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Abstract
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1 Introduction

The recent financial crisis has extended the view among regulators that maturity mismatch

in the financial system prior to the crisis was excessive and not properly addressed by the

existing regulatory framework (see, for example, Tarullo, 2009). When the first losses on

the subprime positions arrived in early 2007, investment banks, hedge funds and many

commercial banks were heavily exposed to refinancing risk in wholesale debt markets. This

risk was a key lever in generating, amplifying, and spreading the consequences of the collapse

of money markets during the crisis (Brunnermeier, 2009; Gorton, 2009).

We develop a simple infinite horizon model in which banks finance long-term assets by

placing non-tradable debt among unsophisticated savers subject to preference shocks.1 Short

maturities are attractive to these savers because they buy bank debt when they are patient

but may suffer shocks that turn them impatient, in which case postponing the recovery of the

principal until their debt matures is a source of disutility, like in Bryant (1980) and Diamond

and Dybvig (1983). With this sole force in action, banks in our model would minimize the

cost of their funding by issuing debt of the shortest possible maturity, that would be rolled

over by successive generations of initially patient savers.

However, a second force pushes in the opposite direction: the existence of episodes (sys-

temic crises) in which all savers turn impatient and banks have to temporarily rely on the

more expensive funding provided by some sophisticated investors who have their own out-

side investment opportunities. The heterogeneity in the outside investment opportunities of

these bridge financiers produces an upward slopping aggregate supply of funds during crises,

so that the excess cost of liquidity in a crisis increases with banks’ aggregate refinancing

needs.2

Banks decide the overall principal, interest rate and maturity of their debt trading off

the lower interest cost of short maturity debt with the anticipated excess cost of covering

the implied refinancing needs during crises. The resolution of this trade-off leads banks to

choose debt maturities associated with lower refinancing needs (i.e. longer maturities) when

crisis liquidity is anticipated to be more costly. The intersection between bridge financiers’

1By addressing the analysis within an infinite horizon, we state our predictions and normative implications
in terms that, to the effects of a possible calibration or quantitative assessment, should be easier to match
with real world counterparts than in alternative two- or three-period formulations.

2This part of the model plays a role similar to fire-sale pricing in models where levered institutions
accommodate their refinancing needs by selling part of their long-term assets (e.g. Allen and Gale, 1998,
Acharya and Viswanathan, 2011, and Stein, 2011).
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upward sloping supply of funds and banks’ downward sloping demand for liquidity in a crisis

produces a unique equilibrium excess cost of crisis liquidity.

Importantly, the debt maturity chosen by banks in the unregulated competitive equilib-

rium is inefficiently short. The reason for this is the combination of pecuniary externalities

with the financial constraints faced by banks in their maturity transformation activity.3

Specifically, banks must have sufficient equity value so as to be able to refinance their ma-

turing debt during crises.4 This is because, given the non-renegotiable nature of bank debt,

the excess cost of crisis liquidity is absorbed by diluting the existing equity. Hence, effectively,

guaranteeing the access to bridge financing imposes a limit on bank leverage.

When banks make their uncoordinated, competitive capital structure decisions, they ne-

glect the impact of their refinancing needs on the equilibrium excess cost of crisis liquidity,

which tightens the bridge financing constraint of all banks, reduces the total leverage that

the banking industry can sustain, and damages the efficiency of the maturity transforma-

tion process. A regulator can improve the overall surplus extracted from banks’ maturity

transformation activities by inducing banks to develop them with a lower use of the intensive

margin (i.e. choosing longer maturities) and a larger use of the extensive margin (i.e. issuing

more debt). In this sense the unregulated equilibrium is not constrained efficient.5 We show

the possibility of restoring efficiency through the direct regulation of debt maturity or with

a Pigovian tax on banks’ refinancing needs.

When we extend the analysis to allow for private or public liquidity insurance schemes

directed to smoothly spread the excess cost of crisis liquidity across states of the world, the

need for maturity regulation does not vanish. Introducing a fairly-priced private liquidity

insurance arrangement, if at all feasible, can definitely be welfare-increasing but it is comple-

mentary to funding maturity regulation since the basic pecuniary externality that justifies

the latter remains present, though in a new form (acting through the competitive cost of

3Pecuniary externalities are a common source of inefficiency in models with financial constraints (e.g.
Lorenzoni, 2008). The usual emphasis in the existing papers (including the recent contributions of Bianchi
and Mendoza, 2011, and Korinek, 2011) is on their potential to cause excessive fluctuations in credit and
excessive credit.

4We assume that if banks are unable to refinance their debt, they are liquidated. We show that, if the
value recovered in case of liquidation is sufficiently low, banks find it optimal to choose capital structures
compatible with being refinanced during crises.

5We restrict attention to policy interventions involving no subsidization (no net positive use of government
funds) and no greater informational requirements than the unregulated competitive equilibrium. Intuitively,
lengthening debt maturities implies a transfer of wealth from future bridge financiers to banks’ existing
owners, but this transfer increases the overall surplus because it relaxes banks’ bridge financing constraints.
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insuring against crises).

Under a public liquidity insurance arrangement in which the government (e.g. a central

bank acting as a lender of last resort) supplies the funds needed by banks during crises, the

conclusion is similar. In this case, insurance premia and maturity regulation are complemen-

tary tools in attaining the objective of maximizing the surplus generated by banks’ maturity

transformation activities while covering the costs of the arrangement for the government.

The paper is organized as follows. Section 2 places the contribution of the paper in the

context of the existing literature. Section 3 presents the ingredients of the model. Section 4

defines equilibrium and covers the various steps necessary for its characterization. Section 5

examines the social efficiency properties of equilibrium and possible regulatory interventions.

Section 6 extends the analysis to the introduction of private or public liquidity insurance

schemes. Section 7 discusses robustness and several potential extensions of the analysis.

Section 8 concludes. All the proofs are in the appendices.

2 Related literature

Our paper is in the interface of several literature strands. Our work is first related to the

contributions in the dynamic capital structure literature that incorporate debt refinancing

risk. These include Leland and Toft (1996) who, extending the seminal model of Leland

(1994), show that short debt maturities increase the threshold of the firm’s fundamental

value below which costly bankruptcy occurs and suggest that shorter maturities might have

a counterbalancing advantage when shareholders are tempted to undertake risk shifting.6 He

and Xiong (2011a) show the non-trivial connections between liquidity risk and credit risk

that arise when shocks to market liquidity increase the cost of debt refinancing. In a related

structural model, He and Milbradt (2011) further analyze the feedback between credit risk

and the liquidity of the secondary market for corporate debt (modeled as a market with

search frictions). He and Xiong (2011b) show that “dynamic debt runs” may occur when

lenders stop rolling over maturing debt in fear that future lenders do the same (making off

with their repayments and potentially forcing the firm into liquidation) before the debt now

offered to them matures. Cheng and Milbradt (2011) consider a setup in which this type of

dynamic runs have, up to some point, a beneficial effect on an asset substitution problem,

producing an interior value maximizing debt maturity. Finally, in Brunnermeier and Oehmke

6See also Leland (1998).
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(2011), a conflict of interest between long-term and short-term creditors during debt crises

pushes firms to choose debt maturities which are inefficiently short from an individual value

maximization perspective.

Of course, many of the underlying themes have also been analyzed in models with a

simpler time structures. Flannery (1994) emphasizes the disciplinary role of short-term

debt in a corporate finance context, and Calomiris and Kahn (1991), Diamond and Rajan

(2001), and Huberman and Repullo (2010) in a banking context. In Flannery (1986) and

Diamond (1991), short-term debt allows firms with private information to profit from future

rating upgrades, while in Diamond and He (2010) short maturities have a non-trivial impact

on a classical debt overhang problem. The emergence of roll-over risk as the result of a

coordination problem between short-term creditors is also analyzed byMorris and Shin (2004,

2009) and Rochet and Vives (2004), among other. Various papers, including Acharya and

Viswanathan (2011) and Acharya, Gale, and Yorulmazer (2011), study the implications of

roll-over risk for risk-shifting incentives, fire sales, and the collateral value of risky securities.

Our work is also connected to recent papers focused on the normative implications of

externalities associated with banks’ funding decisions. Farhi and Tirole (2011) show that

time-consistent, imperfectly targeted liquidity support to distressed institutions during crises

(e.g. via central bank lending) makes bank leverage decisions strategic complements, pro-

ducing excessive short-term borrowing and social gains from the introduction of a cap on

such borrowing. Perotti and Suarez (2011) compare the performance of price-based versus

quantity-based liquidity regulation alternatives in a reduced-form model where short term

funding enables banks to expand their credit activity but generates negative systemic risk

externalities. Finally, Stein (2011) develops a three-date model in which banks expand their

credit by issuing short-term debt which, if fully safe, offers a money-like convenience yield;

short-term debt is kept safe by incurring in asset sales in bad times but these sales cause

pecuniary externalities that are detrimental to welfare, providing a rationale for limiting

banks’ short-term borrowing.7

3 The model

We consider an infinite horizon economy in which time is discrete t = 0, 1, 2,... The economy

is populated by two wide classes of long-lived risk-neutral agents: savers and experts. Agents

7And the paper postulates the use of monetary policy as a means to achieve this goal.
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of both classes enter the economy in an overlapping generation fashion further described

below. Normally, a sufficiently large measure of savers are born patient, in which case

their per-period discount rate is ρP , although they may randomly and irreversibly become

impatient, in which case their discount rate becomes ρI > ρP . Experts, on the other hand,

always discount the future at rate ρI , but they are the only agents with the skills needed to

extract value from some of the existing investment opportunities and to manage the banks.

The banks posses potentially-perpetual illiquid assets, are owned by the experts who

manage them (the bankers), and obtain external financing by placing non-tradable debt

among initially patient savers (thereby profiting from their lower opportunity cost of the

funds).8 Importantly, banks are exposed to systemic liquidity crises: random events in

which all patient agents become impatient and, as further described below, banks end up

covering their refinancing needs by appealing to experts who provide some costly bridge

financing until the crisis ends.9

3.1 Aggregate shocks

We need to differentiate between periods of normality, st = N, and periods of systemic

liquidity crisis, st = C. For tractability, we assume Pr[st+1 = C | st = N ] = ε and Pr[st+1 =

C | st = C] = 0, so that crises have a constant probability of following any normal period

but last for just one period (so a period is the standard duration of a crisis).

3.2 Agents

In each period t a continuum of new risk-neutral savers and experts enter the economy, each

endowed with a unit of funds. The measure of each class of entrants is large relative to the

refinancing and management needs of banks.

8In Section 7 we justify and discuss the importance of the assumption that bank debt cannot be traded.
9Our results rely on the maintained assumption that, due to unmodeled information and incentive reasons,

banks cannot offer to the savers contracts contingent on idiosyncratic and aggregate preference shocks, or
that give banks the option to postpone debt repayments at will. These features might help the banks
accommodate savers’ preferences for liquidity in normal periods while limiting their refinancing problems
during systemic crises.
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3.2.1 Savers

Except when st = C, a sufficiently large measure of savers are born patient, with a discount

rate ρP .
10 In normal periods, patient savers have a purely idiosyncratic (independent) prob-

ability γ ∈ [0, 1] of turning irreversibly impatient. When st = C, both entering and existing

savers are or become impatient with probability one.

Entering savers decide on whether to invest their endowment in the assets offered by

banks (described below) or to consume it. Savers who opt for the first alternative, may face

similar (re)investment decisions during their lifetime. Savers who decide to consume their

savings become irrelevant from thereon.

We assume that savers learn about their own preferences before learning about the aggre-

gate state of the economy and immediately make consumption plans whose alteration (e.g.

in order to postpone consumption) entails a cost κ per unit of planned consumption.11 The

role of this cost will be explained shortly.

3.2.2 Experts

When the impatient experts enter the economy they have the opportunity of undertaking

some irreversible private investment project with a cost of one and a net present value (dis-

counted at the rate ρI) of z, heterogeneously distributed over the entrants. The distribution

of this parameter has support [0, φ]. The measure of the population of entering experts with

z ≤ φ is described by a differentiable and strictly increasing function F (φ), with F (0) = 0

and F (φ) = F.

On occasions, especially in crisis periods, entering experts have the opportunity of be-

coming active bankers, in the terms specified below. However, we assume that experts’

impatience is always large enough for them not to accumulate any wealth in any form dif-

ferent from their private investments or bank shares, and that each expert can only devote

her expertise to a single venture (private project or bank) at a time.12

10One can interpret ρP as the risk-free return of some alternative short-term asset (e.g. government bonds)
in which savers can invest and disinvest without the mediation of an expert. In this case, patient savers’
“consumption” might correspond to investing such asset until they become impatient, point at which they
would definitely consume.
11Consumption planning may include the search and ordering of the goods to buy as well as arranging the

access to the funds needed to pay for them (e.g. cancelling an automatically renewable term deposit).
12This excludes the possibility that experts who undertook private projects in a previous period retain

dividends or abandom the projects so as to become bankers during systemic crises.
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3.3 The banking sector

The banking sector is initially made up of a measure-one continuum of banks, each with the

same fixed amount of assets. Bank assets remain productive if continuously managed by an

expert or coalition of experts (bankers), in which case they yield a constant cash flow μ > 0

per period. The best use for unproductive banks assets is liquidation, which yields a residual

value of L.

Bankers own 100% of the equity of their banks and decide each bank’s initial funding

structure at some initial normal period (say, t = 0). This initial funding structure is held

fixed in between crises and restored immediately after each crisis.13

3.3.1 Initial funding and normal times refinancing

Each bank’s outside funding consists of a continuum of ex ante equal infinitesimal-size non-

tradable debt contracts issued at par which can be collectively described as a triple (D, r, δ),

where D is the overall principal, r is the per-period interest rate, and δ is the constant

probability with which each infinitesimal contract matures in each period. So debt maturity

is random and has the property that the expected time to maturity of any non-matured

contract is equal to 1/δ. We assume contract maturities to be independent both within

banks and across banks.14 At the level of the bank, this produces essentially the same effect

as having the overall debtD made up of uniform perfectly-staggered fixed-maturity contracts

which are rolled-over (or replaced by identical contracts) as they mature. Overall this debt

will oblige the bank to pay interest equal to rD in each period and to refinance the amount

δD resulting from the fraction of contracts that mature.15

Due to differences in discount rates all the initial holders of (D, r, δ), if issued in a normal

period, will be patient savers. In normal periods, δD will be refinanced by replacing the

maturing contracts with identical contracts placed among new or remaining patient savers.

The bank will thus have a free cash flow of μ − rD that can be paid as a dividend to the

bankers, who will consume it.16

13As discussed in Section 7, our setup is such that this assumption entails no loss of generality from a
dynamic optimization perspective.
14The case of perfectly correlated maturities within a bank (and independent across banks) is as tractable

as our benchmark case but implies that banks are more vulnerable to systemic liquidity crises. All results
are qualitatively identical to the ones reported below, but banks produce less value to their shareholders.
15Debt with random maturity produces trade-offs both for savers and banks very similar to those of (more

realistic) fixed-maturity contracts but makes the analytics of the problem much more tractable.
16For sufficiently impatient bankers and a sufficiently small likelihood of suffering a systemic crisis, paying
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3.3.2 Refinancing during crises

In a systemic crisis, the bank cannot replace its maturing debt with identical debt contracts

because there are no old or newly-born patient savers. The following assumptions help define

the course of events in crisis periods:

1. Savers’ consumption plans are costly to rectify. The frequency of systemic crises is low

enough for savers to plan to consume their entire savings as soon as they learn to be

impatient. Moreover, the rectifying cost κ is larger than the opportunity cost of funds

of the relevant marginal entering expert in a crisis period, z = φ, so that banks prefer

to directly resort to experts for their crisis funding.17

2. Bankers have consumed their dividends. Bankers learn about the state of the economy

after having received and consumed dividends of μ− rD.18

3. Bankruptcy is worth avoiding. If the bank were unable to refinance its maturing debt

δD, management would be discontinued and the bank’s liquidation value L would be

divided among creditors. We assume L to be low enough for bankers to choose initial

funding structures under which bankruptcy can be avoided.19

In these circumstances, banks best alternative in a crisis is to finance the repayment

of their maturing debt δD through some of the entering experts. For instance, experts

can be offered to bridge refinance δD in exchange for an equity stake in the bank.20 If this

arrangement is feasible, the bank operates with lower debt, (1−δ)D, during the crisis period.

And once the crisis is over, the bank finds it optimal to restore the original debt structure

(D, r, δ) by issuing an additional amount δD of such debt.

out and consuming these dividends is optimal for bankers in normal periods. In other words, it does not pay
for bankers to hold precautionary savings (say, remunerated at rate ρP ) so as to refinance their banks when
a crisis comes.
17In other words, banks and savers only learn about the occurrence of a systemic crisis when it is too late

(too costly) for banks to induce the impatient savers with maturing debt to invest in new (better remunerated)
bank debt. This resembles the conditions that justify the well-known sequential service constraint in papers
about deposit runs (Wallace, 1988).
18This assumption simplifies the algebra and could be removed without material qualitative or quantitative

effect on the results. In the numerical examples below, the dividends μ−rD end up being very small relative
to the refinancing needs δD, so their omission would only reduce very marginally the (excess) refinancing
costs suffered in a crisis.
19In Section 7 we explicitly discuss the exact condition under which avoiding bankruptcy is optimal.
20We refer to equity here for concreteness. The form of the securities supporting the bridge financing

arrangement is not relevant: their overall returns must just be enough to attract the marginal bridge financier.
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3.4 The market for bridge financing

When the initial bankers choose debt structures (D, r, δ) compatible with obtaining bridge

financing during crises, the bridge financiers receive some fraction α of each bank’s equity in

each crisis. By virtue of competition, in equilibrium, α will have to be enough to compensate

the marginal entering expert for the opportunity cost of her funds, which we denote by φ.

The heterogeneity in the value of the private investment opportunities of the entering

experts and the size of banks’ aggregate refinancing needs, δD, implies that clearing the

market for bridge financing requires F (φ) = δD. Since F (·) is strictly increasing, we can
equivalently write this condition as φ = F−1(δD) ≡ Φ(δD), where Φ(·) is strictly increasing
and differentiable, with Φ(0) = 0 and Φ(F ) = φ. We will refer to φ as the excess cost of

liquidity during a crisis and to Φ(·) as the inverse supply of liquidity during a crisis.

4 Equilibrium analysis

In this section we stick to the following definition of equilibrium:

Definition 1 Given the exogenous parameters of the model ε, ρP , ρI , γ, μ, and the function

Φ(·), an equilibrium with bridge financing is a tuple (φe, (De, re, δe)) describing an excess

cost of liquidity during a crisis φe and a debt structure for banks (De, re, δe) such that:

1. Patient savers accept the debt contracts involved in (De, re, δe).

2. Among the class of debt structures that allow banks to be refinanced during crises,

(De, re, δe) maximizes the value of each bank to its initial owners.

3. The market for liquidity during crises clears in a way compatible with the refinancing

of all banks, i.e. φe = Φ(δeDe).

In the next subsections we undertake the steps necessary to prove the existence and

uniqueness of this equilibrium, and establish its properties.

4.1 Savers’ required maturity premium

Let us analyze the conditions upon which the debt contracts associated with some debt

structure (D, r, δ) are acceptable to savers during normal times. Recall that debt is issued

at par and consider a debt contract with a principal of one. Since the bank will fully pay

back its maturing debt even in crisis periods, a saver’s valuation of such contract does not
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depend on the aggregate state of the economy per se but on whether the saver is patient

(i = P ) or impatient (i = I). The value of the contract in each of these individual states,

UP and UI , must satisfy the following system of equations:

UP =
1

1 + ρP
{r + δ + (1− δ)[(1− ε)(1− γ)UP + ((1− ε)γ + ε)UI ]},

UI =
1

1 + ρI
[r + δ + (1− δ)UI ] . (1)

The different discount factors multiply the payoffs and continuation values relevant in each

state. The contract pays r with probability one in each next period. Additionally it matures

with probability δ, in which case it pays one. With probability 1 − δ, it does not mature

and then its continuation value is UP and UI depending on the investor’s individual state in

the next period. The terms multiplying this variables in the right hand side of the equations

reflect the probability of being in each state next period.

When banks issue their debt, patient savers are abundant, so the acceptability of the

terms (r, δ) requires

UP (r, δ) =
r + δ

ρI + δ

ρI + δ + (1− δ)[(1− ε)γ + ε]

ρP + δ + (1− δ)[(1− ε)γ + ε]
≥ 1, (2)

which uses the solution for UP arising from (1). Obviously, for any given δ, a bankmaximizing

its owners’ value will offer contracts with the minimal interest rate r that satisfies UP (r, δ) =

1, i.e.,

r(δ) =
ρIρP + δρP + (1− δ)[(1− ε)γ + ε]ρI

ρI + δ + (1− δ)[(1− ε)γ + ε]
. (3)

From here, we can state the following result:

Proposition 1 The minimal interest rates acceptable to patient savers for each maturity

parameter δ is given by r(δ) which is strictly decreasing and convex, with r(0) = ρI
ρP+π
ρI+π

∈
(ρP , ρI) and r(1) = ρP .

This result evidences the value of offering short debt maturities to the savers in our

model. The intuition is quite straightforward. When the expected maturity of the contract,

1/δ, gets lengthened, the saver bears the risk of turning impatient and having to postpone

his consumption for a longer time (until his contract matures). Compensating the cost of

waiting via a larger interest rate generates a maturity premium r(δ) − ρP > 0, which is

increasing in 1/δ. Figure 1 illustrates the behavior of r(δ) under specific parameter values.21

21All figures rely on a baseline parameterization in which one period is one month, Φ(x) = x2, agents’
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Figure 1: Interest rate spread vs. 1/δ

4.2 Banks’ optimal debt structures

From now on, we will take savers’ participation constraint into account by assuming that

the debt structures (D, r, δ) offered by banks always have r = r(δ). This allows us to refer

banks’ debt structures as simply (D, δ). In the equations we will keep writing r rather than

r(δ), except when presentationally convenient.

4.2.1 Value of bank equity in normal times

Let E(D, δ;φ) be the value of a bank’s equity at a normal period immediately after having

paid dividends due to cash flows generated in the prior period. This value satisfies the

following recursive equation:

E(D, δ;φ) =
1

1 + ρI
{(μ− rD) + (1− ε)E(D, δ;φ) +

+ε(1− α)
1

1 + ρI
[μ− (1− δ)rD + δD +E(D, δ;φ)]}. (4)

annualized discount rates are ρP = 2%, ρI = 6%, the annualized yield on bank assets is μ = 4%, the expected
time until the arrival of an idiosyncratic preference shock is 1 year (γ = 1/12), and the expected time between
systemic crises is 10 years (ε = 1/120).
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To explain the equation, recall that bankers’ discount rate is ρI and after all normal periods

bankers receive (and immediately consume) the dividend μ − Dr. With probability 1 − ε,

the next period is a normal period and bankers additionally obtain the continuation value

E(D, δ;φ).22 With probability ε, a systemic crisis arrives and refinancing the bank involves

relinquishing a fraction α of the equity to the bridge financiers.

The factor 1
1+ρI

[μ − (1 − δ)rD + δD + E(D, δ;φ)] accounts for the total value of the

bank’s equity after it gets bridge financed in the crisis period. Such value is expressed in

terms of payoffs received one period ahead: μ − (1 − δ)rD reflects dividends in the period

after the crisis (which are inflated by the fact that the bank’s debt was temporarily reduced

to (1−δ)D), δD reflects the revenue from reissuing the debt that was bridge financed during

the crisis period (which is paid to shareholders as a special dividend), and the last term

reflects that, one period after the crisis, the bank’s original debt structure is fully restored

and its equity value is E(D, δ;φ) again.

We next discuss how α is determined and its implications for the valuation of equity.

Competition between bridge financiers implies that bankers will obtain the funds δD in

exchange for the minimal α that satisfies

α
1

1 + ρI
[μ− (1− δ)rD + δD +E(D, δ;φ)] ≥ (1 + φ)δD. (5)

Since we must have α ≤ 1, the feasibility of bridge financing eventually requires

μ+E(D, δ;φ) ≥ [(1 + ρI)(1 + φ)δ + (1− δ)r − δ]D, (6)

which will be referred as the bridge financing constraint (BF) in the analysis that follows.

Since (5) holds with equality, we can use it to substitute for α in (4). Solving for E(D, δ;φ)

in the resulting expression yields the following Gordon-type formula for equity value:

E(D, δ;φ) =
1

ρI

∙
μ− r(δ)D − ε

1 + ρI + ε
{[(1 + ρI)φ+ ρI ]− r(δ)}δD

¸
. (7)

The interpretation is very intuitive. Equity is valued as a perpetuity with payoffs discounted

at rate ρI :

1. μ is the unlevered cash flow of the bank.

2. r(δ) is the interest rate paid on debt in normal periods.

22Notice that negative cash flows due to maturing debt, δD, are exactly offset by the proceeds from the
issuance of an identical amount of replacing debt.
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3. ε
1+ρI+ε

{[(1 + ρI)φ+ ρI ]− r(δ)} reflects the differential cost of refinancing the amount
of maturing debt δD every time a crisis arrives.

4.2.2 Optimal debt structure problem

Clearly, since initial bankers appropriate D out of what savers pay for the bank’s debt

when issued, optimal debt structures will maximize the total market value of the bank,

V (D, δ;φ) = D +E(D, δ;φ), which using (7) can be expressed as:

V (D, δ;φ) = D +E(D, δ;φ) =
μ

ρI
+

ρI − r(δ)

ρI
D − 1

ρI

ε{[(1 + ρI)φ+ ρI ]− r(δ)}
1 + ρI + ε

δD. (8)

The first term in this expression is the value of the unlevered bank. The second term reflects

the value of financing the bank with debt claims held by savers’ initially more patient than

the bankers (notice that r(δ) < ρI , by Proposition 1). The third term reflects the refinancing

costs during systemic crises.

The bank’s maximization problem is the following:

max
D≥0, δ∈[0,1]

V (D, δ;φ) = D +E(D, δ;φ)

s.t. E(D, δ;φ) ≥ 0 (LL)
μ+E(D, δ;φ)− [(1 + ρI)(1 + φ)δ + (1− δ)r − δ]D ≥ 0 (BF)

(9)

The first constraint imposes the non-negativity of the bank’s equity value in normal periods,

and we will refer to it as bankers’ limited liability constraint (LL).23 The second constraint is

the bridge financing constraint (6), which can be interpreted as the result of bankers’ limited

liability in crisis times (since the equity stake of preexisting bankers can, at most, be fully

diluted by setting α = 1). It can be shown that both constraints impose the same constraint

on D for δ = 0, but (BF) is tighter than (LL) for δ > 0.24 Thus (LL) can be safely ignored.

The following technical assumptions help us prove the existence and uniqueness of the

solution to the bank’s optimization problem:25

Assumption 1 The function Φ is upper bounded by 21+ρP
1+ρI

− 1.

Assumption 2 π < 1−ρI
2

.

Proposition 2 For any given excess cost of liquidity during a crisis φ ≤ 21+ρP
1+ρI

− 1, the
bank’s maximization problem has a unique solution (D∗, δ∗). In the solution:

23Satisfying (LL) implies in particular the non-negativity of bankers dividends, μ− r(δ)D ≥ 0.
24See the proof of Proposition 2 in Appendix A.
25We have checked numerically that the results in Proposition 2 below are also true when these assumptions

do not hold. In any case, these sufficient conditions do not impose tight restrictions on parameters.
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1. The bridge financing constraint is binding, i.e. in each crisis bridge financiers take

100% of the bank’s equity.

2. Optimal debt maturity 1/δ∗ is increasing in φ and the optimal amount of maturing debt

per period δ∗D∗ is decreasing in φ. In fact, if δ∗ ∈ (0, 1), both δ∗ and δ∗D∗ are strictly

decreasing in φ.

The intuition for these results is as follows. First, even if the bank does not get involved

in maturity transformation (δ = 0), its value is increasing in D, making it interested in

choosing the maximum feasible leverage. If maturity transformation generates value, this

tendency remains, so (BF) is necessarily binding at the optimum.26 Second, as the excess

cost of liquidity in a crisis φ increases, the value of maturity transformation diminishes which

implies the choice of a longer expected maturity. The tightening of (BF) forces banks to

reduce the amount of funding δ∗D∗ demanded to bridge financiers during crises.27

Hence our theory on banks’ maturity transformation function has implications in terms

of the classical debt-versus-equity capital structure choice. Each bank must keep enough

equity value in normal times so as to be able to obtain sufficient bridge financing during a

crisis. Figure 2 depicts a bank’s optimal equity to total market value ratio in the normal

state, E/V, as a function of the excess cost of liquidity in a crisis φ. The resulting capital

ratio is tiny for φ = 0 and strictly increasing in φ.28 Under the illustrated parameterization,

the model yields capital ratios in a realistic 4% to 8% range for a wide range of values of φ.29

4.3 The competitive equilibrium

Banks’ optimization problem for any given excess cost of liquidity in a crisis φ embeds savers’

participation constraint so the only condition for equilibrium that remains to be imposed

26The full dilution of the original equity stakes of the bank in each crisis is an implication of the fact that
all crises have the same severity. If we introduce heterogeneity in this dimension, for example, by introducing
random shifts in the inverse supply of liquidity curve Φ(x), the bridge financing constraint might only be
binding (or even not satisfied, inducing bankruptcy) in the most severe crises.
27Although, we have no formal proof regarding total debt D∗, in all our numerical examples D∗ is also

decreasing in φ. Additionally, it is actually possible to prove that δ∗ is independent from the asset return μ
(which acts very much like a scale parameter), while D∗ is increasing in μ.
28Even with φ = 0 banks would need to operate with strictly positive equity because bridge financiers

would yet demand a return ρI > r for the debt financed in a crisis.
29Capital ratios in actual banks may be driven by regulatory constraints. In fact the capital ratios depicted

in Figure 2 are the minimal ones compatible with banks being able to avoid default during a systemic crises.
These might be the relevant regulatory capital ratios imposed on banks in an extended version of the model
in which, perhaps without fully internalizing some social costs of bank failures, bankers wanted to expose
their banks to default during crises (see Appendix B for a rationalization of when they might wish to do so).
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Figure 2: Banks’ optimal capital ratio as a function of φ

is the clearing of the market for bridge financing in crisis periods. The continuity and

monotonicity in φ of the function that describes excess demand in such market guarantees

that there exists a unique excess cost of crisis liquidity φe for which the market clears:

Proposition 3 The equilibrium of the economy (φe, (De, re, δe)) exists and is unique.

The effects on equilibrium outcomes of shifts in the supply of crisis liquidity are summa-

rized in the following proposition:

Proposition 4 If the inverse supply of liquidity during crises Φ(x) shifts upwards, the equi-

librium changes as follows: expected debt maturity 1/δe increases, total refinancing needs

δeDe fall, bank debt yields re increase, and the cost of liquidity during crises φe increases. If

initially δe ∈ (0, 1), all these variations are strict.

The results in Proposition 4 are illustrated, together with other comparative statics

results, in Figure 3, where the inverse supply of crisis liquidity is parameterized as Φa(x) =

ax2. Specifically, in the first column of graphs we plot various equilibrium variables (expected
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Figure 3: Effect of changes in the parameters on the competitive equilibrium

debt maturity, total debt, and excess cost of crisis liquidity) against the parameter a of such

function. The second and third columns of graphs in Figure 3 show the equilibrium effects

of increasing the average time to the arrival of a systemic shock (1/ε) and an idiosyncratic

shock (1/γ), respectively. All these effects are intuitive and quite self-explanatory.

5 Efficiency and regulatory implications

In this section we solve the welfare maximization problem of a (constrained) social planner

who has the ability to directly control or regulate banks’ funding structure decisions subject

to the same constraints that banks face when solving their private value maximization prob-

lems. We find that the unregulated competitive equilibrium features inefficiently short debt

maturities because of the interaction of a pecuniary externality with the constraints faced

by banks in their maturity transformation function. We show the possibility of restoring
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efficiency by directly regulating maturity decisions as well as by means of a Pigovian tax on

banks’ refinancing needs.

5.1 Inefficiency of the unregulated equilibrium

Let us suppose that a social planner can regulate both the amount D and the maturity

parameter δ of banks’ debt. In our economy only existing bankers and becoming bankers

(bridge financiers) appropriate a surplus. So the natural objective function for the social

planner is the present value of such surpluses. Experts who provide bridge financing to

banks in crisis periods obtain the difference between equilibrium excess cost of crisis liquidity

φ = Φ(δD) and the net present value of their alternative investment opportunity z. Hence,

bridge financiers’ surplus in any crisis is:

u(D, δ) =

Z δD

0

(Φ(δD)− Φ(x)) dx = δDΦ(δD)−
Z δD

0

Φ(x)dx.

Evaluated at a normal period, the present value of the surpluses obtained along all future

crises can be written as:

U(D, δ) =
1

ρI

(1 + ρI)ε

1 + ρI + ε
u(D, δ).

Hence, using (8), the objective function of the social planner can be expressed as:

W (D, δ) = V (D, δ;Φ(δD)) + U(D, δ)

=
μ

ρI
+

ρI − r(δ)

ρI
D − 1

ρI

ε(ρI − r(δ))

1 + ρI + ε
δD − 1

ρI

(1 + ρI)ε

1 + ρI + ε

Z δD

0

Φ(x)dx, (10)

which contains four terms: the value of an unlevered bank, the value added by maturity

transformation in the absence of systemic crises, the value lost due to financing the bank

with impatient agents during liquidity crises, and the value lost due to the fact that these

impatient agents are experts that give up the NPV of their own investment projects.

Thus, the social planner’s problem can be written as:30

max
D≥0, δ∈[0,1]

W (D, δ)

s.t. μ+E(D, δ;Φ(δD))—[(1+ρI)(1+Φ(δD))δ + (1—δ)r—δ]D ≥ 0 (BF’)

(11)

This problem differs from banks’ optimization problem (9) in two dimensions. First, the

objective function includes bridge financiers’ surplus. Second, the social planner internalizes

30Recall that the constraint called (LL) in (9) can be ignored because it is implied by the bridge financing
constraint.

18



the effect of banks’ funding decisions on the market-clearing excess cost of crisis liquidity, so

(BF’) contains Φ(Dδ) in the place occupied by φ in individual banks’ (BF) constraint (see

(6)).

The first result in this section looks at the hypothetical situation in which the social

planner were able to regulate δ (or D) without changing some given (perhaps independently

regulated) D (or δ):

Proposition 5 If either the total amount of debt D issued by banks or the expected maturity

1/δ of their debt contracts is exogenously fixed, the competitive equilibrium of the model is

socially efficient.

In other words, moving δ (D) away from the equilibrium value δ
e
(D

e
) that would arise

in the fixed-D (fixed-δ) situation would not produce any net welfare gain. Changing that

sole variable would amount, in the margin, to a pure redistribution of value between bridge

financiers and the initial bankers (e.g. a lower δ would reduce φ but the induced increase in

bankers’ surplus V would be exactly offset by the decline in bridge financiers’ surplus U).31

The result is different if the social planner can influence D and δ simultaneously:

Proposition 6 If the competitive equilibrium features δe ∈ (0, 1) then a social planner can
increase social welfare by choosing a longer expected debt maturity than in the competitive

equilibrium, i.e. some 1/δs > 1/δe.

The root of the discrepancy between the competitive and the socially optimal allocations

is at the way individual banks and the social planner perceive the frontier of the set of

maturity transformation possibilities: banks choose their individually optimal (D, δ) along

the (BF) constraint (where φe is taken as given) whereas the social planner does it along

(BF’) constraint (where φ = Φ(δD)). Each of these constraints and the corresponding

decisions are illustrated in Figure 4.

At the equilibrium allocation (De, δe) both the social planner’s and the initial bankers’

indifference curves are tangent to (BF). Moreover, (BF) and (BF’) intersect at (De, δe) (since

the competitive equilibrium obviously satisfies φe = Φ(δeDe)). However, the social planner’s

indifference curve is not tangent to (BF’) at (De, δe), implying that this allocation does

31If for whatever reasons the social planner gives more weight in the social welfare function to the initial
bankers than to the potential bridge financiers, then, even for fixed D, there might be social gains from
imposing some δ < δ

e
.
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Figure 4: Maturity transformation possibilities from private and social perspectives

not maximize welfare. In the neighborhood of (De, δe), (BF’) allows for a larger increase

in D, by reducing δ, than what seems implied by (BF) (where φ remains constant). It

turns out that maturity transformation can produce a larger surplus with a larger use of

its extensive margin (leverage) and a lower use of its intensive margin (short maturities),

like at (Ds, δs) the figure.32 Figure 5 illustrates how the differences between the equilibrium

and the socially-efficient bank funding structures change with some of the parameters of the

model.

5.2 Restoring efficiency with regulation

In order to achieve the socially efficient debt structure (Ds, δs) as a regulated competitive

equilibrium, the most straightforward intervention in the context of the model would be to

impose an upper limit δs to banks’ maturity decision δ. Given that the inverse of δ is the

expected maturity of a bank’s debt (and our banks’ assets have infinite maturity), such limit

32This finding offers a new perspective for the joint assessment of some of the regulatory proposals emerged
in the aftermath of the recent crisis, which defend reducing both banks’ leverage and their reliance on short-
term funding.
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Figure 5: Competitive equilibrium vs. socially-efficient funding structures

could be interpreted as equivalent to introducing a minimum net stable funding ratio like

the one postulated by Basel III. Anticipating a cost of liquidity in a crisis φs, banks in our

model would find such a requirement binding and would choose to issue the maximum debt

compatible with (BF) given φs and δs, which is Ds.

As shown by Perotti and Suarez (2011), adding unobservable heterogeneity across banks

may undermine the efficiency of one-size-fits-all quantity-based liquidity regulation and al-

ternatives such as Pigovian taxes may be superior.33 With this motivation in perspective

(but without explicitly adding heterogeneity), we next check whether a Pigovian tax on

banks’ refinancing needs might implement (Ds, δs) as a regulated competitive equilibrium.

We consider the following class of non-subsidized Pigovian schemes:

33Specifically, these authors show that if banks unobservably differ in their opportunities to extract value
from maturity transformation, a flat rate Pigovian tax on refinancing needs can induce the marginal inter-
nalization of the relevant externalities while allowing the most efficient banks to operate with larger maturity
mismatches than the less efficient ones.
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1. Each bank pays a proportional tax of rate τ per period on its refinancing needs δD.

2. The social planner pays to each bank a lump-sum transfer M ≤ τδD per period.

Notice that τδD stands for the revenue of the Pigovian tax and M ≤ τδD restricts the

possibility of subsidizing banks via the lump-sum transfer M.We can prove analytically the

following result:

Proposition 7 If the unregulated competitive equilibrium features δe ∈ (0, 1), there exists
a Pigovian tax scheme (τP ,MP ) that induces the socially optimal allocation (Ds, δs). This

scheme satisfies τP > 0 and MP = τP δsDs, and is unique if δs > 0.

The scheme uses some τP > 0 to push banks towards funding decisions involving lower

refinancing needs than in the unregulated competitive equilibrium. Interestingly, in order to

reach the socially efficient allocation, all the revenue raised by the tax τP has to be rebated to

the banks through MP . Values of τ and M which induce δs but involve M < τδPDP would

lower the value of bank equity relative to the situation in which δs is directly regulated, which

would in turn tighten banks’ bridge financing constraint pushing banks towards a leverage

DP strictly lower than Ds.

The need for rebating the revenue from the Pigovian tax is a novel insight relative to

the non-pecuniary externality setup of Perotti and Suarez (2011). The general intuition is

that, when pecuniary externalities cause inefficiency due to their interaction with financial

constraints, regulators must be cautious not to address one of the manifestations of the

inefficiency (excessively short maturities) in a way (non-rebated taxes) that, by tightening

the relevant constraints (here, reducing banks’ equity values) may partly undo the potential

gains from the intervention.

6 Liquidity insurance

In the next two subsections we consider the potential welfare contribution of private and

government-based liquidity insurance arrangements. In both parts we conclude that liquidity

insurance is beneficial but does not eliminate the desirability of debt maturity regulation.

6.1 Private liquidity insurance

The fact that in both the competitive and the regulated allocations banks’ bridge financing

constraints are binding, while the normal times limited liability constraints are not, suggests
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that some form of insurance against systemic liquidity crises might increase welfare. In order

to introduce insurance, we need to relax the assumption that writing contracts contingent

on the realization of systemic crises is unfeasible.34 To keep things tractable, we focus on

simple one-period refinancing insurance arrangements subscribed by individual banks and

newly born experts at the beginning of each period, prior to the realization of uncertainty

regarding the occurrence of a crisis.

Specifically, the arrangements we consider establish that:

1. Except in the period immediately after each crisis, the bank pays a per-period premium

p for each unit of insured refinancing λδD > 0 to a measure λδD of entering experts,

where λ ∈ [0, 1] is the insured fraction of refinancing needs.35

2. If there is a systemic crisis, the insuring experts supply the bank with funds λδD in

the period and receive a gross repayment of [1 + r(δ) + p]λδD in the following period.

Under this arrangement the refinancing of λδD is just as costly as if no crisis had occurred

(r(δ) is the normal times interest rate ). The repayment of pλδD to the insuring experts one

period after a crisis is included in order to offset the impact on the banks’ net income of the

fact that insurance is unneeded (and hence not paid for) immediately after a crisis.

For the sale of insurance to be attractive to an entering expert with funds that can earn

NPV of z in normal periods and max{z, φ} in crisis periods, the insurance premium p must

satisfy

p+ (1− ε)(1 + z) + ε
1 + r + p

1 + ρI
≥ (1− ε)(1 + z) + εmax{1 + z, 1 + φ}. (12)

Competition among entering experts will lead to a situation in which (12) is binding for the

marginal provider of either insurance or bridge financing, who will have z = φ.36 Solving for

p in such equality yields

p =
ε

1 + ρI + ε
{[(1 + ρI)φ+ ρI ]− r(δ)}, (13)

which is identical to the factor (within the large square brackets) that multiplies δD in (7).

34We may interpret the new possibility as associated with the introduction of a macroprudential authority
that officially declares the existence of a systemic crisis.
35Insurance in the period immediately after a crisis is unneeded because, according to our assumptions,

crisis periods are always followed by a normal period.
36Clearing the market for liquidity in a crisis requires φ = Φ(δD) irrespectively of the fraction of δD

covered with insurance.
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On the other hand, the value of equity at the N state of a bank that decides to insure a

fraction λ of its refinancing needs can be written as

E(D, δ, λ;φ) =
1

ρI
{μ− r(δ)D − pλδD − ε

1 + ρI + ε
{[(1 + ρI)φ+ ρI ]− r(δ)}(1− λ)δD},

which is an extended version of (7). Now, using (13) to substitute for p, it becomes clear

that:

E(D, δ, λ;φ) = E(D, δ, 0;φ) = E(D, δ;φ), (14)

which can be interpreted as a Modigliani-Miller type result: moving the fraction λ of (fairly

priced) insured funding simply redistributes some future cash flows among the insurance

takers and the insurers.

Such redistribution is, however, relevant for the bank’s overall optimization problem since

it alters its bridge financing constraint. The bridge financing constraint in the presence of

insurance (BFI) can be written as:

μ+ E(D, δ;φ) ≥ {(1 + ρI)(1 + φ)(1− λ)δ + r[1− (1− λ)δ] + λpδ − (1− λ)δ}D, (BFI)

which differs from (6) in that now only the uninsured fraction 1−λ of the bank’s refinancing
needs have to ex post pay the excess cost φ.

It is easy to check that λ = 1 implies the maximal relaxation of this constraint.37 On the

other hand, by (14), the bank’s limited liability constraint in a normal period does not depend

on λ and thus is identical to (LL) in (6). Therefore, the bank will solve the counterpart of the

value maximization problem in (6) by getting fully insured against systemic crises (λ = 1).

By doing so, its net cash flow becomes μ − rD − pδD and the constraints (BFI) and (LL)

collapse into simply requiring that this cash flow is not negative.

The following proposition describes the positive welfare implications of adding insurance

when funding decisions (i.e. δ) are optimally regulated. It also shows that, with liquidity

insurance, banks in the unregulated economy would opt for inefficiently short debt maturities.

Proposition 8 In a regulated economy, adding a private liquidity insurance scheme strictly

increases welfare. With liquidity insurance, expected debt maturity in the unregulated equi-

librium is too short.
37It suffices to realize that (13) implies (1 + ρI)(1 + φ)− 1− r > p.
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Intuitively, when liquidity insurance is introduced, (LL) becomes banks’ only relevant

constraint, which implies expanding the set of maturity transformation possibilities faced by

both them and a possible regulator. Hence, a social planner can definitely produce more

social welfare with insurance than without insurance. Instead, in the absence of regulation,

the pecuniary externality regarding banks’ debt maturity decisions operates qualitatively in

the same way as before but through the (LL) constraint: bank decisions affect the excess

cost of crisis liquidity φ, which in turn affects the cost of insurance p, and ends up tightening

the constraint μ− rD−pδD ≥ 0.38 So the main policy message from this subsection is that,
if arranging for systemic liquidity insurance is at all feasible, it should be promoted but not

as a substitute but as a complement to funding maturity regulation.

6.2 Public liquidity provision

We now turn to explore a simple reinterpretation of the model under which the marginal

supplier of funds during a crisis is a government-sponsored lender (e.g. a central bank acting

as a lender of last resort) which is constrained to offer its funds on a non-subsidized basis.

Specifically, suppose that the supply of funds from private agents during crises is small,

say zero, but the government is able to obtain alternative funds x with a marginal (excess)

opportunity cost that, to save on notation, we describe with the function Φ(x), which will

play a role analogous to that of our previous inverse supply of crisis liquidity.39

We are going to compare two public liquidity insurance regimes in which the government

commits to cover, on non-subsidized basis, banks’ financing needs during liquidity crises:40

I. Public liquidity insurance only In each period, the government charges an in-

surance premium pδD to each bank with refinancing needs δD and commits to cover these

needs in each crisis period in exchange for a repayment of [1 + r(δ)]δD in the period after

38We are not able to prove that the introduction of insurance increases welfare in the unregulated economy,
but this is actually the case in all the parameterizations that we have explored. The theoretical ambiguity
comes from the fact that, with full insurance, unregulated banks will tend to choose funding structures that
put upward pressure on φe and, in principle, a sufficiently large increase in φe might fully offset the gains
due to the introduction of insurance.
39We refer to Φ(x) as an excess cost because it comes on top of the normal opportunity cost of funds

implied by assuming that the government has the same discount rate ρI as impatient agents. This excess
cost may here reflect the NPV of the deadweight losses due to future distortionary taxes.
40The government might instead commit to supply liquidity during crises at some fixed excess cost bφ.

Numerical simulations show that this alternative policy is dominated by the arrangements that we analyze.
The reason is that, as in the case of private liquidity insurance analyzed above, spreading the excess cost of
crisis liquidity over time expands the set of maturity transformation possibilities.
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the crisis.41

II. Public liquidity insurance cum maturity regulation In addition to the arrange-

ments of the previous regime, the government regulates banks’ maturity decision δ.

As with private insurance, banks’ optimal debt structure decisions maximize the total

market value of the bank, like in (9), but only subject to the limited liability constraint

μ− rD− pδD ≥ 0. The NPV of the revenues and costs that accrue to the government in its
role as an insurer are:

G =
1

ρI

∙
pδD − ε (ρI − r(δ))

1 + ρI + ε
δD − (1 + ρI)ε

1 + ρI + ε

Z δD

0

Φ(x)dx

¸
, (15)

where the last term accounts for the (excess) opportunity cost of the funds lent in a crisis.

Aggregate welfare in this setting can be defined as the sum of the total market value of

the insured banks, V, and the net present value of the government’s stake, G. The resulting

expression for welfare is analogous to the expression for W in (10). We assume that the

government maximizes W, subject to G ≥ 0, i.e. we do not allow for positive NPV transfers
from the government to the bank owners.42

the difference between the two public liquidity insurance regimes described above stems

from the tools through which the government may influence banks’ decisions. In Regime

I, the government can only set p and will do so taking into account the impact of p on

(D, δ) = (D(p), δ(p)). In Regime II, the government can simultaneously set p and δ, taking

into account the impact of both parameters on (D, δ) = (D(p, δ), δ).

Hence, in Regime I, the premium p has to play the dual role of regulating banks’ refi-

nancing needs δD and guaranteeing G ≥ 0. In the second regime, the direct regulation of
δ provides a useful second tool. In fact, when the only tool is p, the welfare maximizing

solution involves G > 0 in all our simulations while, when the two tools are available, it is

possible to prove that the optimum involves G = 0.

Based on the same underlying parameterization as in previous figures, Figure 6 illustrates

the outcomes under each of the two commented regimes. The horizontal axes represent dif-

ferent excess costs of government funds, measured by the factor a of a cost function specified

41Contrarily to the case with (voluntary, one-period) private liquidity insurance, we now assume pδD to
be paid to the government in every period (including periods after a crisis where the probability of suffering
another crisis is zero).
42Imposing G ≥ 0 implies that the government must be able to cover the average opportunity cost of its

funds. This constraint is more flexible than the constraint associated with private liquidity insurance, where
the marginal competitive provider of insurance must break even.
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Figure 6: Optimal policy interventions vs. government cost of funds

as Φ(x) = ax. Panel A represents welfare gains relative to a benchmark scenario without

liquidity insurance in which banks fail if they have refinancing needs during a crisis.43 These

gains decrease as the excess cost of government funds increases and are significantly greater

when maturity regulation is allowed. Quite intuitively, expected debt maturity (depicted

in Panel B) is shorter when it can only be regulated using the premium p than when δ is

controlled by the regulator. Finally, Panel C shows the positive government surplus G > 0

associated with Regime I and the zero surplus G = 0 associated with Regime II.44

As in the case of private liquidity insurance, the results in this subsection deliver the

message that liquidity insurance is not substitute but a complement to maturity regulation.

With or without liquidity insurance, unregulated banks tend to choose equilibrium debt

maturities that are excessively short, in that they imply refinancing costs during crises that

43The liquidation value L in case of default has been calibrated so that it equals 80% of the market value
of the bank. This arbitrary choice only affects the scale of the vertical axis in Panel A. Details about the
case in which banks fail in crises are provided in subsection 7.1 and Appendix B.
44Importantly, the direct regulation of δ is not the only way to implement the outcomes associated with

Regime II. Consistent with the result in Proposition 7, and by the same reasoning, a solution based on the
combination of Pigovian taxes and lump-sum rebates would also work. Intuitively, the Pigovian insurance
scheme would charge a higher insurance premium so as to induce the same maturity decision as the one
directly regulated in Regime II and it would rebate the government surplus to the banks in a periodic
manner so as to compensate the negative effects of the excessive premium on equity values.
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tighten banks’ financial constraints, impeding them to collectively develop their maturity

transformation function in the socially most valuable manner.

7 Discussion and extensions

In this section we comment on the key assumptions and possible extensions of our model.

7.1 Optimality of not defaulting during crises

We have so far assumed that the liquidation value of banks in case of default, L, is small

enough for banks to find it optimal to rely on funding structures that satisfy the (BF)

constraint. How small L has to be (and what happens if it is not) is discussed next.

If a bank were not able to refinance its maturing debt, it would default, and we assume

that this would precipitate its liquidation. For simplicity, we assume that, if the bank

defaults, the liquidation value L is orderly distributed among all debtholders, which excludes

the possibility of preemptive runs à la He and Xiong (2011a). If a bank were expected to

default in a crisis, savers would require r to include a compensation for credit risk.

Based on the derivations provided in Appendix B, Figure 7 depicts for each possible

equilibrium excess cost of crisis liquidity, φe, the maximum liquidation value Lmax(φe) for

which, when all other banks opt for bridge financing, an individual bank also prefers to

rely on bridge financing. The variation of φe in this figure can be thought of as a general

representation of shifts in the inverse supply of liquidity in a crisis Φ(δD) (which affects only

the banks opting for bridge financing and only through φe, which is independent of L). Hence

both dimensions of the figure account for shifts in exogenous parameters. For configurations

of parameters with L ≤ Lmax(φe), the candidate equilibrium with bridge financing gets

confirmed as an equilibrium.

Lmax(φe) is decreasing, so the higher the cost of funds during crises, the stronger the

incentives for banks to opt for funding structures that imply defaulting in a crisis. To

reinforce intuitions, Figure 7 also shows the total market value in a crisis of a bank that

relies on bridge financing, V C(φe).45 The fact that V C(φe) > Lmax(φe) reflects that, for the

values of L contained between the two curves exposing the bank to liquidation in case of a

crisis is ex-ante optimal but ex-post inefficient. Opting for possible liquidation in a crisis,

45Since (BF) is binding, the value of a bank’s pre-existing equity at a crisis is 0 and thus V C(φe) = De(φe).
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Figure 7: Conditions for the optimality of not defaulting during crises

the bank can get rid of the (BF) constraint in (9) and expand its leverage up to the level

allowed by (LL).

In situations with L > Lmax(φe) at least some banks will opt for being exposed to

liquidation during each systemic crisis. Given the absence of new bank formation in our

model, one may wonder whether such a configuration of parameters would lead to the full

collapse of the banking sector after sufficiently many crisis. For L < Lmax(0), the answer is

no, since there is a self-equilibrating mechanism, implied by the adjustment of φ throughout

the process, that would produce a steady state in which the surviving banks eventually rely

on bridge financing.46

46In such an equilibrium the mass of banks would be m < 1 and the excess cost of crisis liquidity would
equal the unique φm that satisfies Lmax(φm) = L. Now, if (Dm, δm) denotes the funding decision under φm of
banks subject to the (BF) constraint, thenm can be found as the unique value that solves Φ(mδmDm) = φm.
If the mass of banks were at any point larger than m, then a mass m of banks would use (Dm, δm), surviving
each crisis, while the remaining ones would be exposed to liquidation in each crisis.
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7.2 Deterministic vs random maturity

For tractability we have assumed that debt contracts have random maturity. It would be

more realistic to assume that the bank chooses an integer T that describes the deterministic

maturity of its debt contracts. In this setting it is possible to determine savers’ required

maturity premium rdet(T ) as we did in Section 4.1. It can also be shown that for T = 1/δ,

we have rdet(T ) < r(δ) because discounting is a convex function of time and thus the random

variation in maturity realizations produces disutility to impatient savers.

With deterministic maturities, the model would lose some of the Markovian properties

that make it tractable. In the period after a crisis the initial funding structure would not be

immediately reestablished since, in addition to the debt with principal 1
T
D that matures and

has to be refinanced, the bank would also have to issue the debt with face value 1
T
D that

was bridge financed during the crisis. Thus, in order for the bank to keep a constant fraction

1/T of debt maturing in each period, half of the debt issued by the bank in the after-crisis

period should have maturity T − 1, but this would introduce heterogeneity in interest rate
payments across the various debts. The description would become further complicated if a

new crisis arrives prior to the maturity of the debt with maturity T − 1.
Therefore, assuming random maturities implies some loss of banks’ value but is essential

to the simplicity of our recursive valuation formulas. Fortunately, there is no reason to

think that deterministic rather than random maturities would qualitatively change any of

the trade-offs behind the key results of the paper.

7.3 Resetting debt structures over time

For the sake of clarity, we have assumed that the debt structure (D, δ) decided at t = 0 is

kept constant along time (except for the fraction δD that is “bridge financed” for just one

period during each crisis). What would happen if bankers could reoptimize at some later

period?

To narrow down the question, suppose, in particular, that in some given normal period

banks had the option to buy all their outstanding debt at market value and then decide

on a new debt structure that would be held constant from that moment onwards. It is

obvious from the Markovian structure of the model that the bank would not deviate from

its initial funding structure.47 More generally, it is possible to prove that if current bank

47The formal argument goes as follows: denote the bank’s current debt structure by (D, δ). In a N state
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shareholders are allowed to buy back all outstanding debt and decide a new debt structure

at every normal period, their optimal decision (taking all future optimal decisions as given)

would also coincide with the one characterized in prior sections.

The even more general case in which at every date the bank could decide to roll-over

part of its maturing debt at perhaps some new terms, while keeping constant the structure

of its non-maturing debt would not be easy to analyze. We would need a more complicated

space of state variables to describe the debt structures that a bank might end up having

and, thus, modeling that is out of the scope of this paper. However, there are no reasons

to believe that those apparently more general funding structures might be a net source of

value to the bank. Intuition from simpler models suggests that altering the terms of new

debt as maturing debt is rolled over might only create value to shareholders at the expense

of non-maturing debt holders, but this (i) would have a negative repercussion on the value of

such a debt when issued (and hence on initial shareholder value) and (ii) could be prevented

by including proper covenants in the preexisting debt contracts.

7.4 Tradability of debt

The non-tradability of banks’ debt plays a key role in the model. Savers who turn impatient

suffer disutility from delaying consumption until their debt matures because there is no

secondary market where to sell the debt (or where to sell it at a sufficiently good price). If

bank debt could be traded without frictions, impatient savers would try to sell their debts to

newly born patient savers, achieving it immediately in normal periods and with one period

of delay in crises. Banks could issue perpetual debt (δ = 0) at some initial period and get

rid of refinancing concerns. In practice a lot of bank debt, starting with retail deposits,

but including also certificates of deposit placed among the public, interbank deposits, debt

involved in sales with repurchase agreements (repos), and commercial paper are commonly

issued over the counter (OTC) and have no liquid secondary market.

Our model does not contain an explicit justification for the lack of tradability. Arguably,

it might stem from administrative, legal compliance, and operational costs associated with

that does not follow a C state, the market value of total outstanding debt is D. Current shareholders would
maximize V (D, δ;φ) − D subject to the same financing constraints as at t = 0 and the optimal solution
would be the same as at t = 0, since the only difference between the initial optimization problems and the
current one is the (constant) D now subtracted from the objective function. In a N state that follows a C
state, the market value of outstanding debt would be (1 − δ)D and current shareholders would maximize
V (D, δ;φ)− (1− δ)D but again the solution would not change.
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the trading (specially using centralized trade) of heterogenous debt instruments issued in

small amounts, with a short life or among a dispersed mass of unsophisticated investors. In

fact, if other banks (or some other sophisticated traders) could possess better information

about banks than ordinary savers, then costs associated with asymmetric information (e.g.

exposure to a winners’ curse problem in the acquisition of bank debt) might make the

secondary market for bank debt unattractive to ordinary savers (Gorton and Pennacchi,

1990). This view is consistent with the common description of interbank markets as markets

where peer monitoring is important (Rochet and Tirole, 1996).

Additionally, the literature in the Diamond and Dybvig (1983) tradition has demon-

strated that having markets for the secondary trading of bank claims might damage the

insurance role of bank deposits.48 Yet, Diamond (1997) makes the case for the complemen-

tarity between banks and markets when, at least for some agents, the access to markets is

not guaranteed.

We believe that our model could be extended to describe situations in which debt is

tradable but in a non-centralized secondary market characterized by search frictions (like

in the models of OTC markets recently explored by Duffie et al., 2005, Vayanos and Weill,

2008, and Lagos and Rocheteau, 2009). In such setting, shortening the maturity of debt

would have the effect of increasing the outside option of an impatient saver who is trying to

find a buyer for his non-matured debt.49 This could allow sellers to obtain better prices in

the secondary market, making them willing to pay more for the debt in the first place and

encouraging banks to issue short-term debt.50 In any case developing this extension would

constitute another paper.

8 Conclusion

We have developed an infinite horizon equilibrium model in which banks that invest in long-

lived assets decide the overall principal, interest rate payments, and maturity of their debt.

The model contains a microfoundation for savers’ preference for short maturities in line with

the traditional Diamond and Dybvig (1983) formulation, which is simplified and adapted to

48See von Thadden (1999) for an insightful review of the results obtained in this tradition.
49See He and Milbradt (2011), who explicitly model the secondary market for corporate debt as a market

with search frictions.
50The empirical evidence in Mahanti et al (2008) and Bao, Pan, and Wang (2011), among others, shows

that short-term bonds are indeed more “liquid” (as measured by the narrowness of the bid-ask spread) than
long-term bonds.
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the needs of a recursive dynamic formulation. Banks’ incentive not to set debt maturities as

short as savers might ceteris paribus prefer, comes from the fact that there are events (called

systemic liquidity crises) in which their normal financing channels fail and they have to turn

to more expensive sources of funds.

We identify a pecuniary externality that, when combined with the constraints faced by

banks for their refinancing, renders the unregulated competitive equilibrium socially ineffi-

cient. It turns out that, if a social planner coordinates the banks in the choice of somewhat

longer debt maturities, then banks’ total leverage and the social value of their overall matu-

rity transformation activity increases.

We have explored alternatives for restoring efficiency, including forcing banks to issue debt

of longer maturities or inducing them to do so with a Pigovian tax on their refinancing needs.

We have also considered the implications of adding private or public liquidity insurance

schemes, finding that the case for regulating maturity decisions does not disappear, so that

liquidity insurance and liquidity risk regulation can be considered complements rather than

substitutes in dealing with the systemic implications of liquidity crises.
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Appendix

A Proofs

This appendix contains the proofs of the propositions included in the body of the paper.

Proof of Proposition 1 Using (3) it is a matter of simple algebra to obtain that:

r0(δ) =
−π(1 + ρI)(ρI − ρP )

(ρI + δ + (1− δ)π)2
< 0,

r00(δ) =
2π(1− π)(1 + ρI)(ρI − ρP )

(ρI + δ + (1− δ)π)3
> 0.

The other properties stated in the proposition are immediate.¥

Proof of Proposition 2 The proof is organized in a sequence of steps.

1. If (BF) is satisfied then (LL) is strictly satisfied Using equation (7) we have that
(LL) can be written as:

0 ≤ E(D, δ;φ) =
1

ρI
(μ− rD)− 1

ρI

(1 + ρI)ε

1 + ρI + ε

µ
1 + φ− 1 + r

1 + ρI

¶
δD,

while (BF) can be written, using (6), as

0 ≤ 1

1 + ρI
(μ− r(1− δ)D + δD +E(D, δ;φ))− (1 + φ)δD =

=
1

ρI
(μ− rD)−

µ
1 +

1

ρI

ε

1 + ρI + ε

¶µ
1 + φ− 1 + r

1 + ρI

¶
δD.

Now, since 1 + 1
ρI

ε
1+ρI+ε

> (1+ρI)ε
ρI(1+ρI+ε)

we conclude that whenever (BF) is satisfied, (LL) is
strictly satisfied.

2. Notation and useful bounds Using equation (7) we can write:

V (D, δ;φ) = D +E(D, δ;φ) =
1

ρI
μ+DΠ(δ;φ),

where

Π(δ, φ) = 1− 1

ρI

∙µ
1− ε

1 + ρI + ε
δ

¶
r +

(1 + ρI)ε

1 + ρI + ε
δ

µ
φ+

ρI
1 + ρI

¶¸
can be interpreted as the value the bank generates to its shareholders per unit of debt. Using
Proposition 1 we can see that the function Π(δ, φ) is concave in δ.

(BF) in equation (6) can be rewritten as:

μ+ V (D, δ;φ) ≥ [(1 + ρI)(1 + φ)δ + (1 + r)(1− δ)]D,
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and if we define C(δ, φ) = (1+ ρI)(1+φ)δ+(1+ r)(1− δ), (BF) can be written in the more
compact form that will be used from now onwards:

1 + ρI
ρI

μ+ (Π(δ, φ)− C(δ, φ))D ≥ 0. (16)

Using Proposition 1 we can see that the function C(δ, φ) is convex in δ.

We have the following relationship:

Π(δ, φ) = 1− 1

ρI

(1 + ρI)

1 + ρI + ε

∙
r(δ) +

ε

1 + ρI
(C(δ, φ)− 1)

¸
(17)

The assumption φ ≤ 21+ρP
1+ρI

− 1 implies (1 + ρI)(1 + φ) ≤ 2(1 + ρP ) ≤ 2(1 + r(δ)) for all
δ, and we can check that the following bounds (that are independent from φ) hold:

C(δ, φ) ≥ 1 + r(δ).

∂C(δ, φ)

∂δ
≤ 2(1 + r(δ))− (1 + r(δ)) = 1 + r(δ). (18)

Using the assumption π < 1−ρI
2
it is a matter of algebra to check that for all δ:

d2r

dδ2
+

dr

dδ
≥ 0,

and finally from this inequality, dr
dδ

< 0 and r < ρI we obtain after some algebra:

∂2Π(δ, φ)

∂δ2
+

∂Π(δ, φ)

∂δ
< − 1

ρI

µ
1− ε

1 + ρI + ε
δ

¶µ
dr

dδ
+

d2r

dδ2

¶
≤ 0. (19)

To save on notation, we will drop from now on the arguments of these functions when it
does not lead to ambiguity.

3. D∗ = 0 is not optimal It suffices to realize that ∂V (D,0;φ)
∂D

= Π(0, φ) = 1− r(0)
ρI

> 0.

4. The solution (D∗, δ∗) of the maximization problem in equation (9) exists, is
unique, and satisfies (BF) with equality, i.e. 1+ρI

ρI
μ+ (Π(δ∗, φ)− C(δ∗, φ))D∗ = 0

We are going to prove existence and uniqueness in the particular case that there exist
δΠ, δC ∈ [0, 1] such that ∂Π(δΠ,φ)

∂δ
= ∂C(δC ,φ)

∂δ
= 0. This will ensure that the solution of the

maximization problem is interior in δ. The other cases are treated in an analogous way but
might give rise to corner solutions in δ.51

First, since Π(δ, φ) is concave in δ we have that ∂Π(δ,φ)
∂δ

≥ 0 iff δ ≤ δΠ. Since C(δ, φ) is
convex in δ we have that ∂C(δ,φ)

∂δ
≥ 0 iff δ ≥ δC . It is easy to prove from equation (17) that

δC < δΠ.

51More precisely, if for all δ ∈ [0, 1] ∂C(δ,φ)
∂δ > 0 we might have δ∗ = 0 and if for all δ ∈ [0, 1], ∂Π(δ,φ)

∂δ > 0
we might have δ∗ = 1.
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Now, let (D∗, δ∗) be a solution to the maximization problem. The first order conditions
(FOC) that characterize an interior solution (D∗, δ∗) are:

(1 + θ)Π− θC = 0,

(1 + θ)
∂Π

∂δ
− θ

∂C

∂δ
= 0,

θ

∙
1 + ρI
ρI

μ+ (Π− C)D∗
¸
≥ 0, (20)

θ ≥ 0,

where θ is the Lagrange multiplier associated with (BF) and we have used that D∗ > 0 in
order to eliminate it from the second equation.
If θ = 0 then the second equation implies δ∗ = δΠ and thus Π(δ∗, φ) ≥ Π(0, φ) > 0 and

the first equation is not satisfied. Therefore we must have θ > 0 so that (BF) is binding at
the optimum. Now we can eliminate θ from the previous system of equations, which gets
reduced to:

∂Π(δ∗, φ)

∂δ
C(δ∗, φ) =

∂C(δ∗, φ)

∂δ
Π(δ∗, φ), (21)

1 + ρI
ρI

μ = [C(δ∗, φ)−Π(δ∗, φ)]D∗. (22)

We are going to show that equation (21) has a unique solution in δ. For δ ≤ δC < δΠ, we
have ∂C

∂δ
≤ 0 < ∂Π

∂δ
and thus the left hand side (LHS) of (21) is strictly bigger than the RHS.

For δ ≥ δΠ > δC , we have ∂Π
∂δ
≤ 0 < ∂C

∂δ
and thus RHS of (21) is strictly bigger.

Now, the function ∂C(δ,φ)
∂δ

Π(δ, φ) is strictly increasing in the interval (δC , δΠ) since both
terms are positive and increasing. Thus, it suffices to prove that for δ ∈ (δC , δΠ) the function
∂Π(δ,φ)

∂δ
C(δ, φ) is decreasing.52 Using the the bounds in (18), inequality (19) and ∂2Π

∂δ2
< 0, ∂Π

∂δ
>

0 for δ ∈ (δC , δΠ), we have:

∂

∂δ

µ
∂Π

∂δ
C

¶
=

∂2Π

∂δ2
C +

∂Π

∂δ

∂C

∂δ
≤ (1 + r)

µ
∂2Π

∂δ2
+

∂Π

∂δ

¶
≤ 0.

This concludes the proof on the existence and uniqueness of a δ∗ that satisfies the necessary
FOC in (21).
Now, for given δ∗, the other necessary FOC (22) determines D∗ uniquely.53

5. δ∗ is independent from μ and D∗ is strictly increasing in μ Equation (21) de-
termines δ∗ and is independent from μ. Then equation (22) shows that D∗ is increasing in
μ.

52This is not trivial since C(δ, φ) is increasing.
53Let us observe that for all δ, C(δ, φ) ≥ 1 > Π(δ, φ).
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6. δ∗ is decreasing in φ and, if δ∗ ∈ (0, 1), it is strictly decreasing Let δ(φ) be
the solution of the maximization problem of the bank for given φ. Let us assume that δ(φ)
satisfies the FOC (21). The case of corner solutions is analyzed in an analogous way.
We have proved in Step 3 above that the function ∂Π

∂δ
C − ∂C

∂δ
Π is decreasing in δ around

δ(φ). In order to show that δ(φ) is decreasing, it suffices to show that the derivative of this
function w.r.t. φ is negative. Using the definitions of C(δ, φ),Π(δ, φ) after some (tedious)
algebra we obtain:

∂

∂φ

∙
∂Π

∂δ
C − ∂C

∂δ
Π

¸
= −(1 + ρI)−

1

ρI

1 + ρI
1 + ρI + ε

∙
(1 + ρI)

µ
dr

dδ
δ − r

¶
+ ε

¸
.

Now we have d
dδ

¡
dr
dδ
δ − r

¢
= d2r

dδ2
δ ≥ 0 and thus dr

dδ
δ − r ≥ dr

dδ
δ − r

¯̄
δ=0

= −r(0), and finally:

∂

∂φ

∙
∂Π

∂δ
C − ∂C

∂δ
Π

¸
≤ −(1 + ρI)−

1

ρI

1 + ρI
1 + ρI + ε

[−(1 + ρI)r(0) + ε]

< −(1 + ρI) +
1

ρI
(1 + ρI)r(0) = −(1 + ρI)

µ
1− r(0)

ρI

¶
< 0.

This concludes the proof that dδ
dφ

< 0.54

7. δ∗D∗ is decreasing with φ. If δ∗ > 0 it is strictly decreasing
Let δ(φ),D(φ) be the solution of the maximization problem of the bank for given φ. We

have:
1 + ρI
ρI

μ = [C(δ(φ), φ)−Π(δ(φ), φ)]D(φ).

Let φ1 < φ2. In Step 5 we showed that δ(φ1) ≥ δ(φ2). If δ(φ2) = 0 then trivially δ(φ1)D(φ1) ≥
δ(φ2)D(φ2) = 0. Let us suppose that δ(φ2) > 0. Since trivially Π(δ(φ1), φ1)D(φ1) ≥
Π(δ(φ2);φ2)D(φ2), we must have C(δ(φ1), φ1)D(φ1) ≥ C(δ(φ2), φ2)D(φ2). Now, suppose
that δ(φ1)D(φ1) ≤ δ(φ2)D(φ2), then we have the following two inequalities:

(1 + ρI)(1 + φ1)δ(φ1)D(φ1) < (1 + ρI)(1 + φ2)δ(φ2)D(φ2),

(1 + r(δ(φ1)))(1− δ(φ1)) ≤ (1 + r(δ(φ2)))(1− δ(φ2)),

that imply C(δ(φ1), φ1)D(φ1) < C(δ(φ2), φ2)D(φ2), but this contradicts our assumption.
Thus, δ(φ1)D(φ1) > δ(φ2)D(φ2).¥

Proof of Proposition 3 Let us denote (D(φ), δ(φ)) the solution of the bank’s optimization
problem for every excess cost of crisis liquidity φ ≥ 0. Proposition 2 states that δ(φ)D(φ) is
decreasing in φ. For φ ∈ [0, φ] let us define Σ(φ) = Φ(δ(φ)D(φ))−φ. This function represents
the difference between the excess cost of liquidity during a crisis by banks’ decisions and

54In the case of corner solution δ∗(φ) = 1, we might have dδ∗

dφ = 0 and obviously for δ
∗(φ) = 0, dδ

∗

dφ = 0.
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banks’ expectation on such variable. Since Φ is an increasing function on the aggregate
demand of funds during a crisis the function Σ(φ) is strictly decreasing. Because of the
uniqueness of the solution to the problem that defines (D(φ), δ(φ)), the function is also
continuous. Moreover, we trivially have Σ(0) ≥ 0 and limφ→∞Σ(φ) = −∞. Therefore there
exists a unique φe ∈ R+ such that Σ(φe) = 0. By construction D(φe), δ(φe), φe is the unique
equilibrium of the economy.¥

Proof of Proposition 4 We are going to follow the notation used in the proof of Proposi-
tion 3. Let Φ1, Φ2 be two curves describing the inverse supply of liquidity during a crisis and
assume they satisfy Φ1(x) > Φ2(x) for all x > 0. Let us denote Σi(φ) = Φi(δ(φ)D(φ))−φ for
i = 1, 2. By construction we have Σ1(φ

e
1) = 0. Let us suppose that φ

e
1 < φe2. Then we would

have:

Σ2(φ
e
2) = Φ2(δ(φ

e
2)D(φ

e
2))—φ

e
2 ≤ Φ1(δ(φ

e
2)D(φ

e
2))—φ

e
2 < Φ1(δ(φ

e
1)D(φ

e
1))—φ

e
1 = Σ1(φ

e
1) = 0,

(23)
where in the first inequality we use the assumption Φ2(x) ≤ Φ1(x) for x ≥ 0, and in the
second inequality we use that if φe1 < φe2 then δ(φ

e
2)D(φ

e
2) ≤ δ(φe1)D(φ

e
1) (Proposition 2), and

that Φ1(·) is increasing.
Notice that the sequence of inequalities in (23) implies Σ2(φ

e
2) < 0, which contradicts

the definition of φe2. We must therefore have φe1 ≥ φe2. Now Proposition 2 implies that
δe1 ≤ δe2, δ

e
1D

e
1 ≤ δe2D

e
2, r

e
1 ≥ re2. Let us suppose that δ

e
2 ∈ (0, 1) then the first inequality in

(23) is strict, since δe2D
e
2 > 0, and we can straightforwardly check that the previous argument

implies φe1 > φe2. Now, since δ
e
2 ∈ (0, 1), Proposition 2 implies that δe1 < δe2, δ

e
1D

e
1 < δe2D

e
2,

and re1 > re2.¥

Proof of Proposition 5 We consider two cases.
Case 1: Debt issuance exogenously fixed We are going to follow the notation in the
proof of Proposition 2. Using the definition of W (D, δ) we have

∂W (D, δ)

∂δ
=

∂V (D, δ;Φ(δD))

∂δ
+

∂V (D, δ;Φ(δD))

∂φ
DΦ0(δD) +

∂U(D, δ)

∂δ

=
∂V (D, δ;Φ(δD))

∂δ
= D

∂Π(δ,Φ(δD))

∂δ
(24)

and

∂2W (D, δ)

∂δ2
= D

∂2Π(D, δ;Φ(δD))

∂δ2
+

∂2Π(D, δ;Φ(δD))

∂δ∂φ
D2Φ0(δD)

=
∂2Π(D, δ;Φ(δD))

∂δ2
− 1

ρI

(1 + ρI)ε

1 + ρI + ε
D2Φ0(δD) < 0,
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where in the last inequality we have used that Π(D, δ;φ) is concave in δ and that Φ0(·) > 0.
Notice that W (D, δ) is concave in δ.

Denote the exogenous amount of debt referred in the proposition as D > 0. Let (φe, δe)
be the equilibrium of the economy in which banks do not decide D. Let us suppose that
δe ∈ (0, 1); the argument if δe = 0, 1 is analogous and will be omitted for brevity. By analogy
with the system of equations in (20), the competitive equilibrium is characterized by:

(1 + θ)
∂Π(δe, φe)

∂δ
− θ

∂C(δe, φe)

∂δ
= 0,

θ

∙
1 + ρI
ρI

μ+ (Π(δe, φe)− C(δe, φe))D

¸
≥ 0,

θ ≥ 0, (25)

φe = Φ(δeD).

Now, let δs be the solution to the social planner problem. We can distinguish two cases:
i) θ = 0. In this case the system of equations (25) implies ∂Π(δe,φe)

∂δ
= 0. Now, if we use

equation (24) we have

∂W (D, δe)

∂δ
= D

∂Π(δe,Φ(Dδe))

∂δ
= D

∂Π(δe, φe)

∂δ
= 0

and, therefore, δe maximizes the (concave) function W (D, δ). Thus, in this case δs = δe.

ii) θ > 0. In this case, from equation (17) we conclude that ∂Π(δ,φ)
∂δ

< 0 implies ∂C(δ,φ)
∂δ

> 0.

Now, the first equation in the system (25) implies ∂Π(δe,φe)
∂δ

> 0, ∂C(δ
e,φe)
∂δ

− ∂Π(δe,φe)
∂δ

> 0. So
we have

∂W (D, δe)

∂δ
= D

∂Π(δe, φe)

∂δ
> 0,

and, since W (D, δ) is concave, we have W (D, δ) < W (D, δe) for all δ < δe. Now, given that
δe satisfies (BF) with equality, in order to prove that δs = δe it suffices to show that for
δ > δe (BF) is not satisfied. This, in turn, is an immediate consequence of the following
inequality that is easily checked:

∂

∂δ

£
C(δ,Φ(Dδ))−Π(δ,Φ(Dδ))

¤
> 0, for δ ≥ δe.

Case 2: Average maturity exogenously fixed Once we realize that the functionW (D, δ)

is concave in D the proof is completely analogous to the previous one and is omitted here.¥

Proof of Proposition 6 We are going to follow the notation used in the proof of Propo-
sition 2. The proof is organized in five steps:

1. Preliminaries We have seen in the proof of Proposition 5 that:

∂W (D, δ)

∂δ
=

∂V (D, δ;Φ(δD))

∂δ
= D

∂Π(δ,Φ(δD))

∂δ
. (26)
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Similarly we have

∂W (D, δ)

∂D
=

∂V (D, δ;Φ(δD))

∂D
= Π(δ,Φ(δD)). (27)

2. (BF) is binding at the socially optimal debt structure This is a statement that
has been done in the main text just before Proposition 6. The proof is analogous to the one
for the maximization problem of the bank that we did in Step 4 of the proof of Proposition
2. The only difference is that φ is not taken as given but as the function Φ(δD) in D and δ.

3. Definition of function Dc(δ) and its properties Let (φe, (De, δe)) be the competitive
equilibrium. Let us assume that δe < 1. By definition of equilibrium we have φe = Φ(δeDe).

For every δ let Dc(δ) be the unique principal of debt such that (BF) is binding, i.e.:

1 + ρI
ρI

μ = [C(δ, φe)−Π(δ, φe)]Dc(δ). (28)

Differentiating w.r.t. δ:∙
∂C(δ, φe)

∂δ
− ∂Π(δ, φe)

∂δ

¸
Dc(δ) + [C(δ, φe)−Π(δ, φe)]

dDc(δ)

dδ
= 0. (29)

Using the characterization of δe in equation (21), the inequalities C(δ, φe) ≥ 1 > Π(δ, φe)

imply ∂C(δe,φe)
∂δ

− ∂Π(δe,φe)
∂δ

> 0 and, then, we can deduce from the equation above that
dDc(δe)

dδ
< 0. Since (BF) is binding at the optimal debt structure we can think of the bank

problem as maximizing the univariate function V (Dc(δ), δ;φe). Hence δe must satisfy the
necessary FOC for an interior solution to the maximization of V (Dc(δ), δ;φe):

dV (Dc(δ), δe;φe)

dδ
= 0⇔ Dc(δe)

∂Π(δe, φe)

∂δ
+Π(δe, φe)

dDc(δe)

dδ
= 0, (30)

which multiplying by δe can be written as

Dc(δe)
∂Π(δe, φe)

∂δe
δe = Π(δe, φe)

µ
−dD

c(δe)

dδ
δe
¶
.

Since
∂(Π−∂Π

∂δ
δ)

∂δ
= −∂2Π

∂δ2
δ ≥ 0 and Π(0, φ) − ∂Π(0,φ)

∂δ
0 > 0, we have Π(δ, φ) > ∂Π(δ,φ)

∂δ
δ for all

δ ∈ [0, 1] and the previous equation implies

Dc(δe) > −dD
c(δe)

dδ
δe ⇔ d (δDc(δ))

dδ

¯̄̄̄
δ=δe

> 0.

4. Evaluation of d(Ds(δ))
dδ

¯̄̄
δ=δe

and d(δDs(δ))
dδ

¯̄̄
δ=δe

For every δ, let Ds(δ) be the unique

principal of debt such that (BF) is binding, i.e.

1 + ρI
ρI

μ = [C(δ,Φ(δDs(δ)))−Π(δ,Φ(δDs(δ)))]Ds(δ).
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Differentiating w.r.t. δ, we obtain∙
∂C(δ,Φ)

∂δ
− ∂Π(δ,Φ)

∂δ

¸
Ds(δ) + [C(δ,Φ(δDs(δ)))−Π(δ,Φ(δDs(δ)))]

dDs(δ)

dδ
+

+

∙
∂C(δ,Φ)

∂φ
− ∂Π(δ,Φ)

∂φ

¸
Φ0(δDs(δ)))

d (δDs(δ))

dδ
= 0. (31)

By construction, Ds(δe) = Dc(δe) = De. Now, subtracting equation (29) from equation (31)
at the point δ = δe we obtain

[C(δe, φe)−Π(δe, φe)]

µ
dDs(δe)

dδ
− dDc(δe)

dδ

¶
+

∙
∂C(δe, φe)

∂φ

−∂Π(δ
e, φe)

∂φ

¸
Φ0(δeDe)

d (δDs(δ))

dδ

¯̄̄̄
δ=δe

= 0. (32)

Suppose that d(δDs(δ))
dδ

¯̄̄
δ=δe
≤ 0, then we would have dDs(δe)

dδ
≥ dDc(δe)

dδ
, since trivially ∂C(δe,φe)

∂φ
−

∂Π(δ,φe)
∂φ

> 0. But then

d (δDs(δ))

dδ

¯̄̄̄
δ=δe

= Ds(δe) +
dDs(δe)

dδ
δe > Dc(δe) +

dDc(δe)

dδ
δe =

d (δDc(δ))

dδ

¯̄̄̄
δ=δe

> 0,

which contradicts the hypothesis. We must thus have d(δDs(δ))
dδ

¯̄̄
δ=δe

> 0, in which case

equation (32) implies dDs(δe)
dδ

< dDc(δe)
dδ

< 0.

5. Evaluation of dW (Ds(δ),δ)
dδ

¯̄̄
δ=δe

Using equations (26) and (27), we have:

dW (Ds(δ), δ)

dδ
=

∂W (Ds(δ), δ)

∂δ
+

∂W (Ds(δ), δ)

∂D

dDs(δ)

dδ

= Ds(δ)
∂Π(δ,Φ(δDs(δ)))

∂δ
+Π(δ,Φ(δDs(δ)))

dDs(δ)

dδ
.

And, using dDs(δe)
dδ

< dDc(δe)
dδ

and (30), we obtain:

dW (Ds(δ), δ)

dδ

¯̄̄̄
δ=δe

< Ds(δe)
∂Π(δe, φe)

∂δ
+Π(δe, φe)

dDc(δe)

dδ
= 0.

Summing up, having

dW (Ds(δ), δ)

dδ

¯̄̄̄
δ=δe

< 0,
dDs(δ)

dδ

¯̄̄̄
δ=δe

< 0, and
d(δDs(δ))

dδ

¯̄̄̄
δ=δe

> 0,

implies that a social planner can increase welfare by fixing some δs < δe, and suggests that
doing so will produce higher leverage and lower refinancing needs than in the unregulated
competitive equilibrium.¥
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Proof of Proposition 7 Let (φs, (Ds, δs)) be the socially efficient equilibrium. The sketch
of the proof is as follows:
1. For any fixed φ banks’ optimal choice of δ depends only on τ (and not on the lump-

sum tax rebate M) and as τ increases δ decreases. From here we can show that if banks’
expectation on the excess cost of liquidity in a crisis is φs < φe there exists a Pigovian tax
τP > 0 that induces the socially efficient choice of maturity.
2. For φ = φs and Pigovian tax τP defined above, once banks have taken their maturity

decision δs they issue as much debt D as (BF) allows and at this point the amount of the
lump-sum transfer M matters. The effect of the net per period transfer τP δsD −M ≥ 0
from banks to the SP is to reduce banks’ equity value at the N state and thus to strictly
tighten (BF) with respect to the situation in which the SP directly regulates maturity to its
social optimum 1/δs unless there is full rebate of the Pigovian tax, i.e. M = τP δsD. More
precisely, it can be shown that D is strictly increasing with M and that D = Ds if and only
if M = τP δsDs.
3. Our candidate for optimal Pigovian tax scheme is (τP ,MP ) with MP = τP δsDs.

By construction, under this tax scheme if banks’ expectation on the excess cost of liquidity
in a crisis is φs, then banks’ optimal funding structure coincides with the socially efficient
structure (Ds, δs), which in turn satisfies φs = Φ(δsDs), confirming φs as an expectation
compatible with the equilibrium.
The most cumbersome details of the proof are analogous to those in the proof of Propo-

sition 2 and are omitted for brevity. They are available from the authors upon demand.¥

Proof of Proposition 8 Let us recall that the introduction of (fairly priced) insurance
does not change the value of equity at the N state, i.e. E(D, δ, λ;φ) = E(D, δ;φ) for all λ.
In addition banks choose full insurance, λ = 1, and the only financial constraint is (LL) that
can be written E(D, δ, 1;φ) = E(D, δ;φ) > 0. For the next steps, we follow the notation
introduced in the proof of Proposition 2.

1. Insurance increases social welfare in the regulated economy Let (Ds, δs) be the
socially optimal debt structure in the absence of insurance. In the proof of Proposition 6 we
showed that (BF) is binding at (Ds, δs). In fact, we have ∂W (Ds,δs)

∂D
> 0. Step 1 in the proof

of Proposition 2 states that (LL) is satisfied with slack, i.e.

E(Ds, δs;Φ(δsDs)) > 0,

and thus by continuity there are values D0 > Ds such that E(D0, δs;Φ(δsD0)) > 0 and
W (D0, δs) > W (Ds, δs). Introducing insurance makes debt structures such as (D0, δs) feasible
and, hence, increases welfare relative to the regulated economy without insurance.

2. Under insurance the competitive expected maturity is shorter than the so-
cially optimal one When insurance is introduced the relevant financial constraint faced
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both by banks in the unregulated equilibrium (for given φ) and by the social planner (for
φ = Φ(δD)) is (LL) and is binding. From here, the proof is analogous to that of Proposition
6 and we omit it for brevity.¥

B Debt structures that induce default during crises

In this section we examine the possibility that a bank decides to expose itself to the risk
of defaulting on its debt obligations and being liquidated during systemic crises. First, we
describe the sequence of events following a bank’s default. Second, we show how the debt
of the bank is valued by savers who correctly anticipate this course of events. Finally, we
analyze the bank’s decision problem when default during crises is an explicit alternative.

Default and liquidation Liquidation following the bank’s inability to satisfy its refinanc-
ing needs yields a residual value L ≥ 0. Suppose that partial liquidation is not allowed and L
is distributed equally among all debtholders independently of their contract having just ma-
tured or not. This eliminates the type of preemptive runs studied by He and Xiong (2011a).
It is easy to realize that if the bank does not want to rely on bridge financing (exposing
itself to possible default in a crisis), then it will find it optimal to make its debt mature in
a perfectly correlated manner since this minimizes the probability of default during crises.
Hence we assume that the debt issued by the bank when getting rid of the (BF) constraint
has perfectly correlated maturities.

Savers’ required maturity premium when default is anticipated From a saver’s
perspective, there are three states relevant for the valuation of a given debt contract: personal
patience in a normal period (i = P ), personal impatience in a normal period (i = IN), and
personal impatience in a crisis period (i = IC).
Let l = L/D < 1 be the fraction of the principal of debt which is recovered in case of

liquidation and let Qi be the present value of expected losses due to default as evaluated
from each of the states i just after the uncertainty regarding the corresponding period has
realized and conditional on the debt not having matured in such period. Losses are measured
relative to the benchmark case without default in which at maturity savers recover 100% of
the principal. These values satisfy the following system of recursive relationships:

QP =
1

1 + ρP
[δε(1− l) + (1− δ){(1− ε)[(1− γ)QP + γQIN ] + εQIC}] ,

QIN =
1

1 + ρI
[εδ(1− l) + (1− δ) [(1− ε)QIN + εQIC ]] ,

QIC =
1

1 + ρI
(1− δ)QIN .
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These expressions essentially account for the principal 1− l > 0 which is lost whenever the
saver’s debt contract matures in a state of crisis. First equation reflects that default as well
as any of three states i may follow state P. The second equation reflects that impatience is
an absorbing state. The last equation reflects that a crisis period can only be followed by a
normal period.
The value of a debt contract (1, r, δ) to a patient saver in a normal period, when default

is expected if the bank runs into refinancing needs during a crisis, can then be written as

Ud
P (r, δ) = UP (r, δ)−QP (δ),

where UP (r, δ) is the value of the same contract in the scenario in which the principal is
always recovered at maturity, whose expression is given in (2).
Now, let rd(δ) be the interest rate yield that the bank offers in the default setting,

which satisfies Ud
P (r

d(δ), δ) = 1. Since the non-default yield r(δ) satisfies UP (r(δ), δ) = 1,

the equation Ud
P (r

d(δ), δ) = UP (r(δ), δ) allows us to express rd(δ) as the sum of r(δ) and a
default-risk premium:

rd(δ) = r(δ) +
1

D

(1 + ρI) δε(D − L)

1 + ρI + (1− δ)ε
.

It is easy to observe that the default-risk premium rd(δ)− r(δ) is increasing and convex in
δ, increasing in ε, decreasing in L, and increasing in D. Using Proposition 1 we deduce that
rd(δ) is convex in δ. However, given that δ increases the probability of default, rd(δ) is not
necessarily decreasing in δ.

Banks’ optimal funding structure inducing default If the bank does not satisfy the
bridge financing constraint and thus defaults whenever it faces refinancing needs during a
crisis, its equity value in normal times Ed(D, δ) will satisfy the following recursive equation:

Ed(D, δ) =
1

1+ρI

∙
μ—rdD + (1—ε)Ed(D, δ) + {εδ · 0 + (1—δ) 1

1+ρI
[μ—rdD+Ed(D, δ)]}

¸
,

whose solution yields:

Ed(D, δ) =
1 + ρI + ε(1− δ)

(1 + ρI)
2 − (1 + ρI) (1− ε)− ε(1− δ)

(μ− rdD).

In this context, the problem determining the bank’s optimal debt structure decision in the
absence of the bridge financing constraint can be written as:

max
D≥0, δ∈[0,1]

V d(D, δ) = D +Ed(D, δ),

s.t. Ed(D, δ) ≥ 0, (LL)

(33)

where (LL) is trivially equivalent to μ− rdD ≥ 0.
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Figure 7 in the main text has been generated by numerically solving this problem for
each value of φe and L, and finding Lmax(φe) as the (maximum) value of L for which the
total market value of the bank under the best debt structure compatible with (BF) equals
the total market value that the bank can attain solving (33).
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