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ABSTRACT

This research develops methods of estimation and test statistics
of dynamic single equation models from panel data when the errors are
serially correlated. It is assumed that the number of time periods
is fixed while the number of cross-section observations is large.

This makes it possible to consider prediction equations of the initial
observations based on the exogenous variables corresponding to all
periods available in the sample, as well as to leave unrestricted the
covariances of the prediction errors with the remaining errors in

the model.

The concentrated likelihood function is. derived both for cases where
the prediction erxror is left unrestricted and where it is assumed to
have the marginal distribution of the stationary process. The performance
of maximum likelihood methods is investigated, either for correct models
or under several misspecifications, by resorting to Monte Carlo methods

using antithetic variates.

Dynamic models from panel data can be seen as a specialisation
of a triangular system with covariance restrictions. In this context,
the asymptotic distribution of the estimators that maximise the gaussian
likelihood function is derived when normality holds and also when the
errors are noen-normal. In particular, it is shown that in the latter case
the estimator that takes into account the covariance restrictions
is not generally more efficient than the estimator that leaves the co-

variance matrix unrestricted.

The possibility of obtaining consistent estimates of the unrestricted
intertemporal covariance matrix is used to develop .test statistics of
covariance restrictions arising from various random effects specifications.
A Wald test and a minimum chi-square test, which are robust to the non-
normality of the errors, and appropriate asymptotic probability limits
for the quasi-likelihood ratio test are proposed. Monte Carlo experiments
are conducted to study the performance of these test criteria. In order
to illustrate these procedures, OML estimates of dynamic earnings functions

from the Michigan Panel are obtained.



Joint minimum distance estimators of slope and covariance
parameters are defined that are generally efficient relative to QML
estimators when normality is not imposed and the covariance matrix
is restricted. Finally, it is shown that there exist separate
minimum distance estimators of the covariance parameters and generalised
least squares estimators of the slope parameters that are efficient.

A simulation is also carried out to examine the performance of these

methods.
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CHAPTER 1

DYNAMIC ECONOMETRIC MODELS FROM PANEL DATA

1.1 Introduction

The dynamic error components model has been a major subject of
attention for econometricians ever since economists began to make use
of panel data to estimate econemic relationghips. A reason why this
interest has so scarcely materialised in applied work is that, despite
recent relevant contributions, a complete answer to the problem of
estimating and testing dynamic models from panel data still does not
exist. It is the purpose of this rescarch to present a further

contribution to this end.

The fact that typically a panel involves a large number of
individuals, but only over a short number of time periods, makes it
necessary to rely only upon the increase in the number of individual
units in developing the asymptotic properties of the statistical methods
under consideration. Treating the number of time periods as fixed
creates different problems to those encountered in time series analysis,
particularly a careful specification of initial conditions is required,
but it is also the basis of new and fruitful ways of approaching

dynamic modelling.

In what follows we introduce the dynamic error components model,
and we will survey the relevant literature as we discuss the implications
of different assumptions concerning the specification of the basic

equation.
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1.2 The Model of Interest

The typical dynamic error components model assumes that the

endogenous variable Yie satisfies

= ! !
(1.2.1) yit o yi(‘t-—l) + B Xit + Y Zi + uit 14

2.2 =
(1.2.2)  ugy i it

1
=
+
<

’

where xit is a n x 1 vector of time-vaxying observable variables, zi is

am x 1 vector of time~invariant observable variables (if required we

may have z = 1 for all i). o ig an unknown scalar coefficient, and B and

1i
Yy are n x 1 and m x 1 vectors of unknown coefficients, respectively. It is
assumed that o, B and y remain constant over all time periods and
individuwal units. Of course, there may be lagged values of Xop and
additional lags of Vi but this simple formulation does not miss any
essential feature of the problem and thus most of the discussion will

be conducted on the basis of thig model. Equally, although we assume

that there is no a priori information on ¢' = (o B' Y') no new essential
complications would arise if § is subject to restrictions. ny and

v, are unobservable randem variables identically and independently

distributed across individuals. It is alsoe assumed that n, and Vi

t
have Zero mean and are uncorrelated to each other. Thus,
E(n,) = E(v, ) =0, E(m, v.,) = 0, E(n2) = 02 and E(v2 ) = 02 for all
i it’ i jt i n ittt v

i, j and t. n, is meant to capture individual specific shocks and
other unobservable factors that influence Yig and remain the same over

time. Equally, v would capture omitted time-varying effects of various

it



- 11 =

kinds that we assgume can be well represented by a random crror with the
game properties for different individuals, though the effects embodied in
Vit can induce serial correlation. We could algo assume a time specific

component in us but as we shall consider inference for a fixed

tl
number of time observations, it will not be a problem to condition on
the time specific effects that are in the sample if desired (by treating

them as a further set of coefficients to be estimated), and therefore

we omit them for simplicity in this general discussion.

There remains the question of what properties to attribute to the
observable variables Xip and z, . The simplest possibility is to
assume that Xie and z; are stochastic variables independent of U, -
In this case we would be conducting inference conditional on the
values of Xt and z; that are in the sample, and so there is no
difference if we regard these sample values ag being fixed. Moreover,
this provides a more natural framework since we shall encounter many cases
where some exogenous variables cannot be considered.as random. Indeed,
this is the assumption that we shall make throughout the remaining
chapters of this work. However, if we think of n, as a latent variable
representing relevant but unobserved characteristics, it would be
reasonable to assume that some or all the ocbserved explanatory variables
are correlated with n; - This situation has been extensively studied
for static models in the literature (¢f. Mundlak (1978) and Hausman
and Taylor (1981), among others). In fact, seme authors would point
to the ability of controlling uncbserved.individual heterogeneity as
one of the main purposes in using panel data. This peint will be

discussed further in Section 1.6.
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We assume that our gample congisgts of N individual units (i=l,...,N)
observed through (T+1) consecutive time perieds (t=0,1,...,T).
Nevertheless, there is no reason to believe that the process of the
‘dependent variable started at the same time at which we started
gampling, and even in this case it would be unreasonable to assume that

the individual effects n, did not play a role in determining Yio®

If |m|<l and the process of Vit started in the distant past, oux

model implies the following equation for Yio

- v LS * 1 * *
(1.2.3) Y50 Z o B X (2x) + v z, +n¥+ vig
k=0
-1 -1 ° k
3 * = — * = - r * =
with v (1-a) Y, ni (1-a) ni and Vi z o vi(—k) .

k=0
It is the presence of time-varying exocgenous variables in our original

equation what complicates matters, as it makes Y50 to depend on the
entire past history of such variables. In this sense, even if we know

the distribution of u,

1e! further assumptions about the initial observat-

ions are required to be able to define maximum likelihood estimators
of (o B v). In the next Section we shall discuss different solutions that
have been proposed in the literature to circumvent thig problem and

their implications for panel data.

1.3 The Problem of the Initial Observations

If we complete the model (1.2.l1) by assuming that the values of

Yio are fixed for all i, x,

it and zi are nonstochastic and there is no

serial correlation among the Vit We have the model of Balestra and

t
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Nerlove (1966). Further assuming that the u,

i are normally distributed,

Balestra. and Nerlove defined the maximum-likelihood estimator and also
a generalised least squares estimator (the 'twe round' estimator).
This model and related estimation methods have been the object of
detailed analysis in a series of Monte Carlo studies by Nerlove and
Maddala . (cf. Nerlove (1967), Nerlove (1971) and Maddala (1971)). The
difficulty here is that these methods of estimation will only be
consistent (as N -+ «) if the Y, are truly fixed or stochastic but
independent of ngi otherwise they will fail to control for the lack

of orthogonality between Yo and u,

41 in the equation for Y-

However, we have seen that in the 'model of interest' there is no
connection between the starting time of the precess and the sampling
starting time, and in any event it would be unrealistic to assume

independence between Yio and n, .

The assumption of fixed initial observations is a common one in
time series models and its implications are rather different when T tends
to infinity. Although in our context T is fixed, it is worth stressing
that the source of the difficulty is the correlation between Yio and

u in other words, if n, = O fer all i and the \ are white noise

i1l t

errors, we could safely take Yo as fixed and still being able to

estimate consistently the model of interest as N =+ = for constant T.

These problems have been pointed out by Pudney (1979) and
Anderson and Hsiao (1981 and 1982).  Furthermore, Anderson and Hsiao
(1982) discuss various likelihood functions that arise from a variety
of assumptions about the initial conditions of the process. They

show how the properties of estimators vary from one sampling plan to



- 14 -

another and also depend on the way in which the sample becomes large
(N +® or T - »)., However, it would be ugeful to discuss the relative
merits of different assumptions about the initial observations as

approximations to what we call the model of interest.

The solution adopted in this work is to complete the system in

Section 1.2 with an unrestricted prediction equation of the form

(1.3.1)  y, =l kbt WK o FET 2+ uwl o (i=1,...,N).

]
O io iT i i0

This alternative has been advocated by Bhargava and Sargan (1983)
and Chamberlain (1984), although raticnalising eguation (1.3.1) in
different frameworks. On the one hand, Chamberlain assumes

(y! xi zi) where yi = (yio""'yiT)' x' = (x' ,...,x' ), to be

i i io’ iT

independent and identically distributed according to some common
multivariate distribution with finite moments up to the fourth order.
Under this sole assumption there is no reason a priori for the
regression function E(Yio|xi' Zi) to be linear, but a minimum mean-

square error linear predictor can always be specified

+ E' z, = y¥

. say.
iT i io’ y

* =y’ et !
E (yiolxi’ z;) = M5 X0 M X

Purthermore, if E(y,

+
% . ,
1O’Xi’ zi) # E (yiolxi, zi), CYPS will be heteroscedastic,

. , . , ‘ .
since it will contain {E(yiolxi, zi) B¥ (y.

Ix,, Z,)}. On the other hand,
io" i’ i

Bhargava and Sargan assume u, to be normally distributed, and x.,,  and

t it

2, to be independent of Uy, Then if we let §i0 to be systematic

part of (1.2.3)
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they assume yio to be the optimal predictor of §io conditional upon

X, and Zs where €, =Y - y;O is also norxmally and identically

i0
. . .. . 2 .
distributed for all i with variance O - These assumptions allow

+
Bhargava and Sargan not only to ensure the homoscedasticity of U, 5

but also to characterise the form of its variance and the covariances

with uil""’uiT; that is, since
(1.3.2) u+ =g, + n¥ + v* ’
io i i io

if ]a|<l and v is stationary we then have

t
2
+2 2 On
(1.3.3)  E(u.?) = 07 + —— + E(v*2) ,
io 2 io
(1-o)
2
+ Gn
= e——— * =
(1.3.4) E(uio uit) - + E(vio Vit) (t=1,...,T).

Furthermore, if Ve is white noise (the case considered by Bhargava

2 2
*2y = * = —
and Sargan), E(v* ) = 0O /(l o”) and E (v* v,.) = 0 for t=1,...,T.

In any event, notice that our meodel, once completed with the

prediction equation for Yio above, can be written as

(L.3.5) B{a) Yy + Cx(u,B) x5 + CZ(E,Y) z, = u; (i=1,...,N)

where B(a) is the (T+1) square matrix
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(1 o © 0 ]
-0 O O
B(o) = : I ’
o O O© -0 1 J

] 1) L} \
UO Ul R UT
CX(U,B) = - 8' 0 7
0 0 . B! J
CZ(E,Y) is the (T+1) x m matrix
g l
CZ(gIY) = - Yl F
o]
+
| J— : i . .
and u; (uio Ugq oo uiT). The variance matrix of u, is given by
E(u+2[x 2.) . E(u u |x,,2.) ... B(u u |x,, =z
io'TifTit o 0711771l ioTiT'Ti
(1.3.6) E(u u'lx,, z.) = .
1 1 1 1 -
. 02 ' + Vv
. n

where V is the variance matrix of (vil...viT) and 1 is a T x 1 vector

of ones.

Thus ocur model can be expressed as a simultaneous triangular system
of T+l equations with linear restrictionsg linking the coefficients of the

last T equations. Indeed, since the parameters of interest (o, 8, y) are

i

)
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confined to this subset of equations (the 'structural block') and the
prediction equation for Y0 is unrestricted, explicit estimation of

the coefficients of the latter will not usually be required. We postpone
the discussion about the implicatiens of the covariance matrix structure

to the next Section.

Nerlove (1971) and Pudney (1979) have proposed to use lagged values
of the exogenous variables as instruments for the lagged dependent
variable in order to ensure consistent estimation of the model of
interest. It has also been pointed out that, following this approach,
the best choice of instruments is not obvious, since the number of time
observations available depends upon the number of instruments chosen.

It is therefore of some interest to highlight the instrumental variables
implications of the unrestricted prediction equation for Yo digcussed

above.

The simplest consistent estimator of a set of equations in a
gimultaneous system is well known to be the IV estimator that ignores
the fact that the covariance matrix is not a scalar matrix (what in the
absence of cross—equation restrictions is simply equivalent to 2SLS
estimation of separate equations). This is Sargan's Crude Instrumental
Variable estimator (CIV), and we can define the CIV estimator of
§' = (a B' y') for the block of the last T equations in the system

1.3. i
( 5) by choosing 6CIV to

(1.3.7) min [vec(U)]' (Z*(z*' z*) 1 7Z%' I_T) vec (U)
§
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1

| - *t = ' T * 1 = * *
where U ( ceeugdy z¥ (Xi’ zi) and Z [z* ... ZN].

i 1
i.e. Z* ig an N~-rowed matrix of observations on the exogenous variables
with (T+1)n+m columns.

In orxrder to relate GCIV.to other estimators suggested in the

literature, let us introduce the following NT-vectors

| - .
v [yll oo Vg oeee Yygp v yNT] ’

' =
v, [ylo es Yygpo1y ccc Yy ot yN(T—l)] '
u' o= {ull ew Upq oeee Uy e uNT} ;

X' = [x
and the NT X m matrix of time-invariant exogenous variables

L ocre B e By oees zN] .

. . ‘ ot sy -
Furthermore, introducing the NT x (n+m+l) matrix X = [y ] Fxd z],
we can write our structural block of T equations in the usual regression

form

(1.3.8) y =% 6 +u.
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Now, a simple explicit expression of GC can be obtained by

Iv
rnoting that vec(U) = u. Then straightforward minimisation of

1

(v - X" 8) ' (zx(zxzn) T 2 @I (y - x' 8)

gives

1 -1 _+! 1

(1.3.9) & = [x" (zx(zrrz) T 20 g L) x 17 %7 (2 (zrrzE) T e 8 I)y.

CIiv
Clearly, the matrix of instruments in regression.form is the

NT x T[(T+1)n+m] matrix (Z* @ IT). This is an optimal set of instruments
in the absence of any prior knowhedge about the way in which the process
of Yie started off when T is fixed. Obviously, this requires Z* to be
of full column rank for identification and therefore if a subset of
variables in the vector Xy do not vary across individuals, they must
not be used as ingtruments in the definition of Z*, although they will

be included in X+ (cf. Bhargava and Sargan (1982) for a disgcussion on

macro-variables).

1.4 Estimating Models with Unrestricted Prediction Equation for Y0

In this Section we survey the methods that have so far been proposed
for estimating models with unrestricted prediction equations for the
initial observations.

. , +2 +

Under Chamberlain's assumptions E(uiolxi,zi) and E(_ui

o Uiel®yr2y)

(t=1,...,T) will be arbitrary functions of X, and zi and therefore, in



- 20 -

general, heteroscedastic. Writing model (1.3.5) in reduced form we

have

X

: i ]

(1.4.1) v, = (PX : Pz) 2 v

*

: -1 . -1
where P = (P : P ) = =B (o)(C_ ¢ ¢) and v, =B “(a) u,. The
X 4 X Z Al 1

constraints in B, Cx and CZ imply a set of non-linear restrictions on

P. Let P be the unrestricted least squares estimator of P

FU

Allowing E (v, v!{x., z,) to be an arbitrary function of x, and z,,
i 717 i i i

Chamberlain (1982 and 1984) follows White (1980)'s approach to show

that

/ﬁ'vec(E—P) R N(O, W)
where

W= E[vi Vi@ Mt (2% z;')M_l]
and

A consistent estimator of W can be obtained from the corresponding

sample moments
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>

1

W== 3 [v, v'i @M (2% z*!) M ")
N i=1 1 1 L L

with

>
=2

M= L z 2% z¥!
N,
i=1
Then Chamberlain proposes to use a minimum distance procedure to impose
the nonlinear restrictions on P. That is, we minimise the following
criterion function with respect to the free parameters in P

~

[VeC(E—P)]' W_l vec(E—P) .

Alternatively, Chamberlain suggests to use the structural form and apply
a 'generalised three~stage least squares' estimator, which achieves

the same limiting distribution as the minimum distance estimator
sketched above; the advantage of the latter is that as the restrictions
in the structural form are linear there is no need to use numerical

methods of optimisation.

Under Bhargava and Sargan's assumptions, the variance matrix of the
error, {* say, is fully specified and remains the same across individual
units. Relying upon the assumption of normality they specify the log-

likelihood function for the complete system
N N
L=%k-5%Nlog det(%) - % ) u' oLy .

Bhargava.and Sargan discuss two types of estimators. First, assuming Q%

to be an arbitrary (T+1)x(T+1l) symmetric matrix, they consider the
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likelihood function concentrated with respect to * and the coefficients
in the prediction equation £ and y as an straightforward application

of the LIML method from the classical simultaneous equations theory.
Second, concentrating only & and y out of the likelihood function they
anforce on Q* the error components restrictions given by (1.3.3), (1.3.4)
and (1.3.6). This likelihood function has to be maximised with the

restriction that lu[<l.

As it stands, the comparison of the twe approaches suggests a
trade-off between robustness and efficiency. If the errors are truly
normally distributed we may expect maximum likelihood estimators to
make an optimal use of the constraints in the covariance matrix, thus
leading to efficient estimators of all parameters‘in‘the model. However,
since in many practical situations there are no particular reasons to
assume normality (and frequently sample measures of skewness and kurtosis
will contradict this assumption) it is of interest to investigate the
properties of the estimators obtained by maximising the gaussian

likelihood function when the assumption of normality is false.

The early work from the Cowles Commission (cf. Koopmans, Rubin and
Leipnik (1950)) demonstrated that maximum likelihood estimators of the
© simultaneous equationsg model with unrestricted covariance matrix
maintained the same asymptotic distribution even when the errors are
non-normal, and called them quasi-maximum likelihood (QML) estimators.
However, as the discussion in Chapter 3 will make it clear, this is not
the case in the presence of a priori knowledge about the covariance
matrix. In this situation, the QML estimator does not make optimal use

of the prior information and its asymptotic digtribution depends on
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higher order moments of the errors. Moreover, it will be shown that
it can be the case that the covariance restricted-QML estimator of the
slope coefficients is less efficient than the QML estimator that leaves

the covariance matrix unrestricted.

Chamberlain's procedure is very robust in the sense that by allow-
ing the reduced form errors variance matrix to be an arbitrary
function of Xy and z, s We can make consistent inferences about (o, B', y'")
in a wide variety of situations. However, while there are no particular

. + . ,
reasons to believe that uiO is homoscedasgtic, the variance components

structure for Ugqreserlyn ig one of the basic features of the model that

we are interested in testing. Moreover,.1f a structure of thig kind
(possibly including an autoregressive-moving average scheme for the

transitory component Vit) is not rejected, the implied constraints can

be exploited in order to obtain more efficient estimates of (a, B8', v').

In view of this considerations, we shall make the simplifving

. +2 +
assumption that E(uio) and E(uio uit), t=1,...,T, do not depend upon

Zz (possibly accompanied by a White (1980a)'s heteroscedasticity test),

+
while assuming that (ui T) are independently and identically

o Jirrc Yy
distributed according to some multivariate distribution, not necessarily
normal, with finite moments up to the fourth order. Furthermore,

we can replace Bhargava and Sargan's stationarity assumptions about the

, + .
covariances between CIPS and Uyqreeertiny @ say, by assuming

o1’ woz,...,wOT

that they are a further set of T arbitrary coefficients. Note that the

. + . . . .
variance of u, W is already effectively unrestricted in

o’ “oo’
. o]
Bhargava and Sargan's formulation given the presence of G;. This
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approach has been introdiuced in Arellano (1983, 1984) and hag various
advantages.3 First, it allows us to consider nonstationary schemes
for the Vi taking advantage of the availability of a large number of
observations per-period (see Section 1.5 below), and it also makes
unnecessary to restrict o to lie inside the unit circle. Second,
under this formulation, the error covariance matrix is constrained but
independent of the slope parameters, what will lead to enormously
simplified efficient methods of estimation for both regression and
covariance parameters (see Chapters 5 and 6). In particular, it is
worth noticing that in the QML context, it is possible to concentrate

W, Wy out of the likelihood function, thus leading to

00’ Yo17" " "Yor

simpler manipulation and lesser computational burden.

1.5 Serial Correlation and Unrestricted Intertemporal Covariance

The effect of random shocks acting through the time-varying
errors, while deteriorating over time, may persist longer than one
period . The Vv, may also include unobservable variables which are
serially correlated. Since both situations are likely to occur in
practice, it is unrealistic to make the assumption that the v, are
white noise errors. This fact has been acknowledged for a long time,
and many researchers have allowed for serial correlation - mostly first
order autoregressive schemes -~ in the estimation .of static equations
from panel data (cf. Lillard and Willis (1978), Bhargava, Franzini and

Narendranathan (1982), Chowdhury and Nickell (1982), and MaCurdy (1982),

among others).
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However, given the fact that T is fixed and N is large we are able
to estimate arbitrary intertemporal covariance matrices, thus avoiding
to place restrictions in the form of the serial correlation of uit.4
Therefore, if the objective is simply 'to allow for' serial correlation,
a robust solution is to obtain Q* unrestricted estimates of o, B and y.
The problem of specifying serial correlation in panel data then becomes
a problem of modelling Q* (for example, researchers can be interested
in testing the existence and the magnitude of a permanent component
in the error term). A consequence of this is that it is possible to
consider a broader family of models than in time series models. Various
kinds of non-stationarity can be introduced, like autoregressive
schemes with the roots on or outside the unit circle, arbitrary forms
of time heteroscedasticity, or ARMA schemes with changing coefficients
(cf. MaCurdy (1982)). Nevertheless, it is convenient to preserve the
interpretability of the error structures under consideration and in
this regard the models that display a stationary correlation pattern
are the more interesting. Incidentally, notice that it is possible to
allow for arbitrary heteroscedasticity over time and at the same time
to specify a stationary serial correlation pattern for vit;vthis can

be achieved by setting

where V;t follows some stationary ARMA process with i.i.d.(0,1l) white

noise errors. Now we have CoV(.Vi v, ) =20 GS cov (v¥

*
! Vig £ lt,vis) and thus

Co : , ) o= * 4VE ) . . ls i Lf
rr(vlt,vls) Corr(vlt,vls) for any i. This is not the case if we

consider instead an ARMA process where the variance of the white noise

error is varying over time. However, more general non-stationary models
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are still possible, and see MeCurdy (1982) and Tiao and Ali (1971)
for suggestions about the treatment of initial conditions when stationary

correlation is not assumed.

MaCurdy (1982) has also propoged a method of selecting autoregressive-

moving averadge schemes for the v, in models that are not dynamic.

t
His suggestion is to use least-squares residuals of the equation in

first differences (thus avoiding the complications originated by the time
invariant error component) te construct sample correlograms and sample
partial correlation functions, which can be used as a basis for choosing
an appropriate specification for the ARMA process generating the
transitory components. Then since differencing. simply introduces an

unit root in the moving average polynomial, its effects can be undone

in the sense that one can reconstruct the ARMA process associated with
levels. MaCurdy also suggests an ingenious method to estimate simple and
partial autocorrelations using a constrained seemingly unrelated equations
procedure. Once a particular specification is chosen, he proposes to

estimate the restricted covariance matrix by using conditional QML

methods (see also MaCuxrdy (1981) for a discugsion of itg properties).

While this approach could be generalised to dynamic models (e.g.
by basing the calculation of correlograms on three-stage least—squares
residuals) and it can be of interest in indicating models to consider,
the possibility of obtaining consistent estimates of Q* unrestricted
suggests to base a formal specificatioen search on a sequence of tests
of particular structures against Q* unrestricted in increasing order of
complexity. This is the approach advocated by Bhargava and Sargan (1983),

which rely upon likelihood ratio statistics to test the white noise error
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components model against Q* unrestricted. Unfortunately, unlike the
case of regression parameters constraints, likelihood ratio tests

of covariance restrictions are asymptotically distributed as a chi-
squared on the null hypothesis only under the assumption of normality
of the error term (a point noticed by MaCuxdy (1981) and that will be
discussed in Chapter 4). The asymptotic distribution of the
likelihood ratio test under the null hypothesis can still be calculated
when the errors are non-normal, but it seems convenient to construct
tests that are robust to the non-normality of the errors. Among these,
we shall develop Wald tests (Chapter 4) and minimum chi-square tests
(Chapters 5 and 6). The advantage of the former is that it only
requires the estimation of the unrestricted model. Iowever, as it is
well known there are two different ways of expressing exact prior
information. If w is the (T+1l) (T+2)/2 vector of different elements

of Q*, a set of ¥ constraints can be expressed as a set of equations

of the form

£ =0 (3=1,...,1).

Alternatively, we may assume that the elements of w are related

functionally to a second set of (T+1) (T+2)/2-r parameters T
w = w(t).
Setting up Wald tests requires explicit expressions of the

constraint equations fj (3=1,...,z) which can be difficult to obtain in

some cases. On the contrary, minimum chi-square statistics are
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expressed in terms of the constrained parameters T, what, for our
purposes, will usually be a straightforward way of handling the

problem.

1.6 Correlation between the Explanatory Variables and the Individual

Effects

A leading objective in the estimation of models from panel data
has been to obtain estimates of the regression coefficients free of
bias due to the omission of relevant individual-specific effects. 1In
static models, this has traditionally been achieved by subtracting
time means to individual observations, thug removing all time-invariant
terms in the equation. Clearly, in this way the coefficients on the
time~invariant variables vy cannot be estimated. 1In fact, if all the

Xit and zi are correlated with the individual effects, the y's are

not identified. Different alternatives arise if we are willing to
assume that some of the included explanatory variables are uncorrelated
with the individual effects. This is the case studied by Hausman and
Taylor (l981l) for static models and Bhargava and Sargan (1983) for

dynamic models.

In the latter context, we still assume that xit and zi are

independent of e but now we intreduce the partitions

x' = (x! H

¥
it 1it * %21t )

} of dimension (L x n 1 x n2) and zi = (g!, @

]
1’ 11 ° %2i
of dimension (1 x ml,l X m2) guch that Xlie and X, p Ares respectively,

vectors of variablesuncorrelated and correlated with the ni, and

similarly for z and z,,. The suggestion of Hausman and Taylor is to

1i 21

use the individual means of the xlit variables as instruments for the
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Zo g and thus a necessary condition for the identification of B and y

(in their model o is equal to zero) is that n, > m,. If the rank

condition does not fail and n, > m the Hausman and Taylor's

1 27

estimator of B differs from and is more efficient than the within-

groups estimator, while 1if n, =m, the two estimators are identical.

Incidentally, note that Hausman and Taylor's reduced form equation for

z can be replaced by

2i

Yoz, + &, .

= ' '
(1.6.1) z +o.ot ¢T be 1i 5

2i = %0 *1i0 1im ©

Indeed, they assume ¢O == ¢T. These restrictions can be appropriate

if T ig large and x is stationary, but in general they are not

lit
justified in the present context (see Chamberlain (1980 and 1982) for

a discussion of this point). Using a general reduced form for Zost

each variable in x it provides a set of T+l instruments for the =z

L 21

and the order condition for identification becomes (.T+l)nl > m,.

Bhargava and Sargan adopt a similar approach for dynamic models,
but they further assume that the deviationg from time means of the

X are uncorrelated with ni, what enables them to have a set of 'I‘n2

2it
extra instruments at the expense of only n, new variables -~ the time
means of the Xoip ~ that are correlated with n, - Let ug consider

this model in some more detail. 1In generxal, we can write

(1.6.2) X + (t=0,1,...,T)

2it t i it

i
=
=

where Cit is independent of ni. But if we assume KO T = K oy
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= - = -z, =1,...,T
(1.6.3) T T Cit s (t=1, :T)
T T ~
where X, = —— ) x and T, = = ) .., so that the x,, are
21 T+l 2 T2it il o it! 2it 7

independent of n, - The vector of instrumental variahles 1s now

z+| = (x! x! ;' .o ;‘ z!
i 1io Tt it 24l S & A

)
and the complete model can be expressed as

(1.6.4) B (o) Yy + CX X, + Cz z, =u

(L.6.5) z

+
F z, + .
Lt Eu

- +
(L.6.6) x2i =G Zi + Exi r
(1.6.7) Xoie = ¥oig + Xos (t=1,...,T) .

Substituting the last set of T identities into the first block of

equations, we obtain a system of (T+1) + m, + n, equations whose
+l

endogenous variables are given by y, = (yi, zéi, géi). The

identification of this model, as shown by Bhargava and Sargan, requires

L
T > 4, ny > 0, plim(Z?zl(zZ zI )/N) to be positive definite and the

matrix F  to be of full rank, where F = (FX : FZ) and F, correspond

to the columns of coefficients on Zli' A crude instrumental variables

estimator of §' = (a B' y'), equivalent to (1.3.9) minimises

+' 4
rz

(1.6.8)  [vec]' @ ' 2h™t,*

<] IT) vec (U)
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..|.
where Z = (z ,...,ZN), and it is given by

+,-1_+!
) TZ2 8 IT)y.

(1.6.9) & - ettt e IT)x+]"l < ztetz

~

Using CIV residuals, u,

it Say, we can compute an unrestricted estimate

u, )

of the covariance matrix of (u,,,...,u,
il iT

1 N
(1.6.10) 2 =1 = ) ou,, u, (tys=1,...,T)

which in turn can be used to construct a three stage least-squares

estimator of §

A

3 S IR I L S ! e -1+, A - ! -
(1.6.11) 63SLS = [x (2 (Z z+) Lyt 2 Q l)x+] 1 X (z (2 2Z) L7 e l)y.
§ is asymptotically equivalent to the Q-unrestricted LIML estimator

38LS

suggested by Bhargava and Sargan. They also apply to this case the
constrained LIML procedures that enforce the error components

restrictions on the covariance matrix.

None of these methods can be applied when the individual effects
are suspected to be correlated with all the observed explanatory
variables. Regrettably, the within-group estimates for dynamic models
are inconsistent as N tends to infinity if T is kept fixed. Analytical
expressions for these inconsistencies have been given by Nickell (1981).
The problem is that transformations like deviationg from time means or
first differences fail to remove the correlation between the lagged

endogenous variables and .the disturbance term. However, they do remove
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the permanent component of the errors and so the source of correlation
with the remaining explanatory wvariables. Thusg, if proper account is
taken of the correlation between lagged y's and errors, consistent
estimation of the coefficients corresponding to time-varying variables
is still possible. But this is precisely the problem that the methods
introduced in Sections 1.3 and 1.4 are intended to solve, and they

can be easily extended to cover such cases.

For example, transforming to first differences our original

equation we have

) +ou¥,

(1.6.12) %5 (t-1) it

oy,

Yie 7 Yi(e-1) i(t-1) " Yiqee2) )t BTy -

(1L.6.13) u;t = v (t=2,...,T).

it~ Vi(t-1)

Now, the model has to be completed with prediction egquations for

Yi0 and Y4 (see Chamberlain (1984))

(L.6.14) vy, = u!

FIRaY
i0 00 *io *tUgp Xyp T U '

orT 1T i0

+
+ u .

1
Feoet W Xip il

= '
(1.6.15) Yi1 = Yo *io

If Vi follows an ARMA(1l,1l) scheme with coefficients ¢ and A , u;t will

follow an ARMA(1,2) scheme of the form

(1.6.16) u*, = ¢

e + e, - (l+k)ei + A

U (e-1) it (£-1) €5 (t-2)
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. . , . . 2 ,
In particular, if vit is white noise with variance ¢ , the covariance

matrix of (u;z,...,uzT) will be a (T-1) x (T-1) matrix of the form

Since T is fixed, none of the time series problems that appear in the
estimation of models with moving average errors when the root lies

on the unit circle are relevant here. If the Vit are known to be
white noise errors, QO can be used to construct a 3SLS estimator of

o and B by minimising

(1.6.17)  $(a,8) = [vec@")]' (x(x'x) " x' @ o°h) vec(u¥)

(- *1 = * * i 1 = * *
where X (xl""’XN) and U (ul,...,uN) with u¥ (uiZ""’uiT)'
Moreover, noting that vec(U*) = u* where u* ig a N(T-1) x 1 vector of
errors in first differences

* 1 = * * * *
u (ul2""'ulT""'uN2""'uNT)

and that

* = (I
u ( N ® D)u

where u is defined in Section 1.3 and D is the (T-1) x T matrix
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o =
l
,_I
O O

Qo+ oo
O
I
[_l
P~

we can write

It

[l ' ¥ -1 ' -1
S(a,B) u (IN R D') (X(X'X) X' ® QO )(IN 2 D)u

W xx'x "t ke b Q;l D)u.

However, since QO = DD' and D isg an orthogonal complement of 1, i.e.

D1 = O (cf. Sargan and Bhargava (1983)) it turns out that

-1 11!
L] = - —— I
D Qo D IT Q, say.

Q0 we have

It

Finally, using Q

[} ' -1 1}
u (IN ® Q) (X(X'X) X' Q IT)(IN R Qlu

i

S(a,B)

ut (x(x'x)—l X' R IT)u+

+ ., . . . R
where u 1is the NT x 1 vector of erroxs in deviations from time means.
Therefore, CIV in the model in deviations from times means is
numerically the same as the 3SLS estimator that usges Qo in the model

in first differences.
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The estimator that replaces QO in (1.6.17) by an unrestricted
estimate of the covariance matrix will be agymptotically equivalent
to the minimiser of (1.6.17). However, it has the advantage that
its asymptotic distribution remains unchanged when the v,y are

gerially correlated.

Note that the previous model in first differences is a particular
case of the model

(1.6.18) +u

1]
O Yy ey T B0 Fie TR Xy (pe1y) T Wik

= 0

Yie 1 Yi (£-1)

with the linear constraints oy + G, = 1 and Bo + Bl = 0., Interestingly,
a dynamic model in which the X, are correlated with the individual
effects can be seen as a special case of a more general dynamic model

in which the X, are completely exogenous variables and no individual

effects are present.

The purpose of the previous discussion has been to emphasise the
relevance of the basic dynamic model with exogenous variables and

serially correlated errors to cover a variety of situations of interest.
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NOTES
[ 4t
!
1 Given a matrix A = aé with n rows, we define the vec
i
n

Operator as

-

vec(A) =

If A = {aij} and B =‘{bij} are matrices of arbitrary order we
define the Kronecker product as A B =‘{aij B}. Two properties

of the vec operation which will be useful are
vec(ABC) = (A & C') vec(B)

if the matrix product ABC exists, and
[vec(A)] "' vec(B) = txr(A'B) ,

where A and B are matrices of the same order.

A ~ A

N
-~ l —
2 If W is replaced by N z V vi M 1 we obtain Malinvaud
(1970) 's minimum distance estimator.

3 Bhargava and Sargan also discussed a similar specification, but with

Woy = Wey Ter:= W These equality constraints will not be

appropriate if the V. are serially correlated.

t
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4 The implications of this procedure were studied by Kiefer (1980)
in the context of a 'fixed effects' treatment of a static

model.
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CHAPTER 2

QMIL, ESTIMATION OF DYNAMIC MODELS WITH SERIALLY CORRELATED ERRORS

2.1 Introduction

This Chapter is concerned with the formulation and estimation by
quasi-maximum likelihood (QML) methods of dynamic random effects models
with first-order autoregressive-~first-order moving average time~varying

erroxrs.

Quasi-maximumlikelihood estimators are of interest because they
provide a broad framework for the estimation of models under general
constraints. For this reason they have been commonly used when prior
information on covariance matrices is available. They are specially
attractive in our context, i.e. that of a system of (T+1l) equations,

T of which are linked by linear constraints and the remaining one -

the prediction equation for Yio ~ is in reduced form, since the
puisance coefficients in the latter equation can be easily concentrated
out of the likelihood function (what in fact is an application of the
LIML technique for a subset of equations in a simultaneous system), thus
leading to a criterion function that only depends on the parameters of
interest and where we can still introduce constraints in the covariance
coefficients. However, since normality ig not assumed, we cannot rely
upon maximum likelihood asymptotic theory in discussing the properties

of these estimators.
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This discussion will be the purpose of Chapter 3. Section 2.2 in
this Chapter introduces the models arising from three different
agsumptions about the covariancesbetween the errors in the equation for
Y0 and the remaining disturbances in the model. Section 2.3 derives
the concentrated likelihood functions for these three alternative models.
Section 2.4 considers QML estimation with arbitrary intertemporal co-
variance and other alternative asymptotically equivalent methods.

In Section 2.5, the performance of QML methods is investigated, either
for correct models or under several misspecifications - though always
using normal variates -~ by resorting to experimental evidence. Finally,
Section 2.6 discusses an extended model with arbitrary heteroscedasticity

over time.

2.2 Three Alternative Models with ARMA Erxrors

We assume the following model

= 1] 1
(2.2.1) vy =0y pqy TBEL T YTE Ry

(2.2.2) uit =n; + vit

(2.2.3) Vie = ® Vi (t-1) +oe T Agi(t—l) (i=1,...,N;t=1,...,T)

with v 14d(0,0°%), €, .~ 11d(0,0%) and E( )=0 for all i,q,t
ﬂi r n ’ it L ’ an nlgjt = or a 1,3,C.

xit and zi are observed constants: zi is a m-vector of time-

invariant exogenous variables and xit is a n-vector of time-~varying

exogenous variables. B and vy are n x 1 and m x 1 vectors of unknown
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parameters, respectively, and o is an unknown scalar parameter. We
also observe t=0, so that (T+1l) time series observations are available
on N cross-sectional units. It ig also assumed that |¢| < 1 and |X| < 1

so that the error process is stationary and invertible.

It is useful to re-write (2.2.1) as an incomplete system of T

simultaneous equationg. Introducing the T x (T+1) matrix

-0 1 O .. O

Q¢+ 0O

Y, u!' = (u

1 =
and the vectors v (yio YiyoeYip i il...uiT), we then have

(2.2.4) A(S) 4, = u, (i=1,...,N)
i i

where di = (yi xi zi) = (yi z;') ; §' = (o B' v') and

. +

A(S) = (87 -I* @ B' i - 1y") = (B i C).

1 1s a T-vector of ones and I* = (O : IT) (i.e. a T-unit matrix

augmented by a column of zeroes).

We rule out the possibility that x., = x, . for all i and for some
kit kis N

k and t # s. Indeed, we shall make the assumption that lim %- ) (z;z;')
N-»o — i=1

is a positive definite matrix.
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In view of our assumptions, the covariance matrix of u, ig given

by

2 2
4 = = '
(2.2.5) E(uiui) Q=0"V+ 9, 11

where V is a Toeplitz matrix proportional to the serial covariance

matrix of the ARMA (1,1l) process, whose t,s th element is

2
v .- 1+ A%+ §¢A 1% tog=0
. 13

- ¢|t~S|-—l i}iﬁﬁlﬁﬁ%ﬁl. otherwise

1-¢
In our simultaneous equationg analogue, ) becomes the variance matrix
of the errors of T structural equations, that is, serial correlation
turns into correlation between disturbances from different equations,
and so we end up with a simultaneous equations system with linear cross-

equation restrictions and a restricted variance matrix.

We complete the model with the assumption that the initial

observations are determined by a reduced form equation of the type

- ] ]
(2.2.6) Yio uo X +...4+ U

L E' oz, tu, = u'zh o+,
io p ¥yp T &2 u [

i i0 io

where | is a n(T+1l)+m vector of unrestricted coefficients, and ui@ is

a random error with zero mean and arbitrary variance Wooo We will

develop this model under three different assumptions about the covariances

W R I )= =1,... :
between LIPS and Ugq s 1Oy E(uio ult) Yo (t=1, ,T)
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(i) Way T Ogp = 0. Thus yio can be regarded as an exogenous
variable in the simultaneous system and so (2.2.4) becomes a

complete model. This is equivalent to the assumption that the

y (i=1,...,N) are fixed and known constants.

i0
(ii) Further assuming |al < 1 we may restrict Wopre=-rWop O the lines
suggested by Bhargava and Sargan (1983) for models with white

noise errors. In this case we take U to be

n,
(2.2.7)  u =g e+ [ oy,
where Ci ig a prediction error defined as

(2.2.8) ¢, = ) ak(B'xi

+ y'z,) - u'tz¥*
ko0 i i

(-k)

2
which is assumed to have constant variance GC for all i. 8o we have
(2.2.9) ® = — + ¢ §. 0 (t=1,...,T)

with

(14+¢A) (p+X)

(2.2.100 6, = FEEST

in particular if Vi follows purely a moving average scheme, ¢=0 and

62 = )X, and then, except W r all covariances are equal to ci/(l—a).

e is still unrestricted but it can be expressed in terms of Og as

follows
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o §
(2.2.11) w, = o2 + 0 5+ 12 o2
(1-a) 1-o
with
2
S (L+27) (1+ad) + 2A (a+d)
1 .

(1-04) (1-62)

(iidi) Wopre e r®qn will be gimply unrestricted parameters. The advantages

of this assumption were already discussed in Section 1.4.

We shall refer to these three cases as models a, b and ¢ respectively.

Let Q* be the variance matrix of the complete system comprising (2.2.4) and
(2.2.6)ie = E(u* u*') where u*' = (u,_ ! u'). Models a, b and ¢ will

i i i i0 i
differ in the assumptions about the coefficients of the top row of Q*.
In any event, we are assuming u; to be i.i.d. according to some
multivariate distribution with zero mean vector and covariance matrix

%, and.we further assume the third and fourth order moments to be

finite and unrestricted.

2.3 Quasi-Maximum Likelihood Estimation

The log-likelihood function for the complete system of (T+1)

equations, apart from a constant term, can be written as

(2.3.1) L = - %~log det (0%) - % tr (¥ ™+ uviy*) + N log |det(B)]
where U*' = (ui,...,uﬁ). Alternatively we can partition U*' as
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with U' = (ul""'uN) and u' = (u ). B is the (T+1) x (T+1l)

0 10’ "o

matrix given by

sofro...0)

S J

(2.3.1) is the likelihood function for a general simultanéous equations
system. However, since B is lower triangular and all its diagonal

elements are equal to 1, log det(B) = O, and therefore the jacobian term

will not occur here.

In the likelihood function, U* (uO t U) is a short-hand for
= -— *

u Yo Z*u

and

u' A(S)D!

d ).

1 *V = (=% * T =
with 2 (z ,...,zN) and D (dl,.. N

Since we are only interested in the estimation of the parameters
corresponding to the structural block of the last T equations, we will

concentrate the likelihood function with respesct to yu.

It is convenient to introduce a general notation for the partition
of Q*_l, namely
00 Ol
w w
-1
10 11
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Now by making use of the formulae for the determinant and the inverse
of a partitioned matrix, after some manipulation, we can re-write

(2.3.1) asl

(2.3.2) L =-3 log det(® - % tr(@ U'D) +3 log 0
00
1 o1, 10 X . o1
7,00 w (U'U)w 5 (uouo) w (U uo)

From the first order conditions for u (note that u only appears in the

last two terms on the left hand side of (2.3.2)), its maximum likelihood

estimator turns out to be

10

~ _l
= * V7% * 1
(2.3.3)  w = (2%'2%) "2 (v, + —g5

which is used to concentrate L, i.e. L*(§,0*) = L(§,u,0%).

Substituting and rearranging we have

(2.3.4)  1* = - %—log det(Q) - % tr (@ o) + %-log 0
00
LW , 1 ol,, .10 Ol
— vy 2y, 5o @ (U'anw w T (U'Qy,)

20

where Q stands for the idempotent matrix

Q=TI - g* (z%17%) Tgw

and so

+
U'Qg = B Y'Q.
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In what follows we specialise the likelihood function (2.3.4) to the

models a, b and ¢ introduced in the previous section.

Model a
In model a, @ = (w cees ) = (0,...,0) so that wOO = 1/w__,
r .ol o1’ "“or ! ’ 00
ol 11 -1 R . . .
w = 0 and = § 7. Enforcing these restrictions in (2.3.4) we
obtain
+ = E. R -1 1 - H. — 1]
(2.3.5) La 5 log det (Q) s tr(Q TU'U) 5 log Yoo Zwoo (yO Q yo)

Since the last two terms are irrelevant in so far as the maximisation
with respect to § and the constraint parameters in Q is concerned,

we may just consider maximising

- N

5 5 tr(Q_lU'U)

log det(Q) - %

X

(2.3.6) L, =

This is the kind of likelihood function that was considered by

Balestra and Nerlove (1966). Note that tr(Q_lU'U) =

-1 .
[vec(U)]'(;N.Q £ 7) vec(U), and using the stacked regression notation

introduced in Chapter 1 we have
(2.3.7) @ uw) = (y - x'8) (1, @ o Ny - xte)

Here, we follow Bhargava and Sargan (1983) in parameterising Q as

(2.3.8) Q= 02(V + p2 11")
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where p = cn/c. This has the advantage that any finite value of 0

leads to a positive definite matrix . The determinant and the inverse

of & are thus given by

(2.3.9)  det(9) = o2T(1 + p? 'V 1) det (V)

and

_ ) i
(2.3.10) % = EE. vl 0 Ll 1 -1
g

(l+p21'V—11) 02

The exact form of the determinant and the inverse of V have been obtained

by Tiao and Ali (1971), who show that

2 27
(2.3.11) det(v) =1 +'(¢+k; (1—A2 )
(1-97) (1-17)

The exact inverse is highly nonlinear and the derivation of a computationally

convenient expression is given in Appendix 2.A.

La becomes then

- _ NT 2 _N N 2 Lyt
(2.3.12) La = 5 log © 5 log det(V) - 5 log(L+p™ 'V )
1 -1 1 02 -1 1
- — tr (v "U'y) + 2»-* T U'Vuu vy
20 20 (I+p™1'V T)

and concentrating the likelihood with respect to 02

(2.3.13) L; = - E~log det (V) =~ g-log (L + p2 1'V—ll) - gzvlog s2

2
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where the maximum likelihood estimator of 02 is

2 , -k, -1
(2.3.14) 52 = %‘- [tr(v lU'U) _ P V2 8) El\]{ 1}
I+p 'V
—.&_ _ + ' .2 ' -1 _ +
© NT (y=x'8)"(Ig & (Vip ") ) (y-X ).

L; is a function of §, p, ¢ and A that can be maximised by using some
numerical optimisation procedure, with the restrictions that [¢| <1

and |X| < 1.

Model b
In model b
2 02

2 -
L | ' =
(2.3.15) Wop = O (l~u 1"+ 62 q') O Wy s SAY.

1l

where g' = (1 ¢ ¢2,...,¢T_l).

. oL _ 00 -1 . -1 _ -
Using w = - W (wol 2 7) and further noting that Wap Q7 = Wo1 Q -,

we can write (2.3.4) as

00
00 W v o_ o ==1_, _ =1 -
(2.3.16) L 5 (yO Wor QU )Q(yO U " ow, ).

=L -+ E-lo W
a J 10

b 2

. . . . 2
So there is no difficulty in concentrating La with respect to 0 as above,

and the remaining two terms with respect to woo,

N - -1 1 -
* = * - — LI, l —
(2.3.17) LY = L¥ - 3 log[(yo Wy, 87U )Q(YO U Q wlo)]

where after some algebraic reductions we obtain
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—~ -——l p— ] 1 .-‘l
(2.3.18) wOl Q = (63 1"+ 62 g')v
with
2
_ B 1 ve—L
(2.3.19) &, = T G T S A Y
(L+p7 'V )
. . . . -1 2
In particular, if the process is purely autoregressive, q'V " = 1l-¢

and 1'v_11 = 20 (1-4) + T(1-6)°.

(2.3.17) is a convenient expression that enforces the constraints
(2.3.15) and can be maximised as a function of §, P, ¢ and A with the
restrictions that |¢| < 1, |A| < 1 and |a]| < 1. Alternatively we could

parameterise w as in (2.2.11) and then explicitly estimate the ratio

00

O .
OE/O rather than concentrating w © out of the likelihood function

(see Arellano (1983)).

Model ¢
In this case we enforce the random effects constraints on  but

o are left unrestricted. Thus we only have constraints in the

cee W
oL’ "ot
structural block of T equations and its variance matrix. Hence it is

Q0
natural to concentrate (2.3.4) further with respect to w = and wOl. To

' ol
do so it is convenient to parameterise L* in terms of fol = — /woo

14

what leads to

0[6)

00 , , '
- T lyiyg) Lo (WrQUIE, -2 £, Uty )]

N
*= —
(2.3.20) L La + 3 log w
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Differentiating L* with respect to,flo,

estimator turns out to be

~

_ ' -1 '
(2.3.21) £16 = (U'Qu) U Qyo

Substituting flo into L* we have

ééi 1oy - y'ou(u'ou) Tutoy ]
5 LYoRY on Q Qyo

b=

00
kK% = — —_
(2.3.22) L La + 5 log w

O
Now it only remains to concentrate L** with respect to w O, but
clearly
_.l__ = _:!*_ ' _ ' ' -1 1

(2.3.23) 55 = NlvoQvy - viQu(U'Qu) Uty ]

= l%y'-% U')oly ~uE, )

N0 0Ol o] 10

so that

N

- _]:_ ' - ' ' —ll
(2.3.24) L, =1 -3 log Slylov, - yiQu(u'Qu) "U'Qy.]

its maximum likelihood

Note that (2.3.24) directly compares to (2.3.17). However, using the

formula for the determinant of a partitioned inverse, a computationally

simpler expression can be found. We can write
VoY, YARU
det o~0 -0
U'Qyo U'Qu

¥ _ ' ' —.ll —
(2.3.25) yOQyO yOQU(U Qu) U Qyo ot oran)



- 51 ~

and this equals

1 1} +|
[ vgev,  whevm

det |
+o, +o, +,
1 B Y'Qy, BYQVE " _ (det B) det(Y'QY)(det B')
det (B+Y ! QYB+' ) det (B+Y ! QYB+' )
but since det(B) = 1 we end up with

N
2

X

log det(B+ W B+') 3

(2.3.26) Lo =1L+ log det (W)

where W is the unrestricted estimate of the reduced form covariance

matrix

= Ly
W= (YY),

, 2, .
Hence, the concentrated likelihood with respect to ¢ is given by

N

> log det (W).

N +
* = Tk = ' _
(2.3.27) LY =Lr + 35 log det(B WB ')

If Wts is the (t+l), (s+1) th element of W, the elements of B+ W B+'

are of the form

W - o (w ) + uz (t,s=1,...,T)

ts (t-1)s T Y (s-1) Wie-1) (s-1)

Notice that L; and Lé are of the same form as L;, but an additional

term is introduced in each case in order to correct for the correlation

between Us and (ui “eerly ). In all cases the crude instrumental

1! T

variables estimator introduced in Chapter 1 can be used to provide

consistent initial values for 6.
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2.4 Estimation with Arbitrary Intertemporal Covariance

We can define the QML estimator of § that treats Q* as an
arbitrary symmetric positive definite matrix. Since (2.3.26) has

already been concentrated with respect to U, w__, w the relevant

0o’ Yo17" Yo’

likelihood here can be obtained simply by concentrating (2.3.26) further
with respect to Q, where La is now as given in (2.3.6). The maximum

likelihood estimation of Q is

N
A(S) () a,anar(s)
=1 *t

[
'S
E
90>
il
Z |
c
a
i
Z-

so that we obtain a likelihood function which only depends on § (cf.

Bhargava and Sargan (1983)) given by

_ X
2

N

(2.4.2) Ld(d) = 5

log det(gégﬁ + log det(B+WB+') - g—log det (w)
Since the covariance matrix is unrestricted, this is an application

of the limited information (quasi) maximum likelihood (LIML) method

to a subset of equations, and its asymptotic properties are well known
in the literature.2 In particular, it is asymptotically equivalent to
the three stage least squares (3SLS) estimator applied to that subset
of equations (e.g. see Sargan (1964)). The advantage of the latter

is that, since the restrictions in A(S) are linear, it is the solution
of a set of linear equations and therefore it can be calculated without
requiring iterative optimization technigques. However, we are still
interested in the QML estimator as it will allow us to discuss (quasi)

likelihood ratio tests of covariance restrictions at a later stage and,

more generally, its relation to the QML procedures discussed in Section 2.3.
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In any event, the 3SLS estimator of § minimises

(2.4.3) [vec(W)]' (z*(z*'z%)"L 2% @ 971) vec(u)

where Q is a consistent estimator of 9, e.g. Q@ = (1/N)A(S

~

Noganar(

CIV)(zi=l i’i GCIV)

and SCIV is the crude instrumental variables estimator of § introduced
in Section 1.3. Again, using vec(U) = y—X+6, the explicit solution
of (2.4.3) is given by
N - p +, - +1 e

(2.4.4) &, = [x" (2*(z%12%) Lowign ™ yxT17L ¢ (zx 2z 2 @ 0y

However, (2.4.4) is not an useful expression from a computational
point of view. The reason is that since N is large and T is small,
it is convenient to compute the second order moments data matrix

N
(l/N)Zi=l(didi) just once and construct from it the relevant statistics,

thus avoiding the storage of arrays of dimension N, or having to perform

successive summations. of N products. First, notice that
g +

X = X 8d
Z (x, @ a)

+ +
where X, is the N x (l+n+m) matrix X =

t £ (yt—l Xt Z) and dt is a T-vector

with one in the th position and zero elsewhere. Equally

T
y = zl(yt 2 d)

so that




- 54 -

1 +

loxv g o7l xt =

<t (2% (zx 1z

T, -, T
[} & @anl(zs@zzn tzx a0 Hit & ea)l
t t = s s
=1 s=1
Letting ot = {wts}, and since d! o7t a, = 6% we have
T T T T
X - R S N § - o+t
(2.4.5) S, o= () ] wxl xHT ] Tkl vy,
t=1s=1 £=1 s=1
where
(2.4.6) x = [y, . x_zl
t t-1 "t
and
o = g sy "L (o =
v, = % (Zx'z%) ~(Z yt) (t=0,1,...,T)

Moreover using the fact that dé ds = Q0 for t # s and dé dt = 1, the

corresponding expression for the crude instrumental variables

estimator is

~

E A SR N § o+
(2.4.7) & = ( X X)) Xy
cIv P et Tt

Finally, we make some remarks on identification issues. The basic

identification condition is that lim (L/N) (Z*'2*) should be positive

N->c0
definite; if further T > 1 and at least some element of the vector “O

is non-zero, the model with unrestricted covariance matrix ig identified.

Alternatively, if we are not willing to state conditions in terms of
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U the requirements are that at least some element of 8 is non-zero

o’
and T > 2. Therefore, a necessary condition for identification is
that n > 1. Turning to restricted models, if T=1, Q* has three
different elements so that a random effects specification with white

noise time-varying errors of type b is just identified. Identification

of ARMA(1,l) models requires that T > 3.

2.5 Experimental Evidence

Given the existence in the literature of a certain amount of
conflicting Monte-Carlo results on the performance of various maximum-
likelihood methods for dynamic random effects models, (cf. Nerlove (1L971),
Maddala (1971), Bhargava and Sargan (1983)) it was decided to carry
out some simulation experiments in order to investigate the practical
performance of the methods introduced in this Chapter. We are
particularly interested in the consequences of incorrectly specifying

Y, as exogenous when the errors are serially correlated. We also wish

0

to obtain some insight into how the methods that do not constrain Q*
compare to those in which the covariance restrictions are enforced,

and how models b and ¢ compare in turn. Finally, it is important to
inspect the ability of these procedures in distinguishing among different
serial correlation schemes and between dynamics (lagged endogenous

variables) and serial correlation.

Five different sets of samples were generated from models of the

form
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= + + . Z, . X + u,
Yig = L4 O Y5 ) 15 2y 4+ .35 X0t Uy
Wie T V5

= + €, 4+ A€
Vie 0 V- T Sie T Sie-n

(L=1,...,100 ; t =1,...,20)

2
where ni ~ NID(O, .16), Eit ~ NID(O, .25) (i.e. p~ = .64), and
Yio = Vio T ©
The eXogenous variables were generated in a similar way as in

previous studies

where Py ~ NID(O,1) and ri v NID(O,1). The first ten cross-sections
were discarded so that Yo is an endogenous variable in the system
and the same process for vit has been holding in the past.

We are thus left with T = 9 and N = 100.

The five sets of data correspond to the following values of

o, ¢ and A:



Data l : o= .5, ¢ =
Data 2 : o = .5, ¢ =
Data 3 : o = .5, ¢ =
Data 4 : o = O, ¢ =
Data 5 : o = .5, ¢ =

.35,

.35,

.35,

O,
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A=.5
A =0
A= .35
A =0
A =0
TABLE 1

(ARMA errors)

(autoregressive errors)

(moving average errors)

(a static case with AR(1l) errors)

(a dynamic case without serial

correlation)

Degcription of Models to be Simulated

2 2
Q=0V+o_ 11’
n
 unre- ARMA
stricted (1L,1) AR(L) MA (1) White Noise
Yo ©%C9- url al a2 a3 a4
(w5,70)
Yo1
unre- cl c2 c3 -
stricted un2
w
endog ol
restric~ bl b2 b3 b4
ted i

Our aim was to obtain Monte Carlo estimates of the biases for the

parameters of the thirteen models given in Table 1 for each of the five

gsets of data. However, given the size of the problem (several of the

likelihood functions to be maximised are

highly nonlinear), the

possibility of finding more efficient Monte Carlo estimates than the

sample-mean method wag investigated.
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If the bias is denoted by 6=E(§ - §), its standard Monte~Carlo

estimate based on H replications is given by 6 = (1/H) Z?=1(6j_6)' where

A
~

§, is the estimate of § obtained in the jth replication, and O is

~

unbiased for 0. 6j depends on a particular set of (0,1) normal
variates obtained from some pseudo-random numbers generator, i.e.
§,.= 6(uj). In the antithetic variate technique a second unbiased

J-
estimator 0* is sought, having negative correlation with 6. Then

~

~

6 = %(0 + 6*%) will also be an unbiased estimator of 6 with variance
Var(8) = % Var(é) + Y4 Var(6*) + % Cov(é,@*). If 8* is a sample
mean‘thatrhas been.constructed from a further set of random
replications, then Cov(é,e*)‘z 0. However, sifice uj are standaxd

normal variates so are —uj and, clearxly, an estimator 6* of the

form

will also be an unbiased estimator of 6. Now since uj and —uj are
perfectly negatively correlated, it can be the case that a negative
covariance is induced between 06 and 6%, so that ) would have a smallex

variance than the sample mean estimator based on an equal number of

replications (cf. Hammersley and Handscomb (1964) and Hendry (1984)).

In previous studies it has been noticed the difficulty of finding
antithetic transformations which reduce the variance of Monte Carlo
estimators for dynamic models (cf. Hendry and Harrison (1974)).
However, the simultaneous equationsanalogue provides a different
perspective in the case of models from panel data and in this context

it seemed worth to re-use the random numbers in pairs of opposite sign.
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The situation can be illustrated by mean of a simple example.
If we take T= 1, n= 1 and m = 0, our general model becomes
Yio T Vo *io T M1 *Fi1 T

i0 i0

0 V. (i=1,...,N)

+
jo ¥ Bx; tu

Yi1 il

This model is exactly identified so that the QML estimator of
§' = (0 B) that leaves Q* unrestricted is identical to the 2SLS
estimator, and it equals

5 = (x'w)t X'y,

with X = (xO xl) and W = (yo Xl)' After some manipulation we have

]
E'uo + c

whexre £ is the vector of least squares residuals from regressing

. - 3 . = gte . . .
XO and xl, i.e. & xO bOl Xl with bOl xoxl/xlxl, which remains

constant over the replications, and so is ¢, that is given by ¢ = &£'Xu.

Now, notice that a trial of o-0 based on (—uo, —ul) yields

E'ul/(g'uo—c), and although (€'uo/€'ul) is invariant to this
transformation, a negative covariance is still generated between these

antithetic pairs.

Thus the results reported in Table 2 were obtained from 20

replications corregponding to 1O antithetic pairs (u ), i.e.

it” T Yt

every trial was performed twice, and the resulting estimates were
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averaged. In all cases, the non~derivatdve Gill-Murray-Pitfield algorithm
EO4JBF implemented in the Nag Library, Mark IX was used to optimise

the log~likelihood functions.

FPirst considering the consequences of misspecifying the initial
conditions, i.e. wrongly assuming that wOl Sue S Won T O, our results
for the set of samples with white noise time-varying errors (data 5)
and models unl and a4 fairly generally agree with those reported by
Bhargava and Sargan (1983). Indeed, these biases are rather small with
the exceptions perhaps of the intercept; for example, the bias of o
is .0396 for model unl and .0263 for model a4. However, as one would
expect, the consequences of treating yO as exogenous are rather more
serious when the v, are also serially correlated. To take an extreme
case, for the ARMA(l,1l) samples (data 1) and model a4 the biases of
0 and Ypare ten times larger than those obtained with the same model
for data 5, but even if the ARMA(l,l) structure ig properly specified

and model al is used, these biases still are between 5 and 6 times

bigger.

The cases where the endogeneity of Yo is properly specified (both

for models b and c) and no misspecifications are present in v perform

y
extremely well and the biases are almost negligible. Turning to the
comparison between model un2 and models b and c, the Monte Carlo finite
sample standard deviation of the estimates (which ig just Y20 times the
standard errors of bias) are slightly lower for models b and c in the

case of o and YO' and roughly the same for Yy and 8; on the other hand,

it does not appear to be any noticeable difference, both in terms of
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bias and standard deviation, between medels b and c¢. These results
suggest that in the QML framework un2 is a highly convenient method
of estimation at the early stages of model building and that if we are
interested in the structure of Q%*,models ¢, that leave wol""'wOT

unrestricted, can achieve similar results to models b at a lower

computational cost.

Data 4 (with a=0 and ¢=.35) were generated to check the ability
of our gimulated model to distinguish systematic dynamics from serial
correlation, and at least in this case, the results turned out to be
extremely satisfactory. No doubt, this ability will depend on the
characteristics of the process generating the time-varying excgenous

variables.

Finally, we remark that models bl and cl (those allowing for
ARMA(l,1l) errors) are able to identify the correct serial correlation

scheme in every case and therefore they are useful in order to choose

between purely autoregressive and purely moving average schemes.

2.6 A Model with Arbitrary Heteroscedasticity over Time

If the presence of heteroscedasticity over time in the random
effects model is suspected, equation (2.2.3) can be extended on the

lines suggested in Section 1.5 by assuming:

g, V¥

(2.6.1) vy = 0y Vi

(2.6.2) v +e* 4+ (i=1l,...,N; t=1,...,T)

— * *
fe = 9% (t-1) e 75 (-1
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TABLE 2

a,
Biases in the Estimates

yo exogenous
unl al a2 a3 ad
~.4892 o| --4800  -.5020 -.6047  -.8004
(.0507)7| (.0446) (.0361) (.0371) (.0271)
—-.2767 -.2710 -.2693 -.3163 -.4809
(.0471) (.0408) (.0402) (.0373) (.0313)
Yo -.2325 | -.2186 -.2008  ~.2033 -.4232
(.0458) | (.0390) (.0385) (.0375) (.0304)
-.1406 -.1382 ~.1311 -.1746 ~-.3278
(.0325) | (.0301) (.0305) (.0288) (.0214)
-,1180 | -.1131 -.1083 ~.1096 -.0804
(.0382) | (.0322) (.0313) (.0315) (.0296)
-.0425 | -.0405 -.0429 -.0528 -.0842
(.0091) (.0096) (.0090) (.0087) (.0069)
-.0262 -.0254 -.0252 -.0303 -.0494
(.0094) | (.0099) (.0098) (.0094) (.0082)
Y, ~.0223 -.0206 -.0186 ~-.0190 -.0434
(.0094) | (.0099) (.0100) (.0099) (.0084)
-.0127 -.0125 -.,0l19 -.0165 ~.0346
(.0095) (.0103) (.0103) (.0099) (.0086)
-.0119 -.0112 ~.0109 -.011l1 -.0080
(.0093) | (.0101) (.0l00) (.0100) (.0102)
-.0032 -.0023 -.0061 -.0lo6 -.0730
(.0043) (.0042) (.0045) (.0048) (.0071)
-.0143 -.0134 -.0132 -.0181 ~-. 0400
(.0042) | (.0041) (.0041) (.0044) (.0051)
B -.0133 -.0114 -.0095 -.0102 -.0351
(.0044) | (.0043) (.0044) (.0044) (.0053)
-.0097 -.0092 ~.0089 -.0142 -.0398
(.0045) (.0043) (.0042) (.0044) (.0049)
-.,0104 -.0098 -.0090 ~.0092 -.0064
(.0040) | (.0041) (.0041) (.0041) (.0042)
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TABLE 2 continued

ou
yo exogenous
unl al a2 a3 ad
.1319 .1283 L1370 .1676 .2677
(.0110)| (.0095) (.0075) (.0079) (.0068)
.0846 .0820 .0814 .0976 .1580
(.0106)| (.0088) (.0087) (.0080) (.0072)
.0722 .0667 .0605 L0617 .1390
(.0102) (.0082) (.0080) (.0077) (.0069)
.0861 .0840 .0800 .1100 .2263
(.0123)| (.0111) (.01l1ll) (.0105) (.0064)
.0396 .0376 .0358 .0362 .0263
(.0081)| (.0066) (.0063) (.0064) (.0057)
~.3397 -.5633 ~.3509 -.5044
(.0335) (.0207) (.0294) (.0134)
-.1858 -.1874 -.1958 -.3091
(.0295) (.0296) (.0286) (.0218)
-.1l600 -.1872 -.1558 -.3056
(.0302) (.0283) (.0296) (.0213)
-.0761 -.0520 -.0574 -.1954
(.0253) (.0245) (.0242) (.0159)
-.0596 -.0702 -.0707 -.0532
(.0239) (.0260) (.0261) (.0246)
-.1123 .2491
(.0105) (.0056)
~-.1054 -.0725
(.0203) (.0068)
-.0809 d
(.0191)
.0159 -.0859
(.0205) (.0114)
c -.0317
(.0060)
.0079 .1460
(.0072) (.0052)
.0324 d
(.0163)
L0275 -.0423
(.0159) (.0048)
~-.1021 a
(.0221)
c -.0332
(.0065)
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yo endogenous
: ‘ ) .
Yoo and wol.unrestr. * fully restricted
un? cl c2 c3 bl b2 b3 b4
Dy .0223 .0324 =-.1246 -.3374 .0308 ~-.1160 -.3657 -.7170
(.0695)} (.0627) (.0425) (.0395)1(.0619) (.0408) (.0377) (.0279)
n, .0196 L0244 L0235 —,0988 L0164 L0l52  -,1308 -.3802
(.0527)| (.0454) (.0455) (.0374)[(.0458) (.0458) (.0370) (.0296)
Yo | D3 .0193 L0255 .0491 .0075 .0178 .0535 .0016 =~.3221
(.0510){ (.0434) (.0418) (.0378)|(.0433) (.0416) (.0379) (.0287)
D, .0150 .0180 .0148 -.0464 L0149 .0125  -.0579 -.3098
(.0378)} (.0356) (.0332) (.0331)](.0352) (.0323) (.0330) (.0217)
Dg . 0068 .0089 L0078 0068 | .0045 ~.0014 -.0026 .0012
(.0390)} (.0321) (.0309) (.0308) [(.0330) (.0310) (.0310) (.0284)
Dy .0011 .0028 -.0101 ~.0287 .0026 -.0096 -.0313 ~-.0751
(.0114)! (.0123) (.0109) (.0099) |(.0123) (.01l09) (.0096) (.0073)
D, .0023 .0025 .0025 -.0090 L0017 .0017 -.0122 -.0389
“ ](.0109)} (.0115) (.0115) (.01l06) |(.0115) (.0115) (.0103) (.0087)
Yy | D3 .0023 .0028 .0049 .0012 .0019 .0052 .0005 ~.0329
(.0108)} (.0113) (.0114) (.0110) {(.0113) (.0ll1l4) (.0l1l0) (.0089)
D, .0019 .0019 .0016 ~.0040 L0017 .00l3 -.0050 -.0327
(.0104)] (.0112) (.01lll) (.0l08) {(.0112) (.0lll) (.01l08) (.0087)
D .0012 .0012 .0012 .0012 .0005 .0001 . 0000 .0004
(.0102)¢ (.0107) (.0108) (.0108) |(.0108) (.01l07) (.0l07) (.0106)
Dy -.0004 | -.0004 -.0000 =-.0037 |-.0004 -.0002 -.0042 -.0649
(.0049)] (.0047) (.0046) (.0048) |(.0047) (.0047) (.0049) (.0069)
D, .0005 .0008 .0008 ~-.0050 .0004 .0004 -.0067 -.0310
(.0042)] (.0041) (.0041) (.0043) |(.0041) (.0041) (.0044) (.0050)
B Dy . 0004 .0009 .0018 .0003 .0005 .0019 ~.0000 ~-.0262
(.0044)| (.0042) (.0044) (.0044) {(.0042) (.0044) (.0044) (.0052)
D, .0002 .0005 .0004 -.0033 .0003 .0004 -.0041 =-.0376
(.0046)] (.0043) (.0044) (.0044) {{.0043) (.0044) (.0044) (.0049)
D . 0002 .0005 . 0006 .0005 }-.0000 -.0003 ~.,0004 . 0000
(.0039){ (.0041) (.0041) (.0041) |(.0040) (.0041) (.0041l) (.0043)
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Y endogenous
wOO and wol unrestr. Q* fully restricted
un2 cl c2 c3 bl b2 b3 b4
Dl -.0050] -.0079 .0329 .0919 | -.0074 L0309 .0997 .2395
(.0144) (.0129) (.0083) (.0073)] (.0126) (.0076) (.0069) (.0059)
D2 -.0051| ~-.0069 ~.0066 .0301 [ -.0044 ~.0041 .0399 L1244
(.0109) (.0090) (.0091) (.0069)| (.0091) (.0092) (.0069) (.0057)
o N, -.0050 | -.0073 ~-.01412 -.0020 |-.0049 =.0154 -.0002 . 1054
(.0104)] (.0085) (.0081l) (.0068)| (.0084) (.0079) (.0069) (.0054)
D, -.0079 | -.0098 =-.0081 .0287 | -.0080 -.0069 .03587 L2139
(.0140) (.0128) (.0l1l1l5) (.011l5)| (.0126) (.0110) (.01l1l7) (.0064)
D5 -.0015| -.0026 ~.0023 -.0020 |-.0010 .0008 .001l1l ~-.0002
(.0077) (.0059) (.0056) (.0056)! (.0062) (.0056) (.0056) (.0050)
Dl .0503 ~.4331 -.1040 L0727 -.3095 -.1565 -.4953
(.0540) (.0334) (.0357)| (.0498) (.0260) (.0296) (.0132)
D2 L0567 L0612 .0129 L0424 L0455 ~,0377 ~.2478
(.0365) (.0373) (.0321)] (.0342) (.0349) (.0289) (.0211)
o Dy L0563 L0175 L0453 .0457 .0285 .0337 -.2391
(.0363) (.0332) (.0328)] (.0338) (.0314) (.0298) (.0202)
D4 L0496 .0473 .0693 .0387 .0399 .0491 -.1859
(.0311) (.0283) (.0299)| (.0291) (.0267) (.0270) (.0162)
D5 ~-.0284 L0425 .0420 | -.0144 .0241 .0235 .0253
(.0478) (.0275) (.0274)} (.0430) (.0272) (.0271) (.0253)
Dl .0204 .3209 .0089 .2935
(.0155) (.0075) (.0161) (.0070)
D2 .0138 .0039 .0134 .0036
(.0176) (.0100) (.0174) (.0102)
¢ | Dy .0345 d .0218 d
(.0210) (.0233)
D, L0120 .0051 .0216 .0109
(.0145) (.0128) (.0160) (.0133)
D5 c -.0040 c -.0037
(.0065) (.0066)
Dy -.0103 L1724 .0061 L1722
(.0069) (.0052){ (.0062) (.0050)
D, -.0093 d -.0097 d
(.0117) (.0l08
A D3 ~.0306 ~.0057 |-.0189 -.0046
(.0155) (.0054)] (.0172) (.0050)
D, -.0041 d-  |-.0085 d
(.0174) (.0190)
D5 c -.0048 c ~.0046
{.0064) {.0065)
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NOTES TO TABLE 2

N = 100, T =9, 20 replications (10 pairs of antithetic variates).

D, = Data i.
1

The ARMA(1l,1l) procegss degenerates into a white noise for any

¢ = -A. Therefore, if the process generating Vie is white noise

(as in D ¢ and )\ are not identified for models al, bl and cl. For

5)

our 20 replications the results turned out to be the following

Model al Model bl Model cl

Converged to ¢$=A=0 11 13 16

Converged to ¢=1, A=-1 3 3 3
Converged to ¢=-1, A=l 1 0 1

Converged to other
antithetic pairs 5 4 o]

When the true vit's are autoregressive (moving average) and the
estimated model only allows for a moving average (autoregressive)
scheme, the MA (AR) coefficient picks up the effect of the serial

correlation, so that it cannot be regarded as an estimate of its

(zero) true value.

Standard errors of bias are in parentheses.



- 67 -

with € ¢ v oiid (0,1). This reduces to the former case if o, =0 for
all t and we noted that with this formulation the serial coxrrelation

pattern remains stationary. The covariance matrix of u; now becomes
2

(2.6.3) @ =8vs+o 11’
n

where S = diag{Ot}. Nevertheless in setting up the likelihood

function it is convenient to parameterise { as
1

(2.6.4) Q=0 (RTVR  + 11') =0

where R = dlag{pt} and o, = (cn/ct).

As a consequence of the nonstationarity of the variance, the
specification of models of type b is now more complicated. If, as in

(2.2.7), we take

T covarian E ar i
he covariances (uiO uit) e given by

(2.6.5) w., == + 0, ¢

t~1 (L40M) (6+N) 7 K B
ot 1-a t z G(—k) (OL (b) (t_l,..

(1-62) k=0

Thus the terms Wop would depend on the infinite series Oyt 0(_1),...

and cannot, in general, be estimated.
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This is not the case when V;t follows a pure moving average process

_ 2 2
since then we have wOl On/(l o) + ooclk and wot cn/(l o) for

t=2,...,T. In the general case, we can still assume that the infinite
(o)

k
summation z o} (v &) converges, and then treat it as a further

k=0 (7K
parameter to be estimated. However, it seems reasonable to concentrate
our attention to models of type c¢ in defining likelihood methods for

heteroscedastic models. Thus it is a matter of imposing the restrictions

derived from (2.6.4) in

(2.6.6) L =-1%0N logdet £ - % tr(Q Tu'y) + g-log det (8w -
g-log det (W)

(2.6.6) can be concentrated with respect to Oi yielding

(2.6.7) Le =- L% N log det © - % NT log si + % N log det(B+WB+') -
= log det (W)

where the QML estimator of Gi is

The determinant and the inverse of @ are given by

T
(2.6.9) det(®) ={ Tp
t=1

%) det(v) [1 + "(RV 7 R)y]

t
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..l . _l
2.6.10) atarvig. B R 11'RV R)

1 + 1" (RV—lR)1

Le can be maximised numerically, as a function of §, ¢, A,

PyrecrOp with the restrictions that [¢l < 1 and [KI < 1.
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NOTES
1 We make use of the following formulae:
det (0%) = (-0 . 9 w. ) det(R) = —= det (9
00 0Ol 10 wOO
and
-1 11 1 10 o1
Q = - oo ¥ W
w
. 11
the latter being solved for Q.
2 Remark that since an alternative 'structural' equation for Yo is

not available, LIML and FIML methods are equivalent here. The
use of the term 'limited information' in this context simply
reflects the technical fact that the likelihood function has been

concentrated with respect to the coefficientg in the equation for

Yior
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APPENDIX 2.A

The Determinant and the Inverse of the Covariance

Matrix for the Stationary ARMA(Ll,l) Process

The process for vit is given by

= € + A

it T Vien T fae P Mieeny (B

(2.A.1) v
with

6] < L, A # - ¢ and e, v iid (o, o2
Now following Tiao and Ali (1971) we re-write (2.A.1) as:
(2.2.2)  B($) v, = B(-A) £, +Ed,

where B(0) is an already familiar T x T matrix function such that

b,.(0) = 1 for i=j,

-0 for i=j+1,

O otherwise.

il

Eil""'aiT)' dl is the T-vector

Also, vi = (vil,...,viT), el = (

]
i
T = €
dl (L 0,...,0), and gi ¢ Vio T A io°
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Furthermore, note that

1 (@] PP (o]
0 .. o
_ 2
B 1(o) = 0 0 ... o0
rel o me2 ;

and that detB(8) det B“l(e) = 1.

Since we have assumed stationarity, Ei is distributed independently of
£ with E(Ei) = 0 and

, 2
(2.8.3) E(£2) = o2 O _ 2

, say.
i l—¢2

Now the covariance of (2.A.2) is

] 1 — 2 - [ 1
B(d) E(vivi) B'(¢) = 0" (B(=A) B'(-A) + K dldl)

Hence
= l_ v - -1 _ Ve ' 1
A = E(vivi) B (¢) [B(-A) B'(-A) + K dldl] B' “(¢)
oxr
-1 -1
(2.A.4) VvV =B “(¢) B(-A) (I +« qgg') B'(=-\) B' ()
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-1
where ¢ holds the first column of B ~(-A):

Therefore
(2.2.5) v 5 =810 B (T-paa’) BTO) B()
with
K

P T+ xqq
and also

det (V) = det(I + « gq') =1 + k g'q
but since q'q = 1 + PR e o D 1-K2Z

1-A

we then have

(60) 2 { 1-2°T
(1-$2) l 1-22

(2.A.6) det(v) = 1 +
(2.A.5) and (2.A.6) are computationally convenient expressions for the

inverse and the determinant of V, which can be used in the evaluation of

the relevant likelihood functions. Explicit expressions of the elements

of V_l can be found in Tiao and Ali (1971).
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CHAPTER 3

THE ASYMPTOTIC PROPERTIES OF QML ESTIMATORS IN A

TRIANGULAR MODEL WITH COVARIANCE RESTRICTIONS

3.1 Introduction

We have seen that the structure of dynamic models from panel data
is that of a simultaneous equations system of (T+1l) equations where the
matrix of coefficients of the endogenous variables has a triangular
structure and the error covariance matrix is constrained. Generalising
the problem, this Chapter examines the asymptotic properties of quasi-
maximum likelihood estimators of triangular systems with general
restrictions in both the slope and the covariance coefficients. However,
we do not treat the case where there are restrictions relating the slope
coefficients to those in the covariance matrix, so that the results
presented below will primarily apply to random effects models with
unrestricted covariances between initial observations errors and the
remaining errors. In this context, it is natural to assume &ll pre-
determined variables to be exogenous and therefore standard central

limit theorems for independent observations can be applied.

Normality is not impoged but we agsume that the error vector is
generated by a distribution where the third order moments vanish and
the fourth order moments are finite. Indeed we are mainly concerned
with the role of non-normal kurtosis when estimating models with
covariance restrictions by quasi-maximum likelihood methods. This
rolé is more relevant, both for slope and covariance parameters

estimates, when covariance restrictions are enforced than when the
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covariance matrix is left unrestricted. Distributions with long tails
are common in practice due to the presence of extreme oObservations
in the sample, and they lead to large fourth moments relative to the

variances and covariances.

The structure of this Chapter ig as follows. Section 3.2 states
the assumptions concerning the model and the quasi-log-likelihood
function, and derives limiting matrices of second partial deviatives
and products of first partials of the log-likelihood function when the
covariance matrix is not restricted and also. when restrictions are
present. These results are extensively used below in deriving useful
expressions for the asymptotic variance matrix of the QML estimates when
normality holds (Section 3.3) and when the errors are possibly non-normal
(Section 3.4). It turns out that in the latter case imposing the
covariance restrictions may lead to an efficiency loss relative to the
estimators that leave the covariance matrix unrestricted. We give an
explicit condition on the fourth order moments to characterige this
situation. Finally, Section 3.5 discusses a simple two equation model

in order to illustrate our general results.

3.2 The Model and the Limiting Distribution of the QML Estimator

Y is a n x 1 vector of dependent variables, and zZ. isakx1l
vector of nonstochastic exogenous variables. We assume that the y, are

explained by

(=]

(3.2.1)  B(8) v, + c(5)z:,L = A(é)xi = (i=1,...,N)
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where the elements of the n x (n+k) coefficient matrix A(0) =(B(8): C(8))
are continuous functions of a p x 1 vector of parameters 0 and
xi = (yi zi). The Ei are n x 1 vectors of independent and identically

distributed random errors with finite moments up to the fourth order,

such that

(3.2.2)  E(u.4') = Q(T) .
1 1

The covariance matrix Q(T) is assumed to be non-singular and its elements

are continuous functions of a g x 1 vector of parameters T.

Before proceeding further, some conventions and notation must be
introduced. For any nxn symmetric matrix A = {aij}, let v(A) be the
% n(n+l) vector of distinct elements of A

via)l' =

ceer@ ).

.., a a
" “nl’ "n2' nn

(8)7r @500 3550 8504 @350 A4y

v(A) and vec{(A) can be connected defining a O-1 matrix D, say, of order
n2 x 5n(n+l) that maps v(A) into vec(ad), i.e. D v{(A) = vec(A) and

D = 3 vec(a)/3[v(A)]'. Furthermore, since (D'D) is not singular, we
also have v (A) = (D'D)_l D' vec(Ad) = D+ vec (A) .

Now let A3 be a n x % n({ntl) matrix of third order moments

ik
A3 = E{ﬁi[v(aiﬁi)]'}, and let A4 be a % n(n+l) x % n(nt+l) matrix of
fourth order moments u, . defined as A, = E{v(u,u")[v(@.u")]'}. Under
hik% 4 i'i ii

normality Uhjk =0 (h,j,k=1,...,n) and



-7 =

2. =0 .0+t o, 0 W, W, j =1,...,0)
(3.2.3) uhjkz whj wkz whk cuj'Q + whl wjk (h,3,k,% 1, (1)

where ajk is the (j,k) th element of Q(t). Here we assume that

A, = 0, as in the normal case but A, is left unrestricted so that its

3 4

elements do not necessarily satisfy (3.2.3). It is worth pointing out
that in the present context assuming that the third order moments are

zero ig not too restrictive. In particular, as the proofs below

will make it clear, the results in this Chapter are unaltered if we assume
A, to be unrestricted and the exogenous variables to be in mean

3

deviation form, i.e. 1li (1/N) AN Z, = 0.
mN+® i=l i

We assume that B(6) is a lower triangular and nonsingular nxn matrix
and has the usual standarising restrictions (i.e. the diagonal elements

are equal to ~1), and we also assume that the kxk matrix

exists and is non-singular.

As a simplified notation we shall use B(f) = B, ¢(d) = C, A(f) = A and
Q(T) = R when referring to these matrices evaluated at the true values

of 6 and 1. The model is identified if
- -1
-B T C=-B (8% C(0%)

and

= -1

B = 57l e%) a(or) BT

1

0%)
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for some 6* and T* in the parameter space, implies that 6% = 8 and

T* = 1. However, since we are also interested in considering the quasi-
maximum likelihood estimator of © without imposing the restrictions in
the covariance matrix, we assume that the model is identified by mean of

the prior vrestrictions implicit in the matrix A(6) alone.

Let Lu be the gaussian log-likelihood function that leaves

unrestricted, L = ZF_ L . with
u i=1l Tu,i

-1
= - L — Tt
(3.2.4) Lu,i(e'w) ko 5 log det Q 5 XiA (8) @ A(8) xi

and let Lr be of the same form as Lu but in this case some set of

constraints in @ are enforced so that
(3.2.5) Lr = Lr(G,T) = Lu(e,w(r))
where w(t) = v[Q(t)], and accordingly we set w = v(Q).

The first order conditions for the estimators of 6 and T that maximise

Lr are given by

(3.2.6) R'(6) (2 1(r) @ X'X) vec A(8) = O

(3.2.7)  a'(t) DO L) @ 0N (1)) vec[a(8) X'X A'(8) - Q(1)] = O

_ 9 vec A(9) _ o w(T) tv _ TN ,
where R(0) = Y- E e G(t) = v and X'X = Zi=l X,X

~

(see Appendix 3.A). Let er and T be the QML estimators. These solve



- 79 -

(3.2.6) and (3.2.7) so that the two sets of equations are simultaneously
reconciled. Moreover, let Gu be the QML estimate of 8 that leaves

2 unrestricted, and let w = V() be the corresponding unrestricted

estimate of w.

If the restrictions in A are linear, so that vec(A) = R - r,
and R and r are, respectively, a matrix and a vector of known constants,
we may re-write (3.2.6) to have

(3.2.8) r'(@ () & X'x) R 5r vt e x'x)r

~

Therefore, the QML estimator of 6, er, is the G.1..8. estimator that
uses (1) as the estimator of £. The basic discussion of GLS estimators
in triangular systems without covariance restrictions is due to Lahiri

and Schmidt (1978). In Chapter 5 we will consider estimators of the

form of (3.2.8) but computed in two stages as a typical GLS estimator.

The matrices ¢ , © , & and ©
i u u r r

Now we define the matrices

B 1 N 82Lu i 7 ®u,ll <I>u,12
(3.2.9) ¢ = plim |- E—Z 5 B’W' 7=
N->oo =
i=1 u u g | ®u,21 ®u,22
1 § 3Lu i aLu i i 1 N
(3.2.10) 0 = lim =) E AP 2. | =1imZ] o,
v N-»0 Ni=l ov wu 81‘bu wa N->oo Ni=l ui

r Ou,ll eu,12

u,21 1,22
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where @& = (8' w"),a p + kn(ntl) vector, and the partitions in @u and
@u correspond to that of @u' Similarly, we may define @r and @r in the

same way, but now Lu is replaced by Lr and ﬁu by the (p+q) vector

4 e L

@; = (6" T'). Model (3.2.1) can also be written in the form

it
)
*
N
+
v I
(=3

(3.2.11) «x, (i=1,...,N)
i

where P* and B are (n+k) x k and (ntk) x n matrices, respectively, given

by

it

p* = p B

R(A) and G = G(T) when referring to

Furthermore, for simplicity let R
the matrices of partial derivatives of the coefficients evaluated

at the true values. Then we have the following results

(3.2.12) © R @ T apru Pp¥)R + R' (3~ @ B 0 B")R,
u,ll

(3.2.13) @ =-r' (G e };)D

- - '12 ,

=1 =1
- 1 '

(3.2.14) ¢u,22 L DY (D ® Q T)D.
We also have
(3.2.15) o = & r

r,ll u,ll

(3.2.16) Qr,12 = Qu,lZ G ,
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- '
(3.2.17) ®r,22 G Qu,22 G.

With respect to the limiting matrices of products of first partial

derivatives we have

— -1
= - L] —
(3.2.18) 0, 45 = @ g3 * & (B m0wt) @ o0l 0 oy s

= it
(3.2.19) eu,lZ ®u,12 (A4 ww') Qu,22 '

(3.2.20) ©

il

e
0,22 = %y, 22 Bgee") 0y oo

Note that for :a triangular model 0 w = 0,2 so that (3.2.18)

u,12
and (3.2.19) can be simplified further. Nevertheless, a well known
result in matrix algebra is
(3.2.21) o * =207 (@ e mp"

e u,22
(cf. Richard (1975) and Magnus and Neudecker (1980)). It can also be

checked that if the uhjk%

are as in (3.2.3) then

b, =ww' + 20" (G @ D"

9] , and the formulae above clearly
u,22

il

so that under normality 4, - WG "

show that in this case Ou = @u. Moreover, since

(3.2.22) er,ll = eu,ll
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(3.2.23) Or,lZ = @u,lZ G

= '
(3.2.24) Or’22 G Ou,22 G

also Or = @r under normality.

The proofs of (3.2.12) to (3.2.20) and (3.2.22) to (3.2.24) are given

in Appendix 3.A.

Having assumed that our model is identified, by using the
arguments in Sargan (1975), it follows that the quasi-maximum likelihood
estimators of 6 and T obtained by maximising Lr(e,T) are consistent

even when the ﬁi are not normally distributed.

Now since (SLr/Bwr)Iwr = O by the definition of wr, an exact first

order Taylor series expansion of BLr/Bwr about ir yields

9L,
r,i

L o, [P

T
2 r,i
TN N

(3.2.25) - /ﬁk@r—@r) =

Z
= [
I D~

i=1 i x

~

where w; lies between wr and @r.

Since aLr i/3¢r|$r are independently distributed random vectors with
r
zero mean and covariance matrices @r 7 given our asgsumptions,
r

standaxrd (Liapunov) central limit theorem (e.g. see Rao (1973), p.l147)

ensures that
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A

Finally, if we note that since wr is consistent for ﬁr g0 ig w;
, N 2 . _ .
and thus pllmNém{ (1/N) Zi=l(a Lr’i/awrawr)lw;} = @ , using the Cramer
linear transformation theorem we have
P ~ - da
(3.2.27) N(ll)r - wr> + N{(O, Wr)
with
(3.2.28) wW_ = o 0 o .

A

Clearly, the same is true for wu = (Gu w)"' ag it can be regarded as

a specialisation of the previous result to w(T) = T. So
2.2 /N 73
(3.2.29) N(l])u - wu) -+ N(O, Wu)
with
(3.2.30) W_=20 ~ 0
u

3.3 The Asymptotic Variance Matrix of the QML Estimators when the

Errors are Normal

Undexr normality, in view of the equivalence between @r and Or (they

are, respectively, the hessian and outer product forms for the information

~ ~1
matrix), the asymptotic variance matrix (AVM) of wr reduces to Wr = @r .

In what follows we report some results concerning the partitions of

®_l and ®—l. Letting
u r
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)
S {@;1 o1 |
¢;l = , @;l =
¢2l ®22 t ®21 ®22
u u ¥ r
we then have
(3.3.1) @il = R @Y e prwerr] Y,
12 11 -1
(3.3.2) o " =-29, (®u,12 u,22) '
22 -1 -1 11 -1
(3.3.3) @ 7 = 0 oy F (0 00 Oy,01) % y,12 %422
where
(3.3.4) o1 o - - 201 23 B"YR
T u,22 u,21
_ + = ==1v. 3 vec B(O)
=-2D(I®QB ) NG Ié)
and @;122 is given in (3.2.21). (3.3.2) and (3.3.3) are direct applic-
14

ation of partitioned inverse formulae. The proofs of (3.3.1) and (3.3.4)

are given in Appendix 3.A.

Turning to the restricted case, we state the results concerning
the inverse of @r in the form of a general lemma on partitioned inverses

as it will prove useful in a different context below.
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Lemma

Let Au be a nonsingular matrix whose inverse is given by

-1 11 12
-1 Au,ll Au,l2 Au Au
u 21 22
Bu,21 By, 22 By By
where Au,ll and Au,22 are, respectively, p x p and s x s nonsingular

symmetric submatrices, and let Ar be defined by

where H is a s X q matrix of rank g (so that g < s). Then, letting

r r
Ar= ’
AZl A22

fia r

we have
11 11 -1 22 § 22, -1 .-1 ~1
3.3. A = - A A A~ ! !

( 6) r Au u,ll u,12{ u Hl= (Au ) "H] 'H }Au,Zl Au,ll '

(3.3.7) A" = [g' (A
u
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Proof :

From the formulae for partitioned inverses we know

All - A—l -1 22 -1
u u,1ll u,1l "u,12 "u “u,21 "wu,il '
Al L -1 22 Aol

+ A A
r o Bran TR B2 Be Bro1 B

1 A = =
but since €, 11 Au,ll and Ar'12 Au,lZH we have
11 -1 -1 22, -1
A, = Au,ll * Au,ll Au,]_2(1-I A, H ) Au,21 Au,ll'

Now subtracting both expressions

11 11 -1 22 . 22 -1
BT -A T =A Ay pEATE —ATA o AT,

thus to complete the proof of (3.3.6) it only remains to prove (3.3.7).

(3.3.7) is equivalent to (AIZ:Z)_l = H'(Aiz)_lH, but using again

formulae for partitioned inverses

-1

u w,22 = Bu,21 Pu,11 Pu,12)®

I
o
By
=
i
)
b
p=d
>
IS
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Note that

22 vp22 =L o=l 22,
(3.3.8) Al uiH (Au ) TH] H (r PA) A, (r PA)
22 =1 .- 22, - 29 L
where P, = H[H'(Au ) lH] L H'(Au ) l. S0 that if Au? iz posgitive

definite (3.3.8) will be posgitive gsemi-definite.

Also note that an alternative expression for (Ail)”l is given by

(3.3.6a) (Ail)_l = (All)_l + A -l H(H' A H)_lH‘]A

u w128y 22 a, 22 u,21°

The proof of (3.3.6a) paralels that of (3.3.6), but now we use

11, -1 -1 - '
A7) T =R gy TR 10 By 00 Byoop TRy 11 T By, 128 H'RY 5o
and
11, -1 -1
A =
B, Busir T Bu,12 Byoo Buo1
subtracting both expressions the result follows.
In view of this Lemma, for restricted models we have
11 11 -1 22 22. -1 _.-1 -1
3.3. 0] = - _ "y '
(3.3.9) r Qu ®u,ll ©u,l2 {Qu cle (Qu ) el Ter) Qu,Zl Qu,l

(3.3.10) 922 = [g' (822 17t
r u

")~

1
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11
When normality holds, @u and ®il are the asymptotic variance

matrices of the QML estimators of 6 based on Lu and Lr’ respectively,

-1

~

6 and 6 . Since {®22 - G[G'(®22) -1
u X u u

Gl "G'} is positive semi-definite,

(3.3.9) implies that (@il - @il) is pogitive semi~-definite. So that

under normality 6r is efficient relative to éu' This result was

first shown by Rothenberg and Leenders (1964) who analised the cases
where  is either a diagonal matrix or is completely known, and it

was further investigated in Rothenberg (1973). Recently, a similar
result for simultaneous (non-triangular) models has been given an
instrumental variables interpretation, in the sense that when some

a priori information on Q is available, the ML estimator is able to form
better instruments for the endogenous variable (cf. Hausman, Newey and
Taylor (1983)). Nevertheless, for a triangular model the QML estimator
solves a set of "generalised" least squares equations and so, in this

~

case, the efficiency - gain of Gr with respect to 6u can be regarded as

~ ~

a direct consequence of the efficiency gain of Q(t) with respect to §

in estimating Q. In particular, if Q is completely known, then

®22

c Z 0 so that (3.3.9) becomes

11 .11 -1 22 -1 11 11 -1 -1
°y =% <1§u,ll ®u,12(®u )éu,Zl u,11 ®u (Qu —éu,ll) - Qu,ll

3.4 The Asymptotic Variance Matrix of the QML Estimators when the Exrors

are Possibly Non-normal

~

When the errors are not normal the AVM's of wu and wr are given by

the general formulae W = @nl © ®_l and W_ = ®—l 0 ®_l, respectively.
u u u u x r r «x

To be more specific, this will be the cage when the fourth order moments
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do not satisfy (3.2.3) as this is the only non-normal feature of the

actual distribution that is relevant in the present context.

Starting with (Q-unrestricted estimators, the partition of Wu is

given by

(.4 W= @il

(3.4.2) W, = @iz

(3.4.3) W, = 2% +[@, - B - @;f22] - ®§2 + (b, - A%

1

n K]
where A4 is the value of A 22"

. : n - -
under normality, i.e. A, = ww' + @u

4 4

Proofs:

To prove (3.4.1) write

!
11
eu,ll G)13.,12 ®u
1L - 12
W = (&7 : 077)
u,ll u u 0 0 <I)21
u,21 u,22 u
} @h™ o
S
u
(¢] 0]
3 3
o) @ll
u,l2 _ u
+ TR |
(g -0t (@ 51 © 2,00 o1
o o}
u,22 i u
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and simply noting that

d
. { u,l2
(3.4.4) (@it I et?) | =0,
u u o
L u,22
we have
W - Qll (®ll)—l cI>ll _ ®ll.
u,ll u u u u
Equally, to prove (3.4.2) we write
11 -1
IS
Wu 12 (éil ; ®i2)
14 l 0
[
®u,12 L
+ (A - ww') (0
o 4
u,22

11 1i1,-1 .12 _ 12
Wu,l2 a ¢u (®u ) CI)u - ®u
Finally, Wu,22 is given by
11, -1
(<I>u )
Wu 22 (Qil ; @32)
’ 0]
(
®u,12 __
- 1
+ ; (A4 ww )(<I>u
u,22

]

[
!@
: )
u,21 u,22 .l[ o
3
0]
°)
®12
. u
21 ° Qu,22) @22
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Using that
o
u,l2
(®21 . ®22) { -1,
u u )
l u,22
we have
21 11, -1 .12 -
= + - '
Wu,22 cI>u (®u ) ®u (A4 we )
. . -1 22 21 11.-1 .12
but in view that Qu,22 = @u @u (@u ) @u p Wu,22 equals
22 1 -
Wo20 = 8y = 0% 0t 1By — e

what proves (3.4.3).

~

(3.4.1) shows that the A.V.M. of Gu (i.e. the QML estimator of ©
based on £ unrestricted) equals @il independently of non-normality.
This is not the case, however, for the A.V.M. of & (i.e. the
unrestricted QML estimator of w): for a leptokurtic distribution

(i.e. A, - AT > 0, where the inequality sign is taken in the usual
4 q

4
matrix sense) the A.V.M. of & will be larger as compared with the
A.V.M. of & under normality, whereas for a platykurtic distribution
the conclusion will be the opposite. Nevertheless, the first case is
more likely to occur in practice than the latter, as the presence of

outliers among the sample observations tends to increase the value of

fourth order moments above their gaussian levels.



- 92 _—

Turning to QML estimators based on £ restricted, we have the

following results:

1 -1 22 nooo -1
po11 = % T 0y 1 Q12 (TR [0, A mA T (@R 0 oy 0

where P = G[G'(®22)—1G]—l G‘(®22)—l, and
o u u

.22 22, ,-22, -1 n 22, -1 22
(3.4.6) Wr,22 = <I>r + @r G (@u ) 4, A4) () o -,
or equivalently.

22 22, -1 22, -1 22
3 = !

(3.4.6a) Wr,22 @r G (@u ) Wu,22 (@u ) G @r .

The proofs of (3.4.5), (3.4.6) and (3.4.6a) are given in Appendix 3.B.

The expression for Wr,ll in (3.4.5) has important implications.
In the first place, notice that the A.V.M. of ér’ contrary to what
happens with éu’ does depend on non-normality. But more relevant, now
it is not generally guaranteed that the QML estimator of 6 that takes
into account the constraints in @ is efficient relative to the QML
estimator of 6 that leaves Q unrestricted. Actually, if the fourth
order moments of the distribution of the errors are large enough, it
can be the case that imposing the constraints in  implies an efficiency

loss with respect to eu. We state this result formally in the following

proposition.
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Proposition
5 i ffici lati t é i W < @ll if and only if
r is efficient relative to u’ il.e. e 11 a ! 3%
22 n ' _ -1 _
H[<I>u - (A4 A4)]H > 0, where H ®u,ll ®u,12 (T PQ). Therefore, a
sufficient condition is
-1 -1
e 521, 221, 521,
®22 = plim 1 u u u u > A An
- — v v v ' i -
W e | N{ BwdeT T BwdbT {3090 36 3w !wu_J 4
or equivalently, W < 2 @22.
" Tu,22 u

These are verifiable conditions which may help to choose between
estimatoxrs that take into account the restrictions in  and estimators

that do not, when using QML methods.

Moreover, remark that this Proposition holds true independently

on how far goes our knowledge about Q. In particular, when { is

completely known, P, vanishes, so that (3.4.5) becomes

o
o1 -1 22 n N | -1
(3.4.7) W4y =0T =0y 0y g0 AT, oy 0Ty T 0 1 Oy Y1

This simply shows the fact that an estimator of & that minimises det (U'U)

. . e =—1
is morxe robust to non-normality than one that minimises tr(Q "U'U).

The Proposition also questions, for example, well-known results
on the relative efficiency of quasi-FIML with respect to 3SLS when the
covariance matrix is diagonal. Since 38LS is asymptotically equivalent
to the QML estimator that leaves ) unrestricted, only when our condition

on the fourth order moments holds this will be true.
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We have not commented on results (3.3.10) and (3.4.6a). However,
they have important conseqguences on efficient estimation which will
become apparent in Chapter 5 when we discuss minimum distance

estimation of covariance parameters.

3.5 A Simple Two Eguation Model

It seemed appropriate to illustrate the previous general discussion
with a two equation model with a diagonal covariance matrix, since
many of the key results take a very simple form in this context.

The model is

1]
=
N
R

(3.5.1) Y14

(3.5.2) Yy = G ¥y, t B z2i+ Uy, (i=1,...,N)
- {_ -
u, ., W w
1 - —
We assume 3 * nvoililud. (0, ) , where = Iall al2
2i t 21 22
and for the true value 512 = 0. We further assume that the joint

distribution of the errors is symmetric and that the fourth order moments

exist. z! = (z,, z..) are nonstochastic and
i 1i 21
. N . . o .
= = m —_—
Lim o (1/N) zi=l z,z) =M { ij} is finite and non-singular.
u' = (ul u2) and §' = (0 B) are 2 x 1 vectors of coefficients, and
xi = (yli zZi) is the 2 x 1 vector of left hand side variables in the
second equation. Thus, in our general notation 6' = (§' u')
and ' = (W ).

11 Y22
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This model can be regarded as a dynamic specification from panel
data where two cross-sectiong are available and there is only one
(time-varying) exogenous variable observed over the two time periods;
theconstraintalz = 0 effectively implies the exogeneity of the
initial obsexvations. Alternatively, we may simply think of this
model as specifying the linear regression equation (3.5.2) where one
of the two regressors is stochastic and given by (3.5.1), though
uricorrelated with azi in virtue of the covariance restriction.

In the absence of the covariance congtraint, the model is
triangular and just-identified. If the covariance restriction holds,
the second equation is overidentified and the model becomes recursive.

The QML estimator of § that leaves Q unrestricted is given by the
simple instrumental variables estimator

N ' -1 '
(3.5.3) 8§ = (z'0) " z'y,

which also is the 2SLS and the 3SLS estimator, and where we have set
X = (yl zz), Z = (zl z2) and Yir Yor Zg and z, are N x 1 vectors of

observations.

The QML estimator that takes into account the covariance restriction

is just the ordinary least squares estimator

(3.5.4) gr = x'x)t X'y
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Moreover, the restricted and unrestricted QML estimators of ﬂ

coincide and correspond. to the 0.L.S. estimator
(3.5.5) u_=u_ = (z'z) " z'y
r u 1

so that the only nontrivial comparison is between Gu and Gr.

In the notation of the previous sections, P* takes the form

¢ 3
] Mo
P* = &ﬂl &ﬁ2+§ ,
1 o
o 1

R and G are 8 x 4 and 3 x 2 O-1 matrices, respectively, given by

. O
3 vec(A) © I I2
R = — = - | ..., PO
ael : r
dldi'
.0
-
dyds:
d W
G=§F—= (@] 0 ’
o 1)

where di = (1, O0) and dé = (0, 1). Furthermore, A, is the 3 x 3 matrix

4

-2
(
u. . -
1i o, | Ya,0 M3,1 H2,2
(3.5.6) A, =E - = (u).,u,,u,,,u,,)| =
4 L{ u Uy, 1ir Y1i%oir Yoy M3 1 Ha,2 Mp,3 | 7
-2 -
a5, ) H2,2 M1,3 Vo,4
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which under normality, given that w = 0, equals to

12

EXREY
| 3w, O Wy1%92
n — —
3.5. = )
(3.5.7) N, } o) W 8oy 0
- _2
| “11%2 © o2

Noting that since Q is diagonal, ﬁ_l = diag(l/aii), after some

manipulation we have

ERTTI
1
11 w22(H M) 0
(3.5.8) W =0 = |
| 11
al ]:2 A
where Il = . Thig gives the AVM of eu. Equivalently, if we
0 1
re-write (3.5.3) as /ﬁ]éu-g) = (Z'X/N)_l Z'az//ﬁ) the same result for

Gu follows by noting that plim(Z'X/N) = MI' and that, irrespective of

- d -
non-normality, Z'u2/V§'+ N(O, w M). Moreover, since

22

2—2 (
wll 0] (e} O— 6] 6]
0 and @u = 1/w o] 0
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from which we have

-2 }
2wll O o
22 I ~
(3.5.9) @u = 0 [wllw22+wll Avar(au)] 0
-2
0] 0 2w22

~

where Avar(uu) ig the top diagonal element of 522(H M H‘)—l, given by

®i2 is the A.V.M. of w

~

- 11 =2 \ -1 _ i3
Avar(uu) = w22(m /ul) with M {m™-}.

unrestricted under the normality assumption.

Turning to the caleculation of the AVM of Gr, W 17 we further

r,1l
. . -1 - . ,
require the matrices Qu,ll and P®. Qu,ll is given by
- ~1
w22F 0
o7t =
u,ll - -1
0 wllM
where

. X'X =
(3.5.10) F = plim (—ﬁ—ﬁ =TT MI" + w dar)

ll(dl 17

and given G and that @iz is a diagonal matrix, the projector P® is

simply

P = G[(;,((1)22)—1G]—l G,(®22)—1 _
u u



Hence \
1
o £ o
-1 o £t o
....P = .

20,11 %u,12 % B o o o
0 O 0

\ J

i £ 1 i @22 - (A —Am) But in view of
calculation o Wr,ll also requires @ by=By) -

(3.5.9), (3.5.6) and (3.5.7) this is given by

-2 - -1
- - 1122 72,2
y17Hy,0 H3,1 ’
22 n - - - mll
(3.5.11) <I>u - (A4—A4) = My W) 22(2+w11 :2_)_”2,2 i3
My
W, W, - 562 -
11%227%2,2 H1,3 227Y0,4
Finally, using (3.4.5) we obtain
- -1 -1 -1
] 1
wzz(n M ITY) 0 F dldl F o]
(3.5.12) w = - ¢
r,ll - -1
o wllM 0 0]
. 22 n
where ¢ is the (2,2)nd element of @u - (A4—A4), namely
o ool
(3.5.13) ¢ = wllw22(2 + mll :*2—“) - u2,2 .
M1
Equivalently, we can write (3.5.4) as /ﬁ(ﬁr—g) = (X'X/I\I)_l X'ﬁz//ﬁ.

Next we observe that X'u, = ZN %, u.. and also that the x.u are
2 i=1l i T2i i

2i

independently distributed observations withzero mean (crucially

depending on the restriction 512 = 0) and variance given by
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=2 Y — ¥ ¥ '
upy XXi) = Wy, Mz 2000+ u, o (dydy)

BE( 5

- ad -
Thus, X'uz//ﬁ'+ N0, w I, with

22

(3.5.14) TI' =TI MI" + ( /622)(d ary.

H2,2 1%
~ < d - -1 -1
Therefore, /ﬁ(dr - §) = N(o, m22 F ' " 7). It can be shown that
- -1 -1 - -l -1 ] .
w22 F 'p = wzz(H M I ¢ F dldl F as in (3.5.12). Remark

. and u.. are independent,

that under normality.or, more generally, if Gll 24

so that T' = F and also ¢ = w (1 + ® mll/ﬁi) which is

Ho,27 Y11%22 11922 11

clearly non-negative.

However, in general

c — N . -1 ' -1
(3.5.15) AVAR (8 ) = AVAR(S ) ¢ F dd; F
and therefore
AVAR(S ) < AVAR(S )
r u
if any only if ¢ > O ox
B (3,05 oo u
(3.5.16) —(:)—"—;—"——‘—< 2 +wll_—2~—-
11%22 My
given the fact that F—l d,d! F_l is positive semi-definite. (3.5.16)

11

particularises to this example the necessary and sufficient condition

stated in the Proposition of Section 3.4.
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NOTES

1 D is the duplication matrix whose properties are extensively
.
studied in Magnus and Neudecker (1980), and D ig the Moore-Penrose
inverse of D.

2 In view of (3.2.13) we have @u 12 ® =~ R_'>(S_2_l & B)D & =
14
- R'(,S_Z_l 2 B) vec(R) = - R' vec(B'). A typical element of this

vector is given by

—[Vec(Aj)]' vec(B') = - tr(Aa B') = - tr(B Aj)
_ OA(0) D . - _=-1 .
where Aj = Bej |6 = (Bj.' Cj)y(g—l,..-,p). But B Aj =B By,

and since Bj is strictly lowexr. triangular - and ﬁ_l is lower triangular,

‘the diagoenal elements of-ﬁfl Bj are all zero so that tr(]ﬁé_l Bs

i) =0

(5=1,...,p).

3 Incidentally, notice that in a multivariate regression model

(i.e. where B is a unit matrix) eu and er are equivalent, as in

= 0 so that @il = @ll.

this case o
u u

,12
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APPENDIX 3.A

The First and. Second Derivatives of the Quasi-log-likelihood

Function with gespect te 0 and 1, and the Matrices

Letting

$ ,0 ,0,0 ando t
u X u r u

- % log det 2(1) - % xJA'(8) o L) A(0)x,

the first and second derivatives of Lr , are

(3.A.1)

(3.4.2)

(3.A.3)

(3.A.4)

(3.a.5)

oL .,
r,i

00

1l

0030

o L,
r,i

0ot

r,i

9ToT'

r L

~R'0) (@ ) B x.x') vec A(O) = = R'(0) (2 T(r) @ I) (u, @ x,)
1 1 R 1

LG (t) DY) & 9 T (T)) vec[(uul) - 0(0)]

R (0) @ T(r) @ x.x') R(O)
i 1

- [re vec(g"l(r) u.x")1 3 yec R' (8)
i7i 30!

R'(0) (I @ xu}) @) @ 2t t)) o Glr)

-5 e () b (@ Ty 8 07N (0)) D oGl

4[1 @ vec(uu! - ()" 2, veel& (D' (07 (1) @ 07 (1))]
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where

9 vec A(8) _ du(T)
R(B) = e G(T1) Py

and u, = A(0) =x=.. Also note that vec(u.x') = u, 8 x.. To obtain
i i ivi i i
the derivatives of L,y with respect to € and w, we simply replace T
L

by w in (3.A.1l) to (3.A.5) and set G(1) equal to a unit matrix.

The matrices & and ¢
r u

From (3.A.3) we have

1 N9 Lr i 1 1
o) = ; - = ————t =n' (0 s (2 '
r,11 gllm N % 56567 |wr R'(Q R gllm( 2 xixi))R

To see that the second term in (3.A.3) vanishes it is simpler to
congider the second derivative with respect to the jth element of 0.

This term is thus given by

[T & vec(Q~l(T) u,x')]" vec R!(B) = R!(8) VeC(Q_l(T) u,x")
i%i j 3 i1

where Rj(e) = Biée) . Then in view of

J

]
21
w

T NS
(3.A.6) plim E‘X u,x1)

and the triangularity of B we obtain
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plim R!(8) vec (ﬁ_l -1—2 u,x!) = R!(§) vec(B') =0
3 N ii J
N->c0
since the same argument used for R' in note 2 applies to Ré(5)

(3=1,...,p) in this case.

In what follows we shall make extensive use of the compact
notation x, = P*z, + B u,. Hence,
i i i

Xx,x' = P*(z,z")P*' + B(u.u')B' + P*(z.u')B' + B(u,z')P*' and thus we
1l 1 1 1 1l A 1 1 i 1

have
1 .']:. ] = * * 1 ~ ]
(3.4.7) plim N(z xixi) P* M P¥' + B QB

from which (3.2.12) and (3.2.15) follow.

To prove (3.2.13) and (3.2.16) we make use again of (3.A.0)

( 2
A ) - 1 1
= 3 - SN £ SN P ' - - e
®r,12 ﬁiim N % 393T|{wr R'(I & BQ)(Q 2 Q ) DG
--r'@G@tar Dg=0 G

u,l2

(3.2.14) and (3.2.17) come straightforwardly from (3.A.5) noticing

that the second term vanishes. in the limit since plim[(l/N)(z ﬁiﬁi)—ﬁ] = 0,
N->o0
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The matrices ©_ and ©
Y u

Turning to outer product matrices, from (3.A.1) we have

aLr i aLr i
= F ’ [

o _ _ 1
ri,11 50 1wr 36" |V

= R"(Q
r

furthermore

E(uu' @ x,x') = (I & P*) E(u,u' & z.2') (I & P*') +
1l 4 i 1 1 1

~ ~

u' 2 u.u')(I @ B') + (I & PY)E(u.u’
1 1 1 1 1 1

+ (I & B) E{u.u' & u,z') (I & p*")
1l 1 i 1

and since we assumed the third order moments to be zero, this reduces to

(3.A.8) E(u.u'  x,x') = (R @ P* z z' P*') + (I Q®B) DA, D'(I & B').
id ii ii 4

@ T)E(u.u' @ x.x') (2
1 1 il 1

2 zu')(I & B")
1l 1

1

® I)R

Nevertheless, remark that if we have non-zero third order moments we still

N - -
obtain the same expression for lim{ (1/N) Zi=l E(uiui R xixi)} if

. N0
lim{ (1/N) Z'—l z,} = 0. Therefore
N0 i=1l i
L]
(3.2.9) © = lim =) ©O_,
r,ll N0 N 1 ri,1ll
=1 ——] ~ ——
= R'(Q ® P* M P*'")R + R'(Q ® B)D A4 D' (D

1

R B')R
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what in view of (3.2.12) and (3.2.13) can be written as

—1 v =~
_ _ g ~ o A
Op,110 = %y,11 ~R'E T BBABUR+C o8, 0 01

Now to prove (3.2.18) it suffices to show that

-1 ~ o~ -1
' ' =
(3.A.10) R'(Q 2 B Q B')R (Du,l2 @u,22 ®u,21

From (3.2.13) and (3.2.21) we have

%y 12 ¢;322 Oy o = 2 R' (G 2 ByopT (@ @ Hp'' b (@t e BYR
Now using properties from Magnus and Neudecker (1980)

20 (@ emp D' =20 e d D = (@ 8 D) (1K)
where K ig the commutation matrix. Thus we have
(3.A.11) @ ot s SR @ teBABIR +R (I 2B DKE T 8 B)R.

u,12 "u,22 uy,2l1

3 vec(A'")

Y ) which equals zero

The second term simplifies to R'(B' & B) (
for B lower triangular. This establishes (3.A.10) and indeed (3.2.18) and

(3.2.22). Incidentally, note that

2 ~ ~ '
o log det B(B) _ _ R'(B' @ B)(B vec (A ))

0690 90"

which is non-zero if B is not triangular. This is a third extra term that

appears in the formula for @u when the model is not triangular, in

11
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order to take account of the Jacobian term in the quasi-log-likelihood
function. But as (3.A.l1l) makes clear the result in (3.2.18) is still

valid in non-triangular cases.

Considering the off-diagonal texms in @r and @u, we have

oL oL,
r,i r,i

Ori,12 = { %8 [y BT'I@r

|
=

1 1 ==1

@ I) E(u,u' @ x,u )@ ~ & Q ) DG
N — 1l 1

- L R'(Q

+

L R'(S_Z_l & I) vec[E(ﬁixi)][vec(ﬁ_l)]' DG

and given that E(u.x') = 0 B' and E(u.u' 8 x.u') = (I @ B)D A, D' we
iTi i’i ii 4

obtain

1

iy -1 =1 =1
0 = lim ﬁ-f o, =-%R'(T @B)D A, D@ 80 )De
L _

+ % R! vec(é'y[vec(ﬁnl)]' DG -

The second term vanishes since R' vec(B') = O (see note 2), and usinhg

(3.2.13) and (3.2.14)

©) =9

r,L2 u,l2 A4 0

w22 79,126

what proves (3.2.19) and (3.2.23).
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Finally, noting that

E{vec(u.u' - 0)[vec(u.a' - )]'} = E(@,u' & u,u') - vec(Q) [vec(R)]"
i i1 ii ii
= D(, - ©w w')D',
we have
{
BLr i r,i
— 7 — U -
Ori,22 = B 75y 9, 3 19
= %—G'D'(ﬁ—l e ﬁ_l)D(A4—55')D'(§’l 2 o )pe ,

and in view of (3.2.14), then (3.2.20) and (3.2.24) follow.

The matrix @;l

In order to prove (3.3.1l) we use the partitioned inverse result

u u,1l = “u,l2 ®u,22 ®u,2l
and thisg yields

-1

-1
u,12 ®u,22 <I>u,21

Lt 17t

T = [R'(STl
u

Q@ P*MP*')R + R' (7 " @ B @ B')R - 0

But in view of (3.A.10) the last two terms cancel and the result is proved
{(our previous remark also applies here: this result is still valid if the
model is not triangular). (3.3.4) is proved in a similar way to (3.A.10).

In this case we have
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-1 G ed o o @

%022 %u,21 T 7

and given that (Q ® ﬁ)D+'D' = DD+(§ @ Q) (cf. Magnus and Neudecker

(1980))

-1 o + + = =,
®u,22 ®u,21 = 2DDD (I & Q B")R

Finally, noting that D'D = (D'D) © D'D = I, (3.3.4) follows.

-1
Note that the jth column of ®u,22 Qu,Zl is then given by
+ - = + - 7 =
- 2D (I 82 BY) vec(Aa) = - 2D vec(Aj B Q) (=1, ...,p)
with
= _ BA(0) 9B (0) - 9C(6) = =
A, 3%, |8 %, 18 " 0. |8 | T (B, : C)

Q, the jth column can also be written as

vl
2
It
osh]
Wi
2

but since Aj

-2pT(red E_l') vec(Bj)

and thus also

-1 _ + = ==1,,,0 vec B(9)
20,22 Y21 = 72D (T @QB T (5.
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APPENDIX 3.B
Derivation of Wr,ll and Wr,22
Starting with Wf,ll’ we have
ot
W ~ (®ll :”le) 0
r,11 r r r
{ 21
d
r
- (
"[((Dll) 1 O} }
11 . .12 usl2 —
= (@r : @r ) + (A4—ww')(<1>u
]
O (0] G Qu,22
= o™t eyt ot L ma - & anym
r r 4
where
11 12
(3.8B.1) H = @r ¢u,l2 + @r G ®u,22
However, if we use
12 11 -1 -~ 11 .

(3.B.2) ®r - ¢r ®r}12 ®r,22 ®r Qu,lZ G(G cI>u,22 G)

H can be written

(3.B.

with

= h —H*
3) H @r @u'lz (I-E*)
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Alternatively, using

12 -1 22 -1 o o22.-1 -1
(.34 o= a0 o0 = me e 60T e
and
11 -1 -1 22 -1
oy = Qr,ll * ér,ll CIDr,lz o ®r,21 ®r,ll
-1 -1 o221 -1 -1
- o
%011 F %11 Cu,12 GET(E) TG TGO, ) O
and
2241 -1
(3.B.da) @ o = (0 "+ @ oy 01 %10

simple substitution in (3.B.1l) reveals that

-1

(3.B.5) H = @u,ll @u'lZ(I—Pq})
with
p=a@ @H ™ ot g @)t
o] u u
- = -1 n
. . . _ v _
Now using the identity A4 W w ®u,22 + (A4 A4) and
(3.B.3) we have
11 11, -1 -1 11
= o ~I3R
W1 = 0 LD oy L (T-ER) e T (T-E* e o le,

) + H(A4—A4)H'
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~1 -1 -1
' - —I1% 7 - —_ 1 1 s :
but since (I-H )@u'22(I H*') ®u,22 G(G ®u,22 @) G', in view

of (3.3.6a) from the Lemma, we have

(3.B.6) W_ ., = o r 4 H(, - A)H
T r,11 r 4 4
11, . s . L o n, . -
Thus, (Wr ll—@ ) is positive semi-definite if (A4—A4) is positive
r
1
semi~-definite. This establishes the comparison between Wr 11 and @rl.
r

Furthermore, using (3.B.5), the expression for @il in (3.3.9) can be

written

and substitution in (3.B.6) yields

.11 22 n .
Wr,ll = @u - H[Cbu - (A4 - A4)]H
what proves (3.4.5).
Turning to Wr,22’ we have
i -
[ (Qll) 1 o (® ®l2
21 59 u,l2 L . r
— ~ — 1 -
We,o0 = (0 2 0 o o lare (Bgmww™) (8 992y, 220 522
J u,22 o

Using (3.B.4) and (3.B.4a) we obtain
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Thus,
.21, 11 -1 12 22, .22, -1 - 22, -1 22
Wr,22 @r (@u ) ®r + @r G (@u ) (A4 ww )(CDu ) G ¢r
- -1 n
. . . . _ | - - i
Again, using the identity A4 W Qu,22 + (A4 A4) and noting that
from (3.B.4) we obtain
12 -1 22 .12, 22 ~1 22
®r B (®u,ll un,ZLZ)G ®r B ®u (®u ) G ®r !
we have
_ox22 .22 -1..21, 11 -1 _12 -1 22 -1 22
Wr,22 - ®r G (Qu ) [®u (Qu ) Qu + <I>u,22](®u ) G cI)r
22 ,,,.22, -1 n 22, -1 22
+ @r G (@u ) (A4 - A4)(®u ) G @r
put since 622 = 62T (et o2 4 67l ana 022 = [ar(9°%) ter 7Y,
u u u u u,22 r u
this simplifies to
22 22 .22, -1 n 22.-1 22
= - G
W, ogp = 00 + 0.0 G (@ )T (- A (@) o7

what proves (3.4.6). Alternatively, writing

_ .22 .22 -1 22
wr,22~<1>r G(<I>u) [<I>u + (4,

n 22, -1 22
- A4)](<I>u ) G @r p

In view of (3.4.3), (3.4.6a) is also proven.
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CHAPTER 4

‘WALD " AND "QUASI-~LIKELIHOOD RATIO TESTS OF RANDOM EFFECTS

" SPECIFICATIONS IN DYNAMIC MODELS

4.1 Introduction

This Chapter examines, in a quasi-maximum likelihood framework,
the problem of testing covariance restrictions arising from various
random effects specifications, We concentrate on dynamic models with
unrestricted initial observations errors of the type ¢ considered in
Chapter 2., The availability of both Q-restricted and Q-unrestricted
QML estimates suggests the use of straightforward quasi-likelihood
ratio statistics. On the other hand, in cases where explicit expressions
for the constraint equations are available, Wald tests can also be used
as they only require the estimation of the {-unconstrained model.
Nevertheless, as first pointed out by Box (1953), if the fourth order
moments deviate from their gaussian values, the asymptotic size of tests
on variances that are based on the assumption of normality will be in-
correct, In our context, this has been made clear by the results of
Chapter 3, which show the dependence of the asymptotic distribution of
OMIL, estimates of variance matrices on the value of the actual fourth

order moments of the errors.

Therefore, we start in Section 4.2 by specialising our previous
results to compute the limiting distribution of § unrestricted for panel
data models. Section 4.3 discusses a Wald test which is robust to the
non~-normality of the errors, and shows that appropriate asymptotic

probability limits can still be calculated for the quasi-ILR and the
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‘normal-Wald' tests when the errorxs are non-normal. In Section 4.4

a limited simulation is carried out in orxrder to investigate how far

the diagnostics from the proposed tests statistics are likely to be
affected by the kurtosis measure of the errors being large compared to
that of the normal distribution. Finally, in Section 4.5 we use the
Michigan Panel to estimate an empirical earnings function for the US
with serially correlated transitory errors. The final specification

we choose is not rejected against the unrestricted model on the basis

of formal tests statistics. In this case, controlling for non-normality
of the errors is crucial as evidence is found that the distribution of

earnings errors has long tails.

4.2 The AVM of (-Unregtricted QML Estimators for Panel Data

We begin by examining the variances of Q-unrestricted estimators of

the model developed in Chapter 2. Thus

4.2. = n'z* +
(4.2.1) ;o = wizy tug

.2, = + B* + y'z, + =L,...
(4.2.2) V0 = W5 oy TOBTE T YR P Uy (t=1,...,T)

: [ - ot | J— PR | G- e L - 1
with § (aB'v"), © (u's'), g (uil, ,uiT), ul (uioui),

2
1 = Kkt = * = ! =

E(uiui) S, E(.uiui ) =, E(uio) Yoo and E(uioui) Wy - Let

w* = v(Q*) be the %(T+1l) (T+2) vector of variances and covariances

~ ~

containing the lower triangle of *, and let é' = (' ¢

' )  and &* be
u u

1]

u
the Q-unrestricted QML estimators of 6 and .w* (i.e. Su maximises (2.4.2)).
Following the discussion in Chapter 3, the AVM of éu is given by (3.3.1)

irrespective of non-normality. In this case the coefficient derivative

matrix R is given by
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36"

!

° ! 0]

I

o 39 vec A(GS)
1

with A(S§) as in (2.2.4) and I is an unit matrix of order n(T+l) +m.

M = plim(Z*'Zz*/N) and the variance matrix of the complete model is given
by @*. (3 vec A(S)/38') = S, say, is a O-1 matrix that maps the
coefficients a, B, vy into the matrix A(§). Using the formulae for

partitioned inverses, we have after some manipulation
i ~ -1 -1

(4.2.3) AVM(su) = [s'(Q 7 ® p*MP*'")S]

Furthermore since

(Y'z*)(z*'z*)_l(z*'y) NaA

1
plim N = plim ﬁ-RD = Pp*Mp*'
N->eo VARR'S Z*' 7% N-+e0

a consistent estimte of AVM (6u) is given by

LN ~-1
(4.2.4) AVM(du) = N[S'(Q " ® RD)S]

where ) is a consistent estimate of {i. An alternative expressgion for

AN A
AVM(Su) that uses the regression notation introduced in Section 1.3

can be shown to be

1 +,-1

NN - -
(4.2.4a) AVM(ﬁu) = N[XTv(z*(z*'Z2*) "Z*' @ Q )X ]

N
Now we proceed to evaluate the AVM of w*. In order to use the results
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in Chapter 3 we can either assume that the third order moments are

zero or, alternatively, we may think of the variables in equation (4.2.2)
as being expressed in deviations from cross—section means. Nevertheless,
this assumes that the original model has time specific intercepts (i.e.,
if YOt is the intercept for period t, this formulation does not enforce
the constraints Yol = ... = YOT which rules out the possibility of

estimating the effect of particular individual-invariant variables).

Using (3.3.3) and (3.4.3), the AVM of o* is given by
(4.2.5) W = AVM(®*) = HeAVM(B )H' + A ~- w*g*'
ww u 4

where, in view of (3.3.4), H is given by

+
H = -20"(1 @ grpr-1) LVec Bla)

98"
However since B only depends on o, all columns of H are zero except the
corresponding to the partial derivatives with respect to «. Let us

introduce the following (T+1)x(T+l) matrix

o 0o O ... 0 ©

1 o0 0 ... 0 o©
g =-2Bld Loy 5 ... 0 o
o 90,

then the non-zero column of H is given by
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+ —_ -
2" (x ® A% V)vec (B ) = 2p'yec (.5 Lox)

~1 ~1
=vVv(EB B Qf + Q*B' B'} = g, say.
o o
Thus
4.2. = A 5 LIS — Rkt
( 6) Www var(au)qq A4 w*w

where Avar(&u) is the top diagonal element of AVM(Su) in (4.2.3). Now

letting BaB—lQ* + Q*B'_lB& = {ats} (t,s=0,...,T) we then have
aOO = O,
t
(kx-1)
= = (4 =l ..-T
4.2.7) ot T %to Zl * ?(t-x)0 (t=1s...0D)
t s
5 (k=1) (2-1)
a = a = Z W + 2 w (t,s=1,...,T)
ts st kel (t-k)s 0=1 (s-2)t
Hence the elements of W " take the form
w
(4.2.8) Asy. cov(wts,wtlsﬂ = Avar(au)atsatlsl + Hestrst ~ YegPerge
i i 4.2.7% = ]
where the ats are given in (4.2.7% and Migprge E(uituisuit'uis')

(t,s,t',8" = 0,...,T).

An estimate of Aschov(&t .} 1s obtained by replacing true

N
w
s'Tt's

values by their sample counterparts in (4.2.8). In particular, sample

fourth order moments are given by

>

l A “~ o} ~
= e u u
Mestis' © N L Yietis it it

Mrqu

1
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where
u, = vy - {itz*
io i0o i
and
4, = 3 - B! -t t=1,...,T
Bt T Yie T ®y(een) T B T YT (t=1,....T)

If the uit are normally distributed, (3.2.3) holds and (4.2.8) reduces

to

~

. A = 0 a + +
Asy cov(wts,wt,s,) Avar(au)ats t's! et Psse Vegr¥str

and accordingly the AVM of w* is given by

1]

~ + +
(4.2.9) = Avar(au)qq' + 2D (Q* ® Q*)D

1]

" equals Www if condition (3.2.3) is satisfied.

4.3 Wald and Quasi-Likelihood Ratio Tests

Suppose we wish to test a set of r restrictions in Q*, namely
(4.3.1) HO: flw*) =0

where f is an rx1l continuous vector function of w*. Alternatively we
can parameterise the constraints so that w* = w*(r), where T is a
(T+1) (T+2) /2-r vector of constraint parameters. Let er and  w*(T)

be the restricted QML estimates of 6 and w¥*, respectively. Denote the

r x L(T+1) (T+2) first derivative matrix at 0* as
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IE W)
dw*!

il

[11>

Let W and be consistent estimates of W and £ , respectively.
ww 0 ww ww

Then we introduce the three following statistics
A ~ _l A
(4.3.2) WL = Nf(w*)'(FWwa') £(w*),

(4.3.3)

e
H

~ A~ -1 ~
*y 1 [ ' *
Nf (w*) (Fuwa ) T f(w*),

(4.3.4) QLR

2[L(6 ,0%) - L(B_,w*(1))].
u x

WT is a robust Wald criterion of the type discussed by White (1982) and
on the null hypothesis it is distributed asymptotically as a x2 with r
degrees of freedom. NWT, henceforth 'Normal-Wald', is an appropriate
Wald criterion on the assumption of normality of the error term. Specifi-
cally, in addition that all constraints are satisfied, NWT also requires
that condition (3.2.3) is true in order to be distributed asymptotically
as a x2. Furthermore, since the quasi-likelihood ratio statistic has

the same asymptotic distribution as NWT under the null hypothesis,

similar remarks apply to the statistic QLR.2

However, if the matrices ﬁww and F are available we still can compute
the asymptotic distribution of the QLR and NWT statistics under the null
hypothesis. To show this, note that if the restrictions are satisfied

we may define a standardised rxl random vector ¢ such that

(4.3.5) o= /NER ¥ £ (%) 4 No,1),
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moreover, let us define the rXr matrix

1 L

. . -1 A L

(4.3.6) ¥ = (FW F') (FE F') “(FW F')°
W ww ww

so that

(4.3.7) NWT = c'¥Yc

The canonical form of ¥ is given by ¥ = LAL', where A is a diagonal matrix
containing the latent roots of ¥ and L is an orthogonal matrix. Because

-+

of L'L = I, the elements of the transformed vector ¢’ = L'c still are

standard normal random variables in the limit. Therefore
(4.3.8) NWT = ctrpct

Hence the asymptotic distribution of NWT is a linear combination of
independent x2 variables with one degree of freedom and so is the asymp-
totic distribution of the quasi-likelihood ratio test, which can be
evaluated numerically from the central Imhof computing procedure (see
Imhof (1961) and Koerts and Abrahamse (1969)). The weights are given
by the latent roots of (Fﬁwa')(F%wwE')-l which is a similar matrix

to ¥ (cf. Foutz and Srivastava (1977) and MaCurdy (1981)).

Summing up, likelihood ratio tests of covariance restrictions
crucially depend on the assumption of normality of the error term for
being asymptotically distributed as a xz under the null hypothesis,
unlike the case of regression parameter restrictions. For practical

purposes, this means that in order to obtain a Wald or an LR test of
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covariance restrictions with appropriate asymptotic probability limits,
we must compute the matrix (Fﬁwa‘) and therefore explicit expressions
of the constraint equations and their derivatives (or approximating first
differences) are required. Furthermore, evaluating www requires estimates

of the matrix A4 of fourth order moments as noted above.

The Constraint Equations for Moving Average Random Effects Covariance

Matrices

In what follows we examine the form of the constraint equations
implied by homoscedastic and heteroscedastic MA(l) random effects
schemes of the type introduced in Chapter 2. Thus

(4.3.9)  u, =, +te. + A0 /o ) (t=1,...,T)

it i it €i(t—l)

2 2
h ~oidd noid = E =1l,...,T
where e v 1 (0,0t), ny 11d(0,0n) and Woe (uiouit) (t=1, ,T)

are unrestricted parameters.

The MA (1) homoscedastic structure (i.e. the case where Ot = ¢ for

all t) imposes %T(T+l) - 3 linear restrictions in Q*. Namely

(4.3.10) w(k+l)(k+l) - wkk = 0, (k=1,...,T-1)
(4.3.11) Wiy 2y T Yk 07 (k=lyee.,=2)
(4.3.12) = Q for i #3j and k,s > 1.

Y1k T Y gs)

On the other hand, the MA(l) heteroscedastic structure imposes XT(T-1) - 2

implicit constraints on Q*. One possible way to write- them out is given by
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2

(4.3.13) Wy qeyny 7 gt Oy gy T Wt
( : )2 - )} =0 (k=1 T-2)
O ea1) (kr2) T Q1! O T Wypt T TRy
(4.3.14) wi(i+k) - wj(j+s) = Q for 1 # j and k,s > 1.

In both cases derivatives are straightforward and so the F matrices can

be evaluated analytically.

While generalising these constraint equations to higher order moving
average schemes is straightforward, it is unclear how to set up corres-
ponding equations for autoregressive and mixed schemes. Minimum chi-
squared statistics which are based on constraint parameters will provide

an alternative framework where this problem can be overcome (see Chapter 5).

4,4 Simulation Results

A limited simulation was carried out to study the performance of the
proposed testing procedures. The main purpose of the experiments was
to investigate how far the diagnostics from the various tests are likely
to be affected by the kurtosis measure of the errors being large compared
to that of the normal distribution for samples of the size encountered
in practice. Thus we performed two experiments, In each case 50 samples
were generated on the following model

- 1.+ + .35% + .15z +
* it 23 T Yl

.5
Yie Yi (t-1)

(4.4.1) (i=1,...,500; t=1,...,20)

o
I

=3
o+
<

it i it'

€ + .be
it it i(t-1)
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he ., Nvoiid .16 € ~v o1id (0, .25 = = Q. The e
where . iid(o,.le6), it 1id (0, 1y yiO viQ 0 XOgENOUS
variables were generated in the same manner as in the experiments reported
in Section 2.5. The first ten cross—-sections were discarded so that
T = 9 and N = 500. Now let us denote the kurtosis measure by Y2 =

4 2 2 . . .
{E(u_t)/[E(uit)] }. The only difference between the two experiments is

i
that in the first one Y2 % 12 while in the second the kurtosis measure

attains its normal wvalue Y2 = 3. The same set of pseudo-random numbers

were used in both cases.

Before proceeding further, it is worth explaining how non-normal
variates were generated. Let us consider a random variable X whose

distribution function is contaminated normal
(4.4.2) Fk(x) = (1-p)®(x ) + pd(x/k)

2
such that o = 1/(k -1) (see Ali (1974)) and where ®(x) is the standard

normal cdf
L (* 2
o(x) = (2m) ° exp (-%u )du.

Then X is symmetrically distributed with zero mean and variance equal to

two for all k. However, since the kurtogis measure of X is Y2 = (3/4)(k24-2),
this enables us to increase Y2 as much as we like while keeping Var (X)

constant (of course, one cannot go too far without bearing a too large

sample variance of Y, for any reasonable sample gize).

2

In model (4.4.1), n, has cdf F_ (x/i’/cn) and e;, has cdf F_ (x/'z’/oa).

2
In Experiment 1 we set k¥ = 31.1 which can be shown to lead to a kurtosis
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2
measure for uit of about twelve, In Experiment 2, k is simply set to

two.

For each replication both restricted and unrestricted QML estimates
were obtained and, from those, QLR, NWT and WT tests of the restrictions
(4.3.10) to (4.3.12) were calculated. Finally, the Imhof routine was
used to compute proper asymptotic limits for the QLR and the NWT statistics.3
Tables 1 and 2 summarise the results. WL appears to be slightly upward
biased (i.e. too rejecting) especially in Experiment 2, while NWT shows a
smaller bias in the opposite direction. QLR lieg in between and so it
seems to be the best option, at least in our example. However, the out-
standing feature of these results is the confirmation of the fact that in
practice tests of covariance matrix restrictions are useless without
controlling for departures of the errors from normality: when the dis-
tribution of the errors is long-tailed, the mean and the variance of the
QLR test under the null hypothesis are far greater than their xz counter-

parts (in our case, the mean is 42 and the variance 84).

4.5 FEstimation of Earnings Functions for the US

The purpose of this Section is to estimate empirical earnings
functions for panel data that take into account the dynamic features of
the sample under consideration. We wish to choose a specification that
is not rejected against a reasonably general maintained hypothesis on
the basis of formal test statistics. A standard earnings function is
best interpreted as a reduced form relation made up of a mixture of
several supply and demand factors, among which personal characteristics,

like years of education and work experience, play the central role. This
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TABLE 1

Simulation Results for the Model with Long~Tailed Errors (yzﬂ 12)

QLR NWT WT

Number of Rejections out of 50 Cases

Size 7% c® T C c
0.10 5 47 3 47 9
0.05 2 45 1 46 5
0.01 O 42 (0] 39 0]
Mean 97.842 90.812 45,921
Variance 1216.680 757.630 79.709

a According to calculated Imhof limits.

According to a chi-square with 42 degrees of freedom.
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TABLE 2
Simulation Results for the Model with Normal Errors (Yz = 3)
QLR NWT WT
Number of Rejections Out of 50 Cases
b
Size Al C I c c
0.10 5 5 1 2 15
0.05 O (0] (@) O 10
0.01 0 0 O O 1
Mean 42,020 41.791 47.744
Variance 69.455 66.706 108.107

a According to calculated Imhof limits.

b . . .
According to a chi-square with 42 degrees of freedom.
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means that some caution is reguired in drawing conclusions from the
estimated coefficients unless we are prepared to think in terms of the

mincerian schooling model.

Our sample corresponds to male heads of households observed through
ten consecutive years (1967-1976) of the Michigan Panel of Income
Dynamics, with the following characteristics: (i) were not included in
the SEO sample since it was non-random, (ii) have remained the same over
the sample period (i.e., no split-off family units where the head has
changed), (iii) were not unemployed, retired or full-time students,

(iv) reported positive annual hours and earnings throughout the sample

period. In view of this, we are left with a sample of 742 individuals.

We decided to transform the data into deviations from cross-section

means (i.e., x;t = Xit - (l/N)Z§=lxit); this is equivalent to introducing
a set of time dummies that capture the combined effect of all potential
macroeconomic explanatory variables (like productivity changes).4 Our
dependent variable is the logarithm of the real hourly earnings (in 1967
dollars) and, apart from lagged earnings, we consider some of the explan-
atory variables that are included in the most conventional earnings
functions: vyears of education, linear and guadratic age effects (note

that A, - A = A, - A ), a dummy variaple for non-whites and another
it t i0 o

binary variable for the professional and managerial occupational groups.

Given the absence of other measures of work experience in the sample, this

variable is usually defined as the time period that has elapsed since an

individual left schocl (e.g., Exp = Age — Schooling - 6), but as this

creates an artifical association between experience and schooling, nothing

is lost by using instead the age variable itself. On the other hand,
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having an experience variable defined in such a way rules out the pos-
sibility of distinguishing a dynamic response of earnings to changes in

experience from a static one.

Table 3 gives the results of estimates for the model in which Q%
is treated as an unrestricted matrix. Crude instrumental variable
estimates have been used as initial consistent values in order to start
off the iterative procedure for the QML estimator. Asymptotic standard
errors have been calculated using structural form estimates of P* in
(4.2.3). The actual estimates we have found are very similar to the
results in other studies that assume exogenous regressors (e.g., Lillard
and Willis (1978)); using years of education, age, age squared and race
as explanatory variables, we obtain that an additional year of education
leads to a 7.3 per cent higher earnings. However, the introduction of
the occupational dummy (model 2 in Table 3) has the effect of reducing
the mean schooling coefficient to 5.1 per cent while leaving all other

coefficients unchanged.

Turning now to consider constrained models, in Tables 4 and 5 we
present the results for the homoscedastic models, and in Table 6 for the
heteroscedastic ones. In these cases, asyvmptotic standard errors have
been calculated by using the differencing estimates of the second deriv-
atives of the log-likelihood function, and thus they may be affected by
the non-normality of the errors. The estimated coefficients in the
homoscedastic cases show little variation in relation to those obtained
prior to enforcing the restrictions. The results for the ARMA(1,1)
specifications in Table 4 clearly point to models with moving average

errors, which are presented in Table 5.
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When we let the variances of the transitory errors vary over time,
there is an increase in the moving average coefficient while the coef-
ficient of the lagged dependent variable decreases and the derived mean
effects of the independent variables remain fairly unchanged. This
suggests some degree of indetermination in the contribution of the
systematic component, relative to the moving average one, to the overall
time dependencies in the sample (the estimated asymptotic correlation
between the two coefficients is -.85). On the other hand, the estimated
ratios Bi, t=1,2,...,9, show some variation but there is no evidence of
any systematic pattern. In fact, it should be noticed that, since the
only time-varying explanatory variable we are including in the present
application is a trending one, the model with lagged endogenous variable
and moving average errors.is not distinguishable from a static model
with ARMA errors. So, all we can say about the motion of this model is
that a stochastic individual level is determined by the observed charac-
tristics and the unobservable effect n; = ni/(l—q) once for all before
the start of the sample period; and then, as random shocks come out, the
log-earnings of a particular individual evolve around its random mean
following a serially correlated pattern controlled by o and A. In
particular, we obtain that unobserved permanent differences among in-

5
dividuals account for 61 per cent of total error variation.

Now we proceed to test the covariance restrictions implied by our
random effects specifications using the methods developed in Section 4.3.
Table 7 gives the results.6 Clearly, if we rely on the assumption of
normality of the errors, and so we compare the QLR and the NWT criteria
against X2 limits, both the homoscedastic and the heteroscedastic sets

of constraints are rejected at any reasonable level of significance.



- 131 -

But the situation is the opposite when we look at the Wald test and
when QLR or NWT are compared against limits calculated from their appro-
priate asymptotic distribution under the null hypothesis. Clearly, the
constraints for the heteroscedastic model are not rejected and, while
for the homoscedastic moving average scheme WT is somewhat higher than
its expected value of 42, all three tests accept the restrictions at

the 90 per cent level.

The values of the standardised fourth order cumulants of the errors
for the unrestricted model (version 1) are given in Table 8. These
values are rather high and this suggests that the distribution of the
errors is long-tailed. 1In fact, the shape of the distribution as perceived
by plotting the histogram of the errors is fairly normal. This points
to the fact that QLR and NWT are not X2 variates mainly as a consequence

of long tails in the density of the errors.
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TABLE 3

QML Estimates with Unrestricted Covariance Matrix

Dependent Variable : ILog Hourly Earningsa

Model 1 Model 2
. Derived . Derived
Estimates Mean Effectse Estimates Mean Effects
Years of .0112 b .0730 .0099 .0510
Education (.0037) (.0034)
Age .0046 .0301 .0058 .0297
(.0030) (.0034)
Age —.000046 —.0003 -. 000059 -.0003
Squared (.000031) (.000035)
Race” .0213 .1391 .0269 .1384
(.0131)
, _d
Occupation - - .0469 L2413
(.0l6l)
Lagged .8469 . 8057
Dependent (.0445) (.0553)
Variable
a Data in mean deviation form (N= 742, T=9, period 1967-1976),
b Standard errors in parentheses.
¢ bummy variable: 1 if individual is white,
d Dummy variable: 1 if individual belongs to professional oxr
managerial groups in 1967.
e

Calculated as Q; = %k/élm&).
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TABLE 4

OML Estimates of ARMA(l,l) Homoscedastic Models

Dependent Variable: Log Hourly Earnings

Model 1

Derived
Mean Effects

Estimates

Estimates

Model 2

Derived
Mean Effects

Years of .0118 .0730 .0090 .0500
Education (.0042) (.0030)
Age . 0054 .0334 .0055 .0309
(.0031) (.0030)
Age -.000054 -.000332 —. 000057 -.000317
Squared (.000032) (.000032)
Race .0219 .1352 .0237 .1322
(.0141) (.0145)
Occupation - - L0431 . 2400
{.0156)
Lagged .8376 .8205
Dependent (.0508) (.0492)
Variable
0 -.0072 —-.0166
(.0508) (.0553)
A ~-.4189 -.3997
(.0763) (.0792)
p? .0532 .0624
(.0371) (.0375)
o2 .0681 .0676
o2 & .0036 o2, = .1373° .0042 02, = .1310
n n n
a 2 _ 2.2
ot = a‘.
n P
b
O2




- 134 -

TABLE 5

QML Estimates of Moving Average Homoscedastic Models

Dependent Variable: Log Hourly Earnings

Model 1 Model 2
] Derived , Derived
Estimates Mean Effects Estimates Mean Effects
Years of .0116 .0728 .0086 . 0498
Education (.0036) (.0028)
Age . 0053 .0331 .0052 .0304
(.0030) {.0028)
Age -.000053 -.000333 -.000054 -.000314
Squared (.000031) (.000029)
Race .0214 .1345 .0225 .1309
(.0137) (.0137})
Occupation - - .0413 .2398
(.0135)
Lagged .8410 .8279
Dependent (.0429) (.0440)
Variable
A -.4287 -.4219
(.0303 (.0295)
02 L0511 .0579
(.0318) (.0342)
o2 .0681 .0676
o? .0035 02, = .1378 .0039 o2, = .1322
n N n




- 135 -

TABLE 6

QML Estimates of Serially Correlated Heteroscedastic Models

Dependent Variable: Log Hourly Earnings (Model 1)

ARMA(1,1) Errors MA (1) Errors
Estimates Mean Effects Estimates Mean Effects
Years of .0198 .0754. L0176 .0748
Education (.0041) (.0036)
Age . 0096 .0366 .0085 .0360
(.0032) (.0030)
Age - . 000091 -.000346 —-.000081 -.000345
Squared (.000033) (.000032)
Race . 0400 .1525 .0353 .1500
(.0181) (.0172)
Lagged .7374 . 7650
Dependent (.0492) (.0423)
Variable
¢ -.0653 _
(.0577)
A ~.2969 -.3847
(.0855) (.0320)
02
1 .1632 .1331
(.0654) (.0520)
02 .1837 .1483
2 (.0774) (.0606)
p2 .1399 .1144
3 (.0546) (.0453)
0? .1562 .1278
. (.0639) (.0512)
02 .1375 .1123
5 (.0570) (.0445)
02 .1831 .1481,
6 (.0776) (,0612)

.../continued




TABLE 6 continued
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ARMA(1,1) Exrors

MA (1} Errors

Estimates Mean Effects Estimates Mean Effects
02 .1367 L1122
7 (.0549) (.0439)
02 L1195 .0978
8 (.0475) (.0382)
02 .1320 .1074
9 (.0528) (.0428)
g2 .0645 .0646

oi .0097 ci* = .1404 .0079 o2, = .1432

n

a Calculated as 82 =

2,72
o</
n P
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TABLE 7

Asymptotic Tests of Random Effects Constraints (Model 1)

x2 Imhof

Criteria .
Prob. Limit Prob. Limit

Heteroscedastic Moving Average Scheme (D.F.=34)

Likelihood Ratio 82.7 1.00 <0.57
Normal-wWald 80.8 1.00 0.53
Wald 32.1 0.44 -
Homoscedastic Moving Average Scheme (D.F.=42)
Likelihood Ratio 138.5 1.00 <0.78
Normal-Wald 142.5 1.00 0.79

Wald 51.5 0.85 -
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TABLE 8

Standardised Fourth Order Cumulants of Log Earnings Errors

t v value™
1 7.01
2 5.83
3 14.20
4 10.79
5 12.25
6 5.33
7 8.84
8 9.29
9 10.74
Average Valueb 9.74

w
it’ tt

b T N ~4 T ~2
Calcualted as {[sl/N)ztzlzizl uié}/ [Zt=l wtt}} - 3.

nd A2
% Calculated as {(l/N)Z§=l u4 / } - 3.
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NOTES

1 See Arellano (19Y84) for an alternative derivation of the AVM of

®* based on the reduced form of the model and which makes explicit

use of unconstrained third order moments throughout.

2 Note that by making use of a second order Taylor expansion of

il

L(Yy) about @u = (éu&*)', since 8L/8¢|@u 0, we have

A I ~ A 1 2L " ~
= ' - == - L I R i A -
QLR Z[I(wu) L(wr)] N(‘Pu wr) { N 3030 w*}(wu ¢r)
where Y¥ lies between @u and @r' and we are using Pr o= (grp*r)
and ' = (Bror(m) ).
r S
3 The computations were carried out on a Cray-1S computer at the

University of London Computer Centre. Each experiment took

between 12 and 13 CPU minutes.

4 The transformation of the data instead of the inclusion of the
time dummies reduces the number of coefficients to be estimated,

thus considerably lowering the computer costs.

5 This calculation is made using the results of the third and fourth
columns in Table 6, In that case, the stationary solution of the

model has an ARMA(l,1) random error whose variance is given by

122 ,
. + + 2 L
G2 L A 5 ul} G2 = .09,
w 1~ J
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therefore, total error variance for the stationary solution is

o2, + 5% = .23,
n w
6 These results correspond to the model that excludes the occu-—

pational dummy, but the inclusion of this variable leaves the

value of the test criteria almost unchanged.
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CHAPTER 5

MINIMUM DISTANCE AND GLS ESTIMATION OF TRIANGULAR MODELS

WITH COVARIANCE RESTRICTIONS

5.1 Introduction

Having discussed the various aspects of estimation and testing
of dynamic models in a guasi-maximum likelihood framework, now we turn
to consider methods of estimation based on the minimum distance or
minimum. chi-square principle. A convenient level of generality for
our purposes is provided by the triangular system with covariance
restrictions introduced in Chapter 3. Thus, the present discussion
will be conducted on the basis of these previous results and the same
notation will also be used here.

Let ; be an unconstrained estimator of the coefficient vector 5
which is asymptotically. normal with asymptotic covariance matrix equal

to V_. Assume that 5 depends on a set of constraint parameters ¢,
5 = p(§). The problem of estimating § is that of finding a value of
p satisfying the constraints at a minimum distance from the value

p indicated by the sample. The minimum distance estimator (MDE), §,

minimises the distance function
(5.1.1)  s(8) = [p - p&)]" Qlp - p(8)]

-1
where any consistent estimator of Vp is an optimal choice for the
: -1, . . .
norm Q (see Appendix A.5). If Vb ig the information matrix when there

are no constraints, then the basic theorem of the minimum distance
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method establishes that é is asymptotically efficient and therefore
asymptotically equivalent to the maximum likelihood estimator. More
generally, as discussed by Chamberlain (1982), the quasi-maximum
likelihood estimator has the same limiting distribution as a certain
minimum distance estimator; but in general that minimum distance
estimator is not using the optimal norm. The cases where the AVM of the
unconstrained QML estimator of p remains the same under non-normality
constitute a relevant exception. We know that this ig not the case in

a simultaneous equation model if covariance constraints are available.
Thus, in our model we may. expect to. obtain estimators of both slope

and covariance parameters that are efficient relative to the QML
estimator by application ofithe minimum distance method when the errors
are non-normal. Most of the basic discussion of the general principle
is contained in Chiang (1956) and Ferguson (1958). Malinvaud (1970)
considers the minimum distance estimation of multivariate nonlinear
regression models with unrestricted covariance. The non-normal case

and its relation to QML estimators of covariance parameters is discussed

in Chamberlain (1982).

The order of presentation in this Chapter is as follows. Section
5.2 defines the joint MDE of slope and covariance parameters that makes
use of the optimal norm. In Section 5.3 an expression of the AVM of
this estimator is derived which can be used as a bound to characterise
efficient estimators. Section 5.4 deals with separate MDE of
covariance parameters based on 3SLS, MD or QML estimates of unrestricted
2, which are shown to be efficient. Section 5.5 discusses various
generalised least squares estimators of the slope coefficients under
linear constraints, and an efficient GLS estimator robust to non-normality

. 1
is presented. Finally, Section 5.6 examines the problem of estimating

subsets of equations.



- 143 -

5.2 Joint Minimum Distance Estimation of Slope and Covariance Parameters

The reduced form formulation of model (3.2.1) is given by

(5.2.1) y, = P(6) z, o+ Gi (i=l,...,N)

nxl nxk kxl nxl

where 6 is pxl, T is gxl, v, = B u, and

P(B) =P =-B " C,

2 (B, D =0 = 5l aget .
Let us consider the statistics
(5.2.2) P = (Xézo(zgfb"l
(5.2.3) o = EH - B EHTEL

where Z'Z = ZN

N N ~
' v = E ' 3] - } '
=1 z,z!', Y'Z = (=1 Y2, and Y'Y = . lyy. P and

~

QV are the unconstrained least-squares estimators of P and ﬁv’ and they

can be written in vector form as

"
. . . . ~ "
Wy = vec (P) ’ w, = V(QV) ' w = ; .
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= vec(P), w, = v(Q ) and w' = (w! w!).

Accordingly, we set w 5 v 1 Y5

1

Moreover, let AV and Av be matrices of reduced form third order

.3 4

and fourth order moments respectively given by Av 3 = E{Gi[V(Qi“Gi)]'}
' .

and A = E{v(v, v!) [v(v, v!) 1'} for all i. P and Q_ are
v L 1 L kR v

,4

consistent and asymptotically normal, i.e. we have (e.g. see Arellano

(1984)) :
. a Vit Va2 1
YN(w - w) ~» N, V) , V=
L V21 Va2
where
(5.2.4) v.. =0 aMmt
T 11 v !
(5.2.5) v .= (Ia@utm A
5. 2. 12 3
(5.2.6) V., =A - W, W

v,
22 v,4 2 "2 !

the partition in V corresponds to that in @, M = lim (Z'Z2/N) and

N->c0
N
m = lim (1/N) z. z.. We shall assume that V = 0; note that
i=1 i 12
N->o0
this can happen either because Av 3 = O or as a consequence of having
’

m = 0.

~ ~

The joint minimum distance estimators of 8 and ?, Gr and T,
minimise the function

~~1
. Vll 0
(5.2.7) s(0,1) = [w - w(8,T)]" N

-1
0 V22

[w - w(®,7)]
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or equivalently

(5.2.7a) s(8,1) = sl(e) + sz(e,T)
where
_ " |A—1A
(5.2.8) s, (0) = [wl - wl(e)] Vll[wl - wl(e)] '

(5.2.9)  5,(0,1) = [w, = w,(8,7)]" v;é[wz - wy (0,001 .

We assume that the optimal weighting matrices have been chosen so that

= V... A distance function similar to

plim V =V and plim V22 29

11 11

(5.2.7) ig discussed by Rothenberg (1973); however, he sets V equal

22

+ 4

to 2 D+(Qv 2] QV)D ;, what only leads to the optimal MDE of 6 and T if

the fourth order moments attain their gaussian values.

Letting w; = (6; ') and ¥' = (B' T') we have the asymptotic
~ _ d —l
normality result /ﬁ(wr - ¢) > N(O, Wr ) where
_ | dw(@) 1] dw(y) .
(5.2.10) Wr = 5 |¢ v | S |7 (see Appendix 5.A) -

J
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In this context, we shall say that particular estimators of 6 and T
are efficient if they attain the same AVM as gr and ;, Wil and Wiz
respectively. We have assumed Av,4 to be finite and unrestricted;
alternatively we could consider a set of constraints in A4 (e.g. in the
random effects model this can be done by assuming independence between
error components and that the fourth order moments are homoscedastic
over time) in which case more efficient estimators could be obtained
by including a further set of statistics in the definition of (5.2.7).
Thus, the estimators we propose, represent a feagible compromise: if
constraints are enforced in fourth order moments, determining their
sampling variances would require the evaluation of eighth order moments.

The same reasgoning could apply to the latter and the process would

have no end.

If the errors are normally distributed Wr equals

_ , _ g 2 e . s .
@r = pllmN+w[ (1/N) ™3 Lr/awaw lw] where Lr is the log-likelihood

function associated to our model. But in general, wr will be efficient
relative to the QML estimator since the latter is asymptotically

equivalent to the MDE whose norm converges in probability to

which is not optimal.

The relation between the reduced form and the structural Fform

covariance matrices can be written in vector form as
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(5.2.11) WZ(G,T) = F(0) w(T)

where w(t) = v[2(t)] and

(5.2.12) F(6) = D [B"L(6) @ B T

(8)1Dp.
Notice that this case where structural covariances are not functionally
related to slope parameters must be distinguished from the more

general situation where
WZ(G,T) = F(6) w(r,;0).

We are primarily concerned with the former case and in that context it
will be shown that there exist two stage methods that are asymptotically
equivalent to the estimators found by minimising (5.2.7). Nevertheless,
the distance function (5.2.7) ig equally appropriate for the latter

case (an example of which, in panel data, are models b discussed in

Chapter 2).

As a final remark, it is worth considering the MDE when Q is
unrestricted. In this case w = T so that wz(e,w) = F(0)w, which does

not restrict LOT Hence the joint criterion function (5.2.7a) becomes

~

(5.2.13) s(8,0) = s, (8) + [&2 - FO)w]' Vo ilw. - F(0)w].

220,

Differentiating with respect to w yields
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s (6,0) _ _ o ., oL -
S e 2 F'(0) V22[w2 F®)w] =0

but since F'(0) V_l is an % n(n+l) x % n(n+l) nonsingular matrix,

22
the MDE of w is just

(5.2.14) w = F 1 (0) W,

or equivalently
(5.2.15) Q = B(6) QV B'(6) .

Substitution of (5.2.14) in (5.2.13) immediately reveals that the

concentrated distance function 1s simply sl(e). The minimiser of

sl(e), eu say, is the standard Malinvaud's minimum distance estimator of
a simultaneous equations model without covariance constraints, which

is well known to be asymptotically equivalent to the 3SLS and

~

Q-unrestricted QML estimators of 6, © and 6u. Alternatively,

38LsS

the 'QML-type' of estimator of Q unconstrained takes the form

(5.2.16) © = A(0) (’%—}5) A'(0).

~ ~

Both @ and @ can be regarded as functions of 6 which provide a range

of asymptotically equivalent estimators of { when evaluated indistinctly

at eu, Gu or e3SLS' The AVM of these estimators is given by Wu,22 in
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5.3 The Asymptotic Variance Matrix of the Optimal Joint MDE

In what follows, we derive explicit expressions of the partitions

of Wr and W;l that relate these matrices to the results given in

Chapter 3. Firgt, note that since
[ o
1 -1
— 0 v 0
1 ]
Bw (9) ' 90 ] sro
awl |IE ‘ 3 ) 3 ) ’ 1 ’
( 56" 3T ° Vi
from (5.2.10) we have
_— 1] — — —
awl] ~1] 9wy [ 2 2 ' _1] 9w, 1
Yo~ ae'J Vi1] o7 | * [' 67 | Vool 387 |7
s ) [ 5w
y = __.% V—l ._....2_.
r,12 36" 22| % | 7
]
- -
P AP IS
r,22 aT" 221 370 | ¢

The matrices of coefficient partial derivatives evaluated at the true

values are given by

-
1 —
(5.3.1) s = - (B L g prry g,
-
2 - -
.3, —2 =
(5.3-2) 557 = F 0 50 Py,01 v
dw,  _
(5.3.3) = =FG,
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-1

where F = F(8), ®u,22 ©u,21

ig given in (3.3.4), an P*, R and G are
defined in Section 3.2.2 It is convenient to re-write V22 as a function

of the strucotural form fourth order moments, thus we have

Hence substituting (5.2.4) and (5.3.1) to (5.3.4) in our previous

expressions, since all terms F cancel, we have

= —_ 1]
(5.3.5) Wr,ll (@u ) + ®u,12 ®u,22(A4 W w') ®

- D
(5.3.6) Wr,lZ Qu,12 Qu,22(A4 w w') G .
(5.3.7) ¥ —c i, -panta
' r,22 4 :
- - -1
3 — ,' = -
Note that under normality (A4 w w') Qu,22' so that Wr @r.

Next, let us define the matrix Wu such that

thus
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(5.3.8) Wr =

Using the formulae for partitioned inverses it is straightforward to

check that Wu is the inverse of the matrix Wﬁ in Section 3.4. Then

(5.3.9) Y = =

u
Finally, in view of (5.3.8) and (5.3.9) we may apply the Lemma in
Section 3.3 to obtain

(5.3.10) vt
r

W - W Wt

-1
— D
w,11 " Wy, 12 Wy, 22 (TR Wy oo (I-PO) W

0,22 Wu,21 !

, 22 . 1L -1
(5.3.11) Wr = (G Wu,22 G)
-1 -1 -1
s - 1 '
with Pw G(G Wu,22 G) G Wu,22 .
11 22 . . . o -
Wr and Wr are the asymptotic covariance matrices of er and T,
respectively. Remark that Wu 11 is the AVM of the Q~unrestricted QML
14

and MD estimator of 5, eu and eu. Thusg, since Wu is a positive

122

definite matrix, from (5.3.10) we always have
AVM(6_) < AVM(O )
r u

irrespective of non-normality.
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5.4 Efficient MDE of Covariance Parameters. and Minimum Chi-square

Specification Tests of Covariance Constraints

Chamberlain (1982) advocates the use of MD estimators to impose
restrictions on covariance matrices in the context of i.i.d. random
vectors with unrestrieted mean. Chamberlain shows that in genexal
the OMLE of the constraint parameters is less efficient than the
optimal MDE. We show that these results hold true for structural
covariance matrices. Furthermore, separate (optimal) MDE of covariance
parameters based on efficient unrestricted estimators of Q are
efficient in the sense of attaining the same limiting distribution as

the joint estimators defined in Section 5.2.

Thus let us consider the following. criterion function

~

(5.4.1) s(t) = [5 - w(t)]" V;l[; - w(t)]

PN

where w = v(Q) and Q@ is indistinctly the 38LS, the MD or the QML

V =V is
®

estimator of ( unrestricted. We assume that pli w

mN-)oo

positive definite. Let T be the minimiser of s(t), so that 7

MD MD

solves the following system of equations

dw(T),, A=l B
(5.4.2) (—5‘1_—'—'") VO) [U.) - (D(,T)] =0 .

In particular, if the restrictions in Q are linear and homogeneous,

i.e. w(T) = G T where G is a matrix of known constants, an explicit

solution for TMD is available
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= el '
(5.4.3) T (G A G) G' VvV, w .

Note that since (5.4.3) is linear, Q(TMD) may not be positive definite.

0 - d
Recalling that YN(w -~ ©) > N(O, Wu 22) and in particular, under normality,
r

22

W @u ; the asymptotic distribution of TMD follows as an application

w,22
of the results in Appendix 5.A. Thug, we have that /ﬁKTMD—?) g N(O,Wr(ﬁQ))

where
= =-1 -1 =~1 =-1 =1 -1

4.4 = (G G ‘ '
(5 ) W.T(Vw) (G v, G) (G A Wu,22 v, G) (G A G)
This result applies to general constraints and so G ig the matrix
of partial. derivatives dw(t)/8T' evaluated at the true values. (5.4.4)
where k is an

-1 -1 22

arbitrary real number, in which case WT reduces to (G' Wu 29 G) = Wr ’
14

makes clear that the optimal choice for §w is k Wu 007
1

further establishing that the optimal TvD igs fully efficient.

Now we can refer to our results in (3.3.10) and (3.4.6a). It
turns .out that the QML estimator of T is agymptotically equivalent to
the MDE that sets Gw equal to k @iz, and therefore it is generally
inefficient relative to the optimal MDE. Only under gaussian kurtosis

(or in the special casewhere Wu is proportional to @iz) OML and

122
optimal MD are asymptotically equivalent. Thusg,

. 22, _
(5.4.5) WT(CDu ) = Wr,22 ’
22
(5.4.6) WT(Wu,22) Wr v
and
22
We,o0 2 ¥ -
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Minimum Chi-square Specification Tests of Covariance Constraints

The assumption that w depends on a g x 1 vector of parameters T
imposes r = % n(n+l) - g restrictions on w. Suppose that we wish to
test this set of constraints. In Chapter 4 we discussed Wald and

quasi-likelihood ratioc tests; alternatively we can rely on the

statistic N-s(TMD), gince we have the following result

N - a_ ~ ~ a
(5.4.7) MCS = Niw - w(r )]'Wl [w - w(t,_ ] -~

MD u,22 MD X

2
r

Prcof: See Chamberlain (1982, Appendix B, Proposition 8).

That is, under the null hypothesis N-s(TMD) is asymptotically

distributed as a x2 variate with r degrees of freedom if TMD is the
optimal MDE and an optimal norm is used in setting up the statistic,

A

i.e. plim Wu,22 = Wu,22'

The advantage of the statistic MCS ig that it does not require
explicit expressions of the constraint. equations. This feature
makes the minimum chi-square tests specially attractive in panel data,
where serial covariance matrices are initially expressed in terms of
constraint parameters. Moreover, notice that since separate MDE of

T based on Q are efficient, we do not require Q(-restricted estimates

of the slope coefficients in setting up the minimum chi-square statistics.

Finally, suppose that we consider testing an additional set of

constraints T = T(k) where « is sxl(s<g). Then Kvp minimises
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(5.4.8) s(k) = [& - w+(K)]' %;322[5 - w+(K)]

+ . . .
where. w (k) = w[t(k)]. Then if we consider the statistic

AL )]

_ ~ ot . ol
(5.4.9) Mcs. = N[w - w (KMD)] Wu,22' Kup

1

we can show that MCSl - MCS is asymptotically digtributed as a
x2 with g-s degrees of freedom independent of MCS. (cf. Chamberlain

(1982, Proposition 8')).

5.5 Generalised Least Squares Estimation of Regression Coefficients

In Section 3.2 we noticed that when the restrictions in A(0) are
linear the QML estimator of f takes the form of a GLS estimator. Thig
observation, coupled with the results of the previous Section on
separate estimators of restricted covariances, suggests to consider
GLS estimators of 6 based on MDE of T. From the work of Lahiri and
Schmidt (1978) we know that GLS estimators based on efficient but
unrestricted estimates of O are agymptotically equivalent to full
information  simultaneous equations estimators (e.g. QML, 38LS); thus
if no a priori information on Q is available, GLS estimators of tri-
angular systems are not too interesting, except perhaps as an algorithm
for the computation of the QML estimates. On the other hand, unlike

other GLS applications, GLS estimators of triangular systems are only

consistent if they use consistent estimators of Q.
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Thus let us consider estimators of f that solve

-1 > -1
1 ' = ' '
(5.5.1) R' (R ® X'X)R eGLS R'(Q R X'X)x

where  is such that plimN+m Q =Q, R and r are now a matrix and a

vector of known constants such that vec(A) = R 6 - r, and let 0w = v(§).
In what follows we discuss the asymptotic properties of eGLS'
Consistency
We may re-write (5.5.1) as
Y-l X'X ~ = ~-1 U'X

] . — =R ' fongiulai
(5.5.2) R'(Q Q(N))R(GGLS 8) R' vec(Q N)
where U' = A X'. 1In general, for a simultaneous system the limit in

probability of the left hand side of (5.5.2) does not vanish, and thus

~

eGLS is not consistent for 0. However, this is not the case for a

triangular system: using that plim(U'X/N) = @ B' we have

plim[R' vec(Q
N->o0

1U'X - .
—~=)] = R' vec(B') = O (see note 2 in Chapter 3).

~_ [l
Finally, since plim[R'(2 ' @ EX)R] = ¢ | as in (3.2.12), the
I

consistency of eGLS is established.
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Asymptotic Normality

If we regard (5.5.2) as a vector valued function of w, using a

first order expansion about w and rescaling we can write
o~k o XX a ;
X 2T (0 )R - =
(5.5.3) [R'(Q " @ =5R VN o - 0)

- Lt vee@ i + R e £ @t e o]0l AW - 6)
VN

~

where w, = v(Q*) lies between w and w. Now notice that since

= X'u, -1 -1
. — . . 3 1] . = e
plim Q, = @, in view of (3.2.13) we have plim[R'(I @ —ﬁ—)(Q* ® Q,7)D] ¢u,l2
so that
~ T N =1 =, _ pa o
(5.5.4) @u’ll /N(eGLS 9) - RY vec(Q ~ U'X) @u’lz YN(D - w) + p(l).

~

Next, assuming that Q = Q(TMD) where Ty minimises a distance

function of the type (5.4.1), if we define the indempotent matrix

P- = G(G* §_l G)_l G' §~l, we have
v w w

~ ~

(5.5.5) /ﬁ(w(rMD) - w) = P WN(w - @) + OP(l).
Thus, (5.5.4) becomes

(5.5.6) & VN (0 -5 = - 1 g vec (@t T'x) - o P

3
Moreover, it can be proved that



- R yec(@t O'x) =0 YN@© -6) + @
u u

11 12 VN(w - w) + op(l)

r

where Gu is the Q-unrestricted QML estimator of 0. Hence

- _ A -1 A -
(5.5.7)  VN(O, ~0) = VN(O -B) + 1 %,12‘1“9;,)/5(‘” - @)+ o ().

6, © 14 ~ -
Therefore, since we know that Nl -+ N{(O, Wu) ’ /EKGGLS - 9)

I
€1

is also asymptotically normal and its variance matrix is given by

- -1 | -1
Wo (V) = W11+ 0,11 Q12T Fy) Wy 0o TR0 0 59 %0
+ot o (I-P_) W + W (I-P-)' @ ot
u,11 u,l2 v "u,21 " "u,12 v u,21 u,ll’
, . . 11 .
Equivalently, in view of (3.4.1) and (3.4.2), Wu 11 = @u and
r
12 -1 22
Wu,12 = @u = ®u,ll ®u,12 @u , thus
-~ 11
(5.5.8) Wy (V) =0 " +
-1 , 22 , 22 -1
2,11 %4, 120 (TP5) Wy op (T-Py) = & "(I-P)~(I-P2)Q T8, o) & ",

(5.5.8) can be used to compute the AVM of different GLS estimators based
on particular choices of §w . In particular, the GLSE that sets Gw equal
to @iz is asymptotically equivalent to ér (i.e. the Q-restricted QMLE of
§). This can be easily seen by re-writing (5.5.8) in a way more

comparable to (3.4.5); after some manipulation we have
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11 -1 : 22 n .
. @u’ll @u’lz{(I—P§>[¢u - (A4—A4)](I—P§)

il
1

(5.5.8a) We(Vw)

22

P- @22(I—PL) + (I-P-) ®°7 pL} @ -1
v u v A% u v

0,21 Yu,11°

+

Simply noting that P® @iz(I—Pé) = O it follows that

(5.5.9) W (@u ) =W .

Another intuitively relevant choice for Gw is Wu 591 that is,
14
the GLSE of § that uses the optimal MDE of T. Under normality
W, (W ) =W (@22) but i al the matrix W (@22) - W, (W ) is
6 "u,22 g Py /r Pub in genexr e ma 6 "u 6 My, 22

indefinite. Making use of (5.5.8) after some reductions we have

22 ) ) D
(5.5.10) W (@) = Wo (W, 55) = 011 %y, 120 By Be) Wy 5o (BL = P)
| 22 22, . . -1
B RE) Wy om0 ) Wy o=@ Y (BEPTE o 001

b - oty . . .
and although ( v PQ) Wu,22(Pw PQ) is positive semi~definite, the
matrix in square brackets on the right hand side of (5.5.10) is

indefinite. Therefore, none of these two estimators is generally

efficient in the sense introduced in Section 5.2.

An Efficient GLS Estimator

Let us consider the GLS estimator EELS of the type (5.5.1) which

~

is based in the following choice of w:

(5.5.11) @ = (I - 022w *
u u,22

2 0=1 ~
W 2)w('c )

A /\2
+
o (éu u,2 OMD
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~ ~

, _ . ~22 22 . )
where plim Wu,22 = Wu,22’ plim ®u @u and 1 is the optimal MDE

OMD

~ ~

of T. Thus w is defined as a matrix-weighted average of w and w(TOMD).
22 -

Under normality, Wu,22 = @u and then w = w(TOMD), but as Wu,22 becomes

large relative to @iz an increasing weight is being put on w relative

to w(TOMD). We prove below that the GLS estimator so defined attains

the same AVM as the joint MDE Gr_and is therefore efficient. Note that
since w is a linear combination of consistent estimators of a, it is

itself a consistent estimator of 5; though since w is an unrestricted

estimator of w, w will not satisfy the covariance restrictions.

To obtain the limiting distribution of /ﬁ(géLs - 8), we begin

by re-writing (5.5.11) asg

22

/R (o) = (T-022 1t
u

.2

=) +@25TE )Nz, ) -],

oe
u u,22 OMD

furthermore, using (5.5.5) with P in place of P- we have

l A

22 -
'22<1-Pw)}/ﬁkw—w) + gp(l).

u

(5.5.12) VN(w-w) = [I-0 w;

Now applying (5.5.4) to the present case it turns out that

= — _ ~ — _l ~
(5.5.13) /ﬁ(eGLS-e) = /ﬁkeu 6) W12 Wu’zz(I—Pw) VN (w-w) + op(l) ,
12 -1 22
h prad = — -
where we have used the fact that Wu,lZ @u ®u,ll Qu,l2 @u
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Finally, from (5.5.13) the AVM of e_GLS is given by

( , )
_ | W11 W‘u,lz)
(5.5.14) AVM(6 _ ) = (I ! K_) - | \
GLS e} wu,Zl wu,22J K,
with
K =-W W = (I~ ~P )i
o} u,12 "u,22 ‘
after some manipulation (5.5.14) reduces to
(5.5.15) AVM(B__ ) =W - W Wt (I-P ) W_ (IP)Wl W
T T GLS u,ll u,12 u,22 woou,2 ,22 'u,21

which is equivalent to Wil in (5.3.10).

5.6 Subsystem Estimation

We now consider the case in which a subset of n, equations of the

complete model (3.2.1) are unrestricted reduced form equations. Thus,

defining the partitions 6' = (ei 65), ' = (Ti é), we have
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Qll’ le and El are unrestricted matrices whose coefficients can be

arranged in the vectors T, and 51, and B22(52) is lower trianguler.

1
(3.2.1) then becomes

(5.6.1) yli + Cl Z, = U,. ’

X X
nl k n,xl

Bo1 Yig FByp Yoy * G 7y T Rp0p) %y =y,

n2><nl n2><n2 n2Xk n2Xl

(5.6.2) +

where A2(62) = (B2l 822 C2) and nl+n2=n. Moreover let us assume that

the restrictions in A2 are linear so that

. . o , . .
in particular note that Rl = K I} where K ig the commutation matrix

. 2 , . .
+k), O is a n, X n.k matrix of zeroces and I is a n.k unit

of order nl(n 1 1 1
1

1

matrix. Also let us introduce a notation for the partition of Q-

Clearly the estimator that solves

=1 N -1
5. . ' v o 1 t
(5.6.3) R2(922 f X x)R2 62 R2(922 ® X x)r2

. C o _ = s . = =  _ 4
(with plim 922 = 922) is inconsistent for 62 unless le = 0.
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On the other hand since Q is positive definite we can write

8 =212 where » is lower triangular. Transforming the original

complete model by mean of P leads to a recursive system,

( = -
T 0 ] Vi3 | P C1 1 {uli
P _ B + _ B [zi = P B
| Bar P22 || Yau Py G * Py O %21
P, O
where P = .
Par Poo

Therefore, in the transformed recursive system the coefficients in
the two blocks of equations are functionally related. This makes clear the
impossibility of obtaining subsystem least squares estimates from the
transformed model that take into account all the restrictions in the

original system.

However we still can solve the complete system of GLS equations

for the subset of estimates of 52 as follows. Let us consider the

partitions
r' (017 @ x'x)R R (21° @ X'K)R o gt gt?
1 1 1 2 ’
(5.6.4) N . _
21 22 21 22 ‘
¥ 1 1 1
l RZ(Q R X x)Rl Rz(Q 2 X X)R2 J H H
R'(Ezll R X'X)r + R'(s'Nzl R X'X)r h 1
1 1 1 2 1
(5.6.5) . b=
21 ~22
1] 1 t ]
RI(@™ @ X'X)r, + RHQ™T @ X'X)x, J [ h,
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2 - —
Then, using H21 =~ H 2 I-I21 Hli' the GLS estimator of 62 is given by
o 22 ~1
(5.6.6) eZ,GLS H (h2 Hzl H hl)
Furthermox i H22 = (H - H H'—l H )_l and noting that in view
e e, since Hyy o1 Hyy Hyp) 7, and noting i e

- ~1
of the form of R, we have Ri(Qll Q X'X).R.l = Z'2 & Q 1, we end up with

1

22, -1 ~22 ~21,711. -1712 1

(H) = Ré{(Q R X'X)-[Q°7(QTT)Y T e(x'z) (Z'2) (Z‘X)]}R2 .
Thus, after some manipulation we obtain
(5.6.7) 9 = (R! AR )"l[R% Ar. + R'(fz21 2 s..)]
2,GLS 2 2 2 2 2 11
where
_ 022 o X'X, (721,711, -1 12 X'Z. 2'2. -1,Z2'X
(5.6.8) A= (Q 8 —) (@™ ~ 0 & (=) () (N)]
and
. 172 [z
5.6.9) 5. - 1 | 1A%zl |2
U 11 N l N Jl N J [ N J

Finally, we can illustrate the general expression in (5.6.7) by
considering the GLS estimator of the second equation in the simple model

of Section 3.5. This turns out to be
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< — ' _ ¥ ' -1 v -1
(5.6.10) GGLS = [k(X'X) + (l-k)(X'Z) (2'2) “(2'X)]
[k (X'y.) + (1l-k) (X'Z) (z'z)"l(z' ) +¢:» (:)21 N s d.]
SR L : Yy 22 11 1
where
&2
_ 1 2 12 _ |1
cT Lz P TE 4y {o] '
e W11%22
and

—i ' — v -1 1
s = N[ylyl ylz(z Z) Z yl]

Note that if we are using a restricted estimator of ﬁ:w12=07'§nd thus

k=1 so that (5.6.10) reduces to the 0.L.S. estimator.
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The results given in Sections 5.4 and 5.5 are a revised vegxsion

of those given in Arellano (1985).

In the derivation of (5.3.1), (5.3.2) and (5.3.3) we have made

use of the result 4 vec(A_l) = - (A ® A')—l d vec(ad), for non-
singular A. The matrices of partial derivatives are immediately
determined from the differential by noting that for an n x 1 vector

valued function ¢ of an m x 1 vector © we have

’ ? 3¢j(9)
d ¢.(6) = ————d 8 (3=1,...,n)
3 kel aek k !
or equivalently d ¢ (6) = Bgé?) d e.

Using X = Z P*' + UB' and (3.2.13) we have

R' vec(T L T'X) = R' vec(f * U'ZP*') - & v(U'U) ;
u,12

moreover since ®u 12 w = 0 for a triangular model (see note 2,
1

Chapter 3), this is equivalent to

L Rivec @' = 2 Rivec (T YG'zR*Y) - o IS v @5 - al.

VN

=)
-,
[ o]
=1

Now using
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YN(® -8) = - ot L Rivec @ NGrzprr) + o (1)
u u P

N

and noting that a first order expansion of VN(w-w) about § yields

- 1 , ~
/N (w-0) = /ﬁIﬁ-v(U U) - w] - ®u,22 ®u,21 /ﬁkeu-e) + Op(l) ,

we have

—-1- 11, -1 -1 .
t ' - -
R'vec (@ "U'X) = [(e )77 + %12 % 22 2, 5 1YN(6 -B)

= 1

+ ®u,l2 VN (w-0) + op(l)

from which the result claimed follows.

(5.6.3) can be re-written as

-1 X'X ~ ~.1 . X'X -
L] — - = — R ——
R2(922 R - ) R2(62 8) R2(922 2 = ) vec(Az)
U'x
-1 72
E— L) ]
R2 vec(Q22 N ) .

Then noting that plim (5é X/N) = plim(ﬁéﬁ B'/N) we have that

~-1 —éx =
' Sy = [
5 vec(Q22 N ) R2 vecl (9

: 1= LT,
plim R 22 921 : I)B'] .

N->00

After some reductions it turns out that a typical element of this

vector takes the form
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tr[( =

where Ok is the kth element ofv62; despite the triangularity of

ﬁ;; and aézz/aek, in general these elements do not vanish unless

le = 0.



- 169 -

APPENDIX 5.A

The Limiting Distribution of the Minimum Distance Estimator

~

Let p be an unconstrained estimator of the s x 1 coefficient vector

5, such that

(5.A.1) plimp = p ,
N->00

~ - d
(5.2.2) VN(p - p) > N(O,V)
Assume that 5 depends on a set of constraint parameters §, 5 = p(g).
We further assume that p(8) = p(§) for some § in the parameter space
implies that § = §, and that p(8) has continuous second partial

derivatives in a neighborhood of §. It is also assumed that

i

D = D(5) 3p(6)/36'|5 has full column rank.

O 2

Let be the minimiser of the distance function

(5.2.3) s(8) = [p - p(8)]* 0lp - p(8)]

where Q is an sxs matrix such that plim Q = é exists and is positive

definite. (5.A.1) and our identification assumption ensure the

consistency of & for §. By the definition of §, 3 s(8)/38|6 = 0 so

that a first order expansion of 9 s(8)/3s about § yields

2
37 s(8) P 9 s(4)

e M A(s-8) = i 22D .
5608 }6* 55 |5

(5.A.4)
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where 0% lies between 6 and §. Now since

9 s(8)

56 = - 2D'qlp - p(§)]

(5.A.5) l‘
8

in view of (5.A.2) we have

3 s(8) d == ==
(5.a.6) /N =21 5~ N(O, 4D'OV_ QD).
% 3 Q v, )

On the other hand, since plim 6* = §, direct evaluation shows that

52 = (8)

(5.A.7) plim [ W

N->o0 { |6*

Hence, using the Cramer linear transformation theorem
~ _ d
(5.A.8) VN(§ - §) ~ N(O, V)

where

(5.5.9) vy = (33D G B v, 85 G 5 bt

= -1 . . .
Clearly, an optimal choice for Q is Vp , in which case the asymptotic

‘covariance. matrix of § reduces to

(5.A.10) V.= (D' Vv ~ D) )
P
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CHAPTER 6

EFFICIENT MD AND GLS ESTIMATORS APPLIED TO PANEL DATA

6.1 Introduction

The methods developed in Chapter 5 suggest an estimation and
modelling strategy for dynamic models from panel data. Regression
specification analyses can be based on Q-unrestricted 3SLS oxr QML
estimates of alternative versions of the model under consideration
(though 3SLS estimates have the advantage of not requiring iterative
optimisation). Once a particular specification has been chosen we
can proceed to estimate and test different structures for  using
minimum distance estimators and minimum chi-square or Wald tests.

If eventually a particular covariance specification is not rejected,
this information can be used to obtain more efficient estimates of the
regression parameters by mean of the GLS procedure discussed in

Sections 5.5 and 5.6. A computer program has been written in Fortran 77

to perform the calculations invelved in this sequence.

This Chapter discusses the application of the results in Chapter 5
to panel data, and algo various calculations are performed to assess
the practical performance of the proposed methods. Section 6.2 presents
the analytical results and.in Sectien 6.3 a simulation ig carried out

and the Michigan earnings function ig re-estimated.
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6.2 The Estimators

We begin by considering in some detail the MD estimation of first
order moving average covariance structures. We use the same notation

as in Chapters 2 and 4. The T x T random effects MA(l) covariance

matrix may alternatively be parameterised as

(6.2.1) Q= 93 9, 9; <. 95
g g g - g
3 3 3 1
where
2 2 2
9, = o (1+A7) + On ’
=g A+ 0
92 '
93 n

2 2
A, 0 and On can be easily retrieved from 9yr 9y and 93 by noting that

2
A solves A© - ¢ A + 1 =0, with ¢ = (gl—g3)/(g2—g3), so that
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2
(6.2.4) o, =93

2
The indeterminacy of A and ¢ is eliminated by choosing the solution

for A that lies inside the unit circle.

Since the restrictions implicit in (6.2.1) are linear so is the
MD esgtimator of g' = (gl 9, g3). On the other hand, since we are

assuming that the elements woo,'wol,...,wOT of the top row of Q%

are unrestricted, the MD estimator of g, r remains unaffected if we

“Mp
drop these elements from the distance function. In order to obtain an

~

explicit expression for Iy it is convenient to introduce a permutation
of w* = V(N*) as follows; let Hp be a permutation of the rows of the

L(T+1) (T+2) unit matrix such that

p P
where
w
* = | I—
“p L rwg = loggr Wygressr¥ng)
“o
and
':
Wh = (0 re e Oqqr CopreeerOpiqigyr O3qreee Oy gy e e i)

wp contains the same coefficients as v () but now they are ordered by

diagonals.



- 174 -

In Section 4.2 we established that the AVM of any asymptotically

efficient estimator of w* unrestricted is given by

~

= ) 1 \ — * * 1
Www Avar(uu).qq + A4 w* w

where

-1 - 3 B(w)
= * * pr—l p = o et
q v(Ba B Q*F + Q% B Bd) ' Ba o .

A i * ig give: : o= W .
ccordingly, the AVM of wp is given by Hp Www Hp pr, say Moreover,

let us introduce the partition

W W
pp pO ]

W =
pp
[ Yor oo

where pr ig 5 T(T+l) x % T(T+1) and WO ig (T+1) x (T+l) corresponding,

0

~

respectively, to the AVM's of wp and w_. Now we can write (6.2.1)

(6]
as
¢ ( 3
¥11 L o o
(6.2.5) wp = | Opq =11 O O 9y 1 =G g.
_______ g
w21 0 1 (o] 2
: Do { 93
wT(T—l) 0 1 o]
w3l 0o .0 1
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ny
M minimises
gMD

s(g)=(wp—Gg).'W‘ (w -~ G g)
thus obtaining
6.2.6) g = wrete wi

~ A

where pr is a consistent estimator of pr and wp is an asymptotically

A

efficient estimator of wp unrestricted. Incidentally, note that if
we replace W;; by an unit matrix we obtain a 'crude minimum distance'
estimator; this estimator is consistent although inefficient, and in

view of the form of the matrix G, crude MD estimators of Jy7 Iy and 9,

are simple arithmetic means given by

" T . ~ T .
é =l2w g =——-—-——-——~:L ZU)
14 14
1,CMD T =1 tF 2,CMD (T-1) £=2 t(t-1)
g = i-—-(w Fooot w )
93,cMp 7+ P31 7T O

where T* = % T(T+l) - T - (T-1). We further remark that (6.2.6) does not
impose the restrictions 95 > 0 and (gl-g3) > O and thus it is not
guaranteed that the implied estimates for 02 and 03 will be positive.
However, significantly negative values of ;2 and/or 8§ will commonly

be an indication of misgpecification. A minimum chi-square test of the

structure (6.2.1) is given by
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~ ~ ~ A ~

— — ] —
(6.2.7) MCS N(wp G gMD) pr(mp G gMD)

MCS is distributed as a x2 with % T(T+1)-3 degrees of freedom under
the null hypothesis.
Once b has been obtained, we may proceed to calculate the MD

estimator of Wor Wqe This is only necessary if the slope parameters

are going to be re-estimated by GLS; Wo ig given by

A Al/\ ~

o o - W.Op pr(wp - G 9o

A ~

where WOp is a consistent estimator of WOp and wo is an asymptotically
efficient Q*-unrestricted estimater of wo.

The previous results can be generalised to higher order moving
average schemes. If we consider an sth order moving average case (with

s < T =~ 1), £ will depend on s + 2 constraint parameters

Q
-

i
[e]

N
-
+
)
B N
F
+
>
+
Q

- 2 2
9, = o} (Al + klxz +.. .t As_lks) + Gn ’

(6.2.9) .
: = 02 A+ 2
gs+l s Gn
gs+2 T Un
where v = g + A, € + + A e Agai A A 02 and 02
it - fie T i) T T My Biqreog)t B9RT Aqreeerhg ne 9

can be retrieved from 9yr--+19 by solving the nonlinear system (6.2.9).

s+2
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However, note that if the only purpose in enforcing the restrictiong
in § is to obtain GLS estimates of the slope parameters, there is no

need to retrieve the moving average coefficients.
Finally, if autoregressive or ARMA schemes have to be estimated,
the corresponding distance function will have to be minimised by

mean of iterative techniques.

GLS Estimation of o, B and v

This is a particular case of the problem of subsystem estimation
studied in Section 5.6; there ig only one unrestricted reduced form
equation and it corresponds to the prediction equation for Yo Let
SRR ~1 -

w*+ * { v
W Www) o Www w (gMD’ wo)

[11 >
{1 >

(6.2.10) w* = v (Q*) = (I -

~
—
[

where is a consistent estimate of :ww as given in (4.2.9).

Q* is the estimate of Q* that leads to the optimal GLS of &' = (o B'y")

robust to non-normality (NNGLS). Moreover, let us introduce the

partition

=10 =11

=11 == 1 1
and let Q77 = Ets} and ZO = (EO ,...,ZOT). Then, direct application

of the results in (5.6.7), (5.6.8) and (5.6.9) gives

” ! +. -1 _+!
(6.2.11) SGLS—(X ¥ x) (X \Py+tbdl)
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where

= - —10 =01 =00
V= (g e @) - [zr(zezn e e W /oo,
T
=0t -1
V= ) vl (T - 2z Ty,
=1

and dl ig an (n+m+l) vector with one in the first position and zero

elsewhere. Finally, in view of the discussion in Section 2.4, a

computationally more convenient expression for 6G is given by

LS
T T =t0=s0 B
" _ =g +' + W W S+ S+ -1
(6.2.12) 8 = D X X 5 %, X
| t=ls=1 w _
T —to=s
Py oat _w__s°,3x+'y,)+¢d1
WL Ey t: *s =00 “t s L

6.3 Numerical Results

Two Monte Carlo experiments were conducted in order to investigate
the performance of GLS and MD estimators, particularly the magnitude
of the finite sample efficiency increase that results from covariance
restrictions. The performance of minimum chi-square tests was also
examined. The present experiments were based on the same model we used
in Section 4.4. However, a shorter number of replications (30 samples)
were generated in this case due to CPU time limitations. Tables 1, 2
and 3 summarise the results. For the normal model, the biases in the

38LS estimates are of a similar magnitude to the biases in the QML
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estimates corresponding to the moving average data reported in Chapter
2; however, the finite sample variances appear to be smaller in the
case of the 3SLS estimator. On the other hand, GLS estimators that
use the a priori information on the covariance matrix have in general
a smaller variance than the 3SLS estimator, although the reduction in
variance varies considerably from one parameter to another. For
example, considering the non-normal model, the variance of the NNGLS
estimate of o is cut by an amount of 22 percent of its 3SLS value, but
the variance reduction relative to NGLS is of only 2 percent. In the
case of the intercept, the NNGLS variance is 14 percent less than its
38LS variance and 6.5 percent less than the NGLS variance, which is

also the case for Yl' In the case of B there is no reduction at all.

Turning to MD estimates of covariance parameters (Table 2), in the
. . 2 2
nonnormal experiment the NNMD variances of Gﬂ' 0~ and A are reduced
by an amount of 49.5, 1 and 24 percent of their NMD variances, respectively.
2 2 ,
However, the biases in the NNMD estimates of On and ¢ are respectively
4 times and 2 times larger than the corresponding NMD biases, whereas

in the normal experiment they are roughly the same.

Table 3 reports the results concerning the minimum chi-square tests.
The performance of the MCS and the NMCS tests turns out to be rather
similar to that of the Wald and normal-Wald tests studied in Chapter 4.
MCS is slightly upward biased, partieularly in the non-noxmal case,
while NMCS shows a bias in the opposite direction in the experiment with
normal data. On the other hand, when the errors are long-tailed the

2
mean and variance of NMCS are far beyond the ¥~ values, as expected.
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Finally, as an illustration we have re-estimated the eaxnings
function forithe US discussed in Section 4.5. Table 4 presents
f2-unrestricted 3SLS estimates, and Tables 5 and 6 present the NNGLS and
NGLS estimates of the slope coefficients and the NNMD and NMD estimates
of the covariance parameters. The mean effects of the explanatory
variables are rather stable for the different methods of estimation
and there are no noticeable differences in relation with our previous
OML estimates. However, the estimated coefficient of the lagged
dependent variable is gsmaller in the present case, what reflects the
lack of identification to which we referred in Section 4.5. Turning
to minimum chi-square tests, the values of MCS and NMCS for Model 1
are rather similar to those found earlier for the Wald and the normal-
Wald statistics and therefore the conclusions are also the same;
namely, that if proper account ig taken of the non-normality of the
errors the first order moving average restrictions are not rejected

at the 90 percent level.



TABLE 1

Biases in the Estimates of the Slope Parametersa

Model with Normal Errors

Parameter CIV 381Ls NGLSb NNGLSC

Model with Long-tailed Errors
ClvV 38Ls NGLS NNGLS

Yo -.0881 4 -.0247 ~-.0170 -.0218
(.0132) " (.0115) (.0098)  (.0108)

Yy -.0050 .0018 .0024 .0014
(.0034) (.0036) (.0035) (.0035)

B -,0075 .0004 . 0007 .0006
(.0017) (.0017) (.0017) (.0018)

o .0294 .0065 .0043 .0057
(.0036) (.0031) (.0025) (.0028)

-.0805 -.0177 ~-.0006 -.0158
(.0116) (.0l00) (.0096) (.0093)

-.0018 .0055 .0067 .0048
(.0033) (.0036) (.0036) (.0034)

-.0072 .0001 .000% . 0000
(.0016) (.0017) (.0017) (.00l7)

.0266 .0043 -.0007 .0038
(.0034) (.0028) (.0025) (.0025)

N = 500, T =9, 30 replications

Efficient GLS estimator under normality

Standard errors of bias.

Efficient GLS estimator robust to non-normality

- 18T -
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TABLE 2

' a
Biases in the Estimates of the Covariance Parameters

Model with Normal Erroxs Model with Long-Tailed Errors
Parameter NMDP NNMD® NMD NNMD
ai ~.0074 ., -.0086 . +.0061 ~.0244
(.0033) (.0035) (.0066) (.0047)
02 -.0095 -.0094 -.0330 -.0680
(.0012) (.0014) {.0024) (.0024)
A -.0033 -.0028 .0036 -.0001
(.0038) (.0040) (.0039) (.0034)

N =500, T =9, 30 replications
Efficient MD estimator under normality
Efficient MD estimator robust. to non-normality

Standard errors of bias.
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TABLE 3

Simulation Results for Minimum Chi-Square Tests

Model with Normal Errors Model with Long-Tailed Errors
nmMcs® mMesP NMCS MCS
Size Number of Rejections out of 30 casesC
0.10 2 8 30 8
0.05 1 3 30 7
0.01 o] 2 29 2
Mean 40.176 45.467 102.723 48.876
Variance 77.115 109.175 629.642 124.993

Minimum Chi-square Test under normality

Robust Minimum Chi-square Test

According to a chi-square with 42 degrees of freedom.



Three Stage Least Squares Estimates
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TABLE 4

Dependent Variable:

a
Log Hourly Earnings

Model 1

Estimates Derived o
Mean Effects

Model 2

Estimates Derived
Mean Effects

Years of Education .0168 b .0755 .0le7 .0532
(.0039) (.0037)
Age .0076 .0340 .0107 .0341
(.0035) (.0038)
Age squared -, 000072 -.0003 -.000103 -.0003
(.000036) ( .000040)
Race® .0332 .1497 .0470 .1494
(.01l60) (.0193)
Occupationd - - .0768 .2445
(.0183)
Lagged dependent L7779 .6857
variable (.0460) (.0549)
a

Data in mean deviation form (N=742, T=9, period 1967-1976)

o Standard errors in parentheses

¢ Dummy variable: 1 if individual is white

d Dummy variable: 1 if individual belongs to professional or managerial
groups in 1967

e

Calculated as yﬁ = yk/(l - o).
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TABLE 5

NNGLS Estimates of Slope Parameters and NNMD Estimates

of Covariance Parameters

ﬁDependent-Variable: Log Hourly Earnings

Model 1 Model 2
Estimates Derived Estimates Derived
Mean Effects Mean Effects
Years of Education .o166% .0751 .0166 .0530
Age .0075 .0342 .0104 .0332
Age squared -.000072 -.0003 -.00010 -.0003
Race .0333 .1506 .0470 .1502
Occupation - - .0759 .2428
Lagged dependent
variable » .7789 .6873
A -.3983 -.3661
(.0381) (.0433)
2b
g .1303
2
o} .0478 .0463
(.0026) (.0025)
2 2° 2
Gn .0062 on*=.1275 .0094 o, =.0958
{.0020) (.0028)
MCSd 51.1 (D.F.=42) 54.4

S.E. of NNGLS Estimates have not been calculated; however,
in Table 4 provide an upper bound for NNGLS S.E.
b 2 2,2
=g /o
P n/
c 2 2 2
of =g 1-a
e = Op/ (1m)
d

Robugt Minimum Chi~Square Tests.

38LS S.E.
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TABLE 6

NGLS Estimates of Slope Parameters and NMD Estimates

Dependent Variable: Log Hourly Earnings

of Covari

ance Parameters

Model 1 Model 2
Estimates Derived Estimates Derived
" Mean Effects Mean Effects
Years of Education .0153 .0745 .0133 .0518
Age .0073 .0356 .0087 .0336
Age squared -.000071 -.0003 -, 000085 -.0003
Race .0294 .1428 .0366 L1421
Occupation - - .0621 .2413
Lagged dependent
variable . 7940 .7425
A -.3966 a -.3663
(.0250) (.0285)
2
p .0931 .1450
2
o] .0612 .0594
(.0014) (.0013)
Gi .0057 02*=.l34l .0086 02*=.l299
(.0017) (.0024)
NMCSb 140.5 (D.F.=42) 143.6

Reported S.E. of NMD estimates are only consistent under normality

Minimum Chi-square Test under normality.
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CONCLUSTION

This thesis has presented methods of estimation and tests of
specification for dynamic econometric models from panel data when the
errors are serially correlated and the number of time periods is
small. We have derived the asymptotic properties of such estimators
in the context of general triangular systems with covariance restrictions
when normality holds and also when the errors are non-normal. Throughout,
the quasi-maximum likelihood framework has proved useful from a

theoretical point of view in organising the relevant discussion.

OML estimators are also of interest in view of their satisfactory
performance in Monte Carlo experiments, which is further supported by
the results in oux empirical application using the Michigan data.
Nevertheless, there exists a full information minimum distance estimator
that is never less efficient than the QML and is strictly better when the
assumption of normality is false. Moreover, we have developed separate
MD estimators of covariance parameters and GLS estimators of slope
coefficients that are asymptotically equivalent to the full information
MD, thus providing a computationaliy‘simplex‘alternative for the efficient

estimation of dynamic models from panel data.

Tests of covariance specification ought not to be based upon the
assumption of normality. Robust Wald and minimum chi-square tests as

well as appropriate probability limits for the guasi-likelihood ratio
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test have been proposed and successfully appllied in testing the

serial correlation structure to earnings equations for the US.

A comprehensive treatment of the statistical problems posed by
models with non-exogenous explanatory variables or variables with

measurement errors still has to be done. But this will be the purpose

of future research.
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