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Abstract

I solve for asset prices, expected returns and the term structure of interest rates in a
continuous-time endowment economy in which a representative agent with power utility
consumes the dividends of multiple assets. The assets are Lucas trees; a collection
of Lucas trees is a Lucas orchard. The dividend growth of each asset is i.i.d. over
time, though there may be correlations between the dividends of different assets. This
framework allows for jumps in dividends. The model replicates various features of the
data. There is significant comovement even between assets whose dividend streams
are independent. Assets with high price-dividend ratios have low risk premia. Small
assets exhibit momentum. There is excess volatility in the aggregate market. High
yield spreads forecast high excess returns on long term bonds and on the market. When
dividends are subject to jumps, the model generates contagion and flight to quality. The
quantities of interest—price-dividend ratios, expected returns and interest rates—are
expressed in terms of integrals that can easily be evaluated numerically. In the two-
asset case, closed-form solutions are available if dividends follow geometric Brownian
motions or, for general dividend processes, in the limit as an asset becomes small relative
to the market. Conditions are provided under which a vanishingly small asset with
idiosyncratic fundamentals covaries with the market and earns a positive risk premium.
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This paper investigates the properties of asset prices, risk premia, and the term structure
of interest rates in a continuous-time economy in which a representative agent with power
utility consumes the sum of the dividends of N assets. The assets can be thought of as
Lucas trees, so I call the collection of assets a Lucas orchard.

Each of the assets is assumed to have i.i.d. dividend growth over time, though there
may be correlation between the growth rates of different assets. Formally, the vector of log
dividends follows a Lévy process. This framework allows for the case in which dividends fol-
low geometric Brownian motions, but also allows for a rich structure of jumps in dividends.
Standard lognormal models make poor predictions for key asset-pricing quantities such as
the equity premium and riskless rate (Mehra and Prescott (1985)), and recently there has
been increased interest in models which allow for the possibility of disasters (Rietz (1988),
Barro (2006)). By allowing for jumps in dividends, I avoid these puzzles without relying on
implausible levels of risk aversion or dividend growth volatility.

If N = 1, the model reduces to the familiar power-utility-i.i.d. consumption-based model
in which the riskless rate and the risk premium and price-dividend ratio of the single asset—
the consumption claim—are each constant over time.

This paper addresses the case in which there are N ≥ 2 assets. For simplicity, the
majority of the paper (and the discussion in this introduction) focusses on the case N = 2.
Depending on context, the assets may be thought of as industries, countries or asset classes.
The model generates several phenomena that have been documented in the empirical lit-
erature and emphasizes, as Brainard and Tobin (1968) put it, “the importance of explicit
recognition of the essential interdependences of markets in theoretical and empirical speci-
fications of financial models.”

A central feature of the paper is that assets whose dividends make up a large proportion
of consumption are riskier, all else equal, than assets that make up a small proportion of
consumption. Large assets have low price-dividend ratios; small assets have high price-
dividend ratios. (For simplicity, I temporarily assume that assets are independent and
have fundamentally the same prospects—the same mean dividend growth rate, dividend
volatility, susceptibility to disasters, and so on.)

Various properties of the model spring from this fact. Since dividend growth is i.i.d.,
it is not forecastable. High price-dividend ratios therefore cannot forecast high dividend
growth, and are instead associated with low expected returns. In calibrations, I also show
that assets with high price-dividend ratios also have low expected excess returns: the value-
growth effect of Fama and French (1993). Moreover, the expected excess return on a value-
minus-growth strategy is time-varying and moves with the value spread (the difference in
dividend yields between value and growth assets), as has been found in the data by Cohen,
Polk and Vuolteenaho (2003).
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The model generates price comovement even between assets whose dividends are inde-
pendent. To see why this happens, suppose that one asset’s price increases as a result of a
positive shock to dividends. The other asset now contributes a smaller proportion of overall
consumption, and (typically) has, therefore, a lower risk premium and hence a higher price.
Such comovement is a feature of the data. Shiller (1989) demonstrates, using data from
1919 to 1987, that stock prices in the US and UK move together more closely than do
fundamentals; Forbes and Rigobon (2002) allow for heteroskedasticity in returns and find
consistently high levels of interdependence between markets.

At the aggregate level, too, high market price-dividend ratios forecast low market ex-
pected returns. It follows that the market displays “excess” volatility, as in Shiller (1981),
in the sense that its returns are more volatile than its dividends.

The riskless rate varies over time, so the term structure of interest rates is not flat. The
term structure can be upward-sloping, downward-sloping or hump-shaped (with medium-
term bonds earning higher yields than short- and long-term bonds). When the term struc-
ture slopes up—the more usual case in the scenarios I consider—long-term bonds earn
positive risk premia. High yield spreads forecast high excess returns on the market and
high excess returns on long-term bonds, replicating a finding of the empirical literature (for
example, Fama and French (1989)).

I decompose realized returns into dividend-driven returns and valuation-driven returns.
The latter are returns due to changes in price-dividend ratios—for example, when one
asset comoves with another that has received good news, it earns a positive valuation-
driven return. Most of the variance in asset returns, particularly for large assets, is due
to cashflow news. For small assets, however, valuation-driven returns are more important.
Small assets also exhibit momentum, in the sense that their dividend-driven returns and
valuation-driven returns are negatively correlated.

I present two calibrations, each intended to highlight different features of the model. In
the first, dividends follow geometric Brownian motions with 10% dividend volatility. The
features described above are present.

In the second calibration, dividend volatility is 2% and occasional disasters afflict the
two assets. This calibration, like that of Barro (2007), avoids the equity premium and
riskless rate puzzles. The phenomena described above are present, and there are now some
new features. First, jumps are transmitted across assets. When a large asset experiences
a disaster, the price of the other (small) asset also jumps downwards. This corresponds to
the “typical” case of comovement described above. When, on the other hand, a very small
asset suffers a disaster, the other (large) asset’s price jumps up due to a sudden drop in
interest rates. I label these phenomena “contagion” and “flight-to-quality”.

Contagion effects provide a new channel through which disasters can contribute to high
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risk premia, even in assets which are not themselves subject to disasters. For example,
suppose that asset 1 has perfectly stable dividends, but that asset 2 is subject to occasional
disastrous declines in dividends. Contagion leads to declines in the price of asset 1 at times
when asset 2 experiences a disaster. These occasional price drops may induce a substantial
risk premium in asset 1, an ostensibly perfectly safe asset.

One contribution of this paper is methodological: I solve for asset prices, expected
returns and the term structure of interest rates using techniques from complex analysis.
Prices, returns and interest rates are expressed in terms of integral formulas that can, effec-
tively instantly, be evaluated numerically in Mathematica or Maple. These integral formulas
are valid for arbitrary i.i.d. dividend growth processes, subject to conditions that ensure
finiteness of the representative agent’s expected utility (and hence of asset prices). When
dividends follow geometric Brownian motions, the integral formulas simplify to closed-form
expressions.

I next consider the limit in which one of the two assets is negligibly small by comparison
with the other. This case is of special interest because it represents the most extreme
departure from simple models in which price-dividend ratios are constant. Closed-form
solutions are available without any restrictions on the dividend growth process, and an
unexpected phenomenon emerges.

To illustrate this, suppose that the two assets have independent dividend streams. In-
tuition suggests that a small idiosyncratic asset earns no risk premium, that its expected
return is therefore equal to the riskless rate and that it can be valued using a Gordon growth
formula; in other words, its dividend yield should equal the riskless rate minus expected
dividend growth. I show that this intuition is correct whenever the result of the calculation
is meaningful, which is to say positive. What happens if the riskless rate (determined by the
characteristics of the large asset) is less than the mean dividend growth of the small asset?
I show that the negligibly small asset then has a well-defined price-consumption ratio that,
as one would hope, tends to zero in the limit. It has, however, an extremely high valuation
in the sense that its price-dividend ratio is infinite in the limit. This valuation effect is
reminiscent of, and complementary to, that present in the papers of Pástor and Veronesi
(2003, 2006). Despite its independent fundamentals and negligible size, such an asset also
has a positive market beta and earns a risk premium. In the general case, I provide a precise
characterization of when the Gordon growth model does and does not work, and solve for
limiting expected returns and price-dividend ratios in closed form.

The tractability of the model in the general i.i.d. (as opposed to lognormal) case is heavily
dependent on the use of cumulant-generating functions (CGFs). Martin (2007) expresses
the riskless rate, risk premium and consumption-wealth ratio in terms of the CGF in the
standard one-asset case, and the expressions found there are echoed in the more complicated
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scenario considered here. In effect, working with CGFs makes the mathematics no harder
than when working with lognormal models; the advantage of doing so is that one then
“gets jumps for free”. In fact, the use of CGFs may even make things simpler because
one can follow the CGF’s progress through the algebra: the mathematical equivalent of a
barium meal! Furthermore, CGFs have general properties that I use in various proofs. In
particular, the conditions for finiteness of asset prices, and hence expected utility, can be
considerably simplified using properties of CGFs.

Various authors have investigated related models. Cole and Obstfeld (1991) consider
a similar framework, but focus on the welfare gains from international risk sharing rather
than the implications for asset prices, and they do not present any analytical results in the
case considered here, in which the the dividends of the two assets are perfect substitutes.1

Brainard and Tobin (1992, section 8) investigate a framework that is almost identical to the
one presented here, differing only in that the dividends of the two assets are very good, rather
than perfect, substitutes, and in that per-period endowments are specified by a Markov
chain with a small number of states. They present limited numerical results, and—after
noting that their “model is simple and abstract; nevertheless it is not easy to analyze”—no
analytical results. Menzly, Santos and Veronesi (2004) and Santos and Veronesi (2006)
present models in which the dividend shares of assets are assumed to follow mean-reverting
processes. By picking convenient functional forms for these processes, closed-form pricing
formulas are available. Pavlova and Rigobon (2007) investigate the consequences of demand
shocks in an international asset pricing model, but impose log-linear preferences, so price-
dividend ratios are constant.

The most closely related paper is that of Cochrane, Longstaff and Santa-Clara (2007),
who solve a model in which a representative investor with log utility consumes the dividends
of two assets whose dividend processes follow geometric Brownian motions. My solution
technique is entirely different, and permits me to allow for power utility, for jumps in
dividends and for N ≥ 2 assets. I also solve for bond yields, and hence expand the set of
predictions made by the model.

Section 1 sets up the model in the two-asset case. Section 2 explains why it is hard
to solve and introduces a suggestive special case which is easily solved. Section 3 presents
integral formulas for prices, expected returns and real interest rates. Section 4 shows how
these formulas lead to closed-form solutions in the Brownian motion case. Section 5 illus-
trates the results by exploring various calibrations. Section 6 investigates the asymptotic
limit in which one asset has a vanishingly small dividend share. Section 7 provides integral
formulas in the N -asset case. Section 8 concludes. Proofs are collected in the appendices.

1The approach of this paper can also be used, essentially unchanged, to solve the model with imperfect

substitution; this is work in progress.
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1 Setup

I work with a representative investor model. Time is continuous, and runs from 0 (the
present) to infinity. For the time being, I restrict to the two-asset case for clarity. General
results in the N -asset case are presented in Section 7.

Setting the model up amounts to making technological assumptions about dividend pro-
cesses; making assumptions about preferences which, together with consumption, pin down
the stochastic discount factor; and closing the model by specifying that the representative
investor’s consumption is equal to the sum of the two assets’ dividend processes.

1.1 The stochastic discount factor

The two assets, indexed i = 1, 2, throw off random dividend streams Dit. The representative
agent’s consumption process, Ct, is equal to the sum of the two dividend streams: Ct =
D1t+D2t. The representative agent has power utility with coefficient of relative risk aversion
γ and time preference rate ρ, so maximizes

E
∫ ∞

t=0
e−ρtC

1−γ
t

1− γ
dt if γ 6= 1 , or E

∫ ∞

t=0
e−ρt logCt dt if γ = 1 . (1)

The Euler equation, derived by Lucas (1978) and applied in the two-country context by
Lucas (1982), states that the price of an asset which pays dividend stream {Xt} is

PX = E
∫ ∞

0
e−ρt

(
Ct

C0

)−γ

·Xt dt . (2)

1.2 Dividend processes

Dividends are positive, which makes it natural to work with log dividends, yit ≡ logDit. At
time 0, the dividends (y10, y20) of the two assets are arbitrary. The vector ỹt ≡ yt − y0 ≡
(y1t − y10, y2t − y20) is assumed to follow a Lévy process.2

2A stochastic process (Lt)t≥0 taking values in Rd is a Lévy process if

(i) L0 = 0

(ii) With probability one, Lt is right continuous on [0,∞), with left limits on (0,∞).

(iii) For any n ∈ N and 0 ≤ t0 < t1 < . . . < tn, the random variables Lt0 , Lt1 − Lt0 , Lt2 − Lt1 , . . . , Ltn −
Ltn−1 are independent.

(iv) The probability distribution of Lt+h − Lt does not depend on t.

(v) For all t ≥ 0 and ε > 0, lims→t P(|Xs −Xt| > ε) = 0.
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This is the continuous-time analogue of the familiar discrete-time assumption that div-
idend growth is i.i.d. It is helpful to keep in mind the special case in which ỹ is a jump-
diffusion, in which case we can write

yt = y0 + µt+ AZt +
N(t)∑
k=1

Jk . (3)

Here µ is a two-dimensional vector of “drifts”, A a 2 × 2 matrix of factor loadings, Zt a
2-dimensional Brownian motion, N(t) a Poisson process with arrival rate ω that represents
the number of jumps that have taken place by time t, and Jk are two-dimensional random
variables which are distributed like the random variable J , and which are assumed to be
i.i.d. across time. The covariance matrix of the diffusion components of the two dividend
processes is Σ ≡ AA′, whose elements I write as σij .

The following definition introduces an object which turns out to capture all relevant
information about the stochastic processes driving dividend growth.

Definition 1. The cumulant-generating function c(θ) of the Lévy process ỹt is defined by

c(θ) ≡ log E expθ′(ỹt+1 − ỹt) . (4)

By properties (i) and (iv) of the definition of a Lévy process, given in footnote 2, I could
equivalently have defined c(θ) = log E expθ′ỹ1, but the expression (4) emphasizes the
fact that the cumulant-generating function (CGF) summarizes information about dividend
growth. Specifically, the CGF summarizes information about the higher moments of ỹ;
Martin (2007) has more discussion of the role of CGFs in the standard consumption-based
framework with one asset.

Some conditions on the Lévy process ỹ are required to ensure that asset prices are finite;
these are discussed further below. In particular, they will ensure that the CGF exists in an
appropriate open set containing the origin.

If log dividends follow Brownian motions, the CGF takes the simple form

c(θ) = θ′µ +
1
2
θ′Σθ .

If log dividends follow a jump-diffusion as in (3), then

c(θ) = θ′µ +
1
2
θ′Σθ + ω

(
Eeθ

′J − 1
)
.

If the jumps in log dividends are driven by Normally distributed shocks, so J ∼ N(µJ ,ΣJ),
then the CGF becomes

c(θ) = θ′µ +
1
2
θ′Σθ + ω

(
exp

{
θ′µJ +

1
2
θ′ΣJθ

}
− 1
)
.
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2 A simple example

Consider the problem of pricing the claim to asset 1’s output in the simplest case γ = 1:
log utility. We have

P (D1) = E
∫ ∞

0
e−ρt

(
Ct

C0

)−1

·D1t dt

= E
∫ ∞

0
e−ρtD10 +D20

D1t +D2t
·D1t dt

= (D10 +D20)
∫ ∞

0
e−ρtE

(
1

1 +D2t/D1t

)
dt ;

and, unfortunately, the expectation is not easily calculated. If, say, the Dit are geometric
Brownian motions, then we have to compute the expected value of the reciprocal of one plus
a lognormal random variable. This, essentially, is the major analytical challenge confronted
by Cochrane, Longstaff and Santa-Clara (2007).

Here, though, is an instructive case in which the expectation simplifies considerably.
Suppose that D2t < D1t at all times t. Perhaps, for example, D1t is constant and initially
larger than D2t, which is subject to downward jumps at random times.3 (The jumps may
be random in size, but they must always be downwards.) Then D2t/D1t < 1 and so we can
expand the expectation as a geometric sum. To make things simple, set D1t ≡ 1: then,

E
(

1
1 +D2t

)
= E

[
1−D2t +D2

2t − . . .
]

=
∞∑

n=0

(−1)nDn
20E [(D2t/D20)

n]

=
∞∑

n=0

(−1)nDn
20e

c(0,n)t .

Substituting back, we find that

P (D1) = (1 +D20)
∫ ∞

t=0
e−ρt

∞∑
n=0

(−1)nDn
20e

c(0,n)t dt

= (1 +D20)
∞∑

n=0

(−1)nDn
20

∫ ∞

t=0
e−[ρ−c(0,n)]t dt

= (1 +D20)
∞∑

n=0

(−1)nDn
20

ρ− c(0, n)

If we define s ≡ D10/(D10 +D20) to be the share of asset 1 in global output—a defini-
tion which is maintained throughout—we can rewrite this in a form that is more directly

3This approach fails in the Brownian motion case, since if either D1t or D2t has a Brownian component

we cannot say that D2t < D1t with probability one.
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comparable with subsequent results:

P/D1 =
1√

s(1− s)

∞∑
n=0

(−1)n
(

1−s
s

)n+1/2

ρ− c(0, n)
(5)

P/D1 is the price-dividend ratio of asset 1 at time 0. When time subscripts are dropped,
here and elsewhere, it should be understood that the relevant time is time 0.

The expression (5) is not in closed form, but it is easy to evaluate numerically, once
the process driving the dividends of asset 2—and hence c(0, n)—is specified. For example,
if asset 2’s log dividend is subject to downward jumps of constant size −b which occur at
intervals dictated by a Poisson process with arrival rate ω, then c(0, n) = ω(e−bn − 1), so
ρ − c(0, n) → ρ + ω as n → ∞. Meanwhile, (1 − s)/s < 1 so the terms in the numerator
of the summand decline at geometric rate. A numerical summation will therefore converge
fast.

0.6 0.7 0.8 0.9 1
s

21

22

23

24

PH

Figure 1: The price of asset 1, PH , against its dividend share, s.

Figure 1 shows the price of asset 1 plotted against its dividend share s. Despite the fact
that asset 1 has perfectly stable fundamentals—D1t ≡ 1—the asset’s price changes over
time. Whenever asset 2 experiences a disaster, asset 1’s dividend share, s, increases and
(looking at the graph) the price of asset 1 jumps down. Even in this simple example, then,
there is “contagion”. Moreover, since asset 1 has stable fundamentals, we see what looks
like excess volatility.

Although the simple approach taken here only works in very special cases, it turns out
to be possible, using more sophisticated techniques, to solve for asset prices (and hence
returns) in the general case, and to find expressions that are reminiscent of (5). When
dividend processes are continuous, it is in fact possible—even with γ > 1—to move beyond
the analogue of (5) and to give closed form solutions.
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2.1 Two Trees

In the simple symmetric case in which the log dividend processes follow independent drifting
Brownian motions with volatility σ, Cochrane, Longstaff and Santa-Clara (2007) show that
the price-dividend ratio of asset 1 is given, in my notation, by

P/D1 =
1

2(ρ+ σ
√
ρ)(1− s)

F

(
1, 1 +

√
ρ

σ
; 2 +

√
ρ

σ
;

s

s− 1

)
+

+
1

2ρs
F

(
1,
√
ρ

σ
; 1 +

√
ρ

σ
;
s− 1
s

)
. (6)

F (a, b; c; z) is a member of the family of hypergeometric functions. It is defined in the
region |z| < 1 by the power series

F (a, b; c; z) = 1 +
a · b
1! · c

z +
a(a+ 1) · b(b+ 1)

2! · c(c+ 1)
z2 +

a(a+ 1)(a+ 2) · b(b+ 1)(b+ 2)
3! · c(c+ 1)(c+ 2)

z3 + · · · .

(7)
There is a difficulty here: whenever s < 1/2, we have |(s−1)/s| > 1, and whenever s > 1/2,
we have |s/(s − 1)| > 1, so the power series interpretation of (6) is invalid. Fortunately,
there is an integral representation which extends the hypergeometric function to allow for
|z| ≥ 1 and complex-valued a, b, c and z:4

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
wb−1(1− w)c−b−1(1− wz)−a dw if Re (c) > Re (b) > 0 .

Now Γ(z) is yet another integral, defined for complex numbers z with positive real part5 by

Γ(z) =
∫ ∞

0
tz−1e−t dt . (8)

In short, the solution for the general Brownian case is somewhat complicated. Intrigu-
ingly, Cochrane, Longstaff and Santa-Clara also present a solution for the special case in
which the log dividend processes follow independent and symmetric Brownian motions, and
the time discount rate of the marginal investor, ρ, happens to equal σ2. In this case,

P/D1 =
1

2ρs

[
1 +

(
1− s

s

)
log(1− s)−

(
s

1− s

)
log s

]
. (9)

I show in Appendix D.1 how (and why) relatively simple expressions such as (9) can be
found in the Brownian motion case when parameters are chosen judiciously.

4These objects boast an unimpeachable pedigree: Gauss considered the hypergeometric series in a famous

paper presented to the Royal Society of Sciences at Göttingen in 1812, and Euler discovered the integral

representation.
5See Appendix A for a summary of various concepts in complex analysis.

10



3 Prices, returns and real interest rates

The model is solved using techniques from complex analysis. Appendix A contains a sum-
mary of the relevant results.

It is convenient to work with a generic asset with dividend stream Dα,t ≡ Dα1
1t D

α2
2t . The

cases α ≡ (α1, α2) ∈ {(1, 0), (0, 1), (0, 0)} are of particular interest, the three alternatives
representing asset 1, asset 2 and a perpetuity respectively.

3.1 Prices

The price of the asset is Pα, defined by

Pα ≡ E
∫ ∞

t=0
e−ρt

(
Ct

C0

)−γ

Dα,t dt . (10)

Asset prices turn out to depend on the value of a single state variable, the dividend
share, defined by

s =
D10

D10 +D20

As asset 1 becomes negligibly small by comparison with asset 2, s tends to zero; as asset 1
becomes large, s tends to one.

The following Proposition puts the right-hand side of (10) in a form which is perfectly
suited for numerical implementation but also permits further analytical results to be derived.

Proposition 1 (The general pricing formula). The price-dividend ratio on a generic asset
which pays dividend stream Dα,t ≡ Dα1

1t D
α2
2t is given by the expression6

Pα

Dα
(s) =

1√
sγ(1− s)γ

∫ ∞

−∞

Fγ(v)
(

1−s
s

)iv
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

dv , (11)

where Fγ(v) is defined by

Fγ(v) ≡ 1
2π

· Γ(γ/2 + iv)Γ(γ/2− iv)
Γ(γ)

. (12)

Proof. See Appendix B.

The gamma function Γ(·) was defined in (8). For real v and integer γ > 0, Fγ(v) is a
strictly positive function which is symmetric about v = 0, where it attains its maximum,
and decays exponentially fast towards zero as v tends to plus or minus infinity.

6Wherever it appears, i is the complex number
√
−1. Complex quantities drop out in the course of

evaluating the integral, so price-dividend ratios are real, as one would hope.
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In its present form, the pricing formula (11) appears rather complicated, but it is worth
emphasizing that it allows for different assets (α) and for the stochastic process governing
log outputs to be any Lévy process that leads to finite asset prices—a class which includes,
for example, constant deterministic growth, drifting Brownian motion, compound Poisson
processes, variance gamma processes, Normal inverse Gaussian processes and a host of
others, including linear combinations of the processes mentioned.

We do, however, require that expected utility and asset prices are finite. I show in
Appendix B.2.1 that finiteness of the prices of the two assets, which implies that expected
utility (1) is finite, is assured by the finiteness condition that

ρ− c(1− γ/2,−γ/2) > 0 and ρ− c(−γ/2, 1− γ/2) > 0 . (13)

Given that perpetuities in zero net supply plausibly also have finite prices, we may also
want to impose a requirement that ensures that this is the case,

ρ− c(−γ/2,−γ/2) > 0 .

This restriction is not necessary from a mathematical point of view; I impose it because it
seems empirically plausible that real perpetuities in zero net supply have finite prices. (If
either of the assets in positive net supply is a perpetuity, then this restriction is implied by
(13).)

These assumptions ensure that aggregate wealth is finite for all s ∈ (0, 1). I impose one
final restriction, that aggregate wealth is finite at the one-tree limit points, s = 0 and s = 1.
Asset 1’s price-dividend ratio is finite as s → 1 if and only if ρ − c(1 − γ, 0) > 0; asset 2’s
price-dividend ratio is finite as s→ 0 if and only if ρ− c(0, 1− γ) > 0. These assumptions
are summarized in Table 1.

Restriction Reason

ρ− c(1− γ/2,−γ/2) > 0 finite price of asset 1
ρ− c(−γ/2, 1− γ/2) > 0 finite price of asset 2
ρ− c(−γ/2,−γ/2) > 0 finite perpetuity price
ρ− c(1− γ, 0) > 0 finite aggregate wealth in limit s→ 1
ρ− c(0, 1− γ) > 0 finite aggregate wealth in limit s→ 0

Table 1: The restrictions imposed on the model.

For many practical purposes this is, in a sense, the end of the story, since the integral
formula is very well behaved and can be calculated effectively instantly in Mathematica or
Maple. After providing similar integral formulas for expected returns, the riskless rate and
bond yields, I take this simple and direct route in section 5. Nonetheless, it is possible to
push the pen-and-paper approach further and I do so, in two directions.
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First, the price-dividend ratio, expected returns and the riskless rate can be found in
closed form in the case in which log dividends follow drifting Brownian motions. See section
4. Second, analytic solutions can be found for the case in which the asset of interest is
negligibly small relative to the aggregate market. In this case, closed forms can be obtained
for general dividend processes. Moreover, an interesting phenomenon emerges: a negligibly
small idiosyncratic asset can earn positive excess returns. See section 6.

For analytic purposes such as these, it is more convenient to work with the state variable
u, a monotonic transformation of s which is defined by

u = log
(

1− s

s

)
= y20 − y10

While s ranges between 0 and 1, u takes values between −∞ and +∞. As asset 1 becomes
small, u tends to infinity; as asset 1 becomes large, u tends to minus infinity.

Proposition 2 (The general pricing formula, alternative version). In terms of the state
variable u, the price-dividend ratio on a generic asset which pays dividend stream Dα,t ≡
Dα1

1t D
α2
2t is given by the expression

Pα

Dα
(u) = [2 cosh(u/2)]γ ·

∫ ∞

−∞

eiuvFγ(v)
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

dv (14)

or equivalently by

Pα

Dα
(u) =

∫ ∞

−∞

eiuvFγ(v)
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

dv

∫ ∞

−∞
eiuvFγ(v) dv

(15)

Proof. See Appendix B.

Equation (15) will be used, in Section 6, for thinking about limiting price-dividend ratios
as an asset becomes small: that is, for considering the limit u → ∞. Both the numerator
and denominator of (15) tend to zero in this limit, while their ratio may tend to a finite
positive quantity or to infinity.

3.2 Returns

An expression for the expected return on a general asset paying dividend stream Dα,t can
be found in terms of integrals very similar to those that appear in the general price-dividend
formula. The instantaneous expected return on the α-asset is defined by

Rαdt ≡
EdPα

Pα︸ ︷︷ ︸
capital gains

+
Dα

Pα
dt︸ ︷︷ ︸

dividend yield

(16)
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Proposition 3 (Expected returns). Rα, the instantaneous expected return on an asset
which pays dividend stream Dα1

1t D
α2
2t , is given as a function of the state variable u by

Rα(u) =

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞

−∞
h(v)eiuv · c(wm(v)) dv

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞

−∞
h(v)eiuv dv

+
Dα

Pα
(u) . (17)

where
h(v) ≡ Fγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
, (18)

and
wm(v) ≡ (α1 − γ/2 +m− iv, α2 + γ/2−m+ iv)′ .

An analogous formula written in terms of the state variable s can be obtained by substi-
tuting (1− s)/s for eu throughout (17).

Proof. Appendix B contains the details of the capital gains calculation. The dividend yield
component is given by the reciprocal of (14).

3.3 Interest rates

The calculations of sections 3.1 and 3.2 deal with assets which pay a constant stream of
dividends. This section calculates zero coupon bond prices and yields.

First, some notation. I write BT for the time-0 price of a zero-coupon bond which pays
one unit of the consumption good at time T . The (zero-coupon) yield to time T > 0, Y (T ),
is defined by

BT = e−Y (T )·T .

Interest rates are not constant in this economy unless the two assets have identical, perfectly
correlated, output processes. For example, the prices of perpetuities and zero coupon bonds
fluctuate over time. Define, therefore, the instantaneous riskless rate, r, by

r ≡ lim
T↓0

Y (T ).

The following Proposition summarizes the behavior of real interest rates, in terms of
the state variable u.

Proposition 4 (Real interest rates). The yield to time T is

Y (T ) = ρ− 1
T

log
{

[2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)eiuv · ec(−γ/2−iv,−γ/2+iv)T dv

}
. (19)
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The instantaneous riskless rate is

r = [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)eiuv · [ρ− c(−γ/2− iv,−γ/2 + iv)] dv . (20)

As always, we can substitute (1− s)/s for eu, wherever it occurs, to express yields and
the riskless rate in terms of the output share s.

Proof. See Appendix B.

Equation (19) describes the term structure of interest rates in terms of the state variable
u. Depending on the particular stochastic process driving dividends, the model can generate
upward- or downward-sloping curves and humped curves with a local maximum.

4 The Brownian motion case

When dividends follow geometric Brownian motions,7 closed-form solutions can be obtained.
The resulting expressions are rather complicated and not obviously more informative

than the more general (14), which applies equally well to non-Brownian dividend processes,
and for this reason I do not supply formulas for expected returns and the riskless rate,
although these can be calculated after some algebra. Nonetheless, the solution technique
suggests a way to pick parameters carefully—say, to choose ρ carefully—in order to obtain
far simpler closed-form expressions. I discuss this possibility in Appendix D.1.

Suppose, then, that log dividend processes are driven by a pair of Brownian motions,

dyi = µi dt+
√
σii dzi , (21)

where dz1 and dz2 may be correlated: dz1 dz2 = σ12 dt.
We have the following result.

Proposition 5 (The Brownian motion case). When log dividends are determined by equa-
tion (21), the price-dividend ratio of asset 1 is given by

P/D1(s) =
1

B(λ1 − λ2)

[
1

(γ/2 + λ1) sγ F

(
γ, γ/2 + λ1; 1 + γ/2 + λ1;

s− 1
s

)
+

+
1

(γ/2− λ2) (1− s)γ F

(
γ, γ/2− λ2; 1 + γ/2− λ2;

s

s− 1

)]
(22)

As before, F (a, b; c; z) is Gauss’s hypergeometric function.
7Under the Lévy process assumption, this is the unique case in which dividends are not subject to jumps.

See Rogers and Williams (2000, pp. 76–77) for a proof.
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The variables λ1, λ2 and B are given by

B ≡ 1
2
X2 (23)

λ1 ≡
√
Y 2 +X2Z2 − Y

X2
(24)

λ2 ≡ −
√
Y 2 +X2Z2 + Y

X2
, (25)

where

X2 ≡ σ11 − 2σ12 + σ22 (26)

Y ≡ µ1 − µ2 + σ11 − σ12 −
γ

2
(σ11 − σ22) (27)

Z2 ≡ 2(ρ− µ1 − σ11/2) + γ(µ1 + µ2 + σ11 + σ12)−
γ2

4
(σ11 + 2σ12 + σ22) ; (28)

as the notation suggests, X2 and Z2 are strictly positive.

Proof. See Appendix D.

This result generalizes the result of Cochrane, Longstaff and Santa-Clara (2007) (equa-
tion (50) in their paper) to allow for γ higher than one. It can be modified to supply the
price-dividend ratio on asset 2 in the obvious manner: switch subscripts 1 and 2 throughout
the definitions (26)–(28) and map s 7→ 1− s in (22).

5 Two calibrations

I now present two simple calibrations. In each, the representative agent has time discount
rate ρ = 0.03 and relative risk aversion γ = 4.

5.1 Dividends follow geometric Brownian motions

To explore the distinctive features of the model in a setting that is as simple as possible,
consider a calibration in which the two assets are independent and have dividends which
follow geometric Brownian motions. Each has mean log dividend growth of 2% and dividend
volatility of 10%. In the notation of equation (3), µ1 = µ2 = 0.02, σ11 = σ22 = 0.12 and
σ12 = 0.

Although the dividend processes for the individual assets are i.i.d., consumption is not
i.i.d., as documented in Figure 2. In this calibration, both assets have the same mean
dividend growth, so mean consumption growth does not vary with s. But the standard
deviation of consumption growth does vary: it is lower “in the middle”, where there is most
diversification. At the edges, where s is close to 0 or to 1, one of the two assets dominates
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Figure 2: Left: Mean consumption growth, E(dC/C), against asset 1’s dividend share, s.
Right: The standard deviation of consumption growth, σ(dC/C), against s.
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Figure 3: Left: The riskless rate against s. Right: The price-dividend ratio of asset 1 (solid)
and of the market (dashed) against s.

the economy, and consumption growth is more volatile: the representative agent’s eggs are
all in one basket.

Time-varying consumption growth volatility leads to a time-varying riskless rate. Figure
3a plots the riskless rate against asset 1’s share of output s. Riskless rates are high for
intermediate values of s because consumption volatility is low, which diminishes the motive
for precautionary saving.

The right-hand graph, Figure 3b, shows the price-dividend ratio of asset 1 (solid) and
of the market (dashed).8 When asset 1 is a small part of the market, it has very high
valuations—P/D shoots up to the left of the figure—because it has very little systematic

8The market price-dividend ratio is calculated by observing that

P1 + P2

D1 + D2
= s · P1

D1
+ (1− s) · P2

D2
.
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risk. As asset 1’s share increases from s = 0, its discount rate increases both because the
riskless rate increases and because its risk premium increases, as discussed further below.

Another notable feature of figure 3b is that the model predicts the existence of extreme
growth assets (at the left of the figure) but not of extreme value assets. This extreme
growth case is of particular interest because it represents the most radical departure from
a constant discount rate framework in which price-dividend ratios are constant; I explore it
in detail in section 6.
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(a) Excess return on asset 1
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(b) Expected return decomposition

Figure 4: Left: The excess return on asset 1 (solid) and on the market (dashed), against s.
Right: Decomposition of expected returns (solid) into dividend yield (dashed) and expected
capital gains (dot-dashed).

Figure 4a shows how the risk premium on asset 1 and on the market depends on the
state variable s. Due to the diversification effect discussed above, the market risk premium
is smallest when the two assets are of equal size. The risk premium on asset 1 increases
as asset 1’s dividend share increases. In the limit as s tends to zero, the risk premium on
asset 1 tends to zero. The figure shows, however, that in this calibration even very small
assets earn economically significant risk premia. In other calibrations, asset can earn strictly
positive risk premia even in the limit in which they become negligible; see Section 6.

A comparison of figures 3b and 4a reveals that there is a value-growth effect: assets
with high valuations earn low excess returns.

Figure 4b decomposes expected returns into a dividend yield component and an expected
capital gains component. In this calibration, almost all cross-sectional variation in expected
returns can be attributed to cross-sectional differences in dividend yield.

Figure 5a makes this point in a different way, by plotting expected returns and risk
premia against dividend yield. Figure 5b demonstrates that the excess return on a zero-
cost investment in a value-minus-growth portfolio is increasing in the value spread (that
is, the difference in dividend yield between the value and the growth asset). This echoes
the empirical finding of Cohen, Polk and Vuolteenaho (2003) that “the expected return
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Figure 5: Left: Expected returns (solid) and expected excess returns (dashed) on asset 1
against asset 1’s dividend yield. Right: Expected excess return on the value-minus-growth
strategy against the value spread.

on value-minus-growth strategies is atypically high at times when their spread in book-to-
market ratios is wide.”
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(a) Excess returns on a perpetuity.
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(b) The yield spread.

Figure 6: A high yield spread, Y (30) − Y (0), signals high expected excess returns on a
perpetuity.

It is also of interest to consider the behavior of assets in zero net supply, such as per-
petuities and zero coupon bonds. Figure 6a plots the risk premium on a real perpetuity
which pays one unit of consumption good per unit time. Figure 6b shows how the spread in
yields between a 30-year zero-coupon bond and the instantaneous riskless rate varies with
s. A high yield spread forecasts high excess returns on long-term bonds. Looking back at
figure 4a, we see that a high yield spread also forecasts high excess returns on the market.

Figure 7a demonstrates that the model generates significant comovement between the
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Figure 7: Left: The correlation between the returns of asset 1 and asset 2 against s. Right:
The ratio of market return volatility to dividend volatility against s. Solid lines, γ = 4;
dashed lines, γ = 1.

returns of the two assets, even though the two assets have independent fundamentals.9

There is considerably more comovement when γ = 4 than in the log utility case. Figure
7b shows that the model generates excess volatility in the aggregate market when γ > 1.
(When γ = 1—the log utility case, indicated with a dashed line—there is no excess volatility
because the price-dividend ratio of the aggregate market is constant. For the same reason,
there is no excess volatility in the γ = 4 case when s = 1/2: the market price-dividend ratio
is locally flat, as a function of s, at this point.)

What drives asset 1’s returns? In the two-asset case, two types of shock move an asset’s
price: a shock to its dividends, or a shock to the other asset’s dividends, which changes the
asset’s price by changing its price-dividend ratio. In the terminology of Campbell (1991),
the first type of shock corresponds to the arrival of “cashflow news” and the second to the
arrival of “discount-rate news”. Figure 8a plots the percentage price response of asset 1
(solid) and asset 2 (dashed) to a 1% increase in asset 1’s dividends. When asset 1 is small, it

9These figures, unlike the preceding ones, are calculated by Monte Carlo methods, as follows. For each of

109 different starting values of s ∈ [0, 1], I generate 4000 sample paths of log dividends. (The 109 different

values are the points 0.01, 0.02, . . . , 0.99, five points between 0 and 0.01 and five points between 0.99

and 1.) Each sample path simulates a drifting Brownian motion over a very short time horizon: 3 × 10−5

years, slightly less than 16 minutes. Over this time horizon, each drifting Brownian motion is simulated by

dividing the interval into 600 time steps; Normal random variables determine the evolution of log dividends

between these time steps. Given a particular sample path for dividends, prices can be calculated, given

the price-dividend functions; and hence also total returns, and the covariance matrix of realized returns on

the two assets. Finally, I estimate variances and covariance between the two assets, at each value of s, by

averaging over the covariance matrices estimated for each of the 4000 sample paths.
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Figure 8: Left: The response of asset 1 (solid) and asset 2 (dashed) to a +1% increase in the
dividend of asset 1. Right: Decomposition of the variance of returns (solid) into three parts:
the variance of dividend-driven returns (circles), the variance of valuation-driven returns
(diamonds) and the covariance between the two types of returns (squares).

underreacts to good news about its own cashflow shock: the price response is considerably
less than 1%. At the same time, asset 2 moves in the opposite direction. When asset 1
is large, it overreacts to good news about its own cashflow shock, and asset 2 moves in
the same direction. Note also that asset 2’s price moves considerably more, in response to
dividend news for asset 1, when asset 1 is large than when asset 1 is small.

A better understanding of these effects can be gained by exploiting a simple identity
that breaks realized returns on any asset into two pieces:

Rt+1 =
Pt+1 +Dt+1

Pt

=
Dt+1

Dt

(
1 +

Dt

Pt

)
︸ ︷︷ ︸
dividend-driven

+
Dt+1

Dt

Dt

Pt

(
Pt+1

Dt+1
− Pt

Dt

)
︸ ︷︷ ︸

valuation-driven

≡ RD,t+1 +RV,t+1 . (29)

The last line defines the dividend-driven return RD,t+1 and the valuation-driven return
RV,t+1. In an economy in which price-dividend ratios are constant—for example, one with
a single Lucas tree with i.i.d. dividend growth and a representative agent with power utility
or Epstein-Zin preferences—the valuation-driven component disappears, and returns are
exclusively dividend-driven. The above identity holds exactly, with no log-linearizations
needed. It is similar to the decomposition of Campbell (1991), but changes in price-dividend
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ratio appear on the right-hand side of (29), as opposed to the changes in future returns
that appear in Campbell’s decomposition.10

Using the decomposition in (29), we have

vartRt+1 = vartRD,t+1 + vartRV,t+1 + 2 covt(RD,t+1, RV,t+1) , (30)

an equation that provides another way to think about the sources of variation in expected
returns.

In the continuous-time case relevant for the purposes of this paper, the above equations
are modified slightly: we have

Rt+dt =
Dt+dt

Dt

(
1 +

Dt

Pt
dt

)
+
Dt+dt

Dt

Dt

Pt

(
Pt+dt

Dt+dt
− Pt

Dt

)
,

and again the first term on the right-hand side can be thought of as the dividend-driven
return RD,t+dt and the second as the valuation-driven return RV,t+dt.

I estimate the three components, vartRD,t+dt, vartRV,t+dt, and covt(RD,t+dt, RV,t+dt)
by simulating the underlying Brownian processes as described in Footnote 9. The results
are shown in figure 8b. The figure shows that (i) most of the variance in asset returns
is driven by cash-flow news, (ii) dividend-driven returns and valuation-driven returns are
negatively correlated for small assets and positively correlated for large assets,11 (iii) for
large assets, a far higher proportion of variation in expected returns is due to cashflow news
than to discount rate news, while (iv) for small assets, valuation-driven returns are much
more important: the variance of dividend-driven returns is only about four times higher
than the variance of valuation-driven returns.

Appendix G contains some supplementary figures. Figure 17 plots the probability that
the dividend share at time t, st, remains in the region [0.2, 0.8] for t between 0 and 200
years, and for starting shares s0 = 0.1, 0.3, 0.5. (The cases s0 = 0.7, 0.9 can also be read off
the graph, because the world is symmetric.) It also plots the value weight of asset 1 in the
aggregate market against s.

5.2 Dividends are subject to occasional disasters

The second calibration is intended to highlight the effect of disasters. Again, the two assets
are symmetric. In the notation of equation (3), the drifts are µ1 = µ2 = 0.02. The two
Brownian motions driving dividends are independent and each has volatility of 2%, so
σ11 = σ22 = 0.022 and σ12 = 0.

10It also has the advantage that the two components can be estimated directly from historical data.
11In the language of Campbell (1991), cashflow news and discount-rate news are positively correlated for

small assets and negatively correlated for large assets.

22



There are also jumps in dividends, caused by the arrival of disasters, of which there are
three types. One type affects only asset 1: it arrives at times dictated by a Poisson process
with rate 0.017/2. When the disaster strikes, it shocks log dividends by a Normal random
variable with mean −0.38 and standard deviation 0.25. The second is exactly the same,
except that it affects only asset 2. The third type arrives at rate 0.017/2 and shocks the
log dividends of both assets by the same amount,12 which is, again, a random variable with
mean −0.38 and standard deviation of 0.25. If the two assets are thought of as claims to a
country’s output, then the first two types are examples of local disasters while the third is
a global disaster.

From the perspective of either asset, then, disasters occur at rate 0.017/2 + 0.017/2 =
0.017: on average, about once every 60 years. There is a 50-50 chance that any given disaster
is local or global. These disaster arrival rates—and the mean and standard deviation of the
disaster sizes—are chosen to match exactly the empirical disaster frequency estimated by
Barro (2006), and to match approximately the disaster size distribution documented in the
same paper.

Taking everything into account, these parameter values imply an unconditional mean
dividend growth rate (in levels, not logs) of 1.6%. Conditional on disasters not occurring,
the mean dividend growth rate is 2.0%.

Figure 9 exhibits the central features of asset prices and returns in this calibration. In
broad outline, the pictures are very similar to those presented previously—and for the same
reasons—but some new features stand out. The riskless rate is lower across the range of
values of s. Also, despite considerably lower Brownian volatility, the presence of jumps
induces a higher risk premium, both at the individual asset level and at the market level.
As in Rietz (1988) and Barro (2007), incorporating rare disasters makes it easier to match
the observed riskless rate and equity premium. A more unusual feature is that disasters can
propagate to apparently safe assets: since the state variable can jump, interest rates can
jump, and hence bond prices can jump. Consequently, at times when the current riskless
rate is low (for s ≈ 0 or s ≈ 1), the risk premium on a perpetuity is significantly higher
than previously, despite the fact that disasters do not affect its cashflows. A perpetuity
earns a negative risk premium near s = 1/2, since in this state long-dated bonds act as
a hedge against disasters: when a disaster strikes one of the assets, s jumps either up or
down, riskless rates drop sharply and the price of a long-dated bond jumps up.13

12These disasters are therefore simultaneous and of perfectly correlated—in fact, identical—sizes; the

framework also easily handles the case in which disasters are simultaneous but uncorrelated or imperfectly

correlated.
13Various other figures are in Appendix G: the expected return decomposition, the plot of expected returns

and risk premia against dividend yield, a figure showing price responses to a 1% dividend shock to asset 1,

and the yield spread. The qualitative features are substantially the same as in the previous calibration in
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(c) Excess returns on asset 1 and the market
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(d) Excess returns on a perpetuity

Figure 9: The riskless rate; price-dividend ratio on asset 1 (solid) and on the market
(dashed); excess returns on asset 1 (solid) and on the market (dashed); and excess returns
on a perpetuity.

In the presence of jumps, the cross-asset effects present in the previous calibration
become more pronounced. Notably, disasters propagate across assets.

This is shown graphically in Figure 10, which plots a single sample time series. Time,
along the x-axis, runs from 0 to 60 years. The sequence of figures should be read clockwise,
starting from the top left. Asset 1 (in red) is the small asset—with an initial dividend share
of 10%. Asset 2 is shown in black. From exogenous dividend processes we calculate the
state variable, the dividend share of asset 1, and hence price-dividend ratios. Finally, from
dividends and price-dividend ratios, we calculate prices.

In the particular realization shown here, each asset suffers one negative shock to funda-
mentals; there is no “global” shock. When the large asset suffers its disaster, after about
26 years, its dividend drops by 25% and its price drops by 28%. Two forces act on the
small asset. A disaster to the large asset makes the economy more balanced, so riskless
rates jump up; at the same time, the risk premium on the small asset jumps up because it

each case. In the case of price responses to a cashflow shock, the graph is quantitatively very similar too.
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Figure 10: Dividends, the dividend share, prices and price-dividend ratios in a time series
featuring contagion and flight-to-quality. The figures should be read in clockwise order from
the top left. Asset 1, the small asset, is shown in red. Asset 2 is in black.

is a larger part of the economy. These effects act in the same direction, and the small asset
experiences a downward price jump of 8.2%: contagion.

When the small asset suffers its disaster, after about 49 years, its dividend drops by
39% and its price drops by 30%. Now, two opposing forces act on the large asset. On one
hand, its risk premium rises as it is a larger share of the market. On the other, the riskless
rate declines in response to the increasingly unbalanced world. The riskless rate effect
dominates, and the large asset experiences an upward price jump of 5.7%: flight-to-quality.

We can also calculate rolling 1-year realized return correlations along this sample path,
as shown in Figure 11. During normal times, the correlation hovers around 0.3, despite
the fact that, conditional on no jumps, the two assets have independent dividend streams.
When the first disaster (“contagion”) takes place, the measured correlation spikes up almost
as far as +1 due to the spectacular outlying return. When the second disaster (“flight-to-
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Figure 11: The one-year rolling correlation between assets 1 and 2, calculated along the
sample path of Figure 10.

quality”) takes place, the measured correlation spikes down almost as far as −1. Despite the
fact that naively calculated correlations display occasional spikes, the correlation between
the two assets, conditional on some given s, is constant over time—and is economically
significant even if one conditions on jumps not taking place. These results are therefore
reminiscent of the findings of Forbes and Rigobon (2002), who demonstrate that although
naively calculated correlations spike at times of crisis, once one corrects for the heteroskedas-
ticity induced by high market volatility at times of crisis, it can be seen that markets have
a high level of “interdependence” in all states of the world.

In Appendix G, I show that both high risk aversion (γ at least about 4) and rare disasters
are needed to get reasonable numbers out of this model, assuming we restrict to Brownian
volatility parameters (here, σ11 = σ22 = 0.022) which are standard in the consumption-
based asset pricing literature.

The results of these two, rather different, calibrations give some reassurance that the
magnitude and broad qualitative outline of the results obtained do not depend on carefully
tuned parameter values.

6 Extreme growth assets

A distinctive qualitative prediction of the model is that there should exist extreme growth
assets, but not extreme value assets. (Look back at the left-hand side of Figure 3b.) The
extreme growth case also represents the starkest departure from simple models in which
price-dividend ratios are constant (as, for example, in a one-tree model with power utility
and i.i.d. dividend growth). Furthermore, it is important to understand whether the com-
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plicated dynamics exhibited above are relevant for small assets.14 These considerations lead
me to investigate the price behavior of asset 1 in the limit s→ 0 in which it becomes tiny
relative to the rest of the market (that is, asset 2).

To preview the results, consider the problem of pricing a negligibly small asset, whose
fundamentals are independent of all other assets, in an environment in which the (real)
riskless rate is 6%. If the small asset has mean dividend growth rate of 4%, the following
logic seems plausible. Since the asset is negligibly small, it need not earn a risk premium,
so the appropriate discount rate is the riskless rate. Next, since dividends are supposed
throughout to be i.i.d., it seems sensible to apply the Gordon growth model to conclude
that for this small asset,

dividend yield = riskless rate−mean dividend growth

= 6%− 4%

= 2% .

It turns out that this argument can be made formal; I do so below.
Now, consider the (more realistic) situation in which the riskless real rate is 2%. If

the asset does not earn a risk premium, Gordon growth logic seems to suggest that the
dividend yield should be 2% − 4% = −2%, an obviously nonsensical result. I show below
how to value assets in situations such as these, in which the Gordon growth model breaks
down. In the limit, such an asset has a price-consumption ratio of zero, as one would expect.
More surprisingly, though, it has an infinite price-dividend ratio—reminiscent of Pástor and
Veronesi (2003, 2006)—and a strictly positive risk premium. Moreover, since the dividend
yield is zero, expected returns on the asset are entirely attributable to expected capital
gains.

I now return to the general setup in which the assets may have correlated dividend
growth and make a pair of definitions.

Definition 2. If the inequality
ρ− c(1,−γ) > 0 (31)

holds then we are in the subcritical case.
If the reverse inequality

ρ− c(1,−γ) < 0 (32)

holds then we are in the supercritical case.15

14This is analogous to the “small-country case” in international finance.
15There is also a third case, the critical case in which ρ − c(1,−γ) = 0; I omit it for the sake of brevity.

Briefly, price-dividend ratios are asymptotically infinite and excess returns asymptotically zero, assuming

independent dividend growth. The simple example presented in Section 1 of Cochrane, Longstaff and Santa-

Clara (2007) is precisely critical. This is no coincidence: the condition that implies criticality also ensures

that the expression for the price-dividend ratio is relatively simple. See Appendix D.1.
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In the supercritical case, define θ∗ to be the unique θ ∈ (0, 1) which satisfies

ρ− c(1− θ, θ − γ) = 0 . (33)

In the supercritical case we have θ∗ ∈ (0, 1) because equation (33) is negative at θ = 0
by (32) and positive at θ = 1 by the finiteness assumptions in Table 1. In the Brownian
motion case, (33) is simply a quadratic equation in θ. More generally, the fact that the
solution is unique follows from the fact, proved in Appendix E, that ρ− c(1− θ, θ− γ) is a
concave function of θ.

The next two Propositions supply various asymptotics, which depend on θ∗ in the su-
percritical case. To highlight the link with the traditional Gordon growth formula, I write
G1 ≡ c(1, 0) = log ED11/D10 and G2 ≡ c(0, 1) = log ED21/D20 for (log) mean dividend
growth, and R1 and R2 for the expected instantaneous returns on assets 1 and 2.

Proposition 6. In the subcritical case, in the limit as s ↓ 0, we have

Rf = ρ− c(0,−γ) (34)

R1 = ρ− c(1,−γ) + c(1, 0) (35)

D/P1 = R1 −G1 (36)

If the two assets are independent, then in this limit

Rf = R1 < R2 . (37)

Proof. See Appendix E.

The results of Proposition 6, correspond to the first example above. A small idiosyn-
cratic asset with i.i.d. dividend growth can be valued with the Gordon growth model (36).
Moreover, (37) shows that the expected return that is plugged into the Gordon growth
model is the riskless rate: the asset earns no risk premium. The next result shows that this
is not the whole story, however. More intriguing behavior may emerge.

Proposition 7. In the supercritical case, in the limit as s ↓ 0, we have

Rf = ρ− c(0,−γ) (38)

R1 = c(1− θ∗, θ∗) (39)

D/P1 = 0 (40)

If the two assets are independent, then in this limit

Rf < R1 < R2 . (41)

If G1 ≥ G2, we have the additional bound R1 < G1.
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Proof. See Appendix E.

These results are much more surprising. To understand what is going on, consider the
case in which dividend growth is independent across assets so that, as in the second example
above, the risk in question is both small and idiosyncratic. Proposition 7 demonstrates that
in the supercritical regime, such an asset has an enormous valuation ratio and earns a
strictly positive risk premium.

A naive attempt to apply the Gordon growth model breaks down in the supercritical case
because (32) holds and so the riskless rate minus dividend growth is negative. Nonetheless,
the asymptotically small asset still has a well-defined dividend-price ratio and expected
return, as demonstrated in Proposition 7. What happens to the price in the asymptotic
limit?

The first point is that this is not quite the right question. Suppose that we are in the
supercritical scenario, and imagine holding the dividend of asset 1 fixed while allowing the
dividend of asset 2 (and hence total consumption) to increase without limit. Since s then
tends to zero, this is one way asset 1 can become “small”. Because D1 is held constant, the
price of asset 1—measured, as always, in units of consumption—is unbounded in this limit.
A more informative question is to ask for the asymptotic behavior of the price-consumption
ratio.

Alternatively, imagine holding the dividend of asset 2 fixed while the dividend of asset
1, and hence s, tends to zero. The price-dividend ratio goes to infinity, but the dividend
goes to zero: what happens to the price? The answer is that since consumption remains
finite in this example, the price is zero, finite or infinite in the limit depending on whether
the price-consumption ratio is zero, finite or infinite in the limit.

In short, it is useful to focus on the price-consumption ratio, P/C = s ·P/D. Appendix
E shows that the fact that the price-consumption ratio is zero in the limit follows from the
fact that θ∗ < 1.

Examination of the subcritical condition (31) and supercritical condition (32) reveals
that the supercritical regime occurs whenever ρ is sufficiently small. More generally, the
supercritical regime is relevant in environments in which the riskless rate is low.

I now exhibit these phenomena in the simple Brownian motion example considered
earlier in the paper. This will make it clear that, first, the supercritical case is neither
pathological nor dependent on extreme parameter values and, second, the size of the strictly
positive excess return earned on the small asset in the supercritical case is economically
meaningful. To recap, the world is symmetric, and the two assets are independent with 2%
mean dividend growth and 10% dividend volatility.

As usual, γ = 4. If the time discount rate ρ = 0.05, then we are in the subcritical case.16

16In the calibration presented earlier, I set ρ = 0.03. This case is also subcritical. I have chosen to use
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If on the other hand ρ = 0.01, we are in the supercritical case.
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Figure 12: Left: Price-dividend ratio of asset 1 against s. Right: Excess return of asset 1
against s. Supercritical case is dashed, subcritical case is solid.

Figure 12 shows the price-dividend ratio and excess return of asset 1 against s. The
asymptotic limits are to the left of the graph, as s ↓ 0. In the subcritical case, the price-
dividend ratio remains below 40 for all s and the excess return tends to zero. In the
supercritical case, the price-dividend ratio explodes and the excess return tends to roughly
1.3 per cent. (Notice also that for intermediate values of the state variable, the risk premium
on asset 1 is not sensitive to the value of ρ, as would be the case in a standard one-tree
model.) Asymptotically, the dividend yield is zero, so all of the expected return of the small
asset can be attributed to expected capital gains.
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Figure 13: The price-consumption ratio of asset 1, market price-dividend ratio and riskless
rate plotted against asset 1’s share of output, s. Supercritical case is dashed, subcritical
case is solid.

Finally, to allay suspicions that something strange is going on in the background, Figure
13 demonstrates that asset 1’s price-consumption ratio, the market price-dividend ratio and
the riskless rate are all well-behaved in the limit.

ρ = 0.05 here in order to make the distinction between the two cases clearer in the figures.
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7 N assets

The general results presented in Section 3 can be generalized to the case in which the
representative agent’s consumption stream is provided by the output of N assets,

Ct = D1t +D2t + · · ·+DNt .

With this modification, equations (1)–(4) are unchanged, except that boldface vectors
are now understood to have N entries, as opposed to just two. The fundamental ideas
underlying the calculation are also the same. The main technical difficulty lies in calculating
FN

γ (v) ≡ FN
γ (v1, . . . , vN−1), the generalization of Fγ(v) to the N -tree case. It turns out

that we have

FN
γ (v) =

Γ (γ/N + iv1 + iv2 + . . .+ ivN−1)
(2π)N−1Γ(γ)

·
N−1∏
k=1

Γ (γ/N − ivk) . (42)

Before stating the main result, it will be useful to recall some old, and to define some
new, notation. Let ej be an N -vector with a one at the jth entry and zeros elsewhere, and
define the N -vectors y0 ≡ (y10, . . . , yN0)

′ and γ ≡ (γ, . . . , γ)′, and the (N − 1)×N matrix
U and the (N − 1)-vector u by

U ≡


−1 1 0 · · · 0

−1 0 1
. . .

...
...

...
. . .

. . . 0
−1 0 · · · 0 1

 and u ≡


u2

u3

...

uN

 ≡ Uy0 . (43)

In the two-asset case, there was one state variable. We worked with s, the dividend
share of asset one, or with u = log(1 − s)/s = y20 − y10. With N assets, there are N − 1
state variables. One natural set of state variables is {si}, i = 1, . . . , N − 1, where

si =
Di0

D10 + · · ·+DN0

is the dividend share of asset i; in fact, though, it turns out to be more convenient to work
with the (N − 1)-dimensional state vector u. The first entry of u is u2 = y20 − y10, which
corresponds to the state variable u of previous sections. More generally, uk = yk0− y10 is a
measure of the size of asset k relative to asset 1. Consistent with this notation, I will also
write u1 ≡ y10 − y10 = 0 and define the N -vector u+ ≡ (u1, u2, . . . , uN )′ = (0, u2, . . . , uN )′

to make subsequent formulas easier to read.
The following Proposition generalizes earlier integral formulas to the N -asset case. All

integrals are over RN−1: v is an (N − 1)-vector. Again, they can be evaluated on the
computer.
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Proposition 8 (Integral formulas in the N -tree case). The price-dividend ratio on asset j
is

P/D = e−γ′u+/N (eu1 + · · ·+ euN )γ
∫

FN
γ (v)eiu

′v

ρ− c(ej − γ/N + iU ′v)
dv . (44)

Defining the expected return by ERdt ≡ E(dP +Ddt)/P , we have

ER =
Φ

P/D
+D/P , (45)

where

Φ =
∑
m

(
γ

m

)
e(m−γ/N)′u+

∫
FN

γ (v)eiu
′vc(ej + m− γ/N + iU ′v)

ρ− c(ej − γ/N + iU ′v)
dv .

The summation is over all vectors m = (m1, . . . ,mN )′ whose entries are non-negative and
add up to γ. I have made use of the multinomial coefficient(

γ

m

)
=

γ!
m1! · · ·mN !

.

The zero-coupon yield to time T is

Y (T ) = ρ− 1
T

log
[
e−γ′u+/N (eu1 + · · ·+ euN )γ

∫
FN

γ (v)eiu
′vec(−γ/N+iU ′v)T dv

]
. (46)

The riskless rate is

r = e−γ′u+/N (eu1 + · · ·+ euN )γ
∫

FN
γ (v)eiu

′v
[
ρ− c(−γ/N + iU ′v)

]
dv . (47)

These formulas can be expressed in terms of the dividend shares {si} by making the
substitution uk = log(sk/s1).

Proof. See Appendix F.

The integral formula (44), for example, is a generalization of (14). As an illustration of
these results, Figure 14 extends the second calibration presented above to the three-asset
case, and shows how price-dividend ratios depend on the two state variables s1 and s2.

7.1 The robustness of contagion and flight-to-quality

Above, I presented a two-asset calibration in which a small asset experiences a negative
shock (“contagion”) if a large asset has bad dividend news. On the other hand, a sufficiently
large asset experiences a positive shock when a sufficiently small asset has bad dividend
news; this was labelled “flight-to-quality”. This flight-to-quality effect was dependent on a
decrease in the riskless rate outweighing the effect of an increase in the risk premium on
the large asset.
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Figure 14: An illustration of the three-asset case. Graph shows P/D for asset one on the
z-axis and s1 and s2 on the x and y axes. The three assets are identical but independent
of one another.

How robust is this effect? Intuition suggests that when more assets are introduced, the
riskless rate effect will be muted, while the risk premium effect will continue to matter for
individual assets. This section evaluates that intuition.

In the two-asset case, an asset is subject to contagion when its price-dividend ratio is
decreasing in its dividend share, and to flight-to-quality when its price-dividend ratio is
increasing in its dividend share. In the calibration of Section 5.1, the share, s∗, at which
the transition takes place occurs at the minimum point of the price-dividend curve shown
in Figure 3b: that is, at s∗ ≈ 0.61.

In the N -asset case, whether an asset experiences contagion or flight-to-quality depends
on the (N − 1)-dimensional state vector and also on which other asset is assumed to expe-
rience a shock. To simplify the analysis by reducing the dimensionality, suppose that there
are N −1 equally sized small assets, and an Nth large asset. As in the two-asset case, I cal-
culate the critical dividend share, s∗, above which the Nth asset exhibits flight-to-quality,
and below which the Nth asset exhibits contagion, following a negative dividend shock to
(any) one of the N − 1 small assets.

All assets are assumed to have independent and identically distributed dividend pro-
cesses, following geometric Brownian motions with µ = 0.02 and σ = 0.1, as in the calibra-
tion presented in Section 5.1.
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N Critical share, s∗ Relative share

2 0.61 1.56
3 0.48 1.83
4 0.41 2.11
5 0.37 2.38
6 0.35 2.66

Table 2: Above the critical share the large asset experiences flight-to-quality; below, it
experiences contagion. Relative share is the implied ratio of the large asset’s dividend to
one of the small asset’s dividends, at this critical share.

Table 2 demonstrates that s∗ is decreasing in N . An alternative measure of the large
asset’s size, which captures the extent to which the economy is unbalanced, is the ratio
of the large asset’s dividends to the dividends of any one of the N − 1 small assets. This
quantity is reported as “Relative share” in Table 2. The relative share is increasing in N :
when N = 6, an asset that has dividends two and a half times as large as any other asset will
still experience contagion rather than flight-to-quality, whereas such an asset experiences
flight-to-quality if N ≤ 5.

This evidence is dependent on a particular calibration; nonetheless, it suggests that
when there are several assets of broadly similar size, contagion, not flight-to-quality, is the
norm.

8 Conclusion

It seems worthwhile to summarize the solution method for readers who are not inclined to
look through the appendices. Broadly speaking, there are two steps, which I now outline
for the price-dividend ratio in the two-asset case:

(i) I use a change of measure followed by a Fourier transform to convert the Lucas asset-
pricing equation (2) into the integral formula (11) which can be solved numerically.

(ii) In certain special cases, the integral formula can be simplified further by using tech-
niques from complex analysis to express it as an infinite sum of residues.

(a) In the Brownian motion case, the sum of residues can be evaluated in closed
form, giving the expression (22).

(b) In the limit as the asset in question becomes negligibly small, only one of the
residues is relevant, which leads to the tractable expressions (36) and (40) which
are valid for general dividend processes.
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Complicated, interesting, and empirically relevant phenomena emerge from simple as-
sumptions. In various regions of the parameter space, the model exhibits momentum,
mean-reversion, contagion, flight to quality, the value-growth effect and excess volatility.
Closed-form expressions are available when dividends are driven by Brownian motions. In
the small asset limit, the quantities of interest can be calculated in closed-form when log
dividends follow any Lévy process which is consistent with the consumption-based asset
pricing framework. Vanishingly small idiosyncratic assets can earn positive and economi-
cally meaningful risk premia. The expected returns on such assets are entirely attributable
to expected capital gains, since dividend yields are zero in the limit.

The solution method is novel and is robust to some generalizations of the model. In work
currently in progress, I allow for non-infinite elasticity of substitution between the dividends
of two assets—now interpreted as countries—so that the consumption index C = D1 +D2

of this paper is replaced by the more complicated

C =
(
D

(η−1)/η
1 +D

(η−1)/η
2

)η/(η−1)
,

where η lies between 1 (the Cobb-Douglas case, in which price-dividend ratios are constant)
and infinity (the case considered in this paper). With this modification, real exchange rates
come into the picture.
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A Some results from complex analysis

This section provides a brief summary of the definitions and results from complex analysis
that are invoked in the body of the paper. Proofs of the results cited will be found in any
introductory complex analysis textbook; I have drawn on Priestley (1995).

A complex number z is specified by a pair of real numbers x and y; we can write
z = x + iy, where i is a complex number which satisfies i2 = −1. The complex number z
can be identified with the point (x, y) ∈ R2. The real part of z is x; the imaginary part
of z is y. (Re z = x; Im z = y.) The modulus, or absolute value, of z is written |z| and is
equal to

√
x2 + y2. (This is just the length of the vector (x, y).) Alternatively, we can think

in polar coordinates and identify z with (r cos θ, r sin θ) ∈ R2. With this notation, |z| = r

and we can define the argument of z, Arg z, to equal the angle θ ∈ [0, 2π). In rectangular
coordinates, we think of z = x+ iy; in polar coordinates, we think of z = r cos θ + ir sin θ.
Since eiθ = cos θ + i sin θ, the polar notation can be written more neatly as z = reiθ. The
set of complex numbers is written C.

The real axis is {z : Im z = 0}. The imaginary axis is {z : Re z = 0}. The upper
half-plane is {z : Im z > 0}. We will need some more notation. Write D(a; r) for the open
disc with center a and radius r > 0:

D(a; r) ≡ {z ∈ C : |z − a| < r}

Write D′(a; r) for the punctured disc centered on a with radius r > 0:

D′(a; r) ≡ {z ∈ C : 0 < |z − a| < r}

Throughout this section, let f be a complex-valued function. The function f is said to
be holomorphic in G, which is some subset of the complex plane, if

lim
h→0

f(z + h)− f(z)
h
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exists for every point z in some open set containing G. Note that the limit must be the
same no matter what direction h approaches 0 from: for example, it may be tend to zero
along the imaginary axis or along the real axis. Polynomials, convergent power series, the
exponential function, sine and cosine are holomorphic, as are compositions and finite sums
and products of these functions. So, for example, the hyperbolic cosine, cosh z ≡ (ez+e−z)/2
is holomorphic.

Evidently, to be holomorphic is to be complex-differentiable. The reason for the flashy
terminology is to emphasize that not every function which “looks” holomorphic is. For
example, not every function which is differentiable when considered as a function from
R2 → R2 is differentiable when considered as a function from C → C. Complex conjugation,
which maps x+ iy 7→ x− iy, is not holomorphic, although the function from R2 to R2 which
maps (x, y) 7→ (x,−y) is differentiable.17

Result 1 (Holomorphic iff analytic). A function f is holomorphic in the open set D(a; r)
if and only if it is analytic—that is, representable, in D(a; r), by a power series:

f(z) =
∞∑

n=0

cn(z − a)n z ∈ D(a; r)

Proof. See Priestley (1995), pp. 20–21 and 69.

Complex integrals appear throughout the paper. Real integration takes place on subsets
of the real line—for example, ∫ b

a
f(x) dx

is an integral “along the path from a to b.” Complex integration takes place over paths
in the complex plane. Since the complex plane is two-dimensional (as opposed to the one
dimension of the real line), these paths can be more complicated. For example, an integral
might be “around the unit circle defined by |z| = 1,” or “along the real line from −R to R,
then around a semicircular arc lying in the upper half-plane from R back to −R.”

The integrals which occur in this paper (for example, (15)) feature integrands which
are holomorphic everywhere except for at certain singularities at which they explode to
infinity. (These singularities do not, of course, occur on the path of integration.) It is an
amazing—and powerful—fact that such integrals depend on the behavior of the integrands
at singularities elsewhere in the complex plane. I now introduce the mathematical apparatus
used in the paper that relates to this fact.

If f is holomorphic in some punctured disc D′(a; r) but not at the point a, then a

is an isolated singularity. (Keep in mind the example f(z) = 1/z, which is holomorphic
17The increased “rigidity” of holomorphic functions is responsible for much of the power of the results

from complex analysis which are quoted here.
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everywhere except for at an isolated singularity at the origin.) In this case, f can be
expanded as a unique power series of the form

f(z) =
∞∑

n=−∞
cn(z − a)n z ∈ D′(a; r) . (48)

If cn = 0 for all n < 0, the point a is a removable singularity. (In other words, it is not
“really” a singularity at all. Consider the example f(z) = (sin z)/z, which has a removable
singularity at z = 0. If the function f is redefined slightly by specifying that f(0) = 1,
then the singularity has been removed.) If there is some positive m such that c−m 6= 0 and
ck = 0 for all k < −m then the point a is a pole of order m.18

These concepts are best illustrated with an example that will become relevant in Ap-
pendix D. Take the function

f(v) =
v

2 sinhπv
.

Singularities occur whenever sinhπv = 0, in other words at v = 0,±i,±2i, . . ..19 However,
it is easy to check that the singularity at the origin is removable. (By L’Hôpital’s rule, f(v)
tends to 1/2π as v tends to zero.) In fact, the only non-removable singularities are poles of
order 1 at ±i,±2i,±3i, . . ..

A function f which is holomorphic throughout the complex plane, except at poles, is
called meromorphic. If a meromorphic function f has a pole at a then the residue of f at
a, written Res {f(z); a}, is defined to be the coefficient on the term (z − a)−1 in a power
series expansion of the form (48). With this final piece of notation, I now state the residue
theorem.

Result 2 (The Residue Theorem). Let Ω denote a closed path of integration which is to be
integrated around in an anticlockwise direction. Suppose f is holomorphic inside and on Ω,
except for at a finite number of poles at points a1, . . . , am inside Ω. Then∫

Ω
f(z) dz = 2πi

m∑
j=1

Res {f(z); aj}

Proof. See Priestley (1995), chapter 7.

The poles that occur in the course of this paper are almost invariably poles of order 1.
This fact makes the computation of residues particularly simple. If f(z) = g(z)/h(z) has a
pole at a and g(a) 6= 0, h(a) = 0 and h′(a) 6= 0, then

Res {f(z); a} =
g(a)
h′(a)

. (49)

18If there are arbitrarily large m such that c−m 6= 0 then the point a is an isolated essential singularity,

but this case is not relevant to this paper.
19Remember that when z is real, we have sinh(iz) = i sin z and cosh(iz) = cos z.
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A.1 An illustration

To illustrate these techniques, I now show how to evaluate the integral

1
2π

∫ ∞

−∞

e−iuv

2 cosh(u/2)
du ≡ K

2π
,

which is the case γ = 1 in (58).
The integrand has poles when cosh(u/2) = 0. These occur when u = πi, 3πi, 5πi, . . ..

We can solve the integral by integrating around a judiciously chosen path which encloses
the first pole πi. Let N be a large positive real number, and let � be the rectangle with
corners at −R, R, R + 2πi and −R + 2πi. We integrate around � in the anticlockwise
direction.

By the residue theorem,∫
�

e−iuv

2 cosh(u/2)
du = 2πi · Res

{
e−iuv

2 cosh(u/2)
;πi
}

= 2πi · eπv

[2 cosh(u/2)]′
∣∣
u=πi

= 2πi · eπv

sinh(πi/2)
= 2πeπv . (50)

We can decompose the integral on the left-hand side of (50) into four parts, one for each
side of the rectangle. Doing so gives

K1 +K2 +K3 +K4 = 2πeπv , (51)

where

K1 =
∫ N

−N

e−iuv

2 cosh(u/2)
du

K2 =
∫ 2π

0

e−iv(N+iu)

2 cosh((N + iu)/2)
i du

K3 =
∫ −N

N

e−iv(u+2πi)

2 cosh(u/2 + πi)
du

K4 =
∫ 2π

0

e−iv(−N+iu)

2 cosh((−N + iu)/2)
i du .

Now consider the limit as N tends to infinity—in other words, the limit as the rectangle
around which we are integrating becomes extremely wide. Equation (51) continues to hold
in this limit because πi remains the only pole inside the contour. In this limit, K1 tends to
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K, the integral of interest, and K3 tends to e2πv ·K. On the other hand, both K2 and K4

tend to zero. To see this, consider K2. We have

|K2| ≤
∫ 2π

0

∣∣∣∣∣ e−iv(N+iu)

2 cosh((N + iu)/2)
i

∣∣∣∣∣ du
=

∫ 2π

0

euv

2 |cosh((N + iu)/2)|
du .

Since cosh((N + iu)/2) tends to 0 uniformly in u as N tends to infinity, we have |K2| → 0
and hence K2 → 0. The case of K4 is very similar.

In conclusion, allowing N to tend to infinity in equation (51), we have K + e2πvK =
2πeπv, from which it follows that K = π sech(πv). Finally, we have

1
2π

∫ ∞

−∞

e−iuv

2 cosh(u/2)
du =

K

2π
=

1
2

sech(πv) .

B Prices, returns and interest rates

B.1 Preliminary mathematical results

B.1.1 An expectation

This section contains a calculation which is used below. It may be helpful to glance ahead
to equation (64) for motivation. The goal is to evaluate

E ≡ E

(
eα1ey1t+α2ey2t[

ey10+ey1t + ey20+ey2t
]γ
)

for general α1, α2, γ > 0. First, I rewrite the expectation, noting that

E

(
eα1ey1t+α2ey2t[

ey10+ey1t + ey20+ey2t
]γ
)

= e−γ/2(y10+y20) ×

E

(
e(α1−γ/2)ey1t+(α2−γ/2)ey2t

[2 cosh((y20 − y10 + ỹ2t − ỹ1t)/2)]γ

)
(52)

To take care of the exponential in the numerator inside the expectation, I transform the
probability law, defining

Ẽ [Y ] ≡ e−tc(α1−γ/2,α2−γ/2) · E
[
e(α1−γ/2)ey1t+(α2−γ/2)ey2t · Y

]
. (53)

This is an Esscher transform of the original law, and it has the property that

c̃(v1, v2) ≡ log Ẽ
[
ev1ey11+v2ey21

]
= c(α1−γ/2+v1, α2−γ/2+v2)−c(α1−γ/2, α2−γ/2) . (54)
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In terms of this transformed law, the right hand side of (52) equals

e−γ(y10+y20)/2+c(α1−γ/2,α2−γ/2)tẼ
(

1
[2 cosh((y20 − y10 + ỹ2t − ỹ1t)/2)]γ

)
(55)

To make further progress, we can now attack the expectation in (55) by exploiting the
fact that 1/ [2 cosh(u/2)]γ has a Fourier transform which can be found in closed form for
integer γ > 0. Define the Fourier transform Fγ(v) by

1
[2 cosh(u/2)]γ

=
∫ ∞

−∞
eiuvFγ(v) dv (56)

We have, then,

E = e−γ(y10+y20)/2+c(α1−γ/2,α2−γ/2)t Ẽ
(∫ ∞

−∞
eiv(y20−y10+ey2t−ey1t)Fγ(v) dv

)
= e−γ(y10+y20)/2+c(α1−γ/2,α2−γ/2)t

(∫ ∞

−∞
eec(−iv,iv)t · eiv(y20−y10)Fγ(v) dv

)
= e−γ(y10+y20)/2

∫ ∞

−∞
ec(α1−γ/2−iv,α2−γ/2+iv)t · eiv(y20−y10)Fγ(v) dv . (57)

B.1.2 The Fourier transform Fγ(v)

By the Fourier inversion theorem,20 definition (56) implies that

Fγ(v) =
1
2π

∫ ∞

−∞

e−iuv

(2 cosh(u/2))γ du

=
1
2π

∫ ∞

−∞

e−iuv(
eu/2 + e−u/2

)γ du . (58)

Make the change of variable
u = log

t

1− t
. (59)

It follows that
du =

dt

t(1− t)

so on making this substitution in (58), we have

Fγ(v) =
1
2π

∫ 1

0

(
t

1−t

)−iv

(√
t

1−t +
√

1−t
t

)γ
dt

t(1− t)

=
1
2π

∫ 1

0
tγ/2−iv(1− t)γ/2+iv dt

t(1− t)
. (60)

20See Körner (1988, pp. 296–7) for a proof.
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This is a Dirichlet surface integral. As shown in Edwards (1922, pp. 166–7) or Andrews,
Askey and Roy (1999, p. 34), it can be evaluated in terms of Γ-functions, giving

Fγ(v) =
1
2π

Γ(γ/2− iv)Γ(γ/2 + iv)
Γ(γ)

. (61)

For future reference, it is useful to note an equivalent representation of Fγ(v). It was
shown in Appendix A.1 that F1(v) = 1

2sechπv; a similar calculation reveals that F2(v) =
1
2v cosechπv. From these two facts, expression (61), and the fact that Γ(x) = (x−1)Γ(x−1),
it follows that for positive integer γ, we have

Fγ(v) =


v cosech(πv)

2(γ − 1)!
·

γ/2−1∏
n=1

(
v2 + n2

)
for even γ ,

sech(πv)
2(γ − 1)!

·
(γ−1)/2∏

n=1

(
v2 + (n− 1/2)2

)
for odd γ .

(62)

B.1.3 An Itô calculation

Given a jump-diffusion y, with

dy = µdt+ AdZ + JdN ,

this section seeks a simple formula for

Ed(ew
′y)

where w is a constant vector.
First, define x ≡ w′y; then

dx = w′µdt+ w′AdZ + w′JdN

We seek Ed(ex). By Itô ’s formula for jump-diffusions, we have

d(ex) = ex
[(

w′µ +
1
2
w′Σw

)
dt+ w′AdZ +

(
ew

′J − 1
)
dN

]
where Σ ≡ AA′; and so, after taking expectations,

Ed(ew
′y) = ew

′y ·
[
w′µ +

1
2
w′Σw + ω

(
Eew

′J − 1
)]
dt

= ew
′y · c(w)dt . (63)

In the case in which y is a general Lévy process, (63) holds by Proposition 8.20 of Cont
and Tankov (2004).
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B.2 Prices

B.2.1 Proof of Proposition 1

The price of the α-asset is

Pα = E
∫ ∞

0
e−ρt

(
Ct

C0

)−γ

Dα1
1t D

α2
2t dt

= (C0)
γ
∫ ∞

0
e−ρt E

(
eα1(y10+ey1t)+α2(y20+ey2t)[
ey10+ey1t + ey20+ey2t

]γ
)
dt

It follows that

Pα

Dα
= (ey10 + ey20)γ

∫ ∞

t=0
e−ρt E

(
eα1ey1t+α2ey2t[

ey10+ey1t + ey20+ey2t
]γ
)
dt (64)

The expectation inside the integral was calculated above in Appendix B.1.1. Substitut-
ing (57) into (64), interchanging the order of integration,21 and writing u for y20 − y10, we
get

Pα

Dα
= [2 cosh(u/2)]γ

∫ ∞

v=−∞

∫ ∞

t=0
e−ρtec(α1−γ/2−iv,α2−γ/2+iv)t · eiuvFγ(v) dt dv

(a)
= [2 cosh(u/2)]γ

∫ ∞

v=−∞

eiuvFγ(v)
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

dv (65)

For equality (a) to hold, I have assumed that

ρ− Re[c(α1 − γ/2− iv, α2 − γ/2 + iv)] > 0 for all v ∈ R.

I show in Appendix C that this follows from the apparently weaker assumption that the
inequality holds at v = 0:

ρ− c(α1 − γ/2, α2 − γ/2) > 0 (66)

In particular, for the problem under consideration to be well-defined, we must impose a
requirement that expected utility (1) is finite. Finiteness of expected utility is guaranteed
by the finiteness of the prices of the two assets. Therefore I refer to the two inequalities
generated by substituting (α1, α2) = (1, 0) and (0, 1) into (66) as the finiteness condition.
Throughout the paper, it is assumed that this condition holds. (See equation (13) and
Table 1.)

In terms of the state variable s, the price-dividend ratio is therefore

Pα

Dα
=

1√
sγ(1− s)γ

·
∫ ∞

−∞

(
1−s

s

)iv
Fγ(v)

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)
dv (67)

where I have defined s ≡ D10/(D10 +D20).
21Since the integrand is absolutely integrable, this is a legitimate application of Fubini’s theorem.

44



B.2.2 Proof of Proposition 2

Since u = log[(1− s)/s], we have
1− s

s
= eu

and
1√

sγ(1− s)γ
= [2 cosh(u/2)]γ .

Furthermore, Fγ(v) was defined by

1
[2 cosh(u/2)]γ

=
∫ ∞

−∞
eiuvFγ(v) dv .

Substituting these observations into the pricing formula (11), we find the expressions of
Proposition 2.

B.3 Returns

Expected returns contain a dividend yield component and a capital gain component:

Rαdt =
Dα

Pα
dt+

EdPα

Pα

The first term is supplied by the pricing formula derived in the previous section. This
section therefore focusses on calculating EdPα/Pα in the case in which γ is an integer.

We have

Pα = (D10 +D20)
γ e(α1−γ/2)y10+(α2−γ/2)y20

∫ ∞

−∞

eiv(y20−y10)Fγ(v)
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

dv

(68)
For convenience, I write

h(v) ≡ Fγ(v)
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

and
(
n

m

)
≡ n!
m!(n−m)!

throughout this section.
Introducing this notation,

Pα =
∫ ∞

−∞
h(v) · (ey10 + ey20)γ e(α1−γ/2−iv)y10+(α2−γ/2+iv)y20 dv

=
∫ ∞

−∞
h(v) ·

γ∑
m=0

[(
γ

m

)
emy10 · e(γ−m)y20

]
e(α1−γ/2−iv)y10+(α2−γ/2+iv)y20 dv

=
γ∑

m=0

(
γ

m

)∫ ∞

−∞
h(v) · e(α1−γ/2+m−iv)y10+(α2+γ/2−m+iv)y20 dv

≡
γ∑

m=0

(
γ

m

)∫ ∞

−∞
h(v) · ewm(v)·y dv , (69)
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where
wm(v) ≡ (α1 − γ/2 +m− iv, α2 + γ/2−m+ iv)′

The calculation of Appendix B.1.3, above, can now be used in (69) to show that

E(dPα) =

{
γ∑

m=0

(
γ

m

)∫ ∞

−∞
h(v) · ewm(v)·yc [wm(v)] dv

}
· dt (70)

Dividing (70) by (69) and rearranging, the expected capital gain is given by the formula

EdPα

Pα
=

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞

−∞
h(v)eiuv · c(wm(v)) dv

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞

−∞
h(v)eiuv dv

· dt (71)

B.4 Real interest rates

From the Euler equation, we have

BT = E

[
e−ρT

(
CT

C0

)−γ
]

= e−ρTCγ
0 E
[

1
(D1T +D2T )γ

]
Using the result of Appendix B.1.1, we find that

BT = e−ρT (ey10 + ey20)γ e−γ(y10+y20)/2

∫ ∞

−∞
eiv(y20−y10)Fγ(v)ec(−γ/2−iv,−γ/2+iv)T dv

= e−ρT [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)eiuv · ec(−γ/2−iv,−γ/2+iv)T dv ,

as claimed. The yield, Y (T ), follows directly from this expression:

Y (T ) = ρ− 1
T

log
{

[2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)eiuv · ec(−γ/2−iv,−γ/2+iv)T dv

}
. (72)

The riskless rate is found by taking the limit as T ↓ 0 in (72). To calculate this limit,
first use the fact that

[2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)eiuv dv = 1

to rewrite equation (72) as

Y (T ) = ρ− 1
T

log
{

1 + [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)eiuv

[
ec(−γ/2−iv,−γ/2+iv)T − 1

]
dv

}
.
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It follows, after applying L’Hôpital’s rule, that

r = ρ− [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)eiuvc(−γ/2− iv,−γ/2 + iv) dv

= [2 cosh(u/2)]γ
∫ ∞

−∞
Fγ(v)eiuv · [ρ− c(−γ/2− iv,−γ/2 + iv)] dv

as required.

C The ridge property

This section expands on two closely related issues. First, as mentioned in Appendix B.2.1,
the required assumption that

ρ− Re[c(α1 − γ/2− iv, α2 − γ/2 + iv)] > 0 for all v ∈ R

follows from the apparently weaker assumption that the inequality holds at v = 0:

ρ− c(α1 − γ/2, α2 − γ/2) > 0 .

Second, when considering the small-asset asymptotic (see Section 6 and Appendix E), it is
of interest to find the zero of

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

in the upper half-plane which is closest to the real axis (the minimal zero, in the terminology
of Appendix E).

In either case, we are led to explore the properties of c(α1 − γ/2 − iv, α2 − γ/2 + iv),
considered as a function of v. Recalling the change of measure of Appendix B.1.1, we can
exploit the fact that

c(α1 − γ/2− iv, α2 − γ/2 + iv) = c̃(−iv, iv) + c(α1 − γ/2, α2 − γ/2)

where c̃(v1, v2) is the cumulant-generating function under the changed measure. Next, note
that

c̃(−iv, iv) = log Ẽeiv(ey21−ey11) ≡ logψ(v)

which defines ψ(v) as the characteristic function of the random variable ỹ21 − ỹ11.
I now state a theorem proved in Dugué (1951) and discussed further by Lukacs (1970,

pp. 191–5):

Result 3. Let ψ(v) be an analytic characteristic function defined in the horizontal strip
{v : xmin < Im v < xmax}. Then the maximum of |ψ(v)| along any horizontal line in this
strip is to be found on the imaginary axis.
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Proof. Let a and b be real and let ψ(x) be the characteristic function of some real-valued
random variable X. Then

ψ(a+ ib) = E
(
eiaXe−bX

)
so

|ψ(a+ ib)| =
∣∣∣E(eiaXe−bX

)∣∣∣ ≤ E
∣∣∣eiaXe−bX

∣∣∣ = Ee−bX = ψ(ib) = |ψ(ib)|

which is the desired result.

In other words, analytic characteristic functions have the “ridge property”. If |ψ(v)| is
thought of as a 3D plot, with |ψ(v)| represented by height above the complex plane, there
is a ridge running along the imaginary axis.

Since the log dividend processes dealt with in this paper all have finite moments of all
orders, their characteristic functions can be expanded in the neighborhood of the origin as
a power series, and are therefore analytic in a horizontal strip containing the origin.
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Figure 15: The ridge property. The figure plots |ψ(v)| (on the z-axis) over a portion of the
complex plane around the origin. A ridge runs up the imaginary axis.

Figure 15 illustrates the ridge property using the calibration of section 5.2.

Proposition 9. The assumption that

ρ− Re[c(α1 − γ/2− iv, α2 − γ/2 + iv)] > 0 for all v ∈ R.

follows from the apparently weaker assumption that the inequality holds at v = 0:

ρ− c(α1 − γ/2, α2 − γ/2) > 0 . (73)
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Proof. Suppose the apparently weaker inequality holds. In terms of the characteristic func-
tion ψ, we have

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv) = ρ− c(α1 − γ/2, α2 − γ/2)− logψ(v) ; (74)

note that the middle term on the right is real. So, for v ∈ R, we have

ρ− Re[c(α1 − γ/2− iv, α2 − γ/2 + iv)] = ρ− c(α1 − γ/2, α2 − γ/2)− Re logψ(v)

= ρ− c(α1 − γ/2, α2 − γ/2)− log |ψ(v)|

≥ ρ− c(α1 − γ/2, α2 − γ/2)− log |ψ(0)|

= ρ− c(α1 − γ/2, α2 − γ/2)

> 0 by assumption,

which establishes the claim. The first inequality in this chain follows by the ridge property,
Result 3.

Under assumption (73) this proposition implies, for example, that there are no zeros of
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv) on the real axis. The following proposition documents
an important property of the closest zero above the real axis.

Proposition 10. Consider

ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv) (75)

as a function of v ∈ C, and suppose that the condition

ρ− c(α1 − γ/2, α2 − γ/2) > 0 (76)

holds. Then the zero of (75) in the upper half-plane which is closest to the real axis lies on
the imaginary axis.

Proof. Using equation (74) above, any zero, z, satisfies

ρ− c(α1 − γ/2, α2 − γ/2) = logψ(z) .

Writing the left-hand side as ρ̂ ∈ R for convenience, any zero z must satisfy ψ(z) = exp ρ̂.
The fact that ρ̂ > 0 follows from (76).

Let z∗ be the zero in the upper half-plane with smallest imaginary part, and suppose (for
a contradiction) that Re z∗ 6= 0. Let z̃ = (Im z∗)i be the projection of z∗ onto the imaginary
axis. By the ridge property, we have ψ(z̃) > |ψ(z∗)| = exp ρ̂. So, ψ(z̃) > exp ρ̂ > 1 = ψ(0).
By continuity of ψ, there must be a purely imaginary ẑ which lies between 0 and z̃ and
satisfies ψ(ẑ) = exp ρ̂—but this contradicts the assumption that z∗ had smallest imaginary
part. Therefore the zero with smallest imaginary part must, in fact, lie on the imaginary
axis.
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Figure 16: 1/|ρ− c(1− γ/2− iv,−γ/2 + iv)| plotted for v in a region of the complex plane
close to the origin. Zeros of ρ − c(1 − γ/2 − iv,−γ/2 + iv) occur at the spikes. The pole
nearest the real axis lies on the imaginary axis, at roughly 3i in this example.

Condition (76) holds when (α1, α2) = (1, 0) or (0, 1) by the finiteness condition.
Figure 16 illustrates Proposition 10 (using the calibration of section 5.2) by plotting

the real-valued function 1/ |ρ− c(1− γ/2− iv,−γ/2 + iv)| over a region of the complex
plane close to the origin. When ρ − c(1 − γ/2 − iv,−γ/2 + iv) has a zero, this function
explodes. Proposition 10 says that the spike which is closest to the real axis should lie on
the imaginary axis—and of course it does.

D The Brownian motion case

The price-dividend ratio on asset 1 is determined by setting (α1, α2) = (1, 0) in (14), in
which case we have

P/D1(u) = [2 cosh(u/2)]γ ·
∫ ∞

−∞

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

dv . (77)

In this Brownian motion case, there are two solutions to the equation ρ − c(1 − γ/2 −
iv,−γ/2 + iv), each of which lie on the imaginary axis. One—call it λ1i—lies in the upper
half-plane; the other—call it λ2i—lies in the lower half-plane. We can then rewrite

ρ− c(1− γ/2− iv,−γ/2 + iv) = B(v − λ1i)(v − λ2i)

for some B > 0.
The aim, then, is to evaluate

I ≡
∫ ∞

−∞

eiuvFγ(v)
B(v − λ1i)(v − λ2i)

dv , (78)
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in terms of which the price-dividend ratio is

P/D = [2 cosh(u/2)]γ · I . (79)

The proof of Proposition 5, which amounts to evaluating the integral (78), is somewhat
involved, so I have divided it into several steps. Step 1 starts from the assumption that the
state variable u is positive—an assumption that will later be relaxed—and demonstrates
that the integral (77) can be calculated via the Residue Theorem (stated as Result 2 in
Appendix A) by finding the residues at all poles of the integrand that occur in the upper half-
plane. Steps 2 and 3 carry out the residue calculations and simplify. Step 4 demonstrates
that the resulting expression is also valid for negative u. Step 5 calculates B, λ1 and λ2 in
terms of fundamental parameters, which concludes the proof.

Step 1. Let u > 0. Consider the case in which γ is even. Let Rn ≡ n + 1/2, where n
is an integer. Define the large semicircle Ωn to be the semicircle whose base lies along the
real axis from −Rn to Rn and which has a semicircular arc (ωn) passing through the upper
half-plane from Rn through Rni and back to −Rn. I will first show that

I = lim
n→∞

∫
Ωn

eiuvFγ(v)
B(v − λ1i)(v − λ2i)

dv . (80)

Then, from the residue theorem, it will follow that

I = 2πi ·
∑

Res
{

eiuvFγ(v)
B(v − λ1i)(v − λ2i)

; vp

}
, (81)

where the sum is taken over all poles vp in the upper half-plane.
The first step is to establish that (80) holds. The right-hand side is equal to

lim
n→∞

∫ Rn

−Rn

eiuvFγ(v)
B(v − λ1i)(v − λ2i)

dv︸ ︷︷ ︸
In

+
∫

ωn

eiuvFγ(v)
B(v − λ1i)(v − λ2i)

dv︸ ︷︷ ︸
Jn

The integral In tends to I as n tends to infinity. The aim, then, is to establish that the
second term Jn tends to zero as n tends to infinity. Along the arc ωn, we have v = Rne

iθ

where θ varies between 0 and π.
At this point of the argument it is convenient to work with the representation of Fγ(v)

of equation (62). Substituting from (62), we have

Jn =
∫ π

0

eiuRn cos θ−uRn sin θP (Rne
iθ)

Q(Rneiθ)
(
eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)

) ·Rnie
iθ dθ

with P (·) and Q(·) polynomials.
To show that Jn tends to zero as n tends to infinity, I separate the range of integration

[0, π] into two parts: [π/2− δ, π/2 + δ] and its complement in [0, π]. Here δ will be chosen
to be extremely small.
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First, consider

J (1)
n ≡

∣∣∣∣∣
∫ π/2+δ

π/2−δ

P (Rne
iθ)eiuRn cos θ−uRn sin θRnie

iθ

Q(Rneiθ)
(
eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)

) dθ∣∣∣∣∣
≤

∫ π/2+δ

π/2−δ

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣ dθ (82)

Pick δ sufficiently small that∣∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣∣ ≥ 2− ε

for all θ ∈ [π/2−δ, π/2+δ]; ε is some very small number close to but greater than zero. This
is possible because the left-hand side is continuous and equal to 2 when θ = π/2. Then,

J (1)
n ≤

∫ π/2+δ

π/2−δ

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn

2− ε
dθ (83)

Since

(i) we can also ensure that δ is small enough that sin θ ≥ ε for θ in the range of integration,

(ii) |P (Rne
iθ)| ≤ P2(Rn), where P2 is the polynomial obtained by taking absolute values

of the coefficients in P ,

(iii) Q(Rne
iθ) tends to infinity as Rn becomes large and

(iv) decaying exponentials decay faster than polynomials grow, in the sense that for any
positive k and λ, xke−λx → 0 as x→∞, x ∈ R,

we see, finally, that the right-hand side of (83), and hence J (1)
n , tends to zero as n tends to

infinity,
It remains to be shown that

J (2)
n ≡

∣∣∣∣∣
∫

[0,π/2−δ]∪[π/2+δ,π]

P (Rne
iθ)eiuRn cos θ−uRn sin θRnie

iθ

Q(Rneiθ)
(
eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)

) dθ∣∣∣∣∣
is zero in the limit. Since δ > 0, for all θ in the range of integration we have that | cos θ| ≥
ζ > 0, for some small ζ. We have

J (2)
n ≤

∫
[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣ dθ .

Now, ∣∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣∣

≥
∣∣∣∣∣∣eπRn(cos θ+i sin θ)

∣∣∣− ∣∣∣e−πRn(cos θ+i sin θ)
∣∣∣∣∣∣

= eπRn| cos θ| − e−πRn| cos θ|

≥ eπRnζ − e−πRnζ
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for all θ in the range of integration. So,

J (2)
n ≤

∫
[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn

eπRnζ − e−πRnζ
dθ

≤
∫

[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ Rn

eπRnζ − e−πRnζ
dθ

which tends to zero as n tends to infinity.
The case of γ odd is almost identical. The only important difference is that we take

Rn = n (as opposed to n+ 1/2) before allowing n to go to infinity. The reason for doing so
is that we must take care to avoid the poles of Fγ(v) on the imaginary axis.

Step 2. From now on, I revert to the definition of Fγ(v) as

Fγ(v) =
1
2π

Γ(γ/2− iv)Γ(γ/2 + iv)
Γ(γ)

.

The integrand is
eiuvΓ(γ/2− iv)Γ(γ/2 + iv)

2π ·B · Γ(γ) · (v − λ1i)(v − λ2i)
, (84)

which has poles in the upper half-plane at λ1i and at points v such that γ/2 + iv = −n for
integers n ≥ 0, since the Γ-function has poles at the negative integers and zero. In other
words, the integrand has poles at λ1i and at (n+ γ/2)i for n ≥ 0.

By direct calculation using (49), the residue of (84) at v = λ1i is

e−λ1uΓ(γ/2 + λ1)Γ(γ/2− λ1)
2πi ·B · Γ(γ) · (λ1 − λ2)

. (85)

Γ(z) has residue (−1)n/n! at z = −n. (See, for example, Andrews, Askey and Roy
(1999, p. 7).) Using this fact, it follows that the residue of (84) at v = (n + γ/2)i for
integers n ≥ 0 is

−e−u(n+γ/2) · Γ(γ + n) · (−1)n

n!

2πi ·B · Γ(γ) · (n+ γ/2− λ1)(n+ γ/2− λ2)
(86)

Substituting (85) and (86) into (81), we find

I =
e−λ1uΓ(γ/2 + λ1)Γ(γ/2− λ1)

B · Γ(γ) · (λ1 − λ2)
− e−γu/2

∞∑
n=0

(−e−u)n · Γ(γ + n) · 1
n!

B · Γ(γ) · (n+ γ/2− λ1)(n+ γ/2− λ2)

Since | − e−u| < 1 under the assumption that u > 0, which for the time being is still
maintained, we can use the series definition of Gauss’s hypergeometric function given in
equation (7), together with the fact that Γ(γ+n)/Γ(γ) = γ(γ+1) · · · (γ+n− 1), to obtain

I =
e−λ1u

B(λ1 − λ2)
Γ(γ/2− λ1)Γ(γ/2 + λ1)

Γ(γ)
+

+
e−γu/2

B(λ1 − λ2)

[
1

γ/2− λ2
F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)
−

− 1
γ/2− λ1

F
(
γ, γ/2− λ1; 1 + γ/2− λ1;−e−u

)]
(87)
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Step 3. A final simplification follows from the fact that

e−λ1u Γ(γ/2− λ1)Γ(γ/2 + λ1)
Γ(γ)

=
eγu/2

γ/2 + λ1
F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ1
F
(
γ, γ/2− λ1; 1 + γ/2− λ1;−e−u

)
,

which follows from equation (1.8.1.11) of Slater (1966, pp. 35–36).
Using this observation to substitute out the first term in (87), we have

I =
1

B(λ1 − λ2)

[
eγu/2

γ/2 + λ1
F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ2
F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)]
.

Substituting this expression into (79) gives the formula

P/D1(u) =
[2 cosh(u/2)]γ

B(λ1 − λ2)

[
eγu/2

γ/2 + λ1
F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ2
F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)]
; (88)

thus far, however, the derivation is valid only under the assumption that u > 0.
Step 4. Suppose, now, that u < 0. Take the complex conjugate of equation (78). (This

leaves the left-hand side unaltered because the price-dividend ratio is real.) Doing so is
equivalent to reframing the problem with (u, λ1, λ2) replaced by (−u,−λ2,−λ1). Since
−u > 0,−λ2 > 0 and −λ1 < 0, the method of steps 1–4 applies unchanged. Since the
formula (88) is invariant under (−u,−λ2,−λ1) 7→ (u, λ1, λ2), we can conclude that equation
(88) is valid for all u. Substituting u 7→ log(1− s)/s delivers (22).

Step 5. It only remains to find the values of B, λ1 and λ2 in terms of the fundamental
parameters. The CGF is given, in the general Brownian motion case, by

c(θ1, θ2) = µ1θ1 + µ2θ2 +
1
2
σ11θ

2
1 + σ12θ1θ2 +

1
2
σ22θ

2
2

We can rewrite ρ− c(1− γ/2− iv,−γ/2 + iv) in the form

ρ− c(1− γ/2− iv,−γ/2 + iv) =
1
2
X2v2 + iY v +

1
2
Z2 , (89)

where, as in the main text, I have defined

X2 ≡ σ11 − 2σ12 + σ22

Y ≡ µ1 − µ2 + σ11 − σ12 −
γ

2
(σ11 − σ22)

Z2 ≡ 2(ρ− µ1 − σ11/2) + γ(µ1 + µ2 + σ11 + σ12)−
γ2

4
(σ11 + 2σ12 + σ22) .
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I have chosen to write X2 and Z2 to emphasize that these two quantities are positive. The
positivity of X2 follows because it is the variance of the difference of two random variables
(y21 − y11). The positivity of Z2, on the other hand, follows from the assumption that
ρ− c(1− γ/2,−γ/2) > 0 by setting v = 0 in (89).

Solving the quadratic equation in (89) for v as a function of X, Y and Z, we have,
finally, that

ρ− c(1− γ/2− iv,−γ/2 + iv) = B(v − λ1i)(v − λ2i)

where

B ≡ 1
2
X2

λ1 ≡
√
Y 2 +X2Z2 − Y

X2

λ2 ≡ −
√
Y 2 +X2Z2 + Y

X2
.

D.1 Simple special cases with symmetric Brownian motions

In some special subcases, it is possible to obtain considerably simpler expressions for the
price-dividend ratio. In this section, I consider the special case in which the world is sym-
metrical and the log dividend processes of each asset follow independent drifting Brownian
motions with drift µ and volatility σ. It follows that the CGF is given by

c(θ1, θ2) = µ(θ1 + θ2) +
1
2
σ2(θ2

1 + θ2
2) (90)

Recall the general pricing formula, in the form of (14):

Pα

Dα
= [2 cosh(u/2)]γ ·

∫ ∞

−∞

eiuvFγ(v)
ρ− c(α1 − γ/2− iv, α2 − γ/2 + iv)

dv

I will focus on pricing the claim to asset 1, so α1 = 1, α2 = 0. Substituting in from (90),
a little algebra confirms the fact that

ρ− c(1− γ/2− iv,−γ/2 + iv) = σ2
[
(v + i/2)2 +A2

]
,

where A2 ≡ (ρ+ µ(γ − 1))/σ2 − (γ − 1)2/4. The finiteness condition requires that

ρ− c(1− γ/2,−γ/2) > 0 and ρ− c(1− γ, 0) > 0

which amounts to the requirement that A > (γ − 1)/2.
The general pricing formula gives the price-dividend ratio of asset 1, written P/D1, as

P/D1 = [2 cosh(u/2)]γ ·
∫ ∞

−∞

eiuvFγ(v)

σ2
[
(v + i/2)2 +A2

] dv . (91)
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The question, as before, is where the poles of the integrand are. In the upper half
plane, Fγ(v) has infinitely many regularly spaced poles on the imaginary axis, at (γ/2)i,
(γ/2 + 1)i, (γ/2 + 2)i, . . . . The other pole is at the zero, in the upper half-plane, of the
denominator σ2

[
(v + i/2)2 +A2

]
—that is, at(A − 1/2)i. It turns out that the integral

takes on a relatively simple form if we ensure that the pole at (A − 1/2)i is an integer
distance from the poles (γ/2)i, (γ/2+1)i, etc. (The simple example presented in Cochrane,
Longstaff and Santa-Clara (2007) has ρ = σ2, so A = 1.) Thus, we want

A ∈ {(γ + 1)/2, (γ + 3)/2, (γ + 5)/2, . . .}

For example, if γ = 2 and A = 3/2, the price-dividend ratio of asset 1 is

P/D1(s) =
2(1− s)3 log(1− s) + 2s− 5s2 + 3s3 − s3 log s

3(1− s)2s3σ2
.

E Small asset asymptotics

I start by establishing the claim made in the text that ρ − c(1 − θ, θ − γ) is a concave
function of θ. This fact follows directly from

Proposition 11 (A convexity property of c(·, ·)). For arbitrary real numbers α and β, the
function c(α− θ, β + θ) is a convex function of θ.

Proof. Define the measure P̂ by

Ê(A) ≡ e−c(α,β)E
(
eαy11+βy21A

)
.

It follows that the CGF of y21 − y11, calculated with respect to P̂, is

ĉ(θ) = log Ê
(
eθy21−θy11

)
= −c(α, β) + log E

(
e(α−θ)y11+(β+θ)y21

)
= −c(α, β) + c(α− θ, β + θ) .

Therefore, c(α − θ, β + θ) = c(α, β) + ĉ(θ). (Compare also equations (53) and (54) of
Appendix B.1.1.)

The convexity of c(α− θ, β+ θ) follows immediately, because ĉ(θ), as a CGF, is convex,
as shown in Billingsley (1995, pp. 147–8).

The price-dividend ratio in the small asset limit is given by (15), which I reproduce here
for the situation in which asset 1 is small:

P/D1 = lim
u→∞

∫ ∞

−∞

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

dv

∫ ∞

−∞
eiuvFγ(v) dv

. (92)
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By the Riemann-Lebesgue lemma, both the numerator and denominator on the right-hand
side of (92) tend to zero in the limit as u tends to infinity.22 What happens to their ratio?
This section shows how to calculate limiting price-dividend ratio, riskless rate and excess
returns in the small-asset case. For clarity, I work through the price-dividend ratio in detail;
the techniques used also apply to the riskless rate and to expected returns, and are very
similar to those that were used to provide the closed-form solution in the Brownian motion
case.

The following definition provides a convenient label for the poles that will be of interest
when evaluating the relevant integrals in the asymptotic limit. (When reading the definition,
note that by the finiteness condition and Proposition 9 of Appendix C, the functions to
which the definition will be applied will never have poles on the real axis.)

Definition 3. Let f be an arbitrary meromorphic function. A pole (resp. zero) of f is
minimal if it lies in the upper half-plane and no other pole (resp. zero) in the upper half-
plane has smaller imaginary part.

Step 1. Consider the integral which makes up the numerator of (92),

I ≡
∫ ∞

−∞

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

dv .

If log dividends are drifting Brownian motions, Appendix D showed that this integral
could be approached by summing all residues in the upper half-plane. The aim here is
to show that the asymptotic behavior of this integral is determined only by the minimal
residue. Roughly speaking, this is because poles with larger imaginary parts are rendered
asymptotically irrelevant by the term eiuv.

To establish this fact, it is convenient to integrate around a contour which avoids all
poles except for the minimal pole. If the minimal pole occurs at the minimal zero of
ρ− c(1− γ/2− iv,−γ/2 + iv) then, by Proposition 10 of Appendix C, this pole occurs on
the imaginary axis. Otherwise, the minimal pole occurs at the minimal pole of Fγ(v), so
is at iγ/2—which is also on the imaginary axis. In short, we can assume that the minimal
pole occurs at the point mi, where m > 0 is a real number.

Let �N denote the rectangle in the complex plane with corners at −N , N , N + (m +
ε)i and −N + (m + ε)i, with the understanding that integration will take place in the
anticlockwise direction. Since the integrand is meromorphic, all poles are isolated, so ε > 0
can be chosen to be sufficiently small that the rectangle �N only contains the pole at mi.

22See Körner (1988, pp. 573–4) for a proof of the Riemann-Lebesgue lemma.
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By the residue theorem, we have

J ≡
∫

�N

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

dv

= 2πiRes
{

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

;mi
}

On the other hand, we can also decompose the integral into four pieces:

J =
∫ N

−N

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

dv +
∫ m+ε

0

eiu(N+iv)Fγ(N + iv)
ρ− c(. . .)

i dv +

+
∫ −N

N

eiu(v+(m+ε)i)Fγ(v + (m+ ε)i)
ρ− c(. . .)

dv +
∫ 0

m+ε

eiu(−N+iv)Fγ(−N + iv)
ρ− c(. . .)

i dv

≡ J1 + J2 + J3 + J4

In brief, the desired result follows on first letting N tend to infinity; then J2 and J4 go to
zero. Subsequently letting u go to infinity, J3 becomes asymptotically irrelevant compared
to J1. By the residue theorem, the integral I = limN→∞ J1 is therefore asymptotically
equivalent23 to 2πi times the residue at mi:

I ∼ 2πi · Res
{

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

;mi
}
.

The following calculations justify these statements. Consider J2. Since the range of
integration is a closed and bounded interval, the function |ρ− c(. . .)| attains its maximum
and minimum on the range. Since also the function has no zeros on the interval, we can
write |ρ− c(. . .)| ≥ δ1 > 0 for all v in the range of integration. We have

|J2| ≤
∫ m+ε

0

∣∣∣∣∣eiu(N+iv)Fγ(N + iv)
ρ− c(. . .)

i

∣∣∣∣∣ dv
=

∫ m+ε

0

e−uv |Fγ(N + iv)|
|ρ− c(. . .)|

dv

≤ 1
δ1

∫ m+ε

0
|Fγ(N + iv)| dv

→ 0

as N tends to infinity because |Fγ(N + iv)| converges to zero uniformly over v in the range
of integration. An almost identical argument shows that |J4| tends to zero as N tends to
infinity.

23I write f(x) ∼ g(x)—“f(x) is asymptotically equivalent to g(x)”—to indicate that limx→∞ f(x)/g(x) =

1. Below, I also use the “big-O” notation f(x) = O(g(x))—“f(x) is asymptotically of the same order as

g(x)”—to indicate that limx→∞ f(x)/g(x) is finite.
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Now consider J3. Set δ2 = |ρ− c(1− γ/2 +m+ ε,−γ/2−m− ε)| > 0; then by Result
3 of Appendix C, |ρ− c(. . .)| ≥ δ2 for all v in the range of integration. It follows that

|J3| ≤
∫ N

−N

e−(m+ε)u |Fγ(v + (m+ ε)i)|
|ρ− c(. . .)|

dv

≤ e−u(m+ε) · 1
δ2

∫ N

−N
|Fγ(v + (m+ ε)i)| dv

→ e−u(m+ε) ·X/δ2

where X is the (finite) limit of the integral
∫ N
−N |Fγ(v + (m+ ε)i)| dv as N tends to infinity.

(X is finite because Fγ(v + (m+ ε)i) decays to zero exponentially fast as v → ±∞.)
By the residue theorem,

J1 + J2 + J3 + J4 = 2πi× residue at mi = O(e−mu) .

Let N go to infinity; then J2 and J4 go to zero, J1 tends to I and J3 tends to e−u(m+ε)X,
so

I + e−u(m+ε)X = 2πi× residue at mi = O(e−mu) .

In the limit as u→∞, e−u(m+ε)X is exponentially smaller than e−mu, so

I ∼ 2πiRes
{

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

;mi
}

as u → ∞. The asymptotic behavior of the integral I is dictated by the residue closest to
the real line.

Essentially identical arguments can be made to show that the other relevant integrals
are asymptotically equivalent to 2πi times the minimal residue of the relevant integrand;
they are omitted to prevent an already complicated argument becoming totally unreadable.

Step 2. I now apply the logic of step 1 to (i) the price-dividend ratio, (ii) the riskless
rate and (iii) expected returns.

(i) In the price-dividend ratio case, we have to evaluate

lim
u→∞

P/D(u) = lim
u→∞

∫ ∞

−∞

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

dv∫ ∞

−∞
eiuvFγ(v) dv

≡ lim
u→∞

In
Id
.

We have just seen that In and Id are asymptotically equivalent to 2πi times the residue
at the pole (of the relevant integrand) with smallest imaginary part. Here, I take this
fact as given and refer to the pole (or zero) with least positive imaginary part as the
minimal pole (or zero).
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Consider, then, the more complicated integral In. The integrand has a pole at iγ/2
due to a singularity in Fγ(v). The question is whether or not there is a zero of
ρ − c(1 − γ/2 − iv,−γ/2 + iv) for some v with imaginary part smaller than γ/2. If
there is, then this is the minimal pole. If not, then iγ/2 is the minimal pole.

In Appendix C, it was shown that the minimal zero of ρ− c(1− γ/2− iv,−γ/2 + iv)
lies on the imaginary axis. Thus the zero in question is of the form zi for some positive
real z, and so we are interested in z∗ satisfying

ρ− c(1− γ/2 + z∗,−γ/2− z∗) = 0 . (93)

If z∗ < γ/2, we are in the supercritical case; if z∗ > γ/2, we are in the subcritical
case. (At the end of the proof, I will define θ∗ = γ/2 − z∗, simply for notational
convenience.)

(a) In the subcritical case, the minimal pole for both integrals is at iγ/2. We there-
fore have, asymptotically,

P/D −→
Res

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iγ/2

}
Res

{
eiuvFγ(v); iγ/2

}
=

1
ρ− c(1,−γ)

·
Res

{
eiuvFγ(v); iγ/2

}
Res

{
eiuvFγ(v); iγ/2

}
=

1
ρ− c(1,−γ)

(b) In the supercritical case, the minimal pole is at iz∗ for In and at iγ/2 for Id. We
therefore have

P/D −→
Res

{
eiuvFγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iz∗

}
Res

{
eiuvFγ(v); iγ/2

}
= eu(γ/2−z∗) ·

Res
{

Fγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

; iz∗
}

Res {Fγ(v); iγ/2}
−→ ∞

as u tends to infinity because γ/2− z∗ > 0.

To see that the price-consumption ratio, P/C = s · P/D, remains finite in this
limit, we must evaluate lims→0 s · P/D. Since s = 1/(1 + eu) ∼ e−u, we have,
asymptotically, that

P/C −→ eu(γ/2−z∗−1) ·
Res

{
Fγ(v)

ρ− c(1− γ/2− iv,−γ/2 + iv)
; iz∗

}
Res {Fγ(v); iγ/2}

,
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which tends to zero as u→∞ because γ/2− z∗ − 1 < 0.

(ii) In the riskless rate case, we seek the limit of

r =

∫ ∞

−∞
Fγ(v)eiuv · [ρ− c(−γ/2− iv,−γ/2 + iv)] dv

∫ ∞

−∞
Fγ(v)eiuv dv

.

This is much simpler, because the minimal pole is iγ/2 for both numerator and de-
nominator. It follows that

r −→ ρ− c(−γ/2− i(iγ/2),−γ/2 + i(iγ/2)) = ρ− c(0,−γ) .

(iii) In the expected return case, we need the limit of the expected capital gain expression
which is the first term on the right-hand side of (17). This expression is asymptotically
equivalent to ∫ ∞

−∞

eiuvFγ(v)c(1− γ/2− iv, γ/2 + iv)
ρ− c(1− γ/2− iv,−γ/2 + iv)

dv

∫ ∞

−∞

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

dv

≡ Jn

Jd

since the higher-order exponential terms e−mu for m ≥ 1 which appear in (17) become
irrelevant exponentially fast as u tends to infinity. Again, there are two subcases,
depending on whether the minimal zero of ρ−c(1−γ/2−iv,−γ/2+iv) has imaginary
part greater than or less than γ/2.

(a) In the subcritical case, the minimal pole of each of Jn and Jd occurs at iγ/2.
Therefore we have

lim
u→∞

EdP/P =
Res

{
eiuvFγ(v)c(1− γ/2− iv, γ/2 + iv)
ρ− c(1− γ/2− iv,−γ/2 + iv)

; iγ/2
}

Res
{

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

; iγ/2
}

= c(1, 0) .

(b) In the supercritical case, the minimal pole of each of Jn and Jd occurs at iz∗.
Therefore, we have

lim
u→∞

EdP/P =
Res

{
eiuvFγ(v)c(1− γ/2− iv, γ/2 + iv)
ρ− c(1− γ/2− iv,−γ/2 + iv)

; iz∗
}

Res
{

eiuvFγ(v)
ρ− c(1− γ/2− iv,−γ/2 + iv)

; iz∗
}

= c(1− γ/2 + z∗, γ/2− z∗) .
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Since instantaneous expected returns are the sum of expected capital gains and the
dividend-price ratio, expected returns in the asymptotic limit are

c(1, 0) + ρ− c(1,−γ)

in the subcritical case, and

c(1− γ/2 + z∗, γ/2− z∗)

in the supercritical case.

Subtracting the riskless rate, we have, finally, that excess returns are

c(1, 0) + c(0,−γ)− c(1,−γ)

in the subcritical case, and

c(1− γ/2 + z∗, γ/2− z∗)− ρ+ c(0,−γ)

in the supercritical case. Recalling that ρ = c(1−γ/2+z∗,−γ/2−z∗) by the definition
of z∗, the excess return in the supercritical case can be rewritten as

c(1− γ/2 + z∗, γ/2− z∗) + c(0,−γ)− c(1− γ/2 + z∗,−γ/2− z∗) .

This concludes the derivation of the various asymptotics in the general case.
Step 3. If dividends are also independent across assets then we can decompose

c(θ1, θ2) = c1(θ1) + c2(θ2)

where ci(θ) ≡ log E exp θyi1. It follows that in the subcritical case,

XS −→ c(1, 0) + c(0,−γ)− c(1,−γ) = 0

and in the supercritical case,

XS −→ c(1− γ/2 + z∗, γ/2− z∗) + c(0,−γ)− c(1− γ/2 + z∗,−γ/2− z∗)

= c2(γ/2− z∗) + c2(−γ)− c2(−γ/2− z∗) .

Step 4. I now show that this last expression is positive. First, note that because c2(x)—
as a CGF—is convex, we have that

c2(e)− c2(d)
e− d

<
c2(g)− c2(f)

g − f
whenever d < e < f < g .

Next, observe that in the supercritical case, we have

−γ < −γ/2− z∗ < 0 < γ/2− z∗ .
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It follows that
c2(−γ/2− z∗)− c2(−γ)

(−γ/2− z∗)− (−γ)
<

c2(γ/2− z∗)− c2(0)
(γ/2− z∗)− 0

,

or equivalently, because c2(0) = 0,

c2(−γ/2− z∗)− c2(−γ) < c2(γ/2− z∗) ;

and so
c2(γ/2− z∗) + c2(−γ)− c2(−γ/2− z∗) > 0

as required.
Step 5. The last step showed that R1 = Rf in the subcritical case and R1 > Rf in the

supercritical case. It only remains to show that the other bounds on expected returns hold:
that (i) R1 < R2, assuming independence, and that (ii) in the supercritical case R1 < G1,
assuming G1 ≥ G2.

Step 5(i). Proof that R1 < R2, assuming independence:
In the subcritical case, R1 = ρ + c(1, 0) − c(1,−γ) and R2 = ρ + c(0, 1) − c(0, 1 − γ).

Since we are assuming independence, it remains to show that

−c2(−γ) < c2(1)− c2(1− γ) ,

or equivalently that
c2(1− γ) < c2(1) + c2(−γ) ,

which follows immediately by convexity of c2(·).
In the supercritical case, R1 = c(1−γ/2+z∗, γ/2−z∗) and R2 = c(1−γ/2+z∗,−γ/2−

z∗)+ c(0, 1)− c(0, 1− γ) (substituting in for ρ from the definition of z∗). By independence,
it remains to show that

c2(γ/2− z∗) < c2(−γ/2− z∗) + c2(1)− c2(1− γ) ,

or equivalently that

c2(1− γ) + c2(γ/2− z∗) < c2(1) + c2(−γ/2− z∗)

which also follows directly by convexity of c2(·), noting that γ/2− z∗ ∈ (0, 1).
Step 5(ii). Next, I show that in the supercritical case, R1 ≤ G1 if G1 ≥ G2. We do not

need the independence assumption here. It will be helpful to write θ = γ/2 − z∗ ∈ (0, 1).
With this notation, the limiting R1 = c(1− θ, θ). The claim is that c(1− θ, θ) ≤ c(1, 0). To
show this, we make the same change of measure as was used in the proof of Proposition 11.
We have R1 = c(1− θ, θ) = c(1, 0) + ĉ(−θ). It suffices to show that ĉ(−θ) ≤ 0 for all θ in
(0, 1). We have c(0, 1) = c(1, 0) + ĉ(−1), and so by assumption ĉ(−1) ≤ 0. Since ĉ(0) = 0,
the claim follows by convexity of ĉ(·).

Finally, it is notationally convenient to set θ∗ = γ/2− z∗. It follows from (93) that the
defining property of θ∗ in the supercritical case is that ρ− c(1− θ∗, θ∗ − γ) = 0.
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F The N-tree case

F.1 The Fourier transform FN
γ (v)

To make a start, we seek the integral

IN ≡
∫

RN−1

e−ix1v1−ix2v2−···−ixN−1vN−1(
ex1/N + · · ·+ exN−1/N + e−(x1+x2+...+xN−1)/N

)γ dx1 . . . dxN−1 . (94)

For notational convenience, write xN ≡ −x1 − · · · − xN−1—so
∑N

1 xi = 0—and, for
i = 1, . . . , N , define

ti =
exi/N

ex1/N + · · ·+ exN/N
. (95)

Note that the variables ti range between 0 and 1 (and, by construction, sum to 1) as
the variables {xi} range around. Furthermore, we have

N∏
k=1

tk =
e(x1+···+xN )/N(

ex1/N + · · ·+ exN/N
)N

=
1(

ex1/N + · · ·+ exN/N
)N

and tNi =
exi(

ex1/N + · · ·+ exN/N
)N ,

so

exi =
tNi∏N
k=1 tk

. (96)

Of course, because of the linear dependence
∑N

k=1 tk = 1, there are only N − 1 indepen-
dent variables and tN = 1− t1 − · · · − tN−1, so we can rewrite

xi = N log ti −
N−1∑
k=1

log tk − log

(
1−

N−1∑
k=1

tk

)
, i = 1, . . . , N − 1 . (97)

To make the change of variables specified in (95), we have to calculate the Jacobian

J ≡
∣∣∣∣∂(x1, . . . , xN−1)
∂(t1, . . . , tN−1)

∣∣∣∣ .
From (97),

∂xi

∂tj
=

1
tN

− 1
tj

+
Nδij
ti

,
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where δij equals one if i = j and zero otherwise, so we can write

∂(x1, . . . , xN−1)
∂(t1, . . . , tN−1)

=


N
t1

N
t2

. . .
N

tN−1

 +


1

tN
− 1

t1
1

tN
− 1

t2
· · · 1

tN
− 1

tN−1

1
tN
− 1

t1
1

tN
− 1

t2
· · · 1

tN
− 1

tN−1

...
...

...
...

1
tN
− 1

t1
1

tN
− 1

t2
· · · 1

tN
− 1

tN−1



=


N
t1

N
t2

. . .
N

tN−1

 +


1
1
...

1




1
tN
− 1

t1
1

tN
− 1

t2
...

1
tN
− 1

tN−1


′

≡ A + αβ′ .

The last line defines the (N − 1)× (N − 1) matrix A and the (N − 1)-dimensional column
vectors α and β. A is a diagonal matrix: blanks indicate zeros. The prime symbol (′)
denotes a transpose.

In order to calculate J = det
(
A + αβ′) we can use the following

Fact 1 (Matrix determinant lemma). Suppose that A is an invertible square matrix and
that α and β are column vectors, each of length equal to the dimension of A. Then

det
(
A + αβ′) =

(
1 + β′A−1α

)
det A .

This fact is useful in the present case because A is diagonal, so its inverse and determi-
nant are easily calculated. To be specific,

det A =
NN−1

t1 · · · tN−1

and A−1 =


t1
N

t2
N

. . .
tN−1

N

 .

It follows that

J =

1 +


1

tN
− 1

t1
1

tN
− 1

t2
...

1
tN
− 1

tN−1


′

t1
N

t2
N

. . .
tN−1

N




1
1
...

1


×

NN−1

t1 · · · tN−1

=
NN−2

t1 · · · tN
.
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We can now return to the integral IN . For typographical reasons, I write Π for the
product

∏N
k=1 tk and suppress the range of integration, which is [0, 1]N−1. Making the

substitution suggested in (95),

IN =
∫ (

tN1
Π

)−iv1
(

tN2
Π

)−iv2

· · ·
(

tNN−1

Π

)−ivN−1

(
t1+t2+···+tN

Π1/N

)γ · J dt1 . . . dtN−1

= NN−2

∫
Πγ/N

(
tN1
Π

)−iv1

· · ·

(
tNN−1

Π

)−ivN−1
dt1 . . . dtN−1

t1 . . . tN−1tN

= NN−2

∫ (
t
γ/N+iv1+···+ivN−1−Niv1

1 t
γ/N+iv1+···+ivN−1−Niv2

2 · · ·

· · · tγ/N+iv1+···+ivN−1−NivN−1

N−1 · tγ/N+iv1+···+ivN−1

N

) dt1 . . . dtN−1

t1 . . . tN−1tN
.

As in the two-asset case, this is a Dirichlet surface integral. As shown in Edwards (1922,
pp. 166–7) and Andrews, Askey and Roy (1999, p. 34), it can be evaluated in terms of
Γ-functions: we have

IN =
NN−2

Γ(γ)
· Γ (γ/N + iv1 + iv2 + . . .+ ivN−1) ·

N−1∏
k=1

Γ (γ/N + iv1 + · · ·+ ivN−1 −Nivk) .

Defining G N
γ (v) = IN/(2π)N−1, where v = (v1, . . . , vN−1), we have

G N
γ (v) =

NN−2

(2π)N−1
·Γ (γ/N + iv1 + iv2 + . . .+ ivN−1)

Γ(γ)
·
N−1∏
k=1

Γ (γ/N + iv1 + · · ·+ ivN−1 −Nivk) .

(98)
It follows from this definition of G N

γ (v), by the Fourier inversion theorem, that

1(
ex1/N + ex2/N + . . .+ e−(x1+x2+...+xN−1)/N

)γ =
∫

RN−1

G N
γ (v)eiv

′x dv , (99)

where x = (x1, . . . , xN−1).

F.2 The expectation

We seek the expectation

E = E

[
eα

′eyt(
ey10+ey1t + · · ·+ eyN0+eyNt

)γ
]
,

where α ≡ (α1, . . . , αN )′ and ỹt ≡ (ỹ1t, . . . , ỹNt)
′.

The calculation is carried out by applying the same three tricks that were useful in
the two-tree case: namely, by putting the denominator in a form amenable to a Fourier
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transform; then changing measure, to take care of the numerator; and finally applying the
Fourier transform.

The calculations below also use the vectors y0 and γ defined in the main text. In
addition, define the (N − 1)×N matrix Q and vectors qi by

Q ≡


q′2
q′3
...

q′N

 ≡


−1 N − 1 −1 · · · −1

−1 −1 N − 1
. . .

...
...

...
. . .

. . . −1
−1 −1 · · · −1 N − 1

 , (100)

and let q1 ≡ (N − 1, . . . ,−1,−1)′—the “missing” row which does not appear as the top
row of Q. (This definition is only introduced to make certain expressions neater, since
q1 = −

∑N
k=2 qk.)

We will also need to make a change of measure at one stage, as in the two asset case.
Define Ẽ by

Ẽ [Y ] ≡ e−tc(α−γ/N) · E
[
e(α−γ/N)′eyt · Y

]
. (101)

It follows that

c̃(v) ≡ log Ẽ
[
eey′1v

]
= c(α− γ/N + v)− c(α− γ/N) . (102)

Using the new notation,

E = E

[
eα

′eyt(
ey10+ey1t + · · ·+ eyN0+eyNt

)γ
]

= E

 eα
′eyt−γ′(y0+eyt)/N(

eq
′
1(y0+eyt)/N + · · ·+ eq

′
N (y0+eyt)/N

)γ


= e−γ′y0/Nec(α−γ/N)t Ẽ

 1(
eq
′
1(y0+eyt)/N + · · ·+ eq

′
N (y0+eyt)/N

)γ

 .
Now, Q(y0 + ỹt) plays the role of x in expression (99). It follows that

E = e−γ′y0/Nec(α−γ/N)t Ẽ
[∫

G N
γ (v)eiv

′Q(y0+eyt) dv

]
= e−γ′y0/Nec(α−γ/N)t

∫
G N

γ (v)eiv
′Qy0eec(iQ′v)t dv

= e−γ′y0/N

∫
G N

γ (v)eiv
′Qy0ec(α−γ/N+iQ′v)t dv . (103)
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F.3 Prices

Now we proceed along the same lines as in the two-tree case. First, the price of the α-asset
is given by

P = E
∫ ∞

0
e−ρt

(
Ct

C0

)−γ

Dα1
1t · · ·D

αN
Nt dt

= Cγ
0

∫ ∞

0
e−ρtE

[
eα1(y10+ey1t)+···+αN (yN0+eyNt)(
ey10+ey1t + · · ·+ eyN0+eyNt

)γ
]
dt .

The price-dividend ratio is therefore equal to

P/D = Cγ
0

∫ ∞

0
e−ρtE

[
eα1ey1t+···+αN eyNt(

ey10+ey1t + · · ·+ eyN0+eyNt
)γ
]
dt ,

and the expectation was calculated, as E, in the previous section. Substituting in from
(103),

P/D = Cγ
0

∫ ∞

t=0
e−ρt

(
e−γ′y0/N

∫
G N

γ (v)eiv
′Qy0ec(α−γ/N+iQ′v)t dv

)
dt

= Cγ
0 e

−γ′y0/N

∫
G N

γ (v)eiv
′Qy0

(∫ ∞

t=0
e−[ρ−c(α−γ/N+iQ′v)]t dt

)
dv

= Cγ
0 e

−γ′y0/N

∫
G N

γ (v)eiv
′Qy0

ρ− c(α− γ/N + iQ′v)
dv (104)

=
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0

ρ− c(α− γ/N + iQ′v)
dv . (105)

F.4 Returns

From (104), the price of the α-asset is

P = (ey10 + · · ·+ eyN0)γ e(α−γ/N)′y0

∫
G N

γ (v)eiv
′Qy0

ρ− c(α− γ/N + iQ′v)
dv .

Introducing the multinomial coefficient,(
γ

m

)
≡ γ!
m1!m2! · · ·mN !

,

we can express the price as

P =
∑
m

(
γ

m

)∫
G N

γ (v)e(α−γ/N+m+iQ′v)′y0

ρ− c(α− γ/N + iQ′v)
dv .

The sum is taken over all N -dimensional vectors m whose entries are nonnegative integers
which add up to γ.
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Using the result of Appendix B.1.3, it follows that

EdP =
∑
m

(
γ

m

)∫
G N

γ (v)e(α−γ/N+m+iQ′v)′y0c(α− γ/N + m + iQ′v)
ρ− c(α− γ/N + iQ′v)

dv dt ,

and hence

EdP/D =
∑
m

(
γ

m

)∫
G N

γ (v)e(−γ/N+m+iQ′v)′y0c(α− γ/N + m + iQ′v)
ρ− c(α− γ/N + iQ′v)

dv dt

=
∑
m

(
γ

m

)
em1q′1y0/N+···+mNq′Ny0/N

∫
G N

γ (v)eiv
′Qy0c(α− γ/N + m + iQ′v)

ρ− c(α− γ/N + iQ′v)
dv dt .

We then get expected capital gains by dividing through by the price-dividend ratio,
calculated above. The other component of expected return is the dividend yield, which is
the reciprocal of the price-dividend ratio.

F.5 Interest rates

The price of a time-T zero-coupon bond is

BT = Ee−ρT

(
CT

C0

)−γ

.

Using the expectation calculated in section F.2, we have

BT = e−ρTCγ
0 E

1(
ey10+ey1T + · · ·+ eyN0+eyNT

)γ
= e−ρTCγ

0 e
−γ′y0/N

∫
G N

γ (v)eiv
′Qy0ec(−γ/N+iQ′v)T dv

= e−ρT
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0ec(−γ/N+iQ′v)T dv .

The yield Y (T ) = −(logBT )/T . Using the above expression,

Y (T ) = ρ− 1
T

log
{(

eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0ec(−γ/N+iQ′v)T dv

}
.

To calculate the riskless rate, rearrange this expression slightly, using (99)—

Y (T ) = ρ− 1
T

log
{

1 +
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0

(
ec(−γ/N+iQ′v)T − 1

)
dv

}
.

Using L’Hôpital’s rule, as in the two-tree case, we have

r = lim
T↓0

Y (T )

= ρ−
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0c(−γ/N + iQ′v) dv

=
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0
[
ρ− c(−γ/N + iQ′v)

]
dv .
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F.6 Simplification of preceding results

The results so far establish the following proposition.

Proposition 12 (Integral formulas in the N -tree case, preliminary version). The price-
dividend ratio on asset j is

P/D =
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0

ρ− c(ej − γ/N + iQ′v)
dv .

Defining the expected return by ERdt ≡ E(dP +Ddt)/P , we have

ER =
Φ

P/D
+D/P ,

where

Φ =
∑
m

(
γ

m

)
em1q′1y0/N+···+mNq′Ny0/N

∫
G N

γ (v)eiv
′Qy0c(ej − γ/N + m + iQ′v)

ρ− c(ej − γ/N + iQ′v)
dv .

The summation is taken over all vectors m = (m1, . . . ,mN )′ whose entries are non-negative
and add up to γ.

The zero-coupon yield to time T is

Y (T ) = ρ− 1
T

log
{(

eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0ec(−γ/N+iQ′v)T dv

}
.

The riskless rate is

r =
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ
∫

G N
γ (v)eiv

′Qy0
[
ρ− c(−γ/N + iQ′v)

]
dv .

Proposition 8 is a slight simplification of Proposition 12; it requires a final change of
variables. Define v̂ ≡ Bv, where B is the (N − 1)× (N − 1) square matrix

B ≡


N − 1 −1 · · · −1

−1 N − 1
. . .

...
...

. . .
. . . −1

−1 · · · −1 N − 1

 .

With this definition, we have v̂k = Nvk−v1−· · ·−vN−1 and v̂1+· · ·+v̂N−1 = v1+· · ·+vN−1.
It is simple to verify that

B−1 =
1
N


2 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 · · · 1 2

 .
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Using the matrix determinant lemma (Fact 1 above) it is easy to calculate the Jacobian:
det B−1 = 1/NN−2, so—since v = B−1v̂—dv is replaced by dv̂/NN−2. Next, v̂ was defined
in such a way that G N

γ (v), defined in equation (98), is equal to NN−2FN
γ (v̂), defined in

equation (42). Finally, noting that B−1Q = U and u ≡ Uy0, as defined in (43), we have

Q′v = Q′B−1v̂

= U ′v̂ ,

and

v′Qy0 = v̂′Uy0

= v̂′u

= u′v̂ .

Proposition 8 follows after making these substitutions throughout the various integrals
and dropping hats on the integration variables v̂.

G Supplementary figures

G.1 Supplementary figures for calibration 1
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(a) P (st ∈ [0.2, 0.8])
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(b) The value weight (solid) and the 45 degree line

(dashed)

Figure 17: Left: The probability that st lies between 0.2 and 0.8, plotted against time t,
measured in years, assuming starting shares s0 = 0.5 (solid), s0 = 0.3 (dashed), and s0 = 0.1
(dot-dashed). Right: The value weight of asset 1 (solid), and the 45 degree line (dashed),
against s.

G.2 Supplementary figures for calibration 2

Figure 18 plots some supplementary figures using the second calibration.
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(b) Expected returns (solid) and expected excess re-

turns (dashed) against dividend yield
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(c) Responses to a 1% dividend shock to asset 1

0.2 0.4 0.6 0.8 1
s

0.1

0.2

0.3

0.4

Spread H%L
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Figure 18: Supplementary figures for the second calibration with disasters and γ = 4.
Figure 18a decomposes expected returns (solid) into dividend yield (dashed) and expected
capital gains (dot-dashed). Figure 18b plots expected returns (solid) and expected excess
returns (dashed) on asset 1 against asset 1’s dividend yield. Figure 18c has the response of
asset 1 (solid) and asset 2 (dashed) to a 1% dividend shock to asset 1.

Figures 19–24 explore the consequences of using log utility or removing jumps from the
second calibration. They show that both high risk aversion (γ = 4) and occasional disasters
are needed to generate interesting predictions using parameter values normally considered
reasonable in the consumption-based asset pricing literature.

I repeat the calculations of section 5.2 in three alternative scenarios. In the first, γ is
set equal to 1 and jumps are retained. In the second, γ is left equal to 4 but the jumps
are dropped from the model. In the third, γ = 1 and jumps are dropped. Note the scales
on the axes. Figures 19–20 show that the interesting dynamics displayed by the model are
quantitatively irrelevant with log utility. Figures 21–22 show that the interesting dynamics
displayed by the model are quantitatively irrelevant without jumps. With log utility and
no jumps, Figures 23–24 show that we are orders of magnitude away from quantitative
significance.
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Figure 19: Left: The riskless rate against s. Right: The price-dividend ratio of asset 1
(solid) and of the market (dashed), against s. Log utility with jumps.
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(a) Excess return on asset 1
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(b) Excess return on a perpetuity

Figure 20: Left: The excess return on asset 1 (solid) and on the market (dashed) against
s. Right: The excess return on a perpetuity against s. Log utility with jumps.
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Figure 21: Left: The riskless rate against s. Right: The price-dividend ratio on asset 1
(solid) and on the market (dashed), against s. γ = 4, no jumps.
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(b) Excess return on a perpetuity

Figure 22: Left: The excess return on asset 1 (solid) and on the market (dashed), against
s. Right: The excess return on a perpetuity against s. γ = 4, no jumps.
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Figure 23: Left: The riskless rate against s. Right: The price-dividend ratio of asset 1
(solid) and of the market (dashed), against s. Log utility, no jumps.

0.2 0.4 0.6 0.8 1
s

0.01

0.02

0.03

0.04

0.05
XS H%L

(a) Excess return on asset 1

0.2 0.4 0.6 0.8 1
s

0.00001

0.00002

0.00003

0.00004
XS H%L

(b) Excess return on a perpetuity

Figure 24: Left: The excess return on asset 1 (solid) and on the market (dashed) against
s. Right: The excess return on a perpetuity against s. Log utility, no jumps.
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