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Logistics

Schedule

Lectures: Tue 9:30-11:00, 11:30 - 13:00;
Exercises: Mon 9:30-11:00;
Office hours: By appointment
TA: Wisse Rutgers

Home assignments

Home assignments will include theoretical, computational, and empirical exercises. I strongly en-
courage you to use R for the coding problems. Home assignments should be done in groups with a
minimal size of two and a maximal size of three students.

Grading

Grades will be based on group home assignments (10%), presentations (10%), and a final exam (80%).
The final exam will consist of two equally weighted parts: a replication project and a take-home exam.

Course Objectives

The primary goal of this course is to guarantee that students can (a) understand, (b) implement, and
(c) discuss possible improvements of any empirical paper in economics/finance (from the econometric
perspective). We will develop the necessary theory and will illustrate it with empirical exercises. A
secondary goal is to introduce modern statistical techniques (ML and high-dimensional statistics)
and show how they can be used to improve standard estimation procedures.
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Prerequisites

Satisfactory performance in the first-year statistical and econometric courses (including Applied
Microeconometrics, if applicable).

Plan

1. Prediction: Empirical Risk Minimization and Regularization;

2. Basic Toolkit: Experiments, Weak Instruments, Unconfoundedness, RDD, Two-Way Models;

3. Beyond MHE: Selection Models, Marginal Treatment Effects;

4. General view: GMM and Related Problems;

5. Topics: Bipartite Networks, Quantile Methods, Shift-Share Designs;

6. Uncertainty Quantification: Design-Based vs. Model-Based Inference;

Literature

Textbooks

Lecture notes will be uploaded weakly on the course website. There is no textbook for the course,
but the references below can be useful:

• Econometrics textbook by Bruce Hansen (old version available online);

• “Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction”, by Guido
W. Imbens and Donald B. Rubin;

• Manuel Arellano’s lecture notes (available on his website);

• Stefan Wager’s lecture notes for STATS 361 (available on his website)

• “Mostly Harmless Econometrics” by Joshua D. Angrist & Jorn-Steffen Pischke;

• “Elements of Statistical Learning” by Hastie, Tibshirani, Friedman (available online).

• “Computer Age Statistical Inference” by Hastie and Efron (available online);

Papers

Lecture notes will be partially based on the papers below (the list will be updated throughout the
course). I do not expect you to read all or any of them (some are very technical), but I will let you
know the most useful ones.
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