LATE in Binary Choice

Class Notes

Manuel Arellano
February 4, 2009

1 A binary model with binary endogenous regressor and instrument

- Let us consider the following model for $(0,1)$ binary observables (Y, D, Z) :

$$
\begin{aligned}
Y & =\mathbf{1}\left(U_{D} \leq p_{D}\right) \\
D & =\mathbf{1}\left(V \leq q_{Z}\right)
\end{aligned}
$$

where U_{1}, U_{0} and V are uniformly distributed variates, independent of Z, such that $\left(U_{1}, V\right)$ and $\left(U_{0}, V\right)$ have copulas $C_{1}(u, v)$ and $C_{0}(u, v)$, respectively. In this model Y is the dependent variable, D is the endogenous explanatory variable, and Z is the instrumental variable.

- A special case is a switching probit model of the form

$$
\begin{aligned}
& Y=\mathbf{1}\left(\alpha+\beta D-\widetilde{U}_{D} \geq 0\right) \\
& D=\mathbf{1}\left(\pi_{0}+\pi_{1} Z-\widetilde{V} \geq 0\right)
\end{aligned}
$$

where $p_{D}=\Phi(\alpha+\beta D), U_{D}=\Phi\left(\widetilde{U}_{D}\right), q_{Z}=\Phi\left(\pi_{0}+\pi_{1} Z\right), V=\Phi(\widetilde{V})$, and $C_{1}(u, v)$ and $C_{0}(u, v)$ are Gaussian copulas. A further specialization is a standard bivariate probit with endogeneity subject to the "monotonicity" constraint $U_{1} \equiv U_{0}$.

- The data provides direct information about $\operatorname{Pr}(Y=j, D=k \mid Z=\ell)$ for $j, k, \ell=0,1$. Thus, given adding up constraints, there are 6 reduced form parameters.
- The structural parameters are $p_{0}, p_{1}, q_{0}, q_{1}, C_{1}(u, v)$ and $C_{0}(u, v)$. Because of the exogeneity of Z we have $q_{\ell}=\operatorname{Pr}(D=1 \mid Z=\ell)$, so that q_{0} and q_{1} are reduced form quantities and therefore always identifiable. The challenge is the identification of p_{0} and p_{1} or other probabilities associated with the potential outcomes.
- Note that in the switching probit model, the Gaussian copulas add just two extra structural parameters (i.e. the correlation coefficients of the pairs $\left(U_{1}, V\right)$ and $\left(U_{0}, V\right)$), so that the order condition for identification is satisfied with equality.
- In this model there are two potential outcomes:

$$
\begin{aligned}
& Y_{1}=\mathbf{1}\left(U_{1} \leq p_{1}\right) \\
& Y_{0}=\mathbf{1}\left(U_{0} \leq p_{0}\right)
\end{aligned}
$$

- The potential treatment indicators are:

$$
\begin{aligned}
& D_{1}=\mathbf{1}\left(V \leq q_{1}\right) \\
& D_{0}=\mathbf{1}\left(V \leq q_{0}\right) .
\end{aligned}
$$

2 ATE, LATE and potential outcome distributions of compliers

- The average treatment effect (ATE) is given by

$$
\theta=E\left(Y_{1}-Y_{0}\right)=p_{1}-p_{0} .
$$

- Suppose without lack of generality that $q_{0} \leq q_{1}$. Then we can distinguish three subpopulations depending on an individual's value of V :
- Always-takers: Units with $V \leq q_{0}$. They have $D_{1}=1$ and $D_{0}=1$. Their mass is q_{0}.
- Compliers: Units with $q_{0}<V \leq q_{1}$. They have $D_{1}=1$ and $D_{0}=0$. Their mass is $q_{1}-q_{0}$.
- Never-takers: Units with $V>q_{1}$. They have $D_{1}=0$ and $D_{0}=0$. Their mass is $1-q_{1}$.
- Note that membership of these subpopulations is unobservable, but we observe their mass.
- The local ATE (or LATE) is the average treatment effect for the subpopulation of compliers:

$$
\theta_{L A T E}=E\left(Y_{1}-Y_{0} \mid q_{0}<V \leq q_{1}\right) .
$$

- We have

$$
\begin{aligned}
& E\left(Y_{1} \mid q_{0}<V \leq q_{1}\right)=\operatorname{Pr}\left(U_{1} \leq p_{1} \mid q_{0}<V \leq q_{1}\right) \\
& =\frac{\operatorname{Pr}\left(U_{1} \leq p_{1}, V \leq q_{1}\right)-\operatorname{Pr}\left(U_{1} \leq p_{1}, V \leq q_{0}\right)}{q_{1}-q_{0}}=\frac{C_{1}\left(p_{1}, q_{1}\right)-C_{1}\left(p_{1}, q_{0}\right)}{q_{1}-q_{0}}
\end{aligned}
$$

and similarly

$$
E\left(Y_{0} \mid q_{0}<V \leq q_{1}\right)=\operatorname{Pr}\left(U_{0} \leq p_{0} \mid q_{0}<V \leq q_{1}\right)=\frac{C_{0}\left(p_{0}, q_{1}\right)-C_{0}\left(p_{0}, q_{0}\right)}{q_{1}-q_{0}} .
$$

- Thus, the LATE satisfies a difference in differences expression of the form

$$
\theta_{\text {LATE }}=\frac{\left[C_{1}\left(p_{1}, q_{1}\right)-C_{1}\left(p_{1}, q_{0}\right)\right]-\left[C_{0}\left(p_{0}, q_{1}\right)-C_{0}\left(p_{0}, q_{0}\right)\right]}{q_{1}-q_{0}}
$$

3 Links with instrumental variable parameters

- Under monotonicity between D and Z (which the model assumes), $\theta_{L A T E}$ coincides with the Wald parameter (Imbens and Angrist, 1994):

$$
\theta_{L A T E}=\frac{E(Y \mid Z=1)-E(Y \mid Z=0)}{E(D \mid Z=1)-E(D \mid Z=0)}
$$

- To verify this result in our example, simply note that

$$
\begin{aligned}
E(Y \mid Z=1) & =\operatorname{Pr}(Y=1, D=1 \mid Z=1)+\operatorname{Pr}(Y=1, D=0 \mid Z=1) \\
& =\operatorname{Pr}\left(U_{1} \leq p_{1}, V \leq q_{1}\right)+\operatorname{Pr}\left(U_{0} \leq p_{0}, V>q_{1}\right) \\
& =\operatorname{Pr}\left(U_{1} \leq p_{1}, V \leq q_{1}\right)+\operatorname{Pr}\left(U_{0} \leq p_{0}\right)-\operatorname{Pr}\left(U_{0} \leq p_{0}, V \leq q_{1}\right) \\
& =C_{1}\left(p_{1}, q_{1}\right)+p_{0}-C_{0}\left(p_{0}, q_{1}\right) \\
E(Y \mid Z=0) & =\operatorname{Pr}(Y=1, D=1 \mid Z=0)+\operatorname{Pr}(Y=1, D=0 \mid Z=0) \\
& =\operatorname{Pr}\left(U_{1} \leq p_{1}, V \leq q_{0}\right)+\operatorname{Pr}\left(U_{0} \leq p_{0}, V>q_{0}\right) \\
& =\operatorname{Pr}\left(U_{1} \leq p_{1}, V \leq q_{0}\right)+\operatorname{Pr}\left(U_{0} \leq p_{0}\right)-\operatorname{Pr}\left(U_{0} \leq p_{0}, V \leq q_{0}\right) \\
& =C_{1}\left(p_{1}, q_{0}\right)+p_{0}-C_{0}\left(p_{0}, q_{0}\right) \\
E(D \mid Z=1) & =E\left(D_{1}\right)=q_{1}, \quad E(D \mid Z=0)=E\left(D_{0}\right)=q_{0}
\end{aligned}
$$

- Moreover, $E\left(Y_{1} \mid q_{0}<V \leq q_{1}\right)$ and $E\left(Y_{0} \mid q_{0}<V \leq q_{1}\right)$ can also be calculated from Wald parameters (Abadie, 2002):

$$
\begin{aligned}
& E\left(Y_{1} \mid q_{0}<V \leq q_{1}\right)=\frac{E(Y D \mid Z=1)-E(Y D \mid Z=0)}{E(D \mid Z=1)-E(D \mid Z=0)} \\
& E\left(Y_{0} \mid q_{0}<V \leq q_{1}\right)=\frac{E[Y(1-D) \mid Z=1]-E[Y(1-D) \mid Z=0]}{E(1-D \mid Z=1)-E(1-D \mid Z=0)}
\end{aligned}
$$

- To verify these results in our example note that

$$
\begin{aligned}
& E(Y D \mid Z=1)=\operatorname{Pr}(Y=1, D=1 \mid Z=1)=\operatorname{Pr}\left(U_{1} \leq p_{1}, V \leq q_{1}\right)=C_{1}\left(p_{1}, q_{1}\right) \\
& E(Y D \mid Z=0)=\operatorname{Pr}(Y=1, D=1 \mid Z=0)=\operatorname{Pr}\left(U_{1} \leq p_{1}, V \leq q_{0}\right)=C_{1}\left(p_{1}, q_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& E(1-D \mid Z=1)-E(1-D \mid Z=0)=q_{0}-q_{1}, \\
& \begin{aligned}
E[Y(1-D) \mid Z=1] & =\operatorname{Pr}(Y=1, D=0 \mid Z=1) \\
& =\operatorname{Pr}\left(U_{0} \leq p_{0}\right)-\operatorname{Pr}\left(U_{0} \leq p_{0}, V \leq q_{1}\right)=p_{0}-C_{0}\left(p_{0}, q_{1}\right) \\
E[Y(1-D) \mid Z=0] & =\operatorname{Pr}(Y=1, D=0 \mid Z=0) \\
& =\operatorname{Pr}\left(U_{0} \leq p_{0}\right)-\operatorname{Pr}\left(U_{0} \leq p_{0}, V \leq q_{0}\right)=p_{0}-C_{0}\left(p_{0}, q_{0}\right)
\end{aligned}
\end{aligned} \begin{aligned}
\\
\left.\begin{array}{rl}
\end{array}\right)
\end{aligned}
$$

4 Identification and estimation

- In conclusion, the mapping between reduced form and structural parameters is as follows. We observe q_{0}, q_{1} and:

$$
\begin{align*}
& E(Y D \mid Z=1)=C_{1}\left(p_{1}, q_{1}\right) \tag{1}\\
& E(Y D \mid Z=0)=C_{1}\left(p_{1}, q_{0}\right) \tag{2}\\
& E[Y(1-D) \mid Z=1]=p_{0}-C_{0}\left(p_{0}, q_{1}\right) \tag{3}\\
& E[Y(1-D) \mid Z=0]=p_{0}-C_{0}\left(p_{0}, q_{0}\right) \tag{4}
\end{align*}
$$

- Moreover, we know that:

$$
\begin{aligned}
& E\left(Y_{1} \mid q_{0}<V \leq q_{1}\right)=\frac{C_{1}\left(p_{1}, q_{1}\right)-C_{1}\left(p_{1}, q_{0}\right)}{q_{1}-q_{0}} \\
& E\left(Y_{0} \mid q_{0}<V \leq q_{1}\right)=\frac{C_{0}\left(p_{0}, q_{1}\right)-C_{0}\left(p_{0}, q_{0}\right)}{q_{1}-q_{0}}
\end{aligned}
$$

- If $C_{1}(u, v)$ and $C_{0}(u, v)$ are Gaussian copulas with correlation coefficients r_{1} and r_{0}, it turns out that p_{1} and r_{1} are just identified from (1)-(2), whereas p_{0} and r_{0} are just identified from (3)-(4). Thus, the switching regression probit model is just identified. So normality is not testable in this model, it is just an identifying assumption. However, if $U_{1} \equiv U_{0}$ then the bivariate probit model places one over-identifying restriction.
- Alternative parametric copulas will produce different values of p_{0} and p_{1}. So in general p_{0} and p_{1} are only set identified.
- The representation (1)-(4) suggests a three-step estimation procedure:
- Step 1: Estimate the "first-stage equation" to obtain \widehat{q}_{0} and \widehat{q}_{1} (or a more general propensity score if Z has a larger support).
- Step 2: Run a non-linear regression of $Y D$ on \widehat{q}_{Z} using the copula model to estimate p_{1} and any copula parameter.in $C_{1}(u, v)$.
- Step 3: Run a non-linear regression of $Y(1-D)$ on \widehat{q}_{Z} using the copula model to estimate p_{0} and any copula parameter.in $C_{0}(u, v)$.

