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Abstract

We propose a simple approach to dynamic multi-period portfolio choice with trans-

action costs that is tractable in settings with a large number of securities, realistic

return dynamics with multiple risk factors, many predictor variables, and stochastic

volatility. We obtain a closed-form solution for an optimal trading rule when the

problem is restricted to a broad class of strategies we define as ‘linearity generating

strategies’ (LGS). When restricted to this class, the non-linear dynamic optimization

problem reduces to a deterministic linear-quadratic optimization problem in the pa-

rameters of the trading strategies. We show that the LGS approach dominates several

alternatives in realistic settings, and in particular when the covariance structure and

transaction costs are stochastic.
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Nicolae Gârleanu, and participants of seminars at Princeton, AQR, Barclays, Lombard-Odier, Kepos Capital,
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1 Introduction

The seminal contribution of Markowitz (1952) has spawned a large academic literature on

portfolio choice. The literature has extended Markowitz’s one period mean-variance setting

to dynamic multiperiod setting with a time-varying investment opportunity set and more

general objective functions.1 Yet there seems to be a wide disconnect between this academic

literature and the practice of asset allocation, which still relies mostly on the original one-

period mean-variance framework. Indeed, most MBA textbooks tend to ignore the insights

of this literature, and even the more advanced approaches often used in practice, such as that

of Grinold and Kahn (1999), propose modifications of the single period approach with ad-hoc

adjustments designed to give solutions which are more palatable in a dynamic, multiperiod

setting.

Yet the empirical evidence on time-varying expected returns suggests that the use of a

dynamic approach should be highly beneficial to asset managers seeking to exploit these

di↵erent sources of predictability.2

One reason for this disconnect is that the academic literature has largely ignored real-

istic frictions such as trading costs, which are paramount to the performance of investment

strategies in practice. This is because introducing transaction costs and price impact in

the standard dynamic portfolio choice problem tends to make it intractable. Indeed, most

academic papers studying transaction costs focus on a very small number of assets (typi-

cally two) and limited predictability (typically none).3 Extending their approach to a large

number of securities and several sources of predictability quickly runs into the curse of di-

mensionality.

In this paper we propose an approach to dynamic portfolio choice in the presence of

transaction costs that can deal with a large number of securities and realistic return generat-

ing processes. For example, our approach can handle a large number of predictors, a general

factor structure for returns, and stochastic volatility. The approach relies on three features.

1Merton (1969), Merton (1971), Brennan, Schwartz, and Lagnado (1997), Kim and Omberg (1996),
Campbell and Viceira (2002), Campbell, Chan, and Viceira (2003), Liu (2007), Detemple and Rindisbacher
(2010) and many more. See Cochrane (2007) for a survey.

2The academic literature has documented numerous variables which forecast the cross-section of equity
returns. Stambaugh, Yu, and Yuan (2012) provides a list of many of these variables, and also argue that the
structure and magnitudes of this forecastability exhibits considerable time variation.

3Constantinides (1986), Davis and Norman (1990), Dumas and Luciano (1991), Shreve and Soner (1994)
study the two-asset (one risky-one risk-free) case with iid returns. Cvitanić (2001) surveys this literature.
Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) add some predictability in the risky asset. Lynch
and Tan (2011) extend this to two risky assets at considerable computational cost. Liu studies the multi-asset
case under CARA preferences and for i.i.d. returns.
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First, we assume investors maximize their expected terminal wealth net of a risk-penalty

that is linear in the variance of their portfolio return. Second, we assume that the total

transaction cost for a given trade is quadratic in the dollar trade size. Third, we assume

that the conditional mean vector and covariance matrix of returns are known functions of

an observable state vector, and the dynamics of this state vector can be simulated. Thus,

this framework nests most factor based models that have been proposed in the literature.

For a standard set of return generating processes, the portfolio optimization problem

does not admit a simple solution because the wealth equation and return generating process

introduce non-linearities in the state dynamics. Thus, the problem falls outside the linear-

quadratic class which is known to be tractable (Litterman (2005), Gârleanu and Pedersen

(2013)) even though we use the same objective function as they do. However, we identify a

particular set of strategies, which we call “linearity generating strategies” (LGS), for which

the problem admits a closed-form solution. An LGS is defined as a strategy for which the

dollar position in each security is a weighted average of current and lagged stock “exposures”

interacted with its own past returns (i.e., it is e↵ectively a linear combination of managed

portfolios).

The exposures are selected ex-ante for each stock, and should include all stock specific

state variables on which the optimal dollar position in each security depends: variables

summarizing the conditional expected return and variance for each security, and variables

summarizing the cost of trading this security. Note that the exposures can also include

variables such as the vector of optimal security weights when transaction costs are zero, or

the solution to a related optimization problem, such as that proposed by Litterman (2005)

and Gârleanu and Pedersen (2013) or various rules of thumb (e.g., Brown and Smith (2011)).

The optimal trade and position for each security will be a linear function of that security’s

exposures, interacted with its past-returns, for a set of lags. This implies a very high dimen-

sional optimization problem. While one would anticipate that this high-dimensional problem

is di�cult to solve, we show that for strategies in the LGS class this optimization problem

reduces to a deterministic linear-quadratic problem that can be solved very e�ciently.

Another key question is whether the set of LGS’s is su�ciently rich that the optimal

LGS approximates the unconstrained optimum. This is an empirical question. However,

assuming the specifications of the return generating process and transaction cost function

are correct, the LGS can always be designed to perform as well as any alternative approach:

the reason is that the solution of any other approach can be used as an input to the LGS

approach. The magnitude of the improvement of the LGS will depend on the value of the

additional exposures in getting closer to the unconstrained optimum.
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We solve several realistic examples which allow us to study the magnitude of this im-

provement in di↵erent settings. First, we compare the performance of our approach to that

of several alternatives in two benchmark simulated economies: one we call the characteristics

model and the other the factor model. In both cases expected returns are driven by three char-

acteristics which mimic the well-known reversal (Jegadeesh 1990), momentum (Jegadeesh

and Titman 1993) and long-term-reversal/value (DeBondt and Thaler 1985, Fama and

French 1993) e↵ects. However, the economies di↵er in their covariance matrix of returns.

The characteristics model assumes that the covariance matrix is constant (implying a fail-

ure of the APT in a large economy). In contrast, the factor model assumes that the three

characteristics reflect loadings on common factors. Thus, they are reflected in the covariance

matrix of returns. Since factor exposures are time-varying and drive both expected returns

and covariances, in this model the covariance matrix is stochastic.

The characteristics model is similar to the return model used in the recent works of Lit-

terman (2005) and Gârleanu and Pedersen (2013) (henceforth L-GP). Their linear-quadratic

programming approach provides a useful benchmark since they solve for the exact closed-

form solution for strategies with a similar objective function.4 Indeed, we find that the LGS

and the L-GP closed-form of solution perform almost equally well in the characteristics based

economy we simulate, as the covariance matrix is close to time-invariant.5

However, in the factor model economy, where the covariance matrix changes as the factor

loadings of individual securities change, the L-GP solution is further from optimal, since

their approach relies on a constant covariance matrix, and their trading rule significantly

underperforms our approach based on LGS. This is because the latter explicitly takes into

account the dual e↵ect of higher factor exposures in both raising expected returns and

covariances as well as their expected future dynamics.

We also investigate the performance of a trading strategy involving the 100 largest stocks

traded on the NYSE over the time period from 1930 to 2014. We focus on the return pre-

dictability arising from short-term reversal, price-momentum and long-term reversal, which

are a well-known predictors of stock returns.6 Since the half-life of these predictors are very

4One important di↵erence is that to obtain a closed-form solution Litterman (2005) and Gârleanu and
Pedersen (2013) specify their model for price changes and not returns and the objective function of the
investor in terms of number of shares. They further assume the covariance matrix of price changes is
constant. This allows them to retain a linear objective function avoiding the non-linearity in the wealth
equation due to the compounding of returns over time.

5More precisely, the GP solution is optimal if the covariance matrix of changes in the dollar price per
share is time invariant.

6See, respectively, Jegadeesh (1990) and Lehmann (1990), Jegadeesh and Titman (1993), and DeBondt
and Thaler (1985).
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di↵erent, ranging from a few days to several years, the optimal trading strategy is very

sensitive to the presence of transaction costs. We document that our approach significantly

outperforms an alternative often used in practice (e.g., Grinold and Kahn (1999)), which

consists of the myopic mean-variance trading strategy where transaction costs are scaled by

a multiplier, which is chosen to maximize the in-sample Sharpe ratio of the strategy. The t-

cost multiplier is a reduced-form approach to account for the the half-life of expected returns

(which depends on the half-life of the predictor variables). This reduced-form approach is

dominated by our LGS because the t-cost multiplier can only capture the average half-life of

stocks’ expected returns. Instead, since the expected return is generated by several predictors

with di↵erent half-lives, intuitively the optimal strategy attaches di↵erent t-cost multipliers

at di↵erent times depending on the relative importance of each predictor in generating the

expected return of stocks.

There is a growing literature on portfolio selection that incorporates return predictability

with transaction costs. Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) illustrate

the impact of return predictability and transaction costs on the utility costs and the optimal

rebalancing rule by discretizing the state space of the dynamic program. Their approach

runs into the curse of dimensionality and only applies to very few stocks and predictors.

Brown and Smith (2011) discuss this issue and instead provide heuristic trading strategies

and dual bounds for a general dynamic portfolio optimization problem with transaction costs

and return predictability that can be applied to larger number of stocks.

Our approach is closely related to two strands of literature: First, Brandt, Santa-Clara,

and Valkanov (2009, BSV) propose an approach in which the weight on each asset is a

linear function of a set of asset “characteristics” that are specified ex-ante as likely to be

useful for portfolio selection.7 The optimal vector of characteristic weights is found by

maximizing the utility the investor would have obtained by implementing the policy over

a historical sample period. The BSV approach explicitly avoids modeling the asset return

distribution, and therefore avoids the problems associated with the multi-step procedure of

first explicitly modeling the asset return distribution as a function of observable variables,

and then performing portfolio optimization as a function of the moments of this estimated

distribution.8 However, since the BSV approach relies on numerical optimization, the number

of predictive variables is necessarily limited. Further, since the performance of the objective

function is optimized in sample, to avoid over-fitting the number of parameters and predictors

7See also Aı̈t-Sahalia and Brandt (2001), Brandt and Santa-Clara (2006) and Moallemi and Saglam
(2012).

8See Black and Litterman (1991b), Chan, Karceski, and Lakonishok (1999), as well as references given in
footnote 2 of BSV (p. 3412).
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should be small.

In contrast, in the LGS approach the optimal solution is closed-form. We can thus achieve

a greater flexibility in parameterizing the trading rule, something that is useful in settings

where transaction costs play a role.9

As noted earlier, our approach is also closely related to the L-GP approach – as proposed

by Litterman (2005) and Gârleanu and Pedersen (2013). L-GP obtain a closed-form solution

for the optimal portfolio choice in a model where: (1) expected price change per share for

each security is a linear, time-invariant function of a set of predictor variables; (2) the

covariance matrix of price changes per share is time-invariant; and (3) trading costs are

a quadratic function of the number of shares traded, and investors have a linear-quadratic

objective function. Their approach relies heavily on linear-quadratic stochastic programming

(see, e.g., Ljungqvist and Sargent (2004)). Our approach considers a problem that is more

general, in that our return generating process can allow for a general factor structure in the

covariance matrix with stochastic volatility, the transaction costs can be stochastic, and our

objective function is written in terms of dollar holdings. In general, such a problem does not

belong to the linear-quadratic class and thus does not admit a simple closed-form along the

lines of the L-GP solution. Our contribution is to find a special parametric class of portfolio

policies, such that when the portfolio choice problem is considered in that class it reduces

to a deterministic linear-quadratic program in the policy parameters.

2 Model

In this section we lay out the return generating process for the set of securities our agent can

trade. Then we describe the portfolio dynamics in the presence of transaction costs. Finally,

we present the agent’s objective function and our solution technique.

2.1 Security and factor dynamics

We consider a dynamic portfolio optimization problem where an agent can invest in N risky

securities with price S
i,t

i = 1, . . . , N and a risk-free cash money market with value S0,t. We

assume that security i pays a dividend D
i,t

at time t. The gross return to our securities is

thus defined by R
i,t+1 = S

i,t+1+D

i,t+1

S

i,t

. We assume that the conditional mean return vector

and covariance matrix of security returns are both known functions of an observable vector

9However, one concern in the LGS approach is that, if the return generating process is misspecified – such
as by having inconsistent expected return and covariance processes (Black and Litterman 1991a), then the
LGS approach will also “find” these solutions. A solution to this concern for the LGS approach is to first
verify that the instantaneous MVE portfolio (i.e., the zero t-cost solution) for the specified return generating
process is reasonable. Once this is done, a large set of instruments can be used in constructing an optimal
strategy in the LGS set.
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of state variables X
t

:

E

t

[R
t+1] = 1 +m(X

t

, t) (1)

E

t

[(R
t+1 � E

t

[R
t+1])(Rt+1 � E

t

[R
t+1])

0] = ⌃
t!t+1(Xt

, t) (2)

The vector of observable state variable X
t

may include both individual security characteris-

tics (such as individual firms’ book to market ratios, past returns or idiosyncratic volatilities)

as well as common drivers of security returns (such as market volatility, and market or in-

dustry factors).

It is important for our approach that the dynamics of X
t

be known – to implement the

LGS approach requires that we be able to calculate the unconditional moments of security

returns interacted with exposures.10 An example that nests many return generating processes

used in the literature is:

R
i,t+1 = g(t, �>

i,t

(F
t+1 + �

t

) + ✏
i,t+1) i = 1, . . . , N (3)

for some function g(t, ·) : R ! R, increasing in the second argument, and where:

• �
i,t

is the (K, 1) vector of firm i’s factor exposures at time t.

• F
t+1 is the (K, 1) vector of random (as of time t) factor realizations over period t+ 1.

F
t+1 is mean 0, and follows a multivariate GARCH process with conditional covariance

matrix ⌦
t,t+1.

• ✏
i,t+1 is security i’s idiosyncratic return over period t+ 1.

We assume that ✏·,t+1 are mean zero, have a time-invariant covariance matrix ⌃
✏

, and

are uncorrelated with the contemporaneous factor realizations.

• �
t

is the (K, 1) vector of conditional expected factor returns at time t.

In this case the vector of state variables X
t

= [�1,t; �2,t; . . . �N,t

;�
t

;⌦
t,t+1] has NK + K +

K · (K + 1)/2 elements. We further assume that �
i,t

and �
t

are observable and follow some

known dynamics. In the empirical applications below, we assume that both �
t

and the �
i,t

follow Gaussian AR(1) processes.

Note that this setting captures two standard return generating processes from the liter-

ature:
10See Section 2.7. Note that these moments can either be calculated analytically, or via simulation.
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1. The “discrete exponential a�ne” model for security returns in which log-returns

are a�ne in factor realizations:11

logR
i,t+1 = ↵

i

+ �>
i,t

(F
t+1 + �) + ✏

i,t+1 �
1

2

�

�2
i

+ �>
i,t

⌦�
i,t

�

2. The “linear a�ne factor model” where returns (and therefore also excess returns)

are a�ne in factor exposures:

R
i,t+1 = ↵

i

+ �>
i,t

(F
t+1 + �

t

) + ✏
i,t+1

As we show below, our portfolio optimization approach is equally tractable for both of these

return generating processes. We emphasize that the approach does not rely on this factor

structure assumption. We only require that there exists some known relation between the

conditional first and second moments of security returns and the known state vector X
t

so

that conditional means and variances of security returns can be simulated along with the

state vector.

2.2 Cash and security position dynamics

We assume discrete time dynamics. At the end of each period t the agent buys u
i,t

dollars

of security i at price S
i,t

. All trades in risky securities incur transaction costs which are

quadratic in the dollar trade size. Trades in risky securities are financed using the cash

money market position, which we assume incurs no trading costs. The cash position (w
t

)

and dollar holdings (x
i,t

) in each security i = 1, . . . , N held at the end of each period t are

thus given by:

x
i,t

= x
i,t�1Ri,t

+ u
i,t

i = 1, . . . , N

w
t

= w
t�1R0,t �

N

X

i=1

u
i,t

� 1

2

N

X

i=1

N

X

j=1

u
i,t

⇤
t

(i, j)u
j,t

,

or, in vector notation,

x
t

= x
t�1 �Rt

+ u
t

(4)

w
t

= w
t�1R0,t � 1>u

t

� 1

2
u>
t

⇤
t

u
t

(5)

11The continuous time version of this model is due to Vasicek (1977), Cox, Ingersoll, and Ross (1985), and
generalized in Du�e and Kan (1996). The discrete time version is due to Gourieroux, Monfort, and Renault
(1993) and Le, Singleton, and Dai (2010).
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where the operator � denotes element by element multiplication if the matrices are of same

size or if the operation involves a scalar and a matrix, then that scalar multiplies every entry

of the matrix.12

The matrix ⇤
t

captures (possibly time-varying and stochastic) quadratic transaction/price-

impact costs, so that 1
2u

>
t

⇤
t

u
t

is the dollar cost paid given a vector of trades at time t of

(dollar) size u
t

. Without loss of generality, we assume this matrix is symmetric. Gârleanu

and Pedersen (2013) discuss the micro-economic foundations for quadratic costs. This as-

sumption is also very convenient analytically.

2.3 Objective function

We assume that the agent is endowed with an initial portfolio of dollar holdings in securities

x0 and cash of w0. We assume that the investor’s objective function is to maximize his

expected terminal wealth net of a risk penalty which, following L-GP, we take to be linear

in the sum of per-period variances. For simplicity, we also assume that the risk-free rate is

zero, i.e., R0,t = 1.13 Thus the objective is:

max
u1,...,u

T+1

E

"

w
T+1 + x>

T+11�
T

X

t=0

�

2
x>
t

⌃
t!t+1xt

#

(8)

Recall that ⌃
t!t+1 = E

t

⇥

(R
t+1 � E

t

[R
t+1])(Rt+1 � E

t

[R
t+1])>

⇤

is the conditional one-period

variance-covariance matrix of returns, and that � can be interpreted as the coe�cient of risk

aversion.
12The timing convention could be changed so that the agent buy ui,t dollars of security i at price Si,t at

the beginning of period t. In that case the dynamics would be:

xt+1 = (xt + ut) �Rt+1 (6)

wt+1 = (wt � 1>
ut �

1

2
u

>
t ⇤tut)R0,t+1 (7)

All our results go through for this alternative timing convention. We make the choice in the text because,
for one parameterization of our objective function identified below, it allows us to closely approximate the
objective function of Litterman (2005) and Gârleanu and Pedersen (2013) and thus makes the link between
the two frameworks more transparent.
In addition, note that we are assuming that all dividends are reinvested at zero cost.
13It is straightforward to extend our approach to a non-zero risk-free rate and to an objective function

that is linear-quadratic in the position vector (i.e., F (xT , wT ) = wT + a

>
1 xT � 1

2x
>
T a2 xT ) rather than linear

in total wealth. See Appendix A.
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By recursion we can write:14

x
T+1 = x0 +

T

X

t=0

x
t

� r
t+1 +

T+1
X

t=1

u
t

(9)

w
T+1 = w0 �

T+1
X

t=1

(u>
t

1+
1

2
u>
t

⇤
t

u
t

) (10)

where we have defined the net return r
t+1 = R

t+1 � 1 with corresponding expected net

return m
t

= E

t

[R
t+1]� 1. Inserting in the objective function and simplifying:15 we find the

optimization reduces to16

max
u1,...,u

T

E

"

T

X

t=1

⇢

x>
t

m
t

� �

2
x>
t

⌃
t!t+1xt

� 1

2
u>
t

⇤
t

u
t

�

#

s.t. eq (4) (11)

We see that this objective function is very similar to that used in L-GP (see, e.g., equation

(4) of GP): we maximize the expected sum of local-mean-variance objectives, net of trans-

action costs paid. However, there are several notable and important di↵erences. First, our

objective function is in terms of dollar holdings (x
t

, w
t

) and dollar trades (u
t

). In contrast,

the L-GP objective function is in terms of number of shares held and traded (their x
t

and

�x
t

). For the price processes, our expected returns (m’s) and covariance matrix (⌃
t�1!t

) are

in terms of returns, while in the L-GP framework r
t+1 and ⌃ necessarily denote the expected

price change and the price-change variance, both on a per share basis. Finally, our approach

can accommodate an arbitrary stochastic return covariance matrix which can be a function

of the state variables, while the L-GP approach requires that the price-change covariance

matrix be deterministic.

At first glance this may appear to be an innocuous change of units. However, to obtain

an analytical solution, the L-GP framework requires a constant covariance matrix of price

changes. This implies that the return variance will be inversely related to the security price

squared: if a security’s price falls from $100/share to $50/share, the return variance must

quadruple. It also requires that the transaction cost function – as measured in the transaction

costs per share traded – must be independent of the share price. This is generally inconsistent

14Indeed, xT+1 = xT �(RT+1�1)+xT +uT+1 = xT �(RT+1�1)+xT�1�(RT �1)+xT�1+uT +uT+1 = . . ..
15Clearly, uT+1 = 0 is optimal. Thus the di↵erence between the value functions of the two problems in

equation 8 and equation 11 is constant.
16In the specification given here, � is constant over time – risk-aversion does not change with the agent’s

wealth level. It is di�cult to extend our framework to make � a function of the agent’s wealth at time t.
However, it is also straightforward to extend � to a time-varying and possibly stochastic parameter which is
a function of time or the state variables.
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with empirical evidence on security return dynamics. To better illustrate this, we first focus

on the special case where expected return and variances are constant, which can be solved

for in closed-form before turning to the more general case with predictability.

2.4 Comparing the optimal strategy when returns as opposed to price changes

have constant expectation and variance

If m
t

,⌃
t

, and ⇤
t

are constant, then the optimal portfolio choice problem in equation (11)

admits a closed-form solution. For simplicity, we focus on the one-asset case in an infinite

horizon stationary model. In Appendix (A.1) we derive the solution to the following problem:

max
u1,...,

E

" 1
X

t=1

⇢t
⇢

x>
t

m� �

2
x>
t

⌃x
t

� 1

2
u>
t

⇤u
t

�

#

s.t. eq (4) (12)

where ⇢ < 1 is a time discount factor.17 We show that the optimal dollar trade u
t

is linear-

a�ne in the current dollar position held in the security at the time of the trade, i.e.,

u
t

= a0 + (a1 � 1)x
t

(13)

where x
t

= x
t�1Rt

and the coe�cients a0, a1 are given explicitly in equation (81) in Ap-

pendix A.1. Instead, if one assumes that the expectation and variance of price changes are

constant, then the optimal policy would imply an optimal trade such that the number of

shares traded h
t

is linear a�ne in the number of shares held, n
t

:18

h
t

= b0 + (b1 � 1)n
t

(14)

where the coe�cients b0, b1 are given in equation (85) in the appendix. Clearly, these two

trading rules are inconsistent (since by definition u
t

= h
t

S
t

and x
t

= n
t

S
t

both equations

(13) and (14) cannot both hold at the same time). As expected, the optimal trading strat-

egy obtained for constant covariance of returns di↵ers from that obtained for a constant

covariance of price changes.

One important di↵erence between the two solutions is that if the covariance of price

changes is constant, then if at some point we hold the mean-variance optimal portfolio (i.e.,

if x
t

= (�⌃)�1m or equivalently n
t

= (�⌃
s

)�1µ
s

where ⌃
s

= ⌃⇤S2
t

and µ
s

= m⇤S
t

are defined

as the variance and expectation of price changes respectively) then it is optimal to never

trade hence-forth (see Appendix B.6). This implies that if we held the mean-variance optimal

17This stationary infinite horizon objective function is also used in Gârleanu and Pedersen (2013).
18Both are linked by the relation nt = nt�1 + ht.
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portfolio, and the price of a security were to fall by a factor of two, the optimal solution

would be not to trade. Intuitively, there is no trade to rebalance the portfolio because, given

the assumed dynamics (constant expectation and variance of price changes), when the price

halves, the security’s expected return and return volatility both double, meaning the optimal

dollar holdings also halve, so there is no motive for rebalancing.

If instead we assume that the expectation and variance of returns (rather than price

changes) is constant, then there is no position such that it is never optimal to trade at

all future dates. This is is because return shocks induce random changes in future dollar

positions via equation (4), which in turn lead to deviations in dollar portfolio holdings from

the first best, and thus to a rebalancing motive for trading even in the i.i.d case. This

rebalancing motive for trading is the one investigated in the traditional transaction cost

literature (such as Constantinides (1986)). In addition, we point out in the appendix that in

the i.i.d. case, there exists a position x
no

given in equation (90) such that it is optimal not

to trade for one period (i.e., if x
t

= x
no

then u
t

= 0). However, interestingly, if ⇤⇢ 6= 0 and

⌃+ µ2 6= µ, then this no-trade position is not equal to the mean-variance e�cient portfolio

(i.e., x
no

6= ⌃�1m). The intuition is that the current position does not reflect where it is

expected to be in one period, since it will experience random return shocks. So even in the

i.i.d. case, current optimal trades reflect a trade-o↵ between where we are today and where

we expect to be in the future given the return shocks we will experience.

While we can obtain a closed-form solution in the i.i.d. case, the general framework

we lay out in the previous section allows for security price processes to have more general

dynamics, with time-varying expected returns, variances and trading costs. In general, we

are unable to obtain a closed-form solution. However, just as in the i.i.d. case the model

will typically capture this rebalancing motive for trading (which is at the heart of the classic

Merton (1969) dynamic portfolio optimization with constant investment opportunity set).

The i.i.d. solution is also interesting as it motivates our choice of focusing on ‘linearity

generating strategies.’ Indeed, combining the linearity of the trading rule in (13) and the

dynamics of the state in (4) and iterating backwards we see that both the optimal trade and

the optimal position are of the form

u
t

=
X

st

⇡
s,t

R
s!t

(15)

x
t

=
X

st

✓
s,t

R
s!t

(16)

where we define the holding period returns R
s!t

= R
s!s+1Rs+1!s+2 . . . Rt�1!t

. The optimal

12



loadings ⇡
s,t

and ✓
s,t

are deterministic and obtained from the optimal solution. Specifically,

we show in the appendix that

✓
s,t

= a0 a
t�s

1 .

From equation (4) ⇡
s,t

is such that:

(

✓
s,t

= ✓
s,t�1 + ⇡

s,t

for s < t

✓
t,t

= ⇡
t,t

for s = t

Clearly, since a1 < 1 (see the appendix) the optimal position loads on past returns at

an exponentially decreasing rate given by � log a1. This decay rate is a function of the

fundamental parameters of the model (µ,⌃,⇤, ⇢). For example, the decay rate is lower the

higher the transaction costs, which shows that the optimal position depends more on past

holding period returns when transaction costs are higher.

In this simple example where the expected returns, return variances and the quadratic

transaction cost parameter are all constant, the optimal loadings ✓
s,t

are deterministic. For

the general case, where the investment opportunity set is time-varying, we will seek a so-

lution within a set of LGS that has the same structure, but where the loadings on past

holding period returns can increase or decrease depending on a set of instruments that can

be stochastic. We now turn to the general case and introduce the set of ‘linearity generating

strategies’ that we consider.

2.5 Definition of linearity generating strategies

Even though our objective function is similar to those in Litterman (2005) and Gârleanu

and Pedersen (2013), the L-GP problems are linear-quadratic because of the restrictions that

they place on the return generating process. Our problem is not in this class both because

of the non-linearity introduced by the state equation, and because we allow for a far more

general set of return generating processes with stochastic expected returns and covariances.

Thus our problem is di�cult to solve in full generality, even numerically. Our approach is

to instead solve a constrained problem, which is to find the optimal solution among a specific

set of ‘linearity generating trading strategies’ (LGS) that is a natural generalization of the

form we derived for the simple constant mean and variance problem in equations (15) and

(16) above, and for which the problem remains tractable. As we discuss below, as long as

we can specify a su�ciently rich set of LGSs, our solution will approach the globally optimal

solution.

To define our set of LGS we first specify, for each security, a K-vector B
i,t

of “security

13



exposures.” The exposures are typically non-linear transformations of the general state

vector X
t

(i.e., B
i,t

= h
i

(t,X
t

)). For example, B
i,t

may include the individual security’s

conditional expected return divided by its conditional variance (see, e.g., Aı̈t-Sahalia and

Brandt (2001)), the optimal dollar position in the security in the absence of transaction

costs given by the myopic solution, or a t-cost aware solution from another method. More

generally, it would include security specific factor exposures, conditional variances and other

relevant information for portfolio formation.

We then define the set of LGS as strategies for which the dollar holdings and dollar

trades of security i are linear functions of current and lagged exposures interacted with sets

of K-dimensional vectors of parameters, ⇡
i,s,t

and ✓
i,s,t

, defined for all i = 1, . . . , N and for

all s  t. These parameters fully determine the dollar holdings (x
i,t

) and the corresponding

dollar trades (u
i,t

) for each asset i via the parametric relations:

x
i,t

=
t

X

s=0

✓>
i,s,t

B
i,s!t

for t = 0, ..., T (17)

u
i,t

=
t

X

s=0

⇡>
i,s,t

B
i,s!t

for t = 1, ..., T (18)

where B
i,s!t

is defined as the vector of time s exposures B
i,s

, scaled by the gross-return on

security i between s and t:

B
i,s!t

= B
i,s

R
i,s!t

. (19)

In e↵ect, the dollar trades and dollar positions in security i at time t in asset i (x
i,t

) can

be thought of as a weighted sum of simple buy and hold trading strategies that went long

the security at past dates (s < t) proportionally to time s exposures and held the security

until date t.19

However in the LGS framework, this time-s scaled exposure can be built up gradually

after time s, and then sold gradually. Scaled exposure, because it is scaled by the firm’s

cumulative gross return, is time invariant: if you bought one unit of scaled-exposure at time

s and did not trade further, you would still hold one unit at all future times. The value of

a unit of scaled time-s exposure at time t is given by B
i,s!t

. The number of units of time-s

exposure purchased at time t � s is given by ⇡
i,s,t

, and the total number of units held at

time t (✓
i,s,t

) is just the sum of the number of units purchased between s and t.

Perhaps the easiest way to illustrate this is to examine the equations for the dollar

19We see that LGS nest the closed-form solution obtained in equations (15) and (16) above for the special
case of constant expected return and variances, which obtain with Bi,s = 1.
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positions and trades of firm i at t = 0, 1, 2, as given below:

x
i,0 = ✓>

i,0,0Bi,0

u
i,1 = ⇡>

i,0,1Bi,0!1 +⇡>
i,1,1Bi,1

x
i,1 = (✓

i,0,0 + ⇡
i,0,1

| {z }

=✓

i,0,1

)>B
i,0!1 + ⇡>

i,1,1
|{z}

=✓

>
i,1,1

B
i,1

u
i,2 = ⇡>

i,0,2Bi,0!2 +⇡>
i,1,2Bi,1!2 +⇡>

i,2,2Bi,2

x
i,2 = (✓

i,0,0 + ⇡
i,0,1 + ⇡

i,0,2
| {z }

=✓

i,0,2

)>B
i,0!2 +(⇡

i,1,1 + ⇡
i,1,2

| {z }

=✓

i,1,2

)>B
i,1!2 + ⇡>

i,2,2
|{z}

=✓

>
i,2,2

B
i,2

The first equation gives the initial position as a function of the time 0 exposures. Since

the initial position is generally not a choice variable, the vector ✓
i,0,0 must be constrained so

that the first equation holds. 20

The second equation gives the first trade, u
i,1. Note that this trade is a function of both

the lagged exposures for time 0, scaled by R
i,0!1, and the current (t = 1) exposures. The

dependence on the time zero exposure is important here, because the optimal trade at t = 1

and later are dependent on the initial position. Intuitively, if we are given a large initial

position in a security, the strategy will start trading out of that position with the first trade

at time 1 – how quickly it trades out will be determined by ⇡
i,0,1.

The third equation gives the total dollar holdings of security i at t = 1. x
i,1 is equal to

initial position, grossed up by the realized return on firm i from 0 to 1, plus u
i,1. However,

note that this equation decomposes these holdings into the number of units of scaled time

zero exposure ✓
i,0,1, and time 1 exposure ✓

i,1,1. Since the first time we purchase time 1

exposure is at time 1, ✓
i,1,1 = ⇡

i,1,1.

The fourth and fifth equations give, respectively, the time 2 trade and position. The

trade is decomposed into the number of units of time 0, 1, and 2 scaled exposure we buy.

The vector of costs of the exposures are given by the Bs. ✓
i,0,2 – the total number of units of

time 0 scaled exposure held at time 2 – is the sum of the initial endowment (✓
i,0,0) plus the

number of units purchased at time 1 and at time 2. The number of units of time 1 exposure

held at time 2 (✓
i,1,2) is the sum of the number of units purchased at time 1 and 2.

In an environment with transaction costs, the position in the lagged return-scaled time

s exposure will generally be accumulated gradually over time. That is, following a shock at

time s to exposures that raises a security’s expected return (holding its risk constant) the

20In general, one of the elements of the vector Bi,0 will be a one, so a straightforward way to impose this
constraint is to require that the corresponding elements of ✓i,0,0 be equal to the initial dollar position xi,0.
Alternatively, one can have the initial position be an element of Bi,0 and restrict ✓i,0,0 appropriately.
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corresponding elements of ⇡
i,s,t

will be positive for t slightly bigger than s, and then will

turn negative as t increases, and then finally asymptote to zero. That is, it will be optimal

to gradually trade into positions in securities, and then trade out of these positions as the

expected return decays towards zero. We will illustrate this via simulation in Section 3.5.

As is apparent in the discussion above, ✓
i,s,t

and ⇡
i,s,t

must be chosen so that holdings

and trades are consistent. Specifically the trades and positions in equations (17) and (18),

respectively, are required to satisfy the dynamics given in equations (4) and (5). It follows

that the parameter vectors ⇡
i,s,t

and ✓
i,s,t

have to satisfy the following restrictions, for all

i = 1, . . . , N :

✓
i,s,t

= ✓
i,s,t�1 + ⇡

i,s,t

8 t � 1 and 0  s < t

✓
i,t,t

= ⇡
i,t,t

8 t � 1
(20)

and initial conditions:

✓
i,0,0Bi,0 = x

i,0

⇡
i,0,0 = 0

These restrictions are intuitive. The first specifies that the number of units of scaled

time s exposure held at time t is equal to the number of units held at time t � 1 plus the

number of units bought at time t. The second restriction specifies that the number of units

of scaled time t exposure held at time t is the number bought at time t. Since B
i,t

is not

in the information set until time t, you cannot buy time t exposure before time t. The last

two conditions specify that the initial scaled-exposures must be chosen to match the initial

holdings x
i,0, and that the time 0 trade is zero, consistent with the dynamics laid out in

Section 2.2.

2.6 The LGS approach and alternative approaches

Intuitively, the dependence of LGS on current exposures is important. In a zero-transaction

cost a�ne portfolio optimization problem where the optimal solution is well-known, the

optimal holdings will involve only today’s exposures (see, e.g., Liu (2007)).21 With transac-

tion costs, allowing today’s weights and trades to also depend on lagged security exposures,

scaled by each security’s return up to today, is useful because these variables summarize the

21Note that this is also the choice made by Brandt, Santa-Clara, and Valkanov (2009) for their ‘parametric
portfolio policies.’ However, while BSV specify the loadings on exposure of individual securities to be
identical, we allow two securities with identical exposures (and with perhaps di↵erent levels of idiosyncratic
variance) to have di↵erent weights and trades.
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positions – held today – as a result of trades made in previous periods. When transactions

costs are present, the optimal trades today will generally depend on positions held in past

periods. This path-dependence is observed in known closed-form solutions in environments

with transaction costs (as in, for example, Constantinides (1986), Davis and Norman (1990),

Dumas and Luciano (1991), Liu and Loewenstein (2002) and also our simple closed-form

example above).

As noted earlier, the idea of restricting the set of strategies to make the problem tractable

is not new. For example, this is the insight underlying Brandt, Santa-Clara, and Valkanov

(2009, BSV), who consider strategies which are restricted to be linear in security characteris-

tics. BSV select the optimal characteristic weights by numerically optimizing their objective

function over a set of historical returns. Because their approach relies on a numerical, in-

sample optimization, they are necessarily restricted to low-dimensional strategies (i.e., with

a small number of characteristics/exposures). In contrast, with the LGS approach the op-

timization is done in closed-form. This allows the use of rich path dependent strategies,

with lagged-scaled characteristics as exposures. In a high transaction-costs environment,

incorporating lagged-characteristics allows the resulting strategy to slowly trade in and out

of each asset in response to exposure shocks.

The only other approach in the literature that yields a closed form solution – the L-GP

approach – makes some strong assumptions about the return generating process and the

objective function to obtain a closed-form solution. Specifically, these approaches require

that the covariance matrix of price changes per share and the per share transaction cost

function be constant or, at most, deterministic. With these assumptions, the L-GP solution

is the exact optimal solution. If the return generating process is close to the assumed process

(constant price-change variance and constant transaction costs) then the L-GP approach will

yield a good approximate solution. However, in many realistic settings the solution will be

far from optimal, as we show below.

The advantage of the LGS approach is that we can determine the optimal solution given

a wide range of security price dynamics. The drawback to our approach is that, for most

return generating processes, the solution we derive is only optimal among the set of all

solutions that are linear functions of the exposures we select.22 So the key to getting a

good solution with the LGS methodology is selecting a set of exposures that come close to

spanning the globally optimal solution. One advantage that our method has on this front

is that virtually any variable in the information set can be used as an exposure. So, for

example, the solution to the simple myopic or the more complex L-GP problem, or both

22In selected settings, like that explored in Section 2.4, the LGS solution will be globally optimal.
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can be chosen as exposures. In this case, our methodology will assign weights to additional

exposures – including scaled-lagged exposures — if and only if they provide an improvement

over and above what can be obtained with the myopic or L-GP solution. For example, in a

setting where the L-GP solution was optimal, these additional exposures would add nothing,

consequently they would get no weight and our solution would be identical to the L-GP

solution.

The magnitude of the improvement of LGS over alternative solutions depends on how

much improvement these additional exposures provide. In Section 3, we investigate this

via simulations. First though, we explain how the portfolio optimization can be done in

closed-form, within that restricted set.

2.7 The LGS optimization problem

We now solve for the set of exposure weights (✓
i,s,t

and ⇡
i,s,t

from equations (17) and (18))

that determine the optimal positions and trades. To proceed, we first rewrite the policies

in equation (20) in a concise matrix form. It is convenient to introduce the following no-

tation (inspired from Matlab): We write [A;B] (respectively [AB]) to denote the vertical

(respectively horizontal) concatenation of two matrices.

First, define the NK(t+ 1)-dimensional vectors ⇡
t

and ✓
t

as

⇡
t

= [⇡1,0,t; . . . ; ⇡N,0,t; ⇡1,1,t; . . . ; ⇡N,1,t; . . . ; ⇡1,t,t; . . . ; ⇡N,t,t

] (21)

✓
t

= [✓1,0,t; . . . ; ✓N,0,t; ✓1,1,t; . . . ; ✓N,1,t; . . . ; ✓1,t,t; . . . ; ✓N,t,t

] (22)

Also, we define the following (NK,N) matrices (defined for all 0  s  t  T ) as the

diagonal concatenations of the N vectors B
i,s!t

8i = 1, . . . , N :

B
s,t

=

8

>

>

>

>

<

>

>

>

>

:

B1,s!t

0 · · · 0

0 B2,s!t

· · · 0
...

...
. . .

...

0 0 · · · B
N,s!t

9

>

>

>

>

=

>

>

>

>

;

Finally, we define the (NK(t + 1), N) matrix B
t

by stacking the t + 1 matrices B
s,t

8s =

0, . . . , t:

B
t

= [B0,t;B1,t; . . . ;Bt,t

] (23)
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With these definitions, it is straightforward to verify that:

u
t

= B>
t

⇡
t

(24)

x
t

= B>
t

✓
t

(25)

Further, in terms of these definitions the constraints on the parameter vectors in (20) can

be rewritten concisely as:

✓
t

= ✓0
t�1 + ⇡

t

(26)

where we define x0 = [x;0
NK

] to be the vector x stacked on top of an NK-dimensional

vector of zeros 0
NK

.

The usefulness of restricting ourselves to this set of ‘linearity generating trading strategies’

is that optimizing over this set amounts to optimizing over the parameter vectors ⇡
t

and

✓
t

, and that, as we show next, that problem reduces to a deterministic linear-quadratic

control problem, which can be solved in closed form.

Indeed, substituting the definition of our linear trading strategies from equations (24)

and (25) into our objective function in equation (11) and then taking expectations gives:

max
⇡1,...,⇡

T

T

X

t=1

✓>
t

m
t

� 1

2
⇡>
t

⇤
t

⇡
t

� �

2
✓>
t

⌃
t

✓
t

(27)

subject to ✓
t

= ✓0
t�1 + ⇡

t

(28)

and where we define the vector m
t

and the square matrices ⌃
t

and ⇤
t

for t = 0, . . . , T by

m
t

= E0[Bt

m
t

] (29)

⇤
t

= E0[Bt

⇤
t

B>
t

] (30)

⌃
t

= E0[Bt

⌃
t!t+1B>

t

] (31)

Note that the time indices also capture their size: m
t

is a vector of length NK(t+1), and ⌃
t

and ⇤
t

are square matrices of the same dimensionality. Equation (27) is just the objective

function (equation (11)) with the u
t

’s and x
t

’s rewritten as linear functions of the elements

in B
t

, with coe�cients ⇡
t

and ✓
t

, respectively. Since the policy parameters ⇡
t

and ✓
t

are set

at time 0, they can be pulled outside of the expectation operator.

Intuitively equation (27) is a linear-quadratic function of the policy parameters ⇡
t

and

✓
t

, with m
t

, ⇤
t

, ⌃
t

, as the coe�cients in this equation. These three components give,

respectively, the e↵ect on the objective function of (i) the expected portfolio returns resulting
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from trades at time t, (ii) the expected transaction costs paid as a result of trades at time t,

and (iii) the e↵ect of the holdings at time t on the risk-penalty component of the objective

function.

Since m
t

, ⌃
t

, ⇤
t

are not functions of the policy parameters, they can be solved for explic-

itly. In some settings, this can be done analytically; however if this is not straightforward

the moments can always be calculated using simulation. Note that the moments only need

to be calculated once. Given these moments, the set of ✓
t

and ⇡
t

that maximize equation

(27), these optimal ✓
t

and ⇡
t

will determine all future positions and trades as a function of

the (as yet unknown) scaled exposures. Note that these moments do not depend on either

the initial conditions, or on the assumptions made about the state vector X
t

driving the

return generating process R
t

, or on the corresponding security-specific exposure dynamics

B
i,t

.

We next show how to solve equation (27) using standard methods. Again, this is possible

since it is a linear-quadratic equation, albeit a high-dimensional one.

2.8 Closed form solution

We begin with the linear-quadratic problem defined by equations (27) and (28). Define

recursively the value function starting from V (T ) = 0 for all 1 < t < T by:

V (t� 1) = max
⇡

t

⇢

✓>
t

m
t

� �

2
✓>
t

⌃
t

✓
t

� 1

2
⇡>
t

⇤
t

⇡
t

+ V (t)

�

subject to ✓
t

= ✓0
t�1 + ⇡

t

Then it is clear that V (0) gives the solution to the problem we are seeking. To solve the

problem explicitly, we guess that the value function is of the form:

V (t) = ��

2
✓>
t

M
t

✓
t

+ L>
t

✓
t

+H
t

(32)

with M
t

a symmetric matrix. Since V (T ) = 0, it follows that M
T

= 0, L
T

= 0 and H
T

= 0.

To find the recursion plug the guess in the Bellman equation:

V (t� 1) = max
⇡

t

⇢

✓>
t

m
t

� 1

2
⇡>
t

⇤
t

⇡
t

� �

2
✓>
t

(⌃
t

+M
t

)✓
t

+ L>
t

✓
t

+H
t

�

(33)

subject to ✓
t

= ✓0
t�1 + ⇡

t

(34)
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Substituting the constraint (equation (34)) into the value function (equation (33)), we obtain:

V (t� 1) = max
✓

t

⇢

✓>
t

m
t

� 1

2
(✓

t

� ✓0
t�1)

>⇤
t

(✓
t

� ✓0
t�1)�

�

2
✓>
t

(⌃
t

+M
t

)✓
t

+ L>
t

✓
t

+H
t

�

(35)

The first order condition gives the optimal position vector:

✓
t

= [⇤
t

+ �(⌃
t

+M
t

)]�1
�

m
t

+ L
t

+ ⇤
t

✓0
t�1

�

,

and plugging into the state equation (28), gives the optimal trade vector:

⇡
t

= [⇤
t

+ �(⌃
t

+M
t

)]�1
�

m
t

+ L
t

� �(⌃
t

+M
t

)✓0
t�1

�

.

Substituting these optimal policies into the Bellman equation in (33) gives another expression

for the value function, given the conjectured specification in equation (32):

V (t� 1) =
1

2

�

m
t

+ L
t

+ ⇤
t

✓0
t�1

�>
[⇤

t

+ �(⌃
t

+M
t

)]�1
�

m
t

+ L
t

+ ⇤
t

✓0
t�1

�

+H
t

� 1

2

�

✓0
t�1

�>
⇤

t

✓0
t�1

(36)

Comparing this equation and equation (32) shows that this specification will be correct if

H
t

, L
t

, and M
t

are chosen to satisfy the recursions:

H
t�1 = H

t

+
1

2
(m

t

+ L
t

)> [⇤
t

+ �(⌃
t

+M
t

)]�1 (m
t

+ L
t

)

L>
t�1 = (m

t

+ L
t

)> [⇤
t

+ �(⌃
t

+M
t

)]�1⇤
t

�M
t�1 = ⇤

t

� ⇤
t

[⇤
t

+ �(⌃
t

+M
t

)]�1⇤
t

with initial conditions H
T

= 0, L
T

= 0 and M
T

= 0 and where M denotes the vector (or

matrix) obtained from M by deleting the last NK rows (or rows and columns).

We have thus derived the optimal value function and the optimal trading strategy in the

LGS class.

Before discussing some specific examples it is useful to introduce a set of LGS strategies

which uses the exposures lagged at most ` periods. This set of “restricted lag” LGS is useful

in applications when the time horizon is fairly long, and for signals that have a relatively fast

decay rate, so that the dependence on lagged exposures can be restricted without a significant

cost. We next show that the same tractability obtains for the restricted lag setting.
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2.9 LGS with finite number of lags

In the baseline LGS, trades and positions are a linear function of return-scaled-exposures

(i.e., B
i,s,t

for 0  s < t). In most settings, we would expect the coe�cients in both the

position and the trade equations (✓
i,s,t

and ⇡
i,s,t

) to converge to zero for s << t. Indeed, this

is the case for the closed-form solution examined in Section 2.4. Further, we shall show via

impulse response functions in Section 3.5 that this is also the behavior we observe for more

general return generating processes.23 Thus, to reduce complexity it can be advantageous

to use strategies for which the trades are dependent on scaled exposures lagged at most `

periods.

We first specify that the trading rule will only trade based on at most ` lags, i.e. such

that:

u
i,t

=
t

X

s=t�`_0

⇡>
i,s,t

B
i,s!t

(37)

where t� `_0 denotes the maximum of t� ` and 0. If we want the holdings to remain linear

and of the form:

x
i,t

=
t

X

s=0

✓>
i,s,t

B
i,s!t

(38)

Then we see that the linear constraints in equations (20) have to be modified so as to still

satisfy the wealth dynamics in equations (4) and (5). Specifically, we require that:

✓
i,t,t

= ⇡
i,t,t

8 t � 1

✓
i,s,t

= ✓
i,s,t�1 + ⇡

i,s,t

for t� ` _ 0  s < t

✓
i,s,t

= ✓
i,s,t�1 for 0 < s < t� `

(39)

Since this is still a set of linear constraints we can straightforwardly extend the previous

method to derive the optimal LGS strategy with trades that only look back ` periods.

However, it is also generally the case that the weights on scaled-exposures will approach

zero when they are su�ciently old. Inspecting these constraints, we see that if we impose the

additional constraint that (⇡
i,t�`,t

= �✓
i,t�`,t�1) 8 t > ` (i.e., that we completely trade out of

any remaining time-(t�`) scaled-exposure at time t), then it follows that ✓
i,s,t

= 0 8 0 < s 
t � `. In other words, by imposing one additional linear constraint on the trading strategy

one can find a set of LGS where the trading strategy u
t

looks back at most ` periods and

23See, in particular, Figures 2 and 4 and the related discussion.
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the dollar position x
t

looks back at most `� 1 periods. Formally, we have

u
i,t

=
t

X

s=t�`_0

⇡>
i,s,t

B
i,s!t

and

x
i,t

=
t

X

s=t�`+1_0

✓>
i,s,t

B
i,s!t

We summarize this second set of linear constraints as:

✓
i,t,t

= ⇡
i,t,t

8t � 1

✓
i,s,t

= ✓
i,s,t�1 + ⇡

i,s,t

8 and t� ` _ 1  s < t

⇡
i,s,t

= �✓
i,s,t�1 for 0 < s = t� `

✓
i,s,t

= 0 for 0 < s  t� `

Because these constraints are linear, we can follow the approach above and derive the optimal

trading strategy coe�cients by solving a deterministic dynamic programming problem.

3 Simulation Experiment

How much our proposed method improves on the approaches proposed in the literature

is an empirical question, and will clearly depend on the economic environment studied.

In this section we present several experiments that allow us to examine where the LGS

approach will provide the largest improvements. Specifically, we compare methods in a

setting where the return generating process is “characteristics-based” and in a second setting

where the return generating process is “factor-based.” As we show below the standard

linear-quadratic portfolio approach proposed in Litterman (2005) and Gârleanu and Pedersen

(2013) is fairly well-suited to the characteristics-based environment we examine, as the price-

change covariance matrix is approximately stationary over short horizons. However, in the

factor-based environment, where the covariance structure changes with the exposures to

short-lived factors change, the LGS approach significantly outperforms the L-GP approach.

3.1 Characteristics versus factor-based return generating model

We wish to examine the following two environments:

23



• The factor-based return generating process with excess return and exposure dynamics

r
i,t+1 = �>

i,t

(F
t+1 + �) + ✏

i,t+1, (40)

�k

i,t+1 = (1� �
k

)�k

i,t

+ ✏
i,t+1.

• The characteristics based return generating process with excess return and exposure

dynamics

r
i,t+1 = �>

i,t

�+ ✏
i,t+1 (41)

�k

i,t+1 = (1� �
k

)�k

i,t

+ ⌫✏
i,t+1.

where in both cases we assume that �
i,t

is a (3, 1) vector with elements corresponding to

firm i’s exposure to (1) short term reversal (Jegadeesh 1990, Lehmann 1990), (2) medium

term momentum (Jegadeesh and Titman 1993), and (3) long-term reversal (DeBondt and

Thaler 1985), which we henceforth label str, mom and ltr. We set the half-life of the str

factor to be 5 days, that of the mom factor to be 150 days, and that of the ltr factor to be

700 days. These half lives are designed to roughly match the documented horizons at which

short-term reversal, momentum, and long-term reversal are typically found.

In both frameworks, expected returns are the product of the ex-ante observable factor

exposures and the factor premia, �>
i,t

�. However, in the characteristics based framework, we

assume that the conditional covariance matrix of security returns is constant, i.e. ⌃
t!t+1 =

E

t

[✏
t+1✏

>
t+1] = ⌃. In contrast, in the factor-based framework, the residual covariance matrix

is constant, E
t

[✏
t+1✏

>
t+1] = ⌃, but the conditional covariance matrix of returns is a function

of the time varying vector of factor loadings �
t

:

⌃
t!t+1 = �

t

⌦�>
t

+ ⌃ (42)

where �
t

= [�>
1,t; �

>
2,t; . . . ; �

>
n,t

] is the (N,K) matrix of factor exposures, and ⌦ = E

t

[F
t+1F

>
t+1]

is the (assumed time-invariant) (K,K) factor covariance matrix. Finally, ⌫ is a free param-

eter used to match the Sharpe ratios generated in both environments for a myopic investor

trading costlessly.

Note that the innovations in the factor exposure are driven entirely by idiosyncratic

return shocks consistent with their interpretation as ‘technical’ return based factors. The

AR(1) representation has the convenient representation as a weighted average of past shocks

where the weights depend on the �
k

. This makes the interpretation as short, medium and
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Table 1: Parameters for Simulation Experiment

The table presents the parameters estimated using the procedure described in Appendix C, and used in
the simulation exercise. The three factors are designed to capture the short-term reversal, momentum, and
long-term reversal e↵ects. ĥk is the factor half-life, �k is the factor decay rate, �k the factor premium, and
�f,k the factor volatility (all in daily terms). The final three columns give the estimated factor correlations.
The factor covariance matrix ⌦ is equal to diag(�f )⇢ diag(�f ).

⇢̂ (correlations)
k Factor ĥ

k

�
k

�̂
k

�̂
f,k

1 2 3
1 str 3 0.206299 -0.093482 0.406887 1 -0.366 0.167
2 mom 150 0.004610 0.001484 0.006999 -0.366 1 -0.576
3 ltr 700 0.000990 -0.000400 0.001764 0.167 -0.576 1

long-term return based factors transparent.

The value of �
k

is tied to its half-life (expressed in number of days) ĥ
k

by the simple

relation �
k

= 1� (12)
1/ĥ

k .

3.2 Calibration of main parameters

The number of assets in our experiment is 15. Our trading horizon is 26 weeks with weekly

rebalancing. Our objective is to maximize the net terminal wealth minus penalty terms for

excessive risk (see Section 2.3).

We calibrate the factor mean, �, and covariance matrix, ⌦, using the Fama-French decile

portfolios sorted on short-term reversal, momentum, and long term reversal. The calibration

is described in Appendix C. The parameters obtained from this calibration and used in the

simulation are given in Table 1.

For our simulations, we assume that both F and ✏ vectors are serially independent and

normally distributed with zero mean and covariance matrix ⌦ and ⌃, respectively. We cali-

brate ⌃ using historical daily return data on 100 largest firms measured by market capitaliza-

tion from 1974 to 2012. We randomly choose 15 stocks, estimate the daily variance-covariance

matrix from their returns, and calibrate ⌃ by converting it to its weekly counterpart. We

set initial exposures to zero, i.e., �k

i,0 = 0 8i, k. Finally, ⌫ is computed to be 0.2498 so that

the Sharpe ratios generated in both models in the absence of transaction costs are equal.

The transaction cost matrix ⇤ is a constant multiple (⌘) of the conditional covariance

matrix in both factor-based and characteristics environments. Since in the characteristics

environment the covariance matrix of returns is constant, the cost of trading a specific dollar

amount of any security is time invariant. However, from equation (42), in the factor-based

environment the return covariance matrix is stochastic (because �
t

is stochastic), which
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results in stochastic variation in transaction costs. In our simulations, we examine three

transaction costs regimes: low, medium, and high, with values of ⌘ equal to 1⇥10�7, 2⇥10�7

and 4⇥10�7 respectively.24 Finally, we set the coe�cient of risk aversion to � = 10�8, which

can be interpreted as a relative risk aversion of 1 for an agent with $100 million (= $108) is

assets.

3.3 Approximate policies

As discussed previously, solving for the globally optimal policy in our general model is

intractable due to the curse of dimensionality. Thus to assess the performance of the LGS,

we compare it to alternative policies suggested in the literature or used in practice. In this

section, we lay out how we implement these policies and discuss the implementation of the

optimal LGS, which we label the Best Linear or BL strategy.

3.3.1 Myopic Policy (MP):

The myopic policy maximizes the single period expected return net of transaction costs and

with a penalty for the (single period) portfolio variance:

max
x

t

E

h⇣

x>
t

r
t+1 �

�

2
x>
t

⌃
t!t+1xt

� ⌘

2
u>
t

⌃
t!t+1ut

⌘i

s.t. eq.(4). (43)

Substituting equation (4), which gives the dynamics for x
t

, into this expression and taking

the first order condition yields the closed form solution:

xMP
t

= ((⌘ + �)⌃
t!t+1)

�1 (�
t

�+ ⌘⌃
t!t+1 (xt�1 �Rt

)) (44)

3.3.2 Myopic Policy with Transaction Cost Multiplier (MP-TC):

An issue with the myopic optimization of equation (43) is that R
t+1 and ⌃ have units of

time�1 (i.e., return or return variance per unit time), but transaction costs are unitless.

Thus, the myopic policy may give nonsensical solutions, particularly if the period length

does not line up with the units in which expected returns and variances are measured. For

this reason, it is common among practitioners to modify the myopic policy by scaling the

transaction-cost term in (43) by an amortization factor ⌧ (with units of time�1).25 In our

24Moallemi, Saglam, and Sotiropoulos (2014) find that the average slippage for algorithmic trading firms
is ⇡ 5 bps/trade. If we assume that this is the slippage for a $2 million trade on a security with a weekly
volatility of 0.05, then since the dollar cost of a trade in our model is 1

2⌘�
2
u

2, this implies ⌘ = 2 ⇥ 10�7
.

We use this value of ⌘ as the multiplier for the “middle” regime. The ⌘s for the high and low regime are a
factor of 2 higher and lower, respectively.

25See, e.g., Grinold and Kahn (1999)
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implementation, we choose this multiplier so as to maximize the unconditional performance

(i.e., across all simulations) of the trading strategy. This modified myopic problem has the

solution:

xMP�TC
t

= ((⌧ ⇤⌘ + �)⌃
t!t+1)

�1 ��
t

�+ ⌧ ⇤⌘⌃
t!t+1

�

xMP�TC
t�1 �R

t

��

where ⌧ ⇤ is given by

⌧ ⇤ =argmax
⌧

E

h⇣

x>
t

r
t+1 �

�

2
x>
t

⌃
t!t+1xt

� ⌧⌘

2
u>
t

⌃
t!t+1ut

⌘i

,

subject to x
t

= ((⌧⌘ + �)⌃
t!t+1)

�1 (�
t

�+ ⌧⌘⌃
t!t+1 (xt�1 �Rt

)) .

3.3.3 Unconditional Gârleanu & Pedersen Policy (GP-U):

As noted earlier, the L-GP solution is not optimal in either of our environments, since it

requires a constant covariance matrix of price changes. However, we can implement their

model following the methodology used in their empirical application (Section VI in GP). This

approach relies on estimating from historical (or in our case simulated) data an unconditional

covariance matrix of price changes and assuming it remains constant throughout the entire

trading process. In most real world settings, and here in our simulation experiment in

Section 3.4, this assumption is violated and we do not expect the GP-U method to perform

well – something we verify in Section 3.4. Nonetheless we present these results to illustrate

the importance of re-calibrating to the best estimate of the conditional covariance matrix

of price-changes at each rebalancing date when implementing the L-GP method; we will

present a “re-optimized” version of the L-GP solution – GP-R– in the next section.

Specifically, to obtain our ‘unconditional’ (GP-U) policy, we simulate data from our char-

acteristics and factor-based framework. Then assuming an initial stock price of $1 for each

security and using percentage returns from the simulated data, we obtain the price change

vector �S
t+1 = S

t+1�S
t

. We then estimate the predictive ability of the each characteristic,

`k from the following regression:

�S
i,t+1 = `1�1

i,t

+ `2�2
i,t

+ `3�3
i,t

+ "
i,t+1. (45)

We further estimate the constant covariance matrix of price changes, ⌃̄pc, taking the

unconditional covariance of price changes, that is to say, ⌃̄pc = Var(�S
t

). Since Gârleanu

and Pedersen (2013) also uses an AR(1) representation for exposure dynamics, we use the

same decay rate parameters (�) as in our specification. For the constant transaction cost
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matrix (⇤̄pc) used in the computation of the GP policy, we use ⌘⌃̄pc, a constant multiple of

the covariance matrix.

Using these estimated parameters, we obtain the trading policy that gives the optimal

number of shares, h
t

, to hold to maximize the following objective:

max
h1,...,h

T

E

"

T

X

t=1

✓

h>
t

�S
t+1 �

�

2
h>
t

⌃̄pch
t

� 1

2
n>
t

⇤̄pcn
t

◆

#

(46)

subject to h
t

= h
t�1 + n

t

(47)

The optimal solution to this problem is derived in Gârleanu and Pedersen (2013), and is

given by

h
t

=
�

⇤̄pc + �⌃̄pc + At

xx

��1 �
⇤̄pch

t�1 +
�

C + At

xf

(I � �)
�

�st
t

�

where �st
t

= [�1
:,t; . . . ; �

3
:,t] is the stacked vector of factor exposures, C = `> ⌦ I

N⇥N

and

� = diag(�⌦ I
N⇥1) and At�1

xx

and At�1
xf

satisfy the following recursions,

At�1
xx

= �⇤̄pc

�

⇤̄pc + �⌃̄pc + At

xx

��1
⇤̄pc + ⇤̄pc,

At�1
xf

= ⇤̄pc

�

⇤̄pc + �⌃̄pc + At

xx

��1 �
At

xf

(I � �) + C
�

,

with AT

xx

= 0 and AT

xf

= 0.

3.3.4 Re-optimized Gârleanu & Pedersen Policy (GP-R):

As noted above, the GP-U policy described above is not likely to yield a reasonable solution,

as the GP-U solution requires a constant covariance matrix of price-changes. Thus, we can

improve on the performance of the GP-U method by re-optimizing each period. Specifically,

at each time t we calculate a new (and accurate) price-change covariance matrix based on

the time t conditional (return) covariance matrix and the level of prices.

Note that this solution is numerically intensive, as it requires re-calculating the Riccati

recursions at each time t using this updated estimate of the covariance matrix of price

changes. Note also that even this re-optimized solution ignores the future risk dynamics:

the GP-R method assumes that the price-change covariance matrix will remain constant from

time t forward.26

We set the conditional covariance matrix of price changes to be ⌃̄pc

t

= diag(S
t

)⌃ diag(S
t

)

26This approach is very similar to the ‘anticipated utility’ concept of Kreps (1998) and Cogley and Sargent
(2008).
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in the characteristics based model and ⌃̄pc

t

= diag(S
t

)
�

�
t

⌦�>
t

+ ⌃
�

diag(S
t

) in the factor-

based model. The transaction cost matrix, ⇤̄pc

t

, is also time-varying and set to ⌘⌃̄pc

t

. With

this parameterization, the GP-R policy has the following form:

h
t

=
�

⇤̄pc

t

+ �⌃̄pc

t

+ At,t

xx

��1 �
⇤̄pc

t

h
t�1 +

�

C
t

+ At,t

xf

(I � �)
�

�st
t

�

where �st
t

= [�1
:,t; . . . ; �

3
:,t] is the stacked vector of factor exposures, C

t

= �> ⌦ diag(S
t

) and

� = diag(�⌦I
N⇥1) and At,t

xx

and At,t

xf

is the solution of the following recursions (8 t < n  T ),

At,n�1
xx

= �⇤̄pc

t

�

⇤̄pc

t

+ �⌃̄pc

t

+ At,n

xx

��1
⇤̄pc

t

+ ⇤̄pc

t

,

At,n�1
xf

= ⇤̄pc

t

�

⇤̄pc

t

+ �⌃̄pc

t

+ At,n

xx

��1 �
At,n

xf

(I � �) + C
t

�

,

with At,T

xx

= 0 and At,T

xf

= 0. Here, we have double time superscripts in At,n

xx

and At,n

xf

to

underscore that we are re-solving the Riccati recursion (in n) at every time step (t).

3.3.5 Best Linear Policy (BL):

We define the relevant stock exposure variables for each security to be the stock specific

myopic portfolio holdings and a constant term, i.e., B
i,t

= [xMP
i,t

; 1]. We then follow the

methodology developed in Section 2 to determine the optimal LGS satisfying our nonlinear

state evolution:

uBL
t

= B>
t

⇡⇤
t

xBL
t

= B>
t

✓⇤
t

where as before B
t

is constructed from the return-scaled exposures B
i,s!t

= B
i,s

R
s!t

, where

⇡⇤
t

and ✓⇤
t

solve:

max
⇡1,...,⇡

T

T

X

t=1

✓>
t

m
t

� 1

2
⇡>
t

⇤
t

⇡
t

� �

2
✓>
t

⌃
t

✓
t

subject to ✓
t

= ✓0
t�1 + ⇡

t

3.4 Simulation Results

We now discuss the performance of the approximate policies and the best linear (LGS)

policies in the simulation for both the factor- and the characteristics-models, for low, medium

and high transaction costs. We also provide performance statistics for a zero transaction-cost

setting as a benchmark case.
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Table 2: Policy performance: characteristics environment.

This table summarizes the performance of each policy in the characteristics environment (no
common factors) for four di↵erent levels of transaction costs. For each policy, we report the
average across the 10,000 runs of: the objective function, terminal wealth and transaction
costs paid (in $ ⇥105)); the information ratio using the myopic policy as a benchmark, and
the annualized Sharpe Ratio. The final column reports the di↵erence between the BL and
the GP-R strategy results and the associated standard errors.

MP MP-TC GP-U GP-R BL BL–GP-R

Zero Transaction Costs

Avg Objective 2739.75 2739.75 1704.41 2739.75 2739.65 -0.10
Std Err 22.59 22.59 8.98 22.59 22.59 0.34
Avg Wealth 5487.37 5487.37 2159.97 5487.37 5488.35 0.98
Std Err 22.01 22.01 8.87 22.01 22.01 0.34
TC 0.00 0.00 0.00 0.00 0.00 0.00
IR NA NA -3.47 0.05 0.04 NA
SR 3.53 3.53 3.44 3.53 3.53 0.04

Low Transaction Costs (⌘ = 1⇥ 10�7)

Avg Objective 254.34 255.08 207.59 327.39 329.55 2.16
Std Err 5.37 5.11 1.46 3.46 3.47 0.56
Avg Wealth 427.69 412.19 221.89 404.08 407.30 3.21
Std Err 5.06 4.82 1.44 3.38 3.39 0.53
TC 226.71 194.49 40.65 252.25 249.86 -2.39
IR NA -0.79 -0.74 -0.12 -0.10 NA
SR 1.20 1.21 2.19 1.69 1.70 0.09

Medium Transaction Costs (⌘ = 2⇥ 10�7)

Avg Objective 147.83 147.92 119.73 187.74 190.04 2.30
Std Err 3.39 3.25 0.95 2.20 2.24 0.55
Avg Wealth 219.03 213.83 125.82 218.98 222.82 3.84
Std Err 3.24 3.12 0.94 2.16 2.19 0.53
TC 123.79 111.54 25.55 157.38 155.94 -1.44
IR NA -0.57 -0.52 0.00 0.03 NA
SR 0.96 0.97 1.90 1.43 1.44 0.10

High Transaction Costs (⌘ = 4⇥ 10�7)

Avg Objective 85.28 85.33 66.26 103.22 105.46 2.24
Std Err 1.96 1.99 0.60 1.34 1.42 0.52
Avg Wealth 110.00 110.70 68.67 114.92 118.77 3.85
Std Err 1.91 1.93 0.59 1.32 1.39 0.51
TC 64.93 66.96 15.07 92.02 91.34 -0.69
IR NA 0.40 -0.40 0.06 0.10 NA
SR 0.82 0.81 1.65 1.23 1.20 0.11

30



3.4.1 Characteristics Model Simulation Results

The upper panel of Table 2 shows the results when the simulated returns are generated

according to the characteristics model in equation (41), (i.e., when there are no common

factors, and thus all return variance is idiosyncratic), and when transaction costs are zero.

Because there are no transaction costs, the myopic policy is optimal. Indeed, all policies

that nest the unconstrained myopic policy (i.e., MP-TC, GP-R, and BL, that is all except for

GP-U) achieve the same objective function and corresponding (high) Sharpe ratio of 3.53.

GP-U is not able to approach the first best strategy even in the no-transaction cost case,

because it ignores the dynamics in the covariance matrix entirely. While its Sharpe ratio is

also very good in the absence of transaction costs, the di↵erence in performance relative to

the other strategies that nest the conditional myopic strategy is significant (this is still more

apparent when comparing the di↵erence in average objective functions).

Note that BL nests the myopic strategy because we use as one of the stock exposures

the myopic strategy holdings. This illustrates the necessity of choosing a large enough set

of exposures for the LGS to be able to approach the first best.

The second panel of Table 2 shows that even when transaction costs are relatively low,

the dynamic strategies outperform the myopic strategies. The objective functions and the

Sharpe ratios of GP-R and BL are significantly higher than the corresponding values achieved

with either the MP or MP-TC strategies. However, GP-U continues to underperform even

the myopic model in terms of average objective function (as well as in terms of average

wealth), because the model ignores any dynamics in the covariance matrix of price changes.

We note that the Sharpe ratio of GP-U is actually high, which shows that the Sharpe ratio is

a misleading performance measure in the presence of transaction costs. GP-U achieves that

higher (net-of-t-costs) Sharpe ratio because it trades very little (transaction costs are less

than one sixth that of the BL strategy for example) thus generating little average wealth (net

of t-costs) and little volatility. The correct comparison for the di↵erent trading strategies is

the average objective function (the expression of which is the same for all trading strategies

considered).

The third and fourth panels show that, as t-costs increase, the performance of all strate-

gies fall, as would be expected. However, BL and the GP-R continue to outperform the myopic

strategies. BL outperforms GP-R only very slightly, but the di↵erences and standard-errors

reported in the final columns show that the di↵erences in the objective function are statisti-

cally significant, as would be expected. The small performance di↵erence between GP-R and

BL is likely due to the fact that the log-normal return dynamics we simulate in the charac-
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teristics environment (which assumes a constant covariance matrix returns) do not conform

to the assumed normal return dynamics assumed in the GP-R solution (which assumes a

constant covariance matrix of price changes).

3.4.2 Factor Model Simulation Results

We now turn to the simulations which are run for the factor model environment in which

cross-sectional variation in expected returns is linked to common factor loadings (equation

(40)). The upper panel of Table 3 presents the set of strategy performance measures when

trading costs are zero. As before, with zero transaction costs the myopic strategy is optimal,

and thus all strategies (except GP-U) achieve the same average objective function, since they

all nest the myopic strategy.

The lower three panels present performance measures for the low, medium, and high

t-cost environments. In each environment, we find that BL achieves the highest objective

among the strategies. BL now more significantly outperforms GP-R. Interestingly, while the

di↵erence in the average objective functions (in the last column) declines with increasing

t-costs, the percentage di↵erence increases, and the BL objective function is 14% higher

than the average GP-R in the high t-cost environment.27 Also, GP-R is now much closer in

performance to MP-TC, and in fact in the low transaction cost underperforms MP-TC. Recall

that the t-cost multiplier for the MP-TC strategy is chosen so as to maximize the objective

function across all simulations.

The underperformance of GP-R in the factor-based environment is likely a result of the

fact that GP-R strategy does not take into account information on the expected future

dynamics of that covariance matrix, and the corresponding expected future transaction-cost

dynamics.28 In contrast, BL takes into account expected future covariance and transaction-

cost dynamics. To confirm this intuition, in the next section we examine impulse response

functions for the various strategies.

3.5 Policy responses to return shocks

In this section, we construct impulse response functions for the BL, GP-R, MP and MP-

TC policies described in Section 3.3. We do this for both the factor (equation (40)) and

27Note that the Sharpe and information ratios for the strategies do not always line up with the average
objective functions. The reason is that these ratios are not the objective function that is optimized and
hence can be a misleading performance criterion. For example, in the medium transaction cost case MP
achieves the second-lowest objective (i.e., very low average wealth net of t-cost and risk) but has the highest
Sharpe ratio.

28Recall that, GP-R is re-optimized, so it does use the correct conditional covariance matrix at each step.
However, it cannot take into account information about future changes in the covariance structure.
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Table 3: Policy performance: common factor environment

This table summarizes the performance of each policy in the factor model environment for
four di↵erent levels of transaction costs. For each policy, we report the average across the
10,000 runs of: the objective function, terminal wealth and transaction costs paid (in $
⇥105)); the information ratio using the myopic policy as a benchmark, and the annualized
Sharpe Ratio. The final column reports the di↵erence between the BL and the GP-R strategy
results and the associated standard errors.

MP MP-TC GP-U GP-R BL BL–GP-R

Zero Transaction Costs

Avg Objective 3001.31 3001.31 -98689.21 3001.31 3000.60 -0.71
Std Err 24.39 24.39 391.02 24.39 24.40 0.32
Avg Wealth 6007.09 6007.09 37659.88 6007.09 6006.76 -0.34
Std Err 24.37 24.37 163.16 24.37 24.38 0.34
TC 0.00 0.00 0.00 0.00 0.00 0.00
IR NA NA 3.17 0.59 -0.01 NA
SR 3.49 3.49 3.26 3.49 3.49 -0.01

Low Transaction Costs (⌘ = 1⇥ 10�7)

Avg Objective 429.61 452.37 -8036.32 447.94 490.57 42.63
Std Err 3.18 4.02 37.02 3.21 4.19 1.78
Avg Wealth 489.25 546.45 -5756.90 509.32 593.44 84.12
Std Err 3.16 4.00 31.14 3.18 4.14 1.72
TC 234.41 385.42 10297.69 236.30 385.78 149.48
IR NA 0.94 -3.01 0.17 0.72 NA
SR 2.19 1.93 -2.61 2.26 2.03 0.69

Medium Transaction Costs (⌘ = 2⇥ 10�7)

Avg Objective 229.21 242.62 -5002.27 251.86 279.06 27.20
Std Err 1.74 2.23 22.25 2.09 2.62 1.56
Avg Wealth 247.82 272.87 -4200.74 280.71 323.65 42.94
Std Err 1.74 2.23 20.05 2.07 2.59 1.53
TC 132.27 223.98 6812.61 158.05 232.64 74.59
IR NA 0.71 -3.28 0.31 0.59 NA
SR 2.02 1.73 -2.96 1.91 1.77 0.40

High Transaction Costs (⌘ = 4⇥ 10�7)

Avg Objective 118.48 125.57 -2990.79 136.65 155.83 19.17
Std Err 0.92 1.19 12.92 1.44 1.79 1.42
Avg Wealth 123.88 134.51 -2727.93 152.10 179.26 27.16
Std Err 0.92 1.19 12.15 1.44 1.77 1.41
TC 70.44 120.45 4169.41 98.60 130.81 32.21
IR NA 0.55 -3.44 0.31 0.50 NA
SR 1.90 1.60 -3.18 1.49 1.44 0.27
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Figure 1: Security returns and factor exposures – characteristics environment
The top panel plots the realized returns for a security in response to a 2� return shock in week2. The bottom
panel plots the factor exposures for reversal, momentum and value for security following this time 2 return
shock. This plot is for the characteristics environment.

characteristic (equation (41)) environments described in Section 3.4. Our analysis provides

some insights into the di↵erences in performance uncovered in our analysis in Section 3.4.

The basic environment is the same as in the preceding section. We begin by setting

the time 1 positions and exposures for each security equal to their long run mean of zero:

x
j,1 = �

j,rev,1 = �
j,mom,1 = �

j,value,1 = 0 8j.
We further constrain the residuals for all securities over week 1 to be zero. In week 2,

we “shock” the idiosyncratic return of security i with a positive 2-standard-deviation shock,

i.e., ✏
i,2 = 2�

i

, but set the idiosyncratic shocks for all other assets to zero (✏
j,2 = 0 8 i 6= j).

From week 3 to week 26, all future shocks are set to zero so that the path of realized returns

is equal to the path of expected returns.

3.5.1 Characteristics model results

The upper panel of Figure 1 plots the realized returns of security i for this experiment. The

positive return at time 2 is the shock itself. As a result of this shock’s e↵ect on the return

generating process, the expected return at time 3 is negative, but then decays quickly toward
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Figure 2: Trades and positions – characteristics environment
The upper panel plots the dollar size of trades, and the lower panel the dollar size of positions in security
i for various trading policies, following a two standard deviation idiosyncratic volatility shock in week 2.
The characteristic-based return generating process is used (equation (41)). The transaction costs parameter
corresponds to “medium” (i.e., ⌘ = 2⇥ 10�7)

zero, and eventually becomes very slightly positive – something that is di�cult to see in this

plot.

This pattern of expected returns is a result of the interplay between reversal, momentum

and value. The lower panel of this Figure illustrates how this comes about. This plot shows

the security i exposures to the three factors. At the end of week 2, all exposures at are

equal to approximately one-fourth of the idiosyncratic shock (recall that ⌫ = 0.2498 per

equation (41)), but then decay at very di↵erent rates. In the determination of the expected

return, the reversal e↵ect dominates from week 3 to week 11 resulting in a negative expected

return for security i. After week 11, the positive (but much smaller) premium for momentum

generates a positive expected return, but because the premium for momentum is about two

orders of magnitude smaller than that for reversal – as seen in Table 1 – the momentum

e↵ect is di�cult to see in the plot. Of course, because momentum is much longer-lived than

reversal, the cumulative e↵ects are more comparable.
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Figure 2 plots the dollar trades and corresponding positions in security i for the four

policies in the characteristics-based setting. The transaction cost parameter ⌘ is set to

2⇥ 10�7, corresponding to the “medium” cost regime. Consistent with the strategy results

discussed in Section 3.4, the trades and positions of the two forward-looking strategies (GP-

R and BL) are nearly identical in this characteristics environment, as are the trades and

positions of the two “myopic” strategies (MP and MP-TC).

A comparison of trades/positions of myopic and forward-looking strategies is instructive

in understanding the performance di↵erential evident in Table 2. While the myopic strategies

trades into the position at about the same rate as the BL strategies at time 2, the forward-

looking strategies trade out of the position much more quickly. This is because the myopic

policy trade is based only on the expected returns and covariance at any point in time, and

not on how quickly the expected return and covariances are expected to change. In contrast,

both GP-R and BL optimally incorporate the expected return dynamics of the security in

how they trade at every step. Even the MP-TC which has one additional free parameter

that helps account for the ‘expected return horizon’ cannot approach the optimal trading

strategy when there are several factors with di↵erent decay rate driving expected returns.

3.5.2 Factor model results

We now examine the strategy trades when the return generating process for security returns

is a factor model (equation (40)) rather than a characteristics model. Recall that in this

environment risk dynamics are far more complex, in that a security’s covariance with risk

factors changes as its factor loadings change. What we will see is that, since the BL method

anticipates the changes in risk (and transactions costs) while the GP-R method does not, the

BL outperforms the GP-R method by far larger amounts. In general, both of these method

outperform the myopic policies, which anticipate neither future changes in expected returns

nor future risk changes.

The upper panel of Figure 3 plots the path of realized returns of security i and the lower

panel of Figure 3 shows the path of the factor exposures. The main di↵erence relative to

Figure 1 is that, at the end of week 2, all three factor exposures are equal to the value of

the idiosyncratic shock (per equation (40)) which leads to four-times the magnitude of the

expected return when compared to characteristics-based model (but there is also more risk

since the return variance increases with factor exposures). The sign and pattern of realized

and expected returns are the same as in the previous case.

Figure 4 plots security i’s trades and positions for the four policies in the factor-based

environment. Comparing this to Figure 2, we see that there are now substantial di↵erences
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Figure 3: Security returns and factor exposures – factor model environment
The top panel plots the realized returns for a security in response to a 2� return shock in week 2. The
bottom panel plots the factor exposures for reversal, momentum and value for security following this time 2
return shock. This plot is for the factor environment.

between the BL and GP-R trades immediately following the shock. BL trades more aggres-

sively and builds larger short position in the first few weeks (due to short-term reversal) and

over time builds up a larger positive position in security i (due to momentum). This more

aggressive trading allows BL to eventually outperform GP-R.

In the last section, we saw that when returns were generated by a characteristics model,

both BL and GP-R outperformed the myopic strategies. The reason was that the BL and GP-

R trades both anticipated future changes in expected returns, while the myopic strategies did

not. In the factor-model setting, the covariance matrix and expected returns are both a↵ected

by factor shocks. The BL method takes into account the future dynamics associated with this

changing covariance matrix. In contrast the GP-R method cannot, as it implicitly assumes

that the price-change covariance matrix will not change going forward – an assumption that

is clearly violated in the factor environment. This is why the week 2 trade in response to

the shock is smaller for GP-R than for BL: the GP-R methodology implicitly assumes that

the high risk for security i at time 2 will continue indefinitely. In contrast, the BL trade

incorporates the fact that, as the factor loading decays over time, risk will decrease and
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Figure 4: Trades and positions – factor model environment
The upper panel plots the dollar size of trades, and the lower panel the dollar size of positions in security i

for various trading policies, following a two standard deviation idiosyncratic volatility shock in week 2. The
factor-model-based return generating process is used (equation (40)), and the transaction costs parameter
corresponds to “medium” (i.e., ⌘ = 2⇥ 10�7)

therefore trades more aggressively.

The analysis of this section shows that, when the covariance matrix or transaction costs

are highly dynamic, it is important to use a rule that calculates optimal trades and positions

taking into account the forecastable future changes in risk or transaction costs.

4 Applying the LGS methodology to US equities

Section 3 examined the performance of the LGS method relative to existing method with

simulated data as a way of characterizing where large performance gains were likely.

In this section we investigate the performance of the LGS when trading the 100 largest

US equities over the 1930:01-2014:03 time period. In contrast to the simulation approach

presented above here explore the performance of the LGS using real world data, meaning

that we need to first, estimate the data generating process from empirical data.

In this analysis we trade a zero-investment portfolio where the investment universe is the
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100 largest US common stocks. We develop a trading rule to exploit return predictability

that arises from the short-term-reversal e↵ect, price-momentum, and long-term reversal.29

It also relies on an estimate of the covariance structure of the returns of these 100 securities.

We divide the 84.25 year sample period into five-year sample-periods and one final 4.25

year sample-period, for a total of 17 samples. We assume that our agent begins each period

with the objective of maximizing wealth (net of transaction costs) at the end of that 5-year

period, minus a penalty for variance, as specified earlier.

At the beginning of each 5-year (60 month) period, our portfolio has a value of $0, and

has an asset weight vector which is all zeros. So, for example, our first period starts on the

last trading day of 1929, at which point the agent trades into the optimal portfolio based on

the trading rule. At the end of each month, the agent observes the performance of each of

the 100 securities over that month and, based on the revised portfolio holding and updated

return forecasts and transaction cost estimates, trades into the new portfolio based on the

trading rule. This pattern continues until the end of the last month in each 60-month period,

at which point we evaluate the performance of the portfolio over that 60-month period, which

allows us to compare the performance of the trading rules over the seventeen 5-year samples.

Our setting is not entirely realistic in that we assume our agent’s information set contains

the realized ’in-sample’ covariance matrix, the coe�cients from a projection of monthly

residual returns onto lagged monthly returns, and the firm’s market betas at the start of

each period. We endow the agent with this information, as it allows us to abstract away

from the question of how best to forecast future returns and covariances, and concentrate on

the relevant question for this paper, which is how one would construct an optimal portfolio

given these forecasts.

4.1 Data and trading setup

We proceed as follows. From CRSP, we extract monthly returns for all firms listed on the

NYSE, AMEX or NASDAQ. We exclude ADRs, etc., by requiring a share code of 10 or 11.

We perform our analysis on this set of firms one five-year period at a time, starting with

1930:01-1934:12, and ending with the 2010:01-2014:03 period. For each 5-year period, we

select the firms which have no missing returns from 30 months prior to the start of the

period, up through the end of the period. Of these firms, we select the 100 largest, measured

by equity market capitalization at the start of the five-year period.30

29See, respectively, Jegadeesh (1990) and Lehmann (1990), Jegadeesh and Titman (1993), and DeBondt
and Thaler (1985).

30Again, we note that the restriction that we have valid returns over each month of the coming 5-year
period means that this is not an implementable strategy.
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In each 5 year period, for each of the 100 firms, we calculate market betas and residual

returns. Market betas come from a regression of monthly excess returns of each firm on the

returns of the CRSP value-weighted market excess return, i.e.,

R̃
i,t

= ↵
i

+ �
i

R̃
m,t

+ r̃
i,t

where R̃
i,t

and R̃
m,t

are, respectively, firm i’s and the market’s return net of the one month

T-Bill rate, and the regression residual r
i,t

is firm i’s residual return.31

In each 5-year period, we then run Fama and MacBeth (1973) regressions for the 100

firms. That is, for each month t in the 5-year period, we perform an OLS cross-sectional

regression with the set of 100 month-t residual returns as the dependent variables, and

the corresponding residual returns from month t�⌧ , for ⌧ = 1, . . . , 30 as the independent

variables:

r
i,t

= �0,t +
30
X

⌧=1

�
⌧,t

r
i,t�⌧

+ ✏
i,t

(48)

We then average the estimated coe�cients �̂
⌧,t

from the 60 monthly cross-sectional regres-

sions in the five-year period to obtain our estimates of �
⌧

for this period:

�
⌧

⌘ 1

]T
X

t2T

�̂
⌧,t

,

where T is the set of months in this 5-year sample period. We further define the 30⇥1 vector

� as the stacked �
⌧

s: � = [�1,�2, · · ·�30]>.

4.1.1 Return generating process specification

For comparison with our simulation analysis of the previous section, we can rewrite the

return generating process (RGP) as follows:

r
i,t+1 = �>

i,t

�+ ✏
i,t+1 (49)

�
i,t+1 = A�

i,t

+B✏
i,t+1 (50)

31The series of one-month t-bill rates comes from Ken French’s data library at http://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Here �
i,t

is (30⇥ 1). A is (30⇥ 30) and B is (30⇥ 1), and are given by:
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In this specification �
i,t

is the vector of lagged unexpected returns for firm i, and the matrix

A acts as a shift operator.

The other element of the return generating process that we need to specify is the residual

covariance matrix ⌃
t!t+1 = E

t

[✏
t+1✏>

t+1]. In our model of the return generating process we

assume that this covariance matrix is time-invariant over each 5-year period, and is equal

to the realized covariance matrix, but we shrink each of the o↵ diagonal elements of the

covariance matrix by a factor of (1/3) to ensure that the matrix is non-singular.

4.2 Model performance with zero transaction costs

To assess how well this simple specification captures the return generating process, we analyze

the performance of a mean-variance-e�cient portfolio based on this RGP specification. Using

the expected return estimates from equation (49) above and the covariance matrix, calculated

as described in Section 4.1.1 above, we generate a portfolio with weights:

wMVE

t

= ⌃�1
�

�>
t

�
�

.

where column i of �
t

is �
i,t

, as discussed in Section 4.1.1 above, and
�

�>
t

�
�

is therefore

the (100⇥1) vector of expected residual returns over period t ! t + 1. The returns to this

portfolio in this period are then just:

rMVE

t+1 = (wMVE

t

)>r̃
t+1.

Figure 5 plots the monthly strategy returns to this strategy over the full period from

1930:01-2014:03, where the returns are normalized have 19% annualized volatility. The figure

shows that the strategy returns are, on average, well above zero. The annualized Sharpe

ratios in the five-year periods range from a minimum of 1.135 to a maximum of 4.395. The

full period annualized Sharpe ratio is 2.525.
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Figure 5: Zero t-cost strategy monthly returns
This figure plots the monthly returns to the zero t-cost strategy described in Section 4. Returns are scaled
to the an annualized ex-ante volatility of 19%.

4.3 An LGS-based methodology applied to real-world data

In this section we document the construction of an LGS-based methodology developed in

Section 2 using the real-world data. We also utilize the fixed-lag policy implementation

described in detail in Section 2.9.

As discussed in Section 2.3, we assume that the investor’s objective function is to maxi-

mize his expected terminal wealth net of t-costs and net of a quadratic risk penalty. Since

the conditional covariance is not time-varying for our model, the objective function can be

cast as follows:

max
T

X

t=1

E

h

x>
t

r
t+1 �

�

2
x>
t

⌃x
t

� ⌘

2
u>
t

⌃u
t

i

,

where ⌃ = Var(r
t+1) from the dynamics of the security returns (using shrunk estimates).

For simplicity, we assume that the transaction cost matrix is a constant multiple of the

covariance matrix of the returns as in the simulation experiment.

We calibrate ⌘ using the same methodology described in the simulation experiment. We

present results for three (low, medium and high) transaction cost regimes. We assume that
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the coe�cient of risk aversion � equals 10�9. We also set the transaction cost multiplier (⌘)

as in our simulation experiment so that the average slippage values in the three transaction

cost regimes correspond to 2.5 bps, 5 bps and 10 bps respectively. Using monthly volatility

of �
✏

= 0.1, this yields an ⌘ roughly around 2.5⇥ 10�9, 5⇥ 10�9 and 10⇥ 10�9 for the low,

medium and high transaction cost regimes respectively.32

We compare the gains from trading according to a myopic policy with transaction cost

multiplier (MP-TC) and LGS-based fixed-lag Best Linear (BL) policy using the methodology

developed in Section 2.9. We evaluate the performance of the policies in each of the 17

five-year trading horizons from 1930 to 2014.

We use a similar approach undertaken in Section 3.3 to compute both trading policies.

Let xMP
t

be the vector of dollar positions that the myopic policy chooses in each asset. Then,

xMP
t

= ((⌘ + �)⌃)�1 ��
t

�+ ⌘⌃
�

xMP
t�1 �Rt

��

.

We will then choose an optimal multiplier ⌧ ⇤ so as to maximize the unconditional performance

(i.e., across all simulations) of the trading strategy. Formally, this modified myopic strategy

has a solution:

xMP�TC
t

= ((⌧ ⇤⌘ + �)⌃)�1 ��
t

�+ ⌧ ⇤⌘⌃
�

xMP�TC
t�1 �R

t

��

where ⌧ ⇤ is given by

⌧ ⇤ =argmax
⌧

E

h⇣

x>
t

r
t+1 �

�

2
x>
t

⌃x
t

� ⌧⌘

2
u>
t

⌃u
t

⌘i

,

subject to x
t

= ((⌧⌘ + �)⌃)�1 ��
t

�+ ⌧⌘⌃
�

xMP�TC
t�1 �R

t

��

.

We will compare MP-TC with a fixed-lag best linear policy that uses at most two lags in

security exposures. Therefore, our position and trade vectors will take the following form:

x
i,t

= ✓>
i,t,t

B
i,t

and u
i,t

= ⇡>
i,t�1,tBi,t�1!t

+ ⇡>
i,t,t

B
i,t

We define the relevant stock exposure variables for each security to be the stock specific

myopic portfolio holdings, i.e., B
i,t

= [xMP
i,t

]. We then follow the methodology developed in

Section 2.9 to determine the optimal parameters of our LGS strategy.

32In our model, 1
2⌘�

2
✏u

2 measures the transaction cost of trading u dollars. Therefore, our choice of
parameters implies that a trade with a notional value of $20 million results in $5,000, $10,000 and $20,000
of transaction costs in the three regimes.
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Table 4: Real World Experiment: Policy Performance.

This table reports the average objective value, terminal wealth, transaction costs paid, and
the standard errors (all in millions of dollars), and the average annualized Sharpe ratio.
For all measures, averages are taken across the 17 five-year periods in the sample (1930:01-
2014:03) in our real world experiment. The two policies are the myopic policy with the
optimal t-cost multiplier (MP-TC), and the LGS fixed-lag policy (BL). The final column
reports the di↵erence between the BL and MP-TC metrics, and the standard errors of these
di↵erences.

MP-TC BL BL–MP-TC

Low Transaction Costs

Avg Objective 1317 5444 4126
Std Err 2598 2024 1046
Avg Wealth 15046 13999 -1047
Std Err 3219 2627 790
TC 13688 10383 -3305
Avg SR 0.69 0.80 0.11

Medium Transaction Costs

Avg Objective 382 3011 2630
Std Err 1962 1525 700
Avg Wealth 8050 7453 -597
Std Err 2412 1876 666
TC 8617 6243 -2374
Avg SR 0.50 0.59 0.09

High Transaction Costs

Avg Objective 258 1623 1365
Std Err 1443 1106 456
Avg Wealth 4280 3810 -469
Std Err 1760 1308 534
TC 4829 3449 -1380
Avg SR 0.36 0.44 0.08

4.3.1 Results

Table 4 shows the performance statistics of the myopic and LGS-based policies across the

17 five year samples. The results show that our LGS-based policy significantly outperforms

statistically and economically the adjusted myopic policy in terms of average objective value

and Sharpe ratios in all three transaction cost regimes. We would expect the outperformance

to increase if we were to allow for more lags in the position and trade vectors of the LGS

policy.
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Figure 6: Real world experiment: cumulative wealth and objective function
This figure plots the time series of wealth levels and objective function levels from the real world experiment
described in Section 4. We do this from a cumulative gains perspective by aggregating over time the statistics
from the five-year investment horizons. We assume a medium transaction cost environment. Dollar values
are in millions.

Even though the average terminal wealth values are similar between two policies, MP-TC

seems to take substantially higher risk. This gets reflected in a higher variance of the terminal

wealth and in much higher transaction costs paid. It appears that the adjusted myopic policy

trades too aggressively compared to LGS policy. Furthermore, the outperformance of the

LGS policy seems robust as the average statistics are not driven by any single five-year period

performance. Actually, in 16 out of 17 five-year investment periods, the LGS-based policy

achieves a better objective value than the myopic strategy.

Figure 6 illustrates the wealth and objective dynamics of an investor using the LGS

based fixed-lag policy, BL, and the adjusted myopic policy, MP-TC, in each of the five-year

investment horizons33. We assume that the investors are in the medium transaction cost

environment. Consistent with the earlier statistics, while having similar wealth evolution,

we observe that the outperformance of the BL policy as measured by the cumulative objective

value is robust over time.
33We emphasize that these returns are not to be taken literally, since the transaction costs charged do not

correspond to actual transaction costs that would have been paid, and since we used an in-sample estimate
of the covariance matrix of returns as discussed previously. The graph is useful to compare the performance
of two strategies having access to the same covariance matrix forecast and same transaction cost structure.

45



5 Conclusion

The LGS framework we propose accommodates complex models of return predictability in

a multiperiod setting with transaction costs. Our return predicting factors do not need

to follow any pre-specified model but instead can have arbitrary dynamics. We allow for

factor dependent covariance structure in returns driven by common factor shocks or stochas-

tic/GARCH volatility, as well as time varying transaction costs.

The main insight is that for the class of LGS the optimal policy can be computed in

closed-form by solving a deterministic linear quadratic problem, which is computationally

very e�cient.

Numerical experiments show that the performance of the linear-quadratic solutions of

Litterman (2005) and Gârleanu and Pedersen (2013) come close to the LGS solution when

when the covariance matrix of price changes is approximately constant (where L-GP provide

the optimal solution). However, when returns display stochastic volatility the superiority of

the LGS approach is stronger. We also investigate the performance of the LGS framework

when trading a strategy based on short-term reversal, momentum and long-term reversal.

These three predictor variables have very di↵erent half-lives and thus transaction costs are a

first order concern. The benefits to using a dynamic framework appear significant compared

to a widely used approach that relies on a myopic objective function with a transaction cost

multiplier that is chosen to maximize the in-sample performance.
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