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1 A binary model with binary endogenous regressor and instrument

e Let us consider the following model for (0,1) binary observables (Y, D, Z):

Y = 1(Up<pp)
D = 1(V<qz)
where Uy, Uy and V are uniformly distributed variates, independent of Z, such that (Uy, V)

and (Up, V') have copulas C; (u,v) and Cy (u,v), respectively. In this model Y is the dependent

variable, D is the endogenous explanatory variable, and Z is the instrumental variable.

e A special case is a switching probit model of the form

y = 1(a+ﬁD—ﬁDzo)

= 1(7T0+7T1Z—‘720>

where pp = ¢ (a+ D), Up = ® (l',~/'D>, gz = ®(mp+mZ), V=20 <Y~/>, and C (u,v) and
Co (u,v) are Gaussian copulas. A further specialization is a standard bivariate probit with

endogeneity subject to the “monotonicity” constraint U; = Uy.

e The data provides direct information about Pr(Y =j, D=4k | Z ={) for j,k,{ = 0,1. Thus,

given adding up constraints, there are 6 reduced form parameters.

e The structural parameters are po, p1, qo, q1, C1 (u,v) and Cp (u,v). Because of the exogeneity
of Z we have ¢y = Pr(D =1| Z ={), so that gy and ¢; are reduced form quantities and there-
fore always identifiable. The challenge is the identification of pg and p; or other probabilities

associated with the potential outcomes.

e Note that in the switching probit model, the Gaussian copulas add just two extra structural
parameters (i.e. the correlation coefficients of the pairs (U, V') and (Up, V'), so that the order

condition for identification is satisfied with equality.
e In this model there are two potential outcomes:

Yi = 1(Ui <p)
Yo = 1(Uo < po)



e The potential treatment indicators are:

Dy = 1(V<aq)
Dy = 1(V<qo).

2 ATE, LATE and potential outcome distributions of compliers
e The average treatment effect (ATE) is given by

0 = E (Y1 —Yy) = p1 — po.

e Suppose without lack of generality that ¢y < ¢;. Then we can distinguish three subpopulations

depending on an individual’s value of V:

— Always-takers: Units with V' < gg. They have D; = 1 and Dy = 1. Their mass is qp.
— Compliers: Units with g9 < V < ¢1. They have D1 = 1 and Dg = 0. Their mass is g1 — qo.

— Never-takers: Units with V' > ¢;. They have D; =0 and Dg = 0. Their mass is 1 — ¢;.

e Note that membership of these subpopulations is unobservable, but we observe their mass.

e The local ATE (or LATE) is the average treatment effect for the subpopulation of compliers:

OrarE=EM1—Yo |ao <V <aq1).

e We have

EYilgp<V<q)=Pr(U1<p1|ep<V<q)

_ Pr (U1 <p1,V<q)—Pr(U; <p1,V < q) _ G (p1,q1) — C1 (p1,90)
q1 — qo g1 — qo

and similarly

Co (po, 1) — Co (po, q0)

EMlo<V<a)=PrlUo<p|ep<Va)= 0 — qo

e Thus, the LATE satisfies a difference in differences expression of the form

[C1 (p1,q1) — C1 (p1,90)] — [Co (po, 1) — Co (po, qo)]
q1 — 9o

OraTe =



3 Links with instrumental variable parameters

e Under monotonicity between D and Z (which the model assumes), 0pa7g coincides with the
Wald parameter (Imbens and Angrist, 1994):

EY|Z=1)-E(Y |Z=0)

EMD|Z=1)—-E(D|Z=0)

OraTE =

e To verify this result in our example, simply note that

E(Y|Z=1) = Pr(Y=1,D=1|Z=1)4+Pr(Y =1,D=0|Z =1)

= Pr(U1 <p,V<q)+Pr(U<po,V>aq)

= Pr(U1 <p1,V<q)+Pr(Up<po) —Pr(Up <po,V<q1)
(

= C1(p1,q1) +po— Co (o, q1)

E(Y|Z=0) = Pr(Y=1,D=1|Z=0)+Pr(Y=1,D=0|Z=0)

I
-

r(Uy < p1,V < qo) +Pr(Up < po,V > qo)

I
-

(Y
(
r (Ui <p1,V < qo) +Pr(Up <po) —Pr(Up <po,V < qo)
= C1(p1,90) +po — Co (po, qo)

E(D|Z:1):E(D1):q1, E(D|Z:0):E(D0):q0

e Moreover, E (Y1 |q <V <q) and E(Yy| g <V < ¢q1) can also be calculated from Wald pa-
rameters (Abadie, 2002):

o201 B LRE
EY|q<V<q)= E(l—DyZ ) E( D\Z:o)

e To verify these results in our example note that
E(YD|Z=1)=Pr(Y=1,D=1|Z=1)=Pr(U; <p,V <q)=C1(p1,q)
EYD|Z=0)=Pr(Y=1,D=1|Z=0)=Pr(U; <p1,V < q) = C1(p1,%)

and

E(1-D|Z=1)—-FEQ1-D|Z=0)=q—q,

ElY(1-D)|Z=1 = Pr(Y=1,D=0|Z=1)

P
Pr (Up < po) —Pr(Us < po,V < q1) = po — Co (po, q1)
EY1-D)|Z=0] = Pr(Y=1,D=0]|Z=0)

P
Pr (U < po) — Pr(Up < po,V < qo0) = po — Co (po, q0)



4 Identification and estimation

e In conclusion, the mapping between reduced form and structural parameters is as follows. We

observe qg, ¢1 and:

E(YD | Z = 1) = (4 (pl,ql) (1)
EYD|Z=0) = Ci(p1,q) (2)
EY(1-D)|Z=1 = po—Co(po,q) (3)
EY(1-D)|Z=0 = po—Co(po;q) (4)

e Moreover, we know that:

Cl (pla QI) - Cl (pl,QO)
g1 —qo

EMi|lgo<V<q)=

Co (po; 1) — Co (o, q0)
q1 —qo

EMYo|qp<V<q)=

e If 4 (u,v) and Cy (u, v) are Gaussian copulas with correlation coefficients r; and ro, it turns out
that p; and r; are just identified from (1)-(2), whereas pg and 7 are just identified from (3)-(4).
Thus, the switching regression probit model is just identified. So normality is not testable in
this model, it is just an identifying assumption. However, if U; = Uy then the bivariate probit

model places one over-identifying restriction.

e Alternative parametric copulas will produce different values of pg and p;. So in general pg and

p1 are only set identified.

e The representation (1)-(4) suggests a three-step estimation procedure:

— Step 1: Estimate the “first-stage equation” to obtain gp and q; (or a more general propensity

score if Z has a larger support).

— Step 2: Run a non-linear regression of YD on gz using the copula model to estimate p;

and any copula parameter.in Cy (u, v).

— Step 3: Run a non-linear regression of Y (1 — D) on gz using the copula model to estimate

po and any copula parameter.in Cy (u,v).



