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1 Censored Regression

1.1 Illustration 1: Top-coding in wages

Suppose Y (log wages) are subject to “top coding” (as is often the case with social security records):

Y =

(
Y ∗ if Y ∗ ≤ c
c if Y ∗ > c

Suppose we are interested inE (Y ∗). Effectively it is not identified but if we assume Y ∗ ∼ N ¡
μ,σ2

¢
,

then μ can be determined from the distribution of Y .

The density of Y is of the form

f (r) =

(
1
σφ
¡r−μ

σ

¢
if r < c

Pr (Y ∗ ≥ c) = 1−Φ ¡r−μσ ¢
if r ≥ c

The log-likelihood function of the sample {y1, ..., yN} is

L ¡μ,σ2¢ = Y
yi<c

1

σ
φ

µ
yi − μ

σ

¶ Y
yi=c

∙
1−Φ

µ
c− μ

σ

¶¸
.

Usually, we shall be interested in a regression version of this model:

Y ∗ | X = x ∼ N ¡
x0β,σ2

¢
,

in which case the likelihood is of the form

L ¡β,σ2¢ = Y
yi<c

1

σ
φ

µ
yi − x0iβ

σ

¶ Y
yi=c

∙
1−Φ

µ
c− x0β

σ

¶¸
.

Means of censored normal variables Consider the following right-censored variable:

Y =

(
Y ∗ if Y ∗ ≤ c
c if Y ∗ > c

with Y ∗ ∼ N ¡
μ,σ2

¢
. Therefore,

E (Y ) = E (Y ∗ | Y ∗ ≤ c) Pr (Y ∗ ≤ c) + cPr (Y ∗ > c)
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Letting Y ∗ = μ+ σε with ε ∼ N (0, 1)

Pr (Y ∗ ≤ c) = Φ
µ
c− μ

σ

¶

E (Y ∗ | Y ∗ ≤ c) = μ+ σE

µ
ε | ε ≤ c− μ

σ

¶
= μ− σλ

µ
c− μ

σ

¶
.

Note that

E (ε | ε ≤ r) =
Z r

−∞
e
φ (e)

Φ (r)
de = − 1

Φ (r)

Z r

−∞
φ0 (e) de = −φ (r)

Φ (r)
= −λ (r) (1)

and

E (ε | ε > r) =
Z ∞

r
e
φ (e)

Φ (−r)de = −
1

Φ (−r)
Z ∞

r
φ0 (e) de = −−φ (r)

Φ (−r) =
φ (−r)
Φ (−r) = λ (−r) . (2)

1.2 Illustration 2: Censoring at zero (Tobit model)

Tobin (1958) considered the following model for expenditure on durables

Y = max
¡
X 0β + U, 0

¢
U | X ∼ N ¡

0,σ2
¢
.

This is similar to the first example, but now we have left-censoring at zero. However, the nature of

the application is very different because there is no physical censoring (the variable Y ∗ is just a model’s

construct). We are interested in the model as a way of capturing a particular form of nonlinearity in

the relationship between X and Y . In a utility based model, the variable Y ∗ might be interpretable

as a notional demand before non-negativity is imposed.

With censoring at zero we have

Y =

(
Y ∗ if Y ∗ > 0

0 if Y ∗ ≤ 0

E (Y ) = E (Y ∗ | Y ∗ > 0)Pr (Y ∗ > 0)

Pr (Y ∗ > 0) = Pr
³
ε > −μ

σ

´
= Φ

³μ
σ

´
E (Y ∗ | Y ∗ > 0) = μ+ σE

³
ε | ε > −μ

σ

´
= μ+ σλ

³μ
σ

´
.
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2 Heckman’s generalized selection model

Consider the model

y∗ = x0β + σu

d = 1
¡
z0γ + v ≥ 0¢Ã

u

v

!
| z ∼ N

Ã
0,

Ã
1 ρ

ρ 1

!!
so that

v | z, u ∼ N ¡
ρu, 1− ρ2

¢
or Pr (v ≤ r | z, u) = Φ

Ã
r − ρup
1− ρ2

!
.

In Heckman’s original model, y∗ denotes female log market wage and d is an indicator of partic-

ipation in the labor force. The index {z0γ + v} is a reduced form of the difference between market

wage and reservation wage.

Joint likelihood function The joint likelihood is:

L =
X
d=1

ln {p (d = 1, y∗ | z)}+
X
d=0

ln Pr (d = 0 | z)

we have

p (d = 1, y∗ | z) = Pr (d = 1 | z, y∗) f (y∗ | z)

f (y∗ | z) = 1

σ
φ

µ
y∗ − x0β

σ

¶

Pr (d = 1 | z, y∗) = 1− Pr ¡v ≤ −z0γ | z, u¢ = 1−ΦÃ−z0γ − ρup
1− ρ2

!
= Φ

Ã
z0γ + ρup
1− ρ2

!
.

Thus

L (γ,β,σ) =
X
d=1

(
ln

∙
1

σ
φ (u)

¸
+ lnΦ

Ã
z0γ + ρup
1− ρ2

!)
+
X
d=0

ln
£
1−Φ ¡z0γ¢¤

where

u =
y∗ − x0β

σ
.

Note that if ρ = 0 this log likelihood boils down to the sum a Gaussian linear regression log

likelihood and a probit log likelihood.
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Density of y∗ conditioned on d = 1 From the previous result we know that

p (d = 1, y∗ | z) = 1

σ
φ

µ
y∗ − x0β

σ

¶
Φ

Ã
z0γ + ρup
1− ρ2

!
.

Alternatively, to obtain it we could factorize as follows

p (d = 1, y∗ | z) = Pr (d = 1 | z) f (y∗ | z, d = 1) = Φ ¡z0γ¢ f (y∗ | z, d = 1) .
From the previous expression we know that

f (y∗ | z, d = 1) = p (d = 1, y∗ | z)
Φ (z0γ)

=
1

Φ (z0γ)
Φ

Ã
z0γ + ρup
1− ρ2

!
1

σ
φ (u) .

Note that if ρ = 0 we have f (y∗ | z, d = 1) = f (y∗ | z) = σ−1φ (u).

Two-step method Then mean of f (y∗ | z, d = 1) is given by

E (y∗ | z, d = 1) = x0β + σE
¡
u | z0γ + v ≥ 0¢

= x0β + σρE
¡
v | v ≥ −z0γ¢ = x0β + σρλ

¡
z0γ
¢

Form wi =
³
x0i, bλi´0, where bλi = λ (z0ibγ) and bγ is the probit estimate. Then do the OLS regression

of y on x and bλ in the subsample with d = 1 to get consistent estimates of β and σuv (= σρ):Ã bβbσuv
!
=

⎛⎝X
di=1

wiw
0
i

⎞⎠−1X
di=1

wiyi.

2.1 Nonparametric identification: The fundamental role of exclusion restrictions

• The role of exclusion restrictions for identification in a selection model is paramount. In appli-
cations there is a marked contrast in credibility between estimates that rely exclusively on the

nonlinearity and those that use exclusion restrictions.

• The model of interest is

Y = g0 (X) + U

D = 1 (p (X,Z)− V > 0)

where (U,V ) are independent of (X,Z) and V is uniform in the (0, 1) interval. Thus,

E (U | X,Z,D = 1) = E [U | V < p (X,Z)] = λ0 [p (X,Z)]

E (Y | X,Z) = g0 (X)
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(i.e. enforcing the exclusion restriction), but we observe

E (Y | X,Z,D = 1) = μ (X,Z) = g0 (X) + λ0 [p (X,Z)]

E (D | X,Z) = p (X,Z) .

The question is whether g0 (.) and λ0 (.) are identified from knowledge of μ (X,Z) and p (X,Z).

• Let us consider first the case where X and Z are continuous. Suppose there is an alternative

solution (g∗,λ∗). Then

g0 (X)− g∗ (X) + λ0 (p)− λ∗ (p) = 0.

Differentiating

∂ (λ0 − λ∗)
∂p

∂p

∂Z
= 0

∂ (g0 − g∗)
∂X

+
∂ (λ0 − λ∗)

∂p

∂p

∂X
= 0.

Under the assumption that ∂p/∂Z 6= 0 (instrument relevance), we have
∂ (λ0 − λ∗)

∂p
= 0,

∂ (g0 − g∗)
∂X

= 0

so that λ0 − λ∗ and g0 − g∗ are constant (i.e. g0 (X) is identified up to an unknown constant).
This is the identification result of Das, Newey, and Vella (2003).

• E (Y | X) is identified up to a constant, provided we have a continuous instrument. Identification
of the constant requires units for which the probability of selection is arbitrarily close to one

(“identification at infinity”). Unfortunately, the constants are important for identifying average

treatment effects.

• With binary Z, functional form assumptions play a more fundamental role in securing identifi-

cation than in the case of an exclusion restriction of a continuous variable.

• Suppose X is continuous but Z is a dummy variable. In general g0 (X) is not identified. To see

this, consider

μ (X, 1) = g0 (X) + λ0 [p (X, 1)]

μ (X, 0) = g0 (X) + λ0 [p (X, 0)] ,

so that we identify the difference

ν (X) = λ0 [p (X, 1)]− λ0 [p (X, 0)] ,
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but this does not suffice to determine λ0 up to a constant. Take as an example the case where

p (X,Z) is a simple logit or probit model of the form

p (X,Z) = F (βX + γZ) ,

then letting h0 (.) = λ0 [F (.)],

ν (X) = h0 (βX + γ)− h0 (βX) .

Suppose the existence of another solution h∗. We should have

h0 (βX + γ)− h∗ (βX + γ) = h0 (βX)− h∗ (βX) ,

which is satisfied by a multiplicity of periodic functions.

• If X is also discrete, there is clearly lack of identification. For example, suppose X and Z are

dummy variables:

μ (0, 0) = g0 (0) + λ0 [p (0, 0)]

μ (0, 1) = g0 (0) + λ0 [p (0, 1)]

μ (1, 0) = g0 (1) + λ0 [p (1, 0)]

μ (1, 1) = g0 (1) + λ0 [p (1, 1)] .

Since λ0 (.) is unknown g0 (1) − g0 (0) is not identified. Only λ0 [p (1, 1)] − λ0 [p (1, 0)] and

λ0 [p (0, 1)]− λ0 [p (0, 0)] are identified.

3 Relaxing restrictive distributional assumptions in Tobit models

• Symmetrically trimmed least squares.

• Censored regression quantiles.

4 Bivariate probit with sample selection

See Exercise 8 in the ‘Discrete choice, censoring, and duration’ list.
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