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Abstract

I consider nonparametric identification of a nonseparable model with a continuous

endogenous variable (treatment), a scalar unobservable and an excluded instrumental

variable. If the first-stage relationship between the instrument and the treatment is

strictly monotone in unobservables then many kinds of relevant instruments can be

used to identify the levels of the outcome equation. In particular, binary instruments,

such as the intent to treat, can be used. This contrasts sharply with related work on

nonparametric identification for nonseparable models, which has often required con-

tinuous instruments, sometimes with large support. The key insight is that strict
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monotonicity (rank invariance) in the first-stage relationship imposes a restriction on

the copula function between the treatment and unobservables. I develop several exam-

ples of economic models in which strict monotonicity arises naturally from a decision

problem, functional form considerations or informal arguments.

JEL classification: C14; C20; C51

Keywords: Nonseparable models, nonparametric identification, instrumental vari-

ables, selection, unobserved heterogeneity, rank invariance, copulas, quantile regression

1 Introduction

The classical linear model, Y = Xβ + U , with β ∈ R and U unobserved, is separa-

ble because it assumes that the effect of X on Y is β, which is deterministic. The

nonparametric model, Y = m(X) + U , where m is an unknown function, is also sep-

arable because the effect of X is ∇xm(X), which is deterministic after conditioning

on observables. This paper is about the nonseparable model Y = m(X,U). In this

model, the effect of X on Y is ∇xm(X,U), which is still stochastic after conditioning

on observables because U is unobserved. Nonseparable models can capture generalized

unobserved heterogeneity in the effect of X, whereas separable models cannot.

Separable models are frequently used in applications even though they are rarely

justified by economic theory or empirical evidence (Heckman, 2001). One reason for

this is that nonseparable models present challenging identification problems when X

is endogenous (statistically dependent with U) and only a single cross-section of data

is available.1 Standard instrumental variables techniques cannot be applied directly

(Heckman and Vytlacil, 2005; Heckman et al., 2006). Modified instrumental variables

arguments usually require continuous instruments. Chesher (2003) uses a continuously

distributed instrument to identify derivatives under local conditions. To identify levels,

1This paper only considers cross-sections. There is a recent body of work that uses the additional
dimension of a panel to nonparametrically identify a nonseparable model. The most closely related to this
paper are Altonji and Matzkin (2005), Athey and Imbens (2006) and Evdokimov (2010).
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a continuous instrument often must have large support, which means that it has pos-

itive density over the entire real line (e.g. Heckman, 1990; Imbens and Newey, 2009).

However, many commonly available instruments are discrete, such as exogenous policy

shifts, natural experiments or the intent to treat in a randomized controlled experiment

with partial compliance. Among continuous instruments, few will satisfy the large sup-

port assumption. Given that plausibly exogenous instruments are hard to find, these

are important limitations.

Other approaches to identifying nonseparable models have come at the cost of

economic interpretability. An extreme example is Heckman’s (1979) selection model,

which doesn’t require any instruments. Its identification rests on parametric assump-

tions about the error distributions. In more recent work, Florens et al. (2008) introduce

an instrument and impose a flexible polynomial structure on the outcome equation.

As the authors point out, this type of structure can be difficult to generate from eco-

nomic primitives. Chernozhukov and Hansen (2005), Chernozhukov et al. (2007) and

Chen et al. (2011) identify nonseparable instrumental variables models by using non-

linear versions of the completeness condition employed by Newey and Powell (2003).2

However, the economic content of these completeness conditions has not yet been de-

termined.

In this paper, I present conditions under which m is nonparametrically identified in

the nonseparable model Y = m(X,U), when X and U may be arbitrarily dependent

and only a cross-section of data is available. I consider the case where Y and X are

continuously distributed and m is strictly increasing in U , which is scalar. Identifi-

cation is obtained by utilizing an excluded instrument that is related to X through

a first-stage equation that is strictly monotone in unobservables. This condition has

economic content as a rank invariance assumption and allows for the use of discrete-

valued instruments. As I show, it can also be formulated as an assumption about the

2Chernozhukov and Hansen (2005) use a completeness condition only when the treatment is continuous.
Their main results are for discrete treatments.
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copula function of (X,U) conditional on the instrument. In Section 2, I discuss the

model and its interpretation. In Section 3, I present the identification result and de-

scribe the intuition behind it. Section 4 provides examples based on recent empirical

work where rank invariance is a reasonable assumption. Section 5 concludes. In Tor-

govitsky (2011a), I use the identification result to construct a minimum distance from

independence estimator and I establish its asymptotic properties.

2 Model

Suppose that a scalar response variable Y is determined by the relationship

Y = m∗(X,W,U), (1)

where X is a scalar explanatory variable (treatment), W are covariates, U is a scalar

unobservable and m∗ is an unknown function. I allow for X to be endogenous, i.e.

potentially dependent with U , even conditional on W . This situation arises frequently

in economics. For example, if Y is an agent’s log wage, X is their investment in

education and W are observable socioeconomic variables, selection on latent ability

suggests that U ⊥⊥�X|W . I focus on identifying the distribution of the counterfactual

random variable Yx ≡ m∗(x,W,U), conditional on W = w. This distribution describes

the impact on Y of exogenously setting X = x for the population subgroup determined

by W = w. Suppose that there exists a scalar instrument Z that is excluded from (1)

and that the following assumptions about (1) hold.3

M.C. (Continuity) For every (w, z) ∈ WZ ≡ supp(W,Z), (X,U)|(W,Z) = (w, z)

and (X,U)|W = w are continuously distributed with connected support and have

3The results throughout this paper extend to cases where X and/or Z are vector-valued. Most of the
underlying intuition remains unchanged, but there are some additional details and the notation becomes
much more complicated. To keep the exposition clear, I treat these extensions separately in Torgovitsky
(2011b).
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everywhere differentiable distribution functions.4

M.SI. (Scalar heterogeneity) m∗(x,w, ·) is strictly increasing for every (x,w) ∈

XW ≡ supp(X,W ).

M.C and M.SI imply that the distribution of Yx|W is continuous and can be related

to that of U |W through their quantile functions asQYx|W (t|w) = m∗(x,w,QU |W (t|w)).5

A normalization is needed to separate the scale of m∗ from that of the random variable

U |W . This was formally shown to be necessary for identification by Matzkin (2003)

who considered several different normalizations that arise naturally in econometric

models. The normalizations from that work are all applicable to this paper. For con-

creteness, I focus on the following, which endows m∗ with a particularly straightforward

interpretation.6

N.QR. (Quantile regression normalization) U |W ∼ Unif[0, 1].

Under N.QR, QYx|W (u |w) = m∗(x,w, u) is interpretable as the uth quantile treat-

ment response (QTR) of Y to setting X = x for the population subgroup corresponding

to W = w. Similarly, quantile treatment effects (QTEs) can be formed for any pair x, x′

as QYx′ |W (u|w)−QYx|W (u|w) = m∗(x′, w, u)−m∗(x,w, u). These effects are exogenous

(or causal) with respect to X, but not necessarily with respect to the covariates, W .

QTEs describe the horizontal distance between two counterfactual distributions and

have attracted considerable interest among both theoretical and applied researchers

interested in the distributional effects of treatments.7

4Only almost everywhere differentiability is guaranteed by absolute continuity. This additional technical
condition is convenient in the proofs, but not necessary.

5For any scalar random variable Y and random element W , QY (t) ≡ inf {y : FY (y) ≥ t} and QY |W (t|w) ≡
inf
{
y : FY |W (y | w) ≥ t

}
. For any scalar– or vector– valued random variable Y , I use the notation

FY |W (y | w) ≡ P [Y ≤ y |W = w] for w ∈ suppW .
6I demonstrate the identification result in Section 3 in a way that is invariant to the normalization used.

Other normalizations are provided in Appendix A.
7In addition to the previously cited papers, see, e.g., Abadie et al. (2002), Bitler et al. (2006), Firpo

(2007), Djebbari and Smith (2008) and Chernozhukov et al. (2009).
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For identifying QTEs, the assumption that U is scalar is not, by itself, restrictive.

Su et al. (2010) show that if U were a high-dimensional unobservable, then (1) would

be observationally equivalent to an equation with a scalar unobservable. This result

implies that it is not possible to identify the separate impacts of a high-dimensional U

in (1). Indeed, authors who have studied models with high-dimensional unobservables

have ultimately identified quantities that integrate over them, e.g. Blundell and Powell

(2003), Hoderlein and Mammen (2007) and Imbens and Newey (2009). As Chesher

(2007) points out, this is representative of a fundamental trade-off in identification

analysis between the number of observable and distinct unobservable quantities. If m

and U are desired to have a specific structural interpretation different from that given

by N.QR, then requiring U to be scalar can be restrictive.

Given a scalar U , the additional strict monotonicity assumption of M.SI is a further

restriction. It has the interpretation of rank invariance, meaning that FYx|W (Yx |W ) =

FU |W (U |W ) = FYx′ |W (Yx′ |W ) for all x, x′. Rank invariance is a concept that was

originally introduced by Doksum (1974) and has been recently revisited by Heckman

et al. (1997) and Chernozhukov and Hansen (2005). It can be interpreted as positing an

underlying proneness or ranking of agents for Y , conditional on W , that is not affected

by counterfactual manipulations of X. For example, if rank invariance holds, then

relatively high earning (Yx) 35-year-old white males (W ) with a high school education

(X = x) would also be relatively high earning (Yx′) if they had a college education

(X = x′).8

The identification issues in this model arise because the counterfactual distribution

Yx|W is only observed conditional on X = x. When X is exogenous, i.e. U ⊥⊥X|W ,

the distribution of Yx|W is equal to the observable distribution of Y |W,X = x, so

QY |WX(t |w, x) = QYx|W (t |w) = m∗(x,w,QU |W (t |w)) is immediately identified from

8Chernozhukov and Hansen (2005) also introduce a slightly weaker alternative to rank invariance that
they call rank similarity. This allows the ranks to deviate from a common ranking as long as the deviations
are exogenous. Assumption M.SI can also be replaced by a rank similarity condition without affecting the
results.
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the data. A normalization such as N.QR then provides identification of m∗. When

U ⊥⊥�X|W , m∗(x,w,QU |W (t | w)) is not identified because the distribution of Yx|W

differs in an unknown way from that of Y |W,X = x. I will show that the excluded

instrument, Z, can be used to identify the function m∗ on XWU ≡ supp(X,W,U) if

it satisfies the following assumptions.

Z.FS. (First stage equation) There exists a function g such that X = g(W,Z, V ),

where V is an unobserved scalar and

Z.FS.EX. (Exogenous instrument) (V,U)⊥⊥Z|W .

Z.FS.SI. (Scalar heterogeneity) g(w, z, ·) is strictly increasing for every

(w, z) ∈ WZ.

Z.R. (Relevance) Let Xw and Zw denote suppX|W = w and suppZ|W = w for

w ∈ W ≡ suppW . Suppose that either Z.R.D or Z.R.C holds for each w ∈ W.

Z.R.D. (Discrete) Zw is finite, Xw is bounded either from above or below (or

both) and, except for finitely many x ∈ Xw, there exist zw(x), zw(x) ∈

Zw such that 1 > FX|WZ(x | w, zw(x)) > FX|WZ(x | w, zw(x)) > 0.9

Z.R.C. (Continuous) Z|W = w is continuously distributed and for almost

every x ∈ Xw there exists a z′w(x) ∈ Zw such that FX|WZ(x | w, ·) is

differentiable at z′w(x) with ∇zFX|WZ(x | w, z′w(x)) 6= 0.

The exogeneity condition of Z.FS.EX is a standard assumption. Full independence,

rather than mean independence, is required because of the nonseparability of (1).

The instrument only needs to be exogenous conditional on covariates. This can be

an important distinction when considering the validity of an instrument that is not

randomly assigned. Assumption Z.FS.SI has the same rank invariance interpretation

as M.SI, only it concerns the effect of the instrument on the treatment. That is,

FXz |W (Xz |W ) = FV |W (V |W ) = FXz′ |W (Xz′ |W ) for any z, z′, where Xz ≡ g(W, z, V )

9The bound(s) on Xw can vary with w.
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is a counterfactual realization of X. The common ranking is FV |W (V |W ), which can

change with covariates. Conversely, if the instrument is exogenous and rank invariance

holds, then a g and V satisfying Z.FS will always exist.

Proposition 1. Let Z ≡ suppZ. Given M.C, Z.FS is satisfied if and only if there

exists a collection of random variables {Xz}z∈Z such that X =
∑

z∈Z 1 [Z = z]Xz with

Xz|W = w continuously distributed for every (w, z) ∈ WZ, (Xz, U)⊥⊥Z|W for every

z ∈ Z and FXz |W (Xz |W ) = FXz′ |W (Xz′ |W ) for every z, z′ ∈ Z.

In Section 4, I show how Z.FS can be justified in specific applications, either by speci-

fying g and V directly or by appealing to the equivalent rank invariance interpretation.

Assumption Z.R is a relevance condition for the instrument.10 Both the discrete and

continuous versions of Z.R require Z to have an impact on X at almost every point

in its support. This is a natural requirement for an instrument in a nonparametric

model, because there is no functional form to use for extrapolation. It may only hold

on some proper subset of the observed values of X and Z. For example, if X is income

and Z has no effect on those with large incomes, then Z.R may still be satisfied in an

analysis that considers only agents with low incomes.11 If the researcher is willing to

assume that m∗ ∈ {mθ : θ ∈ Θ ⊆ Rdθ} is an element of a finite-dimensional parameter

space, the analysis can be restricted to a determining set XWΘ that is rich enough

that mθ(x,w,QU |W (· | w)) = mθ∗(x,w,QU |W (· | w)) for all (x,w) ∈ XWΘ implies

θ = θ∗ for any θ, θ∗ ∈ Θ. Extrapolation outside of XWΘ is then possible, but it is

based on nonparametric identification achieved inside XWΘ. As Chesher (2005, 2007)

shows, linear instrumental variables models can be misleading in this regard because

correlations provide no information about the set of treatment intensities at which the

instrument is relevant.

10This is often called a rank condition. I avoid that terminology because it could create confusion with
rank invariance, which is unrelated.

11However, a first-stage relationship that satisfies Z.FS for all incomes may or may not still satisfy Z.FS.EX
and/or Z.FS.SI when restricted to only low incomes. Truncating the support of X to satisfy Z.R necessitates
reconsidering the appropriateness of Z.FS for the smaller support.
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Assumption Z.R.D contrasts sharply with the existing literature on nonseparable

instrumental variables models for continuous treatments, which requires a continuously

distributed instrument.12 This is important in practice. Many commonly used instru-

ments assume only two values, such as the intent to treat in a randomized controlled

experiment with partial compliance or an exogenous policy shift in a natural experi-

ment. Assumption Z.R.C applies to continuous instruments, but does not require the

familiar large support assumption, i.e. suppZ = R, that Imbens and Newey (2009) use

for point identification of the QTR.13 Their model is the same as the one in this paper

except, crucially, they do not assume M.SI. As discussed, this imposes rank invariance

on the outcome equation. The trade-off between the identification result of Imbens and

Newey (2009) and the one in this paper is between large support for the instrument

and strict monotonicity in the outcome equation.

Another notable aspect of both Z.R.D and Z.R.C is that, except when Z ∈ {0, 1} is

binary, they do not generally require the common support assumption supp(X,Z)|W =

suppX|W × suppZ|W .14 This significantly complicates the proof of identification in

Section 3, but it is important in practice. For example, if different types of subsidies, Z,

are offered to agents with different incomes, X, then the common support assumption

does not hold.

It is possible to state Z.R.D and Z.R.C in terms of the first-stage equation in Z.FS.

While this is perhaps more primitive, the equivalent conditions are less intuitive. The

given statement of Z.R is attractive because it can be easily verified by examining the

data. Moreover, Proposition 1 shows that an analyst who believes that rank invariance

is an appropriate assumption does not need to specify a first-stage equation at all. On

the other hand, examining some simple sufficient conditions for Z.R in terms of g and

12For example, see Chesher (2003), Florens et al. (2008) and Imbens and Newey (2009).
13Imbens and Newey (2009) also provide sharp set identification results when the support of Z is not large

enough to obtain point identification.
14When Z is binary, common support corresponds to the intuitively appealing requirement that at every

X = x there are non-trivial treatment (Z = 1) and control (Z = 0) groups.
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V helps to clarify just how weak this assumption is. For Z.R.C to hold in the case

of no covariates, it suffices that ∇zg(z, v) exists and is non-zero almost everywhere.

Similarly, Z.R.D will hold if, e.g., suppV = (0,∞) and there are z, z ∈ Z such that

g(z, ·) and g(z, ·) have the same range with g(z, v) 6= g(z, v) for almost every v.

3 Identification

The first-stage relationship described by Z.FS has an equivalent characterization that

is helpful in the identification analysis.

Proposition 2. If M.C holds then Z.FS is equivalent to

Z.RE. (Conditional rank exogeneity) (R,U)⊥⊥Z|W where R ≡ FX|WZ(X |W,Z)

is called the conditional rank of X|W .

Let M denote the collection of all outcome functions that satisfy M.SI and are

everywhere continuous in x and u on XWU . Identification under Z.R.C will require

differentiability as well. Let Md ⊆ M denote those outcome functions that are also

everywhere differentiable in x and u on the interior of XWU . For any m ∈ M, let

Um ≡ m−1(X,W, Y ), where m−1 is the inverse of m with respect to its last argument

and define m(x,w, t) ≡ m(x,w,QUm|W (t | w)). The following theorem shows that if

the model is correctly specified, i.e. (1) holds for some m∗ ∈ M, then m∗(x,w, t) =

m∗(x,w,QU |W (t | w)) is identified for every (x,w) ∈ XW and every t ∈ [0, 1]. This

demonstrates identification of m∗ up to a normalization on the scale of m∗ or U , such

as N.QR in Section 2 or N.S, N.H in Appendix A.

Theorem 1. Suppose that (1) holds, m∗ ∈ M and that M.C, Z.R.D and Z.FS are

satisfied. Then for any m ∈M, (R,Um)⊥⊥Z|W if and only if m(x,w, t) = m∗(x,w, t)

for every (x,w) ∈ XW and every t ∈ [0, 1]. The same statement is true for m ∈ Md

if m∗ ∈Md and Z.R.C holds instead of Z.R.D.
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Theorem 1 can be used to construct a minimum distance from independence esti-

mator for m∗.15 In Torgovitsky (2011a), I consider

m̂ = arg min
m∈MN

∫ [
F̂RUmZ (r, u, z)− F̂RUm (r, u) F̂Z (z)

]2
dµ(r, u, z), (2)

where MN ⊆ M is a collection of normalized outcome functions, µ is a measure

over the support of (R,Um, Z) and covariates have been suppressed for simplicity.

The integrand is composed of empirical distribution functions that are constructed

from the pseudo-sample (R̂i, U
m
i , Zi), where R̂i is an estimate of FX|Z(Xi | Zi) and

Umi = m−1(Xi, Yi). Theorem 1 shows that in the absence of sampling error, m̂ = m∗

is the unique minimizer of (2).

The proof of Theorem 1 is facilitated by some elementary copula theory. Sklar

(1959) showed that the distribution function for any continuously distributed random

vector can be uniquely expressed as a combination of its constituent marginal distri-

butions and a joint distribution, called a copula function, that admits unit uniform

marginals. His result is the following.

Theorem 2 (Sklar’s Theorem). Let (X,U) ∈ R2 be a random vector with joint

distribution FXU . There exists a probability distribution function C such that for all

(x, u) ∈ R
2
,

FXU (x, u) = C (FX(x), FU (u)) .

The function C is called the copula function of (X,U) and has support [0, 1]2. If X and

U are continuously distributed then C is unique. If Z is a random element such that

X|Z = z and U |Z = z are continuously distributed for z ∈ suppZ then there exists a

15Econometric applications of minimum distance from independence estimation include Manski (1983),
Brown and Wegkamp (2002) and Komunjer and Santos (2010).
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unique conditional copula function C(·, ·; z) such that

FXU |Z(x, u | z) = C
(
FX|Z (x | z) , FU |Z(u | z); z

)
for all (x, u) ∈ R

2
.

Proof. See, e.g., Nelsen (2006) for the traditional result and Patton (2006) for the

extension to the conditional case. Q.E.D.

Sklar’s Theorem shows that the reason that two random vectors with the same marginal

distributions can have different joint distributions is precisely because they can have

different copulas. For a given set of marginals, the copula therefore fully characterizes

the dependence structure of a random vector.

The analysis in Theorem 1 involves the copulas for the collection of random vectors

{(X,U)|W,Z = z} indexed by z. The next proposition shows that under Z.RE (or

Z.FS, by Proposition 2), this collection is actually just a singleton.

Proposition 3. Given M.C, Z.RE holds if and only if both

Z.EX. (Marginal exogeneity) U ⊥⊥Z|W .

Z.CI. (Copula invariance) The copula function for (X,U)|(W,Z) = (w, z) is equal

to the copula function for (X,U)|(W,Z) = (w, z′) for every (w, z), (w, z′) ∈

WZ.

This result means that the first-stage formulation of Z.FS is a nonparametric restriction

on the dependence structure of (X,U)|W,Z. The loose interpretation is that whatever

the underlying source of the dependence between X and U is, it is not affected by

exogenous manipulations of the instrument. This is consistent with the rank invariance

interpretation given in Section 2. In the first-stage specification of Z.FS, the source of

the dependence between X and U is V . The random variable FV |W (V |W ) corresponds

to an agent’s ranking for X. As noted before, Z.FS implies that this ranking is invariant

to exogenous manipulations of Z.
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Given the related literature on nonseparable models, it may seem surprising that

Theorem 1 holds for a discrete instrument that satisfies Z.FS and Z.R.D, especially

one that has only the two-point (binary) support {0, 1}. An intuitive requirement for

identification of levels in a nonparametric model is that the assumptions are sufficient

to provide a comparison of the exogenous effects of xa and xb on Y for any xa, xb.

That this is the case here can be demonstrated through a chaining argument that uses

Z.RE. For simplicity, assume that there are no covariates. The conditional rank always

satisfies R⊥⊥Z,16 so Z.RE is equivalent to the combination of U ⊥⊥Z and U ⊥⊥Z|R.

This can be interpreted as saying that changes in Z are unconditionally exogenous

and remain exogenous after including the conditional rank of X in the information set.

Assumptions M.C and Z.R.D imply that conditional on R = r ∈ (0, 1), an exogenous

shift of Z from z to z′ corresponds to a unique shift between two distinct realizations of

X, say x and x′. Thus, given the exclusion of Z from (1) and U ⊥⊥Z, the difference in

the distributions of Y |(R,Z) = (r, z) and Y |(R,Z) = (r, z′) is entirely attributable to

the associated exogenous shift from m∗(x, ·) to m∗(x′, ·). This difference is observable

because R is observable.

When Z is binary, only one such exogenous shift is possible for any given rank,

r. However, M.C and Z.R.D allow shifts at different ranks to be chained together so

that any two arbitrary points can be compared by repeatedly shifting Z. For example,

to compare the direct effect of xa to that of xb, first find the r0
a such that xa =

QX|Z
(
r0
a

∣∣ 0
)
. Such an r0

a exists by M.C and Z.R.D. Now shift Z = 0 to Z = 1 while

holding R = r0
a. This represents an exogenous shift from xa to x1

a = QX|Z
(
r0
a

∣∣ 1
)
.

Assumption Z.R.D ensures that x1
a 6= xa, so this comparison is not trivial. Next,

find the r1
a such that x1

a = QX|Z
(
r1
a

∣∣ 0
)
. Repeat the process by finding an x2

a =

QX|Z
(
r1
a

∣∣ 1
)
, which gives an exogenous shift from x1

a to x2
a. Notice that now xa has

been exogenously compared with x2
a through their mutual comparisons with x1

a. The

proof of Theorem 1 shows that this sequence xa, x
1
a, x

2
a can be continued indefinitely

16This is because P [R ≤ r | Z = z] = P
[
X ≤ QX|Z(r | z)

∣∣ Z = z
]

= r for any r ∈ [0, 1], z ∈ suppZ.
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Figure 1: Chaining together multiple exogenous comparisons when Z is binary.
The dashed arrows represent exogenous shifts starting from xa while the dotted arrows
represent exogenous shifts starting from xb. The relevance condition, Z.R.D, is only satisfied
here for an analysis with X = [xL,∞). Further extrapolating assumptions would be needed
to identify m in a model including treatment levels x < xL.
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and that M.C allows xa to be compared with a unique limiting point, xL. Moreover, an

analogous sequence started at xb has the same limit. Thus xa and xb can be exogenously

compared through their mutual comparisons with xL. This is the intuition behind

Theorem 1. Figure 1 depicts this argument graphically.

4 Examples

Example 1 (A structural model of the returns to schooling). 17 Suppose that

Y is lifetime earnings, X is a measure of investment in schooling and W is a set of

socioeconomic and family background controls. The analyst is interested in the effect

of schooling investment in the educational production function Y = m∗(X,W,U). The

classic endogeneity problem in this situation is that U ⊥⊥�X|W because U captures,

among other things, latent traits such as ability, which are likely to be dependent with

both education decisions and earnings.

Suppose that agents choose X by maximizing expected lifetime earnings net of

costs,

X = g(W,Z, V ) = arg max
x

E [m∗(x,W,U)|W,V ]− c(x,W,Z),

where c is the educational cost function and V is a scalar signal of U that is observed

by the agent. The instrument Z is an exogenous cost shifter that is excluded from

the production function. For example, Card (1995) uses an indicator for residence in

a county with a four year college as a cost shifter and argues that Z is exogenous,

conditional on W , i.e. Z satisfies Z.FS.EX. As discussed in Imbens and Newey (2009),

g(w, z, ·) is strictly increasing under the following assumptions.

1. m∗ is strictly increasing in x.

2. m∗ is twice continuously differentiable.

17This example is due to Imbens and Newey (2009). I have modified it slightly to include covariates.
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3. There are diminishing returns to schooling, ∇2
xm
∗ < 0, and the returns to school-

ing increase in ability, ∇2
x,um

∗ > 0.

4. Costs increase in education at an increasing rate, ∇xc,∇2
xc > 0.

5. V and U are affiliated random variables, conditional on W .

Theorem 1 shows that m∗ is identified as long as Z.R holds. �

Example 2 (The returns to schooling in a natural experiment). Duflo (2001)

estimates the returns to schooling using an instrument derived from a natural experi-

ment in Indonesia. The experiment was the result of a 1970’s era government campaign

to construct primary schools. In this example, Y is hourly wage, X is schooling ob-

tained and W contains characteristics of the region of birth. The instrument, Z, is an

interaction term between year of birth and the number of schools planned for construc-

tion in the agent’s region of birth. Duflo shows that this instrument is relevant and

argues convincingly that it is exogenous and can be excluded from (1). Her analysis

suggests that Z.R.D and Z.FS.EX are reasonable assumptions. Assumption Z.FS.SI re-

quires rank invariance in schooling. An agent who would have obtained a large amount

of schooling, relative to his peers, had he been of an age and in a region where many

schools were built, would also have obtained a relatively large amount of schooling

if he were of an age and/or region in which few schools were built. In other words,

Z.FS.SI assumes that agents possess an underlying proclivity for education that is not

affected by their year of birth or the intensity of the school building program in their

birth region. Under this assumption, Theorem 1 shows that a nonseparable outcome

function that is continuous and satisfies M.SI is nonparametrically identified. �

Example 3 (The effect of class size with a first-stage equation). Let Y be a

measure of schooling outcomes (e.g., standardized test scores), X be the average class

size of a school and W be a set of observable controls such as school characteristics

and socioeconomic variables. The unobservable U aggregates the litany of other fac-

tors involved in determining outcomes, including parental involvement and unobserved
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family background characteristics. The assumption that U ⊥⊥X is unlikely to hold,

even conditional on W , because families that value education more highly are more

likely to select into schools on the basis of the prevailing class size.

Hoxby (2000) uses an instrument that captures the exogenous fluctuations in the

number of enrolled students caused by changes in the timing of births around the cal-

endar year. Suppose that s̄(W,V ) represents the number of students that would be

enrolled if the timing of births were non-varying, where V is some random element

that may be arbitrarily dependent with U . Letting Z ≈ 1 > 0 represent propor-

tional exogenous fluctuations in enrollment, the actual number of enrolled students is

s(W,Z, V ) = Zs̄(W,V ). Similarly, suppose that c̄(W,V ) denotes the number of classes

that the school would maintain in a baseline year and let the actual number of classes

be given by c(W,Z, V ) = d(W,Z)c̄(W,V ), where d > 0 and d(W, 1) = 1. Assuming

that classes are split into equal sizes,

X =
s(W,Z, V )

c(W,Z, V )
=

Z

d(W,Z)

s̄(W,V )

c̄(W,V )
≡ h1(W,Z)h2(W,V ) ≡ h1(W,Z)Ṽ ,

where h1 > 0. Thus X = g(W,Z, Ṽ ) = h1(W,Z)Ṽ is strictly increasing in Ṽ , so

Z.FS.SI is satisfied. Under the assumption that the fluctuations are indeed exogenous,

i.e. (V,U)⊥⊥Z|W , then also (Ṽ , U)⊥⊥Z|W , so Z.FS.EX holds. �

Example 4 (The effect of class size with a traditional instrument). Consider

the same inference problem as in Example 3. Feinstein and Symons (1999) use geo-

graphic indicator variables for instruments. Variation in these indicators corresponds

to different local authorities (a unit of local government in England) which have dif-

ferent policies on class size. The authors cite work on the determinants of migration

to argue that geographic location at the local authority level is exogenous to school-

ing outcomes after conditioning on measures of social class, parents’ education and

parental interest. That is, Z.FS.EX holds when W is a set of controls containing these

variables.
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To assess the plausibility of rank invariance, Z.FS.SI, consider a school that is

located in local authority A. Suppose that this school has relatively small class size

compared to other schools in A with the same socioeconomic makeup. Rank invariance

implies that if this school were actually located in local authority B, then it would also

have a small class size relative to comparable schools in B. In other words, whatever

unobservable factor it is (say, pushy parents) that makes the school have a relatively

small class size in local authority A is intrinsic to the school and is not due to the region.

It is important to notice that the absolute class size of the school can be different from

local authority A to local authority B. In fact, it must be for Z.R.D to hold. �

5 Conclusion

In this paper I have shown that a general nonseparable outcome equation can be

nonparametrically identified under a scalar heterogeneity restriction on the first-stage

equation. An unusual aspect of the identification result is that it allows for both dis-

crete and continuous instruments that do not have large support. Because discrete

instruments are widely used in applications and credibly exogenous instruments of

all types are rare, this is important in practice. In particular, this result applies to

randomized controlled experiments with partial compliance. In that context, the im-

plication is that easily interpretable, nonparametric assumptions about the dimension

of heterogeneity enable one to extrapolate outside the context of the experiment, while

still allowing for general unobserved heterogeneity.

A Normalizations

Matzkin (2003) showed that a functional normalization is needed to separate the

scale of m∗ from that of U in outcome equation (1) with M.C and M.SI. In par-

ticular, m∗ is identified up to a strictly increasing transformation of its unobserv-
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able component. Normalization N.QR amounts to choosing this transformation to be

QU |W with U |W ∼ Unif[0, 1]. It is then easy to see that m∗ is identified if m∗ is:

m∗(x,w, t) = m∗(x,w,QU |W (t | w)) = m∗(x,w, t). In this case, m∗(x,w, u) has the

quantile treatment effect interpretation discussed in Section 2. What follows are two

other normalizations that were suggested by Matzkin (2003). See that work for a lucid

discussion of their interpretations.

Proposition 4. If m∗(x,w, t) is identified for every (x,w) ∈ XW and t ∈ [0, 1] then

m∗(x,w, u) is constructively identified for every (x,w, u) ∈ XWU under N.S or N.H.

N.S. (Scale) There is a known x such that for all (x,w, u) ∈ XWU , m∗(x,w, u) = u.

Then m∗(x,w, u) = m∗(x,w, (m∗)−1(x,w, u)) for all (x,w, u) ∈ XWU .

N.H. (Homogeneity of degree one) For a known x, a known u > 0, a known α > 0

and all w such that (x,w, u) ∈ XWU , m∗(x,w, λu) = λα for all λ > 0. In this

case, m∗(x,w, u) = m∗
(
x,w, (m∗)−1 (x,w, (u/u)α)

)
for (x,w, u) ∈ XWU .

Proof. See Matzkin (2003).

B Proofs

Notation. To compress notation I write an event like [X = x,W = w] as simply [x,w].

Proof of Proposition 1. Suppose Z.FS holds and take Xz ≡ g(W, z, V ) for z ∈ Z.

Then X = g(W,Z, V ) =
∑

z∈Z 1 [Z = z]Xz. For every (w, z) ∈ WZ, Xz|W = w is

given by g(w, z, V )|(W,Z) = (w, z), which is equal to X|(W,Z) = (w, z), by Z.FS.

This random variable is continuously distributed under M.C. By Z.FS.EX, (Xz, U) =

(g(W, z, V ), U)⊥⊥Z|W , and Z.FS.SI implies that FXz |W (Xz | W ) = FV |W (V | W ) =

FXz′ |W (Xz′ |W ) for all z, z′ ∈ Z, as pointed out in the text.

On the other hand, suppose that the stated counterfactual representation holds.

Take V ≡ FXz |W (Xz |W ), which does not depend on z ∈ Z by the rank invariance
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assumption. Then (V,U)⊥⊥Z|W , because (Xz, U)⊥⊥Z|W , so Z.FS.EX holds. Take

g(w, z, ·) ≡ QXz |W (· | w) for (w, z) ∈ WZ. Then g(w, z, ·) is strictly increasing for

every (w, z) ∈ WZ because Xz|W = w is continuously distributed by assumption.

Also, because V = FXz |W (Xz |W ) for every z ∈ Z,

g(W,Z, V ) =
∑
z∈Z

1 [Z = z] g(W, z, V )

=
∑
z∈Z

1 [Z = z]QXz |W (V |W )

=
∑
z∈Z

1 [Z = z]QXz |W (FXz |W (Xz |W ) |W )

=
∑
z∈Z

1 [Z = z]Xz = X.

Q.E.D.

Proof of Proposition 2. Suppose that a first-stage equation satisfying Z.FS exists.

By Z.FS.SI and Z.FS.EX,

QX|WZ(r | w, z) = g(w, z,QV |WZ(r | w, z)) = g(w, z,QV |W (r | w)) (3)

for any r ∈ [0, 1] and any (w, z) ∈ WZ. Then for any r ∈ [0, 1], u ∈ R and (w, z) ∈ WZ,

P [R ≤ r, U ≤ u | w, z] = P
[
X ≤ QX|WZ(r | w, z), U ≤ u

∣∣ w, z]
= P

[
g(w, z, V ) ≤ g(w, z,QV |W (r | w)), U ≤ u

∣∣ w, z]
= P

[
V ≤ QV |W (r | w), U ≤ u

∣∣ w, z]
= P

[
V ≤ QV |W (r | w), U ≤ u

∣∣ w] (4)

where the first equality is by M.C, the second is by (3), the third is because g(w, z, ·)

is strictly increasing by Z.FS.SI and the fourth is from Z.FS.EX. Because (w, z) is

arbitrary, (4) shows that P [R ≤ r, U ≤ u | w, z] does not depend on z for any r, u and
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hence that (R,U)⊥⊥Z|W , which is Z.RE.

Conversely, suppose that Z.RE holds. Let V ≡ R and take g(w, z, ·) ≡ QX|WZ(·|w, z)

for (w, z) ∈ WZ. Then g(W,Z, V ) = QX|WZ(R |W,Z) = X. By M.C, g(w, z, ·) is

strictly increasing for (w, z) ∈ WZ, so Z.FS.SI is satisfied. In addition, Z.FS.EX holds

because (V,U) ≡ (R,U)⊥⊥Z|W by hypothesis.

Q.E.D.

Proof of Proposition 3. Let r ∈ [0, 1], u ∈ R and (w, z), (w, z′) ∈ WZ. Note that

Z.RE immediately implies Z.EX. Moreover, if Z.EX holds then by M.C and Sklar’s

Theorem there exists a unique conditional copula C(·, ·; (w, z)) such that

P [R ≤ r, U ≤ u | w, z] = P
[
X ≤ QX|WZ(r | w, z), U ≤ u

∣∣ w, z]
= C(FX|WZ(QX|WZ(r | w, z) | w, z), FU |WZ(u | w, z); (w, z))

= C(r, FU |WZ(u | w, z); (w, z))

= C(r, FU |W (u | w); (w, z)). (5)

By assumption, (R,U)⊥⊥Z|W , so P [R ≤ r, U ≤ u | w, z] = P [R ≤ r, U ≤ u | w, z′].

Repeating the derivation in (5) with the conditional copula for (W,Z) = (w, z′) shows

that Z.RE implies C(·, FU |W (· |w); (w, z)) = C(·, FU |W (· |w); (w, z′)). Given M.C, this

is equivalent to C(·, ·; (w, z)) = C(·, ·; (w, z′)), which is Z.CI. Conversely, if Z.EX and

Z.CI hold then (5) shows that Z.RE is satisfied. Q.E.D.

Proof of Theorem 1. For ease of exposition, I suppress the conditioning on covari-

ates W in the proof.

Recall the definition of Um ≡ m−1(X,Y ), where the inverse is in the second argu-

ment of m ∈ M. If m = m∗ then by M.C, m = m∗. By (1), Z.FS and Proposition 2,

(R,Um) = (R,U) and Z are independent.

Now suppose that (R,Um)⊥⊥Z for some m ∈M. The continuity and strict mono-

tonicity of m,m∗ ∈ M imply that the random vector (X,Um) = (X,m−1(X,Y )) =
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(
X,m−1[X,m∗(X,U)]

)
satisfies M.C if (X,U) does.18 Proposition 3 shows that Z.EX

and Z.CI are satisfied for both (X,Um, Z) and (X,U,Z). Let C(·, ·) and C∗(·, ·) de-

note the common (for all realizations of Z) conditional copula functions for (X,Um)|Z

and (X,U)|Z, which are unique by Sklar’s Theorem. Let XZ ≡ supp(X,Z) and

XZ◦ ≡ {(x, z) ∈ XZ : FX|Z(x | z) ∈ (0, 1)}. Then for all u ∈ R and (x, z) ∈ XZ◦, the

common copula of (X,U)|Z satisfies

FU |XZ(u | x, z) =
∇xFXU |Z(x, u | z)

fX|Z(x | z)

=
∇xC∗(FX|Z(x | z), FU |Z(u | z))

fX|Z(x | z)
= C∗r (FX|Z(x | z), FU (u)), (6)

where M.C guarantees that C∗r (r, t) ≡ ∇rC∗(r, t) exists, is continuous in both argu-

ments and is strictly increasing in t for every r ∈ (0, 1).19 The analogous relationship

holds for C,

FUm|XZ(u | x, z) = Cr(FX|Z(x | z), FUm(u)). (7)

18The connectedness of the support of (X,Um)|Z follows from the continuity of m and m∗.
19This can be seen by rewriting the conditional version of Sklar’s Theorem (under Z.CI) as C∗(r, t) =

FXU |Z
(
QX|Z(r | z), QU |Z(t | z)

∣∣ z). The assumption that (X,U)|Z = z is absolutely continuous with con-
nected support ensures that C∗ is almost everywhere differentiable. M.C strengthens this slightly to every-
where differentiability, which is convenient in the following analysis, but not necessary. Strict monotonicity
of C∗r (r, ·) for r ∈ (0, 1) also follows from M.C.
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It follows that for any (x, z) ∈ XZ◦ and any t ∈ [0, 1],

Cr(FX|Z(x | z), t) = P [Um ≤ QUm(t) | x, z]

= P
[
m−1(x, Y ) ≤ QUm(t)

∣∣ x, z]
= P [Y ≤ m(x, t) | x, z]

= P [m∗(x, U) ≤ m(x, t) | x, z]

= P
[
FU (U) ≤ (m∗)−1(x,m(x, t))

∣∣ x, z]
= C∗r

(
FX|Z(x | z), (m∗)−1 [x,m(x, t)]

)
. (8)

Here the first equality uses (7), the second uses the definition of Um with m ∈M, the

third uses the definition of m, the fourth is by (1), the fifth uses m∗ ∈ M with the

definition of (m∗)−1(x, y) = FU ((m∗)−1(x, y)) and the last equality is by (6).

Inverting (8) gives

(m∗)−1 [x,m(x, t)] = (C∗r )−1
(
FX|Z(x | z), Cr

[
FX|Z(x | z), t

])
≡ I(x, t), (9)

which holds for all (x, z) ∈ XZ◦ and all t ∈ [0, 1]. Equality (9) shows that I(x, t) is

everywhere continuous in both arguments if m,m∗ ∈M and everywhere differentiable

in both arguments if m,m∗ ∈ Md.20 It also shows that I(x, t) is not a function of

z ∈ Z ≡ suppZ. The rest of the proof uses this observation and the force of Z.R

to demonstrate that in fact I(x, t) = t for almost every (a.e.) x ∈ X ≡ suppX. By

inverting (9), one then obtains m∗(x, t) = m(x, t) for a.e. x ∈ X and every t ∈ [0, 1].

This shows identification everywhere because m∗,m are everywhere continuous.

The proof that I(x, t) = t is composed of two steps. First, I show that I(x, t) = J(t)

is not a function of x. This step depends on whether Z.R.C or Z.R.D is maintained.

Second, I show that J(t) = t.

20Continuity could easily be deduced from the preceding discussion as well. Note that m inherits the
differentiability of m because of the continuity and connectedness in M.C which, as mentioned, holds for
(X,Um). That (m∗)−1(x, ·) is differentiable also depends on the strict monotonicity of m∗(x, ·).
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Step 1 under Z.R.C: Let D∗(r, s) ≡ (C∗r )−1(r, s). As noted, if m,m∗ ∈ Md then

I(x, t) is differentiable. If FX|Z(x | ·) is differentiable as well then I(x, t) can be differ-

entiated with respect to z to give

0 =
[
∇rD∗

(
FX|Z(x | z), Cr

[
FX|Z(x | z), t

])
+∇tD∗

(
FX|Z(x | z), Cr

[
FX|Z(x | z), t

])
∇rCr(FX|Z(x | z), t)

]
∇zFX|Z(x | z)

≡ A(x, z, t)∇zFX|Z(x | z),

which holds for any (x, z) ∈ XZ◦ and t ∈ (0, 1). By Z.R.C, for a.e. x ∈ X , there exists

a z′(x) ∈ Z with (x, z′(x)) ∈ XZ◦ for which ∇zFX|Z(x | z′(x)) exists and is non-zero.21

This implies A(x, z′(x), t) = 0. On the other hand, differentiating (9) with respect to

x gives

∇xI(x, t) = A(x, z, t)fX|Z(x | z) = A(x, z′(x), t)fX|Z(x | z′(x)) = 0,

where the second equality is because I(x, t) is does not depend on z. This shows that

I(x, t) = J(t) is not a function of x a.e. on X .

Step 1 under Z.R.D: Let Z(x) ≡ {z ∈ Z : FX|Z(x | z) ∈ (0, 1)} and

XL ≡ {x ∈ X : FX|Z(x | z) = FX|Z(x | z) ∀z, z ∈ Z(x)} ∪ {x ∈ X : |Z(x)| < 2}.

These are the elements of X at which the condition in Z.R.D does not hold, either

because the instrument is locally irrelevant (the first set) or because there are fewer

than two non-trivial comparison groups (the second). The statement of Z.R.D is that

XL is finite. Also from Z.R.D, X is bounded below or above, or both. Assume that X

is bounded below—the argument when X is bounded above is analogous. Let {ξk}Kk=0

be the unique elements of XL ∪ {QX(1)} ordered to be increasing, where QX(1) may

21Note that the set of x ∈ X for which there exists a z′(x) ∈ Z such that ∇zFX|Z(x | z′(x)) 6= 0 but yet
FX|Z(x | z′(x)) = 0 or 1 is negligible by M.C.
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be +∞. The first element is ξ0 = QX(0) > −∞, because X is bounded below and

Z(QX(0)) is the empty set. Let Xk ≡ [ξk, ξk+1] for 0 ≤ k ≤ K−1. Then X =
⋃K−1
k=0 Xk

and Xk ⊆ X for every k because X is connected. Let X ◦ denote the interior of X and

X ◦k = (ξk, ξk+1) the interior of Xk. The strategy is to show that I(x, t) is not a function

of x on X0 and then extend this to X1,X2, . . . and hence to X , by induction.

Define the mappings

F ∗ : X ◦ → (0, 1) : F ∗(x) = min
z∈Z(x)

FX|Z(x | z)

and π : X ◦ → X ◦ : π(x) = min
z∈Z

QX|Z(F ∗(x) | z),

where the minima are attained because Z(x) is non-empty for x ∈ X ◦ and Z has

finitely many elements by Z.R.D. The mapping π is weakly decreasing because for any

z ∈ Z(x),

π(x) ≤ QX|Z(F ∗(x) | z) ≤ QX|Z(FX|Z(x | z) | z) = x.

However, F ∗ and hence π may be discontinuous. Figure 2 illustrates these definitions.

Now take any x0 ∈ X ◦0 and consider the recursive decreasing sequence {xn}∞n=0

formed as xn+1 = π(xn) for n ≥ 0.22 This sequence has a limit xL ∈ X0. In fact, xL ∈

XL. Otherwise, there would exist z, z ∈ Z(xL) such that FX|Z(xL | z) > FX|Z(xL | z).

22For this construction to make sense, the range of π should be X ◦, to match its domain. This is the case
because F ∗(x) ∈ (0, 1) by definition of Z(x).
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1 x0
0

Ξ1 x1
2 x1

1 x1
0

Ξ0 Ξ2

X0

1

FX Z=0

FX Z=1

FX Z=2

Figure 2: Definitions for Step 1 under Z.R.D: Here Z = {0, 1, 2} and the associated
conditional distribution functions are as indicated. Note that the instrument is locally irrel-
evant at ξ1 (where FX|Z(· | 0) and FX|Z(· | 1) cross) and that the support of X|Z = 2 is a
proper subset of X . Both of these features are allowed for under Z.R.D and can be impor-
tant in practice. The bold line indicates F ∗. The mapping π is indicated by the horizontal
dashed arrows with x2

M = π(x1
M) = π(π(x0

M)) for M = 0, 1. In this diagram, X L = {ξ0, ξ1},
ξ2 = QX(1) is finite (although this is not required), X0 = [ξ0, ξ1] and X1 = [ξ1, ξ2]. The
sequence {xn1}∞n=0 is converging to ξ1. If x0

1 were a bit larger, the sequence would instead
converge to ξ0 because of the discontinuity in F ∗.
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By M.C, z ∈ Z(xn) for sufficiently large n as well, so this would imply

FX|Z(xL | z) = FX|Z( lim
n→∞

xn+1 | z) = FX|Z( lim
n→∞

π(xn) | z)

= lim
n→∞

FX|Z(π(xn) | z)

= lim
n→∞

FX|Z

(
min
z∈Z

QX|Z(F ∗(xn) | z)
∣∣∣∣ z)

≤ lim
n→∞

FX|Z
(
QX|Z(F ∗(xn) | z)

∣∣ z) (10)

= lim
n→∞

F ∗(xn) ≤ lim
n→∞

FX|Z(xn | z) = FX|Z(xL | z),

which is a contradiction since FX|Z(xL | z) > FX|Z(xL | z). Because X0 ∩XL = {ξ0}, it

must be the case that xL = ξ0.

Return to (9) and recall that I(x, t) does not depend on z. For x ∈ X ◦, let z∗F (x) ∈

arg minz∈Z(x) FX|Z(x | z) and z∗Q(x) ∈ arg minz∈Z QX|Z(F ∗(x) | z). Then (π(x), z∗Q(x)),

(x, z∗F (x)) ∈ XZ◦, because

FX|Z(π(x) | z∗Q(x)) = F ∗(x) = FX|Z(x | z∗F (x)) ∈ (0, 1). (11)

From (9) and (11) it follows that

I(π(x), t) = (C∗r )−1
(
FX|Z(π(x) | z∗Q(x)), Cr

[
FX|Z(π(x) | z∗Q(x)), t

])
= (C∗r )−1 (F ∗(x), Cr [F ∗(x), t])

= (C∗r )−1
(
FX|Z(x | z∗F (x)), Cr

[
FX|Z(x | z∗F (x)), t

])
= I(x, t), (12)

where the first and last equalities hold because I(x, t) does not depend on z. Equation

(12) shows that I(xn, t) = I(x0, t) for all n ≥ 0 and all t ∈ [0, 1]. As mentioned, I(x, t)

is continuous in x and X is bounded below by ξ0 > −∞, so I(ξ0, t) ≡ limx↘ξ0 I(x, t)

exists. It follows that I(x0, t) = limn→∞ I(xn, t) = I(limn→∞ x
n, t) = I(xL, t) =

I(ξ0, t) = J(t). Because x0 ∈ X ◦0 was arbitrary, this shows that I(x, t) = J(t) for every
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x ∈ X ◦0 and every t ∈ [0, 1]. By continuity, conclude that I(x, t) = J(t) on the closure,

X0, as well.

Now proceed inductively. Suppose that I(x, t) = J(t) for all x ∈
⋃M−1
k=0 Xk with

1 ≤M ≤ K−1 and take an arbitrary x0
M ∈ X ◦M . Construct the same sequence {xnM}∞n=0

with xn+1
M = π(xnM ) for n ≥ 0. Then {xnM}∞n=0 is a decreasing sequence and by the

argument in (10), it has a limit point xLM ∈ {x : x ≤ x0
M}∩XL = {ξk}Mk=0 ⊂

⋃M−1
k=0 Xk.

Hence I(x0
M , t) = I(xLM , t) = J(t). Because x0

M ∈ X ◦M was arbitrary, conclude that

I(x, t) = J(t) for all x ∈ X ◦M and hence for all x ∈ XM by continuity. By induction,

I(x, t) = J(t) for any x ∈ XM and every M . Therefore I(x, t) = J(t) is not a function

of x on X =
⋃K−1
k=0 Xk.

Step 2: Copulas have unit-uniform marginal distributions, so for any z ∈ Z, a change

of variables provides

t = C(1, t) =

∫ 1

0
Cr(r, t) dr =

∫ ∞
−∞

Cr(FX|Z(x | z), t)fX|Z(x | z) dx. (13)

From (9) and the finding in Step 1 that I(x, t) = J(t) does not depend on x ∈ X a.e.,

the right hand side of (13) is equal to

∫ ∞
−∞

C∗r (FX|Z(x | z), J(t))fX|Z(x | z) dx =

∫ 1

0
C∗r (r, J(t)) dr = C∗(1, J(t)) = J(t).

As noted in the paragraph following (9), I(x, t) = J(t) = t for a.e. x ∈ X and every

t ∈ [0, 1] implies that m(x, t) = m∗(x, t) for every x ∈ X and every t ∈ [0, 1]. Q.E.D.
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