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Introduction

• Suppose that a population is stratified by groups to guarantee that there will be
enough observations to permit suffi ciently precise estimates for each of the groups.
For example, these groups can be locations, age intervals, or wealth levels.

• Next, each subpopulation or stratum is divided into spatial clusters of households
(apartment compounds, villages) and a random sample of clusters is selected from
each stratum. Finally, a small number of households is selected at random within
each cluster.

• In general, sampling clusters is more cost effective than sampling households directly,
despite the fact that individual observations within a cluster will likely be correlated
and therefore less informative than observations from individuals sampled at random.

• The above describes a prototypical multistage survey design in which both
stratification and clustering are present.

• We wish to discuss the implications of using this type of data for an econometric
analysis where the interest is in drawing conclusions about the original population.
The econometric analysis could be of a descriptive nature (decomposition analysis or
hedonic price indexes) or aim for non-structural or structural causal inference.
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Introduction (continued)

• It is also of interest to think of complex survey designs in a figurative sense.

• Sometimes we wish to do statistical analysis of data which have not come to us as a
result of actual sampling. In those situations we implicitly decide the abstract
population of interest by imagining a sampling design that could have produced the
data at hand from such population.

• This is the case when we work with the universe of firms of certain characteristics or
when we work with cross-sectional or longitudinal data on countries.

• At a more general level, the question of inference is: how much confidence can I have
that the pattern I see in the data is typical of some larger population, or that the
apparent pattern is not only a random occurrence?

• From this perspective there is a role for inferential statistics as long as it can be
anticipated that estimation error is not negligible relative to some conceptual
population of interest.
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Finite populations

• Inference in microeconometrics typically assumes that data are generated as a random
sample with replacement or that is coming from an infinite population.

• These assumptions are not literally valid in the case of survey data that come from a
finite population of units.

• There is an extensive literature in statistics dealing with the sampling schemes that
arise in survey production (e.g. Levy and Lemeshow 1991).

Random sampling without replacement
• Consider a finite population N and the population mean given by

θ0 =
1

N

N

∑
i=1

Yi .

• Also define the following population variance

S2 =
1

N − 1

N

∑
i=1
(Yi − θ0)

2 =
1

N − 1
Y ′QNY ,

where QN = I − ιι′/N is the deviation from means operator of order N .

• The Y =
(
Y1, ...,YN

)′ represent a full enumeration of the values of the variable and
are therefore nonstochastic quantities.
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Finite populations (continued)

• Let y1, ..., yN be a random sample of size N without replacement and sample mean:

Y =
1
N

N

∑
j=1

yj

• The sample mean can be rewritten as a random selection of population values

Y =
1
N

N

∑
i=1

aiYi

where ai is an indicator that takes the value 1 if i is in the sample, and 0 otherwise.

• Letting f = N/N , under random sampling

E (ai ) = f

Var (ai ) = f (1− f )

Cov
(
ai , aj

)
= − 1(

N − 1
) f (1− f ) ,

or in compact form,

Var (a) = f (1− f ) N(
N − 1

)QN
• The result uses that E

(
aiaj

)
= N

N
(N−1)
(N−1)

due to sampling without replacement.
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Finite populations (continued)

• We immediately see that the sample mean is an unbiased estimator of the population
mean:

E
(
Y
)
=
1
N

N

∑
i=1

E (ai )Yi =
1
N

N

∑
i=1

N

N
Yi = θ0

• Moreover, the variance is given by

Var
(
Y
)
=

1
N2
Y ′Var (a)Y = (1− f ) S

2

N
• The term 1− f is the finite population correction. When N → N the sampling
variance goes to zero, Var

(
Y
)
→ 0.

• A multivariate generalization is straightforward.

• Typically, the population size is suffi ciently large relative to the sample size that
1− f ≈ 1 and the correction can be ignored. This is the approach we’ll take in what
follows.

• Standard asymptotic theory studies the properties of sample statistics from infinite
populations as N → ∞.

• An alternative asymptotic framework to mimic situations where sample size is not
negligible relative to population size, is one in which both N and N tend to infinity
while f tends to some positive fraction.
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Finite populations (continued)

• An unbiased estimate of the population variance S2 is given by

s2 =
1

N − 1
N

∑
i=1

(
yi − Y

)2
=

1
N − 1 y

′QN y

• Ullah and Breunig (1998) show that E
(
s2
)
= S2. They also consider results for

linear regression and generalizations to stratified samples and clustering.

• It turns out that the OLS variance when sampling is without replacement is not
necessarily smaller than the infinite population OLS variance. The direction of the
inequality depends upon the matrix of regressors.

• Moreover, it is possible to consider a GLS estimator that takes into account that errors
are not independent. Contrary to the mean model, GLS does not coincide with OLS.
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Part 1: Weighted estimation and stratification
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Stratified sampling

• We focus on the so called “standard stratified sampling”: The population is divided
into S non-overlapping groups or strata. Then for s = 1, ...,S , we draw a random
sample of size Ns from stratum s . The total sample size is N = N1 + ...+NS .

• Related sampling schemes are “variable probability sampling” and “multinomial
sampling” (e.g. Cosslett 1993, and Wooldridge 2010).

• Let qs be the known population relative frequency for stratum s . Consider some
variable Y whose probability distribution in the population is f (y ). This can be
written as

f (y ) = f (y | s = 1) q1 + ...+ f (y | s = S) qS
where f (y | s) is the probability distribution of Y in stratum s .

• Suppose we have drawn a stratified sample y1, ..., yN . This is as if we had drawn a
random sample from the artificial population

f ∗ (y ) = f (y | s = 1) h1 + ...+ f (y | s = S) hS
where hs = Ns/N and hs = lim hs .
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Using weighted estimators

• If we want to consistently estimate the population mean of Y from the stratified data
the stratification needs to be undone by re-weighting the observations.

• First, sample means for each strata are calculated

Ê (Y | s) = 1
Ns

∑
i∈s
yi

• Next the overall mean is calculated by aggregating over strata using population
frequencies instead of sample frequencies:

Ê (Y ) =
S

∑
s=1

Ê (Y | s) qs =
1
N

N

∑
i=1

ωs(i )yi

where ωs = qs/hs and s (i) is the stratum to which individual i belongs.
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Weight factors

• The weight factor ωs(i ) is the ratio of the population share to the sample share.
• It informs us that household i is representative of ωs(i )—times the number of
households it would represent in a random sample.

• Over-sampled categories are given a low weight, and vice-versa.
• In a random sample ωs(i ) = 1 for all i , so that each unit in a sample of size N is

representative of N/N units in a population of size N (e.g. N/N = 2000 if N = 500
and N = 1, 000, 000).

• For example, ωs(i ) = 3 means that unit i represents φi = ωs(i ) ×N/N = 6000
comparable units.

• Weight factors add up to N :
N

∑
i=1

ωs(i ) = N1ω1 + ...+NSωS = q1N + ...+ qSN = N

Moreover, ∑Ni=1 φi = N .

• Using φi , Ê (Y ) can be seen as an approximate calculation of the population mean:

Ê (Y ) =
1

N

N

∑
i=1

φi yi .

• The φi are the standard definition of population weights in survey methodology.
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Weighted estimating equations

• A generalization of the weighted mean in a GMM framework is as follows.

• Suppose we are interested in the estimation of some parameter θ0, which is a
characteristic of the possibly multivariate distribution f (w ) identified by the moment
condition

Eψ (W , θ0) = 0.

• In a stratified sample we would therefore expect

S

∑
s=1

Ê [ψ (W , θ0) | s ] qs =
1
N

N

∑
i=1

ωs(i )ψ (wi , θ0) ≈ 0

• So it is natural to estimate θ0 by θ̂, which precisely solves

1
N

N

∑
i=1

ωs(i )ψ
(
wi , θ̂

)
= 0. (1)

• θ̂ is a weighted generalized-method-of-moments (GMM) estimator.

• Here dim ψ = dim θ. If dim ψ > dim θ, θ̂ will solve dim θ linear combinations of (1).
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Asymptotic Variance

• Under standard regularity conditions the asymptotic variance of θ̂ can be estimated as

H−1
S

∑
s=1

ω2s

[
Ns

∑
i∈s

(
ψ
(
wi , θ̂

)
− ψs

) (
ψ
(
wi , θ̂

)
− ψs

)′]
H ′−1

where H = ∑Ni=1 ωs(i )
∂ψ(wi ,θ̂)

∂θ′
and ψs =

1
Ns ∑Nsi∈s ψ

(
wi , θ̂

)
.

• Means by strata need to be subtracted because in general E [ψ (W , θ0) | s ] 6= 0.

Example: Asymptotic variance of the weighted sample mean

• If ψ (wi , θ) = yi − θ, we get H = −∑Ni=1 ωs(i ) = −N and hence

1
N2

S

∑
s=1

ω2s

[
Ns

∑
i∈s
(yi − y s )2

]
=

S

∑
s=1

N2s
N2

ω2s

[
1
N2s

Ns

∑
i∈s
(yi − y s )2

]
=

S

∑
s=1

q2s
σ̂2s
Ns

where

σ̂2s =
1
Ns

Ns

∑
i∈s
(yi − y s )2 .

• A suitable choice of h1, ..., hS will be variance reducing relative to random sampling.
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Examples
• The first example is linear regression:

ψ (wi , θ) = xi
(
yi − x ′i θ

)
• Solving (1) we get the weighted-least squares estimator

θ̂ =

(
N

∑
i=1

ωs(i )xi x
′
i

)−1 N

∑
i=1

ωs(i )xi yi

• The second example is linear instrumental-variables :

ψ (wi , θ) = zi
(
yi − x ′i θ

)
leading to

θ̂ =

(
N

∑
i=1

ωs(i )zi x
′
i

)−1 N

∑
i=1

ωs(i )zi yi .

• The third example is quantile regression:

ψ (wi , θ) = xi
[
1
(
yi ≤ x ′i θ

)
− τ

]
.

In this case θ̂ solves for τ ∈ (0, 1)

θ̂ = arg min
θ

N

∑
i=1

ωs(i )ρτ

(
yi − x ′i θ

)
where ρτ (u) is the “check” function ρτ (u) = [τ1 (u ≥ 0) + (1− τ) 1 (u < 0)]× |u|.
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Conditional likelihood model

• The next example is one where w = (y , x) and f (w ) = f (y | x , θ) g (x). A
parametric model is specified for f (y | x , θ) while g (x) is left unrestricted. Here

ψ (wi , θ) =
∂ ln f (yi | xi , θ)

∂θ

and we solve
1
N

N

∑
i=1

ωs(i )
∂ ln f (yi | xi , θ)

∂θ
= 0.

• This estimator was first proposed by Manski and Lerman (1977) in the context of
estimation of discrete-choice models from choice-based samples (sometimes
confusingly called “weighted exogenous sample ML”) —more to follow.

• It provides consistent estimates under endogenously stratified sampling (with known
qs ) but it is not effi cient.

• The reason why it is not effi cient is that it does not attempt to reconcile the actual
known values of qs with those predicted by the model.

• Effi cient estimation is discussed in Cosslett (1993), Imbens (1992), and Imbens and
Lancaster (1996). These estimators are applicable in an ML context were the model
specifies a conditional likelihood.
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Estimating parameters from subpopulations

• In the last example interest is in estimating a characteristic θ0 of some subpopulation.
• Let di indicate membership of the subpopulation and suppose that θ0 satisfies

E [ψ (wi , θ0) | di = 1] = 0

or equivalently
E [ψ (wi , θ0) di ] = 0.

• Estimation is based on the sample moment

N

∑
i=1

ωs(i )diψ
(
wi , θ̂

)
= 0.

• For example, if interested in the mean of yi for the units with di = 1 we get:

N

∑
i=1

ωs(i )di
(
yi − θ̂

)
= 0.

so that θ̂ is the conditional weighted average:

θ̂ =
1

∑Nj=1 ωs(j)dj

N

∑
i=1

ωs(i )di yi .
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Endogenous and exogenous stratification

• Strata are based on the values of certain variables like geographic location or age.

• Often we are interested in estimating characteristics of the conditional distribution of
some variable y given other variables x .

• For example, in regression analysis one is interested in a conditional mean E (y | x) or
a conditional quantile Qτ (y | x). In a linear approach one assumes E (y | x) = x ′θ0
so that θ0 becomes the object of interest in estimation.

• If stratification is based exclusively on x (i.e. the stratification variables are functions
of x) there is no need to use sample weights in estimation. The standard unweighted
estimator remains consistent in the stratified sample.

• However, weighting is essential if interested in the estimation of unconditional
quantities, such as E (y ) or Qτ (y ), or on conditional quantities that are not
conditioned on the stratification variables.
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Endogenous and exogenous stratification (continued)

• More generally, in a GMM framework the condition for ignorable stratification is that
the moment equation Eψ (W , θ0) = 0 holds in each strata:

E [ψ (W , θ0) | s ] = 0. (2)

• The intuition is that if (2) holds, Ê [ψ (W , θ0) | s ] ≈ 0 for all s , so we not only expect

S

∑
s=1

Ê [ψ (W , θ0) | s ] qs =
1
N

N

∑
i=1

ωs(i )ψ (wi , θ0) ≈ 0

but also
S

∑
s=1

Ê [ψ (W , θ0) | s ] hs =
1
N

N

∑
i=1

ψ (wi , θ0) ≈ 0
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Endogenous and exogenous stratification (continued)

Linear projections and exogenous stratification

• If a linear regression parameter θ0 only denotes a linear projection approximation to a
nonlinear conditional expectation E (y | x), weighting is required even if s = s (x).

• The problem is that if E [x (y − x ′θ0)] = E (xu) = 0 holds but E (y | x) 6= x ′θ0, u
and x will not be uncorrelated within strata:

E (xu | s) = E [xE (u | x , s) | s ] = E [xE (u | x) | s ] 6= 0

• Intuitively, a linear regression best approximates E (y | x) at high density values of x .
Since stratification changes the density of x it will also change the approximating
linear projection.

• The same is true in an instrumental-variable model:

E
[
z
(
y − x ′θ0

)]
= E (zu) = 0

if the conditional mean restriction E (u | z) = 0 does not hold. In this situation
weighting will be required even if the stratification variables depend exclusively on z
(more later).
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Endogenous and exogenous stratification (continued)

• The context of the endogenous/exogenous stratification terminology is an
econometric model of y and x , which only specifies the conditional distribution of y
(endogenous) given x (exogenous).

• Since the distribution of x is left unrestricted and plays no part in the estimation

f (w ) = f (y | x , θ) g (x) ,

stratification can be ignored if only modifies the form of g (x).

• In contrast, in endogenous or non-ignorable stratification, the strata are defined in
terms of y (and possibly other variables).
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Population heterogeneity vs sample design
• One interpretation of the weighted sample mean is that different means in each strata
are first calculated and then combined into an average weighted by population
frequencies. We wish to discuss the merits of this way of thinking in a regression case.

• Suppose that θs is a regression coeffi cient in stratum s (or some other characteristic of
the distribution in stratum s), which varies across strata, and the object of interest is

θ =
S

∑
s=1

θsqs

• In general, the weighted regression estimator will not be a consistent estimator of θ.

• This is sometimes held as an argument against weighted regression: when θs are
homogeneous, unweighted regression (OLS) is more effi cient and when they are not,
both weighted and unweighted estimators are inconsistent for θ (Deaton 1997).

• Where is the catch? The key is whether the substantive interest is in θ (an average of
effects across strata) or on some quantity defined for the overall population.

• In general, the parameter θ will be of interest when variability in the θs captures
meaningful population heterogeneity in individual responses.

• If we are using a regression as a device to summarize characteristics of the population,
then θ is not the parameter of interest but rather the population-wide regression
coeffi cient, which is precisely the object that weighted regression tries to approximate.
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Local average treatment effects

• As an illustration, consider an instrumental-variable treatment effect setting where
there is an outcome variable Yi , a binary treatment Di and a binary instrument Zi .

• The parameter of interest is

θ0 =
E (Yi | Zi = 1)− E (Yi | Zi = 0)
E (Di | Zi = 1)− E (Di | Zi = 0)

,

which can be interpreted as a local average treatment effect (LATE) defined over the
group of compliers, i.e. those induced to treat by a change in Zi (Imbens and Angrist
1994).

• For example, Yi=earnings, Di=college education, and Zi=college nearby. Compliers
are individuals who would go to college if college is nearby but not if it is far away.

• Suppose there are two sampling strata (rural & urban). For each strata, we could get

θs =
E (Yi | Zi = 1, s)− E (Yi | Zi = 0, s)
E (Di | Zi = 1, s)− E (Di | Zi = 0, s)

• However, in this case the relevant aggregate effect is not θ but θ0. In this situation,
weighted IV is essential to get a consistent estimation of θ0 under stratified sampling.

• The θs are LATEs for different subpopulations of compliers.
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Quantile treatment effects
• A further illustration involves quantile treatment effects (QTE), as used in the
matching literature in program evaluation (Firpo, 2007).

• Let (Y1,Y0) be potential outcomes with marginal cdfs F1 (r ) ,F0 (r ) and quantile
functions Q1τ = F−11 (τ) ,Q0τ = F−10 (τ). The QTE is defined to be

θ0 = Q1τ −Q0τ

• Under conditional exogeneity Fj (r ) =
∫
Pr (Y ≤ r | D = j ,X ) dG (X ), (j = 0, 1).

Moreover, Q1τ,Q0τ satisfy the moment conditions:

E
[
D

p (X )
1 (Y ≤ Q1τ)− τ

]
= 0

E
[
1−D

1− p (X )1 (Y ≤ Q0τ)− τ

]
= 0

and

Q1τ = arg minq
E
[
D

p (X )
ρτ (Y − q)

]
,Q0τ = arg minq

E
[
1−D

1− p (X ) ρτ (Y − q)
]
.

• Firpo’s method is a two-step weighting procedure in which the propensity score
p (X ) = Pr (D = 1 | X ) is estimated first.

• The point here is that in the presence of stratified sampling we would like to
introduce an additional layer of weights in both steps to undo stratification and
obtain population-level quantities.
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Choice-based sampling

• Choice-based sampling is a simple case of endogenous stratification in which y is
discrete and its values define the strata.

• This is the context of the first econometric work on endogenous stratification.
• Manski and Lerman (1977) proposed an estimator for data on individual choices of
transportation mode (travel to work by bus or by car), using choice based sampling.

• Their weighted estimator is consistent and computationally straightforward, but
ineffi cient in an ML context such as this one.

• The problem is that while endogenous stratification is used to oversample the rare
alternative, the Manski-Lerman estimator dilutes the information by assigning low
weights to the extra observations (Coslett 1993).

• A GMM effi cient estimator is proposed in Imbens (1992).

• In an exogenously stratified sample, the informative part of the likelihood is the
density of y conditioned on x . In contrast, in a choice-based sample, it is the density
of x conditioned on y , which is connected to the original model by Bayes’rule.
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Binary model example
• Suppose that y and x are binary and we are interested in the logit model

π1 = Pr (y = 1 | x = 1) = Λ (α+ β)

π0 = Pr (y = 1 | x = 0) = Λ (α)

• We have a random sample of x of size N1 for units with y = 1 and one of size N0 for
units with y = 0. The population value q = Pr (y = 1) is known.

• Thus, there are two strata with population frequencies q and 1− q, N = N1 +N0,
and sample frequencies h = N1/N and 1− h = N0/N .

• Using Bayes’rule

π1 =
Pr (x = 1 | y = 1) q

Pr (x = 1 | y = 1) q + Pr (x = 1 | y = 0) (1− q)
with a similar expression for π0.

• Intuitively, Pr (x = 1 | y = 1) can be consistently estimated in the first stratum and
Pr (x = 1 | y = 0) in the second:

P̂r (x = 1 | y = 1) = N11/N1 = φ̂1

P̂r (x = 1 | y = 0) = N01/N0 = φ̂0

• Using them to replace population frequencies, we obtain estimates of π1 and π0.

• To estimate (α, β), just solve α = logit (π0) and β = logit (π1)− logit (π0).
• For logit, knowledge of q is needed to determine α but not β.
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Binary model example (continued)
• In this example weighted logit produces the same result. The first-order conditions are

N

∑
i=1

qi
hi

(
xi

1− xi

)
[yi −Λ (α+ βxi )] = 0

or
N1

∑
y=1

q
N1/N

(
xi

1− xi

)
[1−Λ (α+ βxi )]−

N0

∑
y=0

1− q
N0/N

(
xi

1− xi

)
Λ (α+ βxi ) = 0.

• Collecting terms we get:

qφ̂1 [1−Λ (α+ β)]− (1− q) φ̂0Λ (α+ β) = 0

q
(
1− φ̂1

)
[1−Λ (α)]− (1− q)

(
1− φ̂0

)
Λ (α) = 0

• Solving the first equation we get an estimate of π1

̂Λ (α+ β) = π̂1 =
φ̂1q

φ̂1q + φ̂0 (1− q)

and solving the second we get Λ̂ (α) = π̂0.
• In more general cases, like multinomial models or models with continuous x’s, the
direct approach may not be feasible while weighted logit remains a simple method.

• The example is intended to illustrate the nature of identification under choice-based
sampling and the connection with weighted estimation.

27



Discrete choice from data on participants

• Bover and Arellano (2002) studied the determinants of migration using choice-based
Census data on residential variations (RV) that only had characteristics of migrants.

• The diffi culty in this case is that Pr (x = 1 | y = 0) is not identified, so that the
model parameters are not identified without further information.

• The extra information is a complementary sample from labor force surveys (LFS),
which contains characteristics of migrants and non-migrants but no migration
variables. From these data the marginal distribution of x can be estimated.

• The goal is to estimate multinomial logit probabilities of migrating to small, medium
and large towns, relying on Bayes’rule:

Pr (y = j | x) = f (x | y = j)Pr (y = j)
f (x)

(j = 1, 2, 3)

• The RV data is informative about f (x | y = j) and the LFS data about f (x).

• Given RV data, LFS data are indirectly informative on nonmigrant characteristics
f (x | y = 0). Information on pj = Pr (y = j) comes from aggregate census.
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Discrete choice from data on participants (continued)

• Two sources of micro data and one source of macro data are combined to secure
identification of the multinomial choice model.

• Since the x’s used in Bover and Arellano were all discrete, they treated f (x | y = j)
and f (x) as multinomial distributions.

• They formed cells for each value of x . Then they calculated cell by cell frequencies of
migration Pr (y = j | x) combining the various data sources. Finally, the discrete
choice models were fitted to cell-specific frequencies by minimum distance.
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Continuous regressors
• If x’s are continuous the previous method does not work. Here we consider a GMM
alternative that works with continuous regressors. The multinomial logit model is

Pr (y = j | x) = Gj (x , θ) =
ex
′θj

1+ ex ′θ1 + ex ′θ2 + ex ′θ3

• Since we have
Gj (x , θ) f (x) = pj f (x | y = j) ,

the following holds for any function h (x):∫
h (x)Gj (x , θ) f (x) dx = pj

∫
h (x) f (x | y = j) dx

• Setting h (x) = x , we have

E
[
xGj (x , θ)

]
= pjE [x | y = j ] .

• Let the LFS data be {xk}Mk=1 and the RV data {yi , xi}
N
i=1. Estimation of θ is based

on the two-sample moment conditions

1
M

M

∑
k=1

xkGj (xk , θ) = pj
1
Nj

N

∑
i=1

xi1 (yi = j) (j = 1, 2, 3)

where Nj = ∑Ni=1 1 (yi = j).
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Continuous regressors (continued)

• To see what is going on, consider the simplified situation where the model is binary
(y = 1 if mover, y = 0 if stayer) and we are using a linear probability model. The
previous moment equation boils down to

1
M

M

∑
k=1

xk x
′
k θ = p

1
N

N

∑
i=1

xi

• The estimator is just the following two-sample least squares method

θ̂ = p

(
1
M

M

∑
k=1

xk x
′
k

)−1
1
N

N

∑
i=1

xi

or

θ̂ = p
[
ÊLFS

(
xx ′
)]−1

ÊRV [x | y = 1] .
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Part 2: Cluster standard errors
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Cluster standard errors

Introduction

• We have already discussed the consequences of clustered designs for the estimation of
means and their standard errors. We now deal with the implications for estimation
error in econometric work more broadly.

• The basic conclusion remains. Namely, that if the cluster design is ignored,
conventional formulas for standard errors of estimated regression parameters and their
generalizations are too small.

• Goal is to find ways of obtaining valid standard errors when using clustered samples.

• Moulton (1990) alerted economists about large underestimation of standard errors
due to ignoring cluster effects.

• In an individual wage equation for the US with only state level x’s, ignoring cluster
effects would understate standard errors by a factor of more than three (Deaton 1997)
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Remarks

• There is a close parallel between the econometrics of clustered samples and “large N ,
small T”panel data (Arellano, 2003). However, in the context of clusters,
unbalanced designs are the norm (varying number of units per cluster).

• For example, in a household-level panel data set, the household plays the role of a
cluster and time plays the role of the individual units.

• There may be also cluster samples of panel data. In those situations there are two
potential sources of correlation across observations: across time within the same
individual and across individuals within the same cluster (see Wooldridge 2010).

• In the econometrics of clustered samples there is also an effi ciency issue, although less
prominent in applied work. The point is that because the error terms in the
regressions are correlated across observations, OLS is not effi cient.
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Cluster fixed-effects vs cluster-robust standard errors

• Sometimes within-cluster dependence is specified as an additive cluster effect in the
error of a model. In this case there is constant within-cluster correlation among errors.

• If cluster effects are correlated with regressors, within-cluster LS (cluster “fixed
effects”) is consistent but OLS in levels is not.

• If cluster effects are uncorrelated with regressors, OLS in levels is consistent but
standard errors need to be adjusted.

• Assuming constant within-cluster dependence, one can use formulas for standard
errors that are more restrictive than the fully robust formulas discussed below, but
may have better sampling properties when the number of clusters is small.

• Sometimes cluster fixed-effects are used for consistency together with cluster-robust
standard errors for correcting any remaining non-constant within-cluster correlation.
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General set up
• Let θ be a parameter identified from the moment condition

Eψ (w , θ) = 0

such that dim (θ) = dim (ψ). Consider a sample W = {w1, ...,wN } and a consistent
estimator θ̂ that solves the sample moment conditions.

• ψ (w , θ) are GMM orthogonality conditions or first-order conditions in M-estimation.

• Assume that conditions for the large-sample linear representation of the scaled
estimation error and asymptotic normality hold:

√
N
(

θ̂ − θ
)
≈ −D−10

1√
N

N

∑
i=1

ψ (wi , θ)
d→ N

(
0,D−10 V0D

−1′
0

)
where D0 = ∂Eψ (w , θ) /∂c ′ are partial derivatives and V0 is the limiting variance:

V0 = lim
N→∞

Var

(
1√
N

N

∑
i=1

ψ (wi , θ)

)
• To get standard errors of θ̂ we need estimates of D0 and V0.

• A natural estimate of D0 is to use numerical derivatives D̂ evaluated at θ̂.

• As for V0 the situation is different under independent or cluster sampling.
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Independent sampling

• Let ψi = ψ (wi , θ), ψ̂i = ψ
(
wi , θ̂

)
. With iid observations, E

(
ψiψ

′
j

)
= 0 (i 6= j) and

V0 = E
(
ψiψ

′
i

)
• A consistent estimate of V0 under independence is therefore

V̂ =
1
N

N

∑
i=1

ψ̂i ψ̂
′
i

• and a consistent estimate of the asymptotic variance of θ̂ under independent sampling:

V̂ar
(

θ̂
)
=
1
N
D̂−1

(
1
N

N

∑
i=1

ψ̂i ψ̂
′
i

)
D̂−1. (3)

• As an illustration, if ψi = yi − θ, D0 = −1, V0 = E
[
(yi − θ)2

]
≡ ωv , and

V̂ar
(

θ̂
)
=

ω̂v
N
, ω̂v =

1
N

N

∑
i=1

(
yi − θ̂

)2
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Cluster sampling

• The sample consists of H groups (or clusters) of Mh observations each
(N = M1 + ...+MH ), such that observations are independent across groups but
dependent within groups, H → ∞ and Mh is fixed for all h.

• For convenience we order observations by groups and use the double-index notation
whm so that W = {w11, ...,w1M1 | ... | wH1, ...,wHMH }.

• Under cluster sampling, letting ψh = ∑Mh
m=1 ψhm and ψ̃h = ∑Mh

m=1 ψ̂hm we have

V0 = lim
N→∞

Var

(
1√
N

H

∑
h=1

ψh

)
= lim
N→∞

1
N

H

∑
h=1

E
(

ψhψ
′
h

)
,

so that E
(

ψiψ
′
j

)
= 0 only if i and j belong to different clusters, or

E
(
ψhmψ′h′m ′

)
= 0 for h 6= h′. Thus, a consistent estimate of V0 is

Ṽ =
1
N

H

∑
h=1

ψ̃h ψ̃
′
h .

• The estimated asymptotic variance of θ̂ allowing within-cluster correlation is

Ṽar
(

θ̂
)
=
1
N
D̂−1

(
1
N

H

∑
h=1

ψ̃h ψ̃
′
h

)
D̂−1. (4)

• Note that (4) is of order 1/H whereas (3) is of order 1/N .
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Illustration
• Consider the simple case of ψhm = yhm − θ and a balanced clustered design Mh = M
for all h (so that N = HM).

• Letting E [(yhm − θ) (yhs − θ)] = ωη and E
[
(yhm − θ)2

]
= ωη +ωv , we have

V0 =
H
HM

E
(

ψ
2
h

)
=
1
M

(
Mωv +M2ωη

)
= ωv +Mωη

Ṽ =
1
HM

H

∑
h=1

ψ̃
2
h = ω̂v +M ω̂η

where ω̂v is the within-cluster sample variance

ω̂v =
1

H (M − 1)
H

∑
h=1

M

∑
m=1

(yhm − y h)2 ,

y h = ψ̃h/M , and ω̂η is the cluster-effect variance

ω̂η =
1
H

H

∑
h=1

y 2h −
ω̂v
M

• Therefore,

Ṽar
(

θ̂
)
=
1
N

(
ω̂v +M ω̂η

)
=

ω̂v
N
+

ω̂η

H

• The first term is of order 1/N but the second is 1/H .
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Examples

Panel data model

• A panel data example is

ψ (whm , θ) = xhm
(
yhm − x ′hmθ

)
where h denotes units and m time periods. If the variables are in deviations from
means, θ̂ is the within-group estimator.

• In this case D̂hm = −xhmx ′hm and ψ̃h = ∑Mh
m=1 xhm ûhm where ûhm are within-group

residuals.

• The result is the (large H , fixed Mh) formula for within-group standard errors that are
robust to heteroskedasticity and serial correlation of arbitrary form in Arellano (1987):

Ṽar
(

θ̂
)
=

(
H

∑
h=1

Mh

∑
m=1

xhmx
′
hm

)−1 H

∑
h=1

Mh

∑
m=1

Mh

∑
s=1

ûhm ûhsxhmx
′
hs

(
H

∑
h=1

Mh

∑
m=1

xhmx
′
hm

)−1
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Examples (continued)

Quantile regression

• Another example is a τ-quantile regression with moments

ψ (whm , θ) = xhm
[
1
(
yhm ≤ x ′hmθ

)
− τ

]
where D̂hm = ω̂hmxhmx ′hm , ω̂hm = 1

(∣∣∣yhm − x ′hm θ̂
∣∣∣ ≤ ξN

)
/ (2ξN ),

ψ̃h = ∑Mh
m=1 xhm ûhm and ûhm = 1

(
yhm ≤ x ′hm θ̂

)
− τ.

• Cluster-robust standard errors for QR coeffi cients are obtained from:

Ṽar
(

θ̂
)
= B̂−1

(
H

∑
h=1

Mh

∑
m=1

Mh

∑
s=1

ûhm ûhsxhmx
′
hs

)
B̂−1

where

B̂ =
H

∑
h=1

Mh

∑
m=1

ω̂hmxhmx
′
hm
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Unconditional quantile

• Estimation of an unconditional τ-quantile is the same as QR on an intercept and
therefore a special case of the previous result:

ψ (whm , θ) = [1 (yhm ≤ θ)− τ]

where ω̂hm = 1
(∣∣∣yhm − θ̂

∣∣∣ ≤ ξN

)
/ (2ξN ), ψ̃h = ∑Mh

m=1 ûhm and

ûhm = 1
(
yhm ≤ θ̂

)
− τ.

• Cluster-robust standard errors for sample τ-quantiles are obtained from:

Ṽar
(

θ̂
)
=

∑Hh=1 ∑Mh
m=1 ∑Mh

s=1

[
1
(
yhm ≤ θ̂

)
− τ

] [
1
(
yhs ≤ θ̂

)
− τ

]
(

∑Hh=1 ∑Mh
m=1

1(|yhm−θ̂|≤ξN )
2ξN

)2
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Part 3: Bootstrap methods
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Bootstrap methods

Introduction

• The bootstrap is an alternative method of assessing sampling variability. It is a
mechanical procedure that can be applied in a wide variety of situations.

• It works in the same way regardless of whether something straightforward is being
estimated or something more complex.

• The bootstrap was invented and given its name by Brad Efron in a paper published in
1979 in the Annals of Statistics.

• The bootstrap is probably the most widely used methodological innovation in
statistics since Ronald Fisher’s development of the analysis of variance in the 1920s
(Erich Lehmann 2008).
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The idea of the bootstrap
• Let Y1, ...,YN be a random sample according to some distribution F and let

θ̂N = h (Y1, ...,YN ) be some statistic of interest. We want to estimate the
distribution of θ̂N

PrF
(

θ̂N ≤ r
)
= PrF [h (Y1, ...,YN ) ≤ r ]

where the subscript F indicates the distribution of the Y ’s.
• A simple estimator of PrF

(
θ̂N ≤ r

)
is the plug-in estimator. It replaces F by the

empirical cdf F̂N :

F̂N (s) =
1
N

N

∑
i=1

1 (Yi ≤ s) ,

which assigns probability 1/N to each of the observed values y1, ..., yN of Y1, ...,YN .
• The resulting estimator is then

PrF̂N [h (Y
∗
1 , ...,Y

∗
N ) ≤ r ] (5)

where Y ∗1 , ...,Y
∗
N denotes a random sample from F̂N .

• The formula (5) for the estimator of the cdf of θ̂N is easy to to write down, but it is
prohibitive to calculate except for small N .

• To see this note that each of the Y ∗i is capable of taking on the N values y1, ..., yN ,
so that the total number of values of h

(
Y ∗1 , ...,Y

∗
N

)
that has to be considered is NN .

To calculate (5), one would have to count how many of these NN values are ≤ r .
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The idea of the bootstrap (continued)

• For example, suppose that Yi is binary, F is given by Pr (Y = 1) = p, θ̂N is the
sample mean and N = 3. There are eight possible samples:

y1, y2, y3 Pr (y1, y2, y3) θ̂N
(0, 0, 0) (1− p)3 0
(1, 0, 0) p (1− p)2 1/3
(0, 1, 0) p (1− p)2 1/3
(0, 0, 1) p (1− p)2 1/3
(1, 1, 0) p2 (1− p) 2/3
(1, 0, 1) p2 (1− p) 2/3
(0, 1, 1) p2 (1− p) 2/3
(1, 1, 1) p3 1

• So that PrF
(

θ̂N ≤ r
)
is determined by

r PrF
(

θ̂N = r
)

0 (1− p)3
1/3 3p (1− p)2
2/3 3p2 (1− p)
1 p3
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The idea of the bootstrap (continued)

• Suppose that the observed values y1, y2, y3 are (0, 1, 1), so that the observed value of
θ̂N is 2/3. Therefore, our estimate of Pr

(
θ̂N = r

)
is given by

r PrF̂N

(
θ̂N = r

)
0

(
1− 2

3

)3
= 1

27 = .037

1/3 3 23
(
1− 2

3

)2
= 6

27 = .222

2/3 3
( 2
3

)2 (
1− 2

3

)
= 12

27 = .444

1
( 2
3

)3
= 8

27 = .297

• The previous example is so simple that the calculation of PrF̂N

(
θ̂N ≤ r

)
can be done

analytically, but in general this type of calculation is beyond reach.
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The idea of the bootstrap (continued)

Estimation by simulation

• A standard device for (approximately) evaluating probabilities that are too diffi cult to
calculate exactly is simulation.

• To calculate the probability of an event, one generates a sample from the underlying
distribution and notes the frequency with which the event occurs in the generated
sample.

• If the sample is suffi ciently large, this frequency will provide an approximation to the
original probability with a negligible error.

• Such approximation to the probability (5) constitutes the second step of the
bootstrap method.

• A number M of samples Y ∗1 , ...,Y
∗
N (the “bootstrap” samples) are drawn from F̂N ,

and the frequency with which

h (Y ∗1 , ...,Y
∗
N ) ≤ r

provides the desired approximation to the estimator (5) (Lehmann 2008).
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Numerical illustration

• To illustrate the method I have generated M = 1000 bootstrap samples of size N = 3
with p = 2/3, which is the value of p that corresponds to the sample distribution
(0, 1, 1). The result is

r #samples bootstrap pdf PrF̂N

(
θ̂N = r

)
(0, 0, 0) 0 37 .037 .037

(1, 0, 0) , (0, 1, 0) , (0, 0, 1) 1/3 222 .222 .222
(1, 1, 0) , (1, 0, 1) , (0, 1, 1) 2/3 453 .453 .444

(1, 1, 1) 1 288 .288 .297

• The discrepancy between the last two columns can be made arbitrarily small by
increasing M .

• The method we have described consisting in drawing random samples with
replacement treating the observed sample as the population is called “non-parametric
bootstrap”.
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Bootstrap standard errors

• The bootstrap procedure is very flexible and applicable to many different situations
such as the bias and variance of an estimator, to the calculation of confidence
intervals, etc.

• As a result of resampling we have available M estimates from the artificial samples:

θ̂
(1)
N , ..., θ̂

(M )
N . A bootstrap standard error is then obtained as[

1
M − 1

M

∑
m=1

(
θ̂
(m)
N − θ̂N

)2]1/2

(6)

where θ̂N = ∑Mm=1 θ̂
(m)
N /M .

• In the previous example, the bootstrap mean is θ̂N = 0.664, the bootstrap standard
error is 0.271 calculated as in (6) with M = 1000, and the analytical standard error is θ̂N

(
1− θ̂N

)
n

1/2

= 0.272

where θ̂N = 2/3 and n = 3.
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Asymptotic properties of bootstrap methods

• Using the bootstrap standard error to construct test statistics cannot be shown to
improve on the approximation provided by the usual asymptotic theory, but the good
news is that under general regularity conditions it does have the same asymptotic
justification as conventional asymptotic procedures.

• This is good news because bootstrap standard errors are often much easier to obtain
than analytical standard errors.

Refinements for large-sample pivotal statistics
• Even better news is the fact that in many cases the bootstrap does improve the
approximation of the distribution of test statistics, in the sense that the bootstrap can
provide an asymptotic refinement compared with the usual asymptotic theory.

• The key aspect for achieving such refinements (consisting in having an asymptotic
approximation with errors of a smaller order of magnitude in powers of the sample
size) is that the statistic being bootstraped is asymptotically pivotal.

• An asymptotically pivotal statistic is one whose limiting distribution does not depend
on unknown parameters (like standard normal or chi-square distributions).

• This is the case with t-ratios and Wald test statistics, for example.
• Note that for a t-ratio to be asymptotically pivotal in a regression with heteros-
kedasticity, the robust White form of the t-ratio needs to be used.
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Asymptotic properties of bootstrap methods (continued)

• The upshot of the previous discussion is that the replication of the quantity of interest
(mean, median, etc.) is not always the best way to use the bootstrap if improvements
on asymptotic approximations are sought.

• In particular, when we wish to calculate a confidence interval, it is better not to
bootstrap the estimate itself but rather to bootstrap the distribution of the t-value.

• This is feasible when we have a large sample estimate of the standard error, but one is
skeptical about the accuracy of the normal probability approximation.

• Such procedure will provide more accurate estimates of confidence intervals than
either the simple bootstrap or the asymptotic standard errors.

• However, often we are interested in bootstrap methods because an analytic standard
error is not available or is hard to calculate.

• In those cases the motivation for the bootstrap is not necessarily improving on the
asymptotic approximation but rather obtaining a simpler approximation with the same
justification as the conventional asymptotic approximation.
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Bootstrapping stratified clustered samples

• The bootstrap can be applied to a stratified clustered sample.

• All we have to do is to treat the strata separately, and resample, not the basic
underlying units (the households) but rather the primary sample units (the clusters).
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Using replicate weights

• Taking stratification and clustering sampling features into account, either analytically
or by bootstrap, requires the availability of stratum and cluster indicators.

• Generally, Statistical Offi ces or survey providers do not make them available for
confidentiality reasons.

• To enable the estimation of the sampling distribution of estimators and test statistics
without disclosing stratum or cluster information, an alternative is to provide replicate
weights.

• For example, the EFF provides 999 replicate weights. Specifically the EFF provides
replicate cross-section weights, replicate longitudinal weights, and multiplicity factors
(Bover, 2004).

• Multiplicity factors indicate the number of times a given household appears in a
particular bootstrap sample.

• The provision of replicate weights is an important development because it facilitates
the use of replication methods, which are simple and of general applicability, together
with allowing for confidentiality safe ward.
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