
Prime locations*

Gabriel M. Ahlfeldt† Thilo N. H. Albers‡ Kristian Behrens§

October 28, 2021

Abstract

We harness big data to detect prime locations—large clusters of know-
ledge-based tradable services—in 125 global cities and track changes in the
within-city geography of prime service jobs over a century. Prime services are
less spatially concentrated and prime locations are farther away from historic
cores in historically smaller cities that did not develop early public transit net-
works. We rationalize these novel stylized facts empirically and theoretically.
External returns to scale give rise to multiple equilibria in the city-internal
distribution of prime services. The resilience of historic prime locations in
historically large cities originates at least partially from endogenous durable
transport networks.
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1 Introduction

The importance of prime services—knowledge-based tradable services such as finance, in-
surance, real estate, and professional services—has grown tremendously over the last cen-
tury. Their share in US GDP is more than twice that of manufacturing. They are the eco-
nomic engines of the world’s Top-100 “global cities” which generate close to 40% of Earth’s
GDP (Dobbs et al., 2011). Within global cities, prime service activity is concentrated ‘on
the head of a pin’, with hundreds of thousands of high-paying jobs within walkable areas
such as Midtown in New York, the City of London, the Central District in Hong Kong,
or Marunouchi in Tokyo. Our data for 125 global cities reveal that about 38% of their
prime service employment is clustered within about 0.7% of their developable area. These
hyper-productive and dense clusters of wealth creation—prime locations—dominate busi-
ness centers and are the powerhouses of the global economy. Understanding the factors
that determine their emergence, location, resilience, and change is of great policy interest,
especially for the fast-growing cities of today’s rapidly urbanizing countries.

Our contribution is threefold. First, we develop a method to detect prime locations using
big data techniques. Combining them with a new historic dataset of urban biographies, we
track changes in the geography of jobs within 125 global cities over more than a century.
Prime locations historically emerged at places with favorable geographic features such as
navigable rivers. These historic prime locations proved more resilient over the 20th century
in cities that were historically dense and had developed early public transport networks.
Second, we provide causal evidence that rationalizes heterogeneity in the spatial configu-
ration of prime services across global cities. Major disasters over the 20th century lead to
more dispersion in the spatial distribution of prime services which we measure in a variety
of ways. Using instruments for 1900 population—exploiting soil conditions and colonial
history—we show that historic city size anchors urban structure and leads to more spatially
concentrated prime services and contemporary prime locations that are closer to historic city
cores. Third, we shed light on the theoretical mechanisms that underlie these reduced-form
relationships. Empirically, we show that disasters before 1900 had no significant effect on
historic prime locations, suggesting a role for external returns to scale. Using a novel in-
strument for early subway adoption—subway potential—we show that the anchoring effect
originates, at least partially, from durable transport networks that form in larger cities. We
substantiate these empirical insights in a series of Monte Carlo experiments where we feed
a granular version of a quantitative spatial model into the data generating process. We can
reproduce the patterns in our data only when there are external returns to scale in the prime
services sector and we allow for endogenous transport network formation.

Analyzing changes in the within-city distribution of jobs, over a long horizon and for
a large number of cities around the globe, is important but difficult. Consequently, little
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has been done thus far.1 The first challenge is that, even for contemporaneous cities, we
generally lack systematic data on the location of employment within cities. This problem
is especially acute for prime services. Consequently, despite being more important than
manufacturing for cities, they are less studied. Although big data techniques are increas-
ingly used to approximate population, economic activity, or city geometry at a high spatial
granularity—via remote-sensed land-cover or lights data (Henderson et al., 2012; Donald-
son and Storeygard, 2016; Harari, 2020)—it is not clear how to infer industry-level data,
especially services, from satellite imagery capturing buildings or lights. Our new approach
shows how globally available big data on prime service establishment locations, in conjunc-
tion with fine-grained employment data for a selected number of cities, suffice to sensibly
approximate the spatial distribution of prime service employment and to detect where the
prime locations are in global cities. We provide a battery of over-identification tests to
show that our prime locations are the nuclei of urban distance gradients such as commercial
rent, building height, grade-A office stock held by real-estate investment trusts, co-working
spaces, social media activity, and iconic workplace amenities like Starbucks franchises. Our
approach performs well and—being quite general—could be extended to approximate the
within-city distribution of other industries for which detailed data are available in some
cities, whereas big open-source data are available in others.

Turning to the study of long-run changes, a second challenge is that we have little in-
formation on the historic locations of prime services in cities. To overcome this problem,
we make use of historic data from our urban biographies. In particular, we have collected
geo-referenced information on all cities’ historic foundation places, the places of their first
political institution, as well as city hall locations in 1900 and 2000. We show that 1900 city
halls are the nuclei of historic urban distance gradients linked to the location of prime ser-
vice establishments and the workers they employ. In particular, data on the construction
of tall buildings around that period, the historic locations of bank and insurance offices,
and the spatial distribution of prime service workers all suggest that historic prime service
employment declined rapidly with distance from the 1900 city halls.

Using our measures of urban structure and changes therein, we then provide an ex-
ploratory analysis of the locations of, and changes in, prime locations. We first document
that favorable geography—such as proximity to running water or flat terrain—is a strong
predictor of the places of initial settlements, which are themselves strong predictors of the
locations of 1900 city halls. The latter are, to some degree, still good predictors of prime
locations today. In other words, there is substantial persistence in the spatial distribution

1Duranton and Puga (2015, p.551) state in their recent survey: “For employment decentralization [changes
in the within-city distribution of jobs], the best account is still arguably the one provided by Glaeser and Kahn
(2001). It is nearly 15 years old and much of it relies on county-level information. [. . .] It is also disconcerting
that the overwhelming majority of the little we know about employment decentralization concerns only one
country, the United States, which is arguably an outlier.” See Baum-Snow et al. (2017) for recent work on
employment decentralization in China.
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of economic activity within cities.2 Second, we document that there is less persistence over
the 20th century and that there is systematic heterogeneity across cities. This suggests there
is scope for multiple equilibria in the internal structure of cities, a well-known feature of
models with either firm-level increasing returns (Fujita, 1988; Krugman, 1991) or external
returns to scale (Fujita and Ogawa, 1982; Lucas and Rossi-Hansberg, 2002; Ahlfeldt et al.,
2015).3 The existence of multiple spatial steady states should be especially relevant for prime
services since the latter hardly depend on locational fundamentals, are highly mobile, and
likely benefit substantially from agglomeration effects such as knowledge spillovers and in-
formation sharing (Arzaghi and Henderson, 2008). Our analysis uncovers two novel features
that make historic prime locations more resilient: early densification and early mass transit
systems, both of which prevail in historically large cities.

Guided by these stylized facts, we then provide the first empirical test for multiple spatial
equilibria within cities and differences in their degree of inertia. Capitalizing on our big data
approach, we compute several spatial concentration measures that capture the city internal
spatial distribution of prime services and prime locations in 125 global cities. We combine
these spatial concentration measures with major historic disasters and historic city size from
our urban biographies. For identification, we require variation in 1900 city size that is
exogenous to the city-internal first-nature geography. Hence, we construct a measure of
agricultural returns (caloric potential) within a city’s hinterland using data from Galor and
Özak (2016) and a dummy indicating colonial occupation in 1800, which captures the legacy
of extractive institutions (Acemoglu et al., 2001). Exploiting these historic population shifters
as instruments, we find that disasters during the 20th century lead to a more dispersed
distribution of prime services today, whereas the opposite is true of historic population in
1900. An additional disaster increases the average distance between prime locations by 23%,
whereas doubling the 1900 population decreases that distance by 21%. These results survive
an extensive battery of robustness checks.

Finally, we explore the mechanisms that underlie the disaster and historic city size effects.
We do not find any effects of disasters and historic population before 1900, consistent with
locational fundamentals pinning down the spatial distribution of economic activity before
the dawn of the information age. To disentangle transport-induced persistence from other

2The literature on path dependence in spatial configurations has typically focused either on between-city
comparisons (Bleakley and Lin, 2012; Henderson et al., 2017; Michaels and Rauch, 2018) or within-city case
studies (Hornbeck and Keniston, 2017; Siodla, 2017; Brooks and Lutz, 2019).

3A strand of research shows that even temporary shocks as big as nuclear bombings do not tend to have
permanent effects on the spatial distribution of economic activity across cities (Davis and Weinstein, 2002). At
the same time, some disasters (Hornbeck and Keniston, 2017; Siodla, 2017) and temporary shocks in access to
markets and institutions (Redding et al., 2010; Michaels and Rauch, 2018) appear to shift the economy between
multiple equilibria. Clearly, scale matters. At a very large spatial scale, city locations and sizes appear fairly
stable. At a very small scale, there are almost by definition multiple equilibria due to historical accidents.
More interestingly, we show that at an intermediate spatial scale within large cities, there is scope for both
path dependence, multiple equilibria, and non-trivial shifts between them triggered by large shocks. Hence,
this spatial scale seems to be the one where policy matters.
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channels, we use and augment data on historic subway systems from Gonzalez-Navarro and
Turner (2018).4 Since subways are endogenous to population size—given their large sunk
and fixed costs—we construct a novel instrument, subway potential. Historically, the adop-
tion of subways was a response to severe congestion problems that plagued emerging cities
from the mid-19th century onwards. Railways carried oceans of people to rail termini at the
city boundaries, who then often needed to connect between those termini. The geometry of
those termini crucially determined how people had to move across the city, thus influencing
the level of congestion in the city and hence the benefit of developing a mass transit sys-
tem to curb that congestion (see Daniels and Warnes, 2007, p.10, for London). We exploit
the geography of railway destinations surrounding a global city to predict the location of
rail termini and then construct an instrument for early subway adoption using the geome-
try of those predicted termini. Exploiting our subway potential instrument, combined with
our previous population instruments, we find that the early development of mass transit
systems has a large causal effect on the evolution of urban spatial structure over the 20th
century. Conditional on shocks and initial size, cities that adopted early mass transit sys-
tems exhibit 37–59% higher concentration of prime services. Moreover, once we account
for the transportation channel, the separately identified population elasticities decrease by
16–56%. Cities with early rapid transit systems experienced significantly less change in their
internal geography during the 20th century, with more compact patterns of prime service
employment and contemporaneous prime locations closer to the historic city cores.

While we push the frontier of micro-geographic empirical research on long-run changes
in internal city structure, natural experiments that switch off external returns and deploy
mass transit networks do not exist. In the last step of our analysis, we therefore take control
of the data generating process using simulation techniques. More precisely, we conduct a
series of Monte Carlo experiments within a granular version of a quantitative spatial model
that we develop in a companion paper (Ahlfeldt et al., 2021). The model features exter-
nal returns that generate agglomeration of jobs, commuting costs that lead to co-location
of jobs and workers, and a dispersion force that emerges from a less than perfectly elas-
tic supply of real estate (Ahlfeldt et al., 2015).5 We augment the model with endogenous
transport network formation subject to increasing returns to scale (Fajgelbaum and Schaal,
2020; Santamaria, 2020). The distinctive element of the model is that indivisible workers

4Establishing the causal effects of historic population and transport networks (Gonzalez-Navarro and
Turner, 2018) is a recurring challenge in urban economics and economic history research. Inconsequential
units (Redding and Turner, 2015) and historic roads (Duranton and Turner, 2012) provide exogenous varia-
tion in transport connectivity between and within cities, but do not necessarily predict the development of a
within-city transport network, which is itself endogenous to city population. Heblich et al. (2020) show that
within-city transport networks can lead to increasing segregation of productive and residential land uses. Our
contribution is to document how transport networks anchor the densest economic clusters and to propose a
new instrumental variables strategy to separately identify historic population and transport effects.

5See Ahlfeldt and Pietrostefani (2019) and Duranton and Puga (2020) for reviews of the urban economics
literature on spatial agglomeration and dispersion forces.
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and firms—both of which differ along productivity—match to produce output. Assortative
matching generates a fat-tailed distribution of firm sizes so that part of the extreme concen-
tration of employment into a few locations is driven by the concentration of employment
into large firms (Ellison and Glaeser, 1997; Gabaix, 2011). We distinguish between single-
establishment prime services firms, global multi-establishment prime services firms, and
non-prime services firms that compete for productive locations to generate one-for-one the
same spatial concentration measures as in the empirical part of the paper using model-based
equivalents of prime service establishments.

In each Monte Carlo experiment, we randomize city size as well as the assignment of
productivity to workers and firms and solve for an equilibrium in the absence of external
returns to obtain the model-based equivalent of a city observed in 1900 in our ’Gobal Cities’
data set. The city may then develop a mass transit system before being eventually hit by
a virtual disaster that forces a random number of firms to relocate away from the historic
prime location. In a temporary equilibrium, only the shocked firms find optimal locations.
In the final equilibrium, the model-based equivalent of a city observed in 2000, there is
full re-optimization of firm-location choices and worker-firm assignments under external
returns such that the spatial distribution of prime services firms may or may not revert back
to the initial equilibrium. Running such Monte Carlo experiments several thousand times,
we obtain a synthetic ’Global Cities’ data set that we can subject to the same regression
models as those used in the empirical parts of the paper. One advantage of the Monte Carlo
setting is that we can generate exogenous and independent variation in city size and trans-
port networks, hold the distribution of fundamentals constant, and observe the distribution
of prime services in the historic period, which solves all identification problems. Moreover,
we can surgically switch off external returns to scale and endogenous transport network
formation. The takeaways are important. We can reproduce all patterns in the data solely
through the interplay of exogenous shocks and economic forces that are canonical in recent
urban models. External returns are a necessary condition for disasters to shift the spatial
distribution of prime services between multiple equilibria and to lead to a more dispersed
spatial configuration. The permanent locational advantage durable transport networks cre-
ate around their central nodes represents a major source of inertia that provides a stronger
anchoring effect than agglomeration economies do.

The remainder of the paper is structured as follows. Section 2 summarizes our global
cities data set, develops our methodology to detect prime locations, and provides stylized
facts on the spatial distribution of prime services that motivate the further analyses. Sec-
tion 3 provides causal evidence on the role of historic city size, the development of early
mass transportation networks, and disasters in shaping the spatial distribution of prime
services within cities. Section 4 expores the underlying mechanisms empirically and theo-
retically (using Monte Carlo experiments). Section 5 concludes.
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2 Prime locations in global cities

We are interested in how an important type of economic activity—prime services—organizes
into a small number of hyper-productive clusters within large cities. We first document
the rising importance of these prime services and show their fractal geographic pattern:
they are highly concentrated in cities generally; they are especially concentrated among the
largest cities; and, using detailed micro-geographic data, we show that they are extremely
concentrated into a limited number of very dense areas within cities. The latter—locations
that account for a large share of prime service employment—are what we call prime locations.
Second, we harness big data to predict the spatial configuration of prime services and prime
locations in cities where detailed micro-geographic data are not available. Last, we combine
our micro-geographic data with a novel data set of historic urban biographies for 125 world
cities and look at the cross-sectional patterns and dynamic changes in prime locations. In
doing so, we uncover a set of facts that have hitherto gone unnoticed. These facts motivate
our causal analysis and exploration of mechanisms in the remainder of the paper.

2.1 Geographic concentration of prime services

Apart from two minor exceptions, our definition of prime services encompasses all busi-
nesses in the financial, insurance, and real estate (FIRE), and professional services (PROF)
sectors (see Appendix A.1 for details). These services are ‘prime’ in the sense that they are
high value added, knowledge-based, and tradable; employ a large share of highly educated
workers; pay high wages; and typically occupy the most up-scale office stock within cities.
Today, these services make up more than a quarter of the economy. Contrasting them with
manufacturing, Panel (a) in Figure 1 shows their increasing importance for US GDP. In terms
of value added, the prime service share in the US economy grew from around 12% to over
28% from the late 1940s until today. In comparison to the almost symmetric decline of the
manufacturing sector, the spatial effects of this economy-wide transformation have received
relatively little attention.6

Data across urban and non-urban regions, between cities, and within metropolitan areas
reveal the importance of prime services. Their strong urban bias operates through an exten-
sive and an intensive margin. Even though US Metropolitan Statistical Areas (MSAs) in 2015

produced ‘only’ about 90% of the nation’s GDP, they delivered approximately 96% of prime
services (Appendix A.1). In other words, prime services are almost exclusively produced
in metropolitan areas. On top of this extensive margin, the semi-elasticity of 0.036 of the
prime service employment share with respect to city size highlights the intensive margin
of the urban bias (see panel (b) of Figure 1). Moving from the median-sized metropolitan

6Recent work by Eckert et al. (2020) constitutes a notable exception. The authors analyse the role of skill-
intensive services for the urban bias in US economic growth since the 1980s.

6



Figure 1: Importance of prime services for the US economy and for large US cities
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Notes: Panel (a): Calculated from the industry accounts by the Bureau of Economic Analysis (2018). The pattern is robust to excluding the
real estate sector. Panel (b): Unit of observation is MSA. Shares are partially imputed, see Ahlfeldt et al. (2020) for a description of the
sources, details on the imputation, and results without imputation.

area, Champaign-Urbana, to the largest, New York-Newark-Jersey City, increases the prime
service share by [ln(popNY )− ln(popCU )]× β̂ ≈ 4.44 × 0.036 = 16.28 percentage points—a
change roughly equivalent to moving the US economy from 1950 to 2015 (see panel (a) of
Figure 1). Great inequalities thus exist in the distribution of prime services between cities,
with large cities being more specialized in that type of services. A priori, there are good
reasons to believe that the variation in the geographic distribution of prime service em-
ployment is even larger within cities because various types of distance-sensitive networking
externalities—agglomeration economies—matter for those services’ productivity.7

Panel (a) of Figure 2 shows that the within-city spatial concentration of prime services
is striking. Exploiting geo-coded establishment-level employment data, the left figure re-
veals that prime service firms employ about 600,000 workers within a twenty minutes walk
(2 km) from the Empire State Building. This number increases to close to one million if
we triple the radius to one walking hour (6 km). The fact that prime service employment
dominates manufacturing employment even 150 kilometers from the Empire State Build-
ing highlights its importance for a global city such as New York. More importantly, the
right figure of panel (a) generalizes this insight by adding another five Canadian and US
cities—Toronto, Montreal, Vancouver, Boston, and Philadelphia—for which we have geo-
coded establishment-level data. The concentration observed in New York is no exception:
the average share of prime service employment within 5 km from the central business dis-
trict (CBD) in these six cities, computed with reference to the total within a 50 km radius, is

7See, e.g., Arzaghi and Henderson (2008), who study the clustering of a small subset of our prime service
sector, advertising agencies, in Manhattan; and Lui et al. (2018), who provide evidence for within-building ag-
glomeration economies for a subset of prime services (including law offices, advertising offices, and insurance
carriers) in large US cities.
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almost 40%, exceeding the respective share for manufacturing by a factor of four.

Figure 2: Observed geographic concentration of prime services in cities

(a) Distribution of prime services within cities by distance from the CDB

(b) Geographic concentration of prime service employment in NY

Notes: In Panel (a), the unit of analysis is city × 0.1 km distance-from-CBD bins. In the right panel, we illustrate the means and standard
deviations across six cities whose CBDs are defined as follows: Prudential Centre (Boston), KPMG Tower (Montreal), Empire State
Building (NYC), Liberty Bell (Philadelphia), CN Tower (Toronto), and MNP Tower (Vancouver). In Panel (b), bars are proportionate to
prime services employment within 250×250m grid cells (white cells have zero prime service employment). Red needles illustrate global
prime locations identified from prime points using our algorithm. The underlying establishment-level data are proprietary data from the
National Establishment Time Series (NETS) for the US and Scott’s for Canada. See the supplementary data appendix for more details.

Panel (b) of Figure 2 depicts the distribution of prime service employment in New York
by 250×250 meters grid cells. What is striking is the extreme concentration of those services
into basically two locations—Midtown and the Financial district—whereas many other lo-
cations are completely devoid of such employment.
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2.2 Predicting the location of prime services in cities

Ideally, we would use highly disaggregated micro-geographic data, such as those underly-
ing Figure 2, to detect clusters of prime services. However, such data are only available for a
limited number of cities, thus restricting substantially the global scope of the analysis. Fol-
lowing Henderson et al. (2012), the problem of approximating the sub-national distribution
of economic activity has attracted more attention. Big data techniques have, in particular,
become increasingly popular in economic research as a means of approximating economic
data at a high spatial or temporal granularity, e.g. via remote-sensed land-cover or lights
data. Even though increasingly better resolutions open new opportunities in this field (Don-
aldson and Storeygard, 2016), it is nearly impossible to infer industry-level data, especially
for services, from satellite imagery capturing buildings or lights. We hence propose an alter-
native approach and show how globally available big data on prime service establishment
locations, scraped from external open sources, in conjunction with fine-grained statistical
employment data for a selected number of cities suffices to sensibly approximate the spatial
distribution of prime service employment for areas as small as US zip codes. Our approach
complements earlier attempts to measure local economic activity using satellite imagery and
extends it by allowing for a spatially fine-grained measurement of the distribution of prime
services.

To construct our proxies for prime services, we combine micro-geographic data on about
457k prime service establishments for six North American cities with a dataset of about 100k
prime service establishments that we scraped using the Google Places API for 125 world
cities that we use in the subsequent analysis. These 100k scraped establishments—which
we henceforth refer to as prime points (PP)—include the following categories: accounting
firms, consultancies, insurance, investment banks, and law firms. We augment this dataset
by scraping establishment data from the respective global leaders’ websites in these sectors
(such as the top-4 accounting firms, the top-5 consultancies, and the top-10 global law firms)
and locate the establishments of operating central banks and stock exchanges. These prime
points serve to detect clusters of prime service employment in our sample of cities.

Unfortunately, the scraped PPs do not have any information on employment. We thus
use the six cities for which we have both micro-geographic prime service establishment
data—including employment—and scraped prime points to estimate employment weights
for the PPs. Details of the estimation procedure and information on the estimated weights
are given in Appendix A.2. In estimating those weights, we distinguish between companies
with a global outreach and their more localized counterparts. One key feature of the most
productive locations is that they host international firms that operate in many such places
and build global networks (e.g., Sassen, 2002; Taylor, 2005). The spatial concentration of
these ‘global players’ should thus particularly well reveal the places where most of the value
in prime services is generated. Having obtained estimates, we finally assign the category-
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specific employment weights to our prime points to obtain employment-weighted prime points
(henceforth, EWPPs). These EWPPs will help us to predict the distribution of prime service
employment in our 125 global cities.

Figure 3: Distribution of prime service employment and EWPPs in cities

Notes: Unit of analysis is city × 0.1 km distance-from-CBD bins. We illustrate the means and standard deviations across six cities
whose CBDs are defined as follows: Prudential Centre (Boston), KPMG Tower (Montreal), Empire State Building (NYC), Liberty Bell
(Philadelphia), CN Tower (Toronto), and MNP tower (Vancouver). Employment-weighted prime points (EWPPs) are generated by as-
signing employment weights to prime points (PPs) queried from the Google Places API and scraped from company websites. Appendix
A.2 documents the precise estimation procedure. Employment weights are estimated in city-specific regressions of actual prime service
employment (from NETS and Scott’s) observed for the six cities above against various types of prime points such as accounting firms,
consultancies, insurance companies, investment banks, law firms, distinguishing between global (leading companies operating at a global
scale) and local establishments, as well as central banks and stock exchanges. The units of observation in these ancillary regressions are
30,000 disks with a 750-meter radius (about a square mile) drawn around random points. Each PP category receives the median estimated
employment weight across the distribution of cities.

Figure 3 depicts the distributions of prime service employment and of EWPPs for our
six cities in the same way as in panel (a) of Figure 2. In the left panel, we show that the
within-city distribution of EWPPs tracks the actual distribution of prime service employ-
ment closely. Over-identification tests confirm the out-of-sample predictive power of our
prime points and assigned employment weights (see Appendix A.2 for details, especially
Table A 4). Importantly for the choice of a world-wide city sample explained in the next sec-
tion, our EWPPs predict well the intra-city location of grade-A office buildings held by real
estate investment trusts (SNL-S&P investments) and of Starbucks franchises. The former
typically comprise upscale office buildings that are favored by prime service firms, espe-
cially the global players; whereas the latter arguably are an iconic workplace amenity and
places where workers in knowledge-based tradable services can meet and interact.8 Our
EWPPs alone also explain more than one third of the variation in prime service employ-
ment at the level of ZIP Code Tabulation Areas within and between 39 US cities that are
not used in the estimation of our employment weights. The median slope of city-specific
regressions of actual prime service employment against EWPPs across these 39 cities is close
to one. The predictive power is not limited to North American cities. In Table 1, we show

8At the level of randomly drawn 750-meter radii disks (about one square mile), EWPPs in the six cities for
which we have detailed micro-geographic data explain more than 70% of the variation in the distributions of
SNL-S&P investments and of Starbucks franchises. See Table A 4 in Appendix A.2 for details.
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that our scraped PPs are good predictors of Starbucks franchises, grade-A office buildings
held by real estate investment trusts (SNL-S&P investments), and co-working spaces in all
continents, with North America being no particular outlier in terms of explanatory power.
In Moscow, where we have access to geo-coded data for a very large sample of prime service
establishments, we find that our PPs explain nearly two thirds of the variation in the number
of establishments (see Figure A4).

Table 1: Predictive power of prime points by world region

Outcome Stat. Africa Asia Europe N. A.a Oceania S. A.b

Starbucks Coeff. - 0.049*** 0.029*** 0.072*** 0.008*** 0.008

R2 - 0.211 0.399 0.284 0.616 0.188

SNL-S&P investments Coeff. 0.194*** 0.113* 0.070*** 0.053*** 0.072* 0.037***
R2

0.664 0.277 0.384 0.119 0.578 0.568

Coworking spaces Coeff. 0.021** 0.040*** 0.034*** 0.039*** 0.030** 0.025***
R2

0.350 0.241 0.519 0.350 0.787 0.278

Notes: aNorth America. bSouth America. Table reports regression coefficients and R2 from regressions of a given outcome against prime
points conditional on city fixed effects. Outcomes and prime points are measured as counts within 30,000 randomly drawn disks of
750-meter radii in each city. We discard disks with zero counts in both outcomes and prime points. In each column, we pool all global
cities within a continent in one regression. * p < 0.1, ** p < 0.05, *** p < 0.01.

Last, the right panel of Figure 3 compares the concentration of companies with the largest
global reach with that of all other prime service companies. The concentration of global
EWPPs is significantly stronger, revealing that for prime services with a global reach, CBDs
have a particularly strong gravity.

To summarize, our approach using employment-weighted prime points—constructed
from scraped data that are available for many cities—allows us to reliably predict within-
city employment patterns of prime services. The main advantage of this big data approach
is that it enables us to move beyond a handful of North American cities and to investigate
the geographic concentration of prime services even when no spatially disaggregated data
are available. This in turn mitigates concerns about the external validity of the patterns that
we dissect in the remainder of the paper.

2.3 The Global Cities dataset: Big data meets urban biographies

With a method to predict the within-city location of prime service employment in hand,
we now extend our analysis to a global sample of cities. Two major challenges arise when
determining and operating with such a sample: (i) which cities to choose; and (ii) how to
delineate them. We chose a data-driven approach to confront both of them.

One defining characteristic of the type of cities we are interested in is their ability to
attract international capital and to host large international franchises. We have explained in
Section 2.2 that the locations of our EWPPs are highly correlated with those of grade-A of-
fice buildings (SNL-S&P investments) and some workplace amenities such as Starbucks. For
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both of these, we have access to an exhaustive world-wide address-level dataset of invest-
ments and franchises.9 We first aggregate administrative cites, as recorded in the SNL-S&P
Global data base, to functional cities, by selecting core administrative cities that dominate
surrounding administrative cities within 30 kilometers in terms of the number of invest-
ments. We then select cities which by 2015 had at least 25 recorded investments into com-
mercial buildings or at least 25 Starbucks franchises. After dropping a handful of cities with
populations below 100k (e.g., Princeton, US) or where historic data were not traceable (e.g.,
Fukuoka, Japan), our resulting Global cities dataset comprises 125 cities. Our lack of data
for South Asian cities and sparse African coverage aside, Figure 4 highlights that the sample
is truly global. The spatial distribution of these cities follows the world map of 123 global
cities in a recent report by the Global Cities Initiative very closely (Trujillo and Parilla, 2016)
and covers 87% of the GDP produced in a recent top-100 cities list (PricewaterhouseCoopers
UK, 2009).

Figure 4: The sample of 125 global cities

Notes: To enter the sample, a city needs to have at least 25 prime investments in grade-A office stock by real estate investment trusts in the
SNL-S&P database or at least 25 Starbucks franchises.

Given that administrations draw city boundaries differently across the globe, it is im-
portant to define a universal rule for determining the extent of the cities. The functional
cities we work with are rectangles consisting of 250×250 meter grid cells, centered on the
median coordinates of prime investments of the core city. We endogenously determine the
side length so that we cover all prime investments within 30 kilometers of the core city, plus
a five-kilometers buffer. This procedure results in endogenous city sizes ranging from 272

square kilometers for Basel to 3,875 square kilometers for Houston, which is known for its

9We rely on two data sources: (i) the SNL-S&P Global database, a global proprietary real estate research
dataset covering grade-A office stock; and (ii) a scraped list of all Starbucks coffee shops worldwide.
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many edge cities (Lang, 2003, p. 65). We provide corresponding maps for each city in the
Global Cities dataset Appendix (Ahlfeldt et al., 2020).10

Table 2: Data summary
Disaggregated data, address- or grid-level Urban biographies

Economic data Physical geography Historical data
Core data Grid level Address-level
Central banks ⋆ Land cover First settlement ⋆
Consultancy firms ⋆ Elevation First political institution ⋆
Co-working spaces ⋆ Water cover City hall 1900 ⋆
Insurance firms ⋆ City hall 2000 ⋆
Investment banks ⋆ City level (built from grid)
Law firms ⋆ Developable land †
Stock exchanges ⋆ Irregular shape index † City level

Fragmentation index † Colonial occupation in 1800 ⋆
Employment weighting Caloric potential of hinterland Government type (1800-2000) ⋆
Scott’s Business Directories (P) Manmade disasters ⋆
NETS National Establishment Natural disasters ⋆
Time Series (P) Population (1800-2000) ⋆

Rapid transit openings †
Validation data Subway potential (1900) †
Geotagged photos Market potential (1900) †
Geotagged Twitter tweets
Co-working spaces ⋆ Validation data
Grade-A office buildings - SNL (P) 1880 US census (10% sample) †
Starbucks establishments Member list of International
Emporis tall buildings (P) Chamber of Commerce (1922) ⋆
US County Business Patterns NPS historic buildings †

Notes: All economic data are at least at the address-level (many of them are geocoded at the rooftop level). ⋆ indicates primary data in
the sense that we produced them from scratch. † indicates data for which we could rely on previous work and data, but that involved
either substantial additional archival research (e.g., rapid transit openings) or substantial additional own calculations (e.g., developable
land measure). (P) marks proprietary data. No sign means that the data were simply matched to our city dataset, such as caloric potential
from Galor and Özak (2016). All sources are documented in the accompanying Global Cities dataset Appendix (Ahlfeldt et al., 2020).

Table 2 documents the types of data we collect for our Global Cities dataset, where ⋆

symbols mark variables created from scratch, and † symbols characterize significant exten-
sions and improvements over existing data.11 Column 1 summarizes the micro-data that we
employ for the prediction of current prime locations, including the core data from Google
and company websites, the training data for the employment weighting, and the validation
data. Column 2 summarizes geographic control variables that we employ when analyzing
prime locations. Beyond first-nature geography, our analysis will also feature second-nature
geography and path-dependency. The third column summarizes the variables that we col-
lect on these dimensions. Based on many hundreds of different sources, we coded the
spatial, disaster, and population history of these 125 cities. Typical starting points for creat-
ing such variables were an “urban biography” or a “historical dictionary”, which document
the history of a given city. We provide a detailed account of the sources for each data point

10Recent data-intensive alternative approaches include Rozenfeld et al. (2011, delimiting US cities using a
bottom-up procedure that clusters populated areas obtained from high-resolution data) and de Bellefon et al.
(2019, employing building heights in the French context).

11These are improvements either through calculating a new measure (e.g., deriving a market potential
measure from existing global population data by Buringh and Centre for Global Economic History 2018;
Bosker et al. 2013) or substantial research based on urban biographies (e.g., extending and improving the data
on the opening of rapid transit by Gonzalez-Navarro and Turner 2018).
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alongside with a population graph, a map showing the location of prime services, and a
disaster history in the separate Global Cities dataset appendix (Ahlfeldt et al., 2020). Finally,
Table 2 also highlights that the Global Cities dataset comes in two different forms: a raster
dataset, at a 1.5 × 1.5 km resolution, combining address-level and grid-level data; and a
city-level dataset, adding information at the city level.

2.4 Detecting contemporary prime locations

In our earlier discussion of New York and a handful of other North-American cities, we as-
sumed the location of the central business district based (CBD) on what could be considered
common sense (e.g., the Empire State Building for New York). Such an approach is nei-
ther satisfactory nor scalable to our global dataset. What constitutes the CBD is subjective.
‘Common’ sense in determining business districts will inevitably vary among city planners
across our 125 cities, leaving room for arbitrary choices. To complicate matters further, con-
temporary cities are often polycentric, featuring subcenters (McMillen, 2001) and edge cities
(Henderson and Mitra, 1996). This makes it difficult to pin down a CBD.

For a more systematic identification of prime locations, we use our employment-weighted
prime points and an algorithmic approach in the tradition of (point-pattern based) cluster
analysis (e.g., Besag and Newell, 1991; Ripley, 2005). Intuitively, we detect prime locations as
areas with an ‘abnormally high’ density of EWPPs compared to the expected density at any
random developable point in the city. The algorithm works as follows. First, for each city
we generate a distribution of 100k points uniformly drawn at random within developable
cells of our city grid. Second, we loop over those 100k random points and compute the sum
of EWPPs within a radius of 250 meters.12 We also keep track of the distances of each ran-
dom point from all EWPPs within that 250m radius. This yields a baseline distribution that
tells us how likely any random point in the city is exposed to EWPPs. Third, we compute
those same measures using the observed locations of our EWPPs instead of random points.
Comparing the exposure to EWPPs of observed and random locations, we then retain only
those EWPP locations in the 99th percentile of the baseline distribution. Those are locations
with an abnormally high concentration of prime service employment—as measured by our
EWPPs—compared to random points in the city. We refer to those points as focal points.
Fourth, we trim away focal points in small clusters or in less dense parts of the point pat-
terns (i.e., towards the border of the clusters) by keeping only the 25% with an above-median
EWPP weight within 250m and a below-median EWPP average distance within that same
radius. This ensures that focal points are in sizable and dense clusters. From the remaining

12In generating the 100k draws, we discard all draws that fall into undevelopable grid cells (see Ahlfeldt et
al. (2020) for a definition). For some draws, a 250 meters radius disk intersects with nearby undevelopable cells.
In that case, we adjust our EWPP counts upward by considering the average share of developable area in the
disk. When ‘counting’ prime points, we sum their weights as estimated in Section 2.2; and when computing
average distances, those distances are weighted by those same weights.
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focal points, we finally select those that dominate all other focal points within a catchment
area of 750 meters in terms of prime point density. Prime locations are the resulting mutu-
ally exclusive catchment areas, each of which covers approximately one square mile, about
the size of the City of London. With this approach, we identify 442 prime locations, which
corresponds to 3.5 prime locations per global city, on average. In line with our discussion of
global prime services, we replicate the procedure with the additional restriction that focal
points must be within 750 meters of a global PP, which results in 240 global prime locations.

Figure 5: Prime location distance gradients

Notes: The gradients are averaged across up to 125 global cities, depending on data availability. Underlying each panel is a regression
of an outcome measure against 500m-distance-bin effects and city effects at the city-grid cell level. Solid black lines are the distance-bin
point estimates, gray-shaded areas are the respective 95% confidence intervals. For a description of the underlying data, see the Global
Cities dataset Appendix (Ahlfeldt et al., 2020).

Figure 5 shows that prime locations are nodes of various urban density gradients. The
first row shows gradients of EWPPs (which, by construction, declines steeply as we move
away from PLs), SNL-S&P investments, and Starbucks franchises. We already discussed the
latter two variables when justifying our choice of city sample, and Figure 5 reassures us that
this generalizes more broadly to our global sample. The left panel of the second row depicts
the gradient of co-working spaces—shared office spaces where workers in knowledge-based
industries can interact. The gradient again falls off very quickly as we move away from
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prime locations. This is reassuring on two fronts. First, co-working spaces are a relatively
new phenomenon and they are arguably less prone to either tourism effects (Starbucks) or
the legacy of long-term investments (SNL). Second, co-working spaces are more directly
linked to the production of knowledge-based services. They are—by design—places that fa-
cilitate ‘social interactions for production’. That measures of social interactions—geotagged
social media activity (Twitter tweets, photo counts)—also display steep distance gradients
originating at our prime locations is shown by the remaining panels in the second row.
Finally, the third row of Figure 5 reveals that our prime locations are also nodes of height,
office space, and population gradients. The height of buildings decreases with distance from
our prime locations, as does the ratio of commercial-to-residential buildings and population
density.13 The latter gradients show that we foremost detect dense business locations and
not just urban density overall. The population density gradient indeed displays a different
curvature from the others: it increases initially and flattens out more slowly than the other
gradients. We find that building height gradients are steeper in Canada and the USA than
in the rest of the world, but population density gradients are flatter. Other than that the
gradients are similar, lending further support to the external validity of the employment
weights we assign to our prime points.

Figure 6 illustrates the inputs (employment-weighted prime points) and the outputs
(global and non-global prime locations) of our cluster algorithm for the cities of Los An-
geles and New York, respectively. It also provides additional validation. Within each of
the cities, it becomes apparent that our algorithm identifies the most important clusters of
employment-weighted prime points relative to the distribution of validation data such as
Starbucks, SNL buildings, and co-working spaces. Across cities, the pattern of prime lo-
cations reproduces a well-known dichotomy: LA, hosting many prime locations afar from
each other, is “beyond polycentricity” (Gordon and Richardson, 1996, as cited in Anas et al.
1998), whereas NY remains centered around two cores in Manhattan (Glaeser, 2011).

Such heterogeneity in the geography of prime services is striking. NY and LA are both
large metropolitan areas in the same country that share a similar institutional framework.
Moreover, the dispersion in LA is a recent phenomenon—both cities were monocentric in the
mid- to late 19th century. The early business district in LA is close to what is now the Civic
Center area in Downtown LA (Roseman et al., 2004, pp. 11 & 35). In New York, the historic
central business district began at City Hall and encompassed Broadway and the Bowery
according to historians and econometric evidence (Atack and Margo, 1998, p. 159). In both
cities, the historic centers of prime service employment were thus close to the foundation
places and 1900 city halls. Yet, the central point—intuitively denoting the location with the

13We further verified that the height gradient is steeper for recent constructions so that durable building
stock alone cannot explain the density gradient. Additionally, Appendix A.3 shows that the predicted prime
locations pick up concentration measured from industry-specific establishment-level data for six North Amer-
ican cities.
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Figure 6: Prime locations in Los Angeles (left panel) and New York (right panel).

Notes: This figure illustrates the output of our cluster algorithm that identifies focal points as the most clustered prime points and prime
locations as the centers of clustered focal points. Own illustration based on OpenStreetMap background map. Complete city profiles,
including similar maps for all 125 cities, are available in the Global Cities dataset appendix (Ahlfeldt et al., 2020).

greatest accessibility to prime points within 5 km (see Appendix A.4)—has moved halfway
from Downtown towards Santa Monica in LA, while in NY it remains close to the historic
center of Manhattan. Which differences between the two cities can explain this shift?

Differences in their first-nature geographies may partly explain the divergence. For ex-
ample, the Hudson and East rivers constrain Manhattan’s urban form, whereas LA’s historic
core does not face similar constraints. The resulting differences in urban compactness may
lead to differences in accessibility and have effects on agglomeration or welfare (Harari,
2020). Moreover, Lower Manhattan, unlike Downtown LA, is a natural harbour. This loca-
tional fundamental may explain why the prime locations in NY are so close to their initial
settlement, whereas they moved seawards (as measured by the central point) in LA.

Similarly, the development of NY’s and LA’s second-nature geographies differs substan-
tially in at least two respects. First, NY was settled more than 150 years before LA, it was
much larger, and much denser earlier. By 1900, it hosted 30 times the population of LA
and about 5 times as many people per hectare (Advisory Commission on Intergovernmen-
tal Relations, 1977). The higher density likely generated greater agglomeration economies,
increasing the centripetal force of the initial prime location and the hurdle for new prime lo-
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cations to emerge outside of Manhattan. Second, “transportation technologies shape cities”
as Glaeser (2011, p.141) points out with regard to NY. Midtown hosted the Pennsylvania and
Grand Central stations, connecting New York with the rest of the country. These stations
also became the center of a massive rapid transport system starting to develop in 1868 as an
elevated metro. The transit system, which was (and still is) largely centered on Manhattan,
reinforced the locational advantage of the historic centers, thus anchoring them. LA did not
develop such an early hub-and-spoke system, possibly because its smaller size in 1900 made
it unprofitable, and thus organized around car-based transportation in the 20th century.

In sum, our algorithm reliably detects prime locations—centers of modern prime service
activity. The comparison of New York and Los Angeles highlights that the contemporary
spatial configuration of prime locations ranges from concentrated to very dispersed. In
the case of LA and NY, both large cities nowadays, first nature geography and the history
of second nature attributes, early population agglomeration and rapid urban transport in
particular, seem likely candidates to explain the divergence. Do these insights generalize?

2.5 Historical prime locations

To make more generalizable statements about the role of first- and second-nature geogra-
phy, we need to move to our 125 city sample. This poses two challenges. First, we have to
determine a common date across the sample for which we gather data on historic prime ser-
vice employment centers (the historic ‘prime locations’)—ideally just before second nature
geography started to matter. Second, we have to locate these centers in the absence of data
sources that match the extent of our scraped prime point data for today.

Canonical models of the economic geography literature consider the industrial era as
the starting point for second nature attributes to matter. Beginning with this period, loca-
tional fundamentals become less important compared to external returns to scale that arise
from input sharing, labour market pooling, and knowledge spillovers (Marshall, 1890; Krug-
man, 1991). From the early 19th century onwards—the periodization varies by country—
industrialization facilitated the growth of cities as peasants migrated in from the countryside
and firms began to exploit internal and external economies of scale in manufacturing. De-
mand for prime services such as banking grew as the nature of the economy changed.14

However, the spatial structure of cities remained constrained by low speeds at which people
and information travelled through space. This changed towards the end of the 19th century
when the electric street car and later subways, elevated and underground, facilitated urban
sprawl (Muller 2017). The powerful individual transport and communication revolutions,
epitomized by the rapid adoption of the automobile and telephone, followed soon after
(see Figure A5 in Appendix A.5). These reductions in transport and communication costs

14According to data constructed by Philippon (2015), the value added share of the finance and real estate
sector in the United States almost tripled between 1869 and 1899.
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induced urban areas to specialize according to their comparative advantage in interactive
tasks (Michaels et al., 2018; Heblich et al., 2020). Within cities, more remote places became
feasible business locations (Moyer, 1977). We thus select 1900 as the end of the first nature
period and argue that from there on agglomeration effects progressively took over.

Detecting historic prime locations requires a different approach as we lack the wealth of
data that we use to identify contemporaneous prime locations. Urban history, however, is a
good guide. The foundation place provides a good proxy for the very early city center by
definition: with surrounding parts not settled or settled later, prime service activity must
have taken place there. As discussed by Anas et al. (1998), the historical evidence suggests
that cities, for the reasons discussed above, remained centered around one core until the
end of the 19th century. This simplifies the problem since we only need to find the historic
prime location. The 1900 city hall is a natural candidate for the historic prime location
since political and economic centers could not afford to decouple due to high moving and
communication costs. Indeed, Figure 7 confirms that 1900 city halls were the nuclei of
various density gradients that we associate with prime service activity.

Figure 7: 1900 city hall distance gradients

Notes: The gradients are averaged across cities. Underlying the figure are regressions of the different outcome measures on city fixed
effects and 250m-distance-bin dummies (graphs containing US Census data) and 500m distance bins (all others). Outcome measure
in upper-left and upper-center panels: ln (building heights) in grid cell (only non-missing data included; N = 2, 174 for 90 cities and
N = 3, 457 for 93 cities, respectively); outcome measure in upper-right (ur) and lower-left panels (ll): ln (µ+ establishment count), where
µ is the mean establishment count per cell ((ur) based on 36 US cities and more than 250 establishments in total (ll) based on 14 American
and European cities with more than 450 establishments in total). The outcome measure in the bottom-center and bottom-right panels are
ln((number PS workersj + 1)/areaj) and ln((number nonPS workersj + 1)/areaj). Data are for 26 cities. The solid black lines are the
point estimates and the gray-shaded areas are the confidence intervals of the latter. For a more detailed description of the underlying
data, see the Global Cities dataset Appendix (Ahlfeldt et al., 2020).
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The upper-left panel shows that 1900 city halls co-located with tall buildings. This is
especially true for new constructions around 1900–1910, which suggests that a 1900 city hall
reveals the economic center in 1900 rather than the legacy of a more distant past (upper-
center panel). The upper-right panel harnesses data from the historic places database of
the US National Park service, focusing on historic bank, insurance, and association build-
ings. The lower-left panel replicates this exercise with a members list from the International
Chamber of Commerce from 1922, containing global address-level data of business associ-
ations and banks. These gradients for historic prime service buildings fall off very quickly
with distance from the 1900 city halls. The last two panels show gradients for people work-
ing in prime services and those not working in prime services, respectively, using the 10%
sample of the 1880 US census for 26 cities. The gradient for workers outside of prime ser-
vice industries is not monotonic and also flatter than the corresponding gradient for prime
service workers. Since 1880 predates the development of mass transit and the adoption of
the automobile, the distribution of jobs should closely follow the distribution of people. It
mimics the population gradient in Figure 5 in that it increases within the first kilometer as
before. This comforts us in our view that the 1900 city halls pick up prime services centers
at high geographic precision.

2.6 Resilience of prime locations: stylized evidence

Equipped with information on historic prime locations for 125 global cities, we are now
ready to search more systematically for potential determinants of spatial change and per-
sistence in global cities. Concretely, we are seeking to substantiate or reject the role of
locational fundamentals, historic agglomeration, and early transport adoption suggested by
our discussion of New York and Los Angeles (Figure 6). At this stage, we keep the analy-
sis descriptive and regress binary indicators that mark the presence of contemporaneous or
historic prime locations within 1.5 × 1.5 km grid cells against grid-cell characteristics, with
no particular emphasis on causality. This exploratory analysis will guide our investigation
of causal mechanisms in Sections 3 and 4.

In the absence of agglomeration effects, the spatial distribution of economic activity
should be mainly tied to locational fundamentals, i.e. physical geography features. Col-
umn (1) of Table 3 shows that the historic foundation place tends to be in grid cells with a
favorable geography, i.e., close to running water, at lower altitudes, in valleys, and on rel-
atively flat terrain.15 Having access to nearby navigable waters, as an example, increases a
grid cell’s probability to host the historic foundation place by exp(1.634)− 1 = 412%. More
generally, most of our locational fundamentals in column (1) are predictors of where the
foundation place was located. Column (2) replicates column (1) to predict the location of

15Soil fertility was also a very important historic determinant of where cities emerged and how large they
could grow. However, it mattered little for the location of economic activity within cities. We later use soil
fertility (caloric potential) as an instrument for city size.
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Table 3: Determinants of prime locations

(1) (2) (3) (4) (4a) (4b) (4c) (4d)
FP CH1900 Global PL PL PL PL PL PL

full sample early skyscraper early subway
yes no yes no

Water in own or adjacent cell 1.634
∗∗∗

1.320
∗∗∗

0.831
∗∗∗

0.558
∗∗∗

0.422
∗∗

0.681
∗∗∗

0.622
+

0.549
∗∗∗

(0.23) (0.23) (0.18) (0.14) (0.18) (0.22) (0.39) (0.15)
Average elevation -12.130

∗∗ -7.171
∗∗∗ -1.515

+ -1.453 -1.706 -1.223 -5.774 -1.334

(5.01) (1.79) (0.98) (1.05) (1.92) (1.29) (6.79) (1.07)
Average slope 10.332

∗∗
2.243 -1.529 -4.207

∗∗ -1.037 -6.127
∗∗∗

9.640 -4.916
∗∗∗

(5.21) (2.30) (1.70) (1.73) (3.42) (1.91) (7.79) (1.78)
Bare ground -1.860

+ -1.368
∗

0.397 0.015 -10.714
∗∗∗ -0.041 . 0.001

(1.18) (0.77) (0.70) (0.55) (0.79) (0.57) (.) (0.55)
Foundation place in cell 5.599

∗∗∗

(0.24)
Near 1900 city hall 4.098

∗∗∗
3.392

∗∗∗
3.730

∗∗∗
3.023

∗∗∗
3.634

∗∗∗
3.364

∗∗∗

(0.12) (0.09) (0.13) (0.14) (0.27) (0.10)
Cities 125 125 125 125 70 55 14 111

N (cells) 111,114 111,114 111,114 111,114 62,459 48,655 12,119 98,995

McFadden’s Pseudo R2 .07 .24 .21 .12 .15 .09 .16 .12

Notes: Unit of observation are 1.5 × 1.5km grid cells. Dependent variables: FP = Foundation place (in cell); Global PL = Global prime
location; PL = prime location; CH1900 = 1900 city hall. Units of independent variables: water: dummy (1,0); elevation: km; slope: %,
bare ground: dummy (1,0); Foundation place: dummy (1,0); Near 1900 city hall: (queen) contingency to 1900 city hall or city hall in
own cell dummy (1,0). All regressions include metro fixed effects. Where no city hall in 1900 exists, we take the first city hall instead.
In the rare cases where FP or CH1900 (2) lie outside our grid, we assign a 1 to the closest grid cell. Columns (4a-d) split the sample by
metro-wide attributes. All models are estimated using a Poisson maximum likelihood estimator with standard errors clustered by metro.
Using interactions between the ‘Near 1900 city hall’ variable with a dummy for the early skyscraper and early subway samples (rather
than splitting the sample) yields differences of .66 (p-value=.00) and .35 (p-value: .18) respectively. For a description of the variables and
the underlying data, see the Global Cities dataset Appendix (Ahlfeldt et al., 2020). + p<0.15, * p < 0.1, ** p < 0.05, *** p < 0.01.

the 1900 city halls. It shows that locational fundamentals continue to matter, although their
effect gets weaker (e.g., water drops from 412% to 274%). Furthermore, Column (2) shows
that city structure displays substantial inertia: proximity to the historic foundation place is
a very strong predictor of the 1900 CH location.

Columns (3) and (4) of Table 3 show that locational fundamentals and inertia remain
important to predict where today’s prime locations are: proximity to the 1900 city hall still
matters. This is particularly true for the global prime locations, which are more strongly
anchored to the historic city cores than prime locations generally. Note that proximity
to the foundation place and the 1900 CH—both influenced by locational fundamentals—
partly explain why locational fundamentals still seem to matter for prime locations. Yet,
the estimated coefficients on locational fundamentals decrease in magnitude and tend to
lose statistical power. The rise of second-nature geography offers a plausible explana-
tion. As external returns to scale—which follow economic activity, i.e., are geographically
mobile—become progressively more important, the spatial equilibrium distribution of em-
ployment is no longer uniquely determined: provided a sufficient mass of activity concen-
trates somewhere—wherever that may be—the endogenous agglomeration effects ensure
that local productivity keeps economic activity put where it is. A well-known corollary is
that, contrary to a first-nature world, shocks and historical accidents may have permanent
effects in a second-nature world. The underlying reason is that locational fundamentals are
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not affected by the shock and stay put, whereas the shock-induced movement of economic
activity also moves the endogenous agglomeration economies in space.16

The first four columns in Table 3 suggest that locational fundamentals are unlikely to
explain why prime locations moved away from their original locations (such as in LA, where
the center of gravity shifted towards the ocean). In the remaining columns, we explore the
potential role of historic agglomeration and early rapid transport adoption. Measuring the
size and spatial concentration of historic prime locations is not straightforward. Our strategy
is to use a measure of ‘revealed densification’.17 We split our sample into those cities that had
a skyscraper in 1900 (4a) and those that did not (4b). The coefficient capturing persistence
(Near 1900 City Hall) shrinks by about 20% as we move from cities with early dense cores
to those lacking such cores, while the pseudo R2 drops by 40%. Dense early centers hence
seem to have strongly anchored the production of prime services. To explore the effect of
early rapid transport adoption, Columns (4c) and (4d) of Table 3 split the sample into those
cities that were early adopters of rapid transport systems and those that were not.18 The
near 1900 city hall coefficient drops by about 7.5% and the pseudo R2 by about 25% as we
move from the early adopters to the rest of the sample, suggesting an anchoring effect of
early subway networks on contemporaneous prime locations.

To summarize, our data suggest that cities that were larger in 1900 and were early
adopters of mass transit remain more strongly centered on their historic cores nowadays.
Hence, there appears to be a role for initial conditions—city size and early mass transporta-
tion networks—in moderating the occurence of multiple equilibria.

3 Causal evidence

Motivated by the stylized evidence in Section 2, we formulate two hypotheses that directly
connect to theoretical research in urban economics and economic geography. We hypothe-
size that cities which experienced major spatial shocks such as natural disasters over the 20

th

century were more likely to undergo a transformation in the spatial distribution of prime
services, away from the traditional monocentric pattern and towards a polycentric config-
uration with multiple prime locations farther away from the historic core. This hypothesis
is consistent with the notion of multiple equilibria that prevails in urban models featuring
either firm-level increasing returns (Fujita, 1988; Krugman, 1991) or external returns (Fujita

16In a first-nature world, once the shock is resorbed, economic activity should move back to its initial
location (Davis and Weinstein, 2002). Table 5 in Appendix A.5 shows that city structure indeed remained very
stable before 1900, with 1900 city halls tightly linked to historic foundation places irrespective of the shocks
that the cities experienced between 1800 and 1900.

17Early skyscraper adoption and total population are strongly correlated. Based on our global cities sample,
a linear probability model yields β ≈ .07 (t-statistic about 3), suggesting that the probability of having a
skyscraper increases by ln(5/1) ∗ .07 = 11% as we move from a city with around 100,000 inhabitants to one
with more than 500,00 inhabitants in 1900.

18We choose 1910 instead of 1900 to allow some time lag for construction.
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and Ogawa, 1982; Lucas and Rossi-Hansberg, 2002; Ahlfeldt et al., 2015). We are the first
to subject this intuition to an empirical test in a large set of global cities. We further hy-
pothesize that historically larger and denser cities were more likely to remain monocentric.
This hypothesis is consistent with a growing economic geography literature that explores
the role of path dependency in spatial configurations theoretically (Allen and Donaldson,
2020) and empirically (Bleakley and Lin, 2012). Again, we are the first to engage with this
phenomenon in a large sample of global cities. In this section, we provide reduced-form
causal evidence supporting both hypotheses. We will turn to the underlying mechanisms,
empirically and theoretically using simulations, in Section 4.

3.1 Identification

Separating the effect of second-nature geography from that of first-nature geography is a no-
torious challenge in economic geography and urban economics. In developing a transparent
identification strategy, it is helpful to be explicit about the data generating process.

Let i denote cities and t = 1, 2 denote periods. We distinguish between a historic pe-
riod, where first-nature geographic features (e.g., access to navigable waterways) primarily
determine firm productivity (t = 1); and a contemporary period, where second-nature geog-
raphy (e.g., knowledge spillovers) is more important (t = 2). All measurements are taken at
the end of each period. Assume there exists a pure measure of geographic concentration of
prime services, cti = f(PSemplti , ut

i), that depends neither on city size nor on locational fun-
damentals. It depends, however, on PS employment, PSemplti that captures agglomeration
economies, as well as on other potentially unobserved factors ut

i. We want to investigate
how geographic concentration changes between the initial and the final stage, depending on
city size and shocks. This relationship can be summarised as follows:

c2
i = α(c1

i )
ζ(P 1

i )
βeγD

2
i+ϵi , (1)

i.e., geographic concentration in the second nature period, c2
i , depends on past geographic

concentration, c1
i , past city size, P 1

i , and the shocks D2
i during the second nature period.

Through ϵi, we acknowledge that we are not able to observe all empirically relevant shocks.
Observed measures of spatial concentration are generally not scale independent and

depend on location fundamentals. Thus, we introduce a measure of effective geographic
concentration of prime services, given by

Ct
i = cti × ea

t
i × (P t

i )
θt , (2)

which includes cti but also depends on locational fundamentals, ati, and population, P t
i . The

latter may occur for numerous reasons: (i) large cities tend to be built more densely; (ii) large
cities cover larger swaths of land and tend to develop edge-cities; and (iii) the geographic
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concentration measures we use can be sensitive to city size and city shape, a well-known
problem in the literature. All these factors can affect the effective measure of geographic
concentration of prime services, Ct

i . Since there is an infinite number of ways to reduce city
structure to a scalar, we consider several spatial concentration measures capturing different
shades of the city-internal distribution of prime services (see Appendix A.4 for details): (i)
the log of the average distance between EWPPs; (ii) the log of the CDF of distances between
EWPPs evaluated at 1.5km; (iii) the log of the average distance between PLs; (iv) the log of
the average distance of EWPPs to the 1900 city hall; (v) the distance gradient of EWPPs from
the 1900 CH; (vi) the log of the average distance of PLs to the 1900 CH; and (vii) the log
of the average distance of global PLs to the 1900 CH.19 We have no prior on the sign and
magnitude of θt.

Substituting (2) into (1) and regrouping terms, we obtain:

C2
i = α× (C1

i )
ζ × (P 1

i )
β−ζθ1 × (P 2

i )
θ2 × eγD

2
i+a2

i−ζa1
i+ϵi (3)

which links the observed measure of geographic concentration in the second nature period,
C2
i , to the initial measure C1

i , the initial population P 1
i , the final population P 2

i , and the
shocks, D2

i . It is impossible to approximate the spatial distribution of prime services in the
historic period at the same spatial granularity as in the contemporary period. Therefore,
we adopt the canonical assumption from neoclassical urban models that, in the absence of
external returns, cities display a monocentric structure (Brueckner, 1987). This assumption
implies that C1

i = ceξ
1
i , where ξ1

i is an error term. From (3), we can then derive a reduced-
form empirical specification by taking logs and by letting ati = btXi + ρtfi, where Xi and
fi capture observed and unobserved location characteristics and bt and ρt allow for time-
varying effects:

lnC2
i = α̃+ β̃ lnP 1

i + θ2 lnP 2
i + γD2

i + b̃Xi + ei, (4)

with α̃ = lnα+ ln c̄, β̃ ≡ β − ζθ1, b̃ ≡ b2 − ζb1 and ei ≡ ϵi + (ρ2 − ζρ1)fi + ζξ1. Based on
the stylized evidence in Section 2, we expect β̃ > 0, i.e. historically larger cities are more
concentrated today. This will be the case if the centripetal force of historic population cap-
tured by β (e.g., originating from a more agglomerated and better connected historic center)
exceeds the centrifugal force captured by ζθ1 (e.g., due to more likely emergence of sub-
centres). Intuitively, we expect γ < 0 since displacement of prime services establishments
due to temporary shocks can have permanent effects under external returns, leading to a
more dispersed configuration.

An inspection of the error term reveals that unobserved location fundamentals affecting
the internal structure of cities, fi, will lead to a biased estimate of β̃ if they are correlated with

19As shown in Section 2.6, the 1900 city hall is located in dense areas where, especially, newly constructed
buildings were high. We thus can think of the 1900 city hall as a proxy for the CBD of the monocentric city in
1900. In our simulattion model in Section 4, we can observe the initial prime location and thus use it directly,
contrary to the empirical exercise.
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historic city size. Access to water is the case in point. As discussed in Section 2.6, it could
have led to an earlier settlement and faster growth during the historic period and still attract
economic activity during the contemporary period as an amenity, leading to an upward bias.
However, the bias may also be downward if former amenities turned into disamenities. The
reversal of the coefficient for slope in our grid-cell analysis in Section 2.6 reflects this case.
It is positive for the historical foundation places, but negative for today’s prime locations. A
steep slope may have been a locational advantage historically—e.g., for defending the city—
but in modern times, steep slopes increase construction costs and may make it difficult for
a prime location to interact with other parts of the city. In sum, we require instruments IVP

i

for historic population in 1900 P 1
i that are orthogonal to the city-internal geography fi to

address the potential bias from unobservable within-city characteristics. Furthermore, we
have to assume that our error in capturing shocks (ϵi) and historic effective concentration
(ξ1

i ) are uncorrelated with our instruments IVP
i and our shock measure D2

i , and that the
latter is uncorrelated with fi.

What instrumental variables for population in 1900 would satisfy the requirements set
out above? Fortunately, the determinants of early city growth are relatively well understood.
Two of those are surely orthogonal to within-city characteristics: agricultural productivity
and recent colonial occupation. First, the agricultural productivity of the hinterland shaped
the growth prospects of pre- and early industrial cities (Bairoch, 1988). Analysing the in-
troduction of the potato as a major staple across the world, Nunn and Qian (2011) indeed
provide strong quantitative evidence for this mechanism at the national and city level. Going
beyond the nutritional value of potatoes, we compute a measure of the expected agricultural
returns within a city’s hinterland using data on caloric potential by Galor and Özak (2016).
Like Nunn and Qian (2011), we set the radius of the hinterland to 100 kilometers. However,
to exclude any impact of a city’s internal geography, we calculate the average agricultural
potential within a 50–100 kilometers ring around the historic city center. A second impor-
tant factor for urban growth external to cities was independence. Even though the effects
of colonialism on urbanization were complex, many cities in colonial territories did face an
additional obstacle relative to their counterparts in independent territories. Particularly in
places with small settler communities, institutions were of extractive nature and thus uncon-
ducive to growth (Acemoglu et al., 2001). We thus add a zero-one dummy for cities lying
within colonial territories in 1800 as a second instrument since we expect a smaller 1900 city
size for a given level of caloric potential, owing to the legacy of extractive institutions.

Both instruments satisfy our exclusion criterion for being external to the within-city
structure in a cross-sectional dimension.20 The temporal dimension of our analysis makes
an even stronger case for them. In a world with high transport costs—i.e., the world until
the last part of the nineteenth century due to the lack of the widespread adoption of the

20The caloric potential instrument is arguably less likely to be endogenous than the colonial territories
instrument. Our results are robust to using the caloric potential instrument only.
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steam engine—the caloric potential of the hinterland was more important than 100 years
later. Likewise, the effects of colonial occupation on city sizes should have gradually faded
over time as countries and cities became progressively independent. Both of these conjec-
tures are indeed borne out in our data. While both instruments are strong predictors of city
population at the beginning of the 20th century, they are not significantly correlated with
population at the end of the 20th century (see Appendix A.6). This makes it less likely that
they affect contemporaneous outcomes other than through persistence in historic city size.

Our measure for shocks since 1900, D2
i , are data from our urban biographies on disasters

that caused major damage to the cities in our sample. These range from man-made disasters
such as the effects of civil and international wars (e.g., the bombing of Berlin in World War II)
and fires (e.g., the Great Atlanta fire of 1917) to natural disasters such as major earthquakes
(e.g., the Great Kanto earthquake of 1923), hurricanes (e.g., Great Hong Kong Typhoon in
1937), and flooding (e.g., Chongqing flood of 1981). This granularity of the disaster coding
will allow us to exclude potentially endogenous disasters such as fires. Since we collect
our data on major disasters from reliable urban biographies, there is little reason to expect
measurement error (ϵi) to be correlated with historic population, its instruments, or the
number of disasters. As for historic effective concentration (ξ1

i ), we can at least show that
1900 city hall gradients are uncorrelated with: (i) historic population; (ii) its instruments;
and (iii) post-1900 disasters (see appendix Section A.6).

3.2 Results

Table 4: 1900 population and disaster effects on spatial concentration measures

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs
(×-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between

PLs (×-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.213
∗∗∗

0.312
∗∗∗

0.333
∗∗∗

0.201
∗∗∗

0.255
∗∗∗

0.347
∗∗∗

0.284
∗∗∗

(0.05) (0.08) (0.07) (0.05) (0.06) (0.10) (0.11)
Disasters since 1900 -0.122

∗∗∗ -0.125
∗∗ -0.206

∗∗∗ -0.140
∗∗∗ -0.128

∗∗∗ -0.173
∗∗∗ -0.052

(0.04) (0.05) (0.06) (0.04) (0.04) (0.06) (0.08)
Ln population 2000 Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes
1900 pop. IV CP & CT CP & CT CP & CT CP & CT CP & CT CP & CT CP & CT
Kleinb.-Paap F (p-val.) 0 0 0 0 0 0 0

Hansen J (p-val.) .06 .644 .431 .748 .215 .707 .428

Observations 125 125 125 125 125 125 125

Notes: Unit of observation is cities. Columns (1) and (5) employ weighted distances. 2SLS estimates. CD = cumulative density; CH = city hall; EWPP
= employment-weighted prime point; PL = prime location; CP = caloric potential; CT = colonial territories. We multiply all distance measures by −1 so
that the estimated coefficients for all our dependent variables have the same sign. A unit is added to bilateral distance between PLs before taking logs
so that 30 cities with only one PL obtain log values of zero. Controls include: Developed area 2000, irregular shape index, fragmentation index, share
of land not developable within 5km of 1900 city hall, distance from 1900 city hall to water, share of land with steep slope. See the Global Cities dataset
Appendix (Ahlfeldt et al., 2020) for sources and data construction. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Table 4 presents estimates of specification (4). In line with our empirical hypotheses, dis-
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asters occurring after 1900 lead to cities with a more dispersed geography of prime services,
whereas a larger 1900 city size anchors the spatial structure of the city, leading to more con-
centration around the historic core. By exploiting variation internal to global cities, these
results provide a new perspective on the popular notion in economic geography that major
shocks can shift a spatial economy to an alternative (more dispersed) steady state, whereas
historically large agglomerations represent a source of inertia.

In column (1) of Table 4, we use the average bilateral distance between EWPPs as an
intutitive measure of spatial concentration. Doubling 1900 city size has a 2−0.213 − 1 = −14%
effect on this distance, whereas an additional disaster increases that distance by e0.122 − 1 =

13%. In column (2), we use the cumulative density of bilateral distances between EWPPs at
750 metres to capture how much of a city’s prime service activity co-locates within a very
short distance, such as within a prime location. Doubling 1900 city size increases the share of
EWPPs in close proximity by 20.312 − 1 = 24%, while an additional disaster reduces that same
share by 13%. In column (3), we restrict our attention solely to prime services within prime
locations for which we compute the unweighted average bilateral distance. Compared to
column (1), the effects increase significantly in magnitude—doubling population decreases
the distance by 21% and an additional disaster increases it by 23%. The estimated effects are
sizable in light of the variation in our data. As an example, NY in 1900, with a population of
3.4 million, was about 11.5 times larger than San Francisco (299k). Since 1900, San Francisco
(SF) experienced two major earthquakes that led to urban re-development, whereas NY
experienced only one such event—9/11.21 Jointly, the 1900 city size and disaster effects
imply that, ceteris paribus, NY should have a more than 127% higher share of nearby EWPPs
and a distance between prime locations that is 79% shorter, on average.

The remaining columns (4)–(7) of Table 4 show that the historic business district, as
proxied by the city hall in 1900, exhibits a greater gravity on the distribution of prime
services in cities that were historically large and experienced fewer disasters. To quantify
the effects, we again compare the predicted outcomes for NY relative to SF. Ceteris paribus,
the joint effects of historic city size and disasters imply that in NY, the rate of decay of EWPPs
density in distance increases by 63 percentage points (column 4); the employment-weighted
distance from PPs to the 1900 city hall is 60% shorter; the average distance from (global)
prime locations to the 1900 city hall is (55%) 76% shorter. It is worth noting that the effect of
disasters on the relative location of global prime locations is weaker, both in a statistical and
an economic sense, than on any of the other spatial concentration measures that we employ.
This suggests that the largest prime locations—hosting establishments of global leaders in
the production of prime services—are the most resilient to shocks, consistent with initial

21The very destructive 1906 earthquake in San Francisco provided a “clean slate” for urban land use (Siodla,
2017). Perhaps less present in the collective memory, the Loma Prieta in 1989 led to important urban redevel-
opment in San Francisco such as the the deconstruction of the Embarcadero Freeway (Godfrey, 1997). To be
sure, 9/11 did not destroy major parts of the city, but was a significant shock to office space, leaving 28 million
square feet of office space either temporarily or permanently unusable (Haughwout, 2005).
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conditions and size leading to path dependence and reducing the potential for multiple
equilibria.

In line with our theoretical priors, we thus find substantial evidence for multiple equilib-
ria (the disaster effect) and inertia (the population effect). This result survives a battery of
robustness checks, with a natural starting point being the OLS estimates (see Appendix A.7).
As discussed before, the direction of an eventual bias in OLS is a priori unclear. While the
coefficients for the disaster variable remain virtually unchanged—in line with these shocks
being truly exogenous— those for population shrink by about a third for the OLS estimate
relative to the IV estimate. This implies a downward bias in OLS, most likely owing to the
presences of historic amenities that eventually turned into disamenities for contemporary
cities (see our prior discussion). Appendix A.8 provides further robustness exercises. First,
we show that the population effect is robust to using a single instrument (caloric potential)
rather than two, even though the effects are slightly less precisely estimated. Regarding
the disaster variable, we provide supplementary material to show that our results are not
driven by: (i) fires, the likelihood and magnitude of which might be related to historic pop-
ulation density and thus not exogenous; (ii) natural disasters, or (iii) man-made disasters
only; and (iv) recent disasters that might only cause a temporary deviation from a unique
steady-state in contemporary cities (Davis and Weinstein, 2002). Finally, we analyze in more
detail the source of our variation by identifying the effects separately from within- and
between-country variation. Our results are not driven by North American cities only.

4 Mechanisms

So far, we have used our global cities dataset to establish that: (i) major disasters facilitate a
transition from the traditional monocentric urban structure to more complex spatial config-
urations of prime services; and (ii) historic city size represents a source of inertia that works
in the opposite direction. These findings help to rationalize the variety of city structures
observed in the data and are broadly consistent with stylized predictions of economic geog-
raphy and urban economics models that feature increasing returns to agglomeration, either
internal or external to firms. The purpose of this section is to shed light on mechanisms that
drive the reduced-form relationships. In particular, we wish to establish whether external
returns were catalysts of urban transformation over the 20

th century and whether durable
transport networks are a source of inertia as suggested by the stylized evidence in Section 2.

We proceed in two steps. In the first step, we expand on the empirical specification devel-
oped in Section 3. We add to the notion that external returns are key to multiple equilibria in
the internal structure of cities by demonstrating that disasters had little effects on the loca-
tion of urban cores during the first-nature geography era. Employing a novel instrument for
early subway adoption, we show that durable transport networks account at least partially
for inertia in the spatial structure of large cities. In the second step, we conduct a series
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of Monte Carlo experiments on a synthetic data set generated by a granular spatial model
developed in a companion paper (Ahlfeldt et al., 2021). In this setting we have full control
over the data generating process, which allows us to observe the distribution of prime ser-
vice firms in the historic period, surgically switch off agglomeration and transport channels,
and abstract from threats to identification that originate from unobserved components in
the error term or the endogeneity of transport networks.

4.1 Empirical evidence

The role of external returns in shaping multiple equilibria. As argued in Section 2.5,
we expect external returns to be of subordinate relevance prior to 1900. Therefore, disasters
before 1900 make for a useful placebo test. While we do not observe the distribution of prime
services at the establishment level during the historic period, we can track the location of
city halls, which serve as proxies for historic prime locations as documented in Figure 7.
Table 5 shows the effects of disasters in the first nature era compared to those in the second
nature era. The sample is restricted to cities that existed in 1800. The outcome variable
in columns (1) and (2) is the distance between the city hall in 1900 and the first political
institution—often dating back multiple centuries. It can be seen that disasters have no
significant effects on early city hall re-locations, but that disasters since 1900 have a strong
effect on city hall re-locations between 1900 and 2000 (columns (3) and (4)). Due to the
smaller sample, we abstain from using an instrument for historic population and put less
weight on the parameter estimate, although the pattern is consistent with the absence of
agglomeration-induced persistence in the first-nature geography era.

Table 5: The effects of city size and disasters on city hall relocations

(1) (2) (3) (4)
Ln distance between

first and 1900 city
hall

Distance between
first city hall and

1900 city hall

Ln distance between
1900 and 2000 city

hall

Distance between
1900 and 2000 city

hall
Estimator OLS Poisson OLS Poisson
Ln population 1800 -0.039 0.226

(0.04) (0.16)
Disasters until 1900 -0.066 0.130

(0.06) (0.14)
Ln population 1900 0.032 -0.268 -0.132

∗ -0.219

(0.08) (0.23) (0.06) (0.17)
Disasters since 1900 0.133

∗∗
0.241

∗∗∗

(0.04) (0.07)
Ln pop. 1900 Yes Yes Yes Yes
Ln pop. 2000 Yes Yes
Geo. controls Yes Yes Yes Yes
Observations 76 76 76 76

R2 / Pseudo R2 .0692 .0902 .432 .339

Notes: Unit of observation is cities that existed in 1800. Geo. controls are the same as in Table 4. For details on the underlying data, see
Global Cities dataset appendix (Ahlfeldt et al., 2020). * p < 0.1, ** p < 0.05, *** p < 0.01
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Transport-induced persistence. City size-induced persistence in internal city structure can
arise from durable transport networks—that are endogenous to historic city size due to
substantial sunk and fixed costs—because these create a permanent accessibility advantage
for the historic centre. Table 3 suggests that this mechanisms matters.

To disentangle the network channel from other channels that operate through city size,
we allow for an independent transport network effect on effective concentration and expand
expression (2) as follows:

Ct
i = cti × ea

t
i × (P t

i )
θt × eδ

tM t
i , (5)

where M t
i is an indicator for city i having a subway in period t and δt is the respective effect.

Substituting (5) into (1) and regrouping terms, we obtain:

C2
i = α× (C1

i )
ζ × (P 1

i )
β−ζθ1 × (P 2

i )
θ2 × eγD

2
i+a2

i−ζa1
i+ϵi × eδ

1M1
i +ζδ2M2

i . (6)

Proceeding as in Section 3.1, our empirical specification is given by:

lnC2
i = α̃+ β̃ lnP 1

i + δ1M1
i + θ2 lnP 2

i + γD2
i + b̃Xi + δ̃2M2

i + ei, (7)

with δ̃2 = ζδ2. The mapping from the other reduced-form parameters and the error term
to the structural parameters and fundamentals remains as in (4). We choose 1910 as the
cutoff year for the subway in the historic period to allow for the time lag between planning
and implementation of subway systems. This way, we capture that the decision to build a
subway was likely made around 1900. Given the stylized evidence in Section 2, we expect a
positive historic effect of early subway adoption, δ1 > 0.

Complementary to our discussion in Section 3.1, an instrumental variable IVM for M1

that is orthogonal to city-internal geography solves the problem of an omitted variable with
respect to fundamental factors that may determine historic city size (e.g., a natural har-
bor that anchors the city structure). To separately identify historic population and historic
subway effects, we further require that IVM is excludable with respect to P 1 and IVP is
excludable with respect to M1. To find a suitable instrument for the adoption of subway
systems, it is important to understand which problem these systems solved and how. Before
the advent of intra-urban rapid transit, city sizes were typically limited by the ability to
walk them (Bairoch, 1988), implying a maximum extent of about 50 square kilometer and a
population threshold of around 475,000 (see Appendix A.5). When cities grew beyond this
threshold, demand for transportation would rise. Horse carts, and later street cars, were
first attempts to satisfy the demand and widen the radius of the cities. The efforts to im-
prove urban transport culminated in the second half of the 19th century with the advent
of rapid urban transport systems, either over- or underground (Daniels and Warnes, 2007).
Yet, such intra-urban transportation systems were expensive and required large investments
of both sunk and fixed nature. What, then, determined whether or not cities built a subway
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system after crossing the threshold? Besides the size of the city, the level of congestion also
depended on a second factor. The number of unconnected ports of entry and exit, namely
railway termini, the distance between them, and their spatial configuration were crucial for
the city’s congestion—and the need to solve it with rapid urban transport systems. Across
the globe, early private railway companies had built their termini as close to the city as
land prices and various regulations permitted. For this reason, many of them were located
around the center of the city, but not at the center itself. Inevitably, the more dispersed these
railway stations were, the more vehicular congestion would occur as goods and people had
to move through the city—a problem that London alleviated by connecting the railway ter-
mini (Daniels and Warnes, 2007, p. 10). However, the problem and its solution were not
specific to London. Indeed, a contemporary study regarding the “railway terminal problem
of Chicago” highlighted that elsewhere (e.g., Boston, London, Berlin, Paris, Vienna, Ham-
burg) connections between the termini, in particular via circle lines, alleviated the congestion
problem (City Club of Chicago, 1913, p. 84f).

These insights set the stage for constructing an instrument that predicts the early adop-
tion of public transit but is exogenous to within-city characteristics and excludable with
respect to the population instruments. In a first step, we predict the number and geogra-
phy of railway termini. To do so, we draw on population data at the dawn of the railway
age in 1850 to locate potential neighboring cities that could be connected with a city in our
dataset (Bosker et al., 2013; Reba et al., 2016). We restrict the potential railway connections
to those cities that have a great circle distance of less than 300 kilometers and a population
over 15,000. Based on reasonable assumptions for crossing mountainous terrain and a high
penalty for crossing water, we employ a least-cost-path algorithm to draw railway lines from
the neighboring cities to our cities of interest.22 We keep the neighboring cities only if their
distance remains below the equivalent of 300 kilometers by land transportation. Panels (a)
and (c) of Figure 8 show the corresponding ‘bird’s eye’ maps for Amsterdam and Berlin.
Yellow dots mark those cities with a great circle distance below 300 kilometers, but not all
are connected due to geographic constrains (such as Dover and Amsterdam, for example).

In a second step, we employ the geography of predicted railway termini to create a mea-
sure of subway potential. We draw a circle with radius 4km around the historic city center,
which reflects the areal limits of cities before the arrival of mass transit (see above and Ap-
pendix A.5). We then compute the subway potential as the area of the convex hull of the
predicted rail termini, relative to the area of the circle. Panels (b) and (d) of Figure 8 provide
corresponding illustrations for Amsterdam and Berlin. Despite having crossed the popula-
tion threshold to build a rapid transit system at the dawn of the 20

th century, Amsterdam
had a much lower probability to do so than Berlin according to our measure of subway
potential. This is corroborated by the historical record. Whereas Berlin had adopted rapid

22This is done using the ArcGIS least-cost-path algorithm. See the Global Cities dataset Appendix (Ahlfeldt
et al., 2020) for a technical exposition, the parameter choices, and a discussion of the source material.
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Figure 8: Subway potential of Amsterdam and Berlin
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Notes: Black lines are least-cost paths to any city with a population of at least 15,000 in 1850 (the yellow dots). Light-blue shaded areas are
oceans, rivers, and lakes. Dark-brown shaded areas are mountains. The grey-shaded areas are the remaining land mass.

urban transport as early as 1872, the Amsterdam metro system would not open until more
than 100 years later.

The subway potential that we introduce as a novel instrument for the early adoption of
rapid transit systems exploits the spatial configuration of the locations of cities j ̸= i relative
to city i. It is thus unlikely to be correlated with city-internal fundamentals, fi. Does it,
without further controls, fulfill the second condition, i.e., is IVM excludable with respect
to historic population P 1

i ? To rule out an effect of subway potential on historic popula-
tion through a market-access channel, we condition on a historic market access measure
that takes into account all global settlements with a population of at least 5,000 in 1900

and land-cover-dependent (water, plains, mountains) trade costs (following Donaldson and
Hornbeck, 2016).23 This allows to disentangle the effect of durable transportation networks
from other mechanisms captured by historic city size, such as agglomeration-induced per-
sistence or a historic downtown building stock that could be favorable to contemporaneous
prime services.

23Unlike Donaldson and Hornbeck (2016), we include international market potential. The Global Cities
dataset Appendix (Ahlfeldt et al., 2020) provides details on the technical implementation and validity of the
measure.
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Our instrument now satisfies all exogeneity conditions, but for it to be relevant we have
to model one more determinant. Consistent with the high fixed costs of a subway system,
descriptive empirical evidence (see Appendix A.5) suggests that a minimum city size is re-
quired to economically sustain a subway system. We thus have to allow for an interaction
of historic city size and subway potential whose functional form is a priori unknown. In a
procedure similar to Sequeira et al. (2019), we first predict historic city size and the propen-
sity of having a subway system using non-parametric interactions of our historic popula-
tion instruments and the rail potential in two zero-stage regressions (see Appendix A.9.1 for
details). These zero-stage regressions deliver two instruments for the two endogenous vari-
ables (population and subway) that are input into a conventional 2SLS approach. In keeping
with expectations, there is a strong interaction between caloric potential and subway poten-
tial in the subway instrument, whereas such an interaction does not exist for the population
instrument. We document this and the power of the instrument in Appendix A.9.1.

Table 6: Network-induced inertia

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.097
∗∗∗

0.207
∗∗∗

0.215
∗∗∗

0.088
∗∗∗

0.144
∗∗∗

0.291
∗∗∗

0.320
∗∗∗

(0.03) (0.05) (0.05) (0.03) (0.03) (0.07) (0.09)
Subway in 1910 0.465

∗∗∗
0.465

∗∗
0.724

∗∗∗
0.526

∗∗∗
0.507

∗∗∗
0.572

∗
0.535

+

(0.14) (0.23) (0.27) (0.14) (0.15) (0.29) (0.34)
Disasters since 1900 -0.103

∗∗∗ -0.122
∗∗ -0.190

∗∗∗ -0.128
∗∗∗ -0.114

∗∗∗ -0.184
∗∗∗ -0.084

(0.04) (0.06) (0.06) (0.04) (0.04) (0.06) (0.08)
Ln population 2000 Yes Yes Yes Yes Yes Yes Yes
Subway 2000 Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes
Market access Yes Yes Yes Yes Yes Yes Yes
1900 pop. & subway IV Zero stage Zero stage Zero stage Zero stage Zero stage Zero stage Zero stage
Kleinb.-Paap F (p-val.) 0 0 0 0 0 0 0

Observations 125 125 125 125 125 125 125

Notes: Unit of observation is cities. Columns (1) and (5) employ weighted distances. 2SLS estimates. CD = cumulative density at 750 m; CH = city hall; EWPP
= employment-weighted prime points; PL = prime locations. We multiply all distance measures by −1 so that the estimated coefficients for all our dependent
variables have the same sign. Geographic controls include: Developed area 2000, irregular shape index, fragmentation index, share of land not developable
within 5km of 1900 city hall, distance from 1900 city hall to water, share of land with steep slope. See the Global Cities dataset Appendix (Ahlfeldt et al.,
2020) for sources and data construction. Instruments for 1900 population and 1900 subway are two variables predicted in two zero-stage locally weighted
regressions using population in 1900 and an indicator for subways in 1910 as dependent variables and non-parametric interactions of caloric potential, the
colonial territory (in 1800) indicator, and subway potential as predictors. For details on the construction of the instrumental variables, see Appendix A.9.1.
Robust standard errors in parentheses. + p < 0.15, * p < 0.1, ** p < 0.05, *** p < 0.01

Table 6 presents estimates of specification (7) using a zero stage that accommodates
interactions between our exogenous historic population and subway shifters by means of
locally weighted regressions (LWR) with narrow bandwidths that maximise the power of
the first stage. Ceteris paribus, a historic subway system decreases the average distance
between prime service jobs by 37% (column 1) and the average distance between PLs by 52%
(column 3). The share of neighbouring EWPPs (within 750m) increases by 59% (column 2).
The rate of decay of EWPPs density with distance increases by 53 percentage points (column
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4). The average distance between EWPPs and PLs to the 1900 city hall decreases by 40–
44% (columns 5–7), although the effect on global prime locations is borderline insignificant.
Compared to the main results in Table 4, and consistent with our priors, the estimated
historic population elasticities capturing the residual channels drop by 16–56% depending
on the outcome (except for the global prime locations distance), but remain sizable.

We verify the robustness of our estimates employing alternative zero stages in which
we use standard bandwidths or fully parametric interactions. Those yield similar effects,
although the confidence intervals broaden. Compared to the results in Table 6, the trans-
port effect remains significant for all outcome measures but those in columns (2) and (4) as
well as the global prime locations (see Appendix A.9.2). Indeed, even the OLS estimates
suggest a role for transport: we find positive effects for most of the concentration measures,
even though these are less precisely estimated and hard to interpret given the obvious en-
dogeneity concerns (see Appendix A.7). On balance, our interpretation of the evidence is
that size-induced persistence in the internal organization of cities originates at least par-
tially from durable transport networks that were endogenous to city size a century ago. The
remaining historic city size effect may capture aspects of durable transport networks not
observed in data or other mechanisms such as agglomeration-induced persistence.

4.2 Monte Carlo study

Even when exploiting our data set to its fullest, the identification of mechanisms that moder-
ate the causal relationships uncovered in Section 3 asks a lot of our data. There is no natural
experiment that allows exploring the effect of natural disasters during the second-nature
geography era in the absence of external returns. The separate identification of the subway
and agglomeration channels is local by nature since few cities developed subway systems
and those which did were all among the largest. Therefore, we now leave the empirical
world to take control of the data generating process. Our aim is to replicate the empirical
analysis in Table 6 in a world in which we can ensure that spatial concentration of prime ser-
vices is solely shaped by the interplay of randomized variation in historic city size, transport
networks, and spatial shocks as well as the canonical mechanisms in recent urban models.

The granular spatial model (GSM) we develop in a companion paper (Ahlfeldt et al.,
2021) is particularly suitable for the task. The model follows the basic structure of the canon-
ical quantitative spatial model (QSM) in which external returns generate agglomeration of
jobs, commuting costs lead to co-location of jobs and workers, and inelastically supplied
land generates a dispersion force (Ahlfeldt et al., 2015). The novel feature of the GSM is
that it not only features explicitly defined locations, but also explicitly defined workers and
firms. This provides the necessary granularity to reproduce one-for-one our real-world spa-
tial concentration measures that are based on establishment data. The GSM lends itself to
rich heterogeneity, allowing us to model competition on land markets among firm types
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such as manufacturing firms, local prime services firms, and global prime services firms.
Below, we briefly outline the GSM and discuss how we use it to run a series of Monte Carlo
experiments to evaluate the long-run effects of temporary spatial shocks in the presence and
absence of external returns as well as endogenously deployed mass transit systems. We
conduct these Monte Carlo experiments within the actual geography of Chicago, which still
represents the stereotype of the classic monocentric city (with most prime services concen-
trated in the “loop”). We show in Appendix A.10 that our parametrization of the model
resembles the real-world Chicago in various outcomes (e.g., in terms of the distribution of
land prices or commuting flows). There, we also provide details on the algorithm we use
for the endogenous transport network formation (see our companion paper, Ahlfeldt et al.
2021, for details on the formal structure of the model and the simulation procedure).

The GSM in a nutshell. The basic building blocks of the GSM are locations, workers, and
firms, which we distinguish into (local or global) prime services and manufacturing firms.
As in the conventional QSM, there is a finite set of locations with exogenous land supply,
productivity, and amenity value. Workers and firms behave similarly as in the standard
QSM, but they exist as indivisible agents. Workers maximize a Cobb-Douglas utility from
non-tradable floor space consumed at at spatially varying rent and a tradable good whose
price is normalized to one. The wage they receive is deflated in effective commuting dis-
tance, which depends on the transport network. Firms maximize profits from producing
either tradable prime services or manufactured goods whose prices are determined outside
the city. A firm’s productivity depends on the productivity of its location, which in turn
depends on an exogenous component and an endogenous component that is a function of
employment in nearby firms. Each worker requires a fixed amount of floor space to be
productive. Floor space is produced by a competitive construction sector using inelasti-
cally supplied land and nationally traded capital. An equilibrium is characterized by land
market clearing and the absence of any incentive to adjust location choices and the worker-
firm matching. As with the canonical QSM, the primitives of the GSM consist of structural
parameters and structural fundamentals (Redding and Rossi-Hansberg, 2017). Due to its
granularity, the GSM allows for arbitrary heterogeneity in all model primitives at the level
of locations, workers, and firms. We only parameterize the dimensions of heterogeneity that
are most directly relevant to our analysis. For example, we use uniform canonical values
for housing expenditure shares or commuting costs, but we require more floor space per
worker for manufacturing firms, allow for greater returns to agglomeration for prime ser-
vices firms, and let multi-establishment global firms produce spillovers that depend on a
component that is external to the city (see Appendix A.10 for details).

Simulating the effects of disasters. To simulate the effects of random disasters, we con-
duct Monte Carlo experiments adhering to the following procedure. In the first step, we
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simulate the initial equilibrium in a first-nature world where the external returns are set to
zero. To this end, we take the distribution of location fundamentals as given, randomize
the number of agents in the city (which directly corresponds to variation in city size), and
randomly assign fundamental productivity to workers and firms. Roughly speaking, the
procedure is such that: (i) firms optimally choose locations; (ii) workers and firms can prof-
itably rematch as firms move; and (iii) the prices for real estate adjust to clear markets. In
the second step, we enter the second-nature world and simultaneously: (i) turn on external
returns; (ii) allow for the endogenous development of a transport network; and (iii) shock
the center of economic activity in the initial equilibrium of the city. To develop the network,
workers’ incomes and firms’ profits are taxed at a uniform rate. We assume that there is a
large initial sunk cost for setting up the network, and then a constant cost per station (node)
and per kilometer of line built (edges). Because of the substantial sunk costs, the larger cities
tend to develop larger transport networks. We simulate a major disaster by enforcing the
relocation of a random subset of 50-100% of the firms in the location with the largest prime
service employment in the initial equilibrium. We find a temporary equilibrium where only
the displaced firms find new optimal locations. In the third step, the shock dissipates and all
firms re-optimise their locations and all workers re-optimise their assignment to firms. This
delivers the final equilibrium where agglomeration economies, shocks, and transportation
networks jointly shape the spatial structure of employment centres in the city.

These two sets of runs provide intensive- and extensive-margin variation in the shock
and network variables that resembles our ’Global Cities’ data set. Note that in all of these
runs we turn on agglomeration economies in the final equilibrium. To gain further insights
into the mechanisms, we, in addition, report results where we shut down agglomeration
economies. More precisly, we simulate 1,000 runs without external returns but with shocks
and network formation, and 1,000 runs with just shocks.

Analysis of simulation outputs. The estimation strategy outlined in Section 3.1 can be
taken one-to-one to the artificial data set generated by the Monte Carlo experiments. Each
Monte Carlo run produces aggregate outputs that we can index by i as they directly corre-
spond to the different cities in our ’Global Cities’ data set. The initial (t = 1) and the final
(t = 2) equilibria directly correspond to the historic and the contemporary period in the
data. Yet, we make subtle changes to (4) to leverage on our power to fully control the data
generating process:

lnC2
i = α̃+ ζ lnC1

i + β̃ lnP 1
i + γD2

i + ϵi, (8)

Since we do not change city size as we move from the first-nature to the second-nature
world, we have P 1

i = P 2
i so that P 2

i drops from the equation and the historic popula-
tion effect becomes β̃ = β − (ζθ1 − θ2). Since we observe effective concentration in the
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initial equilibrium, C1
i remains in the estimation equation and ζξ1

i drops from the error.
Since we keep all observable and unobservable fundamental location characteristics con-
stant across Monte Carlo runs, (ρ2 − ζρ1)fi = (ρ2 − ζρ1)f̄ and b̃Xi = b̃X̄ enter the constant
α̃ = ln ᾱ + (ρ2 − ζρ1)f̄ + b̃X̄ . The remaining error ϵi comes purely from the randomness
in the initial allocation of productivity across agents, the initial allocation of agents to loca-
tions, and the randomness in the sequence in which agents make decisions. The beauty of
this synthetic data set is twofold: First, we have exogenous and truly independent variation
in disasters and historic population and a genuinely random error term. Second, we ob-
serve our artificial cities in four different worlds in which there exist either agglomeration
economies or endogenous network formation, both, or neither.

Table 7: Origins of inertia

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

(a) Agglomeration economies ON, network ON
Log city size 0.466*** 0.187*** 0.102*** 0.578*** 0.070*** 0.388*** 0.394***

(0.017) (0.013) (0.027) (0.026) (0.018) (0.040) (0.040)
Shock intensity -0.209*** -0.158*** -0.221*** -0.596*** -0.301*** -0.971*** -0.962***

(0.023) (0.016) (0.035) (0.037) (0.024) (0.058) (0.058)
(b) Agglomeration economies OFF, network ON

Log city size 0.586*** 0.705*** 0.083*** 0.120 0.008 0.103** 0.087*
(0.011) (0.015) (0.032) (0.082) (0.009) (0.041) (0.046)

Shock intensity 0.030** -0.017 0.338*** 0.399*** -0.175*** -0.067 -0.039

(0.013) (0.020) (0.039) (0.110) (0.013) (0.053) (0.056)
(c) Agglomeration economies ON, network OFF

Log city size 0.080*** 0.004 0.036 0.033 0.093*** -0.049 -0.038

(0.015) (0.013) (0.034) (0.022) (0.020) (0.040) (0.039)
Shock intensity -0.177*** -0.197*** -0.260*** -0.724*** -0.289*** -1.264*** -1.265***

(0.019) (0.014) (0.035) (0.030) (0.023) (0.054) (0.053)
(d) Agglomeration economies OFF, network OFF

Log city size -0.002 0.003 -0.107*** -0.112 -0.008 -0.275*** -0.260***
(0.007) (0.010) (0.034) (0.078) (0.008) (0.040) (0.043)

Shock intensity 0.031*** -0.024** 0.422*** 0.377*** -0.171*** -0.073 -0.050

(0.009) (0.012) (0.043) (0.100) (0.012) (0.056) (0.058)

Notes: Standard errors in parentheses. CH = city hall, EWWP = employment-weighted workplaces, PL = prime location (identified using the same
approach as described in 2.4). Unit of observation is the output of one run of the GSM simulation model. 1,000 observations in all models. All models
control for initial concentration. We multiply all distance measures by −1 so that the estimated coefficients for all our dependent variables have the same
sign. 50% of the runs do not allow for endogenous subway development to emulate exogenous variation. Ln city size is the log of the randomly assigned
number of workers. Shock intensity is the share of employment in the initial prime location temporarily displaced by the shock. Initial CH location
is taken as the location of the largest prime location in the initial equilibrium. Standard errors (in parentheses) are bootstrapped in 1000 iterations. +

p < 0.15, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7 summarises OLS regression results from (8) for these four different worlds. Panel
(a) corresponds to the real world as we allow for agglomeration economies and endogenous
network formation in the second-nature era. The results closely resemble our estimates
based in our ’Global Cities’ data set presented in Table 4. Our virtual disasters lead to a more
dispersed spatial distribution of prime services and to contemporary prime locations further
away from the historic prime location. Confirming the role of agglomeration economies as
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facilitators of multiple equilibria in spatial configurations, shocks no longer disperse prime
services when we disable external returns to scale in panel (b).Shocks have inconsistent
effects on the spatial concentration of economic activity, depending on the measure used.
Since the GSM features some frictions to the movement of agents, it is natural for shocks to
have some effects on the equilibrium location of agents, even in the absence of agglomeration
economies. In contrast, the city size effect persists, suggesting that agglomeration-induced
persistence is not the main driver of inertia in our model. This interpretation is substantiated
by panel (c) where, enabling agglomeration economies and disabling network formation, we
no longer observe a significant city-size effect on any measure that captures prime services
concentration at a local level. Hence, by creating a permanent advantage in the form of lower
commuting costs around central nodes, durable networks in large cities play a critical role in
anchoring prime locations. Finally, once we disable agglomeration economies and network
formation in panel (d), the empirical relationship between initial city size and contempora-
neous concentration of prime services we uncovered in our data vanishes altogether, lending
further support to our hypothesised mechanisms.

The important lesson from the Monte Carlo experiments within the GSM is that a model
with canonical assumptions regarding worker and firm behavior can generate the patterns
we observe in our ’Global Cities’ data set. Our findings substantiate the notion that external
returns give rise to multiple equilibria in the spatial distribution of knowledge-based trad-
able services. Without dismissing alternative sources of inertia outside our model, we can
rationalize the empirically observed fact that prime locations are more resilient in histori-
cally larger cities through the permanent location advantage endogenous durable transport
networks deliver to historic prime locations.

5 Conclusion

As the growing industrial cities of the developed world did at the dawn of the 20th century,
many mega cities in the rapidly urbanizing developing world suffer nowadays from conges-
tion, pollution, and affordability problems. Hence, urban planners often wish to alter the
geometry of these cities for reasons of efficiency, or equity, or both. In particular, policymak-
ers sometimes wish to promote the emergence of new business centers to curb congestion
in established cores and to revitalize economically struggling areas. This might work in the-
ory. Indeed, a voluminous theoretical literature on agglomeration has shown that multiple
spatial equilibria and path dependence are prevalent features of modern economies when
there are either internal increasing returns or external agglomeration effects.

However, little is known about how these forces play out at a small spatial scale within
cities. Our findings show that the structure of large cities is prone to multiple equilibria and
inertia, thus suggesting a potential role for policy that seeks to achieve more sustainable
urban forms. Changing urban form seems possible, but is ambitious if the existing cores are
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well established and at the center of public transportation networks. Attempts at decentral-
ization in big cities that have developed public transit systems—urban projects of pharaonic
proportions such as ‘new New Cairo’ in Egypt—are likely to prove unsuccessful unless the
intended new prime locations become themselves focal nodes within large urban transport
networks.
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A Appendix material

A.1 Importance of prime services in the US

Technical definition and national importance of prime services. As a first approximation,
one can define prime services in a national accounting sense as the sum of the ‘Finance, in-
surance, real estate, rental, and leasing’ (FIRE; NAICS 52-53) and ‘Professional and business
services’ (PROF; 54-56) sectors in the national accounts.

Table A 1: Prime Services in National Accounts (2016)

Sub-sector Sub-sub-sector % of GDP NAICS BEA

FIRE: Finance, insurance, real estate, rental, and leasing

Finance and insurance 52 52

Federal Reserve banks, credit intermediation,
and related activities

2.87 521, 5221, 5222-3 521CI

Securities, commodity contracts, and invest-
ments

1.26 5231-2, 5239 523

Insurance carriers and related activities 3.15 5241, 5242 524

Funds, trusts, and other financial vehicles 0.26 525 525

Real estate and rental and leasing 531

Real estate - Housing 9.90 531 5310HS

Real estate - Other real estate 2.31 531 531ORE

Real estate - Rental and leasing services and
lessors of intangible assets

1.09 532 532RL

PROF: Professional and business services
Legal services 1.32 5411 5411

Computer systems design and related services 1.50 541511, 541512,
541513, 541519

5415

Miscellaneous professional, scientific, and technical services 4.30 5412, 5413, 5414,
54161, 54162, 54169,
5417, 5418, 54191,
54193, 54199 54192

54194

5412OP

Management of companies and enterprises 1.92 55 55

Administrative and waste management services 3.05 56 561

∑ 28.80

Notes: Data are from the Sectoral National Accounts of the United States (Bureau of Economic Analysis, 2018). Rows with sectors including prime
services are colored gray. The NAICS codes refer to the 2007 classification.

However, these broad categories also contain other services, for example leasing services
and facility management, which are arguably not prime services in our definition. We thus
further disaggregate the FIRE and PROF sectors (Table A 1). The exclusion of “Adminis-
trative and waste management services” and “Real estate - Rental and leasing services and
lessors of intangible assets” reduces the total share of prime services from about 33% to
about 29%. Furthermore, the disaggregation highlights the importance of real estate among
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prime services (around 12.2% of total value added). Yet, even if we exclude the real estate
sector, the share of prime services in total value added today remains significantly larger
than that of manufacturing. Likewise, the pattern of its evolution since the 1940s remains
virtually unchanged (corresponding graph available upon request).

Geographic concentration of prime services in MSAs. The Bureau of Economic Analysis
(BEA) provides industry-level value added GDP estimates for the 382 Metropolitan Statisti-
cal Areas (MSAs) of the United States. Table A 2 shows that in terms of their contribution
to national GDP, prime services are over-represented in metropolitan areas relative to non-
metropolitan areas.

Table A 2: Prime Services in National Accounts in 2015

MSAs Non-MSAs Total
Prime service M$ Share M$ Share M$
Finance and insurance 1,237,398 95.69% 55,702 4.31% 1,293,100

Real estate 2,054,375 95.21% 103,425 4.79% 2,157,800

Professional, scientific, 1,252,097 96.85% 40,703 3.15% 1,292,800

and technical services
Management of companies 345,625 97.03% 10,575 2.97% 356,200

and enterprises
All prime services 4,889,495 95.87% 210,405 4.13% 5,099,900

In comparison:
Manufacturing 85.65% 14.35%
National GDP 90.26% 9.74%

Notes: Own calculation based MSA GDP release ‘Gross Domestic Product by Metropolitan Area, Advance 2016, and Revised 2001-2015’
(September 20, 2017 release: download here). These data are fully consistent with the national accounts, which allows us to decompose
the value-added GDP and its components into an MSA and a non-MSA part.The corresponding National GDP data release is ‘Gross
Domestic Product by Industry and Input-Output Statistics’ (November 3, 2016 release: download here).

To estimate the importance of the urban bias between metro areas of different sizes
(Figure 1), we run the following regressions:

VAsm

VAm
= cs + as lnPm + esm,

where VA is value added, s ∈ manufacturing, prime services, all other sectors indexes sectors,
and m indexes metro areas. Pm is the 2010 metro population, as is the semi-elasticity of
interest, and esm is an error term. We estimate this model at the sector-s level.24 Figure 1

shows the results for prime services.

24For some metropolitan areas, fine-grained industry-specific data are not released because of privacy con-
cerns. It is thus necessary to impute the shares of certain industries using higher-level aggregates. We discuss
this procedure, reference the relevant population sources, and show the robustness of our results towards ex-
cluding the imputed data in our Global Cities dataset appendix (Ahlfeldt et al., 2020). As expected, dropping
the imputed data increases the elasticity of interest as places with a low prime service density are more prone
to not having data released.
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A.2 Estimating employment weights for prime points

This section describes how we assign employment weights to prime points (PPs), and how
we overidentify the employment-weighted prime points. In a nutshell, we assign employ-
ment weights to distinct types of prime points using establishment-level datasets which we
collect for six cities (Boston, Montreal, New York, Philadelphia, Toronto, and Vancouver).
We then overidentify the established relationship using data on Starbucks, prime office, and
co-working spaces at the establishment level as well as zip-code CBP data for 39 US cities
from our dataset that do not serve to compute those weights.25

A.2.1 Estimating weights

To take full advantage of the spatial granularity of our datasets—all observations are geo-
coded by latitude and longitude coordinates—we employ a point-pattern-based empirical
approach. For each city, we generate a set of l ∈ L locations that consist of disks with a ra-
dius of 750 meters (about a square mile) drawn around random points sampled from within
the cities. We discard locations sampled in undevelopable parts of the city (e.g., water areas,
steep slope) and adjust our disks for the share of undevelopable land in them. Hence, the
predictive power of prime points is not driven by some areas being undevelopable. For each
location l drawn in city c, we compute its aggregate prime service employment El,c from
our establishment-level data, as well as a separate counts PT

l,c for each type of prime point
T (e.g., accounting firms, law firm) in the disk. As discussed in Section 2.2, we create sepa-
rate sub-categories for establishments of globally operating companies (e.g., PWC, Deloitte).
To establish an empirical link between El,c and PT

l,c, we estimate the following empirical
specification in city-specific regressions:

El,c = a+ PT
c,lb

T
c + εTl,c, (9)

where bTc are city-establishment-type-specific employment weights and εTl,c is a residual term.
Figure A1 provides an accessible presentation of the results: it shows box plots of the dis-
tribution of employment weights across cities by establishment type. The vast majority of
employment weights is positive.26 As expected, establishments by global leader companies
generally receive much larger weights than their non- ‘global leader’ counterparts. Consid-
ering that we employ simple and transparent multivariate regression models, the predictive
power of our prime points is quite impressive. Generally, we explain more than 90% of the
variation. Philadelphia is the exception, but we still explain close to 80% of the variation.

25We document the sources of the underlying data (estimation: NETS data, Scott’s data, scraped prime
points; validation: point data on SNL, Starbucks, co-working spaces, and ZIP/ZCTA-level data from County
Business Patterns) in the accompanying Global Cities dataset appendix (Ahlfeldt et al., 2020).

26There are a small number of significant negative coefficients, which may be due to substantial collinearity
between the variables.
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Figure A1: Employment weights by city and establishment type

Notes: Box plot illustrates the distribution of employment weights across cities by establishment type. Employment weights are from
city-specific regressions of observed prime services employment at the establishment-level (NETS or Scott’s data) on prime points (queries
from the Google Places API and scraped from company websites).

Table A 3: Median employment weights for EWPPs

Establishment type Weight Establishment type Weight

Global chain: Accounting 1898 Google places: Accounting 68

Global chain: Consultancy 1507 Google places: Consultancy 450

Global chain: Insurance 314 Google places: Insurance 98

Global chain: Investment bank 918 Google places: Investment bank 1406

Global chain: Law firm 409 Google places: Law firm 676

Stock exchanges 1879

Central banks (incl. branches) 1846

Notes: Employment weights from city-specific regressions of PS employment on PP counts (within random 750-m-radius disks). The
values reported in the table are the median values in the distributions of estimated employment weights across cities by establishment
type. Values are rounded to the nearest integer so that predicted employment figures are integers, too.

Since we wish to use the estimated employment weights b̂T for extrapolation to other
cities, we need to abstract from city-specific heterogeneity and settle on PP-type-specific
weights. We opt for the median of the distribution across cities as the obvious choice to
avoid that the PP-type-specific weights are driven by outliers. Table A 3 shows the median
weights that we obtain, which are all positive.

It is straightforward to use b̂T to generate a measure of predicted prime service employ-
ment Êl,c = PT

c,lb̂
T . Since our PPs consist of establishments that employ prime service work-

ers, the associated employment weights have a very intuitive interpretation: they provide a
type-specific proxy for unobserved employment at the PPs. Figure A2 shows scatter-plots of
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the correlation between Êl,c and El,c by city. Although we use the median weights b̂T which
do not vary by city in the construction of Êl,c, the correlations are still strong. The R2 from
simple bivariate linear regressions ranges from .77 to .92 for all cities. Given our focus on
the densest clusters of prime services, it is particularly reassuring that we reliably predict
where prime services density is highest.

Figure A2: Prime services vs. prime point densities

(a) Boston (b) Montreal (c) New York

(d) Philadelphia (e) Toronto (f) Vancouver

Notes: Figure compares the observed prime service employment to the predicted one at the level of 30,000 750-radius-disks drawn
around 30,000 random points.

A.2.2 Overidentification

Given their crucial role in our analysis, we now provide a battery of overidentification tests
for our EWPP measures. To do so, we rely on prime places that are closely linked to prime ser-
vice production. SNL-S&P investments typically comprise grade-A office buildings, which
are the natural places of prime service production. Starbucks franchises are arguably the
most universal workplace amenity and places where workers in knowledge-based tradable
services can meet to interact. Co-working spaces are a mix of both. Hence, we expect our
prime service employment measure to be a relevant predictor of the presence of SNL-S&P
buildings, Starbucks franchises, and co-working spaces. The regressions in columns (1)–(4)
of Table A 4 are out-of-sample overidentification tests since no information on the dependent
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variables has been used in the construction of our predicted employment measure. Our pre-
dicted prime services employment measure is a strong predictor of the spatial distribution
of prime places (SNL-S&P buildings, Starbucks franchises, and co-working spaces), thus
suggesting external validity within the sampled cities.

Table A 4: Overidentification of EWPPs

(1) (2) (3) (4) (5) (6)
Prime places

count SNL-S&P count Starbucks count Co-working
count

Actual PS emp.
(1000)

Actual PS emp.
(1000)

Predicted PS 0.928
∗∗∗

0.371
∗∗∗

0.351
∗∗∗

0.205
∗∗∗

1.007
∗∗∗

0.493
∗∗∗

employment (1000) (0.016) (0.005) (0.014) (0.004) (0.165) (0.040)
Constant 0.091

∗∗∗
0.121

∗∗∗
0.010 -0.033

∗∗∗
0.067 0.997

∗∗∗

(0.008) (0.003) (0.006) (0.002) (0.281) (0.073)

Spatial unit 750-m radius
disks

750-m radius
disks

750-m radius
disks

750-m radius
disks

Zip/ZCTA
level

Zip/ZCTA
level

Cities NETS NETS NETS NETS US NETS US NON-NETS
N 131346 131668 131668 131346 1145 4929

R2 .687 .616 .418 .693 .411 .337

Notes: Unit of observation varies according to the indicated spatial unit. Prime places count is the sum of SNL-S&P, Starbucks, and co-working counts. Robust standard
errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Next, we use our employment weights and PPs to predict prime service employment
at the level of US zip code tabulation areas. At this level, we can merge our predicted
prime service employment measure to prime service employment as recorded in the US
County Business Patterns (CBP). In column (5), we regress CBP prime service employment
on our predicted employment at the zip-code level for the three US cities (Boston, New York,
and Philadelphia) for which we have used micro-geographic data in the construction of the
weights. We explain 40% of the variation and estimate a positive slope coefficient that is
highly statistically significant but insignificantly different from one.

Figure A3: Actual vs. predicted employment by non-targeted city

Notes: Histogram shows the distribution of slope parameters from city-specific regressions of actual (from CBP) to predicted (EWPPs)
prime services employment at the level of US zip code tabulation areas.

In column (6), we push the idea of an overidentification test further. We now use the
weights estimated for Boston, New York, and Philadelphia to predict prime service employ-
ment for the other 39 US cities in our global sample that do not overlap with these three
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cities. While this is a particularly demanding overidentification test, we still explain more
than one third of the variation within and between cities.27 The slope coefficient is about
0.5, which implies that the establishments we use to predict prime service employment are,
on average, about half as large in the US cities used for overidentification than in the three
cities we use for estimating the weights. Figure A3 plots the histogram of the predicted slope
coefficients by city for the 39 cities. The relatively small coefficient is driven by a relatively
large number of cities where prime establishments tend to be small. The median and mean
slope across US cities, at 0.9, is much closer to 1.

For overidentification tests outside the US, we distinguish between an extensive mar-
gin (can we predict the location of prime services establishments) and an intensive margin
(can we predict the employment of prime services establishments). In Table 1, we have al-
ready shown at a global scale that prime points are spatially correlated with places where
prime services employees work and meet (Grade-A offices, co-working spaces, Starbucks
franchises), which points to predictive power at the extensive margin. Establishment-level
prime services data is notoriously difficult to get hold of. But we do have access to a very
large sample of establishments for Moscow. For a detailed extensive-margin overidentifi-
cation test, we first generate 30,000 randomly drawn disk with a radius of 750 meters. We
then count the prime points queried from Goolge Places and the actual prime services es-
tablishments within those disks. Finally, we correlate both count measures in Figure A4.
There a positive correlation as expected. A simple regression of the prime point density on
the prime services establishment density delivers an R2 of 0.64. This result substantiates the
impression that our prime points have strong predictive power at the extensive margin, also
outside the US.

A.3 Validation of the clustering algorithm

Table A 5 shows how prime locations specialize in prime services, relative to their host
cities. Zooming into the six US and Canadian cities, for which we observe establishment-
level employment, we find a striking specialization of prime locations in prime services. The
share of prime service employment within 750 meters of any prime location ranges from a
low of 42% (Philadelphia) to a high of 68% (Toronto). The average prime service share, at
55.8%, exceeds the manufacturing share by a factor of 17. For global prime locations, this
ratio increases to more than 22. Our prime locations are thus way more specialized in prime
services than their host cities for which the average shares, at 26.5% (prime services) and
17.1% (manufacturing), are more similar (see Table A 5). As anticipated, this effect is even
stronger for global prime locations. In sum, our (global) prime locations pick up substantial
concentration in prime services as measured from detailed micro-geographic data.

27Dropping the ZCTAs without prime service employment hardly changes the results. If we add city fixed
effects to the regression in column (6) of Table A 4, the R2 increases to close to 40%.
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Figure A4: Prime establishments vs. prime point in Moscow

Notes: This figure compares the observed prime service establishments from the SPARK/Inferfax database (covering 2012-2014) with the
prime points queried using the Google Places API at the level of 30,000 750-radius-disks drawn around 30,000 random points..

Table A 5: Prime location specialization

NYC Boston Philly Toronto Montreal Vancouver Mean
Within 50 km of Empire State Prudential Liberty Bell CN Tower KPMG Tower MNP Tower Any CBD

Share MFG 7.48% 9.38% 8.42% 27.26% 27.72% 22.36% 17.10%
Share PS 28.48% 27.50% 26.08% 26.78% 24.26% 26.10% 26.53%
Metro PS/MFG ratio 3.81 2.93 3.10 0.98 0.88 1.17 2.15

Within 750m of global PL
Share MFG 5.65% 1.54% 3.86% 2.37% 2.95% 1.86% 3.04%
Share PS 59.43% 60.73% 43.13% 68.81% 60.94% 50.47% 57.25%
Global PL PS/MFG ratio 10.52 39.44 11.17 29.03 20.66 27.13 22.15

Within 750m of PL
Share MFG 5.16% 2.57% 3.56% 3.12% 2.95% 3.36% 3.45%
Share PS 58.99% 55.08% 42.21% 67.65% 60.94% 49.73% 55.77%
Any PL PS/MFG ratio 11.43 21.43 11.86 21.68 20.66 14.80 16.98

Notes: MFG = manufacturing; PS = prime services; PL = prime locations. Employment data for New York, Boston, and Philadelphia
from the National Establishment Timeseries database (NETS, 2012). Employment data for Toronto, Montreal, and Vancouver from the
Scott’s National All database for the year 2013. For details, see the Global Cities dataset appendix (Ahlfeldt et al., 2020). MFG is delimited
by NAICS 31–33. See Appendix A.1 for the NAICS-codes of PS. All missing employment figures have been replaced with the median
establishment employment (for either MFG, PS, or all establishments). For selection of prime locations, see Section 2.4.
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A.5 First nature, second nature, and transport revolution

Figure A5: Transport and telecommunication through the ages
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(a) Cars and Telephones per capita (United States) (b) Subway adoption by world region

(c) Subway adoption by historic city size (d) Metro openings and the population threshold

Notes: 4(a): For cars, we assume that there are 0 before 1900 (in 1900 there were 8,000). Sources: population and telephones are from Such
and Carter, eds (2000), car data are from Federal Highway Administration Office of Highway Information Management (n.d.). 4(b-d): own
calculations (see text) and Ahlfeldt et al. (2020) for underlying data sources.

The Transport and Communication Revolution. Panel 4(a) of Figure A5 illustrates the
extent of the (individual) transport and telecommunication revolutions throughout the 20th
century.

Evolution of subway systems. Based on our 125-city sample, panel (b) of Figure A5 illus-
trates the adoption of the subway technology by opening years and world region. While
European cities were early adopters, American and Asian cities have caught up over time.
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Recently, Asian cities have even overtaken European ones in terms of the share of cities with
a subway system. Panel (c) of Figure A5 shows that cities that were larger in 1900 were
substantially more likely to have a subway system in 1910.

Minimum city size for rapid transport adoption. In the pre-automobile and pre-rapid
urban transport age, the natural barrier to the extent of a city was closely related to and
indeed limited by the ability to walk the city. See (Bairoch, 1988, p. 279) or (Daniels and
Warnes, 2007, p. 2f). This allows us to calculate a population threshold, which results—
when passed—in an increased demand in transportation as the city would have to expand
to accommodate more citizens. Specifically, the population threshold is given by:

POPthreshold = AreaCity
max × POPDENSITYcity

max, where AreaCity
max = π× r2

max.

Based on data on population densities before the advent of rapid public transport, we can
derive a plausible maximum population density POPDENSITYcity

max from historical data and
then solve for the population threshold POPthreshold.28

Table A 7: Population densities at the turn of the century

City Population 1860 (1,000s) Population 1900 (1,000s) Area (km2) Density 1860 Density 1900

London 2,302 2,756 303 7,599 9,096

New York 814 3,437 57 14,275 60,302

Paris 1,696 2,714 78 21,744 34,795

Berlin 601 2,712 63.5 9,460 42,712

Average 13,269 36,726

Notes: Area is from Mattersdorf (1907, p. 11) and refers to city boundaries towards the end of the 19th century. We assume that for
London, New York, and Paris, the boundaries changed as little between 1860 and 1900 as they did for Berlin.

Table A 7 reports 1860 and 1900 population density estimates for the four largest cities
(as of 1900) in our sample. On average, the population density in the mid-19th century was
about 13,500 people per square kilometer. However, the areal definitions of New York (only
Manhattan) and Paris are more uncertain than the more clearly defined ones from Berlin and
London. As data quality is best for Berlin, we take the value of 9,460 per square kilometer
1860.

In line with Bairoch (1988, p. 279) and as the typical maximum straight line distance
that a human walks within one hour should be a bit smaller in the city than in a territory
without obstacles, we assume r

walking
max = 4km. We assume a regular-circle shape of the city

to calculate the resulting maximum area pre-transport: AreaCity
max. Our resulting threshold is

475,511. When passing this threshold, the demand for transportation in a city would rapidly

28Bairoch (1988, p. 279) assumes a maximum population density of 350 per hectare, but this seems too large
of an average for whole cities (rather than the most dense ward).
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increase as inhabitants would need to overcome distances by means other than walking.
They would then request public transport.

Does this threshold correspond to the observed introductions of rapid urban transport
systems? Panel 4(d) of Figure A5 plots the date of the metro openings in our sample against
the threshold. Three outliers of the early days stand out. This, however, has to do rather
with the coding than with the actual matter. In Barcelona and Hamburg, the start date is set
to the respective dates as suburban or intra-urban railways were opened that would later be
incorporated into the rapid transport system. The corresponding alternative opening dates
of the metro system proper are 1924 for Barcelona (Busetti, 2015) and 1906 for Hamburg
(Heinsohn, 2013, p. 39), dates by which each had long passed the threshold. In Athens,
parts of the line that would become a part of a proper metro system was built in 1866 to
connect the city with the port of Piraeus and electrified in 1904 (Mega, 2016, p. 135). If this
date is taken as the metro opening rather than the extension of this line in 1926 (Pantoleon,
2010, p. 17), Athens remains an outlier. In spite of these outliers, the empirical evidence,
just like historical narrative evidence, points to the existence of a threshold, which requires
to be explicitly modelled.
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A.6 Instruments for population

Figure A6 shows that our instrumental variables caloric potential and colonial territory are
significantly correlated with city population in 1900, but not in 2000.

Figure A6: Effect of population IVs on population by year

Notes: Each dot represents a point estimate from year-specific regressions of ln population against ln caloric potential and the colonial
territory dummy. For details on the construction of the instrumental variables and on the underlying data, see main text and Global Cities
dataset appendix (Ahlfeldt et al., 2020).

In Table A 8, we correlate the 1900 height gradient by city with disasters, population,
and the instruments for the latter. The 1900 height gradient is the slope coefficient of a city-
specific regression of the log of building height in 1900 against the log of distance from the
city hall in 1900. In short, we find no significant correlation.

Table A 8: 1900 city hall gradients and population instruments

(1) (2) (3) (4) (5) (6) (7)
1900

height
gradient

1900

height
gradient

1900

height
gradient

1900

height
gradient

1900

height
gradient

1900

height
gradient

1900

height
gradient

Ln population 1900 0.095 0.094

(0.11) (0.10)
Disasters since 1900 0.039 0.021 0.054 0.057

(0.10) (0.08) (0.11) (0.11)
Ln average -0.291 -0.277 -0.303

caloric potential (0.21) (0.22) (0.23)
Occupied territory 0.164 0.119

in 1800 (0.10) (0.07)
Observations 67 67 67 67 67 67 67

R2 .0521 .00258 .0424 .0182 .0528 .0572 .048

Notes: Unit of observation is cities. Dependent variable is the slope parameter from a city-specific regression of log 1900 building height against log
distance from the 1900 city hall. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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A.7 Empirical results - OLS estimates

Table A 9: The effects of 1900 population and disasters on spatial concentration - OLS

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.139
∗∗∗

0.216
∗∗∗

0.249
∗∗∗

0.103
∗∗∗

0.167
∗∗∗

0.265
∗∗∗

0.247
∗∗∗

(0.02) (0.04) (0.04) (0.02) (0.03) (0.05) (0.07)
Disasters since 1900 -0.117

∗∗∗ -0.118
∗∗ -0.201

∗∗∗ -0.133
∗∗∗ -0.122

∗∗∗ -0.168
∗∗∗ -0.049

(0.04) (0.06) (0.06) (0.03) (0.04) (0.06) (0.08)
Ln pop. 2000 Yes Yes Yes Yes Yes Yes Yes
Geo. controls Yes Yes Yes Yes Yes Yes Yes
Observations 125 125 125 125 125 125 125

R2 .428 .383 .471 .283 .43 .379 .292

Notes: See Table 4.

Table A 10: Network-induced inertia - OLS

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.120
∗∗∗

0.198
∗∗∗

0.220
∗∗∗

0.086
∗∗∗

0.146
∗∗∗

0.246
∗∗∗

0.234
∗∗∗

(0.02) (0.04) (0.03) (0.02) (0.02) (0.05) (0.07)
Subway in 1910 0.351

∗∗
0.353

+
0.494

∗
0.447

∗∗∗
0.407

∗∗
0.414 0.362

(0.15) (0.23) (0.28) (0.13) (0.16) (0.30) (0.32)
Disasters since 1900 -0.108

∗∗∗ -0.109
∗ -0.182

∗∗∗ -0.128
∗∗∗ -0.112

∗∗∗ -0.159
∗∗ -0.046

(0.04) (0.06) (0.06) (0.04) (0.04) (0.06) (0.09)
Ln pop. 2000 Yes Yes Yes Yes Yes Yes Yes
Subway 2000 Yes Yes Yes Yes Yes Yes Yes
Geo. controls Yes Yes Yes Yes Yes Yes Yes
Observations 125 125 125 125 125 125 125

R2 .449 .393 .491 .335 .452 .389 .295

Notes: See Table 4.

A.8 Robustness of multiple equilibria

Single instrument. Table A 11 shows results if only caloric potential is used as an instru-
ment (instead of caloric potential and colonial territory).
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Table A 11: Single IV - Caloric Potential only

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.120
∗

0.282
∗∗∗

0.269
∗∗∗

0.216
∗∗∗

0.181
∗∗

0.386
∗∗∗

0.389
∗∗

(0.06) (0.09) (0.10) (0.06) (0.08) (0.14) (0.16)
Disasters since 1900 -0.116

∗∗∗ -0.123
∗∗ -0.202

∗∗∗ -0.141
∗∗∗ -0.123

∗∗∗ -0.176
∗∗∗ -0.059

(0.03) (0.05) (0.06) (0.04) (0.04) (0.06) (0.08)
Ln pop. 2000 Yes Yes Yes Yes Yes Yes Yes
Geo. controls Yes Yes Yes Yes Yes Yes Yes
1900 pop. IV CP CP CP CP CP CP CP
KP-F (p-val.) .035 .035 .035 .035 .035 .035 .035

Observations 125 125 125 125 125 125 125

Notes: See Table 4.

Table A 12: Robustness of disaster effects

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Disaster effect...
...excluding fires -0.092

∗ -0.069 -0.156
∗ -0.143

∗∗∗ -0.107
∗∗ -0.137

∗ -0.050

(0.05) (0.08) (0.08) (0.05) (0.05) (0.08) (0.09)
...excluding recent -0.145

∗∗∗ -0.171
∗∗∗ -0.215

∗∗∗ -0.130
∗∗∗ -0.151

∗∗∗ -0.189
∗∗∗ -0.069

(0.04) (0.06) (0.06) (0.04) (0.04) (0.06) (0.08)
...only man-made -0.155

∗∗∗ -0.223
∗∗∗ -0.213

∗∗∗ -0.152
∗∗∗ -0.146

∗∗∗ -0.216
∗∗∗ -0.061

(0.05) (0.08) (0.07) (0.04) (0.05) (0.07) (0.09)
...only natural -0.096

∗ -0.036 -0.204
∗∗ -0.128

∗∗ -0.115
∗∗ -0.132

+ -0.038

(0.05) (0.07) (0.09) (0.05) (0.05) (0.08) (0.11)
...including all -0.122∗∗∗ -0.125∗∗ -0.206∗∗∗ -0.140∗∗∗ -0.128∗∗∗ -0.173∗∗∗ -0.052

(0.04) (0.05) (0.06) (0.04) (0.04) (0.06) (0.08)

Notes: See Table 4.

Disaster effects. Table A 12 shows the disaster coefficient estimated for the 5 different
disaster combinations for the 7 concentration measures (35 IV regressions in the same spec-
ification as in Table 4). To keep the coefficients’ magnitudes comparable, we instrument all
disasters with the count of disasters conditional on the respective restriction.

Sources of variation: within- and between-country variation. In Table A 13, we add coun-
try fixed effects to our baseline specification to restrict the identifying variation to that orig-
ination from within countries. Results remain qualitatively similar and significance levels
stay high for the population variable. The precision is reduced for the disaster variable,
likely owing to the rare occurrence of disasters and the reduced sample size.

In Table A 14, we use the mean values of historic city size and the number of disasters
across cities within countries as instrumental variables to restrict the identifying variation to
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Table A 13: Sources of variation: within-country

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.082
∗∗∗

0.243
∗∗∗

0.131
∗∗∗

0.252
∗∗∗

0.098
∗∗∗

0.238
∗∗∗

0.237
∗∗∗

(0.02) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03)
Disasters since 1900 -0.056

∗∗ -0.047 -0.154
∗∗∗ -0.057 -0.055

∗∗ -0.069 0.008

(0.03) (0.04) (0.03) (0.04) (0.03) (0.05) (0.05)
Ln pop. 2000 Yes Yes Yes Yes Yes Yes Yes
Geo. controls Yes Yes Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes Yes Yes
1900 pop. IV CP & CT CP & CT CP & CT CP & CT CP & CT CP & CT CP & CT
KP-F (p-val.) .304 .304 .304 .304 .304 .304 .304

Hansen J (p-val.) .139 .156 .22 .276 .139 .136 .059

Observations 108 108 108 108 108 108 108

Notes: See Table 4.

that originating from between countries. For most specifications, the results are statistically
significant, qualitatively identical, and quantitatively close to our main results. If anything,
the disaster effects are larger (though less precisely estimated).

Table A 14: Sources of variation: between-country

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.151
∗∗∗

0.202
∗∗∗

0.319
∗∗∗

0.103
∗∗∗

0.182
∗∗∗

0.303
∗∗∗

0.259
∗∗∗

(0.04) (0.05) (0.08) (0.03) (0.04) (0.08) (0.09)
Disasters since 1900 -0.192 -0.215 -0.329

∗ -0.353
∗∗∗ -0.221

+ -0.380
∗∗ -0.235

+

(0.15) (0.19) (0.18) (0.11) (0.15) (0.18) (0.16)
Ln pop. 2000 Yes Yes Yes Yes Yes Yes Yes
Geo. controls Yes Yes Yes Yes Yes Yes Yes
1900 pop. & disaster
IV

Country
means

Country
means

Country
means

Country
means

Country
means

Country
means

Country
means

KP-F (p-val.) .001 .001 .001 .001 .001 .001 .001

Observations 125 125 125 125 125 125 125

Notes: See Table 4.

Sources of variation: North-America vs. rest of the world To allow for heterogeneity by
world region, we interact our key variables of interest with two dummy variables that either
indicate North American cities I(NA = 1) or the rest of the world I(NA = 0), allowing for a
North-America-specific intercept. As Table A 15 shows, the point estimates are qualitatively
the same in both parts of the world.

58



Table A 15: Sources of variation: between-country

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

NA=0 × Ln population 1900 0.211
∗∗∗

0.269
∗∗

0.474
∗∗∗

0.100 0.302
∗∗∗

0.407
∗∗

0.327
∗

(0.08) (0.12) (0.14) (0.08) (0.09) (0.17) (0.17)
NA=1 × Ln population 1900 0.085

∗∗
0.205

∗∗∗
0.145

∗∗
0.207

∗∗∗
0.101

∗∗
0.197

∗∗
0.220

∗

(0.04) (0.08) (0.06) (0.08) (0.05) (0.10) (0.12)
NA=0 × Disasters since 1900 -0.079

∗∗ -0.091
+ -0.181

∗∗ -0.171
∗∗∗ -0.089

∗∗ -0.175
∗∗∗ -0.077

(0.04) (0.06) (0.07) (0.03) (0.04) (0.06) (0.07)
NA=1 × Disasters since 1900 -0.104

∗∗∗ -0.086 -0.186
∗∗ -0.037 -0.113

∗∗ -0.091 0.011

(0.04) (0.08) (0.08) (0.07) (0.05) (0.11) (0.17)
Ln pop. 2000 × NA Yes Yes Yes Yes Yes Yes Yes
Geo. controls Yes Yes Yes Yes Yes Yes Yes

1900 pop. IV CP×NA &
CT×NA

CP×NA &
CT×NA

CP×NA &
CT×NA

CP×NA &
CT×NA

CP×NA &
CT×NA

CP×NA &
CT×NA

CP×NA &
CT×NA

KP-F (p-val.) .003 .003 .003 .003 .003 .003 .003

Hansen J (p-val.) .512 .323 .86 .106 .419 .282 .278

Observations 125 125 125 125 125 125 125

Notes: See Table 4 for general notes. CP×NA & CT×NA is the interaction of caloric potential and North America (NA) effects as well as the interaction of colonial
territories and NA effects. Similarly, ln pop. 2000 × NA is the interaction of ln 2000 population and NA effects (including a non-interacted NA effect. Controls
include: Developed area 2000, irregular shape index, fragmentation index, share of land not developable within 5km of 1900 city hall, distance from 1900 city hall
to water, share of land with steep slope. For details on the construction of IVs, see Global Cities dataset appendix (Ahlfeldt et al., 2020).
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A.9 Transport induced persistence

A.9.1 Baseline zero stage

As outlined in the main text, it is likely that in predicting historic metro systems, subway
potential interacts with historic city size non-linearly. To account for interactions between
the exogenous shifters of historic population and subway adoption whose functional form is
a priori unknown, we estimate the following zero-stage models: lnP 1

i = P(CPi,SPi,CTi) +

εPi and M1
i = M(CPi,SPi,CTi) + εMi , where CPi is the caloric potential, CT is the dummy

for being in colonial territories in 1800, and SPi is the subway potential. P and M are
functions that allow for flexible interactions between the exogenous population and subway
shifters. M1

i is the subway indicator. εPi and εMi are residual terms. To estimate the functions
P and M, we employ LWR regressions of the following type: Yi = cYl + bYl I(CTi = 1) + εYi,l,
where Y ∈ {lnP 1

i,M1
i }, I(.) is an indicator function returning one if the condition is met

and zero otherwise, and cYi and bYi are city-specific parameters to be estimated. In each
city-specific LWR l ∈ N , we weight observations i by a multiplicative Gaussian kernel:

Wi,l =
wi,l

∑iwi,l
, wi,l = ∏

R
wi,l

R, wi,l
R =

1
κR

√
π

exp

[
− 1

2

(
Ri −Rl

κR

)2]
,

where R ∈ {CP ,SP} and κCP and κSP are bandwidth parameters to be chosen. In the
baseline specification, we quite aggressively select narrow bandwidths of κCP = 0.0075 and
κSP = 0.1 to maximize the strength of the instrument. As a robustness check, we employ
rule-of-thumb values that are similar for the subway potential but about 10 times larger for
the caloric potential.

From the LWR-estimates it is straightforward to construct two instrumental variables
to identify historic population and subway effects: IV P

i = lnP 1
i − εPi=l, IV

M
i = M1

i − εMi=l.
Intuitively, this approach allows for a three-way interaction between CPi, SPi, and CTi by
allowing both the intercept cYi and the marginal effect bYi of CTi to vary non-linearly in
CPi and SPi due to the local weighting. By construction, both instrumental variables are
exclusively based on data that are external to our 125 cities.

In Table A 16, we illustrate the explanatory power of the two instrumental variables that
are generated in the zero stage regressions. Evidently, the population instrument from the
zero stage is a strong (and exclusive) predictor of historic population (column 1). Likewise,
the subways instrument strongly predicts the propensity of having a historic subway system
(column 4). Hence, the two instrumental variables have the potential to separately identify
historic population and subway effects. They are also relevant. The degree of explanatory
power becomes evident as the R2 almost doubles for the population in 1900 and quadruples
for the adoption of the subway when we add the instruments on top of our set of geographic
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controls (columns (2) vs. (3) and (5) vs. (6)).

Table A 16: Relevance of zero-stage IVs

(1) (2) (3) (4) (5) (6)
Log city
popula-

tion 1900

Log city
popula-

tion 1900

Log city
popula-

tion 1900

Subway in
1910

Subway in
1910

Subway in
1910

Zero-stage population IV 1.060
∗∗∗

0.965
∗∗∗ -0.010

∗∗

(0.18) (0.19) (0.00)
Zero-stage subway IV 0.067 1.227

∗∗∗
1.234

∗∗∗

(0.53) (0.07) (0.07)
Controls - Yes Yes - Yes Yes
Observations 125 125 125 125 125 125

R2 .712 .399 .762 .843 .203 .868

Notes: Controls include Ln market access, disasters since 1900, ln 2000 population, 2000 subway system (dummy), developed area 2000,
irregular shape index, fragmentation index, share of land not developable within 5km of 1900 city hall, distance from 1900 city hall to
water, share of land with steep slope. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

The population instruments should predict historic population monotonically and his-
toric subways only through an interaction with subway potential. Figure A7 illustrates how
the exogenous historic population and subway shifters enter the zero-stage instruments.

Figure A7: Determinants of zero-stage instruments: LWR, narrow bandwidth

Notes: To generate the figure, we separately predict ln 1900 population and subway adoption using the locally weighted regressions with
kernel weights based on caloric and subway potential (see text for details).

In keeping with our expectations, there is a strong interaction between caloric potential
and subway potential in the subway instrument, whereas the relationship between the pop-
ulation instrument and caloric potential is more monotonic. Hence, we are confident that
the two instruments separately identify the channels we are interested in.

A.9.2 Alternative zero stages

Rule-of-thumb bandwidth. In the models reported in Table 6 we use very narrow band-
widths in the LWR-zero-stage to maximize predictive power and the efficiency in the second
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stage. As a robustness check, we replicate the analysis using the Silverman (1986) rule-of-
thumb bandwidths of κR = 1.06σRNR− 1

5 , which results in κCP = 0.0099 and κSP = 0.12.
To accommodate the non-linear interaction between the determinants of subway systems
with substantially increased bandwidths, we allow for linear interactions between CPi, SPi,
and I(CTi): Yi = ∑B

u=0 ∑B
v=0 ∑1

w=0 b
Y ,u,v,w
i

(
(CPi)u × (SPi)v × I(CTi = w) + εYi

)
, where we

set the polynomial order to B = 1. Table A 17 reports the corresponding results.

Table A 17: Robustness - Rule-of-thumb bandwidth

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.085
∗

0.235
∗∗∗

0.269
∗∗∗

0.112
∗∗∗

0.147
∗∗∗

0.390
∗∗∗

0.431
∗∗∗

(0.05) (0.07) (0.07) (0.04) (0.05) (0.08) (0.10)
Subway in 1910 0.758

∗∗∗
0.489 1.090

∗∗
0.649

∗∗∗
0.717

∗∗∗
0.535 -0.027

(0.20) (0.34) (0.45) (0.17) (0.22) (0.43) (0.52)
Disasters since 1900 -0.098

∗∗∗ -0.127
∗∗ -0.196

∗∗∗ -0.131
∗∗∗ -0.113

∗∗∗ -0.200
∗∗∗ -0.106

(0.04) (0.06) (0.07) (0.04) (0.04) (0.07) (0.08)
Ln pop. 2000 Yes Yes Yes Yes Yes Yes Yes
Subway 2000 Yes Yes Yes Yes Yes Yes Yes
Geo. controls Yes Yes Yes Yes Yes Yes Yes
Market access Yes Yes Yes Yes Yes Yes Yes
1900 pop. & subway IV Zero stage Zero stage Zero stage Zero stage Zero stage Zero stage Zero stage
Kleinb.-Paap F (p-val.) 0 0 0 0 0 0 0

Observations 125 125 125 125 125 125 125

Notes: See Table 6.

Parametric Zero Stage. In a further alteration, we implement a fully parametric zero stage.
To maintain a high degree of flexibility in the absence of a local weighting, we increase the
polynomial order to B = 2.

lnP 1
i =

B

∑
u=0

B

∑
v=0

1

∑
w=0

bu,v,w

(
(CPi)

u × (SPi)
v × I(CTi = w)

)
+ θP ln (PP ) + δPM2

i +Xib
P + εPi

lnM1
i =

B

∑
u=0

B

∑
v=0

1

∑
w=0

bu,v,w

(
(CPi)

u × (SPi)
v × I(CTi = w)

)
+ θM ln (PM) + δMM2

i +Xib
M + εMi

Correspondingly, the two instrumental variables are:

IV P
i =

B

∑
u=0

B

∑
v=0

1

∑
w=0

P̂u,v,w

(
(CPi)

u × (SPi)
v × I(CTi = w)

)
IVM

i =
B

∑
u=0

B

∑
v=0

1

∑
w=0

M̂u,v,w

(
(CPi)

u × (SPi)
v × I(CTi = w)

)
Conditional on controls (also in the first and second stages), both instrumental variables are
exclusively based on data that are external to our 125 cities. Table A 18 reports the results
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from the parametric zero stage.

Table A 18: Robustness - Parametric zero stage

(1) (2) (3) (4) (5) (6) (7)

Ln
distance
between
EWPPs x

(-1)

Ln CD of
bilateral
EWPP

distances
at 0.75 km

Ln
average
bilateral
distance
between
PLs (x-1)

Distance
from 1900

CH
gradient

(×-1)

Ln dist.
from

EWPP to
1900 CH

(×-1)

Ln mean
dist. from
all PLs to
1900 CH

(×-1)

Ln mean
dist. from
global PLs

to 1900

CH (×-1)

Ln population 1900 0.150
∗∗

0.303
∗∗∗

0.261
∗∗∗

0.155
∗∗∗

0.226
∗∗∗

0.462
∗∗∗

0.519
∗∗∗

(0.06) (0.09) (0.09) (0.05) (0.07) (0.10) (0.13)
Subway in 1910 0.932

∗∗∗
0.740 1.658

∗∗
0.633

∗∗
0.819

∗∗
0.495 -0.158

(0.34) (0.54) (0.69) (0.30) (0.35) (0.59) (0.69)
Disasters since 1900 -0.107

∗∗∗ -0.135
∗∗ -0.190

∗∗∗ -0.138
∗∗∗ -0.125

∗∗∗ -0.212
∗∗∗ -0.122

+

(0.04) (0.06) (0.07) (0.04) (0.04) (0.07) (0.08)
Ln pop. 2000 Yes Yes Yes Yes Yes Yes Yes
Subway 2000 Yes Yes Yes Yes Yes Yes Yes
Geo. controls Yes Yes Yes Yes Yes Yes Yes
Market access Yes Yes Yes Yes Yes Yes Yes
1900 pop. & subway IV Zero stage Zero stage Zero stage Zero stage Zero stage Zero stage Zero stage
Kleinb.-Paap F (p-val.) 0 0 0 0 0 0 0

Observations 125 125 125 125 125 125 125

Notes: See Table 6.

A.10 Monte Carlo approach

We use a Monte Carlo approach to generate a synthetic version of the ’Global Cities’ data
set that we subject to same econometric specifications as the real-world data. In doing
so, we simulate a version of the granular spatial model developed in a companion paper
(Ahlfeldt et al., 2021). In this appendix, we show how we augment the model to account of
endogenous transport network formation and how we parametrize the model.

A.10.1 Parametrization

Except of the added endogenous transport network, we work with GSM that is identical to
the one developed in Ahlfeldt et al. (2021). To save space, we do not replicate the develop-
ment of the model here. Instead, we focus on how we parametrize the model using exactly
the same notations as in Ahlfeldt et al. (2021). The main purpose of this section is to illus-
trate in an intuitive way that we conduct our Monte Carlo experiments within a simulated
city that resemble the spatial structure of a real-world city.

A.10.1.1 Geography

We simulate our model using ZCTAs and a simplified version of the city of Chicago. We
restrict ourselves to a radius of 15 miles around the CBD (as defined on the City of Chicago
data portal), which is similar to the spatial scale we use for our empirical analysis (panel (b)
of Figure A11 shows the extent of our empirical grid).
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Figure A8: Distribution of production amenities and population

(a) Production amenities (b) Population

Notes: Exogenous productivity gradient and sample initial allocation of population in the ABM.

ZCTA 60601 is the historic center that contains the foundation place (FP) from our urban
biographies data set. We set productivity BFP = 1.3 and generate a gradient of decreasing
productivity from that center: Bℓ = e−0.01×dℓ,FP ×BFP . Hence, the historic foundation place
has a productivity advantage over places that are farther away. Note, however, that the
exogenous productivity differences are small, contrary to quantitative spatial models where
unobserved productivity differences across space are usually huge. We further allocate
population and the initial distribution of firms using the following distance-based shares:

popℓ =
e−0.1×dℓ,FP

∑ζ e−0.1×dζ,FP
× total pop and firmsℓ =

e−0.2×dℓ,FP

∑ζ e−0.2×dζ,FP
× total firms. (10)

Since agents are indivisible in the GSM, we round the results to the nearest integer. We
set the number of firms to be 1/3 the number of the total population, again rounded to
the nearest integer.29 Panel (a) of Figure A8 shows the spatial structure of our production
amenities Bℓ, while panel (b) displays the allocation of workers. This initial allocation is
fairly monocentric.

29The total population is set at total pop = 824 in our illustrative example. Given rounding, we have 268

(potential) firms; these are broken down into 19 global prime service firms, 169 non-global PS firms, and 80

manufacturing firms. In the Monte Carlo simulations, we randomly draw a population size between 500 and
1000 from a uniform distribution to generate variation in city size. Prime service firm are 70% of the firms,
with the remaining 30% being MFG firms. Within the PS firms, 10% are global.
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A.10.2 Heterogeneous agents

Workers and firms are heterogeneous. They each get a productivity draw θω (workers) or
θφ (firms) from a uniform distribution. Firms draw from θφ ∈ [5, 8.5], whereas workers
draw from θω ∈ [0, 5]. Firms’ bargaining power is set to 0.33, i.e., one-third of revenue
goes to profits and two-thirds of revenue goes to wages. The span-of-control parameter of
each firm is a uniform random draw between 0 and 5 for non-global firms, whereas global
firms are modeled as having a better span-of-control that ranges uniformly from 2 to 7.
The SOC elasticity is set to 1.4 for all firms.30 Each (local or global) prime service firm
requires 2.1 units of office space per worker, whereas a manufacturing firm requires 33%
more space per worker. We impose no correlation between θφ and Rφ, i.e., firms differ along
two independent dimensions in their productivity.

We sort workers and firms by productivity and run an initial assignment where the most
productive workers choose their matches first. The initial assignment has 186 active firms
and 791 assigned workers. Hence, 33 workers remain unemployed (get zero wage) and
82 potential firms (seeds) cannot attract workers (end up being inactive). Obviously, by
the matching process it is the low-productivity workers who remain unemployed (average
productivity of 0.103, compared to 2.62 for the employed workers); and the low-productivity
firms that do not operate (average productivity of 5.640, compared to 7.149 for the operating
firms). More productive firms attract (on average) more productive workers and are larger.
However, since there are two dimensions of heterogeneity (productivity and the SOC rank),
the relationship is fuzzy (see panel (a) of Figure A9). Assortative matching leads (on average)
to a convex relationship between productivity and wages (see panel (b) of Figure A9).

Turning to the firm-size distribution, it is depicted by panel (c) of Figure A9. The match-
ing process and our parameterization yield a distribution of firm sizes with many small
firms and a few large players, a realistic feature of observed firm-size distributions that are
close to Pareto. A simple regression of log rank on log size yields a slope of -1.13 (standard
error 0.037 and adjusted R2 of 0.834) in the initial equilibrium assignment. The skewness
in firm sizes maps into skewed profits (see panel (d) of Figure A9). The aggregate value of
output produced in the example is 18,339.55, of which 6052 (one third) go to firms’ profits
and the remaining two-thirds are paid to workers. Workers’ income net of commuting costs
is and 11,247.79 (61.3% of the two-thirds wage bill), i.e., about 91% of their gross income.
Thus, aggregate commuting costs are about 9% of gross income, a reasonable number.31

30The rationale underlying these parameter choices is that we want sufficient variation in firm sizes without
having only a very small number of giant firms.

31According to BLS data for 2019, US consumers spent on average $63,036 (‘Average annual ex-
penditures’) of which $10,742 was dedicated to commuting and other trips (‘Transportation’) (see
https://www.bls.gov/news.release/cesan.nr0.htm for the data). This represents about 17% of income.
The 2017 figure stands at 15.9%.
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Figure A9: Fuzzy assortative matching, productivity, firm size, profits, and wages

(a) Fuzzy assortative matching (b) Productivity and wages
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Notes: Sample run of the ABM. Panel (a) depicts the relationship between firm and worker productivity and
shows ‘fuzzy’ assortative matching. Panel (b) depicts the relationship between worker productivity and
wages. Panel (c) depicts the histogram of firm sizes as measured by the number of assigned workers. Last,
panel (d) illustrates the relationship between firm productivity and net profits, for non-global firms (circles)
and global firms (squares). Since global firms have better SOC, they have higher profits conditional on
productivity.

A.10.3 Transport network formation and commuting

Cities may endogenously develop transportation networks that will be used by workers for
commuting. A network requires to pay a fixed setup cost (10,000); a cost per station (node)
of the network (200); and a per kilometre cost of building links between nodes (50). The
network is financed by a uniform wage and profits tax that is levied on all agents in the
initial equilibrium (15%). The network is then constructed using the following procedure.

• From the worker-firm assignment, we compute all bilateral commuting flows between
locations in the city. The link with the largest flow seeds the network, i.e., locations ℓ
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and j with the largest flow get the first link and the first two nodes. Stations (nodes)
are the access points to the network. We assume they are constructed at the center of
the corresponding ZCTA.

• We take at the second largest flow for developing the second link. We do not allow for
a new station to be built at less than some threshold distance (here, 1 kilometre) from
an already existing station.

• We check whether the new link is cheaper to build by attaching it to the closest existing
node of the network rather than by building a new direct link between the origin and
destination.

• The procedure is repeated as long as budget remains. If the cost of a link exceeds the
remaining budget so that the link cannot be built, we move to the next largest positive
commuting flow until either no more budget is available or all links with positive flows
have been checked (and potentially build).

Once the network is formed (recall this need not be the case), agents optimize by choosing
whether to commute directly or use the network. In other words, there is modal choice.
Without a network, agents move along the straight-line distance to firms. Let dℓj denote the
distance between locations ℓ and j. In the presence of a network, the distance is

dNℓj = minn1∈N dℓ,n1 + minn2∈N dn2,j + ζ × shortest path(n1,n2), (11)

where shortest path(n1,n2) is computed using a recursive implementation of Dijkstra’s
shortest path algorithm. The parameter 0 < ζ < 1 captures the travel time gains once
on the network (if ζ ≥ 1, moving on the network is by construction never profitable given
the triangle inequality). As seen from (11), access to and from the network is straight-line,
and then there is a gain from moving along the network (distance on the network is equiv-
alent to only ζ times distance off the network). Of course, agents choose the network if and
only if dNℓj < dℓj , and they travel off the network otherwise. For simplicity, we disregard
aspects such as network pricing and user fees.

Figure A10 illustrates the network that is formed in our example run used in this ap-
pendix. As shown, a network with 9 stations and total length of 16.22 kilometers is devel-
oped. Panel (a) of Figure A10 shows that the network is, by construction, centered on the
CBD that has the largest commuting flows. Panel (b) zooms in to show the structure of the
network in more detail.

Observe that because employment is highly concentrated in the city, the commuting flow
matrix is dominated by zeros, a realistic feature. In our initial equilibrium, 96.61% of the
10,302 (= 102 × 101) bilateral commuting flows are zero. Among the non-zero flows, the
top-3 destinations account for more than 70% of the commutes. This provides a strong
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Figure A10: Example of endogenous transport network formation

Notes: Sample illustration of network formation, final equilibrium.

rationale for the development of a hub-and-spokes type of network centered on the CBD,
thus providing another endogenous locational advantage to the CBD.32

We finally also estimate a standard commuting gravity regression in the initial and the
final equilibrium that controls for arbitrary origin and destination effects in each simulation
run. Commuting declines at a rate of about 5% per km, which assuming an average speed
of 30km/h, closely matches the decay observed in real-world commuting data (Ahlfeldt et
al., 2015).

A.10.4 Equilibrium

An equilibrium is such that: (i) workers optimally choose firms; (ii) firms optimally choose
locations;33 and (iii) rents clear the real estate market in all locations. An example of an
initial equilibrium distribution of employment is shown in panel (a) of Figure A11. It is
largely concentrated in the historic center of the city (where the productivity advantage is

32We assume that the cost of moving on the network is ζ = 0.3 times the cost of moving off the network. In
other words, moving 1km on the network is equivalent to moving 0.3 kilometres off the network. Of course,
one has to access the network first, which may be impractical and thus make the network a less preferred
choice.

33For numerical reasons we impose small moving costs for firms to avoid limit cycles where firms try to
arbitrage away tiny profit differences (recall that everything is indivisible in this model). This does not drive
our results, is realistic, and introduces some additional randomness into the initial spatial allocation. It also
implies that shocks can have small permanent effects even in the absence of agglomeration economies.
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Figure A11: Initial equilibrium distribution of prime services and land rents

(a) Initial equilibrium PS distribution (b) Initial equilibrium land rents

(c) Initial equilibrium rents vs historic land prices in 1913

Notes: Darker colors in panel (a) denote more PS employment; white ZIP Code Tabulation Areas have zero PS
employment. In panel (b), darker colors correspond to higher land rents. Panel (c) regresses model land rents
(real estate prices) in the initial equilibrium and historic land values in Chicago, 1913 (data from Ahlfeldt and
McMillen, 2018) for our simulation runs.

the largest). The initial equilibrium has one prime location that is located in the historic
foundation place and that contains 64.3% of the total PS employment in our model city.
Observe also that more than half of the locations have zero equilibrium employment. Panel
(b) of Figure A11 depicts the corresponding spatial structure of land rents in the initial
equilibrium. As shown in panel (c) of Figure A11, this allocation mimics well the qualitative
structure of the 1913 Chicago land price gradient.

Turning to the final equilibrium, we move to a second-nature world and allow for ag-
glomeration economies and shocks. We assume ϵ = 0.04 for employment in the own ZCTA,
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Figure A12: Various distance gradients in the GSM

Notes: CBD is the centroid of the block that is the prime location in the majority of runs. Lines connect
averages across blocks within 1-mile distance bins with error bars giving +/- one standard deviation.

and ϵn = 0.01 for employment in neighboring ZCTAs (where neighbors are ZCTAs with
centroids up to 2 kilometers away). Our values are in line with recent estimates of agglom-
eration effects from detailed micro-data (see Combes and Gobillon 2015 for a survey). In our
illustrative example, the initial prime location with 439 employees gets hit by a shock that
forces a subset of firms—accounting for 81.5% of the PS employment of the prime location—
to move. This leads to a new short-run equilibrium with two locations that account for the
lion’s share of PS employment totaling 528 and 70 employees, respectively. It is worth noting
that the prime location also has moved. Once the shock dissipates and all firms re-optimize,
the larger PL in the new location absorbs the smaller one and grows to 719 employees (84.3%
of PS employment). Observe that geographic concentration is higher in the final equilibrium.
This is normal because we move from a first-nature world without externalities to a second-
nature world with externalities. Yet, our simulations and regression analysis reveal that
cities which experience larger shocks and/or do not develop a transportation network (or
develop a smaller network) tend to be less spatially concentrated in the final equilibrium
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than other cities.
Last, Figure A12 summarizes the distribution of densities, wages, rents and commuting

cost by distance from the CBD in the initial and final equilibrium. In keeping with the canon-
ical model, rents decrease in distance from the CBD as commuting costs increase. Wages are
generally higher in the CBD owing to exogenous and endogenous productivity advantages.
Our shocks hit the largest concentrations of employment by design, with the consequence
that there is an increase in dispersion of employment densities at close distances.
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