ; £ (sign(p1),...,sign(Bg)) where

1 ift>0
sign(t) £2{ 0 ift=0
-1 ift<0

For a € R, we set ay = max(0,a), ajrl 2 (ay)7!, and a/0 £ oo for a > 0. We adopt the convention

0/0 £ 0 and 1/0c0 = 0.

3. THE STIV ESTIMATOR

The sample counterpart of the moment conditions (L2]) can be written in the form
1
(3.1) ;ZT(Y —X3*) = 0.

This is a system of L > K equations with K unknown parameters. If L > K, it is overdetermined; if
L = K the matrix Z7X is not invertible in the high-dimensional case K > n, since its rank is at most
min(n, K). Furthermore, replacing the population equations (2] by (B]) induces a huge error when
L, K > n. So, looking for the exact solution of (B.1]) in the high-dimensional setting makes no sense.
However, we can stabilize the problem by restricting our attention to a suitable “small” candidate set
of vectors 3, for example, to those satisfying the constraint

(3.2) '%ZT(Y - XB)' <,

[e.e]

where 7 > 0 is chosen such that (8.2 holds for § = g* with high probability. We can then refine

the search of the estimator in this “small” random set of vectors § by minimizing an appropriate
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criterion. It is possible to consider different small sets in ([B.2]), however, the use of the sup-norm
makes the inference robust when some (not all) instruments for each endogenous variable are weak.

In what follows, we use this idea with suitable modifications. First, notice that it makes sense to
normalize the matrix Z. This is quite intuitive because, otherwise, the larger the instrumental variable,
the more influential it is on the estimation of the vector of coefficients. For technical reasons, we choose
normalization by the maximal absolute value, i.e., multiplying Z by Dyz. Then the constraint (32 is
modified as follows:

(3.3) %DZZT(Y —-Xp)| <7

(e e}

Along with the constraint of the form (3.3]), we include the second constraint to account for
the unknown level o of the “noise” w;; in particular, if the errors u; are i.i.d., o corresponds to their
unknown variance. Specifically, we say that a pair (3,0) € R¥ x R satisfies the IV-constraint if it

belongs to the set

(3.4) T4 {(ﬁ,a) : BeRE, o>0, ‘%DZZT(Y — XB)' <or, Q(B) < 02}

for some r > 0 (to be specified below), and

n

QB2 -3 (i —aTB)

i=1
Definition 3.1. We call the STIV estimator any solution (3, o) of the following minimization prob-
lem:
(3.5) min_( |D;(15|1 +co),
(B,0)€T

where 0 < ¢ < 1.

We use B as an estimator of 8*. Finding the STIV estimator is a conic program; it can be
efficiently solved, see Section Note that the STIV estimator is not necessarily unique. Minimizing
the ¢1 criterion ‘D)_Cl 154 !1 is a convex relaxation of minimizing the £o norm, i.e., the number of non-zero
coordinates of 5. This usually ensures that the resulting solution is sparse. The term co is included in
the criterion to prevent from choosing o arbitrarily large; indeed, the IV-constraint does not prevent
from this. The matrix D)_(1 arises from re-scaling of X, which is similar to the re-scaling of Z discussed
above. For the particular case where Z = X, the STIV estimator provides an extension of the Dantzig
selector to the setting with unknown variance of the noise. In this particular case, the STIV estimator

can also be related to the Square-root Lasso of Belloni, Chernozhukov and Wang (2010), which solves
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the problem of unknown variance in high-dimensional regression with deterministic regressors and
ii.d. errors. The definition of STIV estimator contains the additional constraint (B3.3]), which is not
present in the conic program for the Square-root Lasso. This is due to the fact that we have to handle

the endogeneity.

Remark 3.2. Other normalizations can be used. Instead of matrices Dx and Dz we can take the di-
agonal matrices with entries By, [X7)7V2, .. E [ X272 and B, [Z3)71/2, .. En[Z3]7/2 respectively.
Then the proofs become more complicated and we need extra assumptions, in the spirit that for every

l=1,...,L, and i = 1,...,n, the variables u? and z% are “almost” uncorrelated.

4. SENSITIVITY CHARACTERISTICS

The identifiability of 5* relies on the sensitivity characteristics of the problem. In the usual
linear regression in low dimension, when Z = X and the Gram matrix X? X /n is positive definite,
the sensitivity is given by the minimal eigenvalue of this matrix. In high-dimensional regression, the
theory of the Lasso and the Dantzig selector comes up with a more sophisticated sensitivity analysis;
there the Gram matrix cannot be positive definite and the eigenvalue conditions are imposed on
its sufficiently small submatrices. This is typically expressed via the restricted isometry property
of Candes and Tao (2007) or the more general restricted eigenvalue condition of Bickel, Ritov and
Tsybakov (2009). In our structural model with endogenous regressors, these sensitivity characteristics
cannot be used, since instead of a symmetric Gram matrix we have a rectangular matrix Z7X/n

involving the instruments. More precisely, we will deal with its normalized version
1
U, £ —DzZ"XDx.
n

In general, ¥,, is not a square matrix. For L = K, it is square matrix but, in the presence of at least
one endogenous regressor, ¥, is not symmetric. Since the endogenous variables are assumed to be
the first variables in the model, the lower right block of matrix V¥,, is, up to a scaling, the sample
correlation matrix of the exogenous variables (when considering x; as centered). The upper left block
accounts for the relation between the endogenous variables and the instruments.

We now introduce some scalar sensitivity characteristics related to the action of the matrix ¥,,

1+¢
!AJ!1}7
—c

on vectors in the cone

1
where 0 < ¢ < 1 is the constant in the definition of STIV estimator, J is a subset of {1,..., K}, and

Cjé{AGRKZ ‘AJC‘IS

J¢ denotes the complement of J. When the cardinality of J is small, the vectors A in the cone C;
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have a substantial part of their mass concentrated on a set of small cardinality. We call C'; the cone
of dominant coordinates. The use of similar cones to define sensitivity characteristics is standard in
the literature on the Lasso and the Dantzig selector (see, Bickel, Ritov and Tsybakov (2009)); the
particular choice of the constant % will become clear from the proofs. It follows from the definition

C
of Cj that
P 2 iy
(4.1) |A|1§1—_C|AJ|1 §1—_6|J| PlIAlp, YA€C), 1<p<oo.
For p € [1,00], we define the ¢, sensitivity as the following random variable:

A .
Kp,J = inf U,Al -
AeCy: |A‘p=1

These quantities are similar to the cone invertibility factors defined in Ye and Zhang (2010).
Given a subset Jy C {1,..., K}, we define the Jy block sensitivity as

4.2 kY 2 inf U, Al
( ) Jo,J AEC: ‘AJ0|1:1‘ n ’oo

By convention, we set k7 J(gr) = O We use the notation s ; for coordinate-wise sensitivities, i.e.,
b b

for block sensitivities when Jy = {k} is a singleton:

* A .
KL 1 = inf U, Al .
kd ™ aecy: Ak=1| nAlo

Note that here we restrict the minimization to vectors A with positive kth coordinate, A, = 1, since
replacing A by —A yields the same value of |¥,A|.

The finite sample bounds that we obtain below (see, e.g., Theorem [5.2]) show that the inverse of
the sensitivities drive the width of the confidence interval for the true parameter. Thus, it is important

to have computable bounds on these characteristics. The following proposition will be useful.

Proposition 4.1. (i) Let J, J be two subsets of {1,..., K} such that J C J. Then Kp,J = K, 7 and
KJo.g 2 /i’}oj for all p € [1,00];
(i) For all Jo C{1,....K}, K3, ; > K1,
(#ii) For all p € [1, 00,
201\~ 2
(43) (1——C> Roo,J < Kp,J < 1—_C|J| /plil,J-
The proof of Proposition A1l is given in Section
We can control r,, jg+) without knowing J(5*) by means of sparsity certificate. Assume that

we have an upper bound s on the sparsity of 5%, i.e., we know that |J(5*)| < s for some integer s.

Meaningful values of s are small presuming that only few regressors are relevant. In view of (4.1)), if
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|J| < s, then for any A in the cone C; we have |Al; < 25 |A|. Thus, for all J such that |J| < s, we
can bound the coordinate-wise sensitivities as follows:

(4.4) Ky = inf |, A|

Ap=1,|A1<alAlso o

> min min v, A L k¥ (s
= j:L...,K{ Ap=1, \A|1gamj\| " |°°} k(s),
2s

where a = =, . For given s, this bound is data-driven since the minimum in curly brackets can be

computed by linear programming (see Section B1]). Then we can deduce a lower bound on ks s from

4.5 > i r.
(4.5) Kooy 2 MIN K s

Using (43]) — (@3) we get computable lower bounds for all x, s, p € [1,00], which depend only on s
and on the data. In particular, for |J| < s,

1—c . " a
25 ) S )

(4.6) K1,J 2
Analogously to ([44), the sparsity certificate approach yields a bound for block sensitivities:

e . > inf REYAN
(4.7) Jo.J = IAJoh:l,\A|15a|A‘°°| s

~min min
=1L K | A =1, [Al<alAyl

In Section B we show that the expression in curly brackets in (7)) can be computed by solving 2!
linear programs. Thus, the values mﬁo(s) can be readily obtained for sets Jy of small cardinality.

An alternative to the sparsity certificate approach is to compute s ; and /{z’ ; directly, which is
numerically feasible for J of small cardinality. In Section Bl we show that obtaining the coordinate-
wise sensitivities corresponds to solving 27| linear programs. Using (#3) and (4EH) we obtain com-
putable lower bounds for all k, j, p € [1,00]. The lower bounds are valid for any given index set .J.
However, we will need to compute the characteristics for the inaccessible set J = J(f*), where §* is
the true unknown parameter. To circumvent this problem, we can plug in an estimator J of J (8%).
For example, we can take J=J (B) The confidence bounds remain valid whenever J(5*) C J. , since
then £, jg+) = £, 7 by Proposition 41 (i). Theoretical guarantees for the inclusion J(5*) C J (B)
to hold with probability close to 1 require |3;| to be not too small on the support of 3* (see Theo-
rem [5.7] (iv)). On the other hand, one typically observes in simulations that the relevant set J(/5*) is

either estimated exactly or overestimated by its empirical counterpart J=J (B), so that the required

inclusion is satisfied for such a simple choice of J.
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We show in Section [@.J]that the assumption that the sensitivities &), ; are positive is weaker and
more flexible than the restricted eigenvalue (RE) assumption of Bickel, Ritov and Tsybakov (2009).
Unlike the RE assumption, it is applicable to non-square non-symmetric matrices and thus allows one
to consider the case where several instruments are used for the same endogenous variable.

In the next proposition, we present a simple lower bound on ,, ; for general L x K rectangular
matrices W,,. Its proof, as well as other lower bounds on ki s, can be found in Section @ It is
important to note that adding rows to matrix ¥,, (i.e., adding instruments) increases the sup-norm
|V, Als, and thus potentially increases the sensitivities r,, J(g*)- This has a positive effect since the
inverse of the sensitivities drive the width of the confidence set for 8*, see Theorem 5.2l Thus, adding
instruments potentially improves the confidence set, which is quite intuitive. On the other hand, the
price for adding instruments in terms of the rate of convergence is only logarithmic in the number of

instruments, as we will see it in the next section.

Proposition 4.2. Fixz J C{1,...,K}. Assume that there exist 71 > 0 and 0 < ne < 1 such that

()il = 725 5
max s [ (Wn) oy | < (=m)(1-¢)
[(Wn)i(k)kl - 21J|

(4.8) Vk e J, (k) :

Then
Kipos > (1)) 7P (1= o) Py,

The proof of Proposition is given in Section

Assumption (L8)) is similar in spirit to the coherence condition introduced by Donoho, Elad
and Temlyakov (2006) for symmetric matrices, but it is more general because it deals with rectangular
matrices. Since the regressors and instruments are random, the values 77 and 7y can, in general, be
random. Remarkably, for estimation of the coefficients of the endogenous variables, it suffices to have
a “good” row of matrix W,. This means that it is enough to have, among all instruments, one good
instrument. The way the instruments are ordered is not important. Good instruments correspond to
the rows [(k), for which the value |(¥},);),| measuring the relevance of the instrument for the kth
variable is high. On the other hand, the value maxys 4 [(V;, );(x)x| accounting for the relation between
the instrument and the other variables should be small. An instrument which is well “correlated”

with two variables of the model is not satisfactory for this assumption.
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5. MAIN RESULTS

We start with introducing some assumptions.

Assumption 5.1. There exists 6 > 0 such that, for all i = 1,...,n, I = 1,...,L, the following

conditions hold:
E[|Zliui|2+5] < o0, Elziiu;] = 0,

and neither of ziu; is almost surely equal to 0.

Define
P . > Elzjus]
n6 = min .
(=Ll (0 Bl i 2+0)) 4
: . BTN (E[z3u?))!/?
If, f fi 1,...,L}, th 1 iU i.d., th = n i+ .
, for any fixed [ € {1,..., L}, the variables zj;u; areii.d., thend, s =n l:T}.I.l,L B[y, [P0 /)
For A > 1 set

1+6
(5.1) a:2L{1—<I>(A\/M)}+2A0(1—|—A«/210g(L)) |

LA2 _1d2-%(5
where Ap > 0 is the absolute constant from Theorem [0.4] and ®(-) is the standard normal c.d.f.

Theorem 5.2. Let Assumption [51] hold. For A > 1, define a by (51), and set

c A 210g(L)‘
n

Assume that L < exp(di’5/(2A2)). Then, with probability at least 1 — « for any solution (B, o) of the

minimization problem (32) we have

R 1
(5.2) Dx (G- )| < 2" <1— R r ) . Vpell,ol

P Kp(se) Fenand (8% 00,0089 ) 4

and, for allk=1,... K,

1
~ 20r r r2
(5.3) 1Br — Bi| < ; (1 - - > :
(8*)

%
Flamard (87 Fag 84/ 4

Furthermore,

-1
(5.4) 7 <\/QE) (1 + ;> (1 - 7> :
R y(+),0(8%) Fa).16% ) 4
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The proof of Theorem is given in Section

By convention, /1;, J(gr) = 00, 80 when either Jo,q or JS 4 is empty, the term with the cor-
responding sensitivity disappears from the right hand-side of (B2 and (&3). If Jong = 9, L = K
and X = Z, the STIV estimator yields a pivotal extension of the Dantzig selector of Candes and
Tao (2007), in the sense that it allows for the unknown distribution of errors. For this model, which
is in the focus of the literature on high-dimensional regression in the recent years, we provide a con-
siderable improvement, since Candes and Tao (2007), Bickel, Ritov and Tsybakov (2009) and the
subsequent papers (cf. Bithlmann and van de Geer (2011)) treat the case of i.i.d. errors, which are
either Gaussian with known variance or have bounded exponential moment with known parameter.
We also improve the Dantzig selector in other aspects by allowing for endogenous regressors, by using
weaker sensitivity assumptions than in the previous work, and by providing finite sample confidence
intervals.

The bounds (52]) and (53) are meaningful if r is small, i.e., n > log(L). Then under the

r _ r?

K K
Jend:J (B*) IS q T (BF)

is close to 1 and the bound on the estimation error in (53]) is of the order O(r) = O(y/log(L)/n).
Thus, we have an extra y/log(L) factor as compared to the usual root-n rate, which is a modest price

appropriate conditions on the sensitivities (cf. Remark [5.3)), the factor 7y = 1 —

for using a large number L of instruments.

Remark 5.3. Simple sufficient conditions for T to be close to 1 can be derived from Propositions

({1 and[{.2 By Proposition [{.1] (ii), we have K7 ;5.\ > K1 y(g+) and H?}ccnd"](ﬁ*) > Ky, Thus,
neglecting the O(r?) term, we get that 7y can be approzimately replaced by 1———— in (52) and (E3).

R1,0(8%)

Therefore, under the premise of Proposition[].3, for 11 =~ 1 it is sufficient to have |J(B*)] < Cr—! =

O(y/n/log(L)) where C > 0 is a proper constant. This is quite a reasonable condition on the sparsity
|J(B*)] of the true vector 3*. Moreover we get even better conditions if the set of endogenous regressors

Jend 18 small. Then the sensitivity /{Lk]end J(8") 18 large, whereas the small sensitivity of its complement

Ke WT(8%) is compensated by the small value 12 in the numerator. In the extreme case Jonq = @ we have
m =0, so that 7y <1 — = :?ﬁ*) , and it is sufficient to have |J(B*)] < Cr=2 = O(n/log(L)).
“Zend> ?

The assumption L < exp(dfh s/(24%)) in Theorem is relatively mild. Indeed, in the i.i.d.
case, it is equivalent to the condition that L < exp(Cn‘V (2+5)) for some C' > 0.

The value d,, s depends on the distribution of the errors and in practice it is unknown. However,
in the high-dimensional setting when L is large, the term involving d,, s in (G is negligible for

reasonable values of A (say, A > 2) and for moderate sample size n. Thus, in practice, we can drop
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this term, and choose A large enough to have

(5.5) 20.{1- @(4/210g(L)) } =,
where « is a suitable confidence level. This yields

T:%@_l(l—%).

Theorem holds for arbitrary tuning constant 0 < ¢ < 1. This constant appears in the
definition of the STIV estimator. Choosing a small ¢ increases the sensitivities in the denominators
of the bounds in Theorem since the cone of dominant coordinates shrinks as ¢ decreases. On the
other hand, this yields less penalization for large values of o and results in higher o.

The proof of Theorem relies on a bound for moderate deviations for self-normalized sums
of random variables, cf. Jing, Shao and Wang (2003). This is a useful tool that was first applied
in the context of high-dimensional estimation by Belloni, Chen, Chernozhukov et al. (2010). There,
“asymptotically valid penalty loadings” are required but we do not need such an assumption.

The only unknown ingredient of the inequalities (5.2]) and (5.3) is the set J(/5*) that determines
the sensitivities. To turn these inequalities into valid confidence bounds, it suffices to provide data-
driven lower estimates on the sensitivities. As discussed in Section ], there are two ways to do it. The
first one is based on the sparsity certificate, i.e., assuming some known upper bound s on |J(8*)|;
then we get bounds depending only on s and on the data. The second way is to plug in, instead of
J(8*), some data-driven upper estimate J. , i.e., a set satisfying J(8*) C J with probability close to 1.
The next theorem (Theorem [B.7)) provides examples of such estimators J. In particular, assertion (iv)
of Theorem [B.7] guarantees that, under some assumptions, the estimator J=1J (E) has the required
property. Moreover, Theorem [B.7] establishes upper bounds on the rate of convergence of 3 in terms
of population characteristics. To state the theorem, we need the following additional assumptions.

The first one introduces the population “noise level” o,.
Assumption 5.4. There exist constants 0. >0 and 0 < v, < 1 such that
P (E,[U% <o2) >1—m.

The second assumption concerns the population counterparts of the sensitivities. It is stated
in terms of subsets Jy of {1,..., K} and constants p > 1, k € {1,..., K} that can differ from case to

case and will be specified later.
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Assumption 5.5. There exist constants ¢, > 0, ¢ >0, and 0 < v3 <1 such that, with probability

at least 1 — 79,

(5.6) Kp ey = cplJ(BY) 7P,
(57) K;}O,J(ﬁ*) > Czk]o.

If Jo = {k} is a singleton we write for brevity 3 = c;.

The dependence on |J(5*)| of the right hand side of (5.0]) is motivated by Proposition In
(B7), we do not indicate the dependence of the bounds on |J(5*)| explicitly because it can be different
for different sets Jy. For general .Jy, combining Proposition [4.] (ii) and Proposition suggests that
the value ¢j can be bounded from below by a quantity of the order |.J (8*)|7!. Note, however, that
this is a coarse bound valid for any set Jy.

The last assumption defines a population counterpart of xj..
Assumption 5.6. There exist constants v, > 0 and 0 < v3 < 1 such that
P(xge > v, VEEJ(BT)) >1— 3.

We set v = a + Z§:1 7, and

-1 5 \ !
CCr(p*) i) 4 Cena CIoa/ &

Theorem 5.7. Under the assumptions of Theorem[5.2 and Assumption[5.4), the following holds.

(i) Let part (57) of Assumption [Z3 with Jy = J(B*) be satisfied. Then, with probability at least
1 —a—71 — ¥ for any solution & of (Z3) we have

—1
3§0*<1—|— ! )(1— a ) .
CCr(s*) i) o

(ii) Fiz p € [1,00]. Let Assumption be satisfied, where ([5.7) holds simultaneously for Jy =

J(5*),Jo = Jena and Jy = JS 4. Then, with probability at least 1 — o —y1 — 2, for any solution

B of (33) we have
_ 20.01J(8") o7

P Cp

(5.8) ‘Dx_l (3— ﬁ*)

(i) Let Assumptions and [0 be satisfied, where (5.7) holds simultaneously for Jo = {k}, Vk,
and Jy = J(B*), Jo = Jena, Jo = JSq- Then with probability at least 1 — ~, for any solution B

€
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of (33) we have
(5.9) B — Bi| <

207"

 k=1,...,K.
CLVk

(iv) Let the assumptions of (iii) hold, and |B;| > 2‘;35—;2* for all k € J(5*). Then, with probability

at least 1 — =, for any solution B of (33) we have:

~

J(B%) € J(B).

The proof of Theorem [B.7is given in Section

For reasonably large sample size (n > log(L)), the value r is small, and 7* is a constant
approaching 1 as 7 — 0. Thus, the bounds (5.8) and (59)) are of the order of magnitude O(r|.J(5*)|/?)
and O(r) respectively. These are the same rates, in terms of the sparsity |.J(5*)|, the dimension L, and
the sample size n, that were proved for the Lasso and Dantzig selector in high-dimensional regression
with Gaussian errors and without endogenous variables Candes and Tao (2007), Bickel, Ritov and
Tsybakov (2009), Lounici (2008) (see also Biithlmann and van de Geer (2011) for references to more
recent work).

From (53] and Theorem .7 (iv), we obtain the following confidence intervals of level 1 — ~

for g3;:
-1

~ 2% 2
(5.10) Bl < 1 o
Tps K5 K . K ~
k:‘](ﬁ) Jcnva(B) Jccndﬂj(ﬁ) +

Theorem (7] (iv) provides an upper estimate on the set of non-zero components of 5*. We
now consider the problem of the exact selection of variables. For this purpose, we use the thresholded
STIV estimator whose coordinates are defined by

Br  if |Br| > wk,

0  otherwise,

(5.11) Br(wy) &

where Bk are the coordinates of the STIV estimator 3, and w, > 0, £k = 1,..., K, are thresholds
that will be specified below. We will use the sparsity certificate approach, so that the thresholds will
depend on the upper bound s on the number of non-zero components of 3*. We will need the following

modification of Assumption

Assumption 5.8. Fiz an integer s > 1. There exist constants Cik](ﬁ*) > 0, cjo(s) >0, and 0 <y <1

such that, with probability at least 1 — s,

(5.12) /{3(5*)#](6*) > CT](B*) and ”30(8)2630(8)
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for Jo = {k}, Vk, and Jo = Jena, Jo = J5q- If Jo = {k} is a singleton we write for brevity cj (s) =

ci(s).

Set

—1 9 -1
)2 (14— j— - T .
( ) < CC;(B*) CC?U%) N c?ﬂm(s) C;;ﬂ(S) N

The following theorem shows that, based on thresholding of the STIV estimator, we can re-
construct exactly the set of non-zero coefficients J(5*) with probability close to 1. Even more, we
achieve the sign consistency, i.e., we reconstruct exactly the vector of signs of the coefficients of 5*

with probability close to 1.

Theorem 5.9. Let the assumptions of Theorem[52 and Assumptions[5.4), (5.4, be satisfied. Assume
that |J(B*)| < s, and |B}| > 100 () for all k € J(B*). Take the thresholds

CZ(S)%

~ 2 -1
wls) 2 20r 1 T T
k mZ(s)xk* /i’f]md(s) K'e (s) )

end —+

and consider the estimator 3 with coordinates Ek(wk(s)), k=1,...,K. Then, with probability at least

1 —~, we have

(5.13) sign(3) = sign(8* .

As a consequence, J(B) = J(B*).
The proof of Theorem is given in Section

Remark 5.10. Inspection of the proof of Theorem shows that the same conclusion as in The-
orem holds with other definitions of the thresholds. Indeed, ki (s),k% (s), and Kje dl(s) in the

definition of wy(s) are lower bounds for the sensitivities HZ’J(B*),H?}end’J(B*), and K. They

Cnd’J(B*)'
can be replaced by other s-dependent lower bounds on these sensitivities. Then Theorem [5.9 remains
valid, with the modifications only in the value of the lower bound on |Bf| required for k € J(5*), and
in a slightly different formulation of Assumption [2.8. For example, if there is only one endogenous

variable, Jong = {1}, we can take the thresholds

(1>

20r r 2\
wi(s) < (5) (1 CoRi(s) /-61(8)>+ .
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We now consider the approximately sparse setting. The sparsity assumption is quite natural
in empirical economics since usually only a moderate number of covariates is included in the model.
However, one might be also interested in the case when the true vector 8* is only approximately sparse.
This means that most of the coefficients ; are not exactly zero but too small to matter, whereas the
remaining ones are relatively large. This setting received some attention in the statistical literature.
For example, the performance of Dantzig selector and M U-selector under such assumptions is studied
by Candes and Tao (2007) and Rosenbaum and Tsybakov (2010) respectively. We will derive a similar
result for the STIV estimator.

Consider the enlarged cone

~ 2
Cy2 {A eRE . |Aje] < 1fZ|AJ|1}

and define, for p € [1,00] and Jy C {1,..., K}

Fpg = inf VoAl and Ky, = inf A

AERK: |Alp,=1, AeC A€ERK: A [1=1, AeCy

The following theorem is an analog of the above results for the approximately sparse case.

Theorem 5.11. Let A, o, and r satisfy the same conditions as in Theorem [5.2. Assume that L <
exp(di76/(2A2)) and fix p € [1,00]. Let Assumption [51 be satisfied. Then with probability at least
1 — « for any solution B of (33) we have

(5.14)

1

. 207 r r? 6|(DX 5*)JC
< min max ([ — | 1 — = - = )
p Jc{l,...,K} Kp,J I{Jendv‘] Bt + Lo

end’

We can interpret Theorem [B.11] as the fact that the STIV estimator automatically realizes a
“bias/variance” trade-off related to a non-linear approximation. Inequality (5.I4]) means that this

estimator performs as well as if the optimal subset J were known.

6. MODELS WITH POSSIBLY NON-VALID INSTRUMENTS

In this section, we propose a modification of the STIV estimator for the model with possibly
non-valid instruments. The main purpose of the suggested method is to construct confidence intervals
for non-validity indicators, and to detect non-valid instruments. This question has been addressed in
the non high-dimensional case, for example, in Andrews (1999) and Hahn and Hausman (2002) among

others; one of the most recent papers is Liao (2010) where one can find more references. The model
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can be written in the form:

(6.1) yi =] B* + s,
(6.3) E [zju;] = 07,

where x;, z;, and Z; are vectors of dimensions K, L and Li, respectively. The instruments are

decomposed in two parts, z; and Z;, where E;TF

= (Z1,...,ZL,i) 1s a vector of possibly non-valid
instruments. A component of the unknown vector 6* € R is equal to zero when the corresponding
instrument is indeed valid. The component 6 of 6* will be called the non-validity indicator of the
instrument Zj;. Our study covers the models with dimensions K, L and L; that can be much larger
than the sample size.

As above, we assume independence and allow for heteroscedasticity. The difference from the
previous sections is only in introducing equation (6.3). In addition to z;,v;, z;, we observe the re-

alizations of mutually independent random vectors Z;, ¢ = 1,...,n, with components Z;; satisfying

E[Zju;) = 0] forall I =1,...,Ly,i=1,...,n. We denote by Z the matrix of dimension n x L; with

1/2
7= me ’L1< Zzlz> .

In this section, we assume that we have a pilot estimator B and a statistic b such that, with probability

rows ZZT,Z': 1,...,n. Set

close to 1,
(6.4) [Dx7' (B -5 <b
For example, B\ can be the STIV estimator based only on the vectors of valid instruments zq, ..., z,.

In this case, an explicit expression for b can be obtained from (52) by replacing there J(5*) by a
suitable estimator or upper estimator J (see Theorem [ (iv) and Theorem [5.3)).
We define the STIV-NV estimator (5, 01) as any solution of the problem

(6.5) min_ (|6]1 + co1),
(0,01)€T1

where 0 < ¢ < 1,

~ 1_ ~ ~ -
7,2 {(9,01): 0 RN, o1 >0, |-Z (Y —XB)— 0| <oir+0bz., F(0,5) <o +bz*}
n

[e.e]
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for some r; > 0 (to be specified below), where for all § = (61,...,0,,) € Rl g € RE,

F(076) = 1:I1nax \V @l(ebﬁ)

sl

with

n

@l(ol,,@) £ %Z (7&‘(% — x?ﬂ) — 91)2 .

i=1
It is not hard to see that the optimization problem (6.5]) can be re-written as a linear program.

Assumption 6.1. There exists § > 0 such that, for alli = 1,...,n, | = 1,..., Ly, the following

conditions hold:
E[[Zu:[*"°] < o0, E[Zju;] = 67,

where 05 is the [th component of 0* and neither of Zju; — 07 is almost surely equal to 0.
1 1

Define

N . V2o El[zuus — 0717

min

=leol (Y0 Rz — 97‘2+5])1/(2+5) .

dn,é,l

For A > 1 set

1+ Ay/2Tlog(L1))™°
(66) o] = 2L1{1—@(A\/210g(.[11))} +2A0( Lf2_1d2—%51 ) ’
n,d,1

where Ap > 0 is the absolute constant from Theorem [0.4] and ®(-) is the standard normal c.d.f.
The following theorem provides a basis for constructing confidence intervals for the non-validity

indicators.

Theorem 6.2. Let Assumption [61] hold. For A > 1, define aq by (6.0), and set

2log(L
r=A 7ogn( 1).

Assume that L1 < exp(di’5’1/(2A2)), and that B is an estimator satisfying (6.4) with probability at
least 1 — an for some 0 < ag < 1. Then, with probability at least 1 — oy — ao for any solution (5, o1)

of the minimization problem (6.3) we have

o 2 (n(-geE]
(6.7) 0 — 0|0 < (1T —=2r (1 =) 1J(09)])+ = V(a1,b,[J(07)]),
and
o 2 [2\J(9*)] (517‘1 +(1+ Tl)Af*) + bz,
09 o= == 2nlI @) |
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This theorem should be naturally applied when r; is small, i.e., n > log(L1). In addition, we
need a small Z, which is guaranteed by the results of Section [f] under the condition n > log(L) if the
pilot estimator B\ is the STIV estimator. Note also that the bounds (6.7)) and (6.8]) are meaningful if
their denominators are positive, which is roughly equivalent to the following bound on the sparsity of
0 17(6%)] = O(1/r1) = O/ Tog(L1)).

Bounds for all the norms |f — 0%y, V1 < p < o0, follow immediately from (7)) and (8] by the
standard interpolation argument. We note that, in Theorem [6.2] B can be any estimator satisfying
(64), not necessarily the STIV estimator.

To turn ([67) and (6) into valid confidence bounds, we can replace there |.J(6%)| by |J(8)],
as follows from Theorem (i) below. In addition, Theorem establishes the rate of convergence
of the STIV-NV estimator and justifies the selection of non-valid instruments by thresholding. To

state the theorem, we will need an extra assumption that the random variable F'(6*, 3*) is bounded

in probability by a constant o1, > 0:

Assumption 6.3. There exist constants o1, > 0 and 0 < & < 1 such that, with probability at least
1—¢,

1 n
(6.9) max — Z (Zyui — 07)? < o3,

1=1,...L1 n <
=1

As in (BI0)) we define a thresholded estimator

_ 0, if |0, > w,
(6.10) 0, v 6] >

(>

0 otherwise,

where w > 0 is some threshold. For b, > 0, s; > 0, define

4 -1 2b.7. (1 +2(1
= (1- 7181 _— bz (1 +2(1+r1)s1/c)
c(l—c—2r181)4 (1 —c—2ris1)+

+

Theorem 6.4. Let the assumptions of Theorem and Assumption be satisfied. Then the
following holds.

(i) Let B be an estimator satisfying
(6.11) Dx (3 — 8" <

with probability at least 1 — ag for some 0 < ag < 1 and some constant b,. Assume that

1J(0%)] < s1. Then, with probability at least 1 — ay — ag — &, for any solution 8 of the
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minimization problem (6.3) we have
(6.12) 0 — 0%| oo < V(5, by, 51).

(i) Let (B,5) be the STIV estimator, and let the assumptions of all the items of Theorem [>7
be satisfied (with p = 1 in item (ii)). Assume that |J(6%)] < s1, |J(5%)| < s, and |0]| >
V (G, by, s1) for all l € J(0%), where

20, *
(6.13) p, = 205757"(5)
C1

Then, with probability at least 1 — a1 — e — 7, for any solution ) of the minimization problem

(623) we have

(6.14) J(6*) C J(B).
(iii) Let the assumptions of item (ii) and Assumption [2.8 hold. Assume that 0| > 2V (G4, b, s1)
for alll € J(0%). Let 6 be the thresholded estimator defined in ([GI0) where 6 is any solution
of the minimization problem (6.3), and the threshold is defined by w = V(&l,g, s1) with

-1
~ 20rs r r2
b= 1—— - — .
k1(s) Ky () K5 (s)

end =+

Then, with probability at least 1 — ay — € — 7y, we have

(6.15) sign(6) = sign(6* .

As a consequence, J(0) = J(6%).

~

In practice, the parameter s may not be known and it can be replaced by |J(0)[; this is a
reasonable upper bound on |J(0*)| as suggested by Theorem (ii). It is interesting to analyze the
dependence of the rate of convergence in ([GI2]) on r,r, s, and s1. As discussed above, a meaningful
framework is to consider small r,r; and the sparsities s,s1 such that rs, r1s; are comfortably smaller
than 1. In this case, the value b, given in (6.I5) is of the order O(rs) and the rate of convergence in
(612) is of the order O(r1) + O(rs). We see that the rate does not depend on the sparsity s; of 6*
but it does depend on the sparsity s of 5*. It is interesting to explore whether this rate is optimal,

i.e., whether it can be improved by estimators different from the STIV-NV estimator.
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7. COMPLEMENTS
7.1. Non-pivotal STIV estimator. We consider first a simpler version of the STIV estimator which

is not pivotal in the sense that it depends on the upper bound o, on the “noise level” appearing in

Assumption 54 The estimator that we consider here is a solution B of the following minimization

problem:

(7.1) min |Dx'8l1,
BELnp

where

~ 1
Top 2 {5 e RE: EDZZT(Y —-Xp)| < J*r} .
o0

It is not hard to see that (ZI) can be written as a linear program. We have the following bounds on

the ¢,-errors of this estimator.

Theorem 7.1. Let Assumptions 51 and[5.4) hold. For A > 1, define o by (31)), and set

2log(L)
—

r=A

Assume that L < exp(divé/(2A2)). Then, with probability at least 1 — a — 1 for any solution B of the

minimization problem (1)) we have

IR . 20,7
(7.2) Dx'(8-5%)| < . Vpell oo,
P Kpap)
and, for allk=1,... K,
~ N 20,7
(7.3) 1Bk — Bl <

=
Thell g (8)

Here the sensitivities ki jg+) and HZ’J(ﬁ*) are defined on the cone Cj with ¢ = 0.

The proof of this result is easily obtained by simplifying the proof of Theorem

7.2. STIV estimator with linear projection instruments. The results of the previous sections
show that the STIV estimator can handle a very large number of instruments, up to an exponential
in the sample size. Moreover, adding instruments always improves the sensitivities. In this section,
we consider the case where we look for a smaller set of instruments, namely, of size K. A classical
solution with one endogenous regressor in low dimension is the two-stage least squares estimator (see,
e.g., Wooldridge (2002)). Under the stronger zero conditional mean assumption, the solution in low
dimensions is given by the optimal instruments (see Amemiya (1974), Chamberlain (1987), and Newey

(1990)). In the homoscedastic case, it corresponds to the projection of the endogenous variables on
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the space of variables measurable with respect to all the instruments. These optimal instruments
are expressed in terms of conditional expectations that are not available in practice and should be
estimated. When K is large, we are typically facing the curse of dimensionality and extremely large
samples would be needed to obtain precise estimates of these ideal instruments. In this setting, Belloni,
Chen, Chernozhukov et al. (2010a) propose to use the Lasso. Then they consider the heteroscedastic
robust IV estimator with these instruments.

We propose to proceed in a different way. As discussed after Proposition 2] we can expect
to get higher sensitivities and thus to obtain tighter bounds if for each endogenous regressor we
use a “good instrument”, i.e., the instrument correlated as much as possible with the endogenous
variable. Akin to the two-stage least squares, we consider instruments which are the projections of

the endogenous variables on the linear span of all the instruments, and do not make the stronger zero

conditional mean assumption. Note that, for every k = 1,..., keng, we can write the reduced form
equations

L
(7.4) Thi = 2k + vk, i=1,...,m,

=1

where (;; are unknown coefficients of the linear combination of instruments, and
(7.5) E[z0pi] = 0

fori =1,...,n,1 =1,...,L. The representation (Z.4)-(7Z3H]) holds whenever x; and z; have finite
second moments. We call ZlL: 1 21iCk1 the linear projection instrument. We now estimate the unknown
coefficients (y;. If L > K > n and if the reduced form model (7.4 has some sparsity, it is natural to
use a high-dimensional procedure, such as the Lasso, the Dantzig selector or the Square-root Lasso,
to produce estimators Zkl of the coefficients. (Since there is no endogeneity in (7.4) we need not
apply the STIV estimator requiring more computations.) Then we replace the initial L-dimensional
vector of instruments by a K-dimensional vector Z; = (Z14,...,Zx;) whose first keyq coordinates are
ZlL:l Zklzli and the remaining coordinates are the exogenous variables. These are estimators of the
linear projection instruments that we use on the second stage to estimate *. Specifically, on the
second stage we apply the STIV estimator where we replace the matrices Z, Dz, and V¥,, by their
estimated counterparts corresponding to new vectors of instruments of size K instead of L (just use
z;, instead of z;). Intuitively this should yield larger sensitivities , s, /417;7 ; and others since the
new instruments are better correlated with the endogenous variables. Also, the log(L) term in the

expression for r and in the rates is reduced to a log(K) term.
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We do not discuss here a theoretical justification of this method. In Section [§] we show that
it works successfully in simulations. Note also that a quick proof can be obtained using the sample
splitting argument. Indeed, if the linear projection instruments are obtained from the first subsample,
whereas the second subsample independent from the first one is used to estimate 3*, then z; are valid
instruments. Therefore, conditioning on the first subsample, we can apply the theory of Section Bl
However, in practice, it seems reasonable to use the whole data set on both steps of the two-stage
procedure.

Finally, note that another type of two-stage procedures, not motivated by the endogeneity, is
discussed in the literature on sparsity in high-dimensional linear models (see, e.g., Candes and Tao
(2007) and Belloni and Chernozhukov (2010)). At the first stage, the support of the true vector
is estimated with a high-dimensional procedure, such as the Lasso or Dantzig selector, and at the
second stage the OLS is used on the estimated support. Belloni and Chernozhukov (2010) study the
theoretical properties of such two stage procedures. An analog of this approach for the setting that
we consider here would be a two-stage procedure with the STIV estimator at the first stage and some

classical IV estimator (such as the GMM) at the second stage.

8. PRACTICAL IMPLEMENTATION

8.1. Computational aspects. Finding a solution (B, o) of the minimization problem ([B.5]) reduces

to the following conic program: find 3 € RX and t > 0 (¢ = t/y/n), which achieve the minimum

(8.1) (@Mwmv<§:wk+cvha

where V is the set of (3,t,v,w), with satisfying:

1
v=Y — X3, —rtl < %DZZT (Y — Xp) < rtl,
—w < DF'B < w, w >0, (t,v) € C.

Here and below 0 and 1 are vectors of zeros and ones respectively, the inequality between vectors is
understood in the componentwise sense, and C' is a cone: C = {(t,v) € R x R" : ¢ > |v|y}. Conic
programming is a standard tool in optimization and many open source toolboxes are available to

implement it (see, e.g., Sturm (1999)).
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The expression in curly brackets in the lower bound (4] is equal to the value of the following

optimization program:

(8.2) min  min v
e=+1 (wvAvv)evk,j

where Vy ; is the set of (w, A,v) with w € RE, A € RE| v € R satisfying:

v >0, —v1 <V,A <1, w >0, —wre < Ape <wpe for I ={j,k},
K

wy =0, A =1, eA; >0, Zwi—l—lge(a—l—g)Aj
i=1

where ¢ is the constant such that
0 ifk=j

g =
—1 otherwise.

Note that, here, € is the sign of A, and (82]) is the minimum of two terms, each of which is the value
of a linear program. Analogously, the expression in curly brackets in (£.7]) can be computed by solving
2170l linear programs. The reduction is done in the same way as in (82) with the only difference that
instead of € we introduce a vector (ex)ie., of signs of the coordinates Ay, for indices k € Jy.

The coordinate-wise sensitivities

/{27J == inf |\PnA|
Ap=1,]A i< A

1—c

[e.9]

can be efficiently computed for given J when the cardinality |J| is small. Indeed, it is enough to find

/]

the minimum of the values of 2!“! linear programs:

(8.3) min min v
(EJ)JEJE{_lyl}‘J‘ (wvAvv)euk,J

where U}, y is the set of (w,A,v) with w € RE, A € RE, v € R satisfying:
v >0, -l < U, A <wl, w >0, —wre < Are <wpe for I =JU{k},

K
. 1+c
wr = 0, AL =1, EjAjZO, for j € J, ZwiSEZEjAj-Fg.
i=1 jedJ
Here (¢j);e is the vector of signs of the coordinates A; with j € J and g is the constant defined by
0 ifkeld,

g =
—1 otherwise.
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8.2. Simulations. In this section, we consider the performance of the STIV estimator on simulated

data. The model is as follows:

K
Yi = Zxkiﬁz + ug,
k=1
L-K+1

T = § 21i€1 + i,

=1

xp;=z; forl'!=1—L+K and l€{L—-K+2,...,L},

where (y;, x7, 21 u;,v;) ave i.i.d., (u;,v;) have the joint normal distribution
2
N lo Ostruct POstruct Oend
) )
2
POstruct Tend Oond

ziT is a vector of independent standard normal random variables, and ziT is independent of (u;,v;).
Clearly, in this model E[z;u;] = 0. We take n = 49, L = 50, K = 25, Ogstruct = Oend = p = 0.3,
p* = (1,1,1,1,1,0,...,0)" and ¢ = 0.15 for I = 1,...,L — K + 1. We have 50 instruments and
only 49 observations, so we are in a framework of application of high-dimensional techniques. We set
¢ = 0.1 and take A satisfying (B.5]) with o = 0.05. The three columns on the left of Table [l present
simulation results for the STIV estimator. It is straightforward to see that only the first five variables
(the true support of 5*) are eligible to be considered as relevant. This set will be denoted by J. The
second and third columns in Table [Il present the true coordinate-wise sensitivities /{z 5as well as their
lower bounds 7 (5) obtained via the sparsity certificate with s = 5. These lower bc;unds are easy to
compute, and we see that they yield reasonable approximations from below of the true sensitivities.
The estimate ¢ is 0.247 which is quite close to ogtruct- Next, based on ([B.3]), the fact that Jenq = {1},
and the bounds on the sensitivities in Proposition B] and in ([@4]) — (£7T), we have the following
formulas for the confidence intervals
~ 20r r r2 -

(8.4) 1B = Bl < — (1— : - > :

* o~
kx ke, J

~ 201 r P2\
8.5 P Ay (L with s = 5.
(85) 10 ( () m<s>>+

Here, /{z 5 and k7 (s) are computed directly via the programs ([83) and (82]) respectively. The value

#1(s) is then obtained from (AG), and for x, ; we use a lower bound analogous to (4.G):

liljz — mln K, -~



28 ERIC GAUTIER AND ALEXANDRE TSYBAKOV

TABLE 1. Results for the STIV estimator without and with estimated instruments, n = 49

M 0.00 0.166 0.095 0.00 0.126 0.065

7 0.00 0.155 0.080 0.00 0.148 0.060

S 0.00 0.154 0.110 0.00 0.122 0.056

B33 0.02 0.287 0.170 0.02 0.231 0.128

B4 0.00 0.243 0.137 0.00 0.195 0.105

35 0.00 0.141 0.109 0.00 0.106 0.067
‘We use dots because the values that do not appear are similar.

(1): With all the 50 instruments,

(2): With 25 instruments including an estimate of the linear projection instrument.

We get n;’j = 0.0096 and ~7(5) = 0.0072. In particular, we have ’I‘/Iﬁ?ij\ = 4.40 > 1, so that (84]) and
([BE) do not provide confidence intervals in this numerical example.

The columns on the right in Table ] present the results where we use the same data, estimate
the linear projection instrument by the Square-root Lasso and then take only K instruments: z;,
l=L—-—K+2,...,L, and Z;; = Zlel leil, where Zl are the Square-root Lasso estimators of (;, [ =
1,..., L. The Square-root Lasso with parameter ¢ VLasso = 1-1 recommended in Belloni, Chernozhukov
and Wang (2010) EI yields all coefficients equal to zero when keeping only the first three digits. This
is disappointing since we get an instrument equal to zero. It should be noted that estimation in
this setting is a hard problem since the dimension L is larger than the sample size, the number of
non-zero coefficients (; is large (L — K + 1 = 26), and their values are relatively small (equal to 0, 15).
To improve the estimation, we adjusted the parameter ¢ s empirically, based on the value of the
estimates. Ultimately, we have chosen ¢ j— = 0.3. This choice is not covered by the theory of

Belloni, Chernozhukov and Wang (2010) because there ¢ ;- should be greater than 1. However, it
leads to 4/ @ (E) = 0.309, which is very close to genq. The corresponding estimates a are given in Table

IThe constant C,/Tasss denoted by c in Belloni, Chernozhukov and Wang (2010) should not be mixed up with ¢ = csrrv

Lasso

in the definition of the STV estimator; C/Tasso is an equivalent of \/n/csrrv, up to constants.

Lasso



29

TABLE 2. Estimates of the coefficients of the linear projection instrument

G 62 ES 64 66 68 69 610 614 615 616 617 618 620
0.084 | 0.130 | 0.190 | 0.142 | 0.115 | 0.083 | 0.104 | 0.126 | 0.176 | 0.030 | 0.023 | 0.157 | 0.135 | 0.082
621 223 224 Ezs 226 227 232 233 234 244 247 249 Eso
0.100 | 0.125 | 0.038 | 0.025 | 0.026 | -0.058 | 0.108 | 0.005 | -0.053 | -0.006 | -0.009 | -0.063 | 0.033

We only show the non-zero coefficients.

2l We see that they are not very close to the true (;; some of the relevant coefficients are erroneously
set to 0 and several superfluous variables are included, sometimes with significant coefficients, such
as C3p. We get /i’lkj = 0.0076 and xj(5) = 0.0040. Again, r//i’lkj > 1, so that we cannot use ([84]) and
([BE) to get the confidence intervals. Note that this approach based on the estimated linear projection
instrument gives sensitivities, which are lower than with the full set of instruments. This is mainly
due to the fact that the estimation of the linear projection instrument is quite imprecise. Indeed, we
add an instrument Z;1, which is not so good, and at the same time we drop a large number of other
instruments, which may be not so bad. The overall effect on the sensitivities turns out to be negative.
Recall that since the sensitivities involve the maximum of the scalar products of the rows of ¥,, with A,
the more we have rows (i.e., instruments) the higher is the sensitivity. The same deterioration of the
sensitivities occurred in other simulated data sets. In conclusion, the approach based on estimation of
the linear projection instrument was not helpful to realize the above confidence intervals in this small
sample situation. However, we will see that it achieves the task when the sample size gets large.
Although in this numerical example we were not able to use (84]) and (83]) for the confidence
intervals, we got evidence that the performance of the STIV estimator is quite satisfactory. Table
shows a Monte-Carlo study where we keep the same values of the parameters of the model, of the
sample size n = 49, and of the parameter A defining the set f, simulate 1000 data sets, and compute
1000 estimates. The empirical performance of the STIV estimator is extremely good, even for the
endogenous variable. The Monte-Carlo estimation of the variability of Bl is very similar to that of the
exogenous variables. With ¢ = 0.1 the estimate & is larger than ogiuct in 95% of the simulations. This

suggests that there remains some margin to penalize less for the

‘variance” in ([33l), i.e., to decrease
c and thus to obtain higher sensitivities.

Next, we study the empirical behavior of the non-pivotal STIV estimator. We consider the
same model and the same values of all the parameters, and we choose o, = 2 -0.233 where 0.233 is
the median of & from Table Bl Indeed P (E,[U?] < 02) should be close to 1 (see Assumption [E.4).

The results are given in Table [d The non-pivotal procedure seems to better estimate as zeros the
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TABLE 3. Monte-Carlo study, 1000 replications

5t" percentile | Median | 95" percentile 5" percentile | Median | 95" percentile
3 -0.057 0.000 0.055
S -0.052 0.000 0.059
B33 -0.051 0.000 0.051
Bia -0.057 0.000 0.051
6 -0.048 0.000 0.055 35 -0.053 0.000 0.049
7 -0.059 0.000 0.063 c 0.181 0.233 0.291

TABLE 4. Monte-Carlo study of the non-pivotal estimator, 1000 replications

5" percentile | Median | 95" percentile 5t% percentile | Median | 95" percentile
S -0.003 0.000 0.016
5 0.000 0.000 0.024
To 0.000 0.000 0.018
B33 0.000 0.000 0.021
5 0.000 0.000 0.020 54 0.000 0.000 0.016
j 0.000 0.000 0.021 55 0.000 0.000 0.005

zero coefficients. This is because we minimize the #; norm of the coefficients without an additional co
term. On the other hand, the non-zero coefficients are better estimated using the pivotal estimator.
The non-pivotal procedure yields some shrinkage to zero (especially for large o,). Using the pivotal
procedure in the first place allows us to have a good initial guess of o,.

Let us now increase n to see whether we can obtain interval estimates and take advantage
of thresholding for variable selection. We consider the same model as above and the same values
of the parameters of the method but we replace n = 49 by n = 8000. Then we are no longer in a
situation where we must use specific high-dimensional techniques. However, it is still a challenging
task to select among 25 candidate variables, one of them being endogenous. Indeed, classical selection
procedures like the BIC would require to solve 22° least squares problems. Our methods are much
less numerically intensive. They are based on linear and conic programming, and their computational
cost is polynomial in the dimension. We study both the setting with all the 50 instruments and the

setting where we estimate the linear projection instrument.
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TABLE 5. Confidence intervals and selection of variables, n = 8000

Bisc | Bz B Bug | Busc | ky; | 6k(5) | wy 5 | wesc

s | -0.163 | -0.160 | 0.003 | 0.166 | 0.169 | 0.807 | 0.791 | 0.163 | 0.166
- | -0.173 | -0.168 | 0.002 | 0.172 | 0.177 | 0.846 | 0.823 | 0.170 | 0.175
s | -0.173 | -0.170 | 0.001 | 0.173 | 0.175 | 0.789 | 0.779 | 0.172 | 0.174

B33 | -0.190 | -0.188 | 0.003 | 0.194 | 0.197 | 0.802 | 0.793 | 0.191 | 0.193
B34 | -0.171 | -0.166 | 0.001 | 0.168 | 0.172 | 0.842 | 0.821 | 0.167 | 0.172
B35 | -0.172 | -0.169 | -0.005 | 0.158 | 0.162 | 0.828 | 0.811 | 0.163 | 0.167

Consider first the case where we use all the instruments. Set for brevity

r r? - r 2\
oa(l1-—-—— | w(5)é(1————) .
< /i*{j Ky 7 k3(5)  k1(H) n

These are the quantities appearing in (84) and (8H). As above, we take .J equal to the set of the first

five coordinates; w(5) corresponds to the sparsity certificate approach with s = 5. Computing the
exact coordinate-wise sensitivities we obtain the bound w < 1.6277. The sparsity certificate approach
with s = 5 yields w(5) < 1.6306. We obtain ¢ = 0.2970 and the estimates in Table Bl The values
Bl, 7 and Bu 7 are the lower and upper confidence limits respectively obtained from B); Bl,gc and
Buysc are the lower and upper confidence limits obtained from (&) (sparsity certificate approach with

s =5). The thresholds w, 7 and wy(5) are computed from the formulas

2-1.62776r (5) 2-1.630667r
wy = ———— wi(5) = ——7—
k.J xk*ﬂz 7 g II)k*RZ(5)

Table 5 shows that in this example thresholding works well: The true support of 8* is recovered
exactly by selecting the variables, for which the estimated coefficient is larger than the threshold.
Note that the threshold for the endogenous variable is very close to the estimate of the first coefficient
Bl since the confidence intervals are wider for the endogenous variable.

We now consider the case where we use only 25 instruments; the 24 exogenous variables serve

as their own instruments and the Square-root Lasso estimator of the linear projection instrument is
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TABLE 6. Estimates of the coefficients in the linear projection instrument

G G Gs Ca G Co G (s Co Cio Cia Ciz Cis Cua
0.142 | 0.145 | 0.134 | 0.136 | 0.137 | 0.135 | 0.139 | 0.139 | 0.134 | 0.140 | 0.146 | 0.140 | 0.134 | 0.136
215 216 617 218 619 620 221 622 623 224 625 226
0.137 | 0.138 | 0.141 | 0.128 | 0.142 | 0.137 | 0.133 | 0.135 | 0.135 | 0.142 | 0.137 | 0.138

We only show the non-zero coefficients (keeping only three digits).

TABLE 7. Confidence intervals and selection of variables, n = 8000

Busc | Bz B Bug | Busc | ky; | 8k(5) | wy 5 | wkso

B¢ | -0.098 | -0.092 | 0.003 | 0.099 | 0.104 | 0.868 | 0.822 | 0.095 | 0.101
B7 | -0.103 | -0.098 | 0.002 | 0.102 | 0.107 | 0.907 | 0.869 | 0.100 | 0.105
Bs | -0.099 | -0.095 | 0.001 | 0.098 | 0.102 | 0.886 | 0.853 | 0.096 | 0.101

B33 | -0.115 | -0.109 | 0.003 | 0.115 | 0.121 | 0.862 | 0.825 | 0.112 | 0.118
B34 | -0.104 | -0.099 | 0.001 | 0.101 | 0.106 | 0.888 | 0.848 | 0.100 | 0.105
B35 | -0.109 | -0.104 | -0.005 | 0.093 | 0.098 | 0.870 | 0.830 | 0.098 | 0.103

used for the endogenous variable. This time, we apply the Square-root Lasso with the recommended
choice ¢ oo = 1.1. We get \/% = 0.3012. The estimates of Zl are given in Table[6l Next, we use
[®4) and ([B3H) to obtain the confidence intervals. Computing the exact coordinate-wise sensitivities
we get the bound w < 1.0941. The sparsity certificate approach with s =5 yields w(5) < 1.0990. We
also get o = 0.2970. The thresholds Wy 7 and wy(5) are obtained from the formulas

2-1.094167r 2-1.09906r
W= wW(®) = ————
. Thehy 5 Tk (D)

The results are summarized in Table [l Note that the confidence intervals and the thresholds are
sharper than in the approach including all the instruments. The particularly good news is that the
confidence interval for the coefficient of the endogenous variable becomes much tighter.

In conclusion, when the sample size is large, the coordinate-wise sensitivities based on the

sparsity certificate work remarkably well for estimation, confidence intervals, and variable selection.
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We also get a significant improvement from using the two-stage procedure with estimated linear

projection instrument.

9. APPENDIX

9.1. Lower bounds on k), ; for square matrices ¥,. The following propositions establish lower
bounds on k, ; when ¥, is a square K x K matrix. For any J C {1,..., K} we define the following
restricted eigenvalue (RE) constants

ATw,AL s ATRA]

A
RRE,J = 1 K =
AeRK\{0}: aec, A3 7 REJ ™ Aerk\{0): acc;  |Ay]?
Proposition 9.1. For any J C {1,..., K} we have

-, (-
K —K —K .
1L,J = Al RE,J = Al RE,J

Proof. For such that |A e[y < 1££|A |1 we have [Al; < t2-|A [;. Thus,

IATU, Al AL YRA | 4 |V, Al
2 < 2 < 2 :
|Aulf AT (I-0¢)? |Al

This proves the first inequality of the proposition. The second inequality is obvious. O

Proposition 9.2. Let J C {1,..., K} be such that
XDxA -
(9.1) in XDxAlz , o
AERK\{0}: AeC, /T|Ago
for some K > 0, and let there exist 0 < § < 1 such that

1 T 5(1 — ¢)%k?
. — — < N T
(9.2) - (XDx — ZDy)" XDx| < i

[e.9]

Then
(1-0)(1-— 0)2%2
4|7

K1,J =
Proof. We have

[Un Al Al = |AT\I’nA|

> ‘AT%DXXTXDXA‘ — AT%(XDX — ZDZ)TXDXA'
where
‘AT% (XDx — ZDz)" XDXA‘ < % (XDx — ZDz)" XDX‘ A2
a(l —c)?R? .

|
B~
=
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Combining these inequalities and using that |A|? < ﬁgL}”AJ@ for all A € Cj (cf. proof of
Proposition [0.2]) we get the result. O

Note that (O] is the restricted eigenvalue condition of Bickel, Ritov and Tsybakov (2009) for
the Gram matrix of X-variables, up to the normalization by Dx. Relation ([@.2)) accounts for the
closeness between the instruments and the original set of variables suspected to be endogenous.

We now obtain bounds for sensitivities s, ; with 1 < p < 2. For any s < K, we consider a

uniform version of the restricted eigenvalue constant: xkrg(s) = min| jj<s KRE,J-

Proposition 9.3. For any s < K/2 and 1 < p < 2, we have
Kps > C(p)s YPrpe(2s), YV J: |J| <s,
-1
where C(p) = 210=V/2(1 — ) (14 422 (p— 1))

Proof. For A €¢ R¥ andaset J C {1,...,K},let J; = J1(A,J) be the subset of indices in {1,..., K}
corresponding to the s largest in absolute value components of A outside of J. Define J, = J U Jj.
If |J| < s we have |Jy| < 2s. It is easy to see that the kth largest absolute value of elements of A je

satisfies |A je|() < |Aye|1/k. Thus,

1 |A el?

I TN S ey
D _ p—1
k>s+1 k (p 1)8
For A € C}, this implies
|Age1 - colA gl - colAglp

|AJi|P < (p_ 1)1/1)31—1/1) - (p_ 1)1/1731—1/17 - (p— 1)1/10’

where ¢y = % Therefore, for A € Cy,
(9.3) Al < (1T +colp— 1)) A |p < (1+colp = 1)77)(29) /P71 21A o

Using ([@.3) and the fact that |A]; < %|AJ|1 < ?—£|AJ|2 for A € Cy, we get
’AT\IITLA’ < ’A‘ll\I’nA’oo
’AJ‘F‘% B ’AJ‘F‘%
2V/5|¥n Al
(1=0)lAs ]2
sYP|W, Al
C(p)|Alp

Since |J4| < 2s, this proves the proposition. O
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The lower bounds in Propositions and require to control from below |ATW,A| (where
U, is a non-symmetric possibly non-positive definite matrix) by a quadratic form with many zero
eigenvalues for vectors in a cone of dominant coordinates. This is potentially a strong restriction on
the instruments that we can use. In other words, the sensitivity characteristics x, ; can be much larger
than the above bounds. The propositions of this section imply that, even in the case of symmetric ma-
trices, these characteristics are more general and potentially lead to better results than the restricted

eigenvalues krp(-) appearing in the usual RE condition of Bickel, Ritov and Tsybakov (2009).

9.2. Moderate deviations for self-normalized sums. We use of the following result from Jing,

Shao and Wang (2003), formula (2.11).

Theorem 9.4. Let X1,...,X,, be independent random variables such that, for every i, E[X;] =0 and

0< E[’XiPH] < 0o for some 0 < <1. Set
So=> Xi;, B2=Y E[X}, V2= X} L.s=)Y E [|Xi|2+5] dps = Bn/L%@H)‘
=1 =1 i=1 i=1

Then
V0 < @ < dug, [P(Sa/Va 2 @) = (1= ®(@)] < Ao(1+2) e /2/d>7

where Ag > 0 is an absolute constant.
9.3. Proofs. Proof of Proposition 4.1l Parts (i) and () of the proposition are straightforward.

The upper bound in ([3]) follows immediately from (£.I]). Next, obviously, |A|, < |A|}/ P |A|(1XT P and
we get that, for A # 0,

[ZnAloo o [¥nlloc (!A\oo>1/P
A T Al \JAR/)

Furthermore, (ZI]) implies |A]; < 12 |J||A|w for A € Cy. Combining this with the above inequality
we obtain the lower bound in (4.3]). O

Proof of Proposition Forall l<k< Kand1<I[I<L,
[(UnA), — (Wn)uAg| < |Af g}%l(‘l’n)ml,

which yields
[(Tn)ukl |Ak] < |AL Ig,l%l(‘lfn)zkfl + [(Un )]
The two inequalities of the assumption yield

1-— 1—c 1—c
%’(\Pn)l(mk’ +

[(Waliaon | 1841 < 141 | (@ )y | (¥ diaon
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Now, using that ‘(\I/nA)l(k)‘ < |¥,A|,, we obtain

(I1=m)(1—-¢) 1-c¢
9.4 A < |A + v, A

Summing the inequalities over j in .J, yields

1-— 1-c¢ J|(1—c
8, < 0=y, 0= g )

This and the first inequality in (A1) imply that we can take

_mne
(95) KJLJ = —2’J’ .

Next, from (@.4) and (@3] we deduce

1— 1
|Aj|<< 2y )(1—c)|\lf Al
mmne m

1-—
mmn2

IN

° 19,4,

which implies

mmne
Roo,J 2 .
1—c¢

This and the lower bound in (3] yield the result.

Proof of Theorem Define the event

G = {'%DZZTU‘OO < mr}

Since Q(8*) = E,[U?], the union bound yields

9.6 ¢) < PYSEITNIN

96) P(G") gj (n Ll _T>
L
ZP( i= 1(2;72 E > A«/2log(L)> .
=1 z 1\~ ™

By Theorem @4 for all [ =1,..., L,

ol (1+ Ay/2log(L))'*+?
0.7) P (|- | S 4\ /3Tog(D) | <2 (1 ®(4v/2108(1))) + 24, LAV Zg6
S (i) LA

Thus, the event G holds with probability at least 1 — «, by the definition of « in (5.1]).
Set A £ Dx_l(g— B*). On the event G we have:

(9.8) W,Al < ‘%DZZT(Y - XB)‘ + '%DZZT(Y — X%

o o0



<ro+

1
—DZZTU‘
n o0

Sr(&—l—\/%).
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Notice that, on the event G, the pair <ﬂ*, @(ﬁ*)) belongs to the set 7. On the other hand, (E, o)

minimizes the criterion ‘DX_1 5|1 + co on the same set Z. Thus, on the event G,

(9.9) ‘Dx‘lﬁ‘l +c6 < [Dx B + e/ Q(B).

This implies, again on the event G,

= ) ‘ﬂfk*ﬁk‘

keJ(B*)e

(9.10) | A j(5v)e

< > (!ﬂfk*ﬁ}i\ - ‘ﬂfk*ﬁk‘) +c (\/@(5*) - \/@(@)
keJ(B*)

< (8o, + e (V) - /21B)
E,[UXT]Dx A - —

< ‘AJ(B*) ,te [\/Iﬁx by convexity of 5 \/Q(ﬁ))
E,[UXT]D

< |Aypyl, +e ﬁ |Aly

< A4 , Tc|Afl1 (by the Cauchy-Schwarz inequality).

Note that (9.10) can be re-written as a cone condition:

1+c¢
1 < 1_C‘AJ(5*)

(9.11) | A j(gee

L
Thus, A € Cj(g+) on the event G. Using ([0.8) and arguing as in ([@.I0) we find

(9.12)

WAl <r <2a +1/Q(8*) — a)

<r (2& #V/QE) - VQE)  (since 1/2(F) <

§r<23+ )

E,[UXT|DxA
E,[U?]
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N E,[UX; E,[UX;
<r |20+ max _Ea[UX] |A .1 + max _EnUX] ge h
I€Jena |\ [En[X2U?) i€na |\ [Ea (X207 7
- E,[UX; . :
<r|20+|A, .1 + max _EalUX] |Age l1]  (by the Cauchy-Schwarz inequality).
‘7 c en:

€JS 4 ]En [X]2 U2]

Since L > K and zj; = zj; where j' = j — kepa, j € JS g = {kena +1,..., K} (the exogenous variables

serve as their own instruments), from ([@.7) we obtain that, on the event G,

EUX;] | _ .

max =

JEJIE 4 EH[XJZUQ]

Combining this with (0.12) and using the definition of the block sensitivity « ;. jg-) with Jo = Jena,
Jo = JS 4, we get that, on the event G,

(9.13) N (23 + m - a)

U, A U, A
§r<28+ |*” oo +r| r |°°),

B Jenand(8%)  F0e,4,0(8%)
which implies
) -1
~ T T
(9.14) U,Al < 207 (1 - — - — ) .
Flenard (%) TIe40(89) ) ,

This inequality and the definition of the sensitivities yield (5.2]) and (G.3)).
To prove (6.4), it suffices to note that, by (9.9) and by the definition of K% 4.) ;(5.),

& < |A gl + e/ Q(BY)

\I’nA ') ~
Bl o),
Ry(8+),7(8%)

and to combine this inequality with (O.8]). O

Proof of Theorem [B.7l Part (i) of the theorem is a consequence of (.4 and Assumptions 5.4 and
Parts (ii) and (iii) follow immediately from (5.2]), (5.3]), and Assumptions [(.4] and Part (iv)
is straightforward in view of (5.9]). O
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Proof of Theorem Let G; be the events of probabilities at least 1 — v; respectively appearing
in Assumptions (5.4 [5.6], Assume that all these events hold, as well as the event G. Then

—1 -1
20 §

an(s) < s (1 ) (1= o R ET T i 2 W},
HOL T () R CRYN Tena®) ey ($) )

By assumption, |G| > 2w} for k € J(8*). Note that the following two cases can occur. First, if
k€ J(B*)° (so that 8} = 0) then, using (5.3) and Assumptions[5.4land 5.8] we obtain |§k| < wy, which
implies B, = 0. Second, if k € J(3*), then using again (5.3) we get 18] — |Bk|| <8 —§k| <wgp < wj.
Since |Bf| > 2w}, for k € J(B*), we obtain that |§k| > Wy, so that Ek = Ek and the signs of 3} and Bk

coincide. This yields the result. O

Proof of Theorem [5.171 Fix an arbitrary subset J of {1,..., K'}. Acting as in (O.I0) with J instead
of J(B*), we get:

Z ‘xk*ﬁk‘ + Z Tk Br] < Z <!wk*ﬁi§\ - ‘xk*/@\kD +2 Z |z 14 OF|
ket

keJe keJe hele
re(VaE - Vad)

S |AJ|1 + 2 |(DX—1ﬁ*)Jc

1 + C|A|1.
This yields

(9.15) [Agely <AL +2[(Dx7'8%) .

1 + C‘A’l.

<
1S

|As|1, then A € C; and, in particular, ([@I3) holds with the sensitivities Ko, instead of ke j(g+). From

Assume now that we are on the event G. Consider the two possible cases. First, if 2 !(DX_1 B*) Je

this, using the definition of the sensitivity &, ;, we get that |A], is bounded from above by the first
term of the maximum in (5.I4]). Second, if 2 !(Dx_lﬂ*)JC

L > |Ayl1, then for any p € [1, 00] we have

a simple bound

6
’A‘p <Al = Ayt + Ay < 1-¢ (DX_IB*)JC

1°

In conclusion, |A|, is smaller than the maximum of the two bounds. O

Proof of Theorem Throughout the proof, we assume that we are on the event of probability
at least 1 — aip where (64]) holds. It follows easily from (6.4]) that

(9.16) %ZTX(B — 89| <z,

o0
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Next, an argument similar to ([@.6]) and Theorem yield that, with probability at least 1 — aq,

<7r; max 1 Z(Eliui — 052 =r F(0%,57).

1=1,...L1\| n 4
0 ! i=1

(9.17)

In what follows, we assume that we are on the event of probability at least 1 — oy — o where both

(@I6) and (@I7) are satisfied.

We will use the properties of F'(6, 3) stated in the next lemma that we prove in Section [9.4]
Lemma 9.5. We have
|0 — 6%,

Dx_l(g— B)

(9.18) F(0",5) — F(9.5)

IN

< bZs.

1

We proceed now to the proof of Theorem[6.2l First, we show that the pair (0, 01) = (6%, F(6*, 5*))
belongs to the set Z;. Indeed, from (@I6) and (@I7) we get

17 ~

17y —xp) -0t < |2ZUu_¢ +'12TX(3—5*)
n n n

(e} o0 o0

< P05, 57) + bz

Thus, the pair (6,01) = (0%, F(6*, 3%)) satisfies the first constraint in the definition of Z;. It satisfies
the second constraint as well, since F(6*,3) < F(6*, 3%) + bz, by (@1J).

Now, as (6%, F(6*,5%)) € Z, and (6,5,) minimizes |6]; + coy over Z;, we have
(9:20) Bl + 31 < 167|1 + eF (67, 57),
which implies
(9.21) [Asyelt < [Bgeylt + c(F(07, 87) - 51),
where A = § — §*. Using the fact that F(@, B) < 1 + bz, [OI78), and ([@.I9) we obtain

(9.22) F(6*,8%) — 6, F(6*,8%) — F(8, B) + bz,

IN

< 10— 6% + 2z,

This inequality and ([@.21)) yield

’Z](e*)c’l < ’ZJ(Q*)’l + C’é\— 9*‘1 + 20/55*,
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or equivalently,

14 2c

— Cc — ~

1+1—c

Next, using (@16), (II7) and the second constraint in the definition of (6,5,), we find

F-6 < | Z'(Y-XB) -0
+ ‘%ZTU s ‘EZTX(E— 5)
< (51 + F(6%, B%)) + 2b7..
This and (@.22]) yield
(9.24) 10— 0" < 71(261 410 — 0%]1) +2(1 + 71)bZ..

On the other hand, ([0.23]) implies

o 9
(9.25) 0 —0"1 < :|AJ(6*)

2 —~
€ bz,

1+1—c
2|J(0%)] ~ . 2c
1—c¢ ’9 0’°O+1—c

bZ,.

Inequalities ([6.7]) and (G.8)) follow from solving (0.24]) and ([@.25)) with respect to |§— 0* | and |§ — 0%y
respectively. O

Proof of Theorem We first prove part (i). We will assume that we are on the event of
probability at least 1 — a; — ag — & where ([@.I7)), (€.9), and (6.11]) are simultaneously satisfied. From
[©@20) and the fact that (69]) can be written as F(6*, 3*) < o1, we obtain

(9.26) 51 < |0 —0*|1/c+ ous.

Note also that the argument in the proof of Theorem and the results of that theorem remain
obviously valid with b replaced by b,. Thus, we can use (6.8]) with b replaced by by, and combining it
with ([@.26) we obtain

(9.27) 51 < ..

This and (6.7) yield (612]).

We now prove part (ii) of the theorem. In the rest of the proof, we assume that we are on the
event G’ of probability at least 1 — a; — e — v where (@I7), (63), and the events G, G; defined in the
proofs of Theorems [£.2] B.7] are simultaneously satisfied. Then item (ii) of Theorem (.7 with p = 1
implies (6.11) with b, defined in (€I3]). This and ([GI2]) easily give part (ii) of the theorem.
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To prove part (iii), note that, by Theorem [5.7] (i) and Assumption [£.8]

1
. =~ 2
(9.28) po 20rs (1 roo T ) < b,

Ky () K (s) .

end

for b, defined in (GI3). This and (@27) imply that the threshold w satisfies w = V(31,g, J (5)) <
V (s, bs,51) 2 w* on the event G'. On the other hand, (6.7]) guarantees that |§l — 0| < w and, by
assumption, |0y > 2w* for all [ € J(#*). In addition, by (E2) and @7) for all I € J(6*)¢ we have
|0/ < w, which implies 6, = 0. We finish the proof in the same way as the proof of Theorem B [

9.4. Proof of Lemma Set f,(0;) = @1(91,3), and f(0) = max;—=1._r, fi(6)) = F(H,B). The
mappings 6 — fi(6;) are convex, so that by the Dubovitsky-Milutin theorem (see, e.g., Alekseev,
Tikhomirov and Fomin (1987), Chapter 2), the subdifferential of their maximum f is contained in the

convex hull of the union of the subdifferentials of the fi:

Ly
(9.29) df C Conv (U afl) .

=1
Since, obviously, df;(6;) C [~1,1], we find that f(0) C {w € R : |w|s < 1} for all # € RM1. Using
this property and the convexity of f, we get

~

FO7) = f(0) < (w,0" —0) < |0 — 6"y, Y wedf(0"),

where (-, -) denotes the standard inner product in Rt This yields (@I8]). The proof of ([@.I9) is based
on similar arguments. Instead of f;, we now introduce the functions g; defined by g;(3) = \/@1(97, B),
and set g(B) = max;—1 .1, 91(8) = F(0*,5). Next, notice that the subdifferential of g, satisfies
0g1(B) C{w e RE . |wy| < ag, k=1,...,K} forall 3 € RX, 1 =1,..., Ly, where

_ L5 s (Zu(yi — =7 B) — 6))| .

VAT, (uly —278) — 67)°
Consequently, by the Cauchy-Schwarz inequality, Dxdg;(3) C {w € RE : |w|s < Z.} for all 3 € RE,
l=1,...,L;. This and (@29) with g, g; instead of f, f; imply Dx9dg(8) C {w € RF : |w|s < Z,} for

Qaik

all # € RX. Using this property and the convexity of g, we get

9(B) = 9(B") < (w, (8~ F)) < Dxwls [Dx"(8 ~ F)], <z [Dx (B -5, ¥ wedg(B),

for any 3, 8’ € RE. This proves (@.19). O
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