LATE in Binary Choice Class Notes Manuel Arellano February 4, 2009

1 A binary model with binary endogenous regressor and instrument

• Let us consider the following model for (0, 1) binary observables (Y, D, Z):

$$Y = \mathbf{1} (U_D \le p_D)$$
$$D = \mathbf{1} (V \le q_Z)$$

where U_1 , U_0 and V are uniformly distributed variates, independent of Z, such that (U_1, V) and (U_0, V) have copulas $C_1(u, v)$ and $C_0(u, v)$, respectively. In this model Y is the dependent variable, D is the endogenous explanatory variable, and Z is the instrumental variable.

• A special case is a switching probit model of the form

$$Y = \mathbf{1} \left(\alpha + \beta D - \widetilde{U}_D \ge 0 \right)$$
$$D = \mathbf{1} \left(\pi_0 + \pi_1 Z - \widetilde{V} \ge 0 \right)$$

where $p_D = \Phi(\alpha + \beta D)$, $U_D = \Phi(\widetilde{U}_D)$, $q_Z = \Phi(\pi_0 + \pi_1 Z)$, $V = \Phi(\widetilde{V})$, and $C_1(u, v)$ and $C_0(u, v)$ are Gaussian copulas. A further specialization is a standard bivariate probit with endogeneity subject to the "monotonicity" constraint $U_1 \equiv U_0$.

- The data provides direct information about $\Pr(Y = j, D = k \mid Z = \ell)$ for $j, k, \ell = 0, 1$. Thus, given adding up constraints, there are 6 reduced form parameters.
- The structural parameters are p_0 , p_1 , q_0 , q_1 , $C_1(u, v)$ and $C_0(u, v)$. Because of the exogeneity of Z we have $q_{\ell} = \Pr(D = 1 | Z = \ell)$, so that q_0 and q_1 are reduced form quantities and therefore always identifiable. The challenge is the identification of p_0 and p_1 or other probabilities associated with the potential outcomes.
- Note that in the switching probit model, the Gaussian copulas add just two extra structural parameters (i.e. the correlation coefficients of the pairs (U_1, V) and (U_0, V)), so that the order condition for identification is satisfied with equality.
- In this model there are two potential outcomes:

$$Y_1 = \mathbf{1} (U_1 \le p_1)$$

 $Y_0 = \mathbf{1} (U_0 \le p_0)$

• The potential treatment indicators are:

$$D_1 = \mathbf{1} (V \le q_1)$$

 $D_0 = \mathbf{1} (V \le q_0).$

2 ATE, LATE and potential outcome distributions of compliers

• The average treatment effect (ATE) is given by

$$\theta = E(Y_1 - Y_0) = p_1 - p_0.$$

- Suppose without lack of generality that $q_0 \leq q_1$. Then we can distinguish three subpopulations depending on an individual's value of V:
 - Always-takers: Units with $V \leq q_0$. They have $D_1 = 1$ and $D_0 = 1$. Their mass is q_0 .
 - Compliers: Units with $q_0 < V \leq q_1$. They have $D_1 = 1$ and $D_0 = 0$. Their mass is $q_1 q_0$.
 - Never-takers: Units with $V > q_1$. They have $D_1 = 0$ and $D_0 = 0$. Their mass is $1 q_1$.
- Note that membership of these subpopulations is unobservable, but we observe their mass.
- The local ATE (or LATE) is the average treatment effect for the subpopulation of compliers:

$$\theta_{LATE} = E(Y_1 - Y_0 \mid q_0 < V \le q_1).$$

• We have

$$E(Y_1 \mid q_0 < V \le q_1) = \Pr(U_1 \le p_1 \mid q_0 < V \le q_1)$$

=
$$\frac{\Pr(U_1 \le p_1, V \le q_1) - \Pr(U_1 \le p_1, V \le q_0)}{q_1 - q_0} = \frac{C_1(p_1, q_1) - C_1(p_1, q_0)}{q_1 - q_0}$$

and similarly

$$E(Y_0 \mid q_0 < V \le q_1) = \Pr(U_0 \le p_0 \mid q_0 < V \le q_1) = \frac{C_0(p_0, q_1) - C_0(p_0, q_0)}{q_1 - q_0}.$$

• Thus, the LATE satisfies a difference in differences expression of the form

$$\theta_{LATE} = \frac{\left[C_1\left(p_1, q_1\right) - C_1\left(p_1, q_0\right)\right] - \left[C_0\left(p_0, q_1\right) - C_0\left(p_0, q_0\right)\right]}{q_1 - q_0}$$

3 Links with instrumental variable parameters

• Under monotonicity between D and Z (which the model assumes), θ_{LATE} coincides with the Wald parameter (Imbens and Angrist, 1994):

$$\theta_{LATE} = \frac{E(Y \mid Z = 1) - E(Y \mid Z = 0)}{E(D \mid Z = 1) - E(D \mid Z = 0)}$$

• To verify this result in our example, simply note that

$$E(Y | Z = 1) = \Pr(Y = 1, D = 1 | Z = 1) + \Pr(Y = 1, D = 0 | Z = 1)$$

= $\Pr(U_1 \le p_1, V \le q_1) + \Pr(U_0 \le p_0, V > q_1)$
= $\Pr(U_1 \le p_1, V \le q_1) + \Pr(U_0 \le p_0) - \Pr(U_0 \le p_0, V \le q_1)$
= $C_1(p_1, q_1) + p_0 - C_0(p_0, q_1)$

$$E(Y | Z = 0) = \Pr(Y = 1, D = 1 | Z = 0) + \Pr(Y = 1, D = 0 | Z = 0)$$

= $\Pr(U_1 \le p_1, V \le q_0) + \Pr(U_0 \le p_0, V > q_0)$
= $\Pr(U_1 \le p_1, V \le q_0) + \Pr(U_0 \le p_0) - \Pr(U_0 \le p_0, V \le q_0)$
= $C_1(p_1, q_0) + p_0 - C_0(p_0, q_0)$

$$E(D | Z = 1) = E(D_1) = q_1, \quad E(D | Z = 0) = E(D_0) = q_0$$

• Moreover, $E(Y_1 | q_0 < V \le q_1)$ and $E(Y_0 | q_0 < V \le q_1)$ can also be calculated from Wald parameters (Abadie, 2002):

$$E(Y_1 \mid q_0 < V \le q_1) = \frac{E(YD \mid Z = 1) - E(YD \mid Z = 0)}{E(D \mid Z = 1) - E(D \mid Z = 0)}$$
$$E(Y_0 \mid q_0 < V \le q_1) = \frac{E[Y(1-D) \mid Z = 1] - E[Y(1-D) \mid Z = 0]}{E(1-D \mid Z = 1) - E(1-D \mid Z = 0)}$$

• To verify these results in our example note that

$$E(YD \mid Z = 1) = \Pr(Y = 1, D = 1 \mid Z = 1) = \Pr(U_1 \le p_1, V \le q_1) = C_1(p_1, q_1)$$
$$E(YD \mid Z = 0) = \Pr(Y = 1, D = 1 \mid Z = 0) = \Pr(U_1 \le p_1, V \le q_0) = C_1(p_1, q_0)$$

and

$$E(1 - D \mid Z = 1) - E(1 - D \mid Z = 0) = q_0 - q_1,$$

$$E[Y(1-D) | Z = 1] = \Pr(Y = 1, D = 0 | Z = 1)$$

= $\Pr(U_0 \le p_0) - \Pr(U_0 \le p_0, V \le q_1) = p_0 - C_0(p_0, q_1)$

$$E[Y(1-D) | Z = 0] = \Pr(Y = 1, D = 0 | Z = 0)$$

= $\Pr(U_0 \le p_0) - \Pr(U_0 \le p_0, V \le q_0) = p_0 - C_0(p_0, q_0)$

4 Identification and estimation

• In conclusion, the mapping between reduced form and structural parameters is as follows. We observe q_0, q_1 and:

$$E(YD \mid Z = 1) = C_1(p_1, q_1)$$
 (1)

$$E(YD \mid Z = 0) = C_1(p_1, q_0)$$
 (2)

$$E[Y(1-D) | Z = 1] = p_0 - C_0(p_0, q_1)$$
(3)

$$E[Y(1-D) | Z = 0] = p_0 - C_0(p_0, q_0)$$
(4)

• Moreover, we know that:

$$E(Y_1 \mid q_0 < V \le q_1) = \frac{C_1(p_1, q_1) - C_1(p_1, q_0)}{q_1 - q_0}$$
$$E(Y_0 \mid q_0 < V \le q_1) = \frac{C_0(p_0, q_1) - C_0(p_0, q_0)}{q_1 - q_0}$$

- If $C_1(u, v)$ and $C_0(u, v)$ are Gaussian copulas with correlation coefficients r_1 and r_0 , it turns out that p_1 and r_1 are just identified from (1)-(2), whereas p_0 and r_0 are just identified from (3)-(4). Thus, the switching regression probit model is just identified. So normality is not testable in this model, it is just an identifying assumption. However, if $U_1 \equiv U_0$ then the bivariate probit model places one over-identifying restriction.
- Alternative parametric copulas will produce different values of p_0 and p_1 . So in general p_0 and p_1 are only set identified.
- The representation (1)-(4) suggests a three-step estimation procedure:
 - Step 1: Estimate the "first-stage equation" to obtain \hat{q}_0 and \hat{q}_1 (or a more general propensity score if Z has a larger support).
 - Step 2: Run a non-linear regression of YD on \hat{q}_Z using the copula model to estimate p_1 and any copula parameter.in $C_1(u, v)$.
 - Step 3: Run a non-linear regression of Y(1-D) on \hat{q}_Z using the copula model to estimate p_0 and any copula parameter. in $C_0(u, v)$.