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Abstract

We analyze the problem of a bank regulator who has the power to ‘bail in’ the debt of troubled

banks, as is implied by newly designed bank resolution regimes. Allowing regulators to use

their discretion in resolving banks permits them to act on the basis of their more precise, private

information. However, regulators with discretion end up being excessively weak in order to

avoid revealing adverse information and triggering bank runs. Optimally designed resolution

regimes involve discretion whenever public news is favorable, but tie the regulator’s hands with

rules after bad news. The optimal regime can be implemented by supplementing discretionary

bail-in powers with contingent capital instruments. We show that tighter capital and liquidity

regulation, and having an effective lender of last resort, improve the efficacy of bail-in policies.
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1 Introduction

Current economic policy places strong emphasis on developing resolution regimes for failing banks.
In the crisis of 2008, governments feared that the bankruptcy of major financial institutions would
cause contagion and disrupt their provision of critical services to the real economy. Absent a
workable alternative to bankruptcy, states recapitalized banks with public money. These bail-outs
raised serious concerns about fairness and moral hazard, and in some cases they threatened fiscal
stability. The G20 leaders have since vowed to end the ‘too big to fail’ problem, and the design of
bank resolution regimes forms a key part of this agenda (G20 Leaders, 2013).

These regimes will complement bankruptcy law by giving regulators the discretion to take
struggling important banks into resolution, and to re-capitalize them through ‘bail-ins’, i.e. by
writing down debt at the expense of private creditors. One point of contention is whether discre-
tionary bail-ins have sufficient credibility to provide investors with certainty, and to persuade them
and large banks that the latter will no longer be deemed too big to fail. The Financial Stability
Board (2011), for example, emphasizes that resolution plans are not credible if they create a risk of
‘disruptions in domestic or international financial markets, for example, because of lack of confi-
dence or uncertainty effects’ (FSB 2011, p. 32). Similarly, Bulow and Klemperer (2015) argue that
‘regulators are reluctant to actively force a recapitalization because doing so will send a negative
signal about the bank’s current financial status, possibly exacerbating a bad situation’ (p. 6).

Such concerns about credibility suggest that some commitment to rules regarding bank resolu-
tion might be valuable. Indeed, bank regulators have shown that they are willing to give up some
discretion: Contingent capital instruments (so-called CoCos), which write down or convert debt
according to fixed contractual rules specified in advance, are being widely issued by banks and will
count towards regulatory capital requirements in some jurisdictions (Avdjiev et al., 2013).

In this paper, we model the optimal design of bank resolution regimes, and consider the follow-
ing four questions: (1) Why might full discretion be problematic for bank resolution authorities?
(2) What are the central trade-offs in choosing between rules and discretion, and how should rules
optimally be designed? (3) How do contingent capital instruments interact with resolution regimes?
(4) How should the design of resolution policies interact with other financial policies, such as cap-
ital and liquidity regulation or liquidity support by a lender of last resort?

In our model, bank resolution policy is constrained by two frictions which are typical of the
banking industry: First, banks are exposed to potential illiquidity and runs by uninsured short-
term creditors, as in Diamond and Dybvig (1983). Second, bank regulators have access to private
information about banks’ financial health.1

1The regulator’s private information may correspond, for example, to information gleaned in the course of con-
ducting supervisory ratings excercises, such as CAMELS in the US, which are not publicly available. More recently,
regulators have been conducting stress tests of bank balance sheets, the details of which remain largely secret. The
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As a result of these frictions, regulators with full discretion have difficulty taking as strong
and decisive an action as they would like. Discretion allows regulators to fine-tune resolution
policies based on their private information. However, due to such fine-tuning, regulatory action
provides news to the market. If the regulator ‘bails in’ a large portion of the bank’s debt, market
participants rationally infer that the bank must be under-capitalized. This revelation can trigger
costly disruptions such as runs by short-term creditors.2 Therefore, regulators with bad news and
discretion have incentives to act as if they had better news. In equilibrium, they conduct excessively
weak bail-in policies, leaving banks under-capitalized compared to the first best.3

Due to this excessive weakness problem, the optimal bank resolution regime generally involves
some commitment to bail-in rules. We study rules which mandate pre-specified bail-in policies
contingent on certain realizations of public news, but allow the regulator discretion after other
realizations. When choosing between rules and discretion, the central trade-off facing regulators
is between accuracy and toughness. Discretion allows fine-tuning, but it also opens the door to
excessive weakness. By contrast, rules can create a commitment to tougher policies (with more
bail-in), but they necessarily tie bail-in policies to noisy public news, thus sacrificing accuracy.

The optimal regime commits the regulator to a tough bail-in policy after bad public news. After
good public news, regulators should be allowed discretion. This result can be understood in terms
of the ‘toughness vs. accuracy’ tradeoff. Bad public news foreshadows bad private news, thereby
increasing the expected value of tough policies. Thus toughness is a virtue and commitment is
desirable. By contrast, good public news reduces the expected value of toughness, so regulators
care relatively more about accuracy, and it is best to retain discretion. We also characterize the
relationship between the optimal resolution regime and the quality of public information. In most
relevant cases, commitment is more valuable, and should be used to a greater extent, when public
signals are more informative. Even when discretion is problematic, it does not make sense to tie
one’s actions to a very noisy signal.

Contingent capital can exactly implement the optimal regime and substitute for explicit rule-
writing. It automatically writes down debt whenever a publicly observable indicator, such as the
bank’s book or market value, falls below a pre-specified threshold. Thus, contingent capital en-

interaction between illiquidity and asymmetric information, which is emphasized by our theory, has been documented
empirically by Iyer et al. (2013), who show that the announcement of regulatory action in an Indian bank, which
signalled the outcome of a confidential review by the regulator, caused a substantial run by its uninsured creditors.

2In modern banking systems with deposit insurance, runs are prone to take place in wholesale credit markets, such
as repo and commercial paper, rather than on retail deposits. Wholsesale runs are discussed in detail by Shin (2009),
Gorton and Metrick (2012) and Krishnamurthy et al. (2014).

3For concreteness, in our model, we interpret the regulator’s action as the fraction of bail-inable debt to write down.
In reality, the set of regulatory actions is much broader, and our basic results can be applied more generally. The
excessive weakness associated with discretion can also be interpreted as regulators acting too late in a crisis, or asking
banks to raise an insufficient amount of capital in private markets. Our model suggests that pre-committing to a plan of
action before the regulator has any private information about the state of the troubled bank would help to avoid these
problems too.
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forces tough write-downs whenever public news are sufficiently bad, without affecting discretion
after good news. This replicates the optimal regime, which establishes a novel role for contingent
capital in regulatory policy.

We show that other financial policies are complementary to effective resolution if they alleviate
the threat of bank runs. First, we consider changes to banks’ balance sheets which increase liquidity
and decrease the probability of runs. Liquidity regulation, along the lines of Basel III’s Liquidity
Coverage Ratio, allows the regulator to target a measure of bank liquidity which is a sufficient

statistic for the efficacy of resolution policy. Capital regulation can have a similar effect, but it is
a blunter tool, since it does not directly target the relevant liquidity measures. Second, we study
liquidity support by a lender of last resort. A lender of last resort can cover some of banks’ liquidity
shortfall if creditors run on the bank. Anticipating this response, creditors are less likely to run in
the first place (Diamond and Dybvig (1983)). Thus the presence of an effective lender of last resort
also lends credibility to bank resolution regimes.

Our paper thus suggests that liquidity regulation and last resort lending are natural complements
to a successful bank resolution regime. In practice, there are limits to the coverage of regulation
(e.g. fears of reducing the social value of intermediation, or the political influence of financial
firms) and to the leniency of a lender of last resort (e.g. concerns about moral hazard). We argue
that at the margin, liquidity regulation should be tougher, and lenders of last resort should lend
against wider ranges of collateral, when efficient bank resolution is an important objective.

The trade-off between rules and discretion in bank resolution in our model looks quite differ-
ent to that highlighted in macro-economic policy by Kydland and Prescott (1977) and Barro and
Gordon (1983). In those models, the central bank (or government) moves last, and is tempted to
create ex post inflation surprises to boost output. The central bank’s action is anticipated in equi-
librium and no information is revealed by its actions. In our setting, the move order is reversed -
the regulator moves and then the public react - and the central concern motivating regulatory com-
mitment is to avoid information revelation rather than sub-game perfection. In the monetary policy
literature, our mechanism is closer to Cukierman and Meltzer (1986), where the central bank has
private information about its objective function, and acts strategically in revealing information to
the public.

Our paper also relates to a growing literature on the design of contingent capital instruments.
Flannery (2005) was the first to propose ‘reverse convertible debentures’, which resemble today’s
CoCos. The subsequent literature has focused on the problem of multiple equilibria with market-
based triggers (Hillion and Vermaelen 2004, Sundaresan and Wang 2014), alternative designs
which overcome this problem (Pennacchi et al. 2013, Bulow and Klemperer 2015), and the im-
pact of contingent capital on incentives and the value of the firm (Pennacchi 2010, Martynova and
Perotti 2012, Albul et al. 2013). Flannery (2013) provides an excellent survey. Our paper is a
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complement to this literature. We take a step back from the details of contingent capital design and
ask whether regulators would want to encourage any of these instruments, all of which commit the
bank to debt write-downs or conversion into equity as a function of publicly-available information,
rather than allowing the regulator to exercise discretion when the need for de-leveraging arises.
Moreover, our analysis of contingent capital helps to motivate some of the key questions addressed
by this literature. We show that the optimal resolution regime can in principle be implemented with
contingent capital contracts, but only if these contracts can (i) avoid feedback effects and death spi-
rals, and if (ii) their conversion is credibly beyond the regulator’s control. Both issues have been
central concerns in contingent capital design.

The paper is structured as follows: Section 2 describes our model of bank resolution. Section
3 describes equilibria when regulators have discretion, and Section 4 analyzes the optimal reso-
lution regime when commitment is possible. Section 5 discusses the implementation of optimal
regimes with contingent capital contracts. Section 6 analyzes complementarities between resolu-
tion regimes and other financial policies. Section 8 concludes and elaborates on policy implications.
The Appendix contains all proofs not given in the text.

2 The model

The model has two dates, t ∈{1,2} and a single bank, which is subject to intervention by a regulator
at date 1. At date 1, the bank has the following balance sheet.4 Its liabilities are short-term,
uninsured debt with face value D, and long-term ‘bail-inable’ bonds with face value B. Short-
term debt are held by a unit mass of identical, risk-neutral creditors. We assume that short-term
creditors have (absolute) priority over long-term creditors in case of insolvency. The bank’s assets
are long-term risky investments, which pay a random cash flow V at date 2, with support [v,v]⊂R.

The regulator observes the realization V = v at date 1, and at the same time the public observes
a signal S with support [s,s] ⊂ R. The distribution of V given S is F(v|s), and a high S is ‘good
news’ about V in the sense of first-order stochastic dominance:

∂F(v|s)
∂ s

< 0. (1)

After observing V the regulator may bail in a ∈ [0,B] long-term bonds.5 Bailing in means
writing down the debt, so that the owners of bonds do not get paid, or converting it into equity,

4For now, we treat the bank’s balance sheet as given at date 1. In Section 6 we will come back to this and discuss the
issues that our analysis will raise for the regulation of the composition of the bank’s assets and liabilities at a potential
date 0, and in particular, point out the complementarity of balance sheet regulation with bail-in policies.

5Current policy proposals suggest that resolution authorities will first bail in bonds which were designated as ‘bail-
inable’ at the point of issuance. If there are long-term bonds which cannot be bailed in, one could restrict the regulator’s
action to a ∈ [0,B′] for B′ < B, without affecting our results.
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so that they get paid in shares. After the bail-in, the face value of outstanding long-term bonds is
B−a.

The public observes a, and uses it along with the signal S to infer the regulator’s information.
Let β (v|a,s) be the distribution of v given public information, and let Eβ [V |a,s] =

´ v
v vdβ (v|a,s)

denote its conditional expectation.
After observing a, short-term creditors decide whether to ‘withdraw’ their debt, demanding an

immediate repayment at date 1, or to roll over until date 2. We focus on the case where only news
about the bank drives withdrawals, and short-term creditors withdraw late if they are indifferent.
For this reason, we assume that short-term creditors incur a small non-pecuniary cost χ > 0 if they
withdraw early.6

Assets can be sold into a competitive market. There is a pool of risk-neutral outside buyers who
can acquire assets and extract value λV , where 0 < λ < 1. The outside buyers observe only public
information, i.e. the signal S and the regulatory action a, and therefore the market value of assets
at date 1 is p = λEβ [V |a,s]. When a fraction φ of short-term creditors withdraws early (at date 1),
the bank needs to sell a fraction σ = min{1,φD/p} to meet withdrawals. If σ = 1, then the bank
runs out of assets and is insolvent at date 1.7

2.1 Welfare

The regulator seeks to maximize social welfare,8 which is the sum of two components. First, asset
sales to outside buyers cause a deadweight loss, since outside buyers extract less value from assets
than banks can. This loss is given by (1−λ )σv, where σ is the fraction of assets sold to outside
buyers, as discussed above.

Second, welfare depends on the bank’s equity capital at date 2, which is E(a,v) = v+a− (D+

B). In particular, we assume that welfare (not including the deadweight cost of asset sales) is

U(E(a,v)),

where the function U(E) is strictly concave and twice differentiable in E. In other words, we
assume that social welfare first increases and then decreases in the level of bank capital. This is
consistent with a large literature on bank capital structure, which we discuss in Subsection 2.3. The
ideal level of bank capital is E? , defined by U ′(E?) = 0.

6Equivalently, one could assume that short-term debt earns a non-zero interest between dates 1 and 2.
7In Section 6, we will allow the bank to hold cash that could be used to meet some withdrawals. For simplicity, in

this Section, we focus on the case with neither cash holdings nor withdrawals for liquidity reasons.
8Similar conclusions will follow if the regulator does not set equity to maximize social welfare, but nevertheless

has a utility function which first increases and then decreases in the leverage of the bank. In particular, the regulator is
likely to find that discretion leads to weaker action ex post than he would consider desirable ex ante.
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Combining the two components, social welfare is

W =U(E(a,v))− (1−λ )σv.

Below, we consider how equilibrium withdrawals from the bank, and therefore asset sales σ ,
depend on the regulator’s action a and the information it reveals to the public. However, it is
instructive to first consider what the regulator would do in the absence of any liquidity problems.
In this case, his ideal action is

a?(v) =


0 if E? ≤ v− (D+B),

E?+D+B− v if v−D < E? < v− (D+B),

B if v−D≤ E?.

We focus on the interesting case where regulators with different news v have different ideal bail-
in policies a?(v). To this end, we assume that a?(v) 6= a?(v′) for some v and v′, which is equivalent
to

U ′(v− (D+B))≥ 0≥U ′(v−D), (2)

with at least one strict inequality.

2.2 Withdrawals and bank runs

We now describe the withdrawal game between the bank’s short-term creditors. Each short-term
creditor decides whether to withdraw early (at date 1) or late (at date 2). They will withdraw early
if doing so reduces the chance of losing money when the bank defaults. We assume that

v≥ D > λv. (3)

This first part of this assumption implies that there is enough value in the bank to repay short-
term creditors even with the worst possible realization of V (although it may or may not be solvent
overall, taking into account outstanding long term bonds). The second part of the assumption
implies, however, there is not necessarily enough value to repay the short-term creditors at date 1
if a run occurs and the asset value realization is low. This part of the assumption makes the bank
vulnerable to runs in the face of bad news. Assumption (3) ensures that bank runs are driven by
self-fulfilling concerns about liquidity as in Diamond and Dybvig (1983), but not by concerns about
solvency. The implications of solvency-driven bank runs are discussed in Subsection 2.3.

Equilibrium in the withdrawal game depends on whether the total liquidation value of assets
p exceeds the claims of short-term creditors D. When p ≥ D, the unique equilibrium has no
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withdrawal with φ = 0. The bank is never insolvent at t = 1, and the value of its remaining as-
sets at t = 2 will be v(1− φD)/p. Hence late withdrawers will be repaid in full if and only if
v(1−φD/p)≥ (1−φ)D. This is guaranteed because p≥D (by assumption) and v≥ v≥D (by the
lower bound in (3)). Therefore, short-term creditors get paid in full, no matter when they withdraw,
and it is a dominant strategy to withdraw late to avoid the cost χ .

When p < D, there are multiple equilibria. If everybody withdraws early (φ = 1), the bank is
insolvent at date 1. Early withdrawers get paid p each, and late withdrawers get nothing. As long as
χ is sufficiently small, nobody has an incentive to withdraw late, and the bank run scenario φ = 1
is an equilibrium. If everybody withdraws late (φ = 0), the bank remains solvent and can pay back
all short-term creditors in full at because its assets will be worth at least v ≥ D. Then nobody has
an incentive to withdraw early, and φ = 0 is also an equilibrium. Finally, there is a third, unstable,
equilibrium with 0 < φ < 1 and partial liquidation of the bank’s assets.

For tractability, we assume that with multiple equilibria, one of the stable equilibria is picked
based on the realization of independent sunspots. In particular, suppose that the bank run φ = 1
is played with probability π > 0, and φ = 0 is played with probability 1−π . The global games
approach of Goldstein and Pauzner (2005) could, in principle, be used to endogenize π . We work
with an exogenous π in order to obtain a more tractable characterization of regulatory trade-offs.

A run is therefore possible, and occurs with probability π , if and only if p = λEβ [V |a,s]< D.
When this is satisfied, runs induce an expected social cost of κ(v) = π(1−λ )v. We assume that
this cost is large, in the sense that a regulator prefers taking the ‘wrong’ bail-in action to triggering
a run:

κ(v)>U(v+a− (D+B))−U(v+a′− (D+B)) for all a,a′,v. (4)

We further assume that runs cannot be triggered by the public signal alone,

λE[V |s]≥ D. (5)

This restriction allows us to focus on the case of interest, which is where regulatory action itself
might create runs by revealing information. The lowest asset value that can be revealed without
triggering a potential run is vD = D/λ . Finally, we assume that in the marginal state v = vD, the
regulator prefers a complete bail-in to inaction:

U(vD−D)>U(vD− (D+B)). (6)

2.3 Remarks on the model setup

Alternative interpretations of regulatory intervention. While we present the case of bail-ins
motivated by the desire to raise the level of bank equity, our qualitative results are much more
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general. In the Appendix, we consider a general function U(a,v), which gives the regulator’s
utility as a function of his action a and the bank’s asset value v. In that setup, all our results hold as
long as the regulator’s utility is concave in a, and satisfies the condition ∂ 2U/∂a∂v < 0, so that the
marginal benefit of intervention is lower when the regulator has good news.

The general specification U(a,v) not only offers a robust analysis of bail-in policy, but also
shows that our model is open to many alternative interpretations. For instance, one could also
interpret a as the time at which the regulator intervenes, in a model where regulators with bad
private news prefer to intervene earlier than regulators with good private news. Alternatively, a can
also be interpreted not as a bail-in action, but as the quanitity and timing with which the regulator
requires banks to raise new equity in the market.

Our analysis below shows that regulators with discretion and bad news undertake excessively
weak bail-ins to avoid bank runs, and can therefore benefit from a commitment device. This in-
tuition can also be applied to alternative interpretations: If a is the timing of intervention, then
regulators with discretion might act too late; if a is a required equity injection, they might require a
smaller or later equity injection than would be optimal.

Alternative interactions between beliefs and welfare. We present a model where adverse
public beliefs are socially costly because they trigger illiquidity-driven bank runs. This case is
particularly tractable, but we would expect our results on rules and discretion to hold in other
settings. For example, instead of focusing on banks’ legacy assets, one could imagine that adverse
public beliefs increase the bank’s cost of external finance at date 1, and therefore inhibit additional
lending to the real economy.

Within our model, Assumption (3) allows us to focus on illiquidity-driven bank runs. The
advantage of doing so is that we obtain a clean interaction between public beliefs and bank runs:
Runs are possible if and only if p = λEβ [V |a,s] < D, and this condition only depends on the
conditional expectation of V . With solvency concerns, short-term creditors would worry about the
date 2 value of bank assets, and the entire conditional distribution of V would play a role in the
withdrawal game. However, the interaction between beliefs and welfare would be qualitatively
similar.

Social welfare and bank equity. We work with a general specification of social welfare as
a function of bank equity, restricted only by Assumption (2). The first inequality in (2) implies
that welfare is increasing in bank equity when equity is low. This seems uncontroversial: A large
literature following Holmstrom and Tirole (1997) demonstrates that badly capitalized banks can
cause credit rationing and macroeconomic distortions. Alternatively, banks’ incentives to gamble
for resurrection (Hellmann et al., 2000) or deadweight costs of bank default would also yield a
social welfare function which suffers when banks are badly capitalized.

The second inequality in (2) implies that welfare can be reduced by excessive recapitalizations
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when banks are healthy. Dang et al. (2014) and Gorton and Winton (2014) argue that bank equity
is more information-sensitive than debt, and therefore introduces asymmetric information costs
when it is too high. Moreover, Calomiris and Kahn (1991) and Diamond and Rajan (2000) develop
theories where debt, by acting as a hard claim, disciplines bank managers. These theories can
be used to motivate our assumption: Beyond a certain point, more bank equity becomes socially
costly.9

Illiquidity. The potential illiquidity of banks is central to our model. In particular, Assumption
(3) states that short-term debt liabilities are large, relative to the amount cash the bank can raise at
date 1 by liquidating its assets. This raises two potential concerns. First, if banks were required to
hold sufficient equity capital ex ante, debt liabilities would be small relative to risky assets. Second,
if there were a lender of last resort which could provide liquidity support, banks would not need to
liquidate assets to raise cash. We are sympathetic to these arguments. Indeed, Section 7 formally
shows that last resort lending and bank regulation are complementary to bail-in policy, precisely
because they alleviate the threat of runs.

We effectively model a world in which these policies are imperfect, so that runs are still a
potential outcome. This is a reasonable restriction: As discussed above, very high levels of bank
equity may not be optimal. In practice, the toughness of capital regulation is further constrained by
the political clout of the financial industry (Admati and Hellwig, 2014). Equally, perfect liquidity
support by a lender of last resort is not desirable since it crowds out banks’ private incentives to
properly manage liquidity.

Priority of short-term creditors. We impose that short-term creditors have priority over long-
term creditors (the holders of bail-inable debt B) when the bank is insolvent at date 2. This is an
optimal arrangement. If short-term creditors were to rank pari passu with long term debt at date
2, then the bank would be more prone to runs and regulatory actions would be correspondingly
weaker in equilibrium. This observation validates recent regulatory attempts to restructure banks
to ensure that short-term debt is structurally senior to most long-term debt.

3 Equilibrium with discretion

If the regulator has discretion to freely choose a, then he is playing a signalling game with creditors.
In particular, creditors use a to infer information about V , since regulators with different values of
V prefer to choose different a. When λEβ [V |a,s] < D, potential runs create a social loss κ(v).
Therefore, in choosing a, the regulator must consider the informational effect of a and the cost of

9As the strongest proponents for higher levels of bank capital, Admati and Hellwig (2014), advocate that banks
fund between 20% and 30% of investments with equity. Even this view is consistent with our assumptions in principle.
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runs as well as its direct payoff. His effective objective function is

W (a,v,s,β ) =U(v+a− (D+B))−κ(v)×1(λEβ [V |a,s]< D),

where 1(.) denotes the indicator function. We now examine the equilibria of the regulatory
signalling game, considering separately each realization of the public signal s.10

Definition 1. An equilibrium with discretion in state s ∈ [s,s] is a bail-in rule α(v,s) ∈ [0,1] and
beliefs β (v|a,s) such that

• The bail-in rule α(v,s) solves maxa∈[0,1]W (a,v,s,β ).

• Beliefs are consistent with Bayes’ rule when possible.

3.1 Runs, minimal pooling and incentive compatibility

We can narrow down the properties of equilibria with discretion, which we collect in Lemma 1
below. First, runs do not occur on the equilibrium path. If they did, then the types of regulators
which faced runs would deviate to an action which avoided a run (by equation (4)). This contradicts
equilibrium, unless the regulator faces a run regardless of his action. But this last scenario requires
overly pessimistic public beliefs. The proof of Lemma 1 shows that such beliefs are not consistent
with Bayesian updating.

Second, equilibria feature minimal pooling. Regulators with very bad news (v close to v) must
not reveal themselves to the public. If they did, they would open the door to runs, because the
perceived liquidation value of assets would be too low to repay short-term creditors. Therefore
they will pool with regulators with better signals to avoid runs. Runs are avoided only if regulators
play the same action whenever v is below a threshold vp(s), which is defined implicitly by9s

λE[V |s,V ≤ vp(s)] = D. (7)

Intuitively, this condition states that if the public learns that V is belowvp(s), as it does when all
regulators with V ≤ vp(s) play the same action, a run will just be avoided.

Finally, regulators’ equilibrium actions are incentive compatible. To rule out profitable devia-
tions, each type of regulator must prefer his equilibrium action to those of other types. Lemma 1
summarizes our results and further characterizes incentive compatibility.

Lemma 1. In any equilibrium with discretion in state s, the bail-in rule α and beliefs β satisfy the

following conditions:
10Definition 1 focuses on pure strategies. It is easy to see that the regulator is never indifferent between two actions,

by the strict concavity of U and Assumption (4).
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• No runs: λEβ [V |α(v,s),s]≥ D for all v.

• Minimal pooling: α(v,s) = α(v,s) for all v≤ vp(s).

• Incentive compatibility: α(v,s) is weakly decreasing in v and therefore differentiable in v

almost everywhere. Where it is differentiable, it is either flat, ∂α(v,s)
∂v = 0, or coincides with

the ideal action, α(v,s) = a?(v). Moreover, if α(v,s) is discontinuous at v, then the regulator

is indifferent between α+(v,s) = limt↓v α(t,s) and α−(v,s) = limt↑v α(t,s).

Figure 1 illustrates the incentive compatibility conditions in Lemma 1. Panel (a) shows an
equilibrium with continuous actions (fixing a public signal s). There is a pooling region where
α(v,s) is flat and a separation region where it coincides with the ideal action a?(v). Panel (b)
shows a discontinuous case, where α(v,s) rises above a?(v) and then jumps below it. Panel (b)
also shows how separation and pooling regions can alternate. Moreover, both panels exhibit the
minimal pooling result. In each case, the first pooling region, which starts at v, must extend at least
to the threshold vp(s).11

Figure 1: Equilibrium bail-in actions.

a

v vvp(s) v

a?(v)

α(v,s)

(a) Continuous case

a

v vvp(s) v

a?(v)

α(v,s)

(b) Discontinuous case

11This signalling game is different from standard models such as Spence (1973), since no cash transfers are made
between the informed and uninformed players. Thus, our incentive compatibility conditions are as in Melumad and
Shibano (1991) and Martimort and Semenov (2006), who analyze a screening problem without transfers.
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3.2 Equilibrium selection

There are multiple equilibria with discretion. In fact, any action rule satisfying the conditions
of Lemma 1 can be sustained by sufficiently severe off-equilibrium beliefs, which trigger a run
whenever the regulator deviates from equilibrium play. This complicates the analysis of rules
versus discretion.

We take a two-step approach. First, we rule out certain equilibria using an equilibrium selec-
tion criterion. Then, we give discretion the benefit of the doubt by comparing rules to the ‘best’
surviving equilibrium with discretion.

As a first step, we adapt the Cho and Kreps (1987) intuitive criterion to our context to discipline
off-equilibrium beliefs. For an off-equilibrium action a0 ∈ {a : α(v,s) 6= a∀v}, define

σ(a0,s) = {v : W (a0,v,s,β )≥W (α(v,s),v,s,β )}

as the set of signals for which the regulator would consider deviating. In the language of Cho and
Kreps, this is the set of signals for which a0 is not equilibrium-dominated.

Generally, Perfect Bayesian Equilibrium requires that the informed party has no incentive to
deviate from their prescribed strategy for given beliefs of the uninformed players. The Cho-Kreps
criterion additionally requires that she has no incentive to deviate for any beliefs which attach zero
probability to equilibrium-dominated behavior.

In our context, the intuitive criterion rules out equilibria which are sustained by an unreason-
able threat of runs. In particular, if there is a bail-in policy to which only regulators with good
news would want to deviate, it does not seem credible that creditors should run when that policy
materializes. It is easy to see that Cho and Kreps’ original definition is equivalent to the following
version in our model:

Definition 2. An equilibrium with discretion in state s survives the intuitive criterion if there is no
off-equilibrium action a0 such that:

1. For some signal v0, the regulator strictly prefers a0 to his equilibrium action in the absence
of a run:

U(v+a0− (D+B))>W (α(v,s),v,s,β ).

2. For all beliefs γ with Prγ [V ∈ σ(a0,s)] = 1, we have

λEγ [V |a0,V ∈ σ(a0,s)]≥ D,

so that a run would be avoided if creditors attached zero probability to types for which a0 is
equilibrium dominated.
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The intuitive criterion does not select a unique equilibrium in our model. However, it does
allow us to place meaningful restrictions on possible bail-in actions.

Recall that vD =D/λ is the lowest level of asset values which can be revealed without triggering
a run. Suppose we can find an off-equilibrium action a′ such that some regulators would strictly
prefer a′ to their equilibrium action, and only regulators with signals above vD would deviate to
a′. Then, the equilibrium cannot survive the intuitive criterion, since beliefs which are confined
to V ≥ vD can never trigger a run. This reasoning allows us to narrow down equilibrium play
considerably. Figure 2 illustrates the process of elimination.

First, we can rule out discontinuous bail-in actions, as in panel (a) of the figure. If there is a
downward jump in equilibrium, then for the marginal signal v̂1, the regulator must be indifferent
between his actions before and after the jump, a−1 and a+1 . Only types close to v̂1 would want to
deviate to a′ = a+1 + ε for small ε > 0. By the minimal pooling requirement of Lemma 1, we have
v̂1 ≥ vp(s) > vD. Thus, only types above vD would deviate to a′ for small ε , and according to our
previous reasoning, the candidate equilibrium does not survive the intuitive criterion.

Second, we can put a restriction on bail-in when the regulator has the best possible signal. The
idea is illustrated in panel (b) of Figure 2. Suppose that α(v,s)> a?(s). Then there is either pooling
for the highest signals followed by separation for slightly lower signals (dashed line), or complete
pooling (solid line). In the dashed case, only regulators with high signals want to deviate to actions
below α(v,s). In the solid case, by our assumption in (6), a regulator with signal vD or below has no
incentive to deviate to a′ ' 0. In both cases, the candidate equilibrium fails to survive the intuitive
criterion.

Combining the above arguments, surviving equilibria must be structured as in panel (c) of the
figure. They either involve complete pooling on an action below a?(s), or an initial pooling region
followed by separation. In the second case, Lemma 1 implies that the initial pooling region must
extend at least up to vp(s), and that in the separation region, actions must coincide with the ideal
action a?(v).

Proposition 1. In any equilibrium surviving the intuitive criterion, the bail-in rule α satisfies

α(v,s) = min{a?(v),a′}

for some a′ ≤ a?(vp(s)).

This proposition demonstrates why discretion may be a problem. In surviving equilibria, no
regulator takes an action above a?(vp(s)), the ideal action of the ‘minimal pooling type’ vp(s). It
is clear that regulators with worse news (v < vp(s)) would like to take tougher actions. However,
they cannot do so for fear of triggering runs. As a result, the equilibrium with discretion exhibits
excessive weakness when the regulator has bad news. In this situation, the regulator needs to
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Figure 2: Applying the intuitive criterion.
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(c) Surviving equilibria

‘pretend’ to have better news, pool with higher types, and take weaker actions than he would like,
in order to avoid a run.

As discussed in Section 2, the regulator’s action a can be given a broader interpretation. First, a

could stand for the timing of regulatory intervention in a failing bank. Then, Proposition 1 implies
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that regulators tend to react too late when banks are in trouble – another type of excessive weakness.
Second, a could stand for a regulatory requesting that the bank raise capital on the private market.
Proposition 1 then reveals an incentive to ask for insufficient recapitalizations, driven by the desire
to ‘pool’ with types who have better news.

What is the highest utility the regulator can achieve with discretion? By inspection of Figure 2,
panel (c), it is clear that the best surviving equilibrium is the one with the smallest pooling region:
Shrinking the pooling region increases the utility of regulators who now obtain separation, and
leaves the utility of the ‘poolers’ unchanged.

Corollary 1. For all realizations of the regulator’s private information v, the highest payoff in a

surviving equilibrium is achieved when a′ = a?(vp(s)). Hence, the highest expected payoff in a

surviving equilibrium, conditional on public information s, is

Ū(s) = E[U(v+min{a?(v),a?(vp(s))}− (D+B))|s]. (8)

Our graphical illustrations are drawn such that the ideal action a?(v) is strictly decreasing. This
is not the case in general. It is possible, for example, that regulators with bad news (low v) wish to
conduct the maximal possible bail-in, a?(v) = B. In this case, discretion need not induce excessive
weakness. If all regulators with news v ≤ vp(s) wish to conduct the maximal policy a?(v) = B,
then the ideal action already satisfies the minimal pooling requirement, and there is a surviving
equilibrium in which the regulator plays a?(v) for all realizations of v. In what follows, we focus
on the more interesting case where discretion induces excessive weakness. Therefore, we impose
the parametric restriction that a?(vp(s))< B, or equivalently

U ′(vp(s)−D)< 0. (9)

In this case, the payoff in the best surviving equilibrium, as characterized in (8), simplifies to

Ū(s) = E[U(E?−max{vp(s)− v,0})|s], (10)

where E? is the preferred level of bank capital. This gives an intuitive characterization of the
loss from discretion. The regulator achieves his preferred level of bank capital when he has good
news (v > vp(s)). However, when he has bad news, he conducts an excessively weak bail-in, and
bank capital ends up below its preferred level at E?− (vp(s)− v).

To summarize, we have established that discretion leads to excessive weakness. We now turn to
the implications for optimal policy, and in particular, for the trade-off between rules and discretion.
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4 Optimal regimes and contingent capital

Suppose that the regulator is able to tie his hands before any information is revealed. He can
credibly promise to take a certain action A(s), regardless of his private information, when the
public signal is s. An optimal rule lays out for which public signals the regulator will pre-commit
to a particular action, and which action he will commit to in each case. The timing of events is now
as follows:

• Date 0: The regulator announces a commitment set C ⊂ [s,s] of realizations of the public
signal, and commitment actions A(s) ∈ [0,B] for each s ∈ C .12

• Date 1: The public signal s is observed by everybody, and the private signal v is simultane-
ously observed by the regulator.

• The regulator takes the bail-in action a. His choices depend on whether the public signal lies
in the commitment set (s ∈ C ) or not:

– If s ∈ C , then the regulator is forced to take the commitment action a = A(s).

– If s /∈ C , then the regulator has discretion to choose a ∈ [0,B], and plays the discretion
game analyzed in Section 3. We give discretion the benefit of the doubt

• Date 2: Assets mature and social welfare is realized.

For states without commitment (s /∈ C ), we give discretion the benefit of the doubt by considering
the surviving equilibrium with discretion which yields the highest expected payoff Ū(s). By con-
trast, commitment to A(s) gives the regulator an expected payoff of E[U(v+A(s)− (D+B))|s] in
state s ∈ C . Importantly, a committed regulator need not worry about runs. His actions, being con-
tingent only on public information, will not reveal any private information, and public information
alone does not trigger runs by our assumption in (5).

4.1 Optimal rules

In writing an optimal rule, the regulator decides for which subsets of states s to write a commitment,
and which actions to commit to in those states, to maximize his expected utility.

12An alternative sequence is to have the regulator announce his commitment at date 1, either before or after he
observes s. This will yield equivalent results. The only essential assumption is that a commitment is made before v is
observed by the regulator, since this allows him to avoid the signalling problem associated with discretion.
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Definition 3. An optimal rule is a commitment set C ? ⊂ [s,s] and a commitment action A?(s) for
each s ∈ C ?, which solve the problem

max
C∈2[w,w],(A(s))s∈C

E[U(v+A(s)− (D+B))×1(s ∈C)+Ū(s)×1(s /∈C)] (11)

In choosing whether to make a commitment in state s, the regulator compares the value of
playing the discretion game, Ū(s), to the expected payoff from playing a fixed action A, which is
E[U(v+a− (D+B))|s]. The value of commitment to A is therefore

VC(s) = maxA E[U(v+A− (D+B))|s]. (12)

The optimal rule is as follows: If VC(s) < Ū(s), then the regulator is better off playing the
discretion game. Otherwise, then he chooses to commit to A?(s) = argmaxA E[U(v+A− (D+

B))|s].
The trade-off between commitment and discretion is illustrated in Figure 3. The regulator would

never commit to a weak action A0 < a′ (the lower bold line). This commitment takes the regulator
further away from the ideal action a?(v) than he would be in the discretion equilibrium (the bold
dashed line), regardless of his private information v. Intuitively, since discretion induces excessive
weakness, commitment to a weak action only makes things worse.

However, commitment to a tough action A1 > a′ (the upper bold line) may be valuable. This
commitment benefits the regulator by taking him closer to the ideal action whenever a low enough
v is realized, but hurts him when high a high v is realized. When v is low, the excessive weakness
with discretion hurts the regulator, and he would like to commit to being tough.

It follows that commitment to a high action like A1 is valuable when public news s is sufficiently
bad. Adverse public news imply that low realizations of v are likely, which is precisely when
commitment benefits the regulator. The following proposition formalizes this intuition.

Proposition 2. Suppose VC(s) > Ū(s). Then, the optimal commitment set C ? takes the shape

C ? = [s,s?) or C ? = [s,s?] for some s? ≥ s. The optimal commitment actions solve A?(s) =

argmaxAVC(A,s), and are decreasing in s (and strictly decreasing whenever A?(s)< 1).

This clearly illustrates the trade-off between commitment and discretion as a trade-off between
toughness and accuracy. With discretion, the threat of runs leads to excessively weak bail-in poli-
cies, as regulators attempt to avoid revealing very bad news. The benefit of commitment is the
ability to be tough when news are bad. The cost of commitment is that the regulator cannot adapt
his action, even when he ends up with good news.

When the economic outlook based on public news is poor, regulators anticipate bad private
news as well and therefore a greater need for tough bail-in policies. In this case, the benefits of
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Figure 3: Candidate commitment actions.
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commitment outweigh the costs. Commitment allows regulators to be tough without provoking
runs. Conversely, when public news suggests that the economic outlook is good, regulators also
anticipate good private news. In this case, the costs of commitment outweigh its benefits. The
threat of runs is remote, and the excessive weakness induced by discretion is unlikely to affect the
regulator. Therefore, the regulator prefers discretion. As a result, the regulator optimally writes
rules which tie his hands whenever the economic outlook, as measured by public news, falls below
a threshold s?.13

4.2 Optimal rules and the quality of public information

The value of commitment depends on the quality of public information. When the regulator gives
up discretion, he is forced to ignore his private information and acts only on public signals. At first
glance, a noisy public signal should therefore reduce the value of commitment by decreasing the
accuracy of bail-in policies. For instance, regulators might worry that commitment based on market
prices, e.g. through contingent capital, would subject policy to the whims of market sentiment. We
show that this is true in a practically relevant region of the parameter space, but that the general
effect is more nuanced.

We model a deterioration in the quality of public information as follows: Suppose that instead
of S, the public observe a signal Ŝ with support [s,s] which is less informative than S in the sense

13Note that the threshold s? is the state in which the regulator is indifferent between discretion and commitment.
Therefore, it does not matter whether it is included in the commitment set or not.
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of Blackwell (1953). Letting h(s|v) and ĥ(s|v) denote the conditional densities of S and Ŝ, the two
signals are related by

ĥ(ŝ|v) =
sˆ

s

m(ŝ,s)h(s|v)ds (13)

where m is a ‘garbling function’ satisfying
´ s

s m(ŝ,s)dŝ = 1.
Suppose that Ŝ is observed instead of S. The regulator continues to decide between discretion

and commitment for each realization s. Is commitment less valuable given a noisy realization Ŝ = s

than given a precise realization S = s? Perhaps surprisingly, the effect is ambiguous.
Recall that commitment to tough actions benefits the regulator when he has bad news (low v)

and hurts him if he faces good news (high v). First, consider a low realization of the public signal,
close to s. Noisy bad news is less meaningful than precise bad news, so the distribution of V given
Ŝ = s is more optimistic than its distribution given S = s, in the sense of first-order stochastic dom-
inance. Hence, the noise shifts probability mostly towards high v, where commitment is harmful,
and the value of commitment falls. Second, consider a high realization of the public signal, close to
s. In this case, noise makes the conditional distribution more pessimistic, probability shifts mostly
towards low v, and commitment becomes more valuable.

Since noise affects the value of commitment in an ambiguous way, its effect on the optimal rule
is also ambiguous.

Proposition 3. Suppose the public signal becomes Ŝ instead of S. Then the optimal commitment

set C ? = [s,s?) shrinks if s? is close to s, and expands if s? is close to s. Moreover, the optimal

commitment action A?(s) falls if s ∈ C ? is close to s, and rises if s ∈ C ? is close to s.

In reality, regulators would want to execute tough resolution policies only when banks are
close to failure. Hence, the empirically relevant case is perhaps where s? is close to s. In this
scenario, Proposition 3 shows that when the quality of public information deteriorates, a more
cautious approach to rules-based resolution is warranted, in two dimensions. On the one hand,
discretion becomes relatively more attractive, and the regulator should only commit for very bad
news (the commitment set shrinks). On the other hand, in those states where he does commit, the
rules should mandate a weaker response (the commitment actions fall).

When optimal rules are implemented with contingent capital, and if s? is close to s, noisier
public information means that (i) less contingent debt should be issued, and (ii) the triggers on
contingent capital should be set at a lower level. If the regulator worries about large deviations
of market prices from fundamentals, for example, contingent capital with market-based triggers is
naturally a less attractive option, even when it acts as a commitment device.
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5 Contingent capital as a commitment device

Suppose that some long-term bonds are issued as contingent capital. The bank writes contracts
with its investors which specify that long-term bonds with face value φ(s) will be written down or
converted into equity when public news s arrives.14

By specifying contingent capital in this way, we are making some implicit assumptions. First,
we continue to treat the distribution of the public signal S, which plays the role of a trigger, as
exogenous. In the case of a market-based trigger, this is a bad approximation in situations where
conversion itself strongly affects prices. In other words, we assume that contingent debt is de-
signed to prevent the strong feedback effects or ‘death spirals’ discussed by Sundaresan and Wang
(2014). Second, we assume that the regulator has no direct influence over the realization of S. This
is not guaranteed. For example, Bulow and Klemperer (2013) argue that the conversion of con-
tingent convertibles with regulatory capital (i.e. book equity) triggers may not be credible, since
regulators can affect measured regulatory capital by deciding when to require banks to write down
non-performing assets.

Contracts used in practice trigger conversion whenever a publicly observable indicator falls
below a certain threshold. If news get worse, the amount of debt converted always increases or stays
the same in these structures. For the sake of realism, we therefore restrict φ(s) to be decreasing
in s. The relevant conversions can then be implemented by ensuring that a fraction φ(s) of bonds
have triggers greater than or equal to s.

The regulator’s preferences are as before, but he cannot reverse the conversion of contingent
capital. Hence, even when he acts with discretion, he faces the additional constraint a≥ φ(s). We
show that this constraint creates sufficient commitment to implement the optimal rule. Given a
contingent debt structure φ(s), an equilibrium with discretion and the intuitive criterion are defined
as before, except that the regulator must choose a ∈ [φ(s),B].

Definition 4. A contingent debt structure is a decreasing function φ(s). A contingent debt structure
φ implements the optimal rule if there exists equilibria with discretion for each s which survive the
intuitive criterion and in which the regulator’s utility achieves the maximized value of problem
(11).

The natural candidate is a contingent debt structure which enforces the actions that the regulator
would optimally commit to, i.e. φ(s) = A?(s) for states in the commitment set s∈C ?. Moreover, in
states where commitment is not valuable, we would like contingent debt not to restrict her discre-
tion, i.e. φ(s) = 0 for s /∈C ?. The characterization of the optimal rule in Proposition 2 immediately

14 Avdjiev et al. (2013) show that conversion-based contracts dominated the initial wave of issuance in 2009, but
that more recently, the split between conversion and principal write-down CoCos has been roughly half-half.
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shows that the candidate φ(s) is a decreasing function, so that it qualifies as a contingent debt struc-
ture.

We need to check that φ(s) induces a discretion equilibrium for each state s which (i) gives the
regulator the same utility as the optimal rule, and (ii) survives the intuitive criterion.

Figure 4: Equilibrium with contingent debt.
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In states without commitment (s ∈ C ?), φ(s) = 0, and the set of surviving equilibria is trivially
the same as with the optimal rule. In states with commitment, the regulator would play A?(s)= φ(s)

for sure under the optimal rule. We must verify that there is a surviving pooling equilibrium such
that α(v,s) = φ(s) for all v. These actions are sustained in equilibrium by having the public believe
that v is very low whenever they see an action other than φ(s). Figure 4 illustrates why such beliefs
are reasonable in the sense of the intuitive criterion. Given that φ(s) worth of debt must convert,
the only feasible off-equilibrium actions are a′ > φ(s). If a run could be avoided, a regulator with
the worst news v would always want to deviate to a higher action a′, since this would bring him
closer to his ideal action a?(v). Hence, it is not unreasonable for the public to believe that v is low
when a deviation is observed, and the equilibrium survives the intuitive criterion accordingly.

The optimal rule is implemented by the contingent debt structure

φ(s) = A?(s)×1(s ∈ C ?).

This result illustrates a novel role for contingent capital in financial policy. Contingent capital hard-
wires the conversion of debt upon bad public news. This ties the regulator’s hands in a helpful way.
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When public news is bad, commitment to tough bail-in actions is valuable, since the threat of runs
and the excessive weakness associated with discretion are imminent. In these states, the conversion
of contingent debt provides quasi-commitment by mandating a tough bail-in policy beyond the
regulator’s control. When public news is good, discretion is preferable. Since contingent capital
does not convert in these states, discretion is preserved exactly when it is most valuable.

In our implementation, the regulator has the option to take the bank into resolution and conduct
further bail-ins (a > φ(s)), even when some conversion of the contingent debt has been mandated.
Contingent debt contracts in practice often have this feature: There is a trigger based on market or
accounting information, but the regulator always has the option to intervene, even when the trigger
has not been hit. It is interesting to note that in our implementation, this additional ‘regulatory
trigger’ is not used. The regulator would only want to conduct an additional bail-in when he has
very bad news. But doing so would reveal bad news to the public, triggering a run.

Hence, the regulator optimally refrains from pulling the additional regulatory trigger. Do reg-
ulatory triggers add any value at all? In a richer model, this may still be the case. For example,
consider a setting where the public signal S is observable, but only a noisier version Ŝ is privately
contractible. Then commitment via contingent capital contracts is only possible based on Ŝ. How-
ever, the regulator will wish to react by using additional regulatory triggers when the public news
S is worse than its contractible part Ŝ. Moreover, he will not hesitate to do so, because S is publicly
known and acting upon it will not trigger runs.

Our results show that it can be helpful for banks to have a contingent capital structure designed
according to the regulator’s tastes. If there are externalities associated with bank distress, this
structure will differ from banks’ private preference. A step towards aligning the incentives of
banks and regulators is to have contingent debt count towards regulatory capital requirements, as
they currently do in Europe. However, there is no guarantee that this would align incentives exactly.
Thus, a combination of contingent debt and hard-wired rules may be needed to achieve the right
type of commitment.

We show that under our assumptions, the optimal rule can be exactly implemented by contingent
capital structures. Thus, we suggest a novel role for contingent capital as a commitment device.
Moreover, the assumptions we make to achieve implementation provide guidance on the design of
contingent capital contracts and the choice of the trigger signal S. In particular, it should be the
case that these contracts (i) do not lead to strong feedback effects and (ii) are based on triggers
which are credibly beyond the regulator’s control. Proposals for such designs are given by Hart
and Zingales (2011), Bulow and Klemperer (2013), and Pennacchi et al. (2013), among others.
Moreover, Proposition 3 in the last section implies that triggers should not be too noisy. This
implies a potential trade-off between the use of market and book values in contingent capital design:
Market values are more credibly beyond the control of the regulator than book values, but might
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also be considered noisier.
Note in addition, that one reason that practitioners give for banks’ desire to issue CoCos is

that they offers investors a way to avoid the risks associated with regulatory discretion over bail-
ins. If investors are uncertain about the regulator’s preferences, this can introduce additional risk
for the buyers of bonds which may be deemed bail-inable. In our model, regulators’ preferences
are known and benevolent, but there will nevertheless be uncertainty associated with discretion
because investors are not privy to the regulator’s private information. Commitment has the virtue
of avoiding not only excessive weakness, but also the risk associated with predicting the regulator’s
signal on the basis of public information.

6 The bank’s balance sheet and ex ante regulation

So far, we have taken the bank’s balance sheet as a primitive, determined exogenously at some
prior date (date 0, say). This section examines how changes in the date 0 balance sheet affect
the problems associated with discretion and the optimal rule. This exercise will point to ex ante
policies, such as liquidity and capital regulation at date 0, which will allow bail-in policy to become
more effective. Thus, we show that the ex ante liquidity and capital requirements of Basel III should
be seen as complementary to the design of ex post resolution regimes.

The parameters of the bank’s balance sheet in the baseline model are its short-term debt D, and
its long-term bonds B. In this section, we also allow the bank to hold C units of riskless cash.
Moreover, we allow the exposure to risky assets to be scaleable. Assuming that one unit of risky
investment, undertaken at date 0, yields exposure to the risky cash flow V we have studied so far,
let X be the amount invested in risky assets at date 0, which yields exposure to a risky cash flow of
XV at date 1.

In order to determine the effect of balance sheet changes on the optimal rule, and eventually on
the regulator’s maximized utility, we consider the regulator’s utility under discretion and rules.

When the regulator has discretion in state s, changes in the bank’s balance sheet increase utility
if they alleviate the regulator’s incentives for excessive weakness. In terms of our graphical anal-
ysis, e.g. in panel (c) of Figure 2, such changes benefit the regulator if they reduce the threshold
signal vp(s) and the size of the minimal pooling region. Recalling (10), the maximal utility in
discretion is equal to Ū(s) = E[U(E?−max{vp(s)− v,0})|s], so it depends on the bank’s balance
sheet only indirectly through the threshold vp(s).

In the model with cash holdings, we need to slightly modify the definition of vp(s): When the
public learns that V ≤ vp(s), it believes that the liquidation value of the bank’s assets, i.e. of its cash
and its risky assets, is just enough to cover its short-term debt liabilities. Thus, vp(s) in a model

24



with cash holdings is defined by C+λE[XV |V ≤ vp(s),s] = D, or equivalently

E[V |V ≤ vp(s),s] =
D−C

λX
. (14)

Since the left-hand side of this equation is strictly increasing in vp(s), it follows that a change
in the balance sheet reduces vp(s) – and increases utility under discretion – if and only if it reduces
the ratio

∆≡ D−C
λX

. (15)

The ratio ∆ is a natural measure of illiquidity. The numerator measures the bank’s liquidity shortfall,
i.e. the difference between short-term liabilities and cash reserves. The denominator λX measures
the number of risky assets available for liquidation, accounting for the discount at which they must
be sold.

In states s where the regulator chooses to commit, his utility is equal to

VC(s) = max
a

E[U(v+a− (D+B))|s], (16)

which depends on capital structure only through the term D+B, the bank’s total outstanding
debt. By the envelope theorem, we have

dVC(s)
d(D+B)

=−E[U ′(v+A?(s)− (D+B))|s] = 0,

where A?(s) is the maximizer in (16), and the second equality follows from the regulator’s first-
order condition. Thus, we find that changes in the bank’s balance sheet affect the value of discretion
only via the ratio ∆, and leave the value of commitment unchanged.

Proposition 4. The ratio ∆ defined in (15) is a sufficient statistic for the response of the optimal

rule to changes in the bank’s balance sheet. If ∆ increases, the optimal commitment set C ?expands,

and the regulator’s maximized expected utility decreases. If ∆ decreases, the optimal commitment

set C ? shrinks, and the regulator’s maximized expected utility increases.

An increase in ∆ makes the bank less liquid. This strengthens the threat of runs and increases
the regulator’s incentives to take weak actions. As a result, discretion becomes more problematic
and he reacts by commiting over a larger range of states. Other things equal, this change makes the
regulator worse off. The opposite happens when ∆ decreases and the bank becomes more liquid.
We now discuss how, in practice, liquidity and capital regulation can influence ∆.

25



6.1 Liquidity regulation

Under the rules of Basel III, banks must ensure that their liquidity coverage ratio (LCR) does not
fall below 1. The liquidity coverage ratio is calculated as the ratio of high quality liquid assets to
net cash outflows, where the outflows are taken from a hypothetical 30-day stress scenario. High
quality liquid assets are a weighted average of assets of the form C + wlX , where wl < 1 is a
coefficient measuring the liquidity of non-cash assets.15 Net cash outflows are a weighted average
of liabilities. In particular, the Basel proposal puts a weight of 1 on short-term debt, i.e. it is
assumed that short-term debt is withdrawn completely in the stress scenario. If long-term debt may
not be withdrawn (as is the case for sufficiently long maturities), net cash outflows in our notation
are simply equal to D, and the LCR requirement is (C+wlX)/D≥ 1, which is equivalent to

∆ =
D−C

λX
≤ wl

λ
.

If this requirement is binding, a regulator controlling the LCR can directly influence the ratio ∆

by adjusting the liquidity weight on risky assets wl . By Proposition 4, this ratio is the only quantity
that matters for the effectiveness of bail-in policy. It follows that Basel III’s liquidity regulation is a
very natural complement to bank resolution regimes. We do not model the determinants of optimal
liquidity regulation, which is influenced by many factors, such as the cost of reduced maturity
transformation by banks ex ante (Walther, 2015). However, our analysis demonstrates that at the

margin, tough liquidity regulation becomes more desirable when illiquidity has an adverse impact
on the efficacy of bank resolution.

6.2 Capital regulation

Capital regulation requires the ratio of bank equity to risk-weighted assets to be above a certain
threshold κ . In our setting, a capital requirement at date 0 would constrain the bank’s balance sheet
to satisfy

X− (D+B)
wrX

≥ κ, (17)

where wr > 0 is a risk weight. The capital requirement can be rearranged to

D+B
X
≤ 1−κwr.

While liquidity regulation was able to directly target the ratio ∆, which is important for bank

15For simplicity, we concentrate on the case with one non-cash asset. However, a similar argument would apply for
any number of non-cash asset classes, in which case high quality liquid assets would be C+∑wliXi for some vector of
weights (wli).
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resolution, capital regulation is a blunter tool. Tightening capital regulation, by raising κ or wr,
forces the bank to reduce the ratio (D+B)/X . How this measure correlates with ∆ is difficult to
say without an explicit model of bank choices at date 0, which is beyond the scope of our paper.

However, for well-behaved preferences, a bank which is forced to reduce (D+B)/X is likely
to push on both margins, i.e. reduce both short-term debt D/X and long-term debt B/X , relative
to risky assets. This will lead to a reduction in ∆ = (D−C)/λX , unless the decrease in D/X is
offset by a bigger decrease in the cash ratio C/X . It would be difficult to write a model in which a
bank’s cash holdings, which are not constrained by (17), respond more a tightening of the capital
requirement than short-term debt, which is constrained by (17). Moreover, reserve requirements
place a lower bound on C/X in practice, so that the offsetting effect is unlikely to dominate.

Taking these arguments together, a tightening in the cpaital requirement is likely to reduce
∆, increase the bank’s liquidity, and increase the utility of the bail-in regulator we have studied.
However, the transmission channel is less clear-cut than with liquidity requirements, which were
able to target ∆ directly. Liquidity regulation appears a more natural candidate for complementing
bank resolution regimes in our setting, where regulator weakness in bailing-in is driven by fear of
liquidity-draining bank runs.

7 The lender of last resort

We have worked under the assumption that liquidity support by lenders of last resort is insufficient
to eliminate the threat of runs. The motivation for this assumption is as discussed in Section 2:
Instituting a very lenient lender of last resort may not be optimal due to moral hazard concerns,
and empirical reality features binding limits on liquidity support, such as collateral requirements.
In this section, we show that partial liquidity support is complementary to bail-in policy.

Suppose that at date 1, a lender of last resort is willing to grant the bank a loan L per unit of
risky asset investment. For simplicity, we suppose that the maximal loan L does not react to public
or private information, and that the lender of last resort does not act strategically. These feedbacks
would introduce an additional fixed point problem to the model, but as long as the coverage of
liquidity support is imperfect, the qualitative effects with feedback will be similar. Moreover, the
lender of last resort can only take on a fraction η of the bank’s assets as collateral. This might
reflect pre-determined rules about acceptable collateral.

If the bank sells a fraction z of its risky assets, it obtains λE[V |a,s]z in the market, and it can
borrow max{1− z,η}L from the lender of last resort. Thus, the maximum amount of liquidity the
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bank can obtain at date 1 is

max
z

[λE[V |a,s]z+max{1− z,η}L]

= λE[V |a,s]+η max{L−λE[V |a,s],0} (18)

The expression is easy to interpret. Selling assets on the market brings λE[V |a,s]. Suppose that
per risky asset, the loan available from the lender of last resort exceeds the amount that it can be sold
for, i.e. L > λE[V |a,s]. Then the bank raises the most liquidity by using the lender of last resort, up
to the maximum possible extent η . This further increases liquidity by η max{L−λE[V |a,s],0}.

Repeating the analysis of the withdrawal game in Section 2 reveals that bank runs become a
possibility when the expression in (18) is strictly less than outstanding short-term debt D. Suppose
that this is the case when the public learn the worst possible news, i.e.

λv+η max{L−λv,0}< D. (19)

Then, by to the argument of Section 3, discretionary bail-in policies will induce excessive
weakness for regulators who observe V ≤ vp(s), where the pooling threshold vp(s) is defined by

E [V |V ≤ vp(s),s] =


D−ηL

λ (1−η) , if L≥ D
D
λ
, if L < D.

The first case, L≥D, corresponds to one where the lender of last resort would be able to rescue
any bank if η = 1, i.e. if it accepted all projects as collateral. Under the restriction (19), the
threshold vp(s) is decreasing in η . Therefore, in the region where the lender of last resort is strong
in principle but constrained by collateral requirements, loosening the collateral requirement will
reduce the regulator’s incentives to be excessively weak in his bail-in policy. Intuitively, a more
lenient lender of last resort reduces the threat of bank runs, and as a result the regulator will worry
less about revealing bad news when conducting bail-in policies.

By a parallel argument to Proposition 4, it follows that in this parametric region, loosening the
lender of last resort’s collateral requirement is complementary to bank resolution policy. We do not
model the other trade-offs involved in setting collateral requirements, such as concerns about moral
hazard. But at the margin, liquidity support by lenders of last resort should be more generous when
effective bank resolution is considered an important policy objective.
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8 Conclusion

We have built a signaling model in which bank regulators have information about the financial
condition of banks which investors do not have. We have shown that in the presence of such
information, effective bank resolution can be inhibited by regulatory authorities’ incentives to be
excessively weak. In our model, regulators may prefer to leave banks under-capitalized, because
undertaking a tough re-capitalization before it is expected would reveal regulators’ pessimistic
outlook, and so could spook investors and lead to adverse consequences such as bank runs. More
generally, whenever regulators are believed to have private information, signaling concerns will
limit the regulator’s willingness to step in early or take other tough action to resolve banks.

The implication of our result is that it is always desirable for the regulator to use some amount
of commitment to limit discretion ex post in a crisis, even if this means tying regulation to a more
noisy, publicly observable, source of information. Commitment is most valuable after bad public
news, since such events foreshadow the need for tough resolution policy. We show that optimally
designed contingent capital issues by banks (e.g. CoCos) can help implement such a commitment.

Our theory has three broad implications for resolution policy, and for financial policy in gen-
eral. First, allowing regulators discretion in resolution regimes is not always a virtue. It is widely
agreed that resolution authorities should put in place plans for bail-ins in systemically important
banks. But our paper goes further in pointing out that it is very important that these plans are
made binding after adverse public news, for example after severe declines in banks’ market or
book values, in order to avoid the excessive weakness problem that arises from signaling. Second,
regulators should welcome the use of properly designed contingent capital contracts, which recapi-
talize failing banks automatically. Finally, bank resolution and ‘going concern’ policies such as the
regulation of banks’ balance sheets and last resort lending, should not be considered separate activ-
ities. Because they ease the ‘run constraint’ on the regulatory release of information, going concern
policies help improve the credibility of plans to write-down or convert bank debt in a crisis. Thus,
there is a natural and important complementarity between going-concern policies and the effective
design of resolution regimes.
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APPENDIX

Unless otherwise stated, proofs are given for the general case where the regulator’s utility (in the
absence of a run) is U(a,v), where U(a,v) is twice differentiable, strictly concave in a and satisfies
the submodularity condition

∂ 2U(a,v)
∂a∂v

< 0 (20)

The exposition in the text corresponds to the special case where (abusing notation slightly),

U(a,v) =U(v+a− (D+B)).

Proof of Lemma 1

1. No runs. Let ρ(a,s) = 1(λEβ [V |a,s] < D). Suppose some type v′ faces a run in equilibrium,
ρ(α(v′,s),s) = 1. Then a run must occur regardless of the regulator’s action, ρ(a,s) = 1 for all
a, because otherwise, assumption (4) implies that type v′ would deviate to an action that does not
trigger a run. Then the regulator’s action maximize U(a,v)−κ(v), implying α(v,s) = a?(v) for all
v. Let v′′ = inf{v : a?(v) = a?(v)}. Bayes’ rule and assumption (3) give

Eβ [V |α(v,s),s] = E[V |V ≥ v′′,s]≥ E[V |s]≥ D.

Thus type v cannot face a run, a contradiction.
2. Minimal pooling. Suppose not. Assume that equilibrium actions are weakly decreasing in

v, as will be established in part 3. Then α(v,s) > α(vp(s),s). Let v′ = sup{v : α(v,s) = α(v,s)}.
Then Bayes’ rule and assumption (3) give Eβ [V |α(v,s),s] = E[V |V ∈ [v,v′]]< D. Thus type v must
face a run, contradicting the result in part 1.

3. Incentive compatibility. In equilibrium, each type must prefer his action to anybody else’s:

U(α(v,s),v)≥U(α(v′,s)v) for all v′ 6= v (21)

Suppose α(v,s) is not weakly decreasing in v so that for some v′ > v we have α(v′,s)> α(v,s).
Let a = α(v,s) and a′ = α(v′,s). Condition (21) implies U(a′,v′)−U(a,v′) ≥ 0 ≥ U(a′,v)−
U(a,v). But by the submodularity condition (20) and a′ > a, we have

∂

∂ t
U(a′, t)−U(a, t)< 0

implying U(a′,v′)−U(a,v′)<U(a′,v)−U(a,v), a contradiction.
When α(v,s) is differentiable at v, the function U(α(v′,s),s) differentiable in v′ at v = v′. The
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incentive condition (21) then implies the first-order condition

∂U(α(v,s),v)
∂a

∂α(v,s)
∂v

= 0.

Thus either ∂α(v,s)
∂v = 0 or ∂U(α(v,s),v)

∂a = 0. The latter case gives α(v,s) = a?(v) as required.
When α(v,s) is discontinuous at v, then suppose U(α+(v,s),s)>U(α−(v,s),s). By continuity

of U , for small enough ε , there exists a type v− ε who prefers action α+(v,s) to his own, con-
tradicting equilibrium. If U(α+(v,s),s) < U(α−(v,s),s) the contradiction follows for some type
v+ ε . Thus U(α+(v,s),s) =U(α−(v,s),s) as required.

Proof of Proposition 1

We prove the proposition in two steps. First, we show that α(v,s) is continuous in v in any surviving
equilibrium. Second, we show that the highest type never bails in more than his preferred action:
α(v,s)≤ a?(v).

In both steps, we show that a candidate equilibrium violating the proposed condition does not
survive the intuitive criterion. To do this, we find an off-equilibrium action a0 such that types
belowvD = D/λ would never to a0, and that some type above vD strictly prefers a0 to his equi-
librium action. For such an action, and for all beliefs γ with Prγ [S ∈ σ(a0,s)] = 1, we have
λEγ [V |a0,V ∈ σ(a0,s)]≥ D, so that the equilibrium does not survive the intuitive criterion.

1. Continuity of α(v,s). Take any equilibrium where α(v,s) has a discontinuity at some v. By
Lemma 1, we have v≥ vp(s) (minimal pooling), and type v is indifferent between the actions before
and after the jump (incentive compatibility). Consider the off-equilibrium action a0 = α−(v,s)+ε .
Only types above v−δ (ε) would deviate to a0, where δ (ε)→ 0 as ε → 0. Since v ≥ vp(s) > vD,
only types above vD would deviate to a0 when ε is small. Finally, note that for all ε > 0, there
exists a type v+ δ̂ (ε) who strictly prefers a0 to his equilibrium action.

2. Highest type’s action satisfies α(v,s) ≤ a?(v). Take any equilibrium with α(v,s) > a?(v),
and let v′ = min{v : α(v,s) = α(v,s)} be the lowest type who takes the same action as v. There are
two possible cases: complete pooling with v′ = v, or partial separation with v′ ≥ vp(s).

Case (i): v′ = v. All types take action the same pooling action a′. When this action is lower
than the ideal action of type vD, i.e. a′ ≤ a?(D), then it is also lower than the ideal action of any
type below. Thus only types above vD would deviate to the off-equilibrium action a0 = a?(v), and
type v strictly prefers a0 to his equilibrium action.

When a′ > a?(D), then we have U(α(D,s),D) > U(1,D) > U(0,D) by assumption (6). It
follows from the submodularity condition (20) that no types below vD would deviate to the off-
equilibrium action a0 = 0. If type v wants to deviate to this action, i.e. U(0,v)>U(a′,v), then we
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are done. Otherwise, define a′′ as the action that makes her indifferent: U(a′′,v) = U(a′,v). Take
an off-equilibrium action a0 = a′′− ε , where ε > 0, which type v strictly prefers to his equilibrium
action. Only types above v−δ (ε) would deviate to a0, where δ (ε)→ 0 as ε→ 0. Thus only types
above D would deviate to a0 when ε is small.

Case (ii): v′ ≥ vp(s). By Lemma 1 (incentive compatibility) and continuity, every type below
v ≤ v′ takes an equilibrium action which is weakly below his preferred action a?(v). Thus only
types above v′ would deviate to an off-equilibrium action a0 ∈ (a?(v),α(v,s)), and type v strictly
prefers such an a0 to his equilibrium action, which completes the proof.

Proof of Proposition 2

We show that it the essentially unique optimal commitment set is either empty or an interval
C ? = [s,s?]. The characterization of the optimal commitment action in the second case follow
immediately, and the proof of Proposition 5 demonstrates that A?(s) is decreasing in s.

In an optimal rule, the regulator must commit in almost all states s for which the value of
commitment VC(s) is greater than Ū(s), and retain discretion in almost all others. Using the def-
inition of VC(s) in (12) and the characterization of Ū(s) in (8), and defining J(a,v) = U(a,v)−
U(min{a?(v),a?(vp(s)),v), we have VC(s)−Ū(s)=maxa E[J(a,v)|s]. It is easy to see that J(a,v)<

0 for all a < a?(vp(s)). Hence, the regulator must commit whenever the effective value of commit-
ment, defined as

EVC(s) = max
a≥a?(vp(s))

E[J(a,v)|s] (22)

is positive. For all a≥ a?(vp(s)), J(a,v) is strictly decreasing in v. By the assumption of first-order
stochastic dominance in (1) and the argument of Rothschild and Stiglitz (1974), it follows that
EVC(s) is strictly decreasing in s.

If VC(s)>U(s), then EVC(s)> 0, and by continuity of U , there exists a s? such that EVC(s)≥
0 for all s≤ s?and EVC(s)< 0 for all s > s? (if s? < s). Thus, the regulator must commit for almost
all s ∈ [s,s?], and retain discretion for almost all other s, as required.

Proof of Proposition 3

Denote the effective value of commitment, as defined in (22), by EVC(s) if S is observed and by
ˆEVC(s) if Ŝ is observed. First, we show that ˆEVC(s)<EVC(s) and ˆEVC(s)>EVC(s). Second, we

show that there exists a slow > s such that (i) the commitment threshold s? decreases if s?≤ slow and
(ii) the optimal commitment action A?(s) falls for all s ≤ slow. Conversely, there exists a shigh < s

such that (i) the commitment threshold s? falls if s? ≥ shigh and (ii) the optimal commitment action
A?(s) falls for all shigh ≤ s≤ s? if s? > shigh.
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1. ˆEVC(s) < EVC(s) and ˆEVC(s) > EVC(s). Let hV (v), hS(s) and hŜ(ŝ) denote the marginal
densities of V , S and Ŝ. By Bayes’ rule and the garbling condition (13), we have

ĝ(v|ŝ) =
f̂ (s|v)hV (v)

hŜ(ŝ)
=

hV (v)
hŜ(ŝ)

sˆ

s

m(ŝ,s) f (s|v)ds

=

sˆ

s

k(ŝ,s)g(v|s)ds

for all ŝ ∈ [s,s], where k(ŝ,s) = hS(s)
hŜ(ŝ)

m(ŝ,s). Integrating both sides over v ∈ [v,v], we have´ s
s k(ŝ,s)ds = 1. Now integrating over v ∈ [v,v′], we have Ĝ(v′|ŝ) =

´ s
s k(ŝ,s)G(v′|s)ds. It follows

from (1) that G(v′|s) < Ĝ(v′|ŝ) < G(v′|s) for all ŝ. Thus the distribution of V given Ŝ = s first-
order stochastically dominates its distribution given S = s, and the distribution of V given Ŝ = s

is dominated by its distribution given S = s. Repeating the argument of Proposition 2 implies the
proposed inequalities.

2. Existence of slow and shigh. We show the existence of slow. The proof for shigh is analogous.
From the analysis above, and by continuity, there is a s′ > s such that ˆEVC(s)< EVC(s) for all

s ≤ s′. Note that the original optimal commitment threshold solves EVC(s?) = 0. If s? ≤ s′, then
ˆEVC(s?)< 0. By the argument of Proposition 2, ˆEVC(s) is increasing in s, and therefore, the new

optimal commitment threshold, which solves ˆEVC(ŝ?) = 0, must lie below s?.
The original optimal commitment action A?(s) solves E[ ∂

∂aU(c?(s),v)|S = s] = 0. By the sub-
modularity condition (20), ∂

∂aU(a,v) is decreasing in v. Using the result on first-order stochastic
dominance above, it follows that E[ ∂

∂aU(a,v)|S = s]> E[ ∂

∂aU(a,v)|Ŝ = s], implying

E[
∂

∂a
U(A?(s),v)|Ŝ = s]< 0.

Thus the optimal commitment action given the lowest signal, which solves

E[
∂

∂a
U(Â?(s),v)|Ŝ = s] = 0,

must lie below c?(s). By continuity, there exists a s′′ > s such that Â?(s)< A?(s) for all s≤ s′′ for
which an optimal commitment action is defined.

Combining the arguments above, we can set slow = min{s′,s′′}, which has the desired proper-
ties.
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Proof of Proposition 5

First, we verify that the proposed function φ(s) = A?(s)× 1(s ∈ C ?) is non-increasing in s and
qualifies as a contingent debt structure. Second, we show that it implements the optimal rule.

1. φ(s) is non-increasing. By Proposition 2, we have φ(s) = 0 for all s or

φ(s) =

A?(s), s≤ s?

0, s > s?

for some s?, where c?(s) satisfies the first-order condition ∂

∂aE[U(c?(s),v)|s] = 0. By the
submodularity condition (20), ∂

∂aU(a,v) is decreasing in v. Using the assumption of first-order
stochastic dominance in (1) and the argument of Rothschild and Stiglitz (1974), it follows that
∂

∂aE[U(a,v)|s] = 0 is decreasing in s for all a. By concavity of U , it follows that c?(s) is decreasing
in s. Hence φ(s) is non-increasing everywhere (but with a potential jump discontinuity at s?).

2. φ(s) implements the optimal rule. For s /∈C ?, the game is identical to that without contingent
debt, and it is immediate from Proposition 1 that an equilibrium with the desired properties exists.
For s ∈ C, we consider the pooling equilibrium with α(v,s) = φ(s), and show that it survives
the intuitive criterion. The only feasible off-equilibrium actions have a0 > φ(s). The gain from
deviating from φ(s) to a0 for type v is U(a0,v)−U(φ(s),v). By the submodularity condition, this
gain is highest for type v. Thus whenever any type prefers a0 to his equilibrium action, type v

prefers it too. Thus whenever σ(a0,s) is non-empty, there is a belief γ , which places all mass on
v ∈ σ(a0,s), such that λEγ [V |a0,V ∈ σ(a0,s)] = v < D, and the equilibrium survives the intuitive
criterion.
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