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Abstract 
 
This paper studies the release timing game played by movie distributors. When 
deciding on release dates for movies, studios trade-off between releasing in 
high demand periods and facing milder competition from the movies of 
competitors. The estimation results suggest that this trade-off explains a 
substantial part of the variation in observed release dates. I also find that 
prerelease announcements play an important role in the game of releases. 
Announced release plans have a considerable effect on final release decisions 
of studios, and are not likely to be cheap talk. In addition, observed behavior of 
market participants is consistent with the idea that certain studios are using 
announcements as a way to pre-commit to particular release dates. As a whole, 
the results support the main predictions of the endogenous commitment theory 
recently proposed in the theoretical literature. 
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1 Introduction

One of the most important ideas in game theory is the value of commitment, the
idea that in many situations players can benefit from the opportunity to make binding
promises to play in certain ways. In economic models commitment is typically introduced
by assuming that certain players have a possibility to make binding actions at the begin-
ning of a game. However, recent theoretical studies suggest that commitment power may
arise endogenously from the fundamentals of the model (Caruana & Einav, 2008b; Quint
& Einav, 2005; Lipman & Wang, 2000). For example, firms can make public announce-
ments of their future plans with respect to production quantities or entry to different
markets. To the extent that changing plans is costly, firms may behave strategically
and use announcements as a commitment device (Caruana & Einav, 2008a). Empirical
validation of this theory is interesting, as the new approach tends to deliver very different
predictions from the ones in standard game theoretic models. A substantial part of this
paper is an attempt to discuss the nature of commitment in the context of one particular
industry and check whether behavior of firms is consistent with the idea of endogenous
commitment.

This paper addresses two main questions in the context of the U.S. movie industry.
The first part of the paper analyzes how studios choose release dates for their movies.
Demand for movies varies substantially over the course of the year, so certain time periods
are more profitable for movie releases. At the same time, studios tend to release better
movies in the weeks that have higher underlying demand, so high demand periods are
characterized by more intense competition among movies (Einav, 2007). I argue that
when studios decide on theatrical release dates, they trade-off between releasing films in
high demand periods and facing milder competition from other movies. The estimation
results for the static release timing game suggest that a trade-off between seasonal effects
and competition explains a substantial part of the variation in the observed release dates
of movies.

The second part of the paper explores the role of commitment in the industry. One
interesting feature of the market is that ahead of time studios make public announce-
ments of their release plans. At around the same time they start a large scale marketing
campaign, which aims to promote the movies and inform consumers about forthcoming
releases. Studios typically need to book advertising slots and negotiate a proper amount
of screens with the owners of movie theaters. Given that any adjustments of the mar-
keting campaign are potentially costly (one has to shift advertising slots and renegotiate
contracts with theaters), studios could use announcements as a way to make credible
commitments. For example, one strategy would be to make an early announcement with
the hope that it will deter competitors from choosing the same release date. This could
help a studio to capture rents from the large mass of moviegoers without facing too
intense competition from the movies of other distributors.

To study the role of prerelease announcements I use a unique dataset on the history
of scheduled release dates. The data suggests that different studios tend to behave differ-
ently with respect to the announcements of their release plans. In particular, Universal
Pictures and Paramount Pictures tend to announce their final release dates much earlier
than other distributors do. These two studios also rarely change their release dates in
response to the announcements of competitors. I also show that studios holding ex ante
more successful movies tend to announce the final release dates earlier. I then explore
the data on box-office revenues and show that such strategies of early announcements are
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associated with significantly higher realized profits. Together these observations suggest
that studios may be using prerelease announcements as a commitment device.

Further discussion in the paper suggests that the best way to explain the observed
configuration of release dates would be to analyze a sequential game of announcements.
This is not feasible both computationally and due to the data limitations. Instead, I
study a modification of the static game that allows to analyze the role of prerelease an-
nouncements in a simple way. The estimation of this extended model shows that studios
are often reluctant to adjust previously announced release dates, even when adjustment
promises higher box-office revenues. The observed behavior can be rationalized by the
presence of adjustment costs that a studio needs to pay every time it switches to another
release date. This finding suggests that prerelease announcements indeed have a binding
nature, and thus may have a substantial effect on the outcome of release timing game.

The model proposed in this paper is a discrete-choice model that captures the main
incentives of studios with respect to release decisions. The proposed structure falls down
into the category of structural entry models (Bresnahan & Reiss, 1990; Berry, 1992).
Specifically, the model considered here is a static game with asymmetric information in
the spirit of the location-choice model in Seim (2006). However, in Seim’s model all
potential entrants are ex ante identical. This symmetry assumption is too restrictive
in my application as all players are ex ante different along observable dimensions. The
model I propose allows for observable heterogeneity of entrants, and can therefore be
viewed as an extension of the framework proposed by Seim.

Another paper that analyzes release decisions of distributors is Einav (2010). In
the paper Einav assumes that observed release dates are the outcome of a sequential
move game with private information. He estimates the model and finds that release
dates of movies are too clustered around big national holiday weekends. The analysis I
propose here is different from his paper in two dimensions. First, his main focus is on
the optimality of release decisions, whereas the main purpose of my analysis is to study
the role of commitment in a release timing game. Second, in his structural model players
move in a prespecified exogenous order. This assumption complicates the discussion
of commitment related issues, as commitment is assumed exogenously. Instead, the
model proposed here assumes that studios choose release dates simultaneously. The
resulting structure is quiet flexible and allows to explicitly analyze the effect of prerelease
announcements on the final release decisions of distributors.

Multiplicity of equilibria is an important issue in the analyzed release timing game.
The presence of multiple equilibria makes predictions of the model ambiguous, which
creates a challenge for the estimation of parameters. Different ways were proposed in the
literature to deal with this problem. Several authors (Bresnahan & Reiss, 1990; Berry,
1992) propose to set up a model that does not provide uniqueness, but provides the
econometrician with a coarser partition of the empirical model that satisfies uniqueness.
This approach imposes strong symmetry assumptions on the structure of the model.
Given that in my application players are ex ante different, these assumptions seem too
restrictive.

Two alternative approaches to deal with multiplicity have been proposed recently in
the literature. First, several papers (Andrews et al., 2004; Ciliberto & Tamer, 2009) show
that in the presence of multiple equilibria, an econometrician can place bounds on the
parameters rather than obtain point estimates for them. The potential of these methods
in the models, in which players are heterogeneous in their observable characteristics, has
yet to be fully realized. A second approach (Aguirregabiria & Mira, 2007; Pakes et al.,
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2007) uses a two-step estimation strategy to get around the multiplicity problem. This
approach assumes that despite multiplicity of equilibria in the model, only one equilib-
rium is played in the data. The method relies on accurate nonparametric estimation
of the policy functions, which are then used to back out the structural parameters. A
two-step approach has an advantage of being computationally simple, and at the same
time flexible enough to allow for heterogeneity of players. Thus, in my application I use
a two-step method as a primary estimation technique.

The paper is organized as follows. Section 2 describes the main features of the movie
industry. Section 3 presents two datasets used in the empirical analysis. Section 4
contains the detailed description of the demand models and the results of its estimation.
Section 5 sets up a release timing game, and Section 6 describes estimation techniques
used to back out parameters of interest. Section 7 documents interesting announcement
patterns of studios and provides discussion of the main findings in the spirit of endogenous
commitment theory. Section 8 contains final remarks, and Section 9 concludes the paper.

2 Industry

The movie industry comprises of three main players: producers, distributors, and ex-
hibitors. Producers take care of all production aspects of a movie starting from the choice
of a script and finishing with a final montage of film scenes. Distributors are responsi-
ble for the nationwide distribution of movies that are already produced, and exhibitors
own the movie theaters. The U.S. motion picture industry is dominated by six major
companies that combine production and distribution: Walt Disney Pictures, Paramount
Pictures, Columbia Pictures, Universal Pictures, Warner Brothers, and 20th Century
Fox. There are also several studios that distribute their own movies as well as films of
small producers. Those are, among others, MGM, DreamWorks, and Lionsgate Films.
By historical reasons, distribution and exhibition are vertically separated. Distributors
routinely make profit-sharing contracts with the theater owners in order to show their
movies to the wide audience.

Studios make several important decisions with respect to the distribution of movies.
The choice of a release date is one of the most important decisions. Release date matters
because an average movie earns around 40% of its final box-office revenues during the
opening week (See Figure 1). According to the common wisdom on the industry, success-
ful opening also gives a movie good publicity, which makes a film more successful in the
later stages of distribution, e.g. when it is released in the DVD format. When deciding
on release dates, studios face two important considerations. One is that demand in the
industry is highly seasonal. Certain time periods (e.g. summertime or winter holidays)
tend to be more popular among moviegoers, which makes those periods more favorable
for movie releases. Another consideration is potential competition. All studios want
to release their movies on the attractive holiday weekends and at the same time deter
competitors from doing the same. In order to do so, distributors try to release their best
movies during these high demand periods, as big blockbusters have higher deterrence
potential. This leads to tougher competition among movies in the near-holiday weeks
and milder competition during the rest of the year. Distributors should take this effect
into account, when they decide on release dates. Therefore, the problem they face is a
trade-off between seasonal and competition effects.

An interesting feature of the industry is that studios tend to make public announce-
ments about their future release plans. The first announcements are made as early as
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Figure 1: Distribution of box-office revenues over the lifetime of a movie.

one–two years before the actual release of a movie. At around the same time, studios
start to prepare for the opening week. Typical preparation comprises of booking ad-
vertising slots and negotiation of screens with the owners of theaters. Distributors are
free to adjust their preliminary plans later on. However, any consequent changes of a
release date are costly as studios have to reoptimize the national advertising campaign
of a movie and renegotiate contracts with exhibitors. Such adjustments of release dates
become even more costly over time, because it is hard to find a large amount of spare
screens and alter the marketing campaign shortly before the scheduled opening week.
Given the costly nature of adjustments, studios could use announcements strategically.

One potential commitment strategy for a studio is to make an early announcement
with the hope that it will deter competitors from choosing the same release date. Such
preemptive action may eventually help to extract more rents from the weeks characterized
by high demand. This strategy would not work if all studios face the same adjustment
costs, as then all players have equal commitment power. However, there are two reasons
to believe that there exist substantial asymmetries in switching costs. The first reason
is a repeated nature of the game. Since the same studios interact with each other for
decades, reputation may play an important role in the strategic game of releases. Some
distributors may have reputation of being tough competitors. For them changing an
announced release date can be associated with higher reputational costs. The second
reason is heterogeneity of movies. Blockbusters are typically released on thousands of
screens all over the country and require massive national advertising campaign. Adjusting
such a large scale marketing campaign can be extremely costly. By this reason, adjusting
release dates for big budget movies can be more expensive than shifting release dates of
lower budget films. The presence of asymmetric adjustment costs makes it possible for
commitment strategies to arise in this market.
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Table 1: Movie Industry Trends

Period Wide Releases Avg Ticket Price Total Box-Office Revenues Admissions (per Capita)

1983-1986 435 7.98 22.4 2.89

1987-1990 480 8.01 26.6 3.29

1991-1994 519 7.03 27.8 3.76

1995-1998 520 6.93 30.9 4.04

1999-2002 707 7.68 42.8 4.84

2003-2006 783 7.89 44.9 4.74

2007-2010 835 8.28 44.5 4.35

2011-2014 838 8.31 43.3 4.07

Ticket prices and revenues are in December 2014 U.S. dollars. Wide release is defined as a movie that was
played in more than 100 theaters at some point in the sample. Total box-office revenues are in billions of
dollars.

3 Data

Dataset 1: Panel Data on Box-Office Revenues

The first dataset covers all movies released nationwide in the United States between
January 1, 1983 and December 31, 2014. For each movie the data includes the official
release date, total box-office revenues, estimated budget, the distributor, the genre, and
the MPAA rating1. In addition, for the weeks following the official release date, the
dataset includes weekly box-office revenues and weekly amount of theaters in which a
movie was run. The data were obtained from IMDb database, except for the data on the
estimated production costs, which were obtained from Nash Information Services.

Because the sample spans a long period of time, I deflate box-office revenues to
accommodate trends in the average ticket price and the total market size. I obtain yearly
data on the average ticket price from National Association of Theater Owners. Weekly
average ticket prices are then interpolated from annual figures under the assumption that
prices grow linearly throughout the year. The total market size is taken as the whole
population of the United States. I take the annual population figures from the U.S.
Census Bureau. Weekly figures for the population are interpolated in the same way as
average ticket prices. Weekly market shares for each movie are computed by dividing
weekly box-office revenues by the weekly ticket price and by the weekly population size.

The initial sample includes 11,621 movie titles and 105,051 weekly observations. I
restrict my attention only to the nationwide releases, which I define as movies that were
shown in more than 100 theaters at some point after the official release. For those movies
I do not include in the final sample, the average peak number of theaters is 15 and the
average budget is lower than $7 million. Those are relatively small movies competing
in a different segment of the market. Sometimes a movie is first released in a limited
number of theaters, and only after a few weeks it is brought to the theaters all over the
country. In this cases I consider the actual release date to be the first week in which a
number of theaters is high enough.2 The percentage of those limited releases in the data

1The data on production costs (budgets) covers only 50% of movies, and the data on genres is
available for 85% of titles.

2Operationally, the actual release of a movie is the first week, in which it is shown in more than 50
theaters.
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Table 2: Summary Statistics

Total Box-Office Revenues, millions Total share, %

Mean 53.4 Mean 2.4

Median 24.5 Median 1.4

Standard deviation 69.4 Standard deviation 3.1

Titles 5117 Titles 5117

Highest Avatar 766 Highest Titanic 31.3

2nd highest The Avengers 642 2nd highest Avatar 28.4

3rd highest Titanic 604 3rd highest Star Wars (’99) 27.3

4th highest The Dark Knight 579 4th highest Jurassic Park 27.1

5th highest Star Wars (’99) 577 5th highest Star Wars (’83) 25.7

First-Week Revenues, millions Maximum Theater Count

Mean 18.2 Mean 1767

Median 11 Median 1702

Standard deviation 23.8 Standard deviation 1068

Titles 5117 Titles 5117

Highest The Avengers 283 Highest The Twilight Saga (’10) 4468

2nd highest The Dark Knight 265 2nd highest Harry Potter (’09) 4455

3rd highest Harry Potter (’11) 243 3rd highest The Dark Knight Rises 4404

4th highest The Dark Knight Rises 236 4th highest Iron Man 2 4390

5th highest Pirates of the Caribbean (’06) 234 5th highest Shrek Forever After 4386

Budget, millions Profit, %

Mean 52.8 Mean 120

Median 37 Median 13

Standard deviation 49.8 Standard deviation 800

Titles 2812 Titles 2812

Highest Avatar 469 Highest Paranormal Activity 23523

2nd highest Pirates of the Caribbean (’07) 348 2nd highest The Blair Witch Project 21908

3rd highest Spider-Man 3 300 3rd highest Super Size Me 15250

4th highest Titanic 297 4th highest The Brothers McMullen 12458

5th highest John Carter 289 5th highest Facing the Giants 9691

Revenues and budgets are in December 2014 U.S. dollars. Total share is computed as total box-office
revenues divided by the average ticket price and U.S. population. Both revenues and total shares are
based only on the first ten weeks. Profit is the difference between the total box-office revenues and
movie’s budget divided by the budget.
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is less than 15%. Throughout the analysis I restrict the sample only to the first 10 weeks
after the release of a movie. During this time an average movie earns over 97% of its
total box-office revenues.

The final dataset contains 5,117 movie titles and 37,001 weekly observations. On
average, I observe slightly more than 7 weekly observations per title. This is well below
the maximum of 10 because the exhibition of some movies had been terminated by the
owners of theaters several weeks after the official release. Later in the demand estimation
part of the paper I show that the main results are not sensitive to truncation issue.

The movie industry in the U.S. works on a weekly schedule. Around 70% of movies
in the sample were released on Friday, and additional 15% were released on Wednesday.
The main competition is for consumers who watch movies during the weekend, which
accounts for almost 80% of revenues.3 Because of these reasons, I tabulate the release
dates at the weekly level, where the definition of a week is a 7-day period from Friday to
Thursday of the next calendar week.

National holidays play an important role in shaping seasonality of the industry. Major
American holidays can appear on different weeks in different years, and it is important
to adjust for such calendar differences. I change the labels of weeks so that national
holidays always correspond to the same weekly dummies. For example, in different years
there may be 5 or 6 weeks between Memorial Day and Independence Day. I insert an
additional week between them in the years, where these two holidays stand 5 weeks apart.
As a result, Memorial Day and Independence Day are always assigned to the same weekly
dummies (22 and 28 relatively). The total number of weekly dummies is 56. Weeks 1,
14, 24, 33, 42, and 51 are the ones that do not appear in all years.

Table 1 provides some description of the industry trends. The industry share (ad-
missions over U.S. population) was growing until the late 1990s and reached its peak at
around 2000. Since that time, admissions per capita declined steadily. This downward
trend can be explained by an increasing popularity of home video reflected in a rapid
growth of the market for DVDs and video-on-demand services.

Table 2 reports summary statistics for the final sample of movies. The mean and
standard deviation of the total box-office revenues are $53 million and $70 million, re-
spectively. The median is only $25 million, which implies that distribution is highly
skewed. The peak number of theaters for an average movie was 1800, whereas the same
figure for the most successful blockbusters was almost 4500 (for comparison, there were
overall 6000 theaters in U.S. during the observation period). A median movie earned
only 13% with respect to its estimated production cost. This figure largely overestimates
domestic profits as it ignores advertising expenses, which are sometimes as large as the
budget of a movie. On the other hand, reported figures may underestimate overall prof-
itability of the business as the profits reported in Table 2 do not include revenues from
other sources, e.g. from theatrical distribution in other countries or DVD sales.

Finally, one interesting feature of the data is apparent seasonal patterns in industry
sales, which are depicted in Figure 2. It is very common to see the discussion of this
graph in popular media. Industry practitioners typically discuss four different periods
within a year: winter-spring (January to Early May), summer (Late May to August), fall
(September and October), and winter holidays (November and December). Summertime
and winter holidays are usually considered as peak-demand periods because of vacations
and school breaks, whereas spring and fall are described as low demand “dump months”.

3The figure of 80% is obtained from the daily data on box-office revenues for the period from January
2000 to December 2014. The data were obtained from IMDb database.
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Figure 2: Seasonality of total industry share. Dashed lines represent lower and upper
bounds of the 95% confidence interval.

Keeping this seasonal demand variation in mind, distributors try to release their tent-pole
blockbusters in the beginning of high demand periods, as reflected in Figure 3. All other
movies are usually released during the periods with lower demand to avoid competition
from successful high-quality films.

Dataset 2: Prerelease Announcements

The second part of the data is the unique dataset that contains prerelease informa-
tion about scheduled release dates. It covers 2,427 movies that were eventually released
nationwide between January 1, 1985 and December 31, 1999. For each movie the data
contains the whole history of scheduled release dates. The dataset contains 23,358 ob-
servations, around 10 observations per one movie title. The source of the data is the
Feature Release Schedule, industry magazine published monthly by Exhibitor Relations
Inc.

During the first days of each month, a magazine publishes the updated release sched-
ule of all movies that have started the production process but have not been released yet.
An average movie is first listed in publication around 10-12 months before its observed
release date. Typically, at the beginning studios disclose their general release plans. At
this point they do not provide a specific date, but schedule a release for a wide time
interval. The announcements of this type vary from completely general (“Coming in
2000”) to more specific ones (“July 2000”).

As scheduled release date approaches, normally around 5-6 months before the ob-
served release date, studios start to refine their release plans and announce particular
dates (“4th July 2000”). Around 75% of all observations in the data are announcements
with a specified release date, and the remaining 25% of observations contain information
about general release plans of studios.
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Figure 3: Average budget of new releases. Dashed lines represent lower and upper bounds
of the 95% confidence interval.

The main feature of the data is the high frequency of changes in scheduled release
dates. Over 50% of movies switched release dates at least once. This is a surprising find-
ing given the costly nature of release date adjustments. As discussed earlier, adjustment
costs arise because studios have to reoptimize the advertising campaign and renegotiate
contracts with exhibitors. Such adjustment costs increase over time, as it is very hard to
find a large amount of spare screens and alter the marketing campaign shortly before the
scheduled release date. Supporting this idea, I observe less movies changing their release
dates closer to the scheduled opening week.

Across all movies and observations, around 20% of the monthly announcements are
changes in relation to the most recent announcement of the same movie. The distribution
of the magnitude of these changes is described in Figure 4. This distribution has larger
right tail because of switches caused by production delays. However, the central part
of the distribution is roughly symmetric, and 70% of switches do not shift release dates
by more than one month. This observation suggests that switches are often made for
strategic reasons not related to the exogenous production shocks. Figure 5 also shows
that the amount and average magnitude of switches decreases as a scheduled release date
becomes closer. This is consistent with the idea that over time it becomes more costly
to adjust the previously announced release dates.

4 Demand

A. Benchmark Model

The purpose of this section is to setup a structural demand model that would allow
to capture both seasonal and strategic incentives of distributors with respect to movie
releases. In principle, we could proceed without a model and measure profitability of
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different release dates simply by looking at the industry revenues in Figure 1. This ap-
proach is imperfect, as the observed seasonality of the industry is a combination of two
different effects. First, certain periods of time tend to be more popular among movie-
goers. Second, as explained earlier, studios tend to release better movies during high
demand periods, which attracts even more consumers to the market. Since the prices
are stable over the course of a year, this endogenous composition of movies amplifies a
seasonal pattern of the industry market share. As a result, observed seasonality of in-
dustry revenues will in general overestimate profitability of periods with high underlying
demand.

The model proposed here is a nested logit demand model as in Einav (2007). This
model has two attractive features. The first one is that it allows to separately estimate
underlying demand and qualities of movies in a simple way. I explain the details of
identification strategy later in this section. The other one is that structural parameters
of the model can be estimated using standard linear regression techniques. The utility
of consumer i going to movie j at week t is assumed to be:

uijt = τt − λ(t− rj) + qj + ξjt + ζit + πεijt, (1)

where τt is a week fixed-effect, rj is the release week of movie j, and t− rj is the number
of weeks passed since the release of movie j. λ can be interpreted as a rate of decay4,
and ξjt is a deviation from the common decay pattern. Finally, qj is the fixed-effect of
movie j, ζit is an idiosyncratic propensity of individual i to go to the movies in week t,

4The decay rate helps to capture the decline in weekly revenues depicted in Figure 1. This decline is
driven by two effects. One is that consumers prefer to watch new releases rather than movies released
in the previous weeks. This can be rationalized by the preference for newness, or by the fact that heavy
advertising right before the official release attracts a large mass of consumers in the opening week.
Another effect is that in the weeks following release some people have already seen a movie and are not
likely to watch it for the second time.
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and εijt is an unobserved propensity of an individual i to see the movie j in week t. The
utility from the outside good j = 0 is normalized to:

ui0t = ζ
′

it + πεi0t. (2)

I assume εijt and εi0t are distributed iid extreme value, whereas ζit and ζ
′
it have distribu-

tions that depend on π such that π ∈ [0, 1], and (ζit + πεijt) as well as (ζ
′
it + πεi0t) are

distributed extreme value (Cardell, 1997).
The parameter π captures the heterogeneity of tastes across individuals. When π

is close to zero, tastes are homogeneous as all individuals agree on which movie is the
best. By contrast, as π approaches one, tastes become heterogeneous, and the market
can fit larger amount of different movies. In this case the model collapses to a simple
multinomial logit. Alternatively, one can interpret π as a degree of market expansion.
When π is close to zero, a newly released movie earns a large part of its profits by
stealing consumers from the existing movies and market expansion is weak. As π goes
to one, market expansion effect becomes stronger, and newly released movies attract a
significant mass of new consumers to the market. This parameter defines to which extend
seasonality of the industry is amplified by endogenous release decisions of studios.

The model predicts that the market share of movie j at week t is:

sjt =
exp
(
τt−λ(t−rj)+qj+ξjt

π

)
Dt +D

(1−π)
t

, (3)

where
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Dt =
∑
k∈Jt

exp
(τt − λ(t− rk) + qk + ξkt

π

)
(4)

and Jt is a set of all movies run in the theaters in week t. I invert the expression for
market shares to get the mean utility:5

log(sjt)− log(s0t) = τt − λ(t− rj) + qj + (1− π) log sj|IN + ξjt. (5)

This expression suggests that the share of individuals who watch the movie j in week
t depends on the seasonal demand component τt, the number of weeks passed since
the release of the movie (t − rj), and the quality of this movie. The within-industry
market share, sj|IN ≡ sjt/(1− s0t), is endogenous. Following Berry (1994), I instrument
this variable using the characteristics of other movies shown in the same week. Two
instruments I use are the total number of competing movies and their average “newness”,
with the latter measured by the amount of weeks passed since the release. The main
identifying assumption is that the instruments are not correlated with the idiosyncratic
decay pattern of movie j captured by the error term ξjt. Under this assumption the
model can be estimated by 2SLS using the weekly data on the market shares.

The identification strategy deserves a short discussion. In general, identification is
difficult because of endogenous composition of movies. Better movies are released in
weeks with high demand, which makes it hard to disentangle underlying demand from
the qualities of movies. But even though movies of different quality are released in
different weeks, later we still observe them run in the theaters at the same time. We can
therefore exploit the panel dimension of the data and infer relative qualities of movies by
comparing their relative market shares within the same week. Of course, movies shown
in the same week will be characterized by different amount of time passed since their
official release dates. Under constant decay rate this is not a problem, and the main
identifying assumption we need to infer relative qualities of movies is that decay rate
does not vary depending on when the movie is released.

Underlying demand in different weeks is identified using cross-year variation in the
data. In particular, time-effect for a particular week is estimated by averaging market
shares of movies run in the same week but in different years. Long time span of the data
guarantees that estimates constructed in this way will be relatively precise. Finally, the
total amount of movies shown in a certain week is different in different years. A part of
this variation is exogenous, because production delays affect the final amount of movies
released in different periods of time. The cross-year variation in the amount of movies
within the same week allows to identify the market expansion effect.

B. Estimation Results from the Benchmark Model

The results from the benchmark model are presented in Table 3. All coefficients are
precisely estimated and statistically significant at 1% level. The instruments have the
expected effects on the endogenous variable. Higher total amount of competing films
reduces the market share of a movie. Similarly, when competing films are comparatively
new, the market share of a movie is substantially lower. The estimation of the model
with only one of the two instruments does not have a large effect on the results.

The estimated linear and quadratic decay coefficients in the benchmark model are
-0.16 and 0.003, with very small standard errors, while the market expansion parameter,

5The linear representation of the model is derived in the Appendix 1.
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Table 3: Estimation Results of the Benchmark Model with Movie Fixed-Effects

Model 1 Model 1 Model 2 Model 2 Model 3 Model 3

2SLS 1st stage 2SLS 1st stage 2SLS 1st stage

Decay -0.172* -0.563* -0.143* -0.572* -0.155* -0.571*

(0.018) (0.008) (0.011) (0.008) (0.009) (0.008)

Decay2 0.003* 0.010* 0.003* 0.010* 0.003* 0.010*

(0.000) (0.001) (0.000) (0.001) (0.000) (0.001)

ln(sj|IN ) 0.703* 0.755* 0.733*

(0.032) (0.019) (0.016)

Instruments for ln(sj|IN ):

Number same week -0.030* -0.034*

(0.003) (0.003)

Age same week 0.230* 0.248*

(0.017) (0.016)

Implied π 0.297* 0.245* 0.267*

Movie FE Yes Yes Yes Yes Yes Yes

Week FE Yes Yes Yes Yes Yes Yes

Observations 37,001 37,001 37,001 37,001 37,001 37,001

Number of titles 5,117 5,117 5,117 5,117 5,117 5,117

R2 0.974 0.751 0.980 0.752 0.978 0.755

F excluded 96.4 185.9 169.6

Standard errors are clustered at the movie level. The estimation method is a two-step instru-
mental variable within-group regression. * p<0.01
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Figure 6: Estimated time effects from the benchmark model with movie fixed-effects.
Dashed lines represent lower and upper bounds of the 95% confidence interval.

π, is 0.27. The two coefficients imply an estimated weekly decay of revenues of 39%,
close to the observed revenue decline 41.5% in the data. The quadratic assumption on
the decay pattern is not important. In one of the robustness checks I allowed decay to
be fully flexible by including dummy variables for each of 10 weeks. The estimated decay
pattern turned out to be almost identical to the one estimated in the benchmark model.

The market expansion parameter is estimated to be a number between 0 and 1, so
the value of π is consistent with the random utility model. Estimated value of π implies
that business-stealing effect is strong among movies. For example, in the week when only
one movie is shown, the entrant of comparable quality would earn 65% of its profits by
stealing consumers from the existing movie, and only 35% by attracting new consumers
to the market.

The estimates of underlying demand in different weeks are presented in Figure 6.
The seasonal pattern should be compared with the observed seasonality presented in
Figure 2. Both underlying demand and industry revenues are high during summer and
winter holidays, and low in spring and fall periods. But there are differences between
the seasonal patterns of the two series. Industry revenues are high during release weeks
with Thanksgiving and Christmas. These weeks are estimated to have high underlying
demand, but their relative demand with respect to adjacent weeks and to summer period
is not as high. By contrast, underlying demand in the week with President’s Day is higher
than industry revenues would imply. Finally, industry revenues are high in the week with
Independence Day, and substantially lower in the adjacent weeks. Estimated underlying
seasonality suggests that demand for movies during the summer period is more flat than
industry revenues suggest.

C. Extended Model
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Movies of the same genre can be better substitutes for each other than movies from
different genre categories. For example, when families with children go to movies, they
typically choose a movie from currently run animation films and do not consider thrillers
and horrors. Similarly, a dating couple would most likely ignore children movies and
documentaries, and choose among available romantic comedies and dramas. To capture
such non-trivial patterns I extend the benchmark model to include nests for movie genres.
The resulting specification is a three-level nested logit model with all movies grouped
into an inside nest, and then partitioned into comprehensive and mutually exclusive sets
by movie genre. As in the benchmark model, I use the market share inversion to express
a movie j’s market share as:

log(sjt)− log(s0t) = τt − λ(t− rj) + qj + (1− π1π2) log sj|g + (1− π2) log sg|IN + ξjt. (6)

where sj|g is a market share of movie j as a fraction of market shares of all movies in
genre group g, and sg|IN is a market share of group g as a fraction of the market share
of the inside nest. Both variables log sj|g and log sg|IN are endogenous. The variable
log sg|IN is instrumented with the same variables as log sj|IN was instrumented in the
benchmark model. To instrument the within-group share log sj|g I use the total number
of movies from the genre group g shown in the same week, as well as the average time
since release for the same set of competing movies.

The parameters π1 and π2 represent the degree of substitution among alternatives
within genre groups and in the pool of all exhibited movies. For instance, when π1
equals one, there is no correlation between tastes for alternatives that belong to the
same genre. As the coefficient approaches to zero, movies of the same genre become
much better substitutes than movies from different genre groups. If π1 and π2 are both
equal to one, the model reduces to a standard logit. The nested logit model is consistent
with random utility maximization concept as long as π1 and π2 both lie in the interval
between 0 and 1 (McFadden, 1980). An additional requirement in the models with more
than two levels of nesting is that π at higher levels of the nest structure do not exceed
π at lower levels of nesting. In our case, this requirement implies that π1 and π2 should
satisfy π1 > π2 (Börsch-Supan, 1987).

D. Estimation Results from the Extended Model

For the purpose of estimation all movies were grouped into seven genre categories:
Action, Animation, Comedy, Drama, Documentary, Horror/Thriller, Romantic.6 The
biggest genre categories are Action (30% of movies) and Comedy (24%), and the smallest
is Documentary (only 2%). As an alternative to grouping movies by genre, I also tried
to group them by MPAA age rating. This was achieved by splitting all movies into five
age rating categories: G (general audiences), PG (parental guidance suggested), PG–13
(parents strongly cautioned), R (under 17 with parent), and NC–17 (adults only). Most
of the movies are rated with G or R (35 and 30% relatively), and only a small proportion
of movies is rated as NC–17 (1%). I use these two categorizations to estimate the above
specified demand model.

The results from the extended model are presented in Table 4. As before, all coeffi-
cients are precisely estimated and have small standard errors. Instruments have expected

6This grouping is based on the information about genres in IMDb Database. Whenever IMDb assigns
a movie to multiple genres, I take the first genre to be a true genre of a movie. The results are not
sensitive to using the second or the third genres assigned by IMDb categorization.

17



Table 4: Estimation Results of the Extended Model with Movie Fixed-Effects

Genre 1st stage 1st stage Rating 1st stage 1st stage

2SLS ln(sj|g) ln(sg|IN ) 2SLS ln(sj|g) ln(sg|IN )

Decay -0.166* -0.538* -0.073* -0.157* -0.530* -0.044*

(0.009) (0.010) (0.006) (0.009) (0.009) (0.004)

Decay2 0.003* 0.004* 0.007* 0.003* 0.006* 0.004*

(0.000) (0.001) (0.001) (0.000) (0.001) (0.000)

ln(sj|g) 0.734* 0.732*

(0.014) (0.016)

ln(sg|IN ) 0.691* 0.712*

(0.018) (0.019)

Instruments for ln(sj|g):

Number same group -0.213* 0.208* -0.123* 0.111*

(0.008) (0.006) (0.006) (0.003)

Age same group 0.443* -0.347* 0.367* -0.342*

(0.009) (0.008) (0.012) (0.008)

Instruments for ln(sg|IN ):

Number same week 0.011* -0.044* 0.003 -0.033*

(0.004) (0.003) (0.004) (0.002)

Age same week -0.083* 0.288* -0.084* 0.309*

(0.019) (0.013) (0.020) (0.011)

Implied π1 0.861* 0.931*

Implied π2 0.309* 0.288*

Movie FE Yes Yes Yes Yes Yes Yes

Week FE Yes Yes Yes Yes Yes Yes

Observations 33,196 33,196 33,196 37,001 37,001 37,001

Number of titles 4,545 4,545 4,545 5,117 5,117 5,117

R2 0.978 0.676 0.402 0.978 0.684 0.327

F excluded 915.2 818.1 474.1 1015.2

Standard errors are clustered at the movie level. The estimation method is a two-step instru-
mental variable within-group regression. * p<0.01
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effects on the endogenous variables. Total number of competing movies as well as their
newness have a negative effect on the market share of a genre group. Similarly, total
number and newness of competing movies from the same genre category reduces the
within-group market share of a movie. The same holds for the model with age rating
groups.

Estimated coefficients of decay and market expansion are virtually the same as in
the benchmark model. Implied nesting coefficients, π1 and π2, are both estimated to be
between zero and one. In addition, π1 is estimated to be larger than π2, so estimated
parameters satisfy all requirements of the random utility model. An interesting result is
that the estimate of π1 is well below one, which implies that nesting by genre is important.
When a new movie is released, it leads to a proportionately larger decline in the share
of movies of the same genre than the share of movies from other genre categories. The
same result holds when movies are grouped by MPAA rating. However, the estimate of
π1 is much closer to one, so nesting by age rating plays almost no role.

Nontrivial substitution patterns may have important implications for release decisions
of studios. When the market is segmented, similar movies cannibalize each other’s profits
more than movies from different genre categories. As a result, a distributor that wants to
release an animation movie will pay more attention to the release dates of other animation
movies rather than those of horrors and thrillers. Unfortunately, estimation of the model
where movies differ in both horizontal and vertical dimensions requires more data than
I have. Thus, in what follows I use estimation results from the benchmark model to
specify payoffs of a release timing game.

5 Release Timing Game

A. Description

The strategic choice of release dates could probably be best described by a repeated
game of announcements as in Caruana & Einav (2008b). Studios make consecutive
rounds of announcements. In each round a studio can either duplicate its previous
announcement or switch to a different release date. As players approach the planned
release dates, switching becomes costly as it is hard to alter the marketing campaign
of a movie shortly before the scheduled release. When adjustment costs become large
enough, distributors commit to certain release dates and do not change them later on.
In the model with such structure, final configuration of release dates would be a result of
gradual commitment of studios. Estimation of this sequential model is well beyond the
scope of this paper, as it is computationally intensive and requires more data.

In this section I propose a simplified version of the release timing game. I assume
that studios simultaneously decide on release dates for their movies taking the history of
prerelease announcements as given. The version of the model proposed here completely
ignores announcements, but later I propose the extended version that explicitly incorpo-
rates announced release dates into the picture. The game has a structure of a discrete
choice model. Modeling release timing decision as a discrete choice is natural, because
studios effectively choose release week-ends instead of particular dates. Another feature
of the game is the presence of private information. A studio knows its own week-specific
costs associated with release of a movie, but does not observe the costs of its competitors.
Given that in reality studios tend to keep the structure of their costs in secret, I believe
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that this is a realistic assumption.7

Finally, I abstract from the choice of movie characteristics e.g. the choice of budget.
In practice, by the time studios have to decide on release dates of movies, the main
characteristics of a movie such as budget, genre, plot, and actors are already determined.
Any changes made to a movie shortly before the release have only a marginal effect on
its consumer appeal. Thus, in the model studios make release decisions conditioning on
the qualities of their movies.

B. The Setup

Consider a game between N distributors j = 1, . . . , N each holding one movie. Dis-
tributors simultaneously decide on a release week of their movies. That is, each of them
chooses an action aj ∈ A = {1, . . . ,W}, where aj = w means that the distributor j re-
leases his movie in week w. The qualities of movies q = (q1, . . . , qN), underlying demand
τ = (τ1, . . . , τW ), and demand parameters θ = (λ1, λ2, π) are assumed to be a common
knowledge. Let s be a vector of exogenous variables such that s = (q, τ). The utility of
the distributor j from releasing his movie in week a ∈ A is assumed to be

uj(a) = πj(aj = a, a−j, s) + εj(a), (7)

where a−j = (a1, . . . , aj−1, aj+1, . . . , aN) ∈ AN−1 describes actions of all distributors
except j. In the expression above πj is a payoff function I will specify later, and εj(a)
is a choice-specific shock that is a private information of distributor j. This shock is
not observed by competitors of j and is unknown to the econometrician. I assume that
εj(a) is distributed extreme value and independent across distributors and actions. The
values of these shocks are drawn before the distributor j makes a choice. I interpret εj(a)
as private information of the distributor j about his week-specific costs e.g. advertising
costs or costs of negotiating screens with theaters.

The expected payoff of distributor j from releasing in week a is then

Πj(a, s) = E [πj(aj = a, a−j, s)| s] =

=
∑
a−j

P−j(a−j | s)πj(aj = a, a−j, s) (8)

with P−j(a−j | s) =
∏
k 6=j

Pk(ak | s).

The expectation in the first line is taken with respect to the actions of competitors a−j,
and the set of probabilities {Pk(ak | s), ak ∈ A} describes beliefs of j about the actions
of its rivals. The optimal choice of the distributor j is then:

aj = a ⇐⇒ Πj(a, s) + εj(a) > Πj(ã, s) + εj(ã) ∀ã 6= a a, ã ∈ A. (9)

Since the value of shocks εj(a) is private information of studio j, from the perspective of
j’s competitors (and from the econometrician’s perspective) the choice of j is probabilis-
tic. Given that εj(a) are distributed extreme value, the choice of j can be characterized
by the conditional choice probabilities:

7See, for example, the passage in Los Angeles Times on how studios often misreport their production
costs (Los Angeles Times, 5 January 2009).
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Pj(a | s) =
exp(ηΠj(a, s))∑

m∈A exp(ηΠj(m, s))
(10)

The parameter η is a scale parameter that is related one-to-one to the variance of the
choice-specific shocks ε.8 When η is close to zero, a fit of the model is poor as the variance
of unobserved shocks is very large compared to the difference in specified payoffs. By
contrast, positive and large η indicates that the model performs good and that the
difference in demand-based payoffs allows to explain substantial part of the variation in
observed choices. Normally in discrete choice models it is impossible identify the variance
of random shocks separately from other structural parameters. However, in the present
application I use outside data to estimate the expected payoffs Πj(a, s). By this reason
scale parameter will be well-identified from the data on the observed actions of studios.

To close the model we need to define what is an equilibrium in the above-specified
game. Let Pj(s) denote a stacked vector of choice probabilities for studio j so that
Pj(s) = (Pj(1 | s), . . . , Pj(W | s)), and let P (s) be a composition of such vectors for all
studios, that is P (s) = (P1(s), . . . , PN(s)). Finally, I use P−j(s) to denote a vector similar
to P (s) but which excludes conditional choice probabilities of distributor j. The Bayesian
Nash Equilibrium (BNE) in the game can be characterized by the optimal choice rule (9)
and the set of probabilities P (s) that satisfy the following system of N ×W equations:

P1(a | s) =
exp[ηΠ1(a, s, P−1(s))]∑

m∈A exp[ηΠ1(m, s, P−1(s))]
a = 1, . . . ,W

PN(a | s) =
exp[ηΠN(a, s, P−N(s))]∑

m∈A exp[ηΠN(m, s, P−N(s))]
a = 1, . . . ,W (11)

Each studio j chooses the most profitable release week given the realization of εj’s, beliefs
about the actions of competitors P−j, and the value of s. Competitors of j do not observe
εj’s, and for them the strategy of studio j is characterized by the probability distribution
Pj(s). In BNE equilibrium choice probabilities P1(s), . . . , PN(s) should coincide with the
beliefs of studios. Notice that there are only N × (W − 1) independent equations in (11)
as one of the probabilities for each j can be expressed as a linear combination of others.

The system (11) can be compactly written in the form of a fixed point mapping:
P (s) = Γ(P (s)). To emphasize the dependence on the scale parameter η, we can also
write: P (s; η) = Γ(s, η;P (s; η)). It can easily be shown using Brouwer’s fixed point
theorem that an equilibrium to this model exists for any finite s. However, nothing in
the model guarantees that the solution to the fixed-point problem is unique. Superficial
analysis of the game reveals that for a wide range of values of s the game may have
multiple equilibria. This presents a challenge for an estimation as the model delivers
ambiguous predictions with respect to the equilibrium probabilities P (s).

The issue of multiplicity is typical in the estimation of entry games. When the model
has many potential equilibria, a researcher has to make some additional, potentially ad
hoc assumptions about the equilibrium selection mechanism. I propose two different
ways to proceed with the estimation of the model. In the first, I assume that only one
equilibrium is played in the data, even though there may be multiple equilibria in the

8To be precise, εj(a) is iid across firms and choices and has the CDF F (ε) = exp(− exp(−ηε)). It has
mean γ/η (where γ = 0.577 is the Euler’s constant), and variance π2/6η2. For details see Ben-Akiva &
Lerman (1985).
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model. I let the data decide which equilibrium is being played in reality and approximate
the main characteristics of that equilibrium from the data on observed choices of studios.
Structural parameters are then estimated by maximizing a pseudo maximum likelihood of
the data. In the second method, I explicitly solve for all possible equilibria in every market
and impose an ad hoc equilibrium selection mechanism. I then use the nested fixed-point
maximum likelihood routine to recover key structural parameters of the model. Detailed
description of both estimation strategies is presented below.

6 Estimation

Method 1: Two-Step Estimation

The estimation strategy proposed in this section is based on the recent literature on
two-step estimation (Aguirregabiria & Mira, 2007; Pakes et al., 2007). The empirical
model resembles the one discussed in the survey of Bajari, Hong, & Nekipelov (2010).
Suppose we have access to data on m = 1, . . . ,M repetitions of the game. For each
repetition we observe the value of the state variables sm as well as actions of players
a1m, . . . , aNm. By observing choices of release dates in a large number of markets, we
can form consistent estimates P̂j(a | s) for Pj(a | s) for j = 1, . . . , N . In practice, this
simply boils down to flexibly estimating the probability that studio releases in a week
a ∈ A conditional on a given set of covariates. Given first-stage estimates P̂j(a | s) we

could then estimate η by maximizing a pseudo-likelihood function using Γj(η, s, P̂−1(s))
for ∀j.

Several assumptions are necessary to proceed with this estimation strategy. Let
am = (a1m, . . . , aNm) ∈ AN be a vector of observed actions in market m. The first
assumption states that in spite of potential multiplicity of equilibria in the system (11),
there is only one equilibrium played in the data:

Assumption 1 (Unique equilibrium in DGP)
Let P 0

m = {Prob(am = a | sm = s) : (a, s) ∈ AN × R|s|} be the distribution of am
conditional on the value of exogenous variables sm in market m.
(A) Observations {am, sm} are independent across markets
(B) For ∀m we have P 0

m = P 0

This assumption implies that in two markets characterized by the same values of the
exogenous variables sm, studios will always play the same equilibrium. An underlying
idea is that there is some random mechanism which is used by market participants to
coordinate on the equilibrium being played. We need this assumption to ensure that first
stage estimates P̂j(a | s) are consistent Pj(a | s). The second assumption ensures that
small changes in the value of exogenous variables sm affect equilibrium only marginally:

Assumption 2 (Smoothness)
Prob(am = a | sm = s) is a smooth function of s for ∀a ∈ AN .

The smoothness assumption ensures that choice probabilities in the data are well-behaved
and thus be approximated by standard nonparametric techniques.

First stage. The purpose of the first stage is to obtain rough approximation of equilib-
rium choice probabilities Pj(a | s) (j = 1, . . . , N) from the data on the observed actions

of players. In this stage I form estimates P̂j(a | s) for Pj(a | s) using two alternative
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methods. The first is based on sieve series expansions (see Newey 1997, Ai & Chen 2003),
whereas the second is a version of local linear regression (Hastie & Tibshirani 1990).

Let {zl(s) l = 1, 2, . . . } denote a set of basis functions having the property that
linear combination can approximate some unknown real valued measurable function g(s).
The usual approach in nonparametric estimation is to form a sieve expansion for g(s)
using polynomials as basis functions zl(s). While polynomials are widely used in sieve
estimation techniques, I form the bases from B-splines as they typically allow to achieve
better approximation. I let the basis of splines to become increasingly flexible as the
number of game repetitions M increases. Let κ(M) denote the total number of basis
functions to be used when sample size is M . I assume κ(M) → ∞, but κ(M) does not
increase too fast, that is κ(M)/M → 0 (e.g. κ(M) ≈

√
M).

Denote κ(M) × 1 vector of basis functions as zκ(M)(s) = (z1(s), . . . , zκ(M)(s))
′, and

let ZM be a collection of these vectors such that ZM = (zκ(M)(s1), . . . , z
κ(M)(sM))′. The

first estimator I use is based on a linear probability model, where regressors are splines
from zκ(M)(s). The estimator can be written in a compact way as:

P̂j(a | s) =
M∑
m=1

1{ajm = a}zκ(M)(sm)T (ZT
MZM)−1zκ(M)(s) for j = 1, 2 (12)

Note that when s contains continuous variables, the sieve estimator P̂j(a | s) will converge
to the Pj(a | s) at a nonparametric rate slower than

√
M (Cox 1988, Newey 1997). As a

close alternative to a linear probability model, I also try a multinomial logit specification.
That is, I model conditional choice probabilities as:

P̂j(a | s) =
exp(zκ(M)(s)T θ̂a)∑
k∈A exp(zκ(M)(s)T θ̂k)

(13)

This is a multinomial logit model with basis functions zκ(M)(s) as regressors. The model
can be estimated using standard maximum likelihood routine.

The second estimator I propose is a locally weighted linear regression. This is a
version of local linear regression with variable bandwidth, tricubic kernel function, and
built-in mechanism of downweighting outliers proposed in Cleveland (1979). In practice,
I find that the results of two-step estimation are not very sensitive to the choice of
specification in the first stage. This is consistent with the finding in Bajari, Hong,
Krainer, & Nekipelov (2010) that as long as the first stage model is flexibly specified,
asymptotic properties of two stage estimator do not depend on the choice of a particular
nonparametric method.

Second stage. The goal of this stage is to take estimated reduced form of the game
as given and derive likelihood function of the sample. Suppose we substitute estimates
P̂j(a | s) obtained from the first stage in place of Pj(a | s) in (8). Then the expected
payoff of studio j can be expressed as:

Π̂j(a, s, P̂−j(s)) =
∑
a−j

P̂−j(a−j | s)πj(aj = a, a−j, s) (14)

with P̂−j(a−j | s) =
∏
k 6=j

P̂k(ak | s).

Note that in this last expression we treat P̂j(a | s) as consistent estimates of beliefs.
In this case, optimization problem of each player turns into a single-agent problem. It
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can be seen as a game of studio j against “nature” with the latter represented by the
distribution P̂−j(s).

The conditional choice probabilities can be then written in the form similar to (10)
with the difference that instead of expected payoffs Πj(a, s) the expression now includes

approximated values Π̂j(a, s):

P̃j(a | s; η, P̂−j(s)) =
exp(ηΠ̂j(a, s, P̂−j(s)))∑

m∈A exp(ηΠ̂j(m, s, P̂−j(s)))
∀a, j (15)

Under Assumptions 1 and 2, resulting probabilities P̃j(a | s) are consistent estimates of
Pj(a | s) in (10). Finally, let D denote the data on the cross-section of markets. The
pseudo log-likelihood function is:

L (D; η) =
M∑
m=1

N∑
j=1

log P̃j(ajm | sm; η, P̂−j(sm)) (16)

Maximization of this function gives an estimate for the structural parameter η. This es-
timator falls within the class of semiparametric estimators considered by Newey (1994).
Bajari, Hong, Krainer, & Nekipelov (2010) develop the asymptotic theory for this re-
gressor. The key result is that pseudo-MLE is consistent as long as there are no multiple
equilibria in the data. A somewhat surprising conclusion is that even though the first
stage is estimated nonparametrically and converges slower than

√
M , the structural pa-

rameter η will be asymptotically normal and will converge at a rate
√
M . As a practical

matter, this result suggests that I can simply bootstrap pseudo-MLE to calculate stan-
dard errors for the model.

The pseudo-likelihood estimator has two main advantages. First, numerical burden of
estimation is reduced sufficiently, because estimation is broken in two steps. This comes
at a cost of lower efficiency compared to the nested fixed-point estimation.9 Note that
the model in (16) is simply a multinomial logit model where regressors are defined using
estimated expected payoffs Π̂j(a, s). Computational simplicity of the method allows to
run a large number of bootstrap repetitions for a comparatively short period of time.
Second advantage is that instead of imposing strong assumptions on the equilibrium
selection mechanism, we let the data decide which equilibrium is being played. This is a
convenient solution to the problem of multiplicity. Of course, if uniqueness assumption is
violated, the two-step estimation is no longer useful as it does not guarantee consistency
of estimates.

An assumption that there is a unique equilibrium in the data may seem too strong.
However, I believe that in the current application this assumption is natural. Pesendor-
fer & Schmidt-Dengler (2003) show that the uniqueness of equilibrium in the data is
more convincing when the markets are defined across different time periods for a given
geographical location than when markets are defined across different geographical loca-
tions. This is the case in the current application, where markets are defined as different
release seasons. Another important observation is that the movie industry in the United
States is stationary in a sense that the same studios interact with each other throughout

9Efficiency of the two step estimator can potentially be improved by iterating the second step as
in Aguirregabiria & Mira (2007). However, in my application this iteration trick did not have any
substantial effect on the standard errors of estimates.
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decades. This makes it more likely that there exists an established mechanism used by
market participants to coordinate on the equilibrium being played.

Method 2: Nested Fixed-Point Estimation

An alternative method to the two step estimation is the Nested Fixed-Point Estima-
tion (NFXP). NFXP requires solving for equilibrium strategies in many markets and for
many values of parameters. The main idea behind this method is to solve for all possible
equilibria in each market m and impose a particular equilibrium selection mechanism.
The structural parameters can be then estimated by maximizing a mixture likelihood
function of the sample.

Estimation starts with computing all solutions to the system (11). Let Ψm denote
the set of all possible equilibria that can arise in market m, that is:

Ψm = {U e
m : U e

m = P e
m(s) e = 1, . . . , Em} (17)

where each P e
m(s) is a set of probabilities {P e

mj(a | s) ∀a, j} that characterizes one of
the equilibria. The fact that Em may be larger than one requires the specification of
an equilibrium selection mechanism to calculate the likelihood of a particular outcome.
Specifically, I assume that U e

m is played in market m with probability P (U e
m | sm) =

f(U e
m;λ), where λ is a vector of parameters. One interesting way to parameterize the

equilibrium selection would be to assume that:

f(U e
m;λ) =

exp
(∑N

j=1 λjΠ
∗
jm(U e

m)
)

∑E
r=1 exp

(∑N
j=1 λjΠ

∗
jm(U r

m)
) (18)

where Π∗jm(U e
m) is the expected payoff of player j in equilibrium U e

m. By construction,

this is a proper probability distribution as
∑Em

e=1 f(U e
m;λ) = 1. This equilibrium selection

mechanism puts more weight on equilibria where players with large λj’s earn higher
profits.10 One can estimate the parameters λ together with payoff-related parameters.
Resulting estimates can be used to decide whether equilibrium selection favors certain
players.11

The selection mechanism has a natural interpretation in the context of commitment.
If there are many possible equilibria, which one of them is played can be determined by
the studio with the highest commitment power. For example, that studio can make an
early announcement and force the equilibrium which maximizes its expected profits. In
this case, parameters λ reflect the relative commitment power of players, and f(U e

m;λ)
can be interpreted as the reduced form outcome of their prerelease strategic interactions.

Finally, we can specify the mixture log-likelihood of the sample as:

L (D; η, λ) =
M∑
m=1

log
( Em∑
e=1

f(U e
m;λ)

N∏
j=1

P e
mj(amj | sm; η)

)
(19)

10A similar approach is chosen in Bajari, Hong, & Ryan (2010), where equilibrium selection depends
on the properties of the equilibrium itself (e.g. joint payoff-maximizing in the model of collusion).

11Even though expected payoffs in (18) are marked with player indices j, one can index those values
with a studio index. One can then estimate parameter λ for each studio in the sample.
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In taking the model to data I make the additional assumption that only stable equilibria
are played, so f(U e

m;λ) = 0 for nonstable equilibria. Identification of equilibrium selec-
tion parameters λ depends on the presence of multiple equilibria in sufficient amount of
markets. If λ are introduced as studio-specific and not player-specific parameters, the ad-
ditional requirement for identification is that there is a sufficient amount of observations
for each studio. The details of NFXP estimation are provided in the Appendix.

The procedure described above has an advantage of being more efficient than the two
step estimation. It is also more flexible in the way payoffs can be specified. Two step
estimation imposes strict limitations on the dimensionality of the model, as nonpara-
metric estimation in the first stage can only be done with comparatively few exogenous
variables. By contrast, NFXP is not sensitive to the dimensionality of s and allows to
estimate richer models. I will later use this property of NFXP to estimate the extended
version of release timing game with adjustment costs.

The main downside of the procedure is its heavy computational burden. Low compu-
tation speed does not allow to estimate a large amount of parameters using this method.
In addition, there exists no reliable way to solve for all equilibria of the model. Because
of this reason, I use two step estimation and NFXP as complementary ways of inference.

Specification

The general setup for the estimation is as follows. I single out several time periods
(“seasons”) within the year and take the set of movies that were released in a specified
period as given. I then analyze the choice of the week within a season, in which the movie
was released. The motivation for this setup comes from the announcement patterns
described in one of the previous sections. Ahead of time studios decide that a certain
movie is scheduled for a particular month or, say, around Christmas. Only later they
start to choose specific release dates and decide on a particular week of release within
the narrow period of time.

All seasons are centered around national holidays. Such location of seasons is rea-
sonable, because the best movies are typically released in weeks adjacent to big holidays
(see Figure 3 and Figure 7). Studios holding these movies are likely to be more strategic
with respect to release dates as opposed to the owners of smaller movies released in low
demand periods. In addition, chosen location of seasons makes the pattern of underlying
demand comparable across seasons, which simplifies two step estimation.

To take the model to the data, I still need to specify parameters of the game and a
particular payoff function. In what follows I describe a simplified setup of the game that
reduces dimensionality of the model and decreases computational burden. First, the set
of players is restricted to the 4 highest quality movies released in each season, where
qualities are approximated by the estimated movie fixed-effects. These movies are high
budget blockbusters, which are likely to be the most strategic players in the industry.
In estimation I use only markets, in which all N movies belong to different studios. The
resulting game is then effectively a game among studios that decide on release dates for
their best movies. Restricting attention to one best movie per studio is reasonable, as
all other movies of a studio earn on average only 20% of the revenues earned by a movie
with the highest quality.

Each season is assumed to be an independent release timing game. In each game 4
movies play against each other, conditioning on release dates of all other movies. This
means that studios not only condition on the observed release dates of smaller movies
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Figure 7: Average value of the estimated fixed-effects for new releases. Dashed lines
represent lower and upper bounds of the 95% confidence interval.

released in the same season, but also take as given all movies released in weeks adjacent
to the season. Conditioning on movies released in the past is innocuous, because release
dates of those movies are known by the time strategic players make their final decisions.
Conditioning on movies released after the end of the season is more subtle. This implies
perfect foresight of players with respect to the future releases, an assumption that seems
quiet strong. However, demand estimation suggests that revenues are decaying very fast.
Thus, movies released after the end of the season have only a minor effect on the payoffs
of strategic players, and the way future releases are incorporated in the model should
not affect estimation results.

Seasons are centered around five major national U.S. holidays: President’s Day,
Memorial Day, Independence Day, Thanksgiving, and Christmas. As depicted in Figure
8, the length of each season is 3 weeks, and the third week is always a high demand
holiday week. This setup is motivated by the observation that studios often release high
quality movies in the weeks right before holiday, but rarely schedule releases of big budget
films during the after-holiday period (see Figure 3).

The sample consists of 160 seasons (5 seasons for each of 32 years). In selected seasons
the average number of releases per season is 10. The quality of an average movie released
within one of the seasons is 0.05 with standard deviation 0.51. As explained above, in
each season I consider only 4 movies as strategic, and treat release dates of all other
movies as exogenous. Average quality of strategic movies is 0.42, whereas an average
nonstrategic movie has quality of only -0.19. Around 75% of total box-office revenues
within a season is earned by strategic movies, and only 25% is earned by all other films.

Table 5 reports summary statistics for the final samples of games constructed for
N = 2, N = 3, and N = 4. A number of games in each of three samples is lower than 160,
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Figure 8: Definition of release seasons.

because in many seasons some of top-quality movies are owned by the same distributors.
These markets are excluded from the sample to avoid solving joint maximization problem
of players.12 According to the relative frequencies in Table 5, higher quality movies are
released in peak-demand week 3 more often. Movies with lower quality are released
mainly in week 2, and less often in week 3. If high quality of a movie gives studio
competitive advantage in choosing release dates, this observation indicates that studios
perceive week 3 as the most profitable week, and week 2 is viewed to be the second-best
release option. Of course, the exact ordering of weeks by profitability is case specific and
depends, inter alia, on the underlying demand, decay rate of revenues, and intensity of
competition. The particular payoff function specified below allows to construct accurate
estimates of counterfactual revenues.

Payoff function

I use the nested logit specification of demand to formulate payoffs. Specifically, I
assume that the known portion of distributors’ profits takes the following form:

π̂j(aj, a−j) =

t(aj)+T∑
t=t(aj)

ŝjt(aj, a−j)

=

t(aj)+T∑
t=t(aj)

(
D̂t + D̂

(1−π)
t

)−1
exp
(τt − λ(t− t(aj)) + qj

π

)
(20)

where D̂t is defined as:

12Estimation of a complete model, in which studios simultaneously decide on release dates for all their
movies, is not only hard computationally but would also require much more data.
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Table 5: Summary Statistics for the Sample of Games

Rank Average Quality Released in Week 1 Released in Week 2 Released in Week 3

Sample 1 (N=2, 151 Observations)

1 0.642 23.1% 34.4% 42.3%

2 0.457 21.1% 39.0% 39.7%

Sample 2 (N=3, 127 Observations)

1 0.653 21.2% 35.4% 43.3%

2 0.475 19.6% 40.1% 40.1%

3 0.338 28.3% 36.2% 35.4%

Sample 3 (N=4, 97 Observations)

1 0.647 22.8% 31.9% 45.3%

2 0.475 18.6% 41.2% 40.2%

3 0.344 24.8% 40.2% 35.0%

4 0.208 21.7% 43.3% 35.0%

Rank indicates a position in the list of new releases ordered by quality. Quality is approximated
by the estimated fixed-effect of a movie.

D̂t =
∑

k∈Jt(aj ,a−j)

exp
(τt − λ(t− t(ak)) + qk

π

)
(21)

In these expressions t(aj) is the endogenous release week chosen by studio j, τt is the
estimated week-effect, qj is the estimated movie-effect of movie j, λ and π are the es-
timated decay and market expansion parameters. I assume that every movie is shown
in theaters for T + 1 weeks independent of its quality, so T represents the length of
the planning horizon. To simplify construction of the payoff matrix I assume T = 313.
Jt(aj, a−j) is the set of movies that play in week t. This set is endogenous and depends
on the release dates chosen by strategic studios, as well as on the observed release dates
of the nonstrategic movies.

Expression (20) is a modified version of the market share specified in (3). There
are two differences. First, I assume that studios make their release decision under the
assumption that ξjt = 0. Since ξjt is the idiosyncratic decay pattern unknown to a studio
ex ante, this is a reasonable assumption.14 Second, true values of structural parameters
are replaced by the estimated values. A proper estimation procedure should account for
the uncertainty in these estimates.

It is convenient to decompose D̂t into two parts, strategic and nonstrategic:

D̂t =
∑

l∈Gt(aj ,a−j)

exp
(τt − λ(t− t(al)) + ql

π

)
+
∑
k∈Ft

exp
(τt − λ(t− t(ak)) + qk

π

)
=

= Ĥt(aj, a−j) + Ĉt (22)

where Gt(aj, a−j) is the set of strategic movies that play in week t, Ft is the set of non-

strategic movies shown in that week. Ĥt(aj, a−j) and Ĉt are two statistics that summarize

13In practice, I find that the model performs much worse under T > 3 than under T ≤ 3. Later I
discuss why this can be the case.

14In one of the robustness checks I impute ξjt from estimated demand system. By doing so, I assume
that realized idiosyncratic pattern does not depend on the release date of a movie. This exercise have a
negligibly small effect on the results, because the variance of residuals is very small.
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overall strength of strategic and nonstrategic movies relatively. This decomposition tells
us that all exogenous competition from nonstrategic movies in week t can be summarized
by a sufficient statistic Ĉt. To see why it is useful, consider the following representation
of the payoffs π̂j(aj, a−j):

π̂j(aj, a−j, q, τ, Ĉ) =

t(aj)+T∑
t=t(aj)

ŝjt(aj, a−j, q, τ, Ĉ)

=

t(aj)+T∑
t=t(aj)

(
Ĥt + Ĉt + (Ĥt + Ĉt)

(1−π)
)−1

exp
(τt − λ(t− t(aj)) + qj

π

)
(23)

where C is a vector of sufficient statistics that summarize competition from non-strategic
movies, so that C = (Ĉt(aj), . . . , Ĉt(aj)+T ). Thus, the environment of the game can be fully
described by qualities q, week-effects τ , and competition statistics C. This is especially
useful in two step estimation, where the first step requires regression the observed release
dates on all exogenous variables. The representation above reduces dimensionality of the
exogenous vector s and therefore improves the quality of the first stage approximation.

Estimation results

Table 6 presents the two step estimation results for different choices of N and T . The
first stage estimation method is a linear probability regression described above. Overall,
the results are quite stable across different choices of parameters. In all specifications
with T ≤ 2, the estimate of η is positive and significant at a 10% confidence level15.
Recall that η is the scale parameter of the model. An insignificant η would imply that
the modeled payoffs do not help in explaining observed release dates, and a negative
η would imply that the modeled payoffs are negatively associated with release timing
decisions of studios. Therefore, the positive and significant estimate of η suggests that
specified payoffs, together with the estimated parameters, are indeed useful in explaining
the release date decisions.

The magnitude of the estimated η can be interpreted in an intuitive way. In the
empirical model η is inversely related to the variance of a shock εj(a). High value of
the estimated η implies that unobserved week-specific costs account for only a small
part of the variation in the variables that are relevant for release timing decisions. The
statisticR2

MZ reported in Table 6 reflects the relative importance of the modeled payoffs.16

Depending on specification, the specified payoffs account for up to 25% of the variation in
all decision-relevant variables. Thus, the trade-off between seasonality and competition
is indeed an important determinant of release timing decisions.

The results are robust to the various choices of the first stage estimation method.
Table 12 presents the estimation results with local polynomial regression run in the
first stage. The estimates of η as well as p-values are virtually the same. I also tried
other estimation methods such a linear probability model with polynomials, multinomial

15The standard errors in Table 6 were obtained by running two-step estimation on the bootstrapped
samples of games. That is, I ignore the uncertainty in the demand parameters and compute standard
errors as if these parameters are known. In practice, bootstrapping all three steps of estimation (instru-
mental regression, nonparametric estimation, and maximum likelihood) changes standard errors only
marginally and does not affect significance of coefficients.

16The idea behind this statistic is described in McKelvey & Zavoina (1975). In the current application,

R2
MZ is defined as R2

MZ = V̂ AR(Π̂j(a, s))/(V̂ AR(Π̂j(a, s)) + V̂ AR(εj(a))).

30



Table 6: Two-Step Estimation Results. First Stage: Sieve Regression with Splines

T = 1

N = 2 N = 3 N = 4

η̂ 20.31** 17.64* 29.33**

(9.37) (10.66) (12.70)

logL∗ -329.94 -417.04 -422.19

LR 3.69 3.07 8.14

R2
first 0.155 0.201 0.281

R2
MZ 0.100 0.089 0.129

R2
pseudo 41.1% 37.0% 42.3%

T = 2

N = 2 N = 3 N = 4

η̂ 18.92** 17.99** 25.59**

(9.45) (9.17) (11.92)

logL∗ -329.50 -416.27 -422.27

LR 4.57 4.60 7.98

R2
first 0.166 0.228 0.281

R2
MZ 0.182 0.212 0.246

R2
pseudo 38.1% 36.6% 36.6%

T = 3

N = 2 N = 3 N = 4

η̂ 10.11 9.67 16.68

(11.09) (12.63) (14.38)

logL∗ -331.20 -418.03 -425.01

LR 1.15 1.08 2.51

R2
first 0.203 0.228 0.332

R2
MZ 0.078 0.101 0.179

R2
pseudo 39.7% 37.8% 41.2%

Markets 151 127 97

Observations 302 381 388
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Table 7: Nested Fixed-Point Estimation Results

T = 1

N = 2 N = 3 N = 4

η̂ 22.36*** 26.08** 35.52***

(7.07) (10.42) (12.00)

logL∗ -329.39 -415.04 -420.95

LR 4.84 7.14 10.71

R2
MZ 0.086 0.137 0.173

T = 2

N = 2 N = 3 N = 4

η̂ 19.28** 25.77*** 30.33***

(8.98) (9.38) (10.68)

logL∗ -329.20 -414.02 -421.07

LR 5.22 9.19 10.46

R2
MZ 0.174 0.253 0.297

T = 3

N = 2 N = 3 N = 4

η̂ 12.14 20.70* 27.54**

(9.46) (10.73) (13.14)

logL∗ -330.90 -416.40 -423.50

LR 1.82 4.42 5.61

R2
MZ 0.117 0.258 0.349

Markets 151 127 97

Observations 302 381 388

regression with splines, and Nadaraya–Watson frequency estimator with kernel weight-
ing. In all cases the estimation results changed only marginally, and coefficients in all
specifications with T ≤ 2 remained significant at a 10% confidence level.

Empirical model performs better in some seasons than in others. Table 13 presents
the estimation results obtained separately for two subsamples of games. The model
performs comparatively better in case of spring and summer seasons, but the estimated
η for Christmas and Thanksgiving seasons is small and not significant. This poor fit
suggests that in the end of a year studios face different incentives with respect to release
timing decisions. Specifically, studios may want to release movies early in order to qualify
for the Academy Awards. They may also want to avoid competition of their best movies
with the Oscar candidates of other distributors. However, sample size is too small and
the estimates of η in Table 13 are less reliable than those obtained for the whole sample.

Table 7 presents estimation results from the Nested Fixed-Point algorithm. The
estimates of η are comparable in magnitude and have smaller standard errors, which
reflects higher efficiency of the estimator. On top of that, estimates of η under T = 3
are now significant at a 10% confidence level. Overall, the estimated model does a better
job in explaining release decisions of studios. Modeled payoffs now account for up to
30–35% of the variation in all decision-relevant variables. A somewhat surprising finding
is that under η < 100 I always find only one equilibrium, and it seems that for those
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Table 8: Summary Statistics of the Announcement Data

Studio Number of movies Reports per movie Percent of Switches Commitment Time

Fox 196 11,2 21,6% 70,6

Warner Bros. 296 10,7 20,2% 80,7

Paramount 212 11,6 18,5% 97,6

Columbia 408 10,7 18,3% 79,3

Universal 267 9,7 17,1% 93,6

Disney 400 10,2 21,1% 85,7

Others 945 9,3 22,5% 62,9

All Studios 2724 10,1 20,3% 76,9

values of η multiplicity is not an issue.17 This has two implications. First, equilibrium
selection plays a very limited role in the estimated model. The experimentation with
different selection mechanisms showed that the estimate of η is not sensitive to the
way equilibrium is selected. It is therefore impossible to identify parameters of the
equilibrium selection mechanism e.g. to estimate λj’s in (18). Second, in the model
without multiplicity two step estimation and NFXP should deliver similar results by
construction. The results presented in this section show that the results from these two
different estimation procedures are indeed very similar.

The absence of multiple equilibria can be the consequence of high importance of
private information. According to the estimation results, over 60% of the variation in
variables relevant to release decisions are unobserved week specific costs. Strategic part
of payoffs plays only a limited role in the model. Thus, very often the final configuration
of release dates is determined by realization of choice-specific shocks, and not by the
trade-off between seasonality and competition. One possible remedy to this limitation
of the model would be to combine estimation of η and all demand parameters in one
efficient procedure.18 This would insure higher relevance of the strategic part of payoffs
and reduce the importance of private information. The resulting model would be likely
to have multiple equilibria, a feature that can be used to identify the components of
equilibrium selection mechanism.19

17In the Appendix 2 I describe the details of NFXP procedure. I tried to increase the amount of initial
points for the fixed-point iteration procedure from 100 to 100,000. I also tried to update best response
probabilities at a slower pace, sometimes as slow as by 0.1% of the difference between the current guess
and the best response probabilities. None of these tricks helped to find any additional equilibria.

18A simple but computationally intensive way to implement joint estimation would be to combine the
set of conditional moments coming from the IV within-group regression (5) with the set of moments
based on choice probabilities (10). Structural parameters could be then estimated by the means of
optimally-weighted GMM with the nested fixed-point algorithm.

19It may seem at first that we are trying to introduce multiplicity artificially in the model. This is
not fully correct, as the model with efficiently estimated parameters would be closer to the true model,
and thus it is a “more correct” model to analyze.
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7 Announcements

I. Analysis of Correlations

The main goal of this section is to check whether observed announcement patterns
are consistent with the commitment story. As discussed before, studios may be able to
use prerelease announcements as a commitment mechanism. One potential strategy a
studio could use is to announce its future release plans early and hope that it will deter
competitors from choosing the same release date. I now check whether the observed
behavior of distributors resembles this kind of commitment strategy.

Assume a studio makes consecutive announcements with respect to one of its movies.
Let aT−K , aT−K+1, . . . , aT−1, aT denote these announcements, where each at is a tentative
release week, indices T −K, . . . , T mark successive rounds of announcements, and aT is
the last announcement that corresponds to the official release date of a movie. I define
the statistic “commitment time” in the following way:

Commitment T ime = T − tmin

tmin = inf{t : at = aT and as = aT for ∀s ∈ (t;T )}

This statistic reflects how long before the official release a studio decided to stick to the
final release date without changing it later on. In the data on prerelease announcements
commitment time has a mean of 77 days and standard deviation of 70 days. Table 8
presents average commitment time for different studios. Paramount Pictures and Uni-
versal Pictures have the highest average commitment time that exceeds 90 days, whereas
minor studios commit to the final release date only 60 days in advance. The value of
commitment time is correlated with the size of a movie, when the latter is approximated
by the budget, maximum amount of screens, or total realized box-office revenues (See
Figures 15, 16, and 17). This correlation is especially strong among the largest movies
in the sample.

Table 9 presents the results of regression of commitment time on the characteristics
of a movie. Conditional on movie’s budget, Paramount Pictures and Universal Pictures
commit on average 20 days earlier than independent studios from the baseline category.
20th Century Fox commits 10 days later than independent studios, although coefficient
is significant only marginally. This result survives when other movie characteristics are
controlled for e.g. genre, age rating, and best picture winner status. At the same time,
ex ante bigger movies tend to commit earlier. When the budget of a movie is doubled,
commitment time is 16 days shorter. Similarly, when the peak amount of screens is
increased by 1000, a movie commits 25 days earlier. Overall, the results suggest that
certain studios tend to commit earlier, especially when they hold ex ante successful
movies.

The results in Table 9 should be interpreted with caution. Ideally, we would like
to allocate movies randomly to the studios and then check whether commitment time
depends on the identity of a studio or on the observed movie characteristics. In reality
composition of movies held by each studio is endogenous, so it is difficult to disentangle
studio-effect from movie-effects. Paramount Pictures and Universal Pictures may be
committing earlier because movies they own have higher quality, a competitive advantage
that is not fully captured by the production cost or maximum amount of screens. Thus,
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Table 9: Commitment Time and Movie Characteristics

Model 1 Model 2 Model 3 Model 4 Model 5

Fox 9.036* -9.836* -9.400 -10.75** -10.42**

(5.327) (5.336) (5.985) (5.262) (5.251)

Warner Bros. 20.04*** 2.977 1.693 0.0309 -1.128

(4.557) (4.584) (5.497) (4.557) (4.546)

Paramount 36.72*** 16.82*** 19.59*** 14.99*** 14.71***

(5.227) (5.265) (5.979) (5.204) (5.205)

Columbia/Sony 14.62*** 4.133 5.229 3.715 3.862

(4.122) (4.058) (4.998) (4.009) (4.014)

Universal 30.11*** 15.10*** 21.31*** 14.35*** 14.46***

(4.823) (4.792) (5.615) (4.730) (4.712)

Walt Disney 21.08*** 6.435 0.770 8.337** 5.592

(4.200) (4.203) (5.189) (4.105) (4.191)

Log of Total BO Revenues 11.10***

(0.837)

Log of Production Cost 16.63***

(1.689)

Max Screens 2.527*** 2.330***

(0.168) (0.193)

MPAA G/PG 10.62

(8.830)

MPAA PG-13 9.367

(8.676)

MPAA R 2.421

(8.327)

Comedy -2.058

(3.637)

Drama 7.784**

(3.712)

Children 19.68***

(5.536)

Sequel 21.84***

(4.853)

Best Picture -1.213

(6.275)

Observations 1,203 1,203 510 1,203 1,203

Adjusted R-squared 0.054 0.138 0.148 0.158 0.178

Year FE Yes Yes Yes Yes Yes
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Table 10: Profitability of the Observed Release Week Related to Commitment Time

Monopoly Oligopoly Total Market Individual

Revenues Revenues Revenues Revenues

Commitment time (months) 0.009*** 0.021** 0.019*** 0.048***

(0.002) (0.008) (0.004) (0.011)

Log(Production Cost) 0.065*** 0.226*** 0.151*** 0.683***

(0.008) (0.028) (0.014) (0.037)

Year FE Yes Yes Yes Yes

Number of movies 1,320 1,320 1,320 1,320

Adjusted R2 0.081 0.115 0.214 0.245

Robust standard errors are reported in parentheses. All dependent variables are
proxies for profitability of the week, when a movie was officially released. Monopoly
revenues are total box-office revenues that a movie would earn, if did not face any
competition from other movies. Oligopoly revenues are total box-office revenues that
a movie would earn, given the observed configuration of release dates in the data.
Total market revenues are observed total box-office revenues earned by all movies.
Individual revenues are observed cumulative box-office revenues earned by a movie.
*** p<0.01, ** p<0.05, * p<0.1

the fact that both studio and movie effects appear to be significant should be seen as a
suggestive, but not conclusive evidence.

A studio that has a chance to make a binding announcement will use it to release
a movie in the most profitable time period. I now check if movies that commit earlier
also tend to be released in more profitable weeks. In doing so, I construct three different
profitability measures. The first one, monopoly revenues, is defined as:

M̂R(w) =
w+T∑
t=w

1

1− exp(−τ̂t)

These are the expected revenues that a movie would get, if none of other movies were
shown in the theaters at the same time. Monopoly revenues exhibit similar seasonal
patterns to the ones of underlying demand, as it is shown in Figure 9. According to this
measure, releasing a movie one week before the holiday can be almost as profitable as
releasing in the holiday week itself. This explains why so many high quality movies in
the data were released just before the peak demand week of the season.

Monopoly revenues tend to move in the same direction with the average commitment
time (See Figure 10). The weeks with higher average commitment time also tend to bring
higher expected revenues. This co-movement is especially vivid in the weeks adjacent to
the national holidays. Raw correlation between two series is 0.16 and is significant at a
1% confidence level. But average commitment time varies largely from year to year, and
within–year correlation between commitment time and monopoly revenues is often as
high as 0.30–0.35. Table 10 presents the results from regression of profitability measure
on commitment time, budget, and year dummies. Conditional on production cost, a
movie that commits 60 days earlier has a tendency to be released in the weeks with 2%
higher monopoly revenues.

The second profitability measure, oligopoly revenues, takes into account the intensity
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of competition in different weeks. This measure is defined in the following way:

ÔR(w) =
w+T∑
t=w

(
D̂t + D̂

(1−π̂)
t

)−1
exp
( τ̂t − λ̂(t− w)

π̂

)
It reflects the expected revenues that a movie would get conditional on the official release
dates of all movies in the sample. As it is clear from Figure 11, seasonality of oligopoly
revenues differs from the one of underlying demand. Competition among movies is more
intense during summertime and near holidays, which results in low values of expected
revenues in these periods. By contrast, the end of Spring and the time between Thanks-
giving and Christmas are associated with high oligopoly revenues, because these are non-
popular release weeks characterized by low competition. There is a clear co-movement
between oligopoly revenues and commitment time (See Figure 12). Raw correlation of
two series is 0.22, and within–year correlation achieves 0.40 in certain years. The results
in Table 10 show that when a movie commits 60 days earlier, it is also released in the
weeks that have, on average, 4% higher values of oligopoly revenues.

The third measure of profitability, total market revenues, is simply total box-office
revenues earned by all movies in a particular week (and during the weeks right after
that):

T̂MR(w) =
w+T∑
t=w

Market Revenues(t)

In a sense, this is a naive measure of profitability that ignores the structure of the model
and relies on raw data on revenues. Seasonal dynamics of total market revenues closely
follows the seasonality of underlying demand (Figure 13). According to the results in
Table 10, a movie that commits 60 days earlier is typically released in the weeks with
3.8% higher market revenues. The last column of the table also suggests that movies
with 60 days lower commitment time also have a tendency to earn 9.6% higher individual
revenues, with the latter defined as:

ÎRj =
w+T∑
t=w

BO Revenuesj(t)

Strong robust correlation between commitment time and various profitability measures of
a release week suggests that there is indeed a prominent relation between announcement
behavior of a studio and its release timing decisions.

II. Estimation of Adjustment Costs

Announcements can serve as a commitment tool only if they are binding. Perhaps,
the best way to test whether shifting release dates is indeed costly would be to setup a
strategic game of announcements and estimate switching costs from the data. Estimation
in that case would rely on the revealed preference argument. If changing an announced
release date is costly, announcements of studios will be characterized by certain degree
of rigidity. Once an announcement is made, a studio will be reluctant to shift a release
date even if it may increase expected revenues. We could then infer the magnitude of
switching costs from the amount of revenues studios are ready to give up. As discussed
above, estimation of the dynamic game of announcements is beyond the scope of this
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paper. Fortunately, there is a simple way to estimate switching costs within the static
setup developed in the previous section. It relies on exact same identification strategy.
Below I propose an extension of the release timing game that allows to recover the
magnitude of switching costs from the observed release dates.

Consider the following version of release timing game. The setup is exactly like in
the previous section but with the different payoff function. Let z1, . . . , zN (zj ∈ A ∀j)
denote prerelease announcements that studios have made with respect to their movies.
The deterministic part of payoffs is now defined as:

π̂j(aj, a−j, q, τ, Ĉ, zj) =

t(aj)+T∑
t=t(aj)

ŝjt(aj, a−j, q, τ, Ĉ)− γ1{aj 6= zj}

where the first summand is specified in (23). The parameter γ in the second summand
represents adjustment costs, and indicator function 1{aj 6= zj} captures the fact that a
studio only incurs adjustment costs if a chosen release week does not coincide with the
previously announced one. The structural parameter γ is interpreted as a combination
of all costs associated with reoptimization of an advertising campaign and renegotiation
of screens with theaters.20 If the game of releases has a repeated nature, γ may also
include implicit reputational costs.

It is convenient to normalize the variance of private information shock εj(a) to π2/6,
so that payoffs can be re-written in the following way:

π̂j(aj, a−j, q, τ, Ĉ, zj) = η

t(aj)+T∑
t=t(aj)

ŝjt(aj, a−j, q, τ, Ĉ)− ηγ1{aj 6= zj} =

= η

t(aj)+T∑
t=t(aj)

ŝjt(aj, a−j, q, τ, Ĉ)− θ1{aj 6= zj} (24)

where θ = ηγ. The goal of estimation is to recover parameters η and θ from the data on
observed choices of release dates. Identification relies on the assumption that announce-
ments z1, . . . , zN are exogenous. Under this assumption the presence of announcements
in the model generates useful exclusion restrictions. When zj changes, this has a direct
effect only on the payoffs of studio j, and affects the expected payoffs of all other studios
only indirectly through the strategic channel. This helps to disentangle strategic effect
from the effect of adjustment costs, and as a result both η and θ are well identified.

Exogeneity of announcements is a strong assumption. In reality, studios may choose
announced release dates strategically. To see why this is a problem for identification,
imagine that announcements z1, . . . , zN are determined as an outcome of some strate-
gic game. When zj changes, the expected payoffs of competitors are affected not only
through the strategic channel, but also through the channel of adjustment costs. This is
a classic multicollinearity problem, which makes it hard to disentangle the effect of two
different channels on release timing decisions of studios. As a result, without exogeneity
assumption identification is weak and relies only on a nonlinear functional form of the
model. One solution to this problem would be to endogenize z1, . . . , zN and estimate a

20In principle, it is possible to introduce different adjustment costs for different studios, e.g. γj for
j = 1, . . . , N . I believe that estimation of such asymmetric model would require much more data than
I currently have.
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Table 11: Estimation Results for the Model with Adjustment Costs

30 days 60 days

Model 1 Model 2 Model 1 Model 2

η̂ 45.70** 47.30 41.63* 43.61*

(22.64) (32.66) (23.21) (23.17)

θ̂ 3.02*** 1.93***

(0.44) (0.33)

logL∗ -79.204 -30.08 -70.447 -43.885

N obs. 75 75 66 66

R2
MZ 0.55 0.67 0.48 0.60

90 days 120 days

Model 1 Model 2 Model 1 Model 2

η̂ 39.91 44.65* 43.91 42.90

(24.74) (26.63) (26.77) (28.44)

θ̂ 1.35*** 1.36***

(0.33) (0.35)

logL∗ -57.554 -47.866 -50.836 -42.21

N obs. 54 54 48 48

R2
MZ 0.42 0.55 0.46 0.55

full scale dynamic game of announcements. An alternative way to proceed is to search
for the data on exogenous cost shifters and use that data to generate additional exclusion
restrictions. I leave implementation of these remedies for the future research.

Table 11 presents estimation results for the model with adjustment costs. The model
was estimated with the NFXP algorithm. In estimated models zj correspond to an-
nouncements made by studios 30, 60, 90, or 120 days before the official release date of
a movie. Early announcements (120 days before release) have a large amount of missing
values and some of them do not contain specific release dates. Late announcements (30
days before release) mostly coincide with the official release dates, so there are no switches
in the data.21 Hence, my preferred specifications are the ones, in which announcements
are made 60 and 90 days before release.

Estimated η is larger than in the models considered earlier, and significant at a 10%
confidence level. When adjustment costs are introduced in the model, estimates of η
do not change much. At the same time, estimated θ’s are positive and have very small
standard errors. Joint significance of both estimated η and θ suggests that prerelease
announcements have additional effect on release decisions that is unrelated to the trade-
off between seasonality and competition. Note, however, that the number of observations
used in estimation is small because of missing data on the announcements. Thus, all
results in Table 11 should be interpreted with caution.

To understand the magnitude of estimated switching costs, consider the following
interpretation of results. Estimated coefficients imply that paying adjustment cost γ is
equivalent to a reduction of the market share by 0.03–0.04. Simple back-of-the-envelope
calculations suggest that, given the average U.S. population of 250 million and the average

21Non-trivial proportion of both switching movies and those movies that do not switch helps to identify
the magnitude of adjustment costs.
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ticket price of $4, estimated switching costs have a magnitude of around $30–40 million.
This figure may seem out of scale considering that an average movie in the sample earns
total revenues of $70 million and spends only $15 million on advertising. But if γ is
interpreted as reputational costs, this result does not sound very extreme. Consider a
stylized example. Assume that whenever a studio changes a previously announced release
date, it looses reputation of being a “tough” player for one next game. Imagine that,
as a result, in the next game a studio is forced to release a movie in the least profitable
week. If this is the case, then based on the constructed matrix of payoffs the loss of
reputation can be equivalent to a reduction of the market share by 0.01–0.02, a number
that is comparable to the estimated adjustment costs.

8 Discussion and Limitations

The main conclusion from the empirical analysis of this paper is that studios seem to
be using prerelease announcements as a way to commit to certain release strategies. The
results presented in the paper closely relate to the main ideas of the recent theoretical
work. According to the theory, three conditions are necessary for commitment strategies
to arise endogenously within a particular environment. First, commitment should have a
considerable value for market participants. This is indeed the case in the movie industry,
as an ability to make binding promises can help a studio to fight for the most profitable
release dates.

Second, there should exist a commitment device that players can use to make their
promises credible. As discussed above, prerelease announcements may play a role of
such device. Estimation results suggest that the announcements made by studios have
a considerable effect on their final release timing decisions, and therefore are not likely
to be cheap talk. Third, players should be different in their ability to use an existing
commitment device. Based on the observed announcement patterns, I argue that such
asymmetries exist in the industry both because adjusting release dates is more costly for
high budget movies, and because for some studios switching is associated with higher
reputational costs. By and large, presented empirical evidence suggests that behavior
of movie distributors is largely consistent with the main predictions of the endogenous
commitment theory.

The empirical strategy in this paper has several limitations. Some of them are obvious
e.g. the empirical model restricts the amount of weeks in one season and the total number
of strategic players. Others are more subtle, for example, the commitment story is only
one of many possible ways to explain the observed behavior patterns of studios. A
very different way to rationalize the observed behavior would be to argue that studios
use announcements to coordinate their release dates. A potentially optimal collusion
scheme would be to set release dates of high budget blockbusters further apart in order
to minimize business-stealing effect and achieve maximum market expansion. Studios
may also try to coordinate release dates of films sharing the same genre, as these movies
tend to be the closest competitors.22 Whether studios are indeed using announcements
as a coordination device is an empirical question. Under collusion the observed release
schedule will be designed to maximize total expected profits of studios. This is a testable
hypothesis that could potentially be explored within the static model proposed in this

22See Corts (2001) for more detailed discussion of the incentives of studios to coordinate release dates
of movies.
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paper.
There are reasons to believe that commitment story is much more plausible in the

context of the movie industry than the hypothesis of collusion. The conventional wisdom
about release date competition in the U.S. movie market is that competition seems so
intense that it often leads to overcrowding of releases in peak demand periods, and a
dearth of films in off-peak weeks. Industry practitioners often characterize this clustering
of films as “self-destructive” and “a nightmare for all parties”.23 This conventional image
suggests that movie industry is highly competitive and does not resemble a cooperative
environment.

9 Conclusion

This paper studies the release timing game played by movie distributors. The timing
game is formulated as a static game with private information, with distributors choosing
among a fixed set of release weeks. Studios face a trade-off between seasonality and
competition: some weeks have higher demand but are also characterized by more intense
competition among movies. Presented empirical findings show that, when incorporated
into a release timing game, this trade-off proves useful in explaining observed release
dates of movies.

The main empirical finding of this paper is that prerelease announcements play an
important role in the game of releases. Announced release plans tend to have substantial
effect on final release decisions of studios, and are not likely to be cheap talk. In addition,
observed behavior of market players is consistent with the idea that certain studios are
using announcements as a way to pre-commit to particular release dates. As a whole,
the results suggest that behavior of movie distributors is largely consistent with the main
predictions of the endogenous commitment theory.

The motion picture industry is not the only market, in which public announcements
can play an important role. Release timing of new products is central in many industries
including the markets for laptops, tablets, cellphones, and videogames. Manufacturers
typically inform the public about the forthcoming launch of new products long before
the start of the sales. To the extent that such promises are binding, they may play a role
similar to prerelease announcements in the movie industry.

Another example is strategic scheduling of broadcast media products (Internet, televi-
sion, radio, etc.). Modern broadcasters regularly change the scheduling of their programs
in order to build an audience for a new show and to compete effectively with the shows of
other broadcasters.24 Printing a preliminary schedule in newspapers and magazines and
conveying it to the wide audience could be used by broadcasters as a way to pre-commit
to a certain programming strategy. To find out whether firms in these markets indeed
use public announcements as a commitment mechanism could be an interesting direction
for future research.

23For example, see the discussion of movie overcrowding in Variety, 22 July 2013.
24There are only a few papers that analyze strategic scheduling. Goettler & Shachar (2001) construct

a strategic scheduling game between television networks, but do not use it for estimation. Sweeting
(2009) models the timing of radio commercials as an outcome of the strategic game played by radio
stations.
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Table 12: Two-Step Estimation Results. First Stage: Local Linear Regression

T = 1

N = 2 N = 3 N = 4

η̂ 20.28** 18.16* 31.20**

(9.66) (10.10) (14.09)

logL∗ -330.03 -416.57 -421.38

LR 3.50 3.99 9.77

R2
first 0.163 0.241 0.302

T = 2

N = 2 N = 3 N = 4

η̂ 18.71** 17.94** 25.79**

(9.27) (7.99) (12.36)

logL∗ -329.63 -416.03 -422.19

LR 4.30 5.09 8.14

R2
first 0.179 0.261 0.327

T = 3

N = 2 N = 3 N = 4

η̂ 9.13 11.39 18.00

(10.63) (12.33) (15.65)

logL∗ -331.31 -417.77 -424.81

LR 0.94 1.60 2.91

R2
first 0.192 0.285 0.340

Markets 151 127 97

Observations 302 381 388
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Table 13: Two-Step Estimation Results Season by Season

Seasons 1-3 Seasons 4-5

(President’s Day, (Thanksgiving Day,

Memorial Day, Christmas)

Independence Day)

N = 2

η̂ 33.29*** -5,91

(12.32) (14.44)

logL∗ -200.78 -127.32

LR 7.12 0.24

Markets 93 58

Observations 186 116

N = 3

η̂ 37.89*** 6.78

(13.31) (12.43)

logL∗ -261.94 -151.43

LR 10.04 0.36

Markets 81 46

Observations 243 138

N = 4

η̂ 50.76*** 7.28

(15.18) (16.50)

logL∗ -274.18 -144.86

LR 14.13 0.31

Markets 64 33

Observations 256 132
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Figure 9: Monopoly revenues and underlying demand.
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Figure 10: Monopoly revenues and commitment time.
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Figure 11: Oligopoly revenues and underlying demand.
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Figure 12: Oligopoly revenues and commitment time.
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Figure 13: Total market revenues and underlying demand.
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