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1 A binary model with binary endogenous regressor and instrument

• Let us consider the following model for (0, 1) binary observables (Y,D,Z):

Y = 1 (UD ≤ pD)
D = 1 (V ≤ qZ)

where U1, U0 and V are uniformly distributed variates, independent of Z, such that (U1, V )

and (U0, V ) have copulas C1 (u, v) and C0 (u, v), respectively. In this model Y is the dependent

variable, D is the endogenous explanatory variable, and Z is the instrumental variable.

• A special case is a switching probit model of the form

Y = 1
³
α+ βD − eUD ≥ 0´

D = 1
³
π0 + π1Z − eV ≥ 0´

where pD = Φ (α+ βD), UD = Φ
³eUD´, qZ = Φ (π0 + π1Z), V = Φ

³eV ´, and C1 (u, v) and
C0 (u, v) are Gaussian copulas. A further specialization is a standard bivariate probit with

endogeneity subject to the “monotonicity” constraint U1 ≡ U0.

• The data provides direct information about Pr (Y = j,D = k | Z = c) for j, k, c = 0, 1. Thus,

given adding up constraints, there are 6 reduced form parameters.

• The structural parameters are p0, p1, q0, q1, C1 (u, v) and C0 (u, v). Because of the exogeneity
of Z we have q = Pr (D = 1 | Z = c), so that q0 and q1 are reduced form quantities and there-

fore always identifiable. The challenge is the identification of p0 and p1 or other probabilities

associated with the potential outcomes.

• Note that in the switching probit model, the Gaussian copulas add just two extra structural
parameters (i.e. the correlation coefficients of the pairs (U1, V ) and (U0, V )), so that the order

condition for identification is satisfied with equality.

• In this model there are two potential outcomes:

Y1 = 1 (U1 ≤ p1)
Y0 = 1 (U0 ≤ p0)
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• The potential treatment indicators are:

D1 = 1 (V ≤ q1)
D0 = 1 (V ≤ q0) .

2 ATE, LATE and potential outcome distributions of compliers

• The average treatment effect (ATE) is given by

θ = E (Y1 − Y0) = p1 − p0.

• Suppose without lack of generality that q0 ≤ q1. Then we can distinguish three subpopulations
depending on an individual’s value of V :

— Always-takers: Units with V ≤ q0. They have D1 = 1 and D0 = 1. Their mass is q0.
— Compliers: Units with q0 < V ≤ q1. They have D1 = 1 and D0 = 0. Their mass is q1 − q0.
— Never-takers: Units with V > q1. They have D1 = 0 and D0 = 0. Their mass is 1− q1.

• Note that membership of these subpopulations is unobservable, but we observe their mass.

• The local ATE (or LATE) is the average treatment effect for the subpopulation of compliers:

θLATE = E (Y1 − Y0 | q0 < V ≤ q1) .

• We have

E (Y1 | q0 < V ≤ q1) = Pr (U1 ≤ p1 | q0 < V ≤ q1)

=
Pr (U1 ≤ p1, V ≤ q1)− Pr (U1 ≤ p1, V ≤ q0)

q1 − q0 =
C1 (p1, q1)− C1 (p1, q0)

q1 − q0
and similarly

E (Y0 | q0 < V ≤ q1) = Pr (U0 ≤ p0 | q0 < V ≤ q1) = C0 (p0, q1)− C0 (p0, q0)
q1 − q0 .

• Thus, the LATE satisfies a difference in differences expression of the form

θLATE =
[C1 (p1, q1)− C1 (p1, q0)]− [C0 (p0, q1)− C0 (p0, q0)]

q1 − q0
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3 Links with instrumental variable parameters

• Under monotonicity between D and Z (which the model assumes), θLATE coincides with the

Wald parameter (Imbens and Angrist, 1994):

θLATE =
E (Y | Z = 1)−E (Y | Z = 0)
E (D | Z = 1)−E (D | Z = 0)

• To verify this result in our example, simply note that

E (Y | Z = 1) = Pr (Y = 1,D = 1 | Z = 1) + Pr (Y = 1,D = 0 | Z = 1)
= Pr (U1 ≤ p1, V ≤ q1) + Pr (U0 ≤ p0, V > q1)
= Pr (U1 ≤ p1, V ≤ q1) + Pr (U0 ≤ p0)− Pr (U0 ≤ p0, V ≤ q1)
= C1 (p1, q1) + p0 −C0 (p0, q1)

E (Y | Z = 0) = Pr (Y = 1,D = 1 | Z = 0) + Pr (Y = 1,D = 0 | Z = 0)
= Pr (U1 ≤ p1, V ≤ q0) + Pr (U0 ≤ p0, V > q0)
= Pr (U1 ≤ p1, V ≤ q0) + Pr (U0 ≤ p0)− Pr (U0 ≤ p0, V ≤ q0)
= C1 (p1, q0) + p0 −C0 (p0, q0)

E (D | Z = 1) = E (D1) = q1, E (D | Z = 0) = E (D0) = q0
• Moreover, E (Y1 | q0 < V ≤ q1) and E (Y0 | q0 < V ≤ q1) can also be calculated from Wald pa-

rameters (Abadie, 2002):

E (Y1 | q0 < V ≤ q1) = E (Y D | Z = 1)−E (Y D | Z = 0)
E (D | Z = 1)−E (D | Z = 0)

E (Y0 | q0 < V ≤ q1) = E [Y (1−D) | Z = 1]−E [Y (1−D) | Z = 0]
E (1−D | Z = 1)−E (1−D | Z = 0)

• To verify these results in our example note that
E (Y D | Z = 1) = Pr (Y = 1,D = 1 | Z = 1) = Pr (U1 ≤ p1, V ≤ q1) = C1 (p1, q1)
E (Y D | Z = 0) = Pr (Y = 1,D = 1 | Z = 0) = Pr (U1 ≤ p1, V ≤ q0) = C1 (p1, q0)

and

E (1−D | Z = 1)−E (1−D | Z = 0) = q0 − q1,

E [Y (1−D) | Z = 1] = Pr (Y = 1,D = 0 | Z = 1)
= Pr (U0 ≤ p0)− Pr (U0 ≤ p0, V ≤ q1) = p0 − C0 (p0, q1)

E [Y (1−D) | Z = 0] = Pr (Y = 1,D = 0 | Z = 0)
= Pr (U0 ≤ p0)− Pr (U0 ≤ p0, V ≤ q0) = p0 − C0 (p0, q0)
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4 Identification and estimation

• In conclusion, the mapping between reduced form and structural parameters is as follows. We

observe q0, q1 and:

E (Y D | Z = 1) = C1 (p1, q1) (1)

E (Y D | Z = 0) = C1 (p1, q0) (2)

E [Y (1−D) | Z = 1] = p0 − C0 (p0, q1) (3)

E [Y (1−D) | Z = 0] = p0 − C0 (p0, q0) (4)

• Moreover, we know that:

E (Y1 | q0 < V ≤ q1) = C1 (p1, q1)− C1 (p1, q0)
q1 − q0

E (Y0 | q0 < V ≤ q1) = C0 (p0, q1)− C0 (p0, q0)
q1 − q0

• If C1 (u, v) and C0 (u, v) are Gaussian copulas with correlation coefficients r1 and r0, it turns out
that p1 and r1 are just identified from (1)-(2), whereas p0 and r0 are just identified from (3)-(4).

Thus, the switching regression probit model is just identified. So normality is not testable in

this model, it is just an identifying assumption. However, if U1 ≡ U0 then the bivariate probit
model places one over-identifying restriction.

• Alternative parametric copulas will produce different values of p0 and p1. So in general p0 and
p1 are only set identified.

• The representation (1)-(4) suggests a three-step estimation procedure:

— Step 1: Estimate the “first-stage equation” to obtain bq0 and bq1 (or a more general propensity
score if Z has a larger support).

— Step 2: Run a non-linear regression of YD on bqZ using the copula model to estimate p1
and any copula parameter.in C1 (u, v).

— Step 3: Run a non-linear regression of Y (1−D) on bqZ using the copula model to estimate
p0 and any copula parameter.in C0 (u, v).
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