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Abstract

We consider settings in which skilled experts have private, heterogeneous types. Contracts that

evaluate experts based on outcomes are used to differentiate between types. However, experts

can take unobservable actions to manipulate their outcomes, which may harm consumers. For

example, surgeons may privately engage in harmful selection behavior to avoid risky patients and

hence improve observed performance. In this paper we solve for optimal evaluation contracts

that maximize consumer welfare. We find that an optimal contract takes the form of a scoring

rule, typically characterized by four regions: (1) high score sensitivity to outcomes, (2) low score

sensitivity to outcomes, (3) tenure, and (4) firing or license revocation. When improvement is

possible, an optimal contract for the low quality expert is a fixed-length mentorship program. In

terms of methods, we draw upon continuous-time techniques, as introduced in Sannikov (2007b).

Since our problem involves both adverse selection and moral hazard, this paper features novel

applications of continuous-time methods in contract design.
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1 Introduction

This paper is motivated by the experience with performance reporting for cardiac surgeons. In the

past, the only way to distinguish between surgeons of different abilities was through informal word-

of-mouth reputations. Those could be biased or inaccurate, and at best incomplete. In recent years,

however, as the collection, compilation and dispersion of data have become easier, policy makers

have been keen to create “score cards” that evaluate surgeons based on outcomes, with the intention

of identifying high-performing and low-performing surgeons. Beginning in the early 1990’s, state

agencies in New York and Pennsylvania have released hospital- and surgeon-specific data on risk-

adjusted cardiac surgery mortality rates (PA in late 1991, NY in late 1992). Other organizations

have been following suit (e.g. NJ in 1997, CA in 2001).

There are at least two ways in which score cards can improve patient welfare. First, they can lead

to more efficient sorting in the market: better surgeons treat more difficult cases, worse surgeons

treat less difficult cases, and very bad surgeons leave the market completely. Secondly, score cards

can induce additional investments in quality and higher levels of effort.

Despite the potential benefits, skeptics of score cards argue that they may harm patients because

providers are encouraged to distort their behavior. For example, surgeons can inflate their scores

through risk selection, focusing on patients who are relatively healthy and avoiding patients who are

sick. A survey in Pennsylvania reveals that as a consequence of report cards’ introduction, 63% of

cardiac surgeons report having only accepted healthier candidates for CABG surgery,1 and 59% of

cardiologists report increased difficulty finding surgeons willing to perform needed CABG surgery in

severely ill patients (Schneider & Epstein 1996) . A similar survey in New York reports that 62% of

surgeons have refused to operate on at least one high-risk CABG patient over the prior year primarily

because of public reporting, and that report cards have led to a significantly higher percentage of

high-risk CABG patients being treated non-operatively (Burack, Impellizzeri, Homel & Jr. 1999).2

In this paper, we present a model with heterogeneous types in which experts (a) know their

own private types, (b) generate observable outcomes that can be used to measure performance, and
1CABG refers to “coronary artery bypass graft” surgery, which is the specific cardiac procedure most commonly

measured in state score cards.
2Dranove, Kessler, McClellan and Satterthwaite (2003) study the empirical effects of introducing cardiac surgery

score cards in NY and PA and conclude that the net effects have been to reduce overall welfare, citing increased selection
behavior by physicians, higher levels of resource use, and worse health outcomes. Dranove et al. do observe, however,
that score cards have led to improved sorting between physicians and patients. See Epstein (2006) for a summary of
the empirical and medical literature.
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(c) have the ability to take private actions, potentially harmful to consumers, that inflate those

outcomes. We take a normative approach and fully characterize an optimal evaluation mechanism

that maximizes patient welfare. By doing so, we establish a baseline for the best-case scenario.

The medical literature has emphasized improving risk adjustment techniques as the major solution

to performance manipulation issues (Werner, Asch & Polsky 2005). In theory, perfect risk adjustment

can eliminate the incentives for risk selection. The fundamental assumption we make, however, is

that in practice a surgeon will always have better information about a patient’s risk profile than a

scoring mechanism. So long as risk adjustment is not perfect, the moral hazard for surgeons to

distort their behavior is impossible to eliminate, and we can only seek to minimize its harm.3

Our model is closely related to the class of “bad reputation” games introduced by Ely and Välimäki

(2003). In such games, reputation is labeled “bad” because the introduction of performance histories,

i.e. reputation, may adversely affect all players, often leading to complete market breakdown. If

represented as a reputation game, our setting with surgeons would also be prone to bad reputation

effects. The key tension is that higher outcomes, generally associated with a higher ability type,

can be roughly mimicked through risk selection. Hence, making future payoffs depend on those

outcomes tempts surgeons to distort their behavior. Ironically, even though performance reporting

is introduced to solve the adverse selection problem of not knowing whether a surgeon is of high

ability or low ability, that introduction creates an inevitable moral hazard to manipulate reports.

The existing theoretical literature on optimal contract design has not yet shed light on such settings.

The main portion of our paper treats surgeons’ types as fixed, disallowing improvement, and

focuses on welfare gains from improved sorting. One feature we emphasize is that selection behavior

can be welfare-enhancing. In particular, if bad surgeons avoid risky patients, those patients may

be better off overall from receiving a substitute procedure or being treated by a different surgeon.

This observation has been made in Dranove et al. (2003), where authors cite “the failure of previous

studies to consider the entire population at risk for CABG, rather than only those who receive it.”

Hence, in our model patient welfare improves via two types of sorting: (1) inducing bad surgeons
3Even if risk adjustment becomes perfect, different types of moral hazard may present themselves. For example,

when risk factors used for risk adjustment are reported by surgeons or institutions themselves, Epstein (1995) observes
that risk adjustment provides incentives for “upcoding.” After New York began to report risk-adjusted mortality
rates, there was “a dramatic increase in the prevalence reported by hospitals of the co-existing conditions used in the
state’s risk-adjustment model.” In another example, Shahian et al. (2001) note that surgeons can perform additional
procedures at the same time as CABG surgery, thereby disqualifying the procedure from being included in reporting
(since it is not an isolated CABG).
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to avoid difficult cases, and (2) firing bad surgeons. Our primary task then is to characterize an

optimal evaluation mechanism that separates good surgeons from bad surgeons while minimizing the

incentives for good surgeons to distort behavior and maximizing the incentives for bad surgeons to

restrict themselves to good risks.

We find that there exists an optimal evaluation contract that takes the form of a scoring rule, in

which a surgeon’s past performance is summarized by a single “score.” Our key insight for score card

design lies in our characterization of rules according to which the score varies with performance, i.e.

the score’s sensitivity to outcomes. The optimal scoring rule includes the possibility of both firing

(e.g. license revocation) and tenure, regardless of the surgeon’s type. Interestingly, the scoring rule

for the good surgeon includes two additional scoring regimes: one in which the surgeon’s score is

highly sensitive to performance (a“hot seat”), and another in which the surgeon’s score is much less

sensitive to performance (“benefit of the doubt”). Furthermore, a simplifying lemma (Lemma 1)

shows that in our optimal mechanism the principal does not reveal any information to patients until

the surgeon has been fired.

At the end of the paper, we apply our methods to a related but distinct question. We introduce

the possibility of improvement through effort and mentored experience. In this case the optimal

evaluation mechanism can be implemented as a scoring rule for the good surgeon and a finite-length

mentorship program for the bad surgeon. In equilibrium, after completing the mentorship program,

bad surgeons elect to improve to good types.

The issue of performance or quality reporting in healthcare is complex and involves many different

questions. For example, what defines quality or high performance? What specific measures should

be used for evaluation? When should surgeons and institutions be measured jointly and when should

they be measured separately? Such questions require deep thought and research by experts in relevant

areas before a complete proposal is created. However, most lie outside the realm of economic theory.

One question that may lie within the realm of economic theory but that we do not deal with in this

paper is whether performance reporting should be made available to the public. Addressing that

question requires careful modeling of demand-side behavior. In this paper, we make a brief comment

on whether reports should be public, but our focus is largely on the effect of performance evaluation

on the behavior of providers.

We emphasize that money does not appear in our model. While that absence limits applications
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to other experts, it accurately portrays settings in healthcare. Money can appear in the form of prices

that surgeons set or transfers that a contract specifies. In healthcare (as in education), prices rarely

play their usual role. Instead, they are typically fixed and constrained from responding to factors

such as perceived quality and public reputation. Although we admit that incorporating transfers into

the model will be interesting, seeing what we can achieve without transfers is highly relevant. For one

thing, as Epstein et al. (2004) note, financial incentives for performance may “threaten the sense of

professionalism, autonomy, and job satisfaction among physicians” and “underscore the inadequacy

of professionalism as a means of self-regulation and quality assurance.” Transfers may be viewed as

interference in the art and skill of medicine. Although momentum is building around efforts to link

pay with performance, in today’s healthcare markets policy makers must rely on mechanisms other

than money to positively influence market dynamics.

In this paper, we employ continuous-time techniques. Relative to discrete-time methods, continuous-

time methods have proven more successful in answering questions similar to ours. For example, in

principal-agent models with pure moral hazard, known methods to solve discrete-time contracts

are computationally intensive and their full characterization is difficult (Spear & Srivastava (1987),

Phelan & Townsend (1991)). Meanwhile, Sannikov (2007b) has recently shown that contracts in

continuous-time have a simple characterization by an ordinary differential equation. In the long-

term contracting problem we consider, the additional feature of adverse selection is reminiscent of

two-player games with imperfect monitoring, since each type “plays” against a fictional version of the

other type. In discrete time, results in repeated games have been limited to identifying achievable

payoffs as players become sufficiently patient, i.e. when δ approaches one (e.g. Fudenberg & Levine

(1992), Fudenberg, Levine & Maskin (1994)). On the other hand, research using continuous-time

methods has succeeded in characterizing the set of payoffs for fixed discount factors (Sannikov (2007c),

Faingold & Sannikov (2007)). Since computing contracts for a fixed discount factor is essential in

our application to surgeons, we choose to use a continuous-time model.

2 Related Literature

Although this paper is related to the literature on credence goods, our main point of departure

lies in disregarding the role of prices and focusing on performance measurement as the avenue for
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providing incentives.4 Ely and Välimäki (2003) also study credence goods and disregard prices.

Using a stylized model of mechanics, the authors show that the introduction of reputation may lead

to complete market breakdown.5 In our paper, instead of focusing on the specific mechanism of

reputation in which experts are evaluated via Bayesian updating on their type, we characterize the

optimal evaluation mechanism.

At the end of their paper, Ely and Välimäki (2003) consider a long-term principal-agent setup

similar to ours. They show that in the limit as players become sufficiently patient, the bad reputation

effect disappears. To prove the result, the authors consider an evaluation mechanism using a “score”

that is similar in some respects to the optimal scoring rules we identify. Our use of continuous-time

methods, however, enables us to characterize and compute the optimal scoring rule for any discount

rate and to verify that a scoring rule is indeed an optimal way to provide incentives.

The origin of continuous-time contracting lies in principal-agent models with pure moral hazard.

Sannikov (2007b) shows that an optimal contract with dynamic moral hazard is characterized by

a simple ordinary differential equation. Our paper follows his approach. Others have taken differ-

ent approaches to continuous-time contracting with moral hazard, including Williams (2004), and

Westerfield (2006).

Building on the above work, several recent papers have studied continuous-time contracting with

both adverse selection and moral hazard, as we study in this paper. Sannikov (2007a) solves for

the optimal dynamic financing contract for a cash-constrained entrepreneur with a hidden type.

Sung (2005) solves for an optimal continuous-time contract in a setting where the principal can

only observe the initial and final values of the underlying signal process. As a result, the optimal

contract is linear and the optimal actions of the agent are constant across time. Cvitanic and Zhang

(2006) consider a general setup with both moral hazard and adverse selection over an interval of

agent types. Rather than continuous payments, they allow for bulk payments only at the end of a

finite time period. Because of their generality, Cvitanic and Zhang are not able to fully characterize

optimal contracts.

The paper is organized as follows. In Section 3, we describe the model and formally present the
4Dulleck and Kerschbamer (2006) define a credence good as any good or service where an expert knows more about

what a consumer needs than the consumer himself. Papers on credence goods include Wolinsky (1993), Taylor (1995),
and Dulleck and Kerschbamer (2006).

5Ely, Fudenberg and Levine (2002) go on to identify more general conditions under which such “bad reputation
effects” occur.
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problem. Section 4 introduces the optimal menu of evaluation contracts and solves for the easier

contract, the contract for the bad surgeon. Section 5 solves for the harder contract, introducing

novel applications of continuous-time techniques in contract design. In Section 6, we complete the

characterization of the optimal menu of evaluation contracts. Section 7 presents some numerical

examples to provide more concrete insight, and in Section 8 we briefly discuss an extension that

incorporates the possibility of improvement. Section 9 concludes.

3 The Model

We consider the example of surgery. There is a principal who designs contracts, and an agent. The

agent, whom we call the surgeon, lives in all periods t ∈ [0,∞). With probability p the surgeon is a

good type θ = G, and with probability 1 − p he is a bad type θ = B. The surgeon knows his own

private type.

At each time t, a mass of patients Dt ∈ [0, 1] visits the surgeon, and the surgeon chooses a private

action at ∈ Aθ where we let AG = AB = A = {0, 1}.6 When Dt = 1 the surgeon is fully employed,

and when Dt = 0 he sees no patients. The action at can be broadly interpreted as any hidden action

that inflates performance. For the purposes of our discussion, however, we interpret at concretely

as indicating whether the surgeon (privately) engages in selection behavior. In particular, at can

represent the fraction of risky patients on whom the surgeon chooses to avoid being evaluated by

treating with an alternative procedure. Empirical evidence confirms that surgeons are able to shift

their practices towards healthier patients. Dranove et al. (2003) find that report cards have caused

an increase in the quantity of CABG surgery for healthier patients, explaining that surgeons heavily

influence whether a patient receives a CABG or an alternative cardiac procedure such as angioplasty

or other revascularization treatments. Additionally, Omoigui et al. (1996) report that in New York

the number of patients transferred to the world-renowned Cleveland Clinic has increased by 31%

after the release of report cards and that generally these transfer patients have higher risk profiles

than patients transferred to the Cleveland Clinic from other states.7

6Technically, we can accommodate any finite action space Aθ if both the type-θ surgeon’s payoff function and his
technology (defined on the next page) are “convex” in a (i.e. increment sizes increase in a). In the limit as |A| goes to
∞, the necessary and sufficient condition approaches linearity of both functions.

7One may argue that transferring patients to the Cleveland Clinic is an observable action, but the point is that
since the number of transfers is not a reported measure, surgeons so far have been able to use it as a private action
to affect performance. Nonetheless, it will be interesting in future work to accommodate additional signals such as a
monitoring process of a. That is currently outside the scope of our model.
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While the surgeon’s action at time t is not observable, if Dt > 0 then both the principal and

the surgeon observe a noisy signal Xt that summarizes the surgeon’s outcomes. The path of this

signal depends on both the surgeon’s action and his type. We model the signal as a continuous-time

diffusion process, which, if Dt > 0, evolves according to

dXt = µ(at, θ)dt+ σdZt,

where {Zt}t≥0 is a standard Brownian motion and the volatility σ is a constant. We call the drift

µ(a, θ) the technology of the type-θ surgeon. Denote by {Ft}t≥0 the filtration generated by {Xt}t≥0.

If Dt = 0, no information is learned.

All else equal, good surgeons generate higher signals than bad surgeons so that µ(a,G) > µ(a,B)

for all a ∈ A. In other words, for a fixed action, the drift of the good surgeon’s signal strictly exceeds

the drift of the bad surgeon’s signal. However – and here is the critical component of our setup

that generates moral hazard – the drift of Xt also increases in at so that µ(1, θ)− µ(0, θ) = kθ > 0.

Engaging in selection behavior improves observed performance. Furthermore, we assume that kB >

kG so that the marginal improvement in performance is larger for the bad surgeon than for the good

surgeon. Hence when both surgeons are selecting risk, there is weaker separation between the two

types’ performances. This reflects the fact that the good surgeon has a comparative advantage over

the bad surgeon in dealing with difficult cases, as suggested by Capps et al. (2001).

The flow payoffs of the type-θ surgeon are Dtg(at, θ). The payoff function g(at, θ) is decreasing

in at so that the surgeon’s payoffs decrease when he engages in selection behavior. In other words,

risk selection, i.e. identifying risky patients and then avoiding them or substituting an alternative

procedure for them, is costly. Let us normalize g(0, θ) = 1 and let g(1, θ) = 1 − ζθ > 0. The

parameter ζθ may be related to the proportion of risky patients in the population, or ζθ may reflect

the ease or difficulty with which surgeons of different types select risk. We introduce λθ = 1− ζθ > 0

as useful notation. We assume that the surgeon discounts payoffs at some rate r > 0, so the type-θ

surgeon’s total expected average discounted payoff is8

E

[
r

∫ ∞
0

e−rtDtg(at, θ)dt
]
.

8The factor r normalizes payoffs to the scale of flow payoffs.

8



The principal can fully commit at time t = 0 to any history-dependent contract. We do not allow

renegotation. Her objective is to maximize expected patient welfare. Patient welfare depends on

both the surgeon’s action and his type. Let Dth(at, θ) represent the expected flow payoff to patients

from a surgeon of type θ who takes action at ∈ A. We assume that h(at, G) is strictly decreasing

in its first parameter so that selection behavior by a good surgeon is detrimental to patients. This

generates a potentially adverse effect on patient welfare. Meanwhile, we assume that h(at, B) is

strictly increasing in its first parameter. This generates a potentially beneficial effect on patient

welfare. It follows that

0 = arg max
a′∈A

h(a′, G) and 1 = arg max
a′∈A

h(a′, B).

That curiosity may create an additional tension in the model: although selection behavior by good

surgeons is detrimental to patient welfare, selection behavior by bad surgeons improves patient wel-

fare.9 A simple explanation is that there exists an outside option such that risky patients who would

be selected against derive a higher payoff from the outside option than from a surgery performed

by a bad surgeon. It is easily the case that a very sick patient will be better off being declined by

a bad surgeon for a CABG and then either undergoing an alternative cardiac procedure or finding

a different surgeon. Empirically, it has been suggested that sick patients have more to gain from a

good surgeon over a bad surgeon. For example, Capps et al. (2001) find that sick patients are more

willing to incur travel and financial costs to see a high quality provider.

We assume that patients discount payoffs at the same rate r as surgeons, so aggregate expected

average discounted patient welfare, conditional on a surgeon of type θ, is equal to

E

[
r

∫ ∞
0

e−rtDth(at, θ)dt
]
.

One final modeling assumption remains. Recall that we are interested in establishing a baseline

for the highest patient welfare achievable. In our analysis, we assume that the good surgeon is not

only highly-skilled but also altruistic. Like “good” experts in the bad reputation models, the good

surgeon fully aligns his interests with patients and acts to maximize patient welfare. So we have
9This is a feature of the model that has been somewhat neglected in the empirical literature. It is difficult for

those studies to take into account patients who do not undergo the specific procedure and instead undergo a substitute
procedure.
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g(a,G) ∝ h(a,G). Meanwhile, the bad surgeon cannot align his interests with patients and instead

acts in his own self-interest. In the health literature, economic models of physician behavior often

include or discuss altruism (see, for example, De Jaegher and Jegers (2000)).

Adaptation to Other Experts: Mechanics. We emphasize that our model is flexible and can

accommodate other skilled experts. We show briefly how an amendment of Ely and Välimäki’s

mechanics setup (in which both types are strategic) fits into our model (2003).

A mechanic is one of two types: θ ∈ {G,B}. The flow Dt ∈ [0, 1] reflects car-owners bringing in

their cars for repair. Each car is either in need of a tune-up (state t) or in need of an engine change

(state e). Only a mechanic can identify whether the state is t or e.

The good mechanic has interests aligned with car-owners. He maximizes his payoff by being

honest: performing tune-ups when the state is t and performing engine changes when the state is

e. Denote this honest strategy as the action 0G. The mechanic is also capable of only performing

tune-ups regardless of the state, even though doing so gives him a lower payoff. Denote this dishonest

strategy as the action 1G. So the good mechanic chooses an action aGt ∈ {0G, 1G} where g(0G, G) >

g(1G, G).

The bad mechanic maximizes his payoff by always performing engine changes, regardless of the

state. Denote this engine change strategy by the action 0B. He is also capable of being honest,

although doing so gives him a lower payoff. Denote this honest strategy by 1B. So the bad mechanic

chooses an action aBt ∈ {0B, 1B} where g(0B, B) > g(1B, B).

Let Xt be a noisy summary signal reflecting the number of tune-ups performed by a mechanic.

This may be generated by surveying car-owners and informally gathering data about the frequency

of tune-ups.10 Recall that µ(at, θ) is the drift of the signal Xt. It follows from our setup that

µ(1G, G) > µ(0G, G) and µ(1B, B) > µ(0B, B) since in each case the action 1θ involves more tune-

ups. We can see that µ(1G, G) > µ(1B, B) and µ(0G, G) > µ(0B, B). Finally, we have µ(1G, G) −

µ(0G, G) > µ(1B, B) − µ(0B, B) so that the performance improvement of a bad mechanic when he

switches from only replacing engines to being honest is greater than that of an honest mechanic who

switches from behaving honestly to only doing tune-ups.
10(It is essential that the action strategy of the mechanic not be perfectly observed. If the number of tune-ups and

the number of engine changes are perfectly observed, we can introduce “noise” car-owners in the mix who in fact do
know the true state of their vehicles and thus dictate the repair performed by the mechanic.
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3.1 Evaluation Contracts and Scoring Rules

In general, a contract offered by the principal specifies demand Dt (i.e. the mass of patients visiting

the surgeon) along with recommended actions at every moment in time contingent on the surgeon’s

entire signal history. The principal can affect demand either through information she releases, quotas

she imposes, or other controls she exercises. We do not need to specify exactly how much power the

principal has because, according to Lemma 1, regardless of other powers the principal may have to

control demand, there exists an optimal contract in which she will only exercise the power to revoke

a surgeon’s license. When the principal does not affect demand, we assume that patients arrive at a

unit rate Dt = 1. Lemma 1 implies that we can restrict attention to contracts in which the principal

simply specifies a history-dependent stopping time after which she cuts off demand permanently.

Lemma 1. There exists an optimal contract in which the principal specifies demand Dt ∈ {0, 1}.

Furthermore, after any moment in time at which Dt = 0, it follows that Dt′ = 0 for all t′ > t.

Proof. See proof in Appendix A.4.

So it is optimal for the principal either to fully employ the surgeon or to take away his license,

and nothing in between. The intuition is similar to discrete time. Generally, any optimal contract

in which Dt ∈ (0, 1) can be converted to an optimal contract in which Dt ∈ {0, 1} by modifying

continuation paths appropriately. Furthermore, it is optimal never to suspend a surgeon’s license

temporarily but instead to revoke it permanently. The idea is that suspension only serves to “punish”

the surgeon while the principal gains no additional information; hence suspension is suboptimal.

Ely and Välimäki (2003) remark that bad reputation effects are generated by short-term inter-

actions and suggest that contracts of a long-term nature improve welfare. Lemma 1 implies the

existence of an optimal long-term contract in which the principal does not release any information

to patients, who may act myopically; instead, the principal only wants to disclose when the surgeon

has been fired.

Since this is a setting with incomplete information where the surgeon’s type θ is privately known,

the Revelation Principle tells us that we can restrict attention to direct revelation mechanisms in

which each surgeon announces his type truthfully at time 0. The principal just needs to choose a pair

of outcome-dependent stopping rules τG and τB, which map outcome paths to a stopping time in

[0,∞) (i.e. the point at which licenses are revoked). If the surgeon announces θ = G, he is assigned
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the stopping rule τG, and if the surgeon announces θ = B, he is assigned the stopping rule τB.11

We call such contracts evaluation contracts and proceed to define them more formally. There

are two contracts, one for each type θ. In order to verify that surgeons will reveal their types

truthfully and self-select into the appropriate contracts, and also to compute the principal’s profits,

we conveniently include recommended action strategies into the definition of contracts. Thus, we

write an evaluation contract for the good surgeon as

CG = {τG,AG, ÂB}

where τG is an Xt-measurable stopping time, AG = {aGt }t∈[0,τG] is the recommended (feasible) Xt-

measurable action strategy for the good surgeon, and ÂB = {âBt }t∈[0,τG] is an optimal (feasible)

Xt-measurable strategy for the bad surgeon in this contract. The purpose of introducing ÂB is to

verify that the bad surgeon does not want to deviate and be assigned to the good surgeon’s contract.

Similarly, we write an evaluation contract for the bad surgeon as

CB = {τB,AB, ÂG}

where τB is an Xt-measurable stopping time, AB = {aBt }t∈[0,τB ] is the recommended (feasible)

Xt-measurable action strategy for the bad surgeon, and ÂG = {âGt }t∈[0,τB ] is an optimal (feasible)

Xt-measurable strategy for the good surgeon in this contract, introduced to verify that the good

surgeon will truthfully reveal his type.

The principal offers the menu of evaluation contracts (CG, CB). A menu is optimal if and only if

it maximizes expected average discounted patient welfare

pE

[
r

∫ τG

0
e−rth(aGt , G)dt | θ = G

]
+ (1− p)E

[
r

∫ τB

0
e−rth(aBt , B)dt | θ = B

]

over all menus of evaluation contracts (CG, CB). A result in this paper is that each evaluation

contract in an optimal menu takes the form of a scoring rule. We define a scoring rule as follows:

Definition 1. An evaluation contract C is a scoring rule if it satisfies the following conditions:
11Note that we can restrict attention to deterministic stopping times since mixing over multiple stopping times is

equivalent to a deterministic stopping time in expectation.
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1. there exists a single state variable, which we call the score, that completely summarizes the past

performance history,

2. the score evolves continuously and is measurable with respect to the agent’s performance, and

3. there exists a threshold such that if the score drops below the threshold, play terminates.

3.2 What is First-Best?

Suppose the principal can observe the surgeon’s type and dictate the surgeon’s actions. What is

the outcome that maximizes patient welfare? Conditional on the type of surgeon, recall that two

variables affect patient welfare: the demand process {Dt} and the risk selection policy {at}. We

assume that the outside option for patients who do not visit a surgeon yields an expected payoff of

0.

Suppose θ = G. We assume that h(1, G) > 0 so that even when a good surgeon is engaging in

maximal selection behavior, visiting the good surgeon has positive expected patient payoff. Therefore,

when θ = G, the first-best outcome for patient welfare is Dt = 1 and at = 0 for all t.

Now suppose θ = B. The first-best outcome depends on the sign of h(1, B):

• When h(1, B) > 0, in expectation it is preferred for patients to visit a bad surgeon who is

selecting against risky patients than not to visit him at all. So the first-best outcome is Dt = 1

and at = 1 for all t.

• When h(1, B) < 0, in expectation it is preferred for patients to take the outside option (payoff

0) than to see a bad surgeon even when he is selecting risk. So conditional on θ = B, patients

never want to visit a bad surgeon. The first-best outcome then is for Dt = 0 for all t (making

at irrelevant for welfare).

3.3 Tradeoffs

To preface the technical analysis that follows, we first provide some intuition about the tradeoffs we

are balancing. The Revelation Principle tells us that we can restrict attention to truth-telling pairs

of contracts. It will turn out that the contract for the bad type can be computed without concern for

the good surgeon’s self-selection constraint because the good surgeon will not be tempted to identify
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himself as bad. As a result, we are easily able to characterize the contract for the bad surgeon using

existing techniques.

The contract for the good type is more difficult to compute because we must be wary of the bad

surgeon wanting to deviate and identify himself as good. Thus there are tradeoffs that need to be

carefully balanced in the good contract. We can separate welfare effects into current period effects

and future period effects. In the current period, we can increase patient welfare by having the good

surgeon treat all patients. However, that gain is offset by making it easier for the bad surgeon to

imitate the good surgeon and hence more difficult to separate the two types in the future. On the

other hand, we can take a loss in patient welfare in the current period by having the good surgeon

select against risky patients. That current period loss is offset by making it easier to distinguish

good types from bad types in the future.

3.4 The Principal’s Problem

The principal wants to specify a menu of evaluation contracts (CG, CB) that maximizes patient

welfare. Recall that CG consists of an Xt-measurable stopping time τG, a recommended action

strategy AG = {aGt } for the good surgeon, and (for convenience) an optimal action strategy ÂB =

{âBt } for the bad surgeon. CB is similar. Denote CG = {τG,AG, ÂB} and CB = {τB,AB, ÂG}.

Formally, the principal chooses (CG, CB) to maximize discounted expected patient welfare

pE

[
r

∫ τG

0
e−rth(aGt , G)dt | θ = G

]
+ (1− p)E

[
r

∫ τB

0
e−rth(aBt , B)dt | θ = B

]

subject to the self-selection constraints

E

[
r

∫ τB

0
e−rtg(âGt , G)dt | θ = G

]
≤ E

[
r

∫ τG

0
e−rtg(aGt , G)dt | θ = G

]
= WG

E

[
r

∫ τG

0
e−rtg(âBt , B)dt | θ = B

]
≤ E

[
r

∫ τB

0
e−rtg(aBt , B)dt | θ = B

]
= WB,

the incentive compatibility constraints for the recommended action strategies AG and AB

max
{a′t}

E

[
r

∫ τG

0
e−rtg(a′t, G)dt | θ = G

]
≤WG
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max
{a′t}

E

[
r

∫ τB

0
e−rtg(a′t, B)dt | θ = B

]
≤WB,

and the verification constraints12 for the optimal action strategies ÂG and ÂB

max
{a′t}

E

[
r

∫ τB

0
e−rtg(a′t, G)dt | θ = G

]
≤ E

[
r

∫ τB

0
e−rtg(âGt , G)dt | θ = G

]

max
{a′t}

E

[
r

∫ τG

0
e−rtg(a′t, B)dt | θ = B

]
≤ E

[
r

∫ τG

0
e−rtg(âBt , B)dt | θ = B

]
.

Associated with each contract Cθ is an expected payoffW θ to its intended recipient. Hence (WG,WB)

denotes the pair of values associated with a menu of evaluation contracts.

Remark: Notice that in the principal’s problem there is no participation constraint for either the

principal or the surgeon. For the surgeon, he does not have the option of avoiding the principal and

rejecting both contracts. The menu of contracts is compulsory. For the principal, since the surgeries

will take place regardless, she must at least weakly prefer to offer some menu of contracts.

Remark: Let us summarize the key differences between the good surgeon and the bad surgeon:

(1) although both surgeons improve their performance through selection behavior, which is costly,

the bad surgeon experiences higher marginal performance gain than the good surgeon; (2) the bad

surgeon’s payoffs may be affected differently by selection behavior than those of the good surgeon,

whose interests are completely aligned with patient welfare; and (3) selection behavior by the bad

surgeon improves expected patient welfare, while selection behavior by the good surgeon reduces

expected patient welfare.

Remark: We have chosen not to include costs in our objective function. We argue that a patient

who needs surgery will inevitably receive some sort of costly treatment, whether it be from a surgeon

in our model who accepts the patient’s case or from an outside option. If we assume the costs of all

such treatments are equal, then maximizing patient welfare is simply a matter of optimal assignment

of treatment based on patient welfare, which is the focus of our model. It has been noted that related

literature on this topic has largely neglected to assess the impact of report cards on costs, and our

model follows in that vein (Dranove, Kessler, McClellan & Satterthwaite 2003).
12These are simply incentive compatibility constraints.
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4 The Optimal Menu of Evaluation Contracts

Observe that we can solve for each evaluation contract separately. Since the good surgeon chooses

CG and the bad surgeon chooses CB, each contract is optimal conditional on its associated type.

The good type contract CG maximizes patient welfare conditional on θ = G:

max
τG,{aGt },{âBt }

E

[
r

∫ τG

0
e−rth(aGt , G)dt | θ = G

]
s.t.

E

[
r

∫ τG

0
e−rtg(aGt , G)dt | θ = G

]
= WG

0 ,

E

[
r

∫ τG

0
e−rtg(âBt , B)dt | θ = B

]
≤ ŴB, (C-GOOD)

and {aGt }, {âBt } are feasible and incentive compatible, where WG
0 is the good surgeon’s expected

payoff and ŴB is the bad surgeon’s maximum payoff (the self-selection constraint).

Similarly, the bad type contract CB maximizes patient welfare conditional on θ = B:

max
τB ,{aBt },{âGt }

E

[
r

∫ τB

0
e−rth(aBt , B)dt | θ = B

]
s.t.

E

[
r

∫ τB

0
e−rtg(aBt , B)dt | θ = B

]
= WB

0 ,

E

[
r

∫ τB

0
e−rtg(âGt , G)dt | θ = G

]
≤ ŴG, (C-BAD)

and {aBt }, {âGt } are feasible and incentive compatible, where WB
0 is the bad surgeon’s expected

payoff and ŴG is the good surgeon’s maximum payoff (the self-selection constraint).

It turns out that in an optimal evaluation contract, each surgeon’s continuation value evolves as

a state variable, whose initial value is equal to the surgeon’s total expected (average) payoff from

the contract at time 0. Notice that each continuation value must fall between 0, the surgeon’s

continuation value after license revocation, and 1, the (normalized) maximal flow payoff. If the

surgeon’s continuation value ever reaches 1, this means that the principal can no longer cut off the

surgeon. In other words, the surgeon achieves tenure. Note that the contract in which the principal

completely ignores the surgeon’s signal history corresponds to the pair of values (WG,WB) = (1, 1).
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We characterize each contract separately. We begin by deriving the easier contract, the contract

for the bad type, and then continue by tackling the contract for the good type. The solution to the

good contract is where we introduce novel techniques. After finding those two evaluation contracts,

we take the last step of choosing specific values for the contracts such that total expected patient

welfare is maximized and the self-selection constraints hold.

4.1 Optimal Evaluation Contract for the Bad Surgeon

The optimal evaluation contract for the bad surgeon solves the optimization problem (C-BAD). The

last constraint reflects the self-selection constraint, and we proceed by ignoring it (claiming it is not

binding), solving the maximization problem, and afterwards verifying that the constraint holds in

the optimal solution.

Without the self-selection constraint, the optimization problem is very similar to the continuous-

time principal-agent problem solved in Sannikov (2007b) and we follow his techniques directly. In

this section, we derive the contract informally, leaving the formal proofs to Appendix A.1.3.

Notice that we allow for arbitrarily complex history-dependent contracts. The key simplifying

insight from Sannikov (2007b), which also holds in discrete time (Spear & Srivastava 1987), is that the

agent’s continuation value Wt at a given time t completely summarizes the past history in an optimal

contract. Replacing one continuation contract (following some history) with another continuation

contract that has the same continuation value Wt does not change the agent’s incentives. After

any history then, the principal’s payoff is maximized if and only if the continuation contract is

optimal given the continuation value. Therefore, Wt completely determines the optimal continuation

contract. Recalling Definition 1 of a scoring rule, we can think of Wt as the contract’s score.

Let AB = {aBt } be the action policy for the bad surgeon specified by the contract. Then his

continuation value at time t is

WB
t (AB) = EA

B

[∫ τB

t
e−r(s−t)g(aBt , B)ds | FBt

]
,

where EA
B

denotes the expectation under the probability measure PAB induced by the bad surgeon’s

strategy AB. For the remainder of this section, we drop the B notation, unless necessary to avoid

confusion. From Proposition 1 of Sannikov (2007b), we know that we can represent Wt(AB) as a
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diffusion process: there exists a progressively measurable process Y = {Yt} such that13

dWt(A) = r(Wt(A)− g(at, B))dt+ rYtσdZ
A
t ∀t ≥ 0, (4.1)

where σdZAt = dXt−µ(at, B)dt. We call Yt the sensitivity of the process to the signals Xt, where Yt

(scaled by rσ) reflects the volatility of Wt(A). Now, how do we determine whether A is incentive com-

patible? For a given strategy A, consider the process Y = {Yt} such that (4.1) holds. Proposition 2 of

Sannikov (2007b) tells us that A is optimal if and only if at ∈ arg maxa′∈A g(a′, B)+Ytµ(a′, B) ∀t ≥ 0

holds almost everywhere. In other words, for the specific process Y associated with a given strategy

A, we can summarize incentive-compatible actions at as a function of Yt:

at(Yt) = 1 =⇒ Yt ≥
ζB

kB
and at(Yt) = 0 =⇒ Yt ≤

ζB

kB
. (4.2)

This is intuitive: the surgeon optimally engaging in selection behavior corresponds to the score being

highly sensitive to signals. Similarly, the surgeon optimally avoiding selection behavior corresponds

to the score being less sensitive to signals.

To find the optimal contract that solves (C-BAD), we first use the representation of the surgeon’s

payoff as a diffusion process to apply dynamic programming principles and write out the Hamilton-

Jacobi-Bellman (HJB) equation. We solve the HJB equation and then verify that the solution in

fact characterizes an optimal contract.

Let Λ(W ) denote the maximum payoff to the principal when the bad surgeon gets continuation

payoff W . The principal provides incentives by using realized signals to adjust W . Formally, the

surgeon’s payoff evolves according to:

dWt = r(Wt − g(at, B))dt+ rYtσdZt (4.3)

where {at} is the surgeon’s optimal risk selection strategy and {Yt} is a progressively measurable

process (with respect to the signal process {Xt}).14 By Ito’s Lemma, we can write the law of motion

13To be precise, Proposition 1 of Sannikov (2007b) also tells us that the process Y is in L∗, i.e. EA
B

[
R t

0
Y 2
s ds] <∞

for all t ∈ [0,∞).
14Recall that dXt = µ(at, B)dt+ σdZt and {Zt} is a Brownian motion.
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for Λ(W ) as

dΛ(W ) =
(

Λ′(W )(r(W − g(a,B))) +
Λ′′(W )

2
r2Y 2σ2

)
dt+ Λ′(W )rY σdZ.

Then, the HJB equation is

Λ(W ) = max
a,Y

h(a,B) + Λ′(W )(W − g(a,B)) +
Λ′′(W )

2
rσ2Y 2.

Let a(W ) and Y (W ) denote the action and sensitivity arguments that serve as maximizers on the

right hand side for a given W . We impose the constraint that a(W ) = a(Y (W )) (from (4.2)). So in

fact, we can rewrite the HJB equation in a more convenient form, and with boundary conditions, as

Λ′′(W ) = min
Y

Λ(W )− h(a(Y ), B)− Λ′(W )(W − g(a(Y ), B))
rσ2Y 2/2

where Λ(0) = 0 and Λ(1) = h(0, B). (HJB-BAD)

Notice that if Λ′′(W ) < 0, then the minimizing choice of Y in the HJB equation will be the minimum

sensitivity needed to enforce action a(W ).

Without loss of generality, we normalize h(a,B) so that h(1, B) = 1. First, we state a brief

lemma, proved in Appendix A.1.1:

Lemma 2. The solution Λ to (HJB-BAD) is unique and strictly concave.

Solving (HJB-BAD) gives us the function Λ(W ), as well as the functions a(W ) and Y (W ) that

serve as minimizers on the RHS of the HJB equation. More formally, we denote the solution to

(HJB-BAD) as (Λ, a, Y ) where Λ : [0, 1] → [h(0, B), 1], a : [0, 1] → A and Y : [0, 1] → [0,∞). First

we will show how to construct a corresponding evaluation contract CB from that solution, and then

we confirm that CB is indeed optimal.

Denote the evaluation contract corresponding to the solution to (HJB-BAD) by CB = {τB,AB},

where τB is the Xt-measurable stopping time and AB = {aBt } is the recommended incentive-

compatible risk selection policy for the bad surgeon. We conjecture that CB is optimal and construct

it as follows. Let the bad surgeon’s continuation value at time t be Wt, which starts at an initially
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chosen W0 and evolves according to

dWt = r(Wt − g(aBt , B))dt+ rYtσdZt.

Set aBt = a(Wt) and Yt = Y (Wt), which we know enforces incentive compatibility of a(Wt). Finally,

define τB as follows. Let τ̄ satisfy τ̄ = min{t : Wt = 0 || Wt = 1}. Then the stopping time τB can

be written

τB =

 τ̄ if Wτ̄ = 0

∞ if Wτ̄ = 1

 (4.4)

We show that at any time t, Wt is the expected continuation payoff to the bad surgeon from this

contract and Λ(Wt) is the expected continuation patient welfare.

Proposition 1 establishes that the above evaluation contract constructed from the solution to

(HJB-BAD) is in fact optimal.

Proposition 1. The contract constructed from the unique solution (Λ, a, Y ) to (HJB-BAD) charac-

terizes an optimal evaluation contract for the bad surgeon CB that solves (C-BAD). This evaluation

contract takes the form of a scoring rule in which the score is the bad surgeon’s continuation value

Wt. The initial score W0 corresponds to the bad surgeon’s expected payoff from the entire contract,

and Λ(W0) corresponds to the expected patient welfare from the entire contract.

When the score is Wt, the expected continuation patient welfare is Λ(Wt), the sensitivity of the

score to signals is Y (Wt) and the optimal selection policy is a(Wt). Also, Y (Wt) > 0 for all Wt ∈

(0, 1) and hence the score hits 0 or 1 in finite time. If the score hits 0 before it hits 1, the surgeon’s

license is revoked; if the score hits 1 before it hits 0, the surgeon is awarded tenure.

Proof. See Appendix A.1.3.

Broadly, the optimal evaluation contract is a scoring rule in which the evolution of the score is

governed by the sensitivity rule Y (W ). If the surgeon performs too poorly and his score drops below

a threshold, his license is revoked and he is fired. On the other hand, if the surgeon performs very

well and his score rises above a threshold, he is awarded tenure. Proposition 2 below tells us that in

an optimal contract the bad surgeon is always incentivized to engage in selection behavior, which is

welfare-improving, unless he has achieved tenure.
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Figure 1: For CB – Patient Welfare Λ(W ), Score Sensitivity Y (W ), Selection Policy a(W )

Proposition 2. In the solution to (HJB-BAD), a(W ) = 1 for all W ∈ [0, 1) and therefore optimally

Y (W ) = ζB

kB
for all W ∈ [0, 1). In other words, until tenure, the bad surgeon always engages in risk

selection and the contract’s sensitivity to outcomes is constant.

Proof. See Appendix A.1.2.

In an optimal bad contract, the result that an untenured bad surgeon always engages in selection

behavior is intuitive. Given that we ignore the good surgeon’s self-selection constraint as non-binding,

making an untenured bad surgeon engage in selection behavior by increasing the score sensitivity

improves patient welfare under the bad contract without causing value to be destroyed under the

good contract.

The main features of the scoring rule are depicted in Figure 1. On the left panel is patient welfare

as a function of the score W . Notice that patient welfare is bounded by the triangle formed by the

feasible set of bad surgeon-patient welfare pairs (0, 0), (g(1, B), h(1, B)), and (g(0, B), h(0, B)). Also

plotted as a function of the score, the right panel presents the score sensitivity rule and the bad

surgeon’s optimal selection policy, both of which we have shown to be constant.

Comparative Statics. How does the optimal contract for the bad type change as we vary the

underlying parameters? The shape of the optimal contract depends on the technology parameter

kB, the cost of risk selection ζB, the interest rate r, the signal volatility σ, and the patient welfare

function h(a,B). As kB, the difference between the drift of the bad surgeon’s signal when he selects

risk and the drift of his signal when he does not select risk, increases, the more discerning the
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Figure 2: For CB – Changes in Λ(W ) as kB, ζB vary (for fixed r, σ, g, h)

principal can be and the higher his maximal payoff for a given W . In other words, Λ becomes more

concave (i.e. Λ′(0) → h(1,B)
g(1,B) ). On the other hand, as kB decreases, Λ becomes less concave (i.e.

Λ′(0) → −h(0, B)) and the principal’s payoff decreases. See the left panel of Figure 2. Note that

holding kB fixed and decreasing rσ2 has the same effect as holding rσ2 fixed and increasing kB.

Now consider if we increase ζB, the cost of risk selection. There are two effects. First, the

minimum sensitivity ζB

kB
needed to enforce action at = 1 increases, which decreases the concavity

of Λ. Secondly, the bad surgeon’s payoff when he engages in selection behavior, g(1, B), decreases.

Hence, for the region to the right of the maximum Λ, patient welfare decreases. See the right panel

of Figure 2.

Finally, consider what happens as the values of h(a,B) change. This alters the size and position of

the triangle that bounds the optimal contract Λ. As expected, as either h(1, B) or h(0, B) increases,

patient welfare in the optimal contract Λ for a given W also increases.

We still need to verify that the good surgeon’s self-selection constraint is in fact not binding. The

verification is simpler after we derive the optimal contract for the good surgeon, which we do in

the following section. At the end of that section we confirm that the good surgeon’s self-selection

constraint holds.

The techniques we have used to solve for the bad surgeon’s optimal contract are directly analogous

to those developed in Sannikov (2007b). In the following section, we solve for the good surgeon’s

optimal contract. Because we cannot ignore the self-selection constraint, the problem becomes much

more complex. To solve it, we adopt novel applications of continuous-time techniques.
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5 Optimal Evaluation Contract for the Good Surgeon

The optimal evaluation contract for the good surgeon solves the optimization problem (C-GOOD).

Unlike solving for the bad contract, we cannot ignore the self-selection constraint in this problem

because it will be binding. Therefore, we must keep track of two state variables – both the continu-

ation payoff to the good surgeon and the continuation payoff to the bad surgeon. Furthermore, the

principal’s payoff (i.e. patient welfare) will be a function of both continuation values. In this section,

we provide an informal derivation of the optimal contract, and we perform most formal verifications

in Appendix A.2.

Let AG = {aGt } be the good surgeon’s optimal risk selection policy, and AB = {aBt } be the bad

surgeon’s optimal risk selection policy.15 Their respective continuation values in the contract at time

t are

WG
t (AG) = EA

G

[∫ τG

t
e−r(s−t)g(aGt , G)ds | FGt

]
and

WB
t (AB) = EA

B

[∫ τG

t
e−r(s−t)g(aBt , B)ds | FBt

]
,

where EA
θ

denotes the expectation under the probability measure PAθ induced by the type-θ sur-

geon’s strategy Aθ. Again, by Proposition 1 of Sannikov (2007b) we can represent WG
t (AG) and

WB
t (AB) as diffusion processes so that there exist progressively measurable processes YG = {Y G

t }

and YB = {Y B
t } such that16

dWG
t (AG) = r(WG

t (AG)− g(aGt , G))dt+ rY G
t σdZ

AG
t ∀t ≥ 0, (5.1)

dWB
t (AB) = r(WB

t (AB)− g(aBt , B))dt+ rY B
t σdZ

AB
t ∀t ≥ 0. (5.2)

As before, we call Y θ
t the sensitivity of the process to the signals Xt, from the perspective of the

type-θ surgeon. Lemma 10, proven in Appendix A.2.1, gives the incentive compatibility conditions

for AG and AB (and the corresponding sensitivity processes YG and YB):

aGt (Y G
t ) = 1 =⇒ Y G

t ≥
ζG

kG
and aGt (Y G

t ) = 0 =⇒ Y G
t ≤

ζG

kG

15We have dropped the hat over ÂB = {âBt } and will continue to do so in this section.
16Again, to be precise, Proposition 1 of Sannikov (2007b) also tells us that the processes Yθ are in L∗, i.e.

EA
θ

[
R t

0
(Y θs )2ds] <∞ for all t ∈ [0,∞).
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aBt (Y B
t ) = 1 =⇒ Y B

t ≥
ζB

kB
and aBt (Y B

t ) = 0 =⇒ Y B
t ≤

ζB

kB
. (5.3)

So for each type of surgeon, there exists a threshold sensitivity above which he engages in selection

behavior and below which he does not.

To find the optimal contract that solves (C-GOOD), we attempt a similar approach as before.

First we use the representation of the surgeons’ payoffs as diffusion processes so that we can apply

dynamic programming principles to find the relevant Hamilton-Jacobi-Bellman (HJB) equation. We

solve the HJB equation and then show that the solution in fact characterizes an optimal contract.

Let Π(WG
t ,W

B
t ) denote the maximum expected payoff to the principal (i.e. patient welfare) when

the good surgeon gets continuation payoff WG
t and the bad surgeon gets continuation payoff WB

t .

Formally, the principal adjusts the surgeons’ payoffs according to

dWG
t = r(WG

t − g(aGt , G))dt+ rY G
t σdZ

G
t

dWB
t = r(WB

t − g(aBt , B))dt+ rY B
t σdZ

B
t

where σdZGt = dXt−µ(aG, G)dt and σdZBt = dXt−µ(aB, B)dt, so that σdZBt = σdZGt +(µ(aG, G)−

µ(aB, B))dt. From the point of view of the principal, who is expecting the good surgeon, we have

dWB
t = r(WB

t − g(aBt , B) + Y B
t (µ(aGt , G)− µ(aBt , B)))dt+ rY B

t σdZ
G
t .

So the drift of the bad surgeon’s continuation value from the principal’s perspective involves a

correction term, which includes the bad surgeon’s perceived sensitivity. We apply Ito’s Lemma to

arrive at the law of motion for Π(WG
t ,W

B
t ). It follows that the HJB equation is

Π(WG
t ,W

B
t ) = max

aG,aB ,Y G,Y B
h(aG, G) + Π1(WG

t ,W
B
t )(WG

t − g(aG, G))

+Π2(WG
t ,W

B
t )(WB

t − g(aB, B) + Y B(µ(aG, G)− µ(aB, B)))

+
Π11(WG

t ,W
B
t )

2
rσ2(Y G)2 +

Π22(WG
t ,W

B
t )

2
rσ2(Y B)2 + Π12(WG

t ,W
B
t )rσ2Y GY B.

Analyzing that equation is unwieldy. Fortunately, recall that we have assumed that good surgeons are

fully altruistic. So, h(a,G) ∝ g(a,G) and the good surgeon makes risk selection decisions completely

in the interests of patients. A contract that maximizes the good surgeon’s payoff also maximizes

patient welfare. So we can re-write the optimization problem (C-GOOD) with the good surgeon’s
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payoff as the objective function:

max
τG,{aGt },{aBt }

E

[
r

∫ τG

0
e−rtg(aGt , G)dt | θ = G

]
s.t. (5.4)

E

[
r

∫ τG

0
e−rtg(aBt , B)dt | θ = B

]
≤ ŴB, (5.5)

and {aGt }, {aBt } are feasible and incentive compatible, where ŴB is the maximum allowable payoff

to the bad surgeon.

It follows that Π(WG
t ,W

B
t ) ∝WG

t , so we can write patient welfare as a function of WB
t only, i.e.

Π(WB
t ). Without loss of generality, we normalize that constant of proportionality to be 1, so that

Π(WB
t ) = WG

t . From Ito’s Lemma, the drift of Π(WB
t ) is

rΠ′(WB
t )(WB

t − g(aBt , B) + Y B(µ(aGt , G)− µ(aBt , B)))) +
Π′′(WB

t )
2

r2σ2(Y B
t )2

and the volatility is rσΠ′(WB
t )Y B

t . We can match up terms with the law of motion for WG
t to obtain

useful formulas characterizing the relationship between WG
t and WB

t . In particular, matching up

volatilities implies

Y G
t = Π′(WB

t )Y B
t ,

which describes the relationship between the score sensitivity from the good surgeon’s perspective

Y G
t and the score sensitivity from the bad surgeon’s perspective Y B

t . When Π′(WB
t ) is large (i.e. the

good surgeon has a lot to gain from a score increase), the score sensitivity from the good surgeon’s

perspective is higher than the score sensitivity from the bad surgeon’s perspective. The opposite

holds when Π′(WB
t ) is small.

The HJB equation that selects aG, aB, and Y (we drop the B superscript) to maximize the good

surgeon’s payoff Π(WB) is as follows:

Π(WB) = max
aG,aB ,Y

g(aG, G) + Π′(WB)(WB − g(aB, B) + Y (µ(aG, G)− µ(aB, B))) +
Π′′(WB)

2
rσ2Y 2.

Let aG(WB), aB(WB) and Y (WB) denote the action and sensitivity policies that serve as maximizers

on the right hand side of the HJB equation for a given WB. We impose the constraint that aG(WB)

and aB(WB) have to be optimal actions given Y (WB), i.e. aG(WB) = aG(Π′(W )Y (WB)) and
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aB(WB) = aB(Y (WB)) (from 5.3). Thus, there is a mapping from Y to incentive-compatible pairs

(aG, aB), and in fact we are maximizing over Y in the HJB equation. More conveniently, the HJB

equation can be written

Π′′(WB) = minY
Π(WB)−g(aG(Y ),G)−Π′(WB)(WB−g(aB(Y ),B)+Y (µ(aG(Y ),G)−µ(aB(Y ),B)))

rσ2Y 2/2

where Π(0) = 0 and Π(1) = 1. (HJB-GOOD)

Additionally, we require aG(Y ) = 1 only if Y ≥ ζG

Π′(WB)kG
and aG(Y ) = 0 only if Y ≤ ζG

Π′(WB)kG
,

while aB(Y ) = 1 only if Y ≥ ζB

kB
and aB(Y ) = 0 only if Y ≤ ζB

kB
. The following lemma is proved in

Appendix A.2.2.

Lemma 3. The solution Π to (HJB-GOOD) is unique, strictly concave and strictly increasing.

At this point it is instructive to highlight one major difference between this contracting problem

for the good surgeon and the contracting problem solved in Sannikov (2007b). In the latter problem,

the sensitivity Y appears in the HJB equation only once in the denominator. As a result, the

sensitivity that minimizes the right hand side of the HJB equation is always the minimum sensitivity

needed to enforce a given action. In our problem, however, the sensitivity Y appears both in the

numerator as well as the denominator. As a result, the Y that minimizes the right hand side of the

HJB equation for a given action is not necessarily the minimum sensitivity that enforces that action.

Suppose we solve the HJB equation (HJB-GOOD) and generate the solutions Π(WB), aG(WB),

aB(WB) and Y (WB). More formally, we denote the solution to (HJB-GOOD) as (Π, aG, aB, Y )

where Π : [0, 1]→ [0, 1], aG : [0, 1]→ A, aB : [0, 1]→ A and Y : [0, 1]→ [0,∞).

We construct a corresponding evaluation contract as follows, conjecturing that it solves (C-

GOOD). Denote the contract by CG = {τG,AG,AB}, where τG is an Xt-measurable stopping

time, AG = {aGt } is the recommended incentive-compatible risk selection policy for the good sur-

geon, and AB = {aBt } is the optimal risk selection policy for the bad surgeon (if he were to deviate

and take this contract). Let the deviating bad surgeon’s continuation value be WB
t , which starts at

an initially chosen WB
0 and evolves according to

dWB
t = r(WB

t − g(aBt , B))dt+ rYtσdZ
AB
t ,
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which from the principal’s perspective is

dWB
t = r(WB

t − g(aBt , B) + Yt(µ(aGt , G)− µ(aBt , B)))dt+ rYtσdZ
AG
t .

Set aBt = aB(WB
t ) and aGt = aG(WB

t ). We also set Yt = Y (Wt), which we know enforces incentive

compatibility of aB(WB
t ) and aG(WB

t ). Finally, define the stopping time τG as follows. Define

τ̄ = min{t : Π(Wt) = 0 || Π(Wt) = 1}. Then the stopping time τG can be written

τG =

 τ̄ if Π(Wτ̄ ) = 0

∞ if Π(Wτ̄ ) = 1

 (5.6)

We show that at any time t, WB
t is the expected continuation payoff to the deviating bad surgeon

from this contract and Π(Wt) is the expected continuation patient welfare (which is also equal to

the good surgeon’s continuation value).

Proposition 3 establishes that the above evaluation contract constructed from the solution to

(HJB-GOOD) is in fact optimal.

Proposition 3. The contract constructed from the unique solution (Π, aG, aB, Y ) to (HJB-GOOD)

characterizes an optimal evaluation contract for the good surgeon CG that solves (C-GOOD). This

evaluation contract takes the form of a scoring rule in which the score is the bad surgeon’s continuation

value Wt. The initial score W0 corresponds to the deviating bad surgeon’s expected payoff from the

entire contract if he chooses it, and Π(W0) corresponds to the expected patient welfare (and hence

the good surgeon’s expected payoff) from the entire contract.

Suppose the score is Wt. Then the expected continuation patient welfare is Λ(Wt). From the

good surgeon’s perspective, the sensitivity of the score to signals is Π′(Wt)Y (Wt) and the optimal

risk selection policy is aG(Wt). From the bad surgeon’s perspective, if he has deviated and accepted

CG, the sensitivity of the score to signals is Y (Wt) and the optimal risk selection policy is aB(Wt).

Furthermore, Y (Wt) > 0 for all Wt ∈ (0, 1) and hence the score Wt hits 0 or 1 in finite time. If the

score hits 0 before it hits 1, we know Π(Wt) = 0 and hence the surgeon’s license is revoked. If the

score hits 1 before it hits 0, we know Π(Wt) = 1 and hence the surgeon is awarded tenure.

Proof. See Appendix A.2.3 for proof.

We now highlight the second major difficulty that arises when solving this contracting problem for
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the good surgeon but does not arise when solving the contracting problem for the bad surgeon (i.e.

the problem solved in Sannikov (2007b)). Recall that in the case of the bad surgeon, we appeal to a

simplifying insight that we can replace one continuation contract with another continuation contract

without changing the agent’s incentives, so long as both contracts have the same continuation value to

the agent. Therefore, we know that any continuation contract in the bad surgeon’s optimal contract

is itself optimal and hence on the curve Λ.

In this case of the good surgeon, however, we are managing the incentives of two agents. If the

continuation contract for a given continuation value Wt achieves a lower patient welfare than the

optimal contract for that value Wt, then we cannot simply replace the first contract by the second

one. The reason is that doing so will alter the incentives of the good surgeon. In order to show

that at any point in time the continuation contract in the optimal contract achieves a continuation

patient welfare that lies on the curve Π, we must appeal to a more complex argument. We do so in

Lemma 16 of the Appendix.

We have now fully characterized an optimal evaluation contract for the good surgeon by an HJB

equation. In the next section, we analyze properties of the contract.

5.1 Properties of the Good Surgeon’s Evaluation Contract

We characterize both the optimal risk selection policy for the good surgeon aG(W ) and the optimal

risk selection policy for the deviating bad surgeon aB(W ). Clearly, the good surgeon’s policy is of

greater interest than the bad surgeon’s, since under the optimal menu of contracts only the good

surgeon is assigned to the good contract. Nonetheless, characterizing both policies gives a more

complete picture that is helpful in understanding the incentives the good surgeon faces.

Consider the good surgeon. We find that his optimal risk selection policy takes the shape of a

weakly decreasing step function. We also find that the sensitivity of the score to signals from the

good surgeon’s perspective is strictly decreasing in W . Thus, when the score is low, the contract is

highly sensitive to signals and the good surgeon optimally engages in selection behavior; meanwhile,

when the score is high, the contract is less sensitive to signals and the good surgeon optimally stops

selecting risk. Notice that the good surgeon selects risk even in our case when he is fully altruistic

and aligns his interests directly with patients. We discuss this in further detail below.

The score at which the good surgeon switches from selecting risk to not selecting risk corresponds
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generically to a discontinuous downward jump in the sensitivity. Thus, there are two distinct regions:

a “hot seat” region of high sensitivity in which the good surgeon’s score is low, the scoring rule is

stricter, and his performance is scrutinized more carefully; and a “benefit of the doubt” region of

low sensitivity in which the good surgeon’s score is higher, the scoring rule is more lenient, and

his performance is scrutinized less carefully. Interestingly, the optimal risk selection policy for the

deviating bad surgeon turns out also to take the form of a weakly decreasing step function.

We summarize the results in the following proposition.

Proposition 4. In an optimal evaluation contract for the good surgeon characterized by Proposition

3, both the recommended risk selection policy for the good surgeon and the optimal risk selection policy

for the deviating bad surgeon are weakly decreasing step functions: as the score increases, both types

of surgeon (weakly) reduce their selection behavior. Furthermore, in this contract the score sensitivity

from the good surgeon’s perspective Π′(W )Y (W ) is strictly decreasing. At the score W ′ where the

good surgeon switches from engaging in selection behavior to avoiding selection behavior, Y (W ′) (and

hence Π′(W ′)Y (W ′)) generically features a discontinuous jump, separating the low-score region with

high score sensitivity (the “hot seat”) from the high-score region with low score sensitivity (“benefit

of the doubt”).

Proof. See Appendix A.3.1 for proof.

Although weakly decreasing functions admit the possibility of the optimal policies being constant

before tenure, it turns out that neither surgeon optimally selects risk over the entire range of scores.

Proposition 5. In an optimal evaluation contract for the good surgeon characterized by Proposition

3, there always exists an ε > 0 such that for high enough scores W ∈ (1− ε, 1], both the good surgeon

and the deviating bad surgeon optimally avoid selection behavior.

Proof. See Appendix A.3.1 for proof.

To summarize, the good surgeon’s contract takes the form of a scoring rule where the score is

the state variable W (i.e. the deviating bad surgeon’s continuation value). The score evolves in

accordance with the rule Y B(W ) = Y (W ), which reflects the sensitivity of the score to realizations

of the surgeons’ signals. From the perspective of the good surgeon, the sensitivity of the score is

Y G(W ) = Π′(W )Y (W ). A high sensitivity indicates the scoring rule is “strict” and hence surgeons
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are likely to engage in risk selection. A low sensitivity indicates the scoring rule is “lenient” and

hence surgeons are likely to avoid selection. Implementation of the good surgeon’s scoring rule

then typically involves four regions: a “hot seat” region in which the good surgeon’s performance is

judged strictly and thus he selects risk; a “benefit of the doubt” region in which his performance is

judged leniently and hence he avoids selection; a license revocation region when his score falls too

low and play terminates; and finally a point of tenure at which his payoffs are fixed at the maximum

regardless of performance. Movement between regions depends on the good surgeon’s signals, with

a well-performing surgeon typically moving away from the strict region towards the lenient region

and finally to the point of tenure.

In Figure 3, we depict the main features of the good surgeon’s optimal scoring rule CG. In the

left panel, patient welfare is plotted as a strictly increasing, strictly concave function of the score.

In the middle panel is the scoring rule from the perspective of the good surgeon, who is expected

to select this scoring rule. Notice that the score sensitivity from the good surgeon’s perspective is

weakly decreasing, and that there is a jump downward separating the region of high sensitivity from

the region of low sensitivity. In the right panel we also include the scoring rule from the perspective

of the bad surgeon if he were to deviate and select this scoring rule. Note that the score sensitivity

is not necessarily monotonic from the bad surgeon’s perspective.

We can look at the shape of the contract to consider the tradeoffs between current period gains

and future period gains. When the score is low, the good surgeon engages in risk selection because

the deviating bad surgeon is also selecting risk, and it is optimal to suffer the current period loss in
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order to more easily separate from the bad surgeon in the future. This corresponds to region A in

Figure 4. In region B, even though the bad surgeon is still selecting risk to inflate his performance,

the good surgeon stops selecting risk, choosing to take the current period gain rather than work to

separate himself from the deviating bad surgeon. Finally, in region C, the bad surgeon is no longer

willing to engage in costly selection behavior, and the good surgeon can avoid selection altogether,

capturing current period gains while still being able to separate himself.

Comparative Statics. We briefly give some intuition behind what happens as we change the

values of the underlying parameters in the optimal good contract. In particular, we are interested

in what happens (a) as ζG, the good surgeon’s cost of selection, changes, (b) as kG, the effectiveness

of screening for the good surgeon changes, (c) as µ(0, G) − µ(0, B), the difference between the two

surgeons’ technologies, changes, and (d) as r, the interest rate, or σ2, the square of the signal

volatility, changes.17

As ζG increases, the effect moves in two ways. First, patient welfare increases because the good

surgeon engages in less selection behavior; however, this allows the bad surgeon to derive more value

from deviating to the good contract and hence we must give him more value in the bad contract,

decreasing patient welfare. Furthermore, patients suffer more harm when the good surgeon selects

risk.

Given an increase in kG, patient welfare increases because the good surgeon engaging in selection
17Note that holding all parameters for the good type constant and then adjusting parameters for the bad type also

changes the optimal contract, but we choose not to focus on those here as such changes would also change the shape
of the optimal bad contract.
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becomes more effective in separating himself. Similarly, as µ(0, G)−µ(0, B) increases, again patients

benefit because the good surgeon can identify himself more easily. Finally, as r or σ increases, the

signal effectively becomes less informative and therefore patient welfare decreases.

5.2 Verifying Self-Selection Constraint

We still need to verify that the good surgeon’s self-selection constraint is not binding. Suppose it

were. Then CB would give the bad surgeon a payoff of WB and the good surgeon a payoff of WG

where WG > Π(WB). This would then violate our claim that CG is the optimal contract that

maximizes the good surgeon’s payoff for a given payoff of the bad surgeon. Therefore, we conclude

that the good surgeon’s self-selection constraint must not be binding.

6 Finding the Optimal Menu of Evaluation Contracts

Now that we have characterized the optimal contract for the good surgeon and the optimal contract

for the bad surgeon, the last step is for the principal to choose appropriate initial conditions for the

pair of contracts so as to maximize total discounted expected patient welfare.

Recall that for an optimal bad contract CB, expected patient welfare is Λ(W̃B
0 ) when the expected

payoff to the bad surgeon is W̃B
0 . On the other hand, for an optimal good contract CG, expected

patient welfare is Π(W̆B
0 ) when the expected payoff to the bad surgeon is W̆B

0 . In order for the bad

surgeon’s self-selection constraint to hold, the initial conditions of the contracts must be chosen such

that W̃B
0 ≥ W̆B

0 .

So the principal wants to choose initial scores W̆B
0 , W̃

B
0 for the optimal good and optimal bad

contracts respectively, such that the principal solves maxW̆B
0 ,W̃B

0
pΠ(W̆B

0 ) + (1 − p)Λ(W̃B
0 ) subject

to W̃B
0 ≥ W̆B

0 . Since Π(W̆B
0 ) is weakly increasing in its argument, the solution always involves

W̃B
0 = W̆B

0 , and the maximization problem becomes

max
WB

0

pΠ(WB
0 ) + (1− p)Λ(WB

0 ),

which is maximized when

pΠ′(WB) = −(1− p)Λ′(WB). (6.1)
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See Figure 5. Notice that the optimal W ∗ always occurs to the right of the score for which Λ(W )

is maximized. Therefore, if Λ′(0) > 0, then it is never optimal to fire both surgeons immediately.

On the other hand, if the proportion of good surgeons p in the population is large enough, or if the

expected patient welfare from a bad surgeon taking all cases is not too low, then it may be optimal

to avoid evaluation contracts altogether (i.e. tenure all surgeons immediately).

Notice that when W ∗ is in the region of high sensitivity, this suggests that any surgeon in the

good contract starts out in a “hot seat.” Immediately, his performance is scrutinized carefully and

his outcomes carry a heavy weight. Only when the surgeon has proven himself and pushed his score

past the threshold into the region of low sensitivity does he get a break. On the other hand, when

W ∗ is in the region of low sensitivity, all surgeons start out in the “benefit of the doubt” region of

the good contract. It is only when a surgeon has experienced some poor performance and his score

drops into the high sensitivity region that his performance is scrutinized carefully.

Remark: As Ely and Välimäki mention in their analysis (2003), there are two issues with separating

contracts. First, conditional on the good type, the contract is not renegotiation-proof. The good

surgeon and the principal would like to renegotiate and tenure the surgeon immediately once he has
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been identified as good. We assume that there is no renegotiation. Secondly, conditional on the bad

type, it may not be sequentially rational for the principal to follow through with the contract. It is

never sequentially rational if h(1, B) < 0. For now we assume that the principal can commit to the

bad contract, but in Section 8 we revisit the issue.

Comparative Statics. How does the choice of W ∗ change as we adjust the values of the underlying

parameters?

First, let’s look at p, the ex ante probability that the surgeon is of the good type. As p increases,

the ratio at the optimal W ∗ of −Λ′(W ∗

Π′(W ∗) increases as well. Hence the optimal W ∗ increases in p, as

does expected patient welfare. Another way to think about this is that as the proportion of good

surgeons p increases, the good surgeon is more likely to begin with the benefit of the doubt (i.e. in

the lenient scoring region) than to begin in the hot seat (i.e. in the strict scoring region).

To look at comparative statics of other underlying parameters, we have to turn attention to how

such changes affect the optimal evaluation contracts CG and CB themselves. Generally, all else

equal, the more concave the function Π(W ) in CG, the smaller W ∗ is and the higher the patient

welfare achieved. Similarly, all else equal, the more concave the function Λ(W ) in CB, again the

smaller W ∗ is and the higher the patient welfare achieved. Since any change in parameters involves

several moving parts, we best illustrate comparative statics through numerical examples presented

in the following section.

7 Numerical Examples

To illustrate some comparative statics, we look at several numerical examples and compute optimal

contracts.

In Example 1, we consider the base case of equal costs of selection and overlap in surgeons’

technologies. Example 2 adjusts the bad surgeon’s technology so that there is no longer overlap.

In Example 3, we return to the base case of Example 1 but make the cost of selection for the bad

surgeon high relative to the good surgeon. Finally, in Example 4, we amend the base case so that

the effectiveness of selection for the good surgeon, kG, is close to that of the bad surgeon, kB.
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Example 1. Suppose that both the bad surgeon and the good surgeon experience the same cost

of selection, i.e. ζ = ζG = ζB, and that the bad surgeon’s marginal performance gain from selection

is twice the good surgeon’s marginal performance gain, so kB = 2kG. Furthermore, there is overlap

between the two surgeon’s technologies, so that µ(0, G) < µ(1, B). Figure 7 summarizes the optimal

menu of contracts with such a setup. In the top panel, we have an analog of Figure 5, in which patient

welfare is plotted against the score in both CG and CB. In the bottom panels, we have analogs of

the middle and right panels of Figure 3 for the good contract: from each surgeon’s perspective, the

score sensitivity and the optimal selection policy are plotted against the score.

As expected, expected patient welfare Π(W ) is strictly increasing and concave in the score. Fur-

thermore, the optimal selection policies of both surgeons take the form of weakly decreasing step

functions. The bottom row of plots is particularly interesting: these two plots represent the score

sensitivity to signals from each surgeon’s perspective. Recall that Y G(W ), the score sensitivity for

the good surgeon, is equal to Π′(W )Y B(W ). There are four regions in the evaluation contract:

1. W = 0, which reflects license revocation,

2. W ∈ [0,≈ 0.2), which reflects the region of high score sensitivity,

3. W ∈ [≈ 0.2, 1), which reflects the region of low score sensitivity, and

4. W = 1, which reflects tenure.

When p = 0.5, the optimal W ∗ at which scores are initialized is around 0.64, so that good surgeons

begin in the region of low score sensitivity. Define the inefficiency of an outcome as a measure of the

distance from first-best welfare. Relative to having no contracts, the optimal contracts in this base

case example eliminates 42% of the inefficiency.

One might imagine that overlap in the two surgeons’ technologies is essential in generating regions

where the good surgeon engages in selection. However, even if the technologies do not overlap,

the optimal evaluation contract for the good surgeon looks quite similar, although patient welfare

increases. Consider Example 2.

Example 2. Suppose that the surgeons continue to experience the same common cost of selection

and the same difference in marginal performance gains from selection. However, there is no longer
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overlap between the two technologies, so µ(0, G) > µ(1, B). Figure 8 summarizes the optimal menu

of evaluation contracts in such a case.

Notice that the downward jump in score sensitivities gets smaller. The intuition is that it is easier

to differentiate the surgeons, and so the drop in sensitivities need not be as drastic. The optimal W ∗

drops to 0.51 and eliminated efficiency relative to no contracts is 64%, which is high relative to the

base case.

The optimal selection policy for the deviating bad surgeon need not always switch from selection

to no selection at a later score than the good surgeon’s policy. In fact, if the cost of selection for

the bad surgeon is high enough, he may stop selecting risk before the good surgeon. Consider the

following example.

Example 3. Suppose that the bad surgeon’s marginal performance gain is still twice the good

surgeon’s marginal performance gain from selection, and there is again overlap between the surgeons’

technologies. But now the bad surgeon’s cost of selection is high (while the good surgeon’s cost of

selection is low). Then Figure 9 summarizes the optimal good evaluation contract. The optimal W ∗

is 0.58 and eliminated efficiency relative to no contracts is a low 21.8%, so introducing contracts is

relatively less helpful than the base case.

If we now remove the overlap from Example 3 and leave the cost of selection for the bad surgeon

high enough relative to the good surgeon, it turns out that the bad surgeon’s optimal selection

policy may actually become flat. At all scores W , the bad surgeon chooses not to engage in selection

behavior. See Example 4.

Example 4. We return to the base case of Example 1 but increase kG so that now kB = 1.1kG.

Figure 10 summarizes the optimal menu of evaluation contracts. Since the effectiveness of selection

for the good surgeon is higher, effectively he is able to separate himself more easily. The optimal W ∗

is 0.61 and eliminated inefficiency is 45% relative to no contracts.

8 Possibility of Improvement through Mentorship

Before concluding, we show how our methods can be used to consider a related question. Given that

we have applied the Revelation Principle, our optimal mechanism takes the form of two separating
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contracts, one of which will be chosen by the good surgeon in equilibrium and the other of which will

be chosen by the bad surgeon in equilibrium. In our setup, because we not allow for improvement,

once a surgeon has identified himself as bad, the optimal contract is constructed in order to minimize

his harm.

In practice, however, it is likely that improvement is possible. In particular, if a bad surgeon

performs some volume of surgeries in a mentored setting, i.e. with additional guidance and oversight,

it is conceivable that he can improve to a good type. We observe that it is common for physicians

to undergo a mentored training program (e.g. a fellowship) after which their quality is believed to

improve. Suppose this is the case.

Let’s consider the existence of a mentorship program with the following characteristics:

• If the bad surgeon is under mentorship, a patient who visits the bad surgeon receives a higher

payoff if the bad surgeon does not engage in selection behavior than if he does engage in

selection behavior, i.e. h(0, B) > h(1, B).

• A surgeon can only go through the mentorship program once.

• A surgeon must complete the entire mentorship program in order to be eligible to practice

surgery in the future. After completing the mentorship program, the surgeon is assigned to the

good contract.

• If the mentorship program is of length at least T ∗ > 0, so the bad surgeon has a minimum

level of mentored experience, then the bad surgeon improves to a good surgeon so long as he

invests effort, which is unobservable. Let K be the cumulative cost of effort to the surgeon.18

We show that such a program is optimal. More specifically, an optimal contract for the bad surgeon

is a fixed-length mentorship program in which (a) the surgeon’s outcomes are ignored and (b) the

bad surgeon in equilibrium chooses to exert costly effort to become a good surgeon.

Lemma 4. Suppose h(0, B) > h(1, B). Then the optimal contract CB is as follows: for all W ,

Λ(W ) = h(0, B)W , a(W ) = 0 and Y (W ) = 0.

Proof. This follows directly from looking at the optimization problem (C-BAD) when h(a,B) is

decreasing in a and we ignore the good surgeon’s self-selection constraint. To maximize patient
18We assume that the surgeon either invests full effort and expends the whole cost K, or invests no effort and expends

0.
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Figure 6: Optimal initial scores when improvement is possible through a training program

welfare for a given payoff WB
0 to the bad surgeon, we want him never to engage in selection behavior,

which we can achieve for free (without introducing value-destroying volatility to provide incentives).

For any given starting value W0, this contract has a straightforward description. In each period,

the surgeon’s score Wt declines by a deterministic amount, independent of his signal:

dWt = r(Wt − g(at, B))dt.

Therefore, at the end of a fixed period of time – which we denote as T (W0) and we observe is

increasing in W0 – the score hits 0 and the contract ends. So an optimal contract with starting

value W0 can be interpreted as a mentorship program of length T (W0). For W0 ∈ (0, 1), T (0) = 0 <

T (W0) < T (1) =∞.

Because the only change has been to the patient welfare function when the surgeon is bad,

construction of the optimal contract for the good type remains the same. To determine the optimal

menu of contracts, the principal chooses an initial score W0(G) for the good contract and a length

T (W0(B)) for the bad contract to maximize expected unconditional patient welfare. Formally, his
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optimization problem becomes

max
W0(G),W0(B)

pΠ(W0(G)) + (1− p)(Λ(W0(B)) + e−rT (W0(B))Π(W0(G)))

s.t. W0(B) + e−rT (W0(B))(Π(W0(G))−K) ≥W0(G),

Π(W0(G))−K ≥W0(G) and T (W0(B)) ≥ T ∗

where the first constraint is the bad surgeon’s self-selection constraint, the second constraint verifies

that it is rational for the bad surgeon to expend K to become a good surgeon, and the third

constraint ensures that the mentorship program is sufficiently long to be effective. Notice that we

are still bounded away from full efficiency under the good contract. Furthermore, since T (1) = ∞,

optimally the mentorship program is of finite length.

The self-selection constraint will be binding (else, we could just increase W0(G) and achieve higher

patient welfare). So we essentially maximize over only W0(G), which will imply W0(B) through the

self-selection constraint. Meanwhile, the second and third constraints will restrict W0(G) to an

interior subinterval of [0, 1].19 On the one hand, we want W̃0 to be small so that the bad surgeon

becomes good quickly. On the other hand, we want W̃0 to be big so that the good contract can

offer a high payoff to the good surgeon (without attracting the bad surgeon). See Figure 6 for an

illustration.

Notice that if h(0, B) > 0, then it is sequentially rational for the principal to follow through with

the bad contract even when he knows the surgeon is bad.

9 Discussion

In Dranove et al. (2003), the authors hint at the possibility of improved report card design, claiming

“report cards could be constructive if designed in a way to minimize the incentives and opportunities

for provider selection.” This paper takes a step in that direction. Our motivating belief is that

performance reporting in healthcare will always be subject to information asymmetries that enable

gaming. Hence, in this paper we characterize optimal contracts for evaluating experts whose types

are heterogeneous but who can take private actions to manipulate performance. Such contracts
19We assume that K and T ∗ are not too high so that this subinterval has positive measure.
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maximize patient welfare while minimizing welfare-harming gaming incentives.

We apply the Revelation Principle and focus on menus of separating contracts. An optimal

contract takes the form of a scoring rule. The contract for the bad type is simple, implementing a

fixed action so long as the surgeon has not achieved tenure by performing exceptionally well or had

his license revoked by performing poorly. The contract for the good type is the more interesting

one, since its design must take into consideration the incentives of both the good surgeon and

the bad surgeon who deviates. The form of this contract makes intuitive sense. If the surgeon’s

performance has been exceptionally high, he achieves tenure and is no longer subject to scoring. If

his performance has been exceptionally low, his license is revoked. In between, the score varies with

performance. In particular, the score sensitivity decreases in past performance: when a surgeon’s

past performance has been better, the score sensitivity he faces is lower. Furthermore, there are two

distinct scoring regions: first, a region of high score sensitivity in which the good surgeon optimally

engages in selection behavior, and secondly, a region of low score sensitivity in which the good surgeon

optimally avoids selection behavior.

Our analysis reveals two features of provider selection that have not been highlighted in the

literature. First, a certain amount of gaming by providers may be inevitable. Even when the good

surgeon makes decisions completely in the interests of patients, in our optimal contract he typically

engages in selection behavior. Secondly, risk selection may in fact be welfare-enhancing. For one

thing, risk selection enables good surgeons to separate themselves from bad surgeons who are trying

to look like good types, thereby benefiting future patients. Moreover, patients may be better off

when bad surgeons avoid working on difficult cases.

Finally, we note that this issue of performance reporting in healthcare is closely related to the

issue of pay-for-performance, which considers tying payment to performance, i.e. contracting upon

outcome-contingent transfers. Such contracts may be a fruitful extension of this paper’s techniques.

To conclude, we stress that the use of performance measures to identify the quality of experts is

essential. Difficult to avoid, however, is the information asymmetry that enables experts to “game”

the system, particularly in healthcare and in education where market-determined prices are absent.

Such gaming is not always harmful, however, and the real question is a matter of balancing the

appropriate tradeoffs.
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Figure 7: Example 1 (rσ2 = 0.5, ζ = 0.4, µG ∈ {0.8, 1.0}, µB ∈ {0.5, 0.9}, h(·, B) ∈ {−0.4, 0.4})
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Figure 8: Example 2 (rσ2 = 0.5, ζ = 0.4, µG ∈ {0.8, 1.0}, µB ∈ {0.1, 0.5}, h(·, B) ∈ {−0.4, 0.4})
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Figure 9: Example 3 (rσ2 = 0.5, ζG = 0.1, ζB = 0.8, µG ∈ {0.8, 1.0}, µB ∈ {0.5, 0.9}, h(·, B) ∈
{−0.4, 0.4})
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Figure 10: Example 4 (rσ2 = 0.5, ζG = 0.4, ζB = 0.4, µG ∈ {0.8, 1.15}, µB ∈ {0.5, 0.9}, h(·, B) ∈
{−0.4, 0.4})
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A Appendix

A.1 Optimal Contract for the Bad Surgeon

In this section we simplify notation and let g(a) = g(a,B), ζ = ζB, and λ = λB.

A.1.1 Proof of Lemma 2

We prove the two results in Lemma 2 separately. Let Λ(W ) be a solution to the HJB equation and
its boundary conditions (HJB-BAD).

Lemma 5. Λ(W ) is strictly concave for all W ∈ [0, 1].

Proof. First, we prove that either Λ(W ) is concave for all W ∈ [0, 1], convex for all W ∈ [0, 1], or a
straight line for all W ∈ [0, 1]. We do so by showing that if Λ′′(W ) = 0 at any point W , then Λ(W )
must be a straight line. Suppose Λ′′(W ) = 0 at Ŵ . Then Λ(W ) = Λ(Ŵ ) + Λ′(Ŵ )(W − Ŵ ) for all
W since

Λ′′(W ) = min
Y

Λ(Ŵ ) + Λ′(Ŵ )(W − Ŵ )− h(a(Y ), B)− Λ′(Ŵ )(W − g(a(Y )))
rσ2Y 2/2

is constant for all W .
At W = 0, it is either the case that a(0) = 1 or a(0) = 0. Suppose a(0) = 1. Then

Λ′′(0) =
−1 + Λ′(0)λ
rσ2(Y (0))2/2

Since the denominator is always positive, the sign of Λ′′(0) is determined by the numerator. In order
for Λ′′(0) > 0, it must be that Λ′(0) > 1

λ . However, this implies that Λ(W ) will reach a point (x, y)
such that x > λ and y > 1, which is not feasible. For Λ′′(0) = 0, then Λ′(W ) = 1

λ for all W , and the
boundary condition Λ(1) = h(0, B) does not hold generically. So if a(0) = 1, then Λ must be strictly
concave for all W .

Now suppose a(0) = 0. Then

Λ′′(0) =
−h(0, B) + Λ′(0)
rσ2(Y (0))2/2

For Λ′′(0) > 0, it must be that Λ′(0) > h(0, B). However, this will violate the boundary condition
Λ(1) = h(0, B). For Λ′′(0) = 0, then Λ′(0) = h(0, B), which is consistent with the boundary
conditions, but given that Λ′′(0) < 0 for a(0) = 1, it follows that a(0) = 0 is not a minimizer on the
right hand side of the HJB equation. Therefore a(0) = 1 and Λ is strictly concave for all W .

Lemma 6. Λ(W ) is unique.

Proof. Consider equation (HJB-BAD) with initial conditions Λ(0) = 0 and Λ′(0) = Λ0. Since the
RHS of the equation is continuous and differentiable in WB,Λ(WB) and Λ′(WB) for WB ∈ [0, 1],
it follows that solutions exist, are unique, and are continuous in Λ0. Recall from Lemma 5 that for
Λ0 >

1
λ , the solution to the HJB equation is convex and the boundary condition Λ(1) = h(0, B) does

not hold because the solution will hit the boundary at W = 1 at too high of a point. It must be
that Λ0 <

1
λ . Since Λ is concave, if Λ0 < h(0, B), then Λ(1) = h(0, B) also cannot hold because the

solution will hit the boundary at W = 1 at too low of a point. Since the solution is continuous in
Λ0, there must exist some Λ0 ∈ (h(0, B), 1

λ) such that Λ(1) = h(0, B).
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A.1.2 Proof of Proposition 2

Proof. (Proposition 2) Suppose a(W ) = 0 for some W ∈ [0, 1). Then Lemma 5 tells us that Λ′′(W ) <
0 so the tangent line at W passes above the point (1, h(0, B)). If the tangent line passes above the
point (1, h(0, B)), then the HJB equation for a(W ) = 0, i.e.

Λ′′(W ) =
Λ(W )− h(0, B)− Λ′(W )(W − 1)

rσ2(Y (W ))2/2

implies that Λ′′(W ) > 0 (since the numerator is positive), which is a contradiction. To maximize
patient welfare, we want to choose the minimum sensitivity that enforces the optimal action. Hence
Y (W ) = ζB

kB
for all W ∈ [0, 1).

A.1.3 Proof of Proposition 1

Lemma 5 tells us that the solution to the HJB equation is concave. Proposition 2 tells us that we
can restrict attention to the following HJB equation from (HJB-BAD):

Λ′′(W ) =
Λ(W )− 1− Λ′(W )(W − λ)

rσ2( ζ
kB

)2/2

with boundary conditions Λ(0) = 0 and Λ(1) = h(0, B).
First, we show how to construct contracts from a given solution to the HJB equation. We follow the

proof of Proposition 3 from Sannikov (2007b) almost identically. We continue to let g(a) = g(a,B),
ζ = ζB, and λ = λB.

Lemma 7. Consider a solution Λ of equation (HJB-BAD). Let a : [0, 1]→ A and Y : [0, 1]→ [0,∞)
be the minimizers in (HJB-BAD). For any initial condition W0 ∈ (0, 1) there is a unique weak (in
the sense of probability law weak) solution to the equation

dWt = r(Wt − g(a(Wt)))dt+ rY (Wt)(dXt − µ(a(Wt), B)dt) (A.1)

that specifies {Wt}. The contract CB = (τB,A) with A = {aBt } gives the bad surgeon continuation
value Wt at any time t, and is defined by aBt = a(Wt) and τB being the first time that Wt hits either
0 or 1. CB is incentive-compatible and implies an expected payoff of W0 to the bad surgeon and an
expected patient welfare (conditional on θ = B) of Λ(W0).

Proof. From Proposition 2, we know that a(Wt) = 1 for all Wt ∈ [0, 1). Theorem 5.5.15 from
Karatzas and Shreve (1991) tells us that there is a unique, weak (in the sense of probability law
weak) solution to (A.1) because the drift and volatility of Wt are bounded on [0, 1], and the volatility
is rσ ζ

kB
> 0 (notice that dWt = r(Wt − λ)dt+ rσ ζ

kB
dZAt ).

We now show that Wt = Wt(A), where Wt(A) is the surgeon’s true continuation value from the
contract (τB,A). From the representation (4.1), we can write

d(Wt(A)−Wt) = r(Wt(A)−Wt)dt+ r(Yt − Y (Wt))σdZAt =⇒

Et[Wt+s(A)−Wt+s] = ers(Wt(A)−Wt).

Since Et[Wt+s(A) − Wt+s] must remain bounded because both Wt and Wt(A) are bounded, we
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conclude that Wt = Wt(A) for all t ≥ 0. In particular, the surgeon gets W0 = W0(A) from the entire
contract. Note that the contract is incentive compatible because we require a(Wt) = a(Y (Wt)).

To see that patient welfare is Λ(W0), consider

Kt = r

∫ t

0
e−rsh(1, B)ds+ e−rtΛ(Wt).

By Ito’s lemma, the drift of Kt is

re−rt
(

(h(1, B)− Λ(Wt)) + Λ′(Wt)(Wt − λ) + rσ2(
ζ

kB
)2 Λ′′(Wt)

2

)
.

By the HJB equation, the value of this expression is always 0. Therefore, Kt is a bounded martingale,
so E[Kt] = K0 for all t ≥ 0. Since K0 = Λ(W0), we conclude that expected patient welfare is
Λ(W0).

Now we show that any incentive compatible contract that gives the bad surgeon a payoff of W
achieves patient welfare at most Λ(W ). So Λ(W ) is the upper bound on patient welfare.

Lemma 8. Consider a solution Λ of equation (HJB-BAD). Any incentive-compatible contract C =
{τ,A} achieves patient welfare at most Λ(W0(A)).

Proof. Given an incentive-compatible contract C = {τ,A}, denote the surgeon’s continuation value
by Wt = Wt(A) (as in (4.1)). Define

Kt = r

∫ t

0
e−rsh(at, B)ds+ e−rtΛ(Wt)

where {at} = A. By Ito’s Lemma, the drift of Kt is

re−rt
(

(h(at, B)− Λ(Wt)) + Λ′(Wt)(Wt − g(at)) + rσ2(Yt)2 Λ′′(Wt)
2

)
.

We just need to show that the drift is non-positive. Consider at = 1 and at = 0.
Suppose at = 1. Then Yt ≥ ζ

kB
. Since Λ′′(W ) ≤ 0, it follows from (HJB-BAD) that the drift of

Kt is non-positive. Now suppose at = 0. Then, the drift of Kt is

re−rt
(

1− Λ(Wt) + Λ′(Wt)(Wt − Λ) + rσ2(Yt)2 Λ′′(Wt)
2

)
which is strictly negative.

Lemma 9. For any t, when the continuation value to the bad surgeon is Wt, the continuation expected
patient welfare is Λ(Wt). In other words, the optimal contract stays on the curve Λ.

Proof. A short argument verifies that the continuation value for patient welfare always stays on
the curve Λ. The key idea, as we have argued in Section 4.1, is that in an optimal contract the
agent’s continuation value completely summarizes the past history. Therefore, after any history,
the principal’s payoff is maximized if and only if the continuation contract is optimal given the
continuation value.
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Consider the optimal contract. Suppose that for some continuation value Wt for the bad surgeon,
the continuation value for patient welfare is Λ̂ 6= Λ(Wt). If Λ̂ > Λ(Wt), then Lemma 8 is violated
because we have a contract, namely the continuation contract at Wt, which achieves a higher patient
welfare than Λ(Wt). Now suppose Λ̂ < Λ(Wt). Then we can simply replace the continuation
contract at Wt with the optimal contract that achieves Λ(Wt) and strictly improve patient welfare,
thus violating the optimality of the original contract. Incentive compatibility is maintained because
we have substituted a continuation contract with the same continuation value to the bad surgeon.

A.2 Optimal Contract for the Good Surgeon

Although the proofs in this section are inspired by the techniques developed in Sannikov (2007b),
they require novel applications of continuous-time techniques due to the presence of adverse selection.
Because incentives of two types of agents, i.e. an agent and a deviating agent, are being considered,
the sensitivity Y appears not only in the denominator but in the numerator as well. As a result, the
sensitivity that minimizes the HJB equation for a given action is not always the minimum sensitivity
that enforces that action.

A.2.1 Incentive Compatibility

Lemma 10. For a given pair of strategies AG and AB for the bad and good type surgeon, let {Y G
t }

and {Y B
t } be associated processes in the representation WG

t (AG) and WB
t (AB). A pair of strategies

(aG, aB) is optimal if and only if

aG ∈ arg max
a

g(a,G) + Y Gµ(a,G) and (A.2)

aB ∈ arg max
a

g(a,B) + Y Bµ(a,B) (A.3)

Proof. The proofs for both the good surgeon’s optimal strategy AG and the bad surgeon’s optimal
strategy AB are essentially identical to the proof of Proposition 2 in Sannikov (2007b), and we do
not repeat the analysis here.

A.2.2 Proof of Lemma 3

Lemma 11. The RHS of the HJB equation (HJB-GOOD) is continuous and differentiable in Y .

Proof. First, consider the case that Π′(WB) > ζGkB

ζBkG
. For 0 < Y < ζG

Π′(WB)kG
, we have aG(Y ) = 0

and aB(Y ) = 0, and the RHS is continuous. When Y = ζG

Π′(WB)kG
, the good type is indifferent

between aG(Y ) = 1 and aG(Y ) = 0 while the bad type chooses aB(Y ) = 0. Since the denominator of
the RHS doesn’t depend on aG(Y ), we only need to compare the numerators when aG(Y ) = 0 and
aG(Y ) = 1, respectively:

Π(WB)− g(0, G)−Π′(WB)(WB − g(0, B) + Y (µ(0, G)− µ(1, B)) and
Π(WB)− g(1, G)−Π′(WB)(WB − g(0, B) + Y (µ(1, G)− µ(1, B)).
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Subtracting the second from the first yields −ζG + ζG

kG
kG = 0. For ζG

Π′(WB)kG
< Y < ζB

kB
, we have

aG(Y ) = 1 and aB(Y ) = 0. At Y = ζB

kB
, the bad type is indifferent between aB(Y ) = 0 and

aB(Y ) = 1. Again, comparing numerators we have

Π(WB)− g(1, G)−Π′(WB)(WB − g(0, B) + Y (µ(0, G)− µ(0, B)) and
Π(WB)− g(1, G)−Π′(WB)(WB − g(1, B) + Y (µ(0, G)− µ(1, B)).

Subtracting the second from the first yields Π′(WB)ζB −Π′(WB) ζ
B

kB
kB = 0. So we have our result.

Lemma 12. Given initial conditions Π(0) = 0 and Π′(0) = Π0, there exists a solution to (HJB-
GOOD) that is unique and continuous in Π0. Moreover, initial conditions with Π′′(0) < 0 result in
a concave solution.

Proof. Consider the HJB equation (HJB-GOOD) with initial conditions Π(0) = 0 and Π′(0) =
Π0. Since the RHS is continuous and differentiable in all its arguments over all Y , it is Lipschitz
continuous. It also satisfies linear growth conditions. Therefore, solutions exist, are unique and are
continuous in Π0.

Suppose Π(W ) is concave at some point. Then Π′′(W ) < 0 for all W ∈ [0, 1]. The reason
is that if Π′′(W ) = 0 at any point, say Ŵ , it follows that Π(W ) must be a straight line, i.e.
Π(W ) = Π(Ŵ ) + Π′(Ŵ )(W − Ŵ ) for all W since

minY
Π(Ŵ )+Π′(Ŵ )(W−Ŵ )−g(aG(Y ),G)−Π′(Ŵ )(W−g(aB(Y ),B)+Y (µ(aG(Y ),G)−µ(aB(Y ),B)))

rσ2Y 2/2

takes the same value for all W . A corollary is that if Π′′(W ) > 0 at any point, then Π′′(W ) > 0 for
all W .

Lemma 13. There exists a unique solution Π(W ) to the HJB function that satisfies the boundary
conditions Π(0) = 0 and Π(1) = 1. Moreover, Π(W ) is strictly increasing and strictly concave for
all W ≥ 0.

Proof. Suppose a solution exists. First we show it is unique. Consider two solutions Π and Π̄ of
the HJB equation where Π satisfies Π(0) = 0 and Π′(0) = Π0 ≥ 1 and Π̄ satisfies Π̄(0) = 0 and
Π̄′(0) = Π1 > Π0. We claim that Π̄′(W ) > Π′(W ) for all W > 0, which implies Π̄(W ) > Π(W ) for
all W > 0 (and thus the solution that satisfies both boundary conditions must be unique).

Suppose it is not true that Π̄′(W ) > Π′(W ) for all W > 0. Let Ŵ be the smallest W such that
Π̄′(W ) = Π′(W ). Then Π̄′(W ) > Π′(W ) for all 0 < W < Ŵ and it must be that Π̄(Ŵ ) > Π(Ŵ ).
Look at the HJB equation at Ŵ for both Π̄ and Π. Let Y be the minimizer in the HJB equation
for Π̄ at that point. Since the derivatives are the same for both functions at this point, the optimal
aG(Y ) and aB(Y ) are the same, and the only differences in the two equations is Π(Ŵ ) versus Π̄(Ŵ ).
It follows then that Π̂′′(Ŵ ) > Π′′(Ŵ ), which is inconsistent. So the claim must be true.

Next, we show that the solution exists. From Lemma 12, which tells us that solutions are unique
and continuous in Π0, there exists a Π0 > 1 such that the unique solution to the HJB equation with
initial conditions Π(0) = 0 and Π′(0) = Π0 satisfies Π(1) = 1. The reason is that as we increase Π0

from 1, the corresponding solutions strictly dominate each other in the sense that ΠA(W ) > ΠB(W )
for all W > 0 if ΠA(W ) is the solution for the HJB equation with a higher initial condition Π0
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than that for ΠB(W ). So there must exist a unique Π0 such that the corresponding solution exactly
satisfies the boundary conditions.

Now we show the solution Π is strictly concave for all W > 0. Let Π̂ be the solution to the HJB
equation with initial conditions Π(0) = 0 and Π′(0) = 1. Π̂ is strictly concave. Looking at the HJB
equation (HJB-GOOD), observe that for Y = min{ ζ

G

kG
, ζ

B

kB
}, we have aG(Y ) = 0 and aB(Y ) = 0,

which imply the RHS is at most −(µ(0,G)−µ(0,B))
rσ2Y 2/2

< 0. Therefore Π̂′′(0) < 0 and by Lemma 12 Π(W )
is strictly concave for all W > 0. Now suppose the solution Π is not concave. Then it must be
convex (it cannot be a straight line). But a convex solution must pass below Π̂ and this contradicts
our first claim that Π̄′(W ) > Π′(W ) for all W > 0. Therefore, Π must be strictly concave.

Finally, since Π(W ) is strictly concave, Π(0) = 0, Π(1) = 1 and Π(W ) ≤ 1 for all W , it follows
that Π must always be strictly increasing.

A.2.3 Proof of Proposition 3

Lemma 14. Consider a solution Π of equation (HJB-GOOD). Let aG : [0, 1] → A, aB : [0, 1] → A
and Y : [0, 1] → [0,∞) be the minimizers in (HJB-GOOD). For any initial condition W0 ∈ (0, 1),
there exists a unique weak (in the sense of probability law weak) solution to the equation

dWt = r(Wt − g(aB(Wt), B) + Y (Wt)(µ(aG(Wt), G)− µ(aB(Wt), B)))dt+ rY (Wt)σdZGt (A.4)

that specifies {Wt}. The contract CG = {τG,AG,AB} with AG = {aGt } and AB = {aBt } gives
the deviating bad surgeon continuation value Wt at any time t, and is defined by aGt = aG(Wt),
aBt = aB(Wt), and τG being the first time that Wt hits either 0 or 1. CG is incentive-compatible
and implies an expected payoff of W0 to the bad surgeon and an expected payoff of Π(W0) to the good
surgeon.

Proof. Theorem 5.5.15. of Karatzas and Shreve (1991) tells us that there is a unique weak solution of
(A.4) (in the sense of probability law) if the drift and volatility of Wt are bounded, and the volatility
is strictly positive. We just need to show that Y (Wt) > 0 and is finite. Suppose Y (Wt) = 0. Then
aG(Wt) = 0 and aB(Wt) = 0, and the right hand side of the HJB equation (HJB-GOOD) would have
Π(W )− 1−Π′(W )(W − 1) as the numerator. But notice that Π′(W ) > 1−Π(W )

1−W for all W since Π is
strictly concave. Therefore the numerator is positive, implying Π′′(W ) > 0, which is a contradiction.
So Y (Wt) > 0. Next we show that Y (Wt) is bounded from above. Suppose Y (Wt) is large enough
so that aG(Wt) = 1 and aB(Wt) = 1, and the numerator on the RHS of (HJB-GOOD) becomes
Π(Wt)− λG−Π′(Wt)(Wt− λB)−Π′(Wt)Y (Wt)(µ(1, G)− µ(1, B)). Is it ever the case that the RHS
is strictly decreasing in Yt so that the minimizing choice Y (Wt) is unbounded? This is only the case
if Π′′(W ) > 0, which is again a contradiction.

Clearly CG is incentive compatible since we require it in the solution to the HJB equation. To
show that Wt = Wt(AB) and that CG implies an expected payoff of W0 to the bad surgeon and an
expected payoff of Π(W0) to the good surgeon, we follow identical steps to the second half of the
proof of Lemma 7 and do not repeat the analysis here.

Lemma 15. Consider a solution Π of equation (HJB-GOOD). Any incentive-compatible contract
C = {τ,AG,AB} achieves expected discounted patient welfare at most Π(W0(AB)).

Proof. Given an incentive-compatible contract C = {τ,AG,AB}, denote the bad surgeon’s continu-
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ation value by Wt = Wt(AB) (as in (5.2)). Let AB = {aBt } and AG = {aGt }. Define

Kt = r

∫ t

0
e−rsg(aGt , G)ds+ e−rtΠ(Wt).

By Ito’s Lemma, the drift of Kt is

re−rt
(
g(aGt , G)−Π(Wt) + Π′(Wt)(Wt − g(aBt , B) + Yt(µ(aGt , G)− µ(aBt , B))) +

Π′′(Wt)
2

rσ2Y 2
t

)
.

We just need to show that the drift is non-positive. By definition of the HJB equation, however, the
drift must be non-positive because

Π(Wt) ≥ g(aGt , G) + Π′(Wt)(Wt − g(aBt , B) + Yt(µ(aGt , G)− µ(aBt , B))) +
Π′′(Wt)

2
rσ2Y 2

t

for all Yt and corresponding incentive-compatible pairs (aGt , a
B
t ).

It follows that Kt is a bounded supermartingale until the stopping time, and hence the expected
patient welfare a time 0 is less than or equal to EA

G
[Kt] ≤ K0 = Π(W0).

The final step is to show that the continuation value of the good surgeon (i.e. expected patient
welfare) stays on the curve Π(Wt) for any time t almost everywhere when the bad surgeon’s continu-
ation value is Wt. To do so, we use an “escape argument” along the lines of those made in Sannikov
(2007c) and Faingold and Sannikov (2007).

Lemma 16. Consider a solution Π of equation (HJB-GOOD). Consider the corresponding contract
constructed according to Lemma 14 with initial condition WB

0 . At any time t, the continuation value
of the good surgeon is equal to Π(WB

t ) (i.e. stays on the curve Π).

Proof. Suppose the claim is not true and that in the optimal contract the continuation value of
the good surgeon follows a process Πt such that Πt > Π(WB

t ) for some t. From the Martingale
Representation Theorem we know there exists a process {γt} such that Πt satisfies

dΠt = r(Πt − g(aGt , G))dt+ rσγtdZ
AG
t .

Let Lt = Πt −Π(Wt). The drift of Lt can be written as rLt + d(aGt , a
B
t ,Wt) where d(aGt , a

B
t ,Wt)

is equal to

r(Π(Wt)− g(aGt , G))− rΠ′(Wt)(Wt − g(aBt , B) + Y (Wt)(µ(aGt , G)− µ(aBt , B)))− Π′′(Wt)
2 r2σ2(Y (Wt))2

and the volatility v(γt,Wt) is equal to

rσ(γt −Π′(Wt)Y (Wt)).

Incentive compatibility requires that

aGt ∈ arg max
a

g(a,G) + γtµ(a,G) (A.5)

We want to show that if Lt̂ > 0 for some t̂, then Lt grows arbitrarily large with positive probability,
which then leads to a contradiction since both Πt and Π(WB

t ) are bounded processes. To do so,
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proving the following claim is sufficient: For every ε > 0, there exists a δ > 0 such that for all t ≥ 0
either (a) the drift of Lt is greater than rLt − ε or (b) the absolute value of the volatility of Lt is
greater than δ.

Suppose Et > 0 for some t. There exists constants c1, c2 > 0 such that |rσγt − rσΠ′(Wt)Yt| > c2

for all |γt| > c1 since Π′(W )Y (Wt) is bounded (Π′(W ) is bounded by initial condition Π′(0) = Π0

and we have argued in the proof of Lemma 14 that Y (Wt) is bounded).
Fix some ε > 0. Consider the set Φ of tuples (aG, aB,W, γ) ∈ A×A× [0, 1]×R with |γ| ≤ c1 such

that aG, aB are incentive compatible and d(aG, aB,W ) ≤ −ε. Since d is a continuous function and
Φ is a closed subset of the compact set {(aG, aB,W, γ) ∈ A × A × [0, 1] × R : |γ| ≤ c1}, it follows
that Φ is compact.

Notice that |v(γt,Wt)| is also continuous. Hence it achieves its minimum η on Φ. We claim η > 0.
Suppose η = 0. Then we argue that d(aG, aB,Wt) = 0, which would contradict our definition of the
set Φ. When the volatility of Lt is exactly 0, then γt = Π′(Wt)Y (Wt) and therefore

aGt ∈ arg max
a

g(a,G) + Π′(Wt)Y (Wt)µ(a,G)

i.e. aGt = aG(Wt) and therefore d(aG, aB,Wt) = 0. So η > 0 and |v(γt,Wt)| ≥ η on Π. Then it
follows that for all (aG, aB,W, γ) ∈ A×A× [0, 1]×R that satisfy incentive compatibility constraints
(A.5), either d(aG, aB,Wt) > −ε or |v(γt,Wt)| ≥ min{c, η} > 0. So we have proven the claim and
we have our contradiction.

An identical argument leading to a contradiction holds if Πt < Π(Wt) for some t.

A.3 Properties of the Good Surgeon’s Contract

A.3.1 Proof of Proposition 4

To prove the first part of the proposition, for the good surgeon’s optimal action policy, proving the
following lemma is sufficient.

Lemma 17. If aG(W ) = 0 for some W , then aG(W ′) = 0 for all W ′ > W .

Proof. Consider some point W at which aG(W ) = 0. Let Y = Y (W ) be the sensitivity in the optimal
solution at point W , which enforces aG(Y ) = 0 and aB(Y ) = a ∈ A = {0, 1}. It follows from the
HJB equation that for all Y ′ such that Y ′ enforces aG(Y ′) = 1 (and hence Y ′ > Y ), we have

Π(W )− 1−Π′(W )(W − g(a,B) + Y (µ(0, G)− µ(a,B))
rσ2Y 2/2

≤ Π(W )− λG −Π′(W )(W − g(aB(Y ′), B) + Y ′(µ(1, G)− µ(aB(Y ′), B))
rσ2(Y ′)2/2

. (A.6)

We want to show that for any W ′ > W , it is strictly better to use Y (which must also enforce
aG(Y ) = 0 at W ′ since Π′(W ′) < Π′(W )) than any Y ′ that enforces aG(Y ′) = 1. Note that if Y ′

enforces aG(Y ′) = 1 at W ′, then it also enforces aG(Y ′) = 1 at W (again since Π′(W ′) < Π′(W )).
Also Y and Y ′ enforce the same aB at each point. So we just need to show that

Π(W ′)− 1−Π′(W ′)(W ′ − g(a,B) + Y (µ(0, G)− µ(a,B))
rσ2Y 2/2
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≤ Π(W ′)− λG −Π′(W ′)(W ′ − g(aB(Y ′), B) + Y ′(µ(1, G)− µ(aB(Y ′), B))
rσ2(Y ′)2/2

. (A.7)

Notice that if the right hand side of (A.7) is positive, the result follows trivially. Therefore we only
need to consider Π(W ) − λG < Π′(W )(W − g(aB(Y ′), B) + Y ′(µ(1, G) − µ(aB(Y ′), B)) (because
otherwise it implies Π(W ′)− λG > Π(W ′)(W ′ − g(aB(Y ′), B) + Y ′(µ(1, G)− µ(aB(Y ′), B)), i.e. the
RHS of (A.7) is positive). So we can rewrite (A.6), which we know to be true, as

Π(W )− 1−Π′(W )(W − g(a,B) + Y (µ(0, G)− µ(a,B))
Π(W )− λG −Π′(W )(W − g(aB(Y ′), B) + Y ′(µ(1, G)− µ(aB(Y ′), B))

≥ Y 2

(Y ′)2
. (A.8)

(A.7) follows if this inequality holds:

Π(W ′)− 1−Π′(W ′)(W ′ − g(a,B) + Y (µ(0, G)− µ(a,B))
Π(W ′)− λG −Π′(W ′)(W ′ − g(aB(Y ′), B) + Y ′(µ(1, G)− µ(aB(Y ′), B))

≥ Π(W )− 1−Π′(W )(W − g(a,B) + Y (µ(0, G)− µ(a,B))
Π(W )− λG −Π′(W )(W − g(aB(Y ′), B) + Y ′(µ(1, G)− µ(aB(Y ′), B))

which we can re-write with positive numerator and denominator:

1−Π(W ′) + Π′(W ′)(W ′ − g(a,B) + Y (µ(0, G)− µ(a,B))
λG −Π(W ′) + Π′(W ′)(W ′ − g(aB(Y ′), B) + Y ′(µ(1, G)− µ(aB(Y ′), B))

≥ 1−Π(W ) + Π′(W )(W − g(a,B) + Y (µ(0, G)− µ(a,B))
λG −Π(W ) + Π′(W )(W − g(aB(Y ′), B) + Y ′(µ(1, G)− µ(aB(Y ′), B))

Let w(Y ) = g(a,B)− Y (µ(0, G)− µ(a,B)) and w(Y ′) = g(aB(Y ′), B)− Y ′(µ(1, G)− µ(aB(Y ′), B)).
We can interpret that equation in the following figure:

1

λ

Π(W)

W W'

Tangent at W

Tangent at W'

Ww(Y)w(Y')

The fraction at W ′ is the ratio between the dark red line and the dark blue line. Meanwhile, the
fraction at W is the ratio between the light red line and the light blue line. Since the slope of the
tangent line at W ′ is smaller than the slope of the tangent line at W , the ratio is smaller at W ′. So
we are done.
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To prove the remaining claims in Proposition 4, we introduce some notation. Define Y ∗(aB, aG)
as the unconstrained value of Y for which the RHS of the HJB equation reaches its extremum given
an action pair (aB, aG) ∈ {0, 1}× {0, 1}. Writing out the FOC and setting it equal to 0, we get that
the extremum is reached at

Y ∗(aB, aG) = 2
Π(W )− g(aG, G)−Π′(W )(W − g(aB, B))

Π′(W )(µ(aG, G)− µ(aB, B))
.

Y = 0 is also a possibility but there the RHS of the HJB equation is undefined (i.e. it blows up). If
µ(aG, G) > µ(aB, B), the RHS of the HJB equation is increasing in Y so long as

Y > 0 and Y > Y ∗(aB, aG), or Y < 0 and Y < Y ∗(aB, aG)

Thus, when Y ∗(aB, aG) > 0, the minimum of the RHS of the HJB equation is reached at Y ∗(aB, aG).
Otherwise, the function asymptotes to −∞ as Y approaches 0 (so the minimizing Y is the smallest
Y ).

When µ(aG, G) < µ(aB, B) (which is only possible at (1, 0) when there is overlap, i.e. ∆µ0 =
µ(0, G)− µ(0, B) < kB), the RHS of the HJB equation is increasing in Y when

0 < Y < Y ∗(aB, aG), or 0 > Y > Y ∗(aB, aG)

Thus, when Y ∗(aB, aG) > 0, the function asymptotes to −∞ as Y approaches 0 (so the minimizing
Y is the smallest Y ). When Y ∗(aB, aG) < 0, the minimum of the RHS is reached at Y ∗(aB, aG) and
the minimizing Y is the biggest feasible Y .

We can rewrite Y ∗(aB, aG) as follows:

Y ∗(aB, aG) = 2
Π(W )−1−Π′(W )(W−1)

Π′(W ) + aG ζG

Π′(W ) − a
BζB

(∆µ0 − aBkB + aGkG)
.

Notice that as W → 1, the term on top Π(W )−1−Π′(W )(W−1)
Π′(W ) → 0. Furthermore, as W → 1, Π′(W ) <

1.
The following table summarizes the minimizing values of Y for each action pair (aB, aG). First,

suppose there is no overlap, so ∆µ0 > kB:

(aB, aG) Feasible, so Y ∗(aB, aG) Infeasible, but Y ∗(aB, aG) > 0 Y ∗(aB, aG) < 0

(0, 0) 0 ≤ Y ∗(0, 0) ≤ ζB

kB
, ζG

Π′(W )kG
min{ ζ

B

kB
, ζG

Π′(W )kG
} N/A

(1, 0) ζB

kB
≤ Y ∗(1, 0) ≤ ζG

Π′(W )kG
ζB

kB
or ζG

Π′(W )kG
ζB

kB

(0, 1) ζG

Π′(W )kG
≤ Y ∗(0, 1) ≤ ζB

kB
ζB

kB
or ζG

Π′(W )kG
N/A

(1, 1) ζB

kB
, ζG

Π′(W )kG
≤ Y ∗(1, 1) max{ ζ

B

kB
, ζG

Π′(W )kG
} max{ ζ

B

kB
, ζG

Π′(W )kG
}

Now suppose there is overlap, so ∆µ0 < kB:

(aB, aG) IfY ∗(aB, aG) > 0 IfY ∗(aB, aG) < 0

(1, 0) ζB

kB
ζG

Π′(W )kG

Lemma 18. There exists an ε ∈ (0, 1] such that for all W ∈ [1− ε, 1], an optimal action strategy is
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aG(W ) = 0 and aB(W ) = 0, i.e. the good surgeon and the deviating bad surgeon both do not screen
patients.

Proof. Suppose W is close to 1. Let’s compare the feasible minimum achieved by the RHS of the
HJB equation for the action pair (0, 0) and the feasible minimum achieved by the RHS of the HJB
equation for the action pair (1, 1). We know that Y ∗(0, 0) > 0 and Y ∗(0, 0) is feasible for all W close
to 1. Suppose Y ∗(1, 1) > 0 so that Y ∗(1, 1) defines a minimum. Let’s compare (0, 0) and (1, 1) at
Y = Y ∗(1, 1). The RHS of the HJB equation for (1, 1) is

Π(W )− 1−Π′(W )(W − 1) + ζG −Π′(W )ζB −Π′(W )Y (∆µ0 − kB + kG)
rσ2Y 2/2

and the RHS of the HJB equation for (0, 0) is

Π(W )− 1−Π′(W )(W − 1)−Π′(W )Y∆µ0

rσ2Y 2/2

So long as ζG−Π′(W )ζB+Π′(W )Y (kB−kG) > 0, then the term for (0, 0) is smaller. That condition
is equivalent to

Y >
ζB − ζG

Π′(W )

kB − kG

But notice that Y ∗(1, 1)→ 2
−ζB+ ζG

Π′(W )

∆µ0−kB+kG
as W → 1 so that Y ∗(1, 1) > 0 implies that ζG

Π′(W ) > ζB. So
the condition holds, and (0, 0) achieves a lower value.

Now suppose Y ∗(1, 1) < 0 so that the minimizing Y is max{ ζ
B

kB
, ζG

Π′(W )kG
}. If ζG

Π′(W )kG
> ζB

kB
,

then Y = ζG

Π′(W )kG
>

ζB− ζG

Π′(W )

kB−kG and again (0, 0) achieves a lower value than (1, 1). However, if
ζG

Π′(W )kG
< ζB

kB
, then the minimum is achieved for (1, 1) at ζB

kB
. Notice that in this case, (1, 1) at

Y = ζB

kB
achieves the same value as (0, 1), so the minimum value of the RHS of the HJB equation

for (0, 1) is at least as small as the RHS of the HJB equation for (1, 1). Therefore, we need only
compare (0, 1) and (0, 0) when ζG

Π′(W )kG
< ζB

kB
.

Suppose ζG

Π′(W )kG
< ζB

kB
for W close to 1. We want to show that the feasible minimum achieved by

the RHS of the HJB equation for the action pair (0, 1) is always higher than the feasible minimum
achieved by the action pair (0, 0). Notice that for W close to 1, it must be that Y ∗(0, 0) is feasible.
What about Y ∗(0, 1)? We know that 0 < Y ∗(0, 1) < ζG

Π′(W )kG
for W close to 1. We show that the

RHS of the HJB equation reaches a lower value for Y ∗(0, 0) at (0, 0) than at Y ∗(0, 1) at (0, 1), and
therefore it follows that (0, 0) is preferred. Directly plugging in terms, we get

−(Π′(W )∆µ0)2

2rσ2(Π(W )− 1−Π′(W )(W − 1))
< 0

Doing the same for Y ∗(0, 1), the RHS of the HJB equation for (0, 1) becomes

−(Π′(W )(∆µ0 + kG))2

2rσ2(Π(W )− 1−Π′(W )(W − 1) + ζG)
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Comparing the two, we find the following is a necessary and sufficient condition for (0, 0) being
smaller:

−(Π′(W )∆µ0)2

2rσ2(Π(W )− 1−Π′(W )(W − 1))
<

−(Π′(W )(∆µ0 + kG))2

2rσ2(Π(W )− 1−Π′(W )(W − 1) + ζG)

−(∆µ0)2

(Π(W )− 1−Π′(W )(W − 1))
<

−(∆µ0 + kG)2

(Π(W )− 1−Π′(W )(W − 1) + ζG)

−(∆µ0)2

ε
<
−(∆µ0 + kG)2

(ε+ ζG)

ζG(∆µ0)2 > εkG(2∆µ0 + kG)

where ε = Π(W )− 1−Π′(W )(W − 1)→ 0 as W → 1. Thus for values of W close to 1, (0, 0) attains
a lower value for the HJB equation than (0, 1).

Finally we show that (0, 0) is preferred to (1, 0). Notice that as W approaches 1, Y ∗(1, 0) ap-
proaches ζB

kB−∆µ0
. If there is overlap, so that ∆µ0 < kB, then Y ∗(1, 0) > 0 and the minimizing Y

is ζB

kB
. On the other hand, if there is no overlap, then Y ∗(1, 0) < 0 and the minimizing Y is again

ζB

kB
. Since the RHS of the HJB equation takes the same value for (1, 0) and (0, 0) when Y = ζB

kB
, it

follows that the feasible minimum for (0, 0) is weakly lower than that for (1, 0).
Therefore, it is always the case that for W close enough to 1, it is optimal to have aG(W ) = 0

and aB(W ) = 0.

Let WH denote the interval such that aG(W ) = 0 if W ∈ WH . Let WL denote the interval such
that aG(W ) = 1 if W ∈ WL. Note that WH = [0, 1]\WL.

Lemma 19. If aB(W ) = 1 for some W ∈ WL, then aB(W ′) = 1 for all W ′ < W .

Proof. Suppose aB(W ) = 1 for some W ∈ WL. We show that aB(W ′) = 1 for all W ′ < W . For
aB(W ) = 1, there must exist a Y ′ ≥ ζB

kB
such that

Π(W )− λG −Π′(W )(W − λB + Y ′∆µ1)
Π(W )− λG −Π′(W )(W − 1 + Y (∆µ1 + kB))

≥
(
Y ′

Y

)2

. (A.9)

for all Y < ζB

kB
where ∆µ1 = µ(1, G)−µ(1, B).20 Notice that Y ′ still enforces aG(W ′) = 1 forW ′ < W .

Also notice that for all Y < ζB

kB
, 1 − Y (∆µ1 + kB) > λB − Y ′∆µ1. Suppose W − λB + Y ′∆µ1 < 0.

Then, in order for Π′′(W ) < 0 it is necessary that Π(W ) < λG. We can see from the following picture
that the ratio on the LHS of (A.9) increases for any W ′ < W . Let w(Y ) = 1 − Y (∆µ1 + kB) and
w(Y ′) = λB − Y ′∆µ1.

20As in the proof of Lemma 17, if the denominator is positive, we are done.
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1

λ
Π(W)

WW'

w(Y')

W

w(Y)

Tangent at W

Tangent at W'

The thin blue line represents the numerator at W and the thin red line represents the denominator
at W . The thick blue line represents the numerator at W ′, and the thick red line represents the
denominator at W ′. Notice that concavity implies that the ratio between the blue line and the red
line increases as W moves to W ′.

Now suppose W − λB + Y ′∆µ1 > 0. Then the numerator in the fraction (which is negative)
decreases by (Π′(W ′)−Π′(W ))(W − λB + Y ′∆µ1) > 0, which is greater than the amount by which
the denominator (which is also negative) decreases, i.e. (Π′(W ′)−Π′(W ))(W − 1 +Y (∆µ1 + kB)).21

Therefore the ratio must increase, so aB(W ′) = 1.

Lemma 20. aB(W ) is a weakly decreasing step function in W ∈ [0, 1].

Proof. Consider W ∈ WH . We claim that if Y ∗(0, 0) is feasible, then aB(W ) = 0 is optimal. Suppose
Y ∗(0, 0) is feasible. First consider when there is overlap so ∆µ0 < kB. In this case, if Y ∗(1, 0) > 0,
then the minimum is achieved at ζB

kB
and so (0, 0) is weakly preferred. If Y ∗(1, 0) < 0, then the

minimum is achieved at ζG

Π′(W )kG
, where (1, 0) takes the same value as (1, 1). Since (1, 1) is not

optimal, (1, 0) cannot be.
Now consider when there is no overlap so ∆µ0 > kB. In this case if Y ∗(1, 0) < 0, then the

minimum for (1, 0) is reached at ζB

kB
, at which point the same value is implemented as (0, 0) at that

value of Y . Hence, (0, 0) is weakly preferred. If Y ∗(1, 0) > 0 on the other hand, then Y ∗(1, 0)
implements a global minimum. Let’s compare (1, 0) and (0, 0) both at Y ∗(1, 0). The term for (0, 0)
is smaller if and only if 0 < Π′(W )(Y kB − ζB), i.e. Y > ζB

kB
, which is true whenever Y ∗(1, 0) is

feasible. If Y ∗(1, 0) is too small, then the minimizing Y is ζB

kB
, which implies that (0, 0) leads to a

lower value. So we have proven our claim.
Notice that Y ∗(0, 0) is decreasing in W so that if Y ∗(0, 0) is feasible at some W , then it is feasible

for all W ′ > W . Therefore, if (0, 0) holds for some W ∈ WH , then (0, 0) is optimal for all W ′ > W .
So we know Y (W ) is a step function overWH and overWL. We just need to make sure now that

aB(W ) doesn’t jump from 0 to 1 right when aG(W ) jumps from 1 to 0. In order for that to happen,
the jump must occur exactly when ζG

Π′(W )kG
= ζB

kB
, i.e. Π′(W ) = ζG

ζB
kB

kG
> ζG

ζB
. So as W increases

towards this jump from the left (i.e. Π′(W ) decreases towards ζG

ζB
kB

kG
), (0, 1) must be optimal. And

21Note that if the denominator is ever positive, the claim holds trivially.
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as W decreases towards this jump from the right (i.e. Π′(W ) increases towards ζG

ζB
kB

kG
), (1, 0) must

be optimal.
Suppose that is the case. For (0, 1) to be optimal, Y ∗(0, 1) must be feasible because otherwise

we would just replace (0, 1) with (0, 0) or (1, 0) and get the same value. But notice that Y ∗(0, 1) is
continuous in W . As Π′(W ) decreases towards ζG

ζB
kB

kG
, it must be that Y ∗(0, 1) is converging towards

ζB

kB
, which is not true. Hence, we must not have that discontinuous jump.

Lemma 21. The function Y G(W ) = Π′(W )Y (W ) is a strictly decreasing function.

Proof. As W goes from 0 to 1, there are two possibilities for the path of action pairs (aB, aG) that
we have characterized. First, the path may go from (1, 1) to (1, 0) to (0, 0), or just from (1, 0) to
(0, 0). If the path begins at (1, 1), then Y ∗(1, 1) is the minimizing choice of Y , so that Π′(W )Y (W ) =
Π(W )−1−Π′(W )(W−1)+ζG−Π′(W )ζB

∆µ0−kB+kG
and hence Π′(W )Y (W ) > ζG

kG
and Π′(W )Y (W ) > Π′(W ) ζ

B

kB
. As W

increases, (1, 0) becomes optimal and for Y ∗(1, 0) to be the minimizing Y , then ζG

kG
> Π′(W )Y (W ) >

Π′(W ) ζ
B

kB
. Finally, as W approaches 1 and (0, 0) is optimal, then ζG

kG
> Π′(W ) ζ

B

kB
> Π′(W )Y (W ).

Hence it follows that Y (W ) is decreasing.
The other possible path of action pairs is from (1, 1) to (0, 1) to (0, 0), or just from (0, 1) to (0, 0).

If the path begins at (1, 1), then Y ∗(1, 1) is the minimizing choice of Y , so that Π′(W )Y (W ) >
Π′(W ) ζ

B

kB
> ζG

kG
. As W increases, (0, 1) becomes optimal and thus Π′(W ) ζ

B

kB
> Π′(W )Y (W ) > ζG

kG
.

Finally, as W approaches 1 and (0, 0) is optimal, then Π′(W )Y (W ) < ζG

kG
and Π′(W )Y (W ) <

Π′(W ) ζ
B

kB
. Hence it follows again that Y (W ) is decreasing.

Lemma 22. There is generically a discontinuous jump downward in Y (W ) when aG(W ) goes from
1 to 0.

Proof. The jump occurs either as the optimal pair of actions goes from (1, 1) to (1, 0) or from (0, 1) to
(0, 0). Let’s consider the former first. In order for (1, 0) to be possible, it must be that ζG

Π′(W )kG
> ζB

kB
.

Furthermore, it must be that when (1, 0), Y ∗(1, 0) < ζG

Π′(W )kG
or else (1, 1) would achieve a weakly

lower value. However, the minimizing Y for (1, 1) must be at least as large as ζG

Π′(W )kG
. So this

implies that for there to be no jump Y ∗(1, 0) = Y ∗(1, 1) = ζG

Π′(W )kG
, which does not hold generically.

Now consider (0, 1) to (0, 0). In order for (0, 0) to be the case, Y ∗(0, 0) must be feasible. For
(0, 1), we need ζB

kB
> ζG

Π′(W )kG
. So Y ∗(0, 0) ≤ ζG

Π′(W )kG
. In order for there not to be a jump, we need

Y ∗(0, 0) = Y ∗(0, 1) = ζG

Π′(W )kG
, which does not hold generically.

A.4 Proof of Lemma 1

To prove Lemma 1, we need to consider more general contracts of the form C = {D,AG,AB} where
D = {Dt}t≥0, AG = {aGt }t≥0 and AB = {aBt }t≥0 (of course, we require feasibility so Dt ∈ [0, 1],
aGt , a

B
t ∈ A for all t ≥ 0). So rather than a stopping time τ such that Dt = 1 for all t < τ and Dt = 0

for all t ≥ τ , contracts can now specify Dt anywhere between 0 and 1 at all times.
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First, consider the contract for the bad type. The principal’s amended optimization problem is
the following: given some ŴB ∈ [0, 1],

max
Dt,{aBt }

E

[
r

∫ ∞
0

e−rtDth(aBt , B)dt | θ = B

]
s.t. (A.10)

E

[
r

∫ ∞
0

e−rtDtg(aBt , B)dt | θ = B

]
≥ ŴB (A.11)

where {aBt } is incentive compatible, aBt ∈ A, and Dt ∈ [0, 1].
Next, consider the contract for the good type. The principal’s amended optimization problem is

the following: given some ŴB ∈ [0, 1],

max
Dt,{aGt },{aBt }

E

[
r

∫ ∞
0

e−rtDtg(aGt , G)dt | θ = G

]
s.t. (A.12)

E

[
r

∫ ∞
0

e−rtDtg(aBt , B)dt | θ = B

]
≤ ŴB (A.13)

where {aGt }, {aBt } are incentive compatible, aGt , a
B
t ∈ A and Dt ∈ [0, 1].

Just as before, we conjecture that an optimal contract for each type is characterized by the
solution to the relevant HJB equation. By following the methods of this paper directly, we can verify
our conjecture and prove uniqueness and concavity of the solution (for the sake of space, we do not
repeat the analysis here).

For the bad type, we denote patient welfare by F (W ) and find that the HJB equation is as follows:

F ′′(W ) = min
D,Y

F (W )−Dh(a(D,Y ), B)− F ′(W )(W −Dg(a(D,Y ), B))
rσ2IDt>0Y 2/2

s.t. F (0) = 0 and F (1) = h(0, B), (A.14)

where a(D,Y ) = 0 only if Y
D ≤

ζB

kB
and a(D,Y ) = 1 only if Y

D ≥
ζB

kB
. Let D(W ), Y (W ) and

a(W ) = a(D(W ), Y (W )) be the minimizers on the right hand side of the HJB equation. This
unique and concave solution to the HJB equation corresponds to the following contract, which we
can verify is optimal. The contract uses Wt as a state variable and sets Dt = D(Wt), Yt = Y (Wt)
and at = a(Wt) for all Wt. Wt is initialized at some W0 and solves

dWt = r(Wt −Dtg(at, B))dt+ rYtIDt>0σdZt.

For the good type, we denote patient welfare by G(WB) and can write the HJB equation as

G′′(WB) = minD,Y
G(WB)−Dg(aG(D,Y ),G)−G′(WB)(WB−Dg(aB(D,Y ),B)+Y (µ(aG(D,Y ),G)−µ(aB(D,Y ),B)))

rσ2IDt>0Y 2/2

s.t. G(0) = 0 and G(1) = 1, (A.15)
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where aG(D,Y ) = 0 only if Y
D ≤

ζG

G′(WB)kG
and aG(D,Y ) = 1 only if Y

D ≥
ζG

G′(WB)kG
, while

aB(D,Y ) = 0 only if Y
D ≤ ζB

kB
and aB(D,Y ) = 1 only if Y

D ≥ ζB

kB
. Let D(WB), Y (WB),

aG(WB) = aG(D(WB), Y (WB)), and aB(WB) = aB(D(WB), Y (WB)) be the minimizers in the
HJB equation. This unique and concave solution to the HJB equation corresponds to the follow-
ing contract, which we can verify is optimal. The contract uses WB

t as a state variable and sets
Dt = D(WB

t ), Yt = Y (WB
t ), aGt = aG(WB

t ), and aBt = aB(WB
t ). WB

t is initialized at some initial
value WB

0 and solves

dWB
t = r(WB

t −Dtg(aBt , B) + IDt>0Y
B
t (µ(aGt , G)− µ(aBt , B)))dt+ rY B

t IDt>0σdZ
AG
t .

Lemma 23. In an optimal contract, a principal chooses Dt ∈ {0, 1}.

Proof. We can prove the result for the bad contract from first principles without using the HJB
representation. Suppose CB is an optimal contract for the bad type that specifies demand Dt ∈ (0, 1).
Formally, the contract specifies an Xt-measurable demand process D = {Dt} and an Xt-measurable
incentive-compatible advice of actions A = {at} for the bad surgeon. Following Proposition 1 of
Sannikov (2007b), we know that we can represent patient welfare Ft(D,A) in this contract as a
diffusion process: there exists an Xt-measurable process Y = {Yt} such that

dFt(D,A) = r(Ft(D,A)−Dth(at, B))dt+ rYtσdZ
A
t .

Recognizing that we can similarly represent the bad surgeon’s value as a diffusion process, we apply
Proposition 2 of Sannikov (2007b) to observe that, for an action at to be incentive compatible, it
must satisfy:

at ∈ arg max
a′∈A

Dtg(a′, B) + Ytµ(a′, B).

So at = 0 only if Yt
Dt
≤ ζB

kB
, and at = 1 otherwise.

Now, we define a feasible and incentive compatible contract ĈB such that ât = at for all t and
D̂t = 1 whenever Dt > 0 and D̂t = 0 whenever Dt = 0. We guarantee incentive compatibility by
defining the sensitivity process so that at remains optimal: whenever Dt > 0, Ŷt = Yt

Dt
, and whenever

Dt = 0, Ŷt = Yt. It now suffices to show that in order for CB to be optimal, it must be that Dt = 1
whenever Dt > 0.

Define the time-t expectation of aggregate patient welfare by

V̂t = r

∫ t

0
e−rsD̂sh(as, B)ds+ e−rtFt(D,A)

if the principal has followed contract ĈB until time t and then plans to follow contract CB after time
t. The drift of the process under the probability measure PA is

dV̂t = re−rtD̂th(at, B)dt− re−rtDth(at, B)dt+ re−rtσYtdZ
A
t

=⇒ dV̂t = re−rt(D̂t −Dt)h(at, B)dt+ re−rtσYtdZ
A
t

If D̂t > Dt on a set of positive measure, then the drift of V̂ is positive on a set of positive measure.
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Thus, there exists a time t > 0 such that

EA[V̂t] > V̂0 = F0(D,A)

which contradicts the contract CB being optimal. Therefore, if CB is optimal, D̂t = Dt for all t and
thus Dt ∈ {0, 1}.

Now consider an optimal contract CG for the good type. Recall that Dt = D(Wt) where D(Wt) is
the minimizer on the right hand side of the HJB equation. The HJB equation is linear in D though,
so clearly the minimizing value is either D = 0 or D = 1. Therefore Dt ∈ {0, 1}.

Lemma 24. In an optimal contract, if Dt = 0 for some t ≥ 0, then Dt′ = 0 for all t′ ≥ t, i.e. there
is only license revocation, not license suspension.

Proof. First, consider the contract for the bad type. The HJB equation (A.14) can be written

F (W ) = max
a,D,Y

Dh(a,B) + F ′(W )(W −Dg(a,B)) +
F ′′(W )

2
rσ2ID>0Y

2.

If D = 0 for any W > 0, then F (W ) = maxa,Y F ′(W )W = F ′(W )W and F (W ) is a straight line.
On the other hand, If D = 1 for that W > 0, then F (W ) = maxa,Y h(a,B) +F ′(W )(W − g(a,B)) +
F ′′(W )

2 rσ2Y 2. We know that there exists a concave solution F that satisfies the relevant boundary
conditions. This is strictly preferred to the straight line solution which arises if D = 0 for any W > 0.
Thus, it cannot be that Dt = 0 for any t unless Wt = 0 (i.e. the license has been revoked).

A similar argument holds for the good type contract. The HJB equation A.15 can be written

G(WB) = max
aG,aB ,D,Y

Dg(aG, G) +G′(WB)(WB −Dg(aB, B) + ID>0Y (µ(aG, G)− µ(aB, B)))

+
G′′(WB)

2
rσ2ID>0Y

2.

Again, notice that if D = 0 for any W > 0, then G(W ) = G′(W )W and G is a straight line. Since
we know there exists a concave solution that satisfies the boundary conditions, it cannot be that a
straight line is optimal. So it cannot be that Dt = 0 for any t unless Wt = 0 (i.e. the license has
already been revoked).
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