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Abstract

We develop likelihood-based estimators for autoregressive panel data models that are consistent in the

presence of time series heteroskedasticity. Bias-corrected conditional score estimators, random effects

maximum likelihood in levels and first differences, and estimators that impose mean stationarity are

considered for general autoregressive models with individual effects. We investigate identification

under unit roots, and show that random effects estimation in levels may achieve substantial effi ciency

gains relative to estimation from data in differences. In an empirical application, we find evidence

against unit roots in individual earnings processes from the Panel Study of Income Dynamics and the

Spanish section of the European Community Household Panel.

Keywords: Autoregressive panel data models; time series heteroskedasticity; bias-corrected score;

random effects; earnings process.
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1 Introduction

The generalized method of moments (GMM) is routinely employed in the estimation of autoregressive

models from short panels, because it provides simple estimates that are fixed-T consistent and opti-

mally enforce the model’s restrictions on the data covariance matrix. Yet they are known to frequently

exhibit poor properties in finite samples and may be asymptotically biased if T is not treated as fixed.

There are also available in the literature fixed-T consistent maximum likelihood methods that

are likely to have very different properties to GMM in finite samples and double asymptotics. This

category includes random effects estimators of the type considered by Blundell and Smith (1991)

and Alvarez and Arellano (2003), the conditional likelihood estimator in Lancaster (2002), and the

estimators for first-differenced data in Hsiao, Pesaran, and Tahmiscioglu (2002). However, the existing

likelihood-based estimators require that the error variances remain constant through time for fixed-T

consistency. Lack of robustness to time series heteroskedasticity is an important limitation because

the dispersion of the cross-sectional distribution of errors at each period may differ not only due to

nonstationarity at the individual level but also as a result of aggregate effects.

In this paper we develop likelihood-based estimators of autoregressive models that are robust in the

sense that remain consistent under the same assumptions as standard panel GMM procedures.1 From

a GMM perspective, likelihood-based estimation can be motivated as a way of reducing the number of

moments available for estimation, and hence the extent of bias in second-order or double asymptotics.

Our methods are robust in the sense used in Gourieroux, Monfort, and Trognon (1984) of providing

consistent estimates of the conditional mean parameters when the chosen likelihood function does not

necessarily contain the true distribution.

The paper is organized as follows. Section 2 presents the model and a discussion of the assumptions.

Section 3 explains how to obtain fixed-T consistent estimates of AR(p) coeffi cients from bias-corrected

first-order conditions of a heteroskedastic within-group likelihood (bias-corrected score (BCS) estima-

tion).

Section 4 presents ML estimates from a likelihood averaged with respect to normally distributed

effects and initial observations (random effects maximum likelihood (RML) estimation). We show that

such an averaging leads to a modified within-group criterion that balances off the within and between

biases. The modification term, which depends on the data in levels, may lead to substantial effi ciency

gains relative to estimators from differenced data alone, and is crucial for identification in very short

panels. Heteroskedastic RML is our recommended likelihood-based method. It is computationally

straightforward and can be easily extended to unbalanced and multivariate panels. Moreover, work

by Chamberlain and Moreira (2009) and Bai (2013) has established additional desirable properties of

this type of estimator from a fixed-effects perspective in finite samples and in large T -and-N samples,

respectively. We shall return to a discussion of these points in the concluding section.

1Cf. Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and Bover (1995), and Ahn and

Schmidt (1995).
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Section 5 presents RML estimates from data in differences, and Section 6 discusses conditional

and marginal ML estimation under stationarity in mean. Interestingly, we show that the random

effects likelihood for the differenced data coincides with the likelihood conditioned on the estimated

effects under mean stationarity, so that this restriction is immaterial to the data in differences when

homoskedasticity is not imposed.

Section 7 discusses the possibility of identification failure for a first-order process with an unit

root, in view that in a three-wave panel a random walk without heterogeneous drift is known to be

underidentified. We show that in a four-wave panel there is local identification but not global iden-

tification under heteroskedasticity, and global identification but first-order underidentification under

homoskedasticity. In panels with more than four waves, we find that the autoregressive coeffi cient is

globally identified unless the error variances change with a constant rate of growth.

Section 8 reports numerical calculations of the asymptotic variances of BCS and RML estimators

in differences relative to RML in levels, calculated under the assumption of normality. In Section 9

we present estimates of first- and second-order autoregressive equations for individual labour income

using data from the Panel Study of Income Dynamics (PSID) and the Spanish section of the European

Community Household Panel, and find evidence against unit roots in earnings. The PSID result differs

greatly from the income processes that impose a unit root, often employed in the empirical literatures

on consumption and labour supply (e.g. Hall and Mishkin, 1982; Abowd and Card, 1989, or Meghir and

Pistaferri, 2004). However, it is not inconsistent with the findings of later studies that have explored

more general models by allowing for richer forms of heterogeneity (Browning, Ejrnæs and Alvarez,

2010) or nonlinear dynamics (Arellano, Blundell and Bonhomme, 2017). Our result is unaffected by

adding moving average components to the specification of the earnings process.

Finally, Section 10 contains further comments on the properties of our estimators taking into

account results from the literature, and provides a summary of the major conclusions of the paper.

Proofs and technical material are in the Appendix.

2 Model and Assumptions

We consider an autoregressive model for panel data given by

yit = α1yi(t−1) + ...+ αpyi(t−p) + ηi + vit (t = 1, ..., T ; i = 1, ..., N) . (1)

The variables
(
yi(1−p), ..., yi0, ..., yiT

)
are observed but ηi is an unobservable individual effect. The

p × 1 vector of initial observations is denoted as y0
i =

(
yi(1−p), ..., yi0

)′.2 We abstract from additive

aggregate effects by regarding yit as a deviation from a time effect. It is convenient to introduce the

notation xit =
(
yi(t−1), ..., yi(t−p)

)′, α = (α1, ..., αp)
′, and write the model in the form:

yi = Xiα+ ηiι+ vi (2)

2We assume that y0
i is observed for notational convenience, so that the actual number of waves in the data is T

o = T+p.
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where yi = (yi1, ..., yiT )′, Xi = (xi1, ..., xiT )′, ι is a T × 1 vector of ones, and vi = (vi1, ..., viT )′.

The following assumption will be maintained throughout:

Assumption A :
{
ηi, y

0
i , yi1, ..., yiT

}N
i=1

is a random sample from a well defined joint distribution with

finite fourth-order moments that satisfies

E
(
vit | ηi, y0

i , yi1, ..., yi(t−1)

)
= 0 (t = 1, ..., T ) . (3)

This is our core condition in the sense that we wish to consider estimators that are consistent and

asymptotically normal for fixed T and large N under Assumption A.

Note that neither time series nor conditional homoskedasticity are assumed.3 That is, the uncon-

ditional variances of the errors, denoted as

E
(
v2
it

)
= σ2

t , (4)

are allowed to change with t and to differ from the conditional variances

E
(
v2
it | ηi, y0

i , yi1, ..., yi(t−1)

)
.

Time series homoskedasticity is a particularly restrictive assumption in the context of short mi-

cropanels, both because estimators that enforce homoskedasticity are inconsistent when the assumption

fails, and because it can be easily violated if aggregate effects are present in the conditional variance

of the process. See Arellano (2003, Section 6.4.3).

Also note that under stability of the process,4 we do not assume stationarity in mean. Let the

covariance matrix of
(
ηi, y

0
i

)
be denoted as

V ar

(
ηi

y0
i

)
=

(
σ2
η γη0

γ0η Γ00

)
. (5)

For example, when p = 1 (so that α = α1, y0
i = yi0, and Γ00 = γ00) model (1) can be written as

yit =
(
1 + α+ ...+ αt−1

)
ηi + αtyi0 +

(
vit + αvi(t−1) + ...+ αt−1vi1

)
. (6)

Thus, when |α| < 1, for large t E (yit | ηi) tends to the steady state mean µi = ηi/ (1− α). If the

process started in the distant past we would have

yi0 =
ηi

(1− α)
+
∞∑
j=0

αjvi(−j), (7)

implying γη0 = σ2
η/ (1− α) and γ00 = σ2

η/ (1− α)2 +
∑∞

j=0 α
2jσ2
−j .

5 However, here γη0 and γ00 are

treated as free parameters. Note that an implication of lack of stationarity in mean is that the data

3Time series and conditional homoskedasticity assumptions are discussed in Arellano (2003, p. 82—83).
4That is, when the roots of the equation zp − α1z

p−1 − ...− αp = 0 are inside the unit circle.
5With the addition of homoskedasticity γ00 = σ2

η/ (1− α)2 + σ2/
(
1− α2

)
.
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in first differences will generally depend on individual effects. Estimation under stationarity in mean

is discussed in Section 6.

In a short panel, steady state assumptions about initial observations are also critical since estima-

tors that impose them lose consistency if the assumptions fail. Moreover, there are relevant applied

situations in which a stable process approximates well the dynamics of data, and yet there are theo-

retical or empirical grounds to believe that the distribution of initial observations does not coincide

with the steady state distribution of the process (cf. Hause, 1980, or Barro and Sala-i-Martin, 1995,

and discussion in Arellano, 2003a).

In the next two sections, we introduce the likelihood of the data given initial conditions and the

two types of likelihood functions on which our estimates are based. Namely, these are a likelihood

conditioned on the MLE of the effects and a ("random effects") likelihood in which the effects are

averaged out using normal probability weights with a variance that is also estimated. Later, we

examine the role of mean stationarity restrictions. Altogether, we consider four different estimators,

which are displayed in Table A1 according to whether they use the data in levels or in differences,

and whether they impose mean stationarity or not. Random effects ML in levels will emerge as the

natural estimation approach unless the effects have a very large variance that cannot be estimated. As

for mean stationarity restrictions, their justification is often weak, and in our applications they turn

out not to be essential for precision nor are they supported by the data.

3 Bias-Corrected Conditional Score Estimation

3.1 Normal Likelihood Given Initial Observations and Effects

Under the normality assumption

yit | y0
i , ..., yi(t−1), ηi ∼ N

(
α1yi(t−1) + ...+ αpyi(t−p) + ηi, σ

2
t

)
(t = 1, ..., T ) , (Assumption G1)

the log density of yi conditioned on
(
y0
i , ηi

)
is given by

ln f
(
yi | y0

i , ηi
)

= −1

2
ln det Λ− 1

2
v′iΛ
−1vi (8)

where Λ is a diagonal matrix with elements
(
σ2

1, ..., σ
2
T

)
.

The MLE of ηi for given α, σ
2
1, ..., σ

2
T that maximizes (8) is

η̂i = yi − x′iα (9)

where yi and xi denote weighted averages of the form yi =
∑T

t=1 ϕtyit with weights

ϕt =
σ−2
t

σ−2
1 + ...+ σ−2

T

. (10)

Concentrating the log-likelihood function with respect to the individual effects we obtain

L∗ =
N

2
ln det Φ− NT

2
lnωT −

1

2ωT

N∑
i=1

v′i
(
Φ− Φιι′Φ

)
vi (11)
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where Φ is a diagonal matrix with elements (ϕ1, ..., ϕT ) and ωT is the variance of the weighted average

error:

ωT = V ar (vi) =
1

σ−2
1 + ...+ σ−2

T

. (12)

It is useful at this point to note that the following identities hold:

v′iD
′ (DΛD′

)−1
Dvi =

1

ωT
v′i
(
Φ− Φιι′Φ

)
vi =

T∑
t=1

(vit − vi)2

σ2
t

(13)

ln det
(
DΛD′

)
= − ln det Φ + (T − 1) lnωT (14)

where D is the (T − 1) × T first-difference matrix operator. Thus, L∗ can be equally regarded as a

function of the data in first differences or in deviations from (weighted) means.6 Note that with T = 3

(i.e. (3 + p) time series observations per unit), DΛD′ is unrestricted:

DΛD′ =

(
σ2

1 + σ2
2 −σ2

2

−σ2
2 σ2

2 + σ2
3

)
.

Moreover, the relationship between period-specific and within-group variances is given by

σ2
t = E

[
(vit − vi)2

]
+ ωT (t = 1, ...T ) . (15)

The MLE of α for given weights is the following heteroskedastic within-group estimator

α̂ =

[
N∑
i=1

T∑
t=1

ϕt (xit − xi) (xit − xi)′
]−1 N∑

i=1

T∑
t=1

ϕt (xit − xi) (yit − yi) , (16)

which in first differences can also be written as

α̂ =

[
N∑
i=1

X ′iD
′ (DΛD′

)−1
DXi

]−1 N∑
i=1

X ′iD
′ (DΛD′

)−1
Dyi. (17)

Finally, the MLE of ωT for given weights is

ω̂T =
1

TN

N∑
i=1

T∑
t=1

ϕt (vit − vi)2 .

Note that, in common with the situation under homoskedasticity, both α̂ and ω̂T suffer from the

incidental parameters problem. Firstly, although xit and vit are orthogonal, their deviations, (xit − xi)
and (vit − vi), are not, leading to a bias in α̂. Secondly, ω̂T evaluated at the true errors and weights
will be inconsistent for fixed T due to lack of degrees of freedom adjustment, as evidenced by the

equality

ωT = E

[
1

(T − 1)

T∑
t=1

ϕt (vit − vi)2

]
. (18)

6According to (13), the weighted sum of squared errors in deviations is also a weighted sum of cross-products of the

errors in first differences ∆vit = ∆yit −∆x′itα contained in the vector Dvi.
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3.2 Likelihood Conditioned on the ML Estimates of the Effects

Provided G1 holds, the ML estimates of the effects η̂i = ηi + vi at the true values of the common

parameters
(
α, σ2

1, ..., σ
2
T

)
satisfy

η̂i | y0
i , ηi ∼ N (ηi, ωT ) . (19)

Moreover, the conditional log density of yi given yi0, ηi, η̂i is given by

ln f
(
yi | y0

i , ηi, η̂i
)

= −1

2
ln det

(
DΛD′

)
− 1

2
v′iD

′ (DΛD′
)−1

Dvi, (20)

which is a within-group density that does not depend on ηi. This result follows from subtracting

(8) and the normal density of η̂i | y0
i , ηi while using the identities (13)-(14). Thus, (8) admits the

decomposition

f
(
yi | y0

i , ηi
)

= f
(
yi | y0

i , η̂i
)
f
(
η̂i | y0

i , ηi
)
, (21)

which confines the dependence on ηi to the conditional density of η̂i. Similarly, any marginal density

for yi | y0
i , which uses a prior distribution on the effects, can be written as

f
(
yi | y0

i

)
= f

(
yi | y0

i , η̂i
)
f
(
η̂i | y0

i

)
. (22)

The log-likelihood conditioned on η̂i is therefore given by

LC =
N

2
ln det Φ− N (T − 1)

2
lnωT −

1

2ωT

N∑
i=1

v′i
(
Φ− Φιι′Φ

)
vi (23)

or

LC = −N
2

ln det
(
DΛD′

)
− 1

2

N∑
i=1

v′iD
′ (DΛD′

)−1
Dvi, (24)

which is similar to the concentrated likelihood (11) except that it incorporates a correction for degrees

of freedom. In a model with strictly exogenous xit, LC coincides with the likelihood conditioned on suf-

ficient statistics for the effects, which provides consistent estimates of both the regression and residual

variance parameters. However, in the autoregressive situation, the estimator of α that maximizes LC
satisfies a heteroskedastic within-group equation of the same form as (16) and is therefore inconsistent

for fixed T .

Inference from a likelihood conditioned on the ML estimates of the effects may lead to consistent

estimates provided the scores of the common parameters and the effects are uncorrelated (Cox and

Reid, 1987). Cox and Reid’s approximate conditional likelihood approach was motivated by the fact

that in an exponential family model, it is optimal to condition on suffi cient statistics for the nuisance

parameters, and these can be regarded as the MLE of nuisance parameters chosen in a form to be

orthogonal to the parameters of interest. From this perspective, the inconsistency of the within-group
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estimator in the autoregressive model results from lack of orthogonality between the scores of α and

the effects.

In the homoskedastic case with p = 1, Lancaster (2002) showed that a likelihood conditioned on

the ML estimate of an orthogonalized effect led to a bias-corrected score and a consistent method-of-

moments estimator under homoskedasticity. Following a similar approach, we construct a heteroskedasticity-

consistent estimator as the solution to a bias corrected version of the first-order conditions from the

likelihood conditioned on the MLE of the effects.

3.2.1 First-Order Conditions

The derivatives of LC with respect to α and θ =
(
σ2

1...σ
2
T

)′ are given by
∂LC
∂α

=
N∑
i=1

X ′iD
′ (DΛD′

)−1
Dvi. (25)

∂LC
∂θ

=
1

2

N∑
i=1

K ′
(
DΛD′ ⊗DΛD′

)−1
vec

(
Dviv

′
iD
′ −DΛD′

)
(26)

where K is a (T − 1)2 × T selection matrix such that vec (DΛD′) = Kθ.

Thus, the conditional MLE of α and θ solve, respectively, (17) and

θ̂ =
(
K ′Υ−1K

)−1
K ′Υ−1 1

N

N∑
i=1

vec
(
Dviv

′
iD
′) . (27)

where Υ = DΛD′ ⊗DΛD′.7

3.2.2 Bias-Corrected Conditional Scores

Under Assumption A the expected conditional ML scores are given by

E
[
X ′iD

′ (DΛD′
)−1

Dvi

]
= −hT (α,ϕ) (28)

E
[
K ′
(
DΛD′ ⊗DΛD′

)−1
vec

(
Dviv

′
iD
′ −DΛD′

)]
= 0 (29)

where

hT (α,ϕ) =


ϕ′C1ι
...

ϕ′Cpι

 (30)

7Maximizing LC with respect to ωT and (ϕ1...ϕT ) for given α, subject to the adding-up restriction ι′Φι = 1, the

first-order conditions for variance parameters can also be written in a form analogous to (15) and (18) as shown in

Appendix A.1.
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with

Cj =

(
0 0

B−1
T−j 0

)
(31)

and BT−j is a (T − j)× (T − j) matrix such that

BT−j =



1 0 . . . 0 . . . 0 0

−α1 1 0 . . . 0 0

−α2 −α1
. . . 0 . . . 0 0

. . . . . . . . .
...

...

0 0 1 0

0 0 . . . −αp . . . −α1 1


. (32)

When p = 1, hT (α,ϕ) is a scalar function given by

hT (α,ϕ) =

T−1∑
t=1

(
1 + α+ ...+ αt−1

)
ϕt+1. (33)

Under homoskedasticity ϕt = T−1 for all t, and the bias function (33) boils down to the expression in

Nickell (1981) and Lancaster (2002), which for |α| < 1 is8

hT (α) =
1

(1− α)

[
1− 1

T

(
1− αT
1− α

)]
. (34)

In view of (28)-(29), heteroskedasticity-consistent GMM estimators can be obtained as a solution

to the nonlinear estimating equations

N∑
i=1

X ′iD
′ (DΛD′

)−1
Dvi +NhT (α,ϕ) = 0 (35)

K ′
(
DΛD′ ⊗DΛD′

)−1
vec

N∑
i=1

(
Dviv

′
iD
′ −DΛD′

)
= 0. (36)

Consistency of the bias-corrected score estimator (BCS) that solves (35)-(36) does not depend on

normality nor on conditional or time-series homoskedasticity.

BCS estimation is not possible from a (2 + p)-wave panel (i.e. T = 2) because in that case α is

not identified from the expected scores, which for p = 1 are given by

E [(yi1 − yi0) (vi2 − vi1)] = −σ2
1 (37)

E
[
(vi2 − vi1)2

]
= σ2

1 + σ2
2. (38)

8Note that although the bias of the CML scores only depends on (α,ϕ), the asymptotic bias of the CML estimator of

α as N →∞ also depends on the covariance matrix of
(
ηi, y

0
i

)
. Approximate bias formulae for homoskedastic WG were

derived by Hahn and Kuersteiner (2002), and Alvarez and Arellano (2003). A bias-corrected estimator so constructed

removes bias to order T−2 but is not fixed-T consistent.
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This situation is in contrast with Lancaster’s BCS estimator that enforces time series homoskedasticity

(hence achieving identification from (37)-(38)), or the bias-corrected within-group estimator considered

in Kiviet (1995).

The moment equations (28)-(29) are satisfied at the true values of (α, θ) but there may be other

solutions. For example, in Section 7 we find that when T = 3, p = 1 and α = 1 there are two

observationally equivalent solutions under heteroskedasticity, so that α and θ are only locally identified.

The solutions of the bias corrected scores for autoregressive models without heteroskedasticity have

been studied by Dhaene and Jochmans (2016). A characterization of the solutions of bias corrected

scores with time series heteroskedasticity remains an open question.

3.3 Modified Conditional Likelihood Interpretation

If the weights ϕ are known and p = 1, the method of moments estimators of α and ωT based on the

bias corrected scores

E
[
x′iD

′ (DΦ−1D′
)−1

Dvi

]
= −ωThT (α,ϕ) (39)

E
[
v′iD

′ (DΦ−1D′
)−1

Dvi

]
= (T − 1)ωT (40)

can be regarded as the maximizers of the criterion function

LCR = LC +NbT (α,ϕ) (41)

where

bT (α,ϕ) =

T−1∑
t=1

(
ϕt+1 + ...+ ϕT

)
t

αt, (42)

which is the integral of hT (α,ϕ) up to an arbitrary constant of integration that may depend on ϕ.

Following Lancaster (2002), LCR can be interpreted as a Cox-Reid likelihood conditioned on the

ML estimate λ̂i of an orthogonal effect λi (Arellano, 2003a, p. 105)

LCR =

N∑
i=1

ln f
(
yi | yi0, λ̂i

)
, (43)

or as an integrated likelihood

LCR =

N∑
i=1

ln f (yi | yi0) =

N∑
i=1

ln f (yi | yi0, η̂i) +

N∑
i=1

ln f (η̂i | yi0) (44)

in which the chosen prior distribution of the effects conditioned on yi0 is such that the marginal density

of η̂i | yi0 satisfies:

f (η̂i | yi0) = κi (ϕ) ebT (α,ϕ) (45)

where κi (ϕ) is a version of the constant of integration.
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The first interpretation is based on a decomposition conditional on λ̂i similar to (21), whereas the

second relies on factorization (22).

With unknown weights and p > 1 there is no orthogonal reparameterization, but for a heteroskedas-

tic AR(p) model with unknown weights the BCS estimating equations coincide with the locally or-

thogonal Cox-Reid score function discussed in Woutersen (2002), Arellano (2003b), and Arellano and

Hahn (2007), as we show in Appendix C. Thus, in our setting a first-order bias adjustment to the

score is an exact correction that removes fully the bias, hence leading to fixed-T consistency.9

4 Random Effects Estimation

The analysis so far was conditional on y0
i and η̂i. Conditioning on y

0
i avoided steady state restrictions,

but by conditioning on η̂i estimation is exclusively based on the data in first-differences. We now

turn to explore marginal maximum likelihood estimation based on a normal prior distribution of the

effects conditioned on y0
i , with linear mean and constant variance. A suffi cient condition that we use

for simplicity is:

Assumption G2:
(
ηi, y

0
i

)
is jointly normally distributed with an unrestricted covariance matrix.

Normality of y0
i is inessential because its variance matrix is a free parameter, so the following

analysis can be regarded as conditional on y0
i . Clearly, assumptions G1 and G2 together imply

that
(
ηi, y

0
i , yi1, ..., yiT

)
are jointly normally distributed.

4.1 The Random Effects Log-Likelihood

Under G2, the MLE of ηi conditioned on y
0
i is normally distributed as

η̂i | y0
i ∼ N

(
φ′y0

i , σ
2
ε

)
, (46)

where φ = Γ−1
00 γη0 and σ

2
ε = ωT + σ2

η − γ′η0Γ−1
00 γη0. So, using factorization (22), the density of yi

conditioned on y0
i but marginal on ηi is:

ln f
(
yi | y0

i

)
= −1

2
ln det

(
DΛD′

)
− 1

2
v′iD

′ (DΛD′
)−1

Dvi

−1

2
lnσ2

ε −
1

2σ2
ε

(
yi − α′xi − φ′y0

i

)2
. (47)

Thus, letting ui = yi − α′xi, the random effects log-likelihood is a function of
(
α, σ2

1, ..., σ
2
T , φ, σ

2
ε

)
9Dhaene and Jochmans (2016, Lemma 2.2) show that in a homoskedastic AR(p) model there is an adjusted log-

likelihood associated with the bias-corrected scores, despite the fact that orthogonalization is not possible when p > 1.

They also show that there is a corresponding data-independent bias-reducing (bias-eliminating in this case) prior in the

sense of Arellano and Bonhomme (2009).
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given by

LR = LC −
N

2
lnσ2

ε −
1

2σ2
ε

N∑
i=1

(
ui − φ′y0

i

)2
, (48)

with scores:

∂LR
∂α

=
∂LC
∂α

+
1

σ2
ε

N∑
i=1

xi
(
ui − φ′y0

i

)
(49)

∂LR
∂θ

=
∂LC
∂θ

+
1

σ2
ε

N∑
i=1

ΦD′
(
DΛD′

)−1
Dui

(
ui − φ′y0

i

)
(50)

∂LR
∂φ

=
1

σ2
ε

N∑
i=1

y0
i

(
ui − φ′y0

i

)
(51)

∂LR
∂σ2

ε

=
1

2σ4
ε

N∑
i=1

[(
ui − φ′y0

i

)2 − σ2
ε

]
. (52)

Under Assumption A the expectations of the second terms in the scores for α and θ at true values

are (see Appendix A):

E

[
1

σ2
ε

xi
(
ui − φ′y0

i

)]
= hT (α,ϕ) (53)

and

E

[
1

σ2
ε

ΦD′
(
DΛD′

)−1
Dvi

(
ui − φ′y0

i

)]
= 0. (54)

Therefore, in view of (28) and (29), under Assumption A the expected scores evaluated at the true

values of the parameters are equal to zero:

E

[
X ′iD

′ (DΛD′
)−1

Dvi +
1

σ2
ε

xi
(
ui − φ′y0

i

)]
= 0

E

[
1

2
K ′
(
DΛD′ ⊗DΛD′

)−1
vec

(
Dviv

′
iD
′ −DΛD′

)
+

1

σ2
ε

ΦD′
(
DΛD′

)−1
Dvi

(
ui − φ′y0

i

)]
= 0

E
[
y0
i

(
ui − φ′y0

i

)]
= 0

E
[(
ui − φ′y0

i

)2 − σ2
ε

]
= 0.

The random effects maximum likelihood estimator (RML) solves the estimating equations (49)-

(52) and is consistent and asymptotically normal under assumption A regardless of non-normality or

conditional heteroskedasticity.

11



In a (2 + p)-wave panel (T = 2) the model is just-identified and the RML estimator coincides with

the Anderson-Hsiao (1981) estimator based on the instrumental-variable conditions

E
[
y0
i

(
∆yi2 − α1∆yi1 − ...− αp∆yi(2−p)

)]
= 0. (55)

A random effects likelihood function for an autoregressive model with time series heteroskedasticity

under the normality assumption G2 was first considered in Chamberlain (1980, p. 234-235). Similar

likelihood functions for homoskedastic models have been considered in Blundell and Smith (1991),

Sims (2000), and Alvarez and Arellano (2003). Correlated random effects approaches more generally

are discussed in detail in Chamberlain (1984).

4.2 Effi ciency Comparisons

In order to compare the relative effi ciency of the BCS and RML estimators, it is useful to notice that

RML is asymptotically equivalent to an overidentified GMM estimator that uses the 2 (T + p) moment

conditions:

E
[
X ′iD

′ (DΛD′
)−1

Dvi

]
= −hT (α,ϕ) (56)

E
[
K ′
(
DΛD′ ⊗DΛD′

)−1
vec

(
Dviv

′
iD
′ −DΛD′

)]
= 0 (57)

E
[(
DΛD′

)−1
Dvi

(
ui − φ′y0

i

)]
= 0 (58)

E
[
y0
i

(
ui − φ′y0

i

)]
= 0 (59)

E
[(
ui − φ′y0

i

)2 − σ2
ε

]
= 0. (60)

and a weight matrix calculated under the assumption of normality. Equation (53) gives the between-

group covariance between the regressors and the error, in the same way as the BCS moments (56)

specified the within-group covariance, but it is a redundant moment condition given (58), (59) and

(60).10

BCS is based on moments (56) and (57), but RML is also using the information from the data in

levels contained in (58). The (T − 1) overidentifying moments in (58) state the orthogonality between

within-group and between-group errors (partialling out the initial observations). Finally, (59) and (60)

are unrestricted moments that determine φ and σ2
ε.

Therefore, if the data are normally distributed RML is asymptotically more effi cient than BCS.

Otherwise, they may not be ordered. Nevertheless, a GMM estimator based on (56)-(60) and a robust

weight matrix that remains optimal under nonnormality will never be less effi cient asymptotically than

BCS, and may achieve a significant reduction in the number of moments relative to standard GMM

procedures.
10 Interestingly,

(
σ2

1, σ
2
2

)
are identified from the RML scores when T = 2. In that case (57) determines

(
σ2

1 + σ2
2

)
and

(58) determines ϕ1. Note that when T = 2 one of the two moments in (57) is redundant.
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4.3 The Concentrated Random Effects Log-Likelihood

Concentrating LR with respect to σ2
ε and φ we obtain the following criterion function that only depends

on α and θ:

L∗R = LC −
N

2
ln
[(
y − α′x

)′
S0

(
y − α′x

)]
(61)

where S0 = IN − Y0 (Y ′0Y0)−1 Y ′0 , and Y0 =
(
y0

1, ..., y
0
N

)′.
L∗R can be regarded as a modified heteroskedastic within-group criterion with a correction term

that becomes less important as T increases.

A simple OLS consistent estimator of the variance weights
(
ϕ1, ..., ϕT−1

)
for given α can be obtained

from the fact that E (ui∆vit) = 0. Such an estimator is useful for providing starting values for nonlinear

likelihood-based estimation. The estimator is presented in Appendix A.4.

5 Estimation from the Data in Differences

Until now, the starting point was an interest in the conditional distribution of (yi1, ..., yiT ) given y0
i

and ηi under the assumption that y
0
i was observed but ηi was not. That is, a situation in which the

data was a random sample of the vectors
(
y0′
i , yi1, ..., yiT

)
. In this section we maintain the interest

in the same conditional distribution as before, but assume that only changes of the yit variables are

observed, so that the data on individual i is
(
∆yi(2−p), ...,∆yiT

)
. This situation is clearly relevant

when the data source only provides information on changes, but it may also be interesting if it is

thought that an analysis based on changes is more “robust”than one based on levels. An objective of

this and the next section is to discuss the content of this intuition by relating ML in differences to the

previous conditional and marginal methods. Maximum likelihood estimation of autoregressive models

using first-differences has been considered by Hsiao, Pesaran, and Tahmiscioglu (2002).

As a matter of notation, note that observability of
(
∆yi(2−p), ...,∆yiT

)
is equivalent to observing(

y†i(2−p), ..., y
†
iT

)′
=
(
yi(2−p) − yi(1−p), ..., yiT − yi(1−p)

)′, since the former results from multiplying the

latter by the nonsingular transformation matrix of order (T + p− 1):

D† =

(
1 0 · · · 0 0

D

)

with det
(
D†
)

= 1. Also note that by construction y†i(1−p) = 0. We shall use the notation y†i =

yi − yi(1−p)ιT and X†i = Xi − yi(1−p)ιT ι′p. Similarly, y
†
i = y†′i ΦιT = yi − yi(1−p), etc.11

11The following expression of y†i makes explicit the connection to the data in differences:

y†i =

p∑
j=1

∆yi(1−p)+j +

T∑
t=2

(
T∑
s=t

ϕs

)
∆yit.

13



The original model can be written as

y†i1 = α1y
†
i0 + ...+ αp−1y

†
i(2−p) + η†i + vi1 (62)

y†it = α1y
†
i(t−1) + ...+ αpy

†
i(t−p) + η†i + vit (t = 2, ..., T ) . (63)

where

η†i = ηi − (1− α1 − ...− αp) yi(1−p). (64)

Thus, the model for the deviations y†it can be regarded as a version of the original model in which

y†i(1−p) = 0 for all individuals and the effect is given by η†i . From the point of view of this section,

bundling together yi(1−p) and ηi into η
†
i makes sense because they are both unobserved. The usefulness

of this notation is that it allows us to easily obtain densities for the variables in first differences relying

on the previous results for the levels.

Since the shocks vit remain the same in representation (62)-(63), applying (20) we have

ln f
(
y†i | y

0†
i , η

†
i , η̂
†
i

)
= −1

2
ln det

(
DΛD′

)
− 1

2
v′iD

′ (DΛD′
)−1

Dvi (65)

where at true values

η̂†i = y†i − α
′x†i = η†i + vi = ui −

(
1− α′ιp

)
yi(1−p), (66)

and following (19):

η̂†i | y
0†
i , η

†
i ∼ N

(
η†i , ωT

)
. (67)

Also, mimicking the marginal density decomposition in (22):

f
(
y†i | y

0†
i

)
= f

(
y†i | y

0†
i , η̂

†
i

)∫
f
(
η̂†i | y

0†
i , η

†
i

)
dG
(
η†i | y

0†
i

)
. (68)

Moreover, since y†i(1−p) = 0 with probability one, for p = 1 densities conditioned on y0†
i coincide

with unconditional densities, and for p > 1 conditioning on y0†
i is equivalent to conditioning on

∆y0
i =

(
∆yi(2−p), ...,∆yi0

)′. Thus, for p > 1, f
(
y†i | ∆y0

i

)
= f

(
y†i | y

0†
i

)
and

η̂†i | ∆y
0
i , η
†
i ∼ N

(
η†i , ωT

)
, (69)

so that

f
(
y†i | ∆y

0
i

)
= f

(
y†i | ∆y

0
i , η̂
†
i

)
f
(
η̂†i | ∆y

0
i

)
. (70)

Recall that the density f
(
y†i | ∆y0

i

)
is also the density of the first-differences of the data (∆yi1, ...,∆yiT )

conditioned on ∆y0
i , which we are expressing as the product of the usual within-group conditional den-

sity and the density of η̂†i conditioned on ∆y0
i . Therefore, in the absence of steady state assumptions

about initial conditions, the form of the density of panel AR(p) data in first differences depends on

the distribution of the effects. In Section 6 we shall see that this dependence vanishes under the

assumption of mean stationarity.

In sum, the BCS approach of Section 3 produces the same estimator regardless of whether one

starts from the likelihood of the data in levels or in differences.
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5.1 Random Effects Estimation in Differences

Next, we apply the random effects approach of Section 4 to the data in differences. This produces

a different estimator (RML-dif), which as discussed below, has been shown to be more effi cient than

BCS but less effi cient than RML under Assumption A (Bai, 2013). Interestingly, in Section 6 we will

see that RML-dif can also be seen as a conditional ML estimator under mean stationarity.

Let
(
φ†, σ2†

ε

)
denote the linear regression coeffi cients of η̂†i on ∆y0

i , so that σ
2†
ε satisfies

σ2†
ε = σ2

η† + ωT − φ†′V ar
(
∆y0

i

)
φ†. (71)

Under the normality assumption G2

η̂†i | ∆y
0
i ∼ N

(
φ†′∆y0

i , σ
2†
ε

)
,

we have the following “random effects”log density for the data in first differences

ln f
(
∆yi1, ...,∆yiT | ∆y0

i

)
= −1

2
ln det

(
DΛD′

)
− 1

2
v′iD

′ (DΛD′
)−1

Dvi

−1

2
lnσ2†

ε −
1

2σ2†
ε

(
y†i − x

†
iα− φ

†′∆y0
i

)2
(72)

Therefore, the random effects log-likelihood for the data in first-differences is a function of the

parameter vector
(
α, σ2

1, ..., σ
2
T , σ

2†
ε , φ

†
)
given by

LRD = LC −
N

2
lnσ2†

ε −
1

2σ2†
ε

N∑
i=1

(
y†i − α

′x†i − φ
†′∆y0

i

)2
. (73)

Concentrating LRD with respect to σ
2†
ε and φ†, and letting S0

∆ = IN − Y 0
∆

(
Y 0′

∆ Y
0

∆

)−1
Y 0′

∆ with Y 0
∆ =(

∆y0
1, ...,∆y

0
N

)′, we obtain the following criterion function that only depends on α and θ:
L∗RD = LC −

N

2
ln
(
y† − α′x†

)′
S0

∆

(
y† − α′x†

)
, (74)

which, in common with (61), can be regarded as a modified heteroskedastic within-group criterion

with a small T correction term.

The random effects ML estimator in first-differences (RML-dif) maximizes L∗RD and is consistent

and asymptotically normal under assumptionA regardless of nonnormality or conditional heteroskedas-

ticity.

In the p = 1 case, the term ∆y0
i does not occur, so that (72) becomes a marginal density for the

data in first differences and the log-likelihood is just a function of
(
α, σ2

1, ..., σ
2
T , σ

2†
ε

)
given by

LRD = LC −
N

2
lnσ2†

ε −
1

2σ2†
ε

N∑
i=1

(
y†i − αx

†
i

)2
. (75)
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5.2 Underidentification in a (2 + p)-Wave Panel (T = 2)

In common with BCS, RML-dif estimation is not possible from a (2 + p)-wave panel because α is not

identified from the expected scores of LRD. In contrast, RML achieves identification by relying on the

data in levels. The relationship between the two procedures is best illustrated by examining for p = 1

the covariance matrix of the transformed series

V ar


yi0

∆yi1

∆yi2

 = Ω∗ =


γ00 γ0∆1 γ0∆2

γ0∆1

γ0∆2 Ω∆

 ,

where Ω∗ is a non-singular transformation of the covariance matrix in levels and Ω∆ is the covariance

matrix in first-differences. Thus, a model of Ω∆ is equivalent to a model of Ω∗ that leaves the

coeffi cients γ00, γ0∆1 and γ0∆2 unrestricted (Arellano, 2003a, p. 67). With T = 2, the only identifying

information about α is precisely the restriction γ0∆2 = αγ0∆1 satisfied by those coeffi cients, hence lack

of identification from Ω∆. Under time series homoskedasticity, α is identifiable from Ω∆ when T = 2,

but in that case all the information comes from the homoskedasticity assumption.

5.3 Effi ciency Comparisons

If the data are normally distributed RML is asymptotically more effi cient than RML-dif, which in turn

is more effi cient than BCS. The relative effi ciency of RML-dif with respect to BCS under normality

is a consequence of the fact that both are statistics of the first differenced data, but the former is the

maximum likelihood estimator.

In the absence of normality, using a factor analytical formulation, Bai (2013 Theorem S.4) shows

that the RML (resp. RML-dif) estimator of α is fixed-T effi cient in the sense of being asymptoti-

cally equivalent to the optimal GMM estimator that enforces the restrictions implied by our baseline

assumption (Assumption A) on the second-order moments of the data in levels (resp. differences).

Moreover, regardless of normality, under Assumption A estimates based on first-differences alone will

never be more effi cient than the optimal GMM estimator based on the full covariance structure for

the data in levels.

6 Estimation Under Stationarity in Mean

In this section we consider conditional and marginal maximum likelihood estimators that allow for

time series heteroskedasticity but exploit the stationarity in mean condition discussed in Section 2.

Namely, that for every t the mean of yit conditioned on ηi coincides with the steady state mean of the
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process µi = ηi/ (1− α′ιp). Specifically, we assume:

γη0 =


Cov

(
ηi, yi(1−p)

)
...

Cov (ηi, yi0)

 =
σ2
η

(1− α′ιp)
ιp. (Assumption B)

Under assumptionsA andB the correlation between yit and ηi does not depend on t, so that the first

differenced data are orthogonal to the effects. This situation led to orthogonality conditions for errors

in levels used in the “system”GMM methods considered by Arellano and Bover (1995) and Blundell

and Bond (1998). System GMM remained consistent in the presence of time series heteroskedasticity,

and the random effects estimator discussed below can be regarded as a likelihood-based counterpart

to these procedures.

6.1 Conditional Maximum Likelihood Estimation

In order to construct a likelihood conditioned on the ML estimator of the effects under mean station-

arity, we consider the following conditional normality assumption for y0
i given the effects:

y0
i | µi ∼ N (µiιp,Σ00) (Assumption G3)

where Σ00 satisfies Σ00 = Γ00 − ιpι′pσ2
η/ (1− α′ιp)2.

Under assumptions G1 and G3

yTi | µi ∼ N (µiι, V ) (76)

where yTi =
(
y0′
i , yi1, ..., yiT

)′, ι denotes a vector of ones of order (T + p), and

V = ΓΛ†Γ′ (77)

with

Λ† =

(
Σ00 0

0 Λ

)
, Γ =

(
Ip 0

−B−1
T BTp B−1

T

)
(78)

and

BTp =



−αp −αp−1 . . . −α1

0 −αp . . . −α2

0 0
. . .

...
...

0 0 . . . 0


. (79)

Thus

ln f
(
yTi | µi

)
= −1

2
ln detV − 1

2

(
yTi − µiι

)′
V −1

(
yTi − µiι

)
. (80)
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The MLE of µi for given α and Λ† is

µ̂i =
(
ι′V −1ι

)−1
ι′V −1yTi . (81)

Next, to obtain the density of yTi conditioned on µ̂i (at true values of α and Λ†), it is simpler to use

the transformation matrix

H =

( (
ι′V −1ι

)−1
ι′V −1

D

)
, (82)

which transforms yTi into
(
µ̂i, Dy

T
i

)
, where D denotes the (T + p− 1)× (T + p) first-difference matrix

operator. Since yTi | µi is normal so is HyTi | µi. Moreover,

V ar
(
HyTi | µi

)
=

( (
ι′V −1ι

)−1
0

0 DVD
′

)
(83)

so that µ̂i and Dy
T
i are conditionally independent. Therefore,

f
(
yTi | µi

)
= f

(
HyTi | µi

)
|detH| = f

(
DyTi

)
f (µ̂i | µi) . (84)

This is so because DyTi is independent of µi and the fact that |detH| = 1 (Arellano, 2003a, p. 94).

Therefore, the density of yTi conditional on µ̂i does not depend on µi and coincides with the density

for the data in first differences:

f
(
yTi | µ̂i, µi

)
=
f
(
yTi | µi

)
f (µ̂i | µi)

= f
(
DyTi

)
. (85)

Thus, the log-likelihood conditioned on the ML estimates of the effects under mean stationarity is a

function of
(
α, σ2

1, ..., σ
2
T , vechΣ00

)
given by

LCS = −N
2

ln det
(
DVD

′
)
− 1

2

N∑
i=1

yT ′i D
′
(
DVD

′
)−1

DyTi . (86)

This result is similar to the one discussed by Lancaster (2002) for a homoskedastic stationary model

with p = 1.

6.1.1 Comparison with the Marginal Likelihood for Differenced Data

Here we explain that LCS in (86) is the same function as the random effects likelihood for differenced

data in Section 5. The implication is that RML-dif without mean stationarity is the same estimator

as conditional ML with mean stationarity.

In the previous section we obtained a random effects likelihood (73) for data in first-differences

without assuming mean stationarity as a function of
(
α, σ2

1, ..., σ
2
T , σ

2†
ε , φ

†
)
. This likelihood was con-

ditioned on ∆y0
i (unless p = 1), but adding to it the likelihood of ∆y0

i , we can write the likelihood of
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DyTi in the absence of mean stationarity as a function of
(
α, σ2

1, ..., σ
2
T , σ

2†
ε , φ

†
)
and Σ∆ = V ar

(
∆y0

i

)
given by12

LRDU = LRD −
N

2
ln det Σ∆ −

1

2
tr
(
Σ−1

∆ Y 0′
∆ Y

0
∆

)
. (87)

If p = 1 the likelihood of DyTi in the absence of mean stationarity coincides with LRD in (75).

In general, σ2†
ε satisfies expression (71), which under mean stationarity becomes 13

σ2†
ε =

(
1− α′ιp

)2
σ00 + ωT − σ′10D

′
p

(
DpΣ00D

′
p

)−1
Dpσ10 (88)

where we are using the partition of Σ00

Σ00 =

(
σ00 σ′10

σ10 Σ11

)
. (89)

Similarly, under mean stationarity

φ† =
(
DpΣ00D

′
p

)−1
Dpσ10. (90)

However, both σ2†
ε and φ† remain free parameters because so is Σ00.

Thus, the restriction of mean stationarity is immaterial to the data in first differences. LRDU and

LCS are different parameterizations of the same criterion. Depending on ones taste it can be regarded

as a mean-stationary conditional likelihood or as a nonstationary random effects likelihood for the first

differenced data.14 In particular the estimator that maximizes LCS (or LRD) will be consistent under

Assumption A regardless of mean stationarity.15

Note that under homoskedasticity or covariance stationarity the situation is different because Σ00

is no longer a matrix of free parameters, but tied to α and the common variance σ2.

6.2 Random Effects

If in addition to assumptions G1 and G3 we assume that µi is normally distributed (as implied by

G2), we can obtain the integrated density marginal on µi:

f
(
yTi
)

=

∫
f
(
yTi | µi

)
dG (µi) (91)

12Note that Σ∆ = DpΓ00D
′
p where Dp is the first-difference operator of order (p− 1)× p.

13When p = 1 we just have σ00 = Σ00 and σ2†
ε = (1− α)2 σ00 + ωT .

14For further intuition, note that when p = 1, letting ηi = (1− α)µi and vi0 = yi0 − µi we can write (6) as yit =

µi+
∑t
s=0 α

svi(t−s) and in first-differences as ∆yit = vit− (1− α)
∑t
s=1 α

s−1vi(t−s). Under mean stationarity µi and vi0

are uncorrelated, which constraints the data covariances in levels. However, the covariance restrictions for the differenced

data remain the same regardless of mean stationarity; only the interpretation of the variance of vi0 will change.
15A conceptual difference is that since σ2†

ε and φ† do not depend on σ2
η under mean stationarity, they would remain

constant as σ2
η →∞.
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whose log is given by

ln f
(
yTi
)

= −1

2
ln det Ω− 1

2
yTi
′Ω−1yTi (92)

with

Ω = σ2
µιι
′ + V. (93)

Therefore, the random effects log-likelihood under mean stationarity is a function of the parameter

vector
(
α, σ2

1, ..., σ
2
T , vechΣ00, σ

2
η

)
given by

LRS = −N
2

ln det Ω− 1

2

N∑
i=1

yTi
′Ω−1yTi . (94)

The random effects ML estimator subject to mean stationarity (RML-s) maximizes LRS and is

consistent and asymptotically normal under assumptions A and B regardless of non-normality or

conditional heteroskedasticity.

In a three-wave panel with p = 1 (T = 2), the mean stationarity assumption imposes one restriction

in the data covariance matrix Ω, which corresponds to the orthogonality conditions for the system

GMM estimator simulated in Arellano and Bover (1995):

E [yi0 (∆yi2 − α∆yi1)] = 0

E [∆yi1 (yi2 − αyi1)] = 0.

RML-s provides a one-step estimator based on T + 1 + p (p+ 3) /2 moment conditions that is

asymptotically equivalent to two-step GMM system estimators under conditional homoskedasticity,

and more effi cient than standard one-step system estimators under time series heteroskedasticity.

As in the previous sections, the comparison between conditional and marginal ML estimates under

stationarity can be understood as a straightforward comparison between covariance matrices of data

in levels and first-differences

6.2.1 Relation to RML without Mean Stationarity

Equation (48) in Section 4 gave the random effects log-likelihood conditioned on y0
i . Adding to this

expression the likelihood of y0
i , we can write the likelihood of y

T
i in the absence of mean stationarity

as a function of
(
α, σ2

1, ..., σ
2
T , φ, σ

2
ε, vechΓ00

)
given by

LRU = LR −
N

2
ln det Γ00 −

1

2
tr
(
Γ−1

00 Y
′

0Y0

)
. (95)

If p = 1, in the parameterization of LRU , mean stationarity can be expressed as the restriction

σ2
ε = (1− α)φ (1− φ) γ00 + ωT . (96)

Thus, RML-s can also be obtained maximizing LRU subject to (96) in that case.
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7 Unit Roots

In this section we discuss the possibility of identification failure when the autoregressive process has

a unit root. We focus on the p = 1 case, so that the unit root model is

yit = tηi + vit + vi(t−1) + ...+ vi1 + yi0.

For this process, if σ2
η = 0 the rank condition for GMM based on lagged levels as instruments for

errors in differences fails, because changes in yit are uncorrelated to lagged levels (e.g. Arellano and

Honoré, 2001).16 Thus, α would not be identified from RML in a three-wave panel (T = 2) when the

true value is one, since in that case RML coincides with the IV estimator based on

E [yi0 (∆yi2 − α∆yi1)] = 0.

Since the estimating criteria for the previous estimators depend on the data exclusively through

second moments, it is useful to first look at the restrictions implied by the model on the data covariance

matrix. Following Ahn and Schmidt (1995), for T ≥ 3 these restrictions can be represented as

E
[
yis
(
∆yit − α∆yi(t−1)

)]
= 0 (t = 2, ..., T ; s = 0, ..., t− 2) (97)

E
[(

∆yi(t−1) − α∆yi(t−2)

) (
yit − αyi(t−1)

)]
= 0 (t = 3, ..., T ) . (98)

When T = 3 and the true values are α = 1 and σ2
η = 0, (98) consists of just one quadratic equation

a1α
2 + b1α+ c1 = 0 (99)

with coeffi cients given by

a1 = E (yi2∆yi1) = σ2
1

b1 = −E (yi2∆yi2 + yi3∆yi1) = −
(
σ2

1 + σ2
2

)
c1 = E (yi3∆yi2) = σ2

2

where σ2
1, σ

2
2 and σ

2
3 denote the true values of the error variances.

Equation (99) has two roots given by

σ2
1 + σ2

2 ±
(
σ2

2 − σ2
1

)
2σ2

1

=

{
α∗1 = σ2

2/σ
2
1

α = 1
(100)

Therefore, under time series heteroskedasticity there is local identification from (99) but not global

identification. If σ2
1 = σ2

2 there is global identification but first-order underidentification, because the

first derivative of (99)

2a1α+ b1 = 0 (101)

16When α = 1 and σ2
η = 0, heterogeneity only plays a role in the determination of the initial observations of the

process. In contrast, if σ2
η 6= 0 the model is a random walk with heterogeneous linear growth.
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vanishes at α = 1. In that case there is second-order identification because α = 1 is the only solution

to equation (101) and the second derivative does not vanish (Sargan, 1983).17

In general, we get T − 2 equations of the same form as (99), each one with a solution of the form

α∗t = σ2
t+1/σ

2
t , aside from unity. Thus, for T > 3 there is both first-order and global identification

from (98) under heteroskedasticity, unless the unconditional variances change at a constant rate of

growth (i.e. σ2
t+1/σ

2
t is constant for t = 1, ..., T − 2).

7.1 Heteroskedastic BCS and Unit Roots

Next, we develop the local identification result for the bias-corrected CML scores when T = 3. The

expected BCS equations are given by

E
[
x′iD

′ (DΛD′
)−1

Dvi

]
= −hT (α,ϕ) (102)

E
[
K ′
(
DΛD′ ⊗DΛD′

)−1
vec

(
Dviv

′
iD
′ −DΛD′

)]
= 0. (103)

where

Dxi =

(
∆yi1

∆yi2

)
, Dyi =

(
∆yi2

∆yi3

)
,

(
DΛD′

)−1
=

1(
σ2

1σ
2
2 + σ2

1σ
2
3 + σ2

2σ
2
3

) ( σ2
2 + σ2

3 σ2
2

σ2
2 σ2

1 + σ2
2

)
,

and

hT (α,ϕ) = ϕ2 + (1 + α)ϕ3 =
σ2

1(
σ2

1σ
2
2 + σ2

1σ
2
3 + σ2

2σ
2
3

) [σ2
3 + (1 + α)σ2

2

]
.

When the true values are α = 1 and σ2
η = 0, the first score (102) can be written as

tr

[(
σ2

2 + σ2
3 σ2

2

σ2
2 σ2

1 + σ2
2

)(
ασ2

1 −σ2
2

0 ασ2
2

)]
= σ2

1

[(
σ2

2 + σ2
3

)
+ ασ2

2

]
(104)

Moreover,

E
(
Dviv

′
iD
′) =

(
σ2

2 + α2σ2
1 −ασ2

2

−ασ2
2 σ2

3 + α2σ2
2

)
.

Hence, in view of the second block of scores (103), we have

σ2
2 + α2σ2

1 = σ2
1 + σ2

2 (105)

ασ2
2 = σ2

2

σ2
3 + α2σ2

2 = σ2
2 + σ2

3

17A similar result under homoskedasticity was independently found by Ahn and Thomas (2006).
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Now, substituting in (104)

tr

[(
σ2

3 + α2σ2
2 ασ2

2

ασ2
2 σ2

2 + α2σ2
1

)(
ασ2

1 −σ2
2

0 ασ2
2

)]
=
(
σ2

2 + α2σ2
1 − ασ2

2

) (
σ2

3 + 2α2σ2
2

)
,

which can be rearranged as

(1− α)
(
σ2

2 − σ2
1α
) (
σ2

3 + 2σ2
2α

2
)

= 0. (106)

Thus, as before there are two real roots: α = 1 and α∗ = σ2
2/σ

2
1. Corresponding to α = 1 we have

σ2
1

σ2
2

σ2
3

 =


σ2

1

σ2
2

σ2
3

 , (107)

and corresponding to α = σ2
2/σ

2
1

σ2
1

σ2
2

σ2
3

 =


σ2∗

1

σ2∗
2

σ2∗
3

 ≡


σ2
2

σ4
2

σ2
1

σ2
3 −

σ4
2

σ4
1

(
σ2

1 − σ2
2

)
 . (108)

7.2 Expected RML Likelihood

Finally, we consider the expected random effects likelihood for one observation when T = 3, α = 1

and σ2
η = 0. This is a function of

(
α, σ2

1, σ
2
2, σ

2
3, φ, σ

2
ε

)
given by

E (LRi) = −1

2
ln det

(
DΛD′

)
− 1

2
tr
[(
DΛD′

)−1
E
(
Dviv

′
iD
′)] (109)

−1

2
lnσ2

ε −
1

2σ2
ε

E
[
(ui − φyi0)2

]
Note that the true values of φ and σ2

ε are φ = 0 and σ2
ε = ωT .

Maximizing E (LRi) with respect to φ, σ2
ε for given

(
α, σ2

1, σ
2
2, σ

2
3

)
we get

φ = 1− α (110)

σ2
ε = E

[
(yi − αxi − (1− α) yi0)2

]
= E

[(
y†i − αx

†
i

)2
]
. (111)

Therefore, the concentrated expected likelihood for the data in levels and in differences coincide. An

implication is that when α = 1 and σ2
η = 0, RML in levels and RML in differences are asymptotically

equivalent.

Moreover, the maximum of E (LRi) is attained at

maxE (LRi) = −1

2
ln
(
σ2

1σ
2
2σ

2
3

)
− 3

2
(112)
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by
(
α, σ2

1, σ
2
2, σ

2
3, φ, σ

2
ε

)
and

(
α∗, σ2∗

1 , σ
2∗
2 , σ

2∗
3 , φ

∗, σ2∗
ε

)
, where

φ∗ = 1− α∗ = 1− σ2
2

σ2
1

(113)

σ2∗
ε =

σ2
1σ

2
2σ

2
3

σ2
2σ

2
3 + σ4

2
σ2

3

σ2
1

+
σ10

2

σ6
1

, (114)

which completes the characterization of the two observationally equivalent points.

8 Calculations of Relative Asymptotic Variances

We perform numerical calculations of the asymptotic variances for various estimators of the autore-

gressive coeffi cient. We report, for p = 1, the asymptotic variances of both homoskedastic and het-

eroskedastic BCS and RML-dif estimators, relative to the corresponding RML in levels, calculated

under the assumption of normality. Formulae for the asymptotic variances are derived in Appendix

B.

The interest of the exercise is in providing information on the effi ciency gains that can be expected

from the levels of the data, relative to only using first-differences, when RML is the maximum likelihood

estimator, and stationarity restrictions are not enforced. In addition, we also get to know about the

magnitude of the asymptotic ineffi ciency of BCS relative to RML-dif under normality.

Figures 1 and 2 show values of the asymptotic standard deviations of the homoskedastic BCS and

RML-dif estimators relative to the standard deviation of RML, for non-negative values of α. The

calculations are for T = 2, 3, and 9, under stationarity and homoskedasticity with σ2 = 1.18

The T = 2 case is special because in that situation BCS and RML-dif coincide and their ability to

identify α rests exclusively on the homoskedasticity restriction.

In Figure 1 the variance of the effects has been set to zero (λ = σ2
η/σ

2 = 0), whereas in Figure 2

σ2
η and σ

2 are equal (λ = 1). The relative ineffi ciency of both estimators increases monotonically with

α and decreases with λ and T . Figure 1 shows potentially important effi ciency gains from using the

levels when T = 3 and α is large, but the gains become much smaller when λ = 1, as shown in Figure

2.

In Figure 3 we explore the impact of nonstationarity. We calculate the same relative ineffi ciency

measures as in the previous figures for different values of the ratio of the actual to the steady state

standard deviations of y0. Thus, under stationarity κ = 1, and a value of κ = 2 means that the

standard deviation of initial conditions is twice the standard deviation of the steady state standard

deviation of the process. We set T = 3, λ = 0, and α = 0.9, so that we essentially calculate the

maximal ineffi ciencies for each value of κ. For κ < 1, the ineffi ciency of BCS can be enormous,

whereas the ineffi ciency of RML-dif is much smaller and shows a non-monotonic pattern.

18Because of stationarity γ00 = σ2/
(
1− α2

)
, so that it increases with α.
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Turning to heteroskedastic estimators, Figures 4 and 5 display relative ineffi ciency ratios for het-

eroskedastic BCS and RML-dif, similar to those in the previous figures. The calculations are under

homoskedasticity and stationarity, for λ = 0 and 1, T = 3 and 9, and σ2 = 1. As before, the ineffi cien-

cies of heteroskedastic BCS and RML-dif increase with α and decrease with λ and T , but they have

larger magnitudes than those of their homoskedastic counterparts.

Table 1 illustrates the extent of these differences by showing the ineffi ciencies of homoskedastic and

heteroskedastic estimators for selected values of the parameters. Some of the ineffi ciencies are quite

large. For example, for the heteroskedastic estimators with α = 0.8, T o = 4 and λ = 0, the standard

error of RML-dif is more than twice that of RML-lev, and the standard error of BCS is more than

three times as large.

Finally, Figure 6 reports asymptotic standard deviations of BCS and RML when α = 1 and λ = 0

(in this case RML-dif and RML-lev are asymptotically equivalent) for T = 6 and a single break in the

error variance. Standard deviations (scaled by
√

900) are given as a function of the percentage change

in variance and for two different locations of the variance break (which takes place either during the

last 2 or the last 4 periods).19 As expected, asymptotic standard deviations decrease with the strength

of heteroskedasticity, and are smaller when the variance break is centrally located than when it only

occurs during the last two periods.

9 Empirical Illustration: Individual Earnings Dynamics

In order to illustrate the properties of the previous methods, we estimate first- and second-order

autoregressive equations for individual labour income using two different samples. The first one is

a sample of Spanish men from the European Community Household Panel (ECHP) for the period

1994-1999. The second is a sample from PSID for the period 1977-1983 taken from Browning, Ejrnæs,

and Alvarez (2010).

There are N = 632 individuals and T 0 = 6 waves in the Spanish data set, and N = 792 and T 0 = 7

in the PSID sample. All individuals in both data sets are married males, who are aged 20-65 during

the sample period, heads of household, and continuously employed. The earnings variable is similarly

defined in the two samples as total annual labour income of the head.

The variables that we use in the estimation are log earnings residuals from first-stage regressions on

age, age squared, education and year dummies (see Browning, Ejrnæs, and Alvarez 2010, for further

details on the PSID sample, and tables A2 and A3 for the Spanish sample). Log earnings have a much

higher variance in the PSID sample than in the Spanish one. Moreover, the PSID data show a sharp

rise in the variance of earnings in 1982 (a widely documented fact), whereas there is no appreciable

change in the variance in the Spanish sample during the (different) years that we observe.

The AR(1) results for the Spanish data are reported in the first part of Table 2. Heteroskedastic

19When α = 1, we considered choices of γ00 and γη0 of the form γ00 = κσ2 + κ2σ2
η and γη0 = κσ2

η, where σ
2 =

T−1∑T
t=1 σ

2
t . But for the calculations in Figure 6, since σ

2
η = 0 the results turn out to be invariant to the choice of κ.
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bias-corrected score (BCS) and random effects (RMLr) estimates of the autoregressive coeffi cient are

very similar. They are also very close to the homoskedastic random effects estimate (RMLnr), which

is not surprising given the absence of change in the period-specific variance estimates reported in the

table. By comparison, the AR(1) GMM estimates (one- and two-step) are very small, given that

GMM, BCS, and RMLr are all consistent under similar assumptions. The system GMM estimator,

that relies on mean stationarity, is more in line with the likelihood-based estimates, although probably

for the wrong reasons, given the rejection of mean stationarity that is apparent from the Sargan test.

The RMLr estimate subject to mean stationarity is smaller than system-GMM, but a Wald test of

the mean stationarity restriction rejects (with a “t ratio” for σ2
ε of 2.54). Finally, the within-group

(WG) estimate and the random effects estimate that rules out correlation between the effects and

initial observations (RML, φ = 0) exhibit, respectively, the downward and upward biases that would

be predicted from theory.

The AR(1) results for the PSID sample, reported in Table 3, also show a marked discrepancy

between the likelihood-based estimates and GMM, and a similar rejection of mean stationarity from

the incremental Sargan test, although not from RML estimation (the “t ratio”for σ2
ε is just 0.16). In

the PSID data there is more state dependence than in the Spanish data, at least as measured by the

first-order autoregressive coeffi cient. There is also more variation in the errors and substantial time

series heteroskedasticity. The latter translate into a small but noticeable upward bias in the RML

estimate calculated under the assumption of homoskedasticity.

Given the AR(1) estimates reported in the tables, the variance of the effects can be recovered from

σ2
η = σ2

ε + φ2γ00 − ωT (as explained in Section 4), which gives σ̂2
η = 0.05 for the Spanish data, and

σ̂2
η = 0.07 for the PSID.

GMM estimates are known to be downward biased in finite samples, specially when the number of

moments is large and the instruments are weak. However, the magnitude of the bias in our application

(relative to the likelihood estimates) is puzzling for the values of α and T/N that we have, suggesting

misspecification as the most likely reason for these discrepancies. This impression is confirmed by the

AR(2) estimates and the simulation results reported below.

The upshot from the AR(2) estimates reported in the second parts of tables 2 and 3 is that there is

a positive autoregressive root, in the (0.4, 0.5) range for the Spanish panel and in the (0.6, 0.7) range

for PSID, and a negative root of around −0.2 in both datasets (so that an ARMA(1,1) model would

provide a similar fit).

The AR(2) GMM estimates are still smaller than the likelihood-based estimates, and there is a

discrepancy between BCS and RMLr (specially for PSID), all of which suggests that there may be

some remaining misspecification.20 This suggestion is reinforced by the robust GMM form of the

estimates shown in tables A4 and A5, which provide evidence against the overidentifying restrictions

in the PSID data. These GMM estimates use the 2 (T + 2) moments (56)-(60) with RML adding

extra moment conditions to BCS. Moreover, mean stationarity is rejected in both datasets and, when

20We found that the BCS equations, in addition to the stable solution, had another solution with an explosive root.
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enforced, leads to somewhat larger positive roots.

However, in contrast with other studies that either imposed or found a unit root in individual

earnings (e.g. MaCurdy, 1982), we find no evidence of unit roots. The only way we managed to obtain

a near-unit root is by imposing the restriction that the initial observations of earnings are orthogonal

to the unobserved component (i.e. φ = 0). Doing this led to an estimated positive root of 0.95 in

both panels. Clearly, if only heterogeneity that is orthogonal to initial observations is allowed, any

nonorthogonal heterogeneity will be captured by the autoregressive part of the model as spurious state

dependence.21

9.1 Moving Average Errors

We checked whether this conclusion was affected by adding a moving average component to the specifi-

cation of PSID earnings. In such a case the autoregressive coeffi cients can no longer be interpreted as a

model for the conditional expectation of earnings given past observations, but an ARMA model might

lead to a more parsimonious specification. Moreover, models of earnings that specify a measurement

error component imply a reduced form with moving average errors. Appendix D describes our ARMA

specification and the random effects ML estimators that we used.

Table 4 reports ARMA(1,1), ARMA(1,2), and ARMA(2,1) estimates from the PSID sample. As

expected, the ARMA(1,1) estimates are similar to those obtained from the AR(2) specification. How-

ever, the ARMA(1,2) and the ARMA(2,1) estimates were very imprecise, suggesting that there is no

enough variation in the data covariance matrix to support a three-parameter dynamic specification

within this class of models.

9.2 Testing for Nonnormality

The distributions of the effects and the autoregressive errors are nonparametrically identified and can

be estimated using deconvolution techniques as in Horowitz and Markatou (1996).

Horowitz and Markatou carried out graphical tests of normality of the distributions of errors and

effects in a static earnings model using a two-wave panel from the CPS.22 We used their diagnostics

and found very similar results for PSID autoregressive models. A normal probability plot of residuals

in first-differences (Figure 7) indicates that the tails of the distribution of errors are thicker than those

of the normal distribution. However, a plot of the log empirical characteristic function of the effects

21Studies that have explored more general models of PSID earnings by allowing for richer forms of heterogeneity

or nonlinear dynamics have found evidence of misspecification in conventional linear models. For example, Browning,

Ejrnæs and Alvarez (2010) test the weaker hypothesis that some agents have a unit root and others a stable process; they

reject the hypothesis that anyone has a unit root. Arellano, Blundell and Bonhomme (2017) develop a quantile-based

framework to explore the nonlinear nature of income shocks; they find that the impact of past shocks can be altered by

the size and sign of new shocks, so that the future persistence of a current shock is not fixed, as in a linear mean-reverting

or unit-root model, but stochastic due to its dependence on future shocks.
22Figures 1 and 5 in their paper
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against minus the square of its argument is almost a straight line, hence showing no deviation from

normality (Figure 8).

9.3 Monte Carlo Simulations

To illustrate the properties of the estimators, we performed a small simulation exercise calibrated to

the likelihood-based AR(1) estimates from PSID data. We generated 1000 replications with N = 792,

T o = 7, ηi ∼ N
(
0, σ2

η

)
, vit ∼ N

(
0, σ2

t

)
, σ2

η = 0.07, and mean stationarity.

In Table 5 we report means and standard deviations of the WG, GMM1, RML(nr), RML(r), and

BCS estimators of the AR(1) model for α = 0.4 and 0.8 (with σ2
0 = 0.11 and 0.28, respectively). The

results show that both RML(r) and BCS are virtually unbiased. Those for α = 0.4 nicely reproduce

the WG downward bias and the RML(nr) upward bias that we found in the PSID sample. However,

the results fail to explain the performance of GMM with the real data, which reinforces the evidence

of misspecification in the AR(1) earnings models.

10 Concluding Remarks

In this paper we have considered likelihood-based estimation strategies of autoregressive panel mod-

els, which are consistent under the same baseline assumptions as Arellano-Bond and Ahn-Schmidt

GMM estimators. The starting point is that to achieve this goal one has to allow for time-series

heteroskedasticity.

Our leading method is a heteroskedastic correlated random-effects estimator (RML) that maximizes

a marginal likelihood function where individual effects are normally distributed with a mean that

depends linearly on the initial observations. The literature has uncovered some attractive properties

of this estimator. Firstly, it is fixed-T effi cient in the sense of being asymptotically equivalent to the

optimal GMM estimator that enforces the restrictions implied by our baseline assumption (Assumption

A) on the data second-order moments regardless of nonnormality (Bai 2013 Theorem S.4). Secondly,

it does not lead to incidental-parameter bias when T and N are of comparable dimension (Bai 2013).

Finally, under normality of the errors (Assumption G1) but not necessarily under normality of the

effects (Assumption G2), RML is a finite-sample minimax optimal estimator for a suitable choice of

prior distributions in the sense of Chamberlain and Moreira (2009).

For comparisons, we have considered two other likelihood-based estimators, which contrary to

RML only depend on the data in first-differences. The first one (BCS) solves a bias-corrected score

function of the heteroskedastic likelihood conditioned on the MLE of the incidental parameters. The

other (RML-dif) maximizes a marginal likelihood function of the same form as RML but for the data

in first-differences. The three estimators, RML, BCS and RML-dif, can be variously interpreted as

fixed-effects, random effects, Bayesian, or method-of-moment estimators. For example, versions of

BCS can be regarded as a random effects or Bayesian estimator that specifies a nonnormal prior for

the effects with a very large variance (Chamberlain and Moreira 2009, p. 131; Dhaene and Jochmans
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2016, p. 1184-1185). Moreover, the RML and RML-dif estimators coincide with the corresponding

fixed-effects factor analytic estimators studied in Bai (2013), which estimate the sample variance of

the fixed effects.

One major theme of this paper has been to highlight the advantages of heteroskedastic RML

estimation relative to traditional GMM methods in finite samples and large T asymptotics. The other

major theme has been to highlight the effi ciency gains from using data in levels (as in RML) relative

to only using data in differences (as in BCS or RML-dif). We have done so for our baseline model

and for a more restrictive model that assumes stationarity in mean. In the latter case, the likelihood-

based estimators that we discuss are consistent under the same assumptions as the Arellano-Bover

and Blundell-Bond system GMM estimators.
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Appendix

A Conditional Maximum Likelihood and Expected Scores

A.1 First-Order Conditions and Related Results

Equations (15), (18): Note that v = v′Φι and ωT = V ar (v) =
(
ι′Λ−1ι

)−1, so that Λ−1 = (1/ωT ) Φ.
Moreover, the equivalences in (14) also imply

ln det Λ = ln det
(
DΛD′

)
+ lnωT . (A.1)

Clearly 0 ≤ ϕt ≤ 1,
∑T

t=1 ϕt = 1, and under homoskedasticity ϕt = 1/T for all t.
Regarding period-specific variances, taking into account that:

E
[
(vt − v)2

]
= σ2

t + ωT − 2E (vtv) = σ2
t + ωT − 2ϕtσ

2
t = σ2

t + ωT − 2ωT ,

we obtain expression (15), and also

σ2
t − σ2

t−1 = E
[
(vt − v)2

]
− E

[
(vt−1 − v)2

]
(t = 2, ...T ) .

Finally, equation (18) is easily verified from (15).

Idempotent Matrices: Letting Q = Φ − Φιι′Φ, note that the matrix Q† = I − Φ1/2ιι′Φ1/2 is
idempotent, and that Q = Φ1/2Q†Φ1/2. Also

Q† = Λ1/2D′
(
DΛD′

)−1
DΛ1/2 = I − ωTΛ−1/2ιι′Λ−1/2

and D′ (DΛD′)−1D = Λ−1/2Q†Λ−1/2. So that

D′
(
DΛD′

)−1
D = Λ−1 − ωTΛ−1ιι′Λ−1 = ω−1

T Q.

Derivatives: Letting ϕ = (ϕ1, ..., ϕT )′ = Φι, we have the following result:

∂ϕ

∂θ′
= −

(
Φ− Φιι′Φ

)
Λ−1 = −D′

(
DΛD′

)−1
DΦ. (A.2)

To see this recall that ϕs = ωT /σ
2
T and consider

dϕ = ωT
∂

∂θ′


1/σ2

1
...

1/σ2
T

 dθ +


1/σ2

1
...

1/σ2
T

 ∂ωT
∂θ′

dθ.

Also using

∂ωT
∂σ2

s

=
1/σ4

s(
σ−2

1 + ...+ σ−2
T

)2 = ϕ2
s, (A.3)
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we get

∂ϕ

∂θ′
= −ωT


1/σ4

1 . . . 0
...

. . .
...

0 . . . 1/σ4
T

+


1/σ2

1
...

1/σ2
T

( ϕ2
1 . . . ϕ2

T

)

= − 1

ωT
ΦΦ− 1

ωT


ϕ1
...

ϕT

( ϕ1 . . . ϕT

)
Φ = − 1

ωT

(
Φ− Φιι′Φ

)
Φ.

First-Order Conditions for Variance Parameters when Maximizing LC : The derivatives of
LC with respect to θ =

(
σ2

1...σ
2
T

)′ given in (26) are
∂LC
∂θ

=
1

2

N∑
i=1

K ′
(
DΛD′ ⊗DΛD′

)−1
vec

(
Dviv

′
iD
′ −DΛD′

)
where K is a (T − 1)2 × T selection matrix such that vec (DΛD′) = Kθ. Let dt and kt be the t-th
columns of D and K, respectively, so that DΛD′ =

∑T
t=1 σ

2
tdtd

′
t, Kθ =

∑T
t=1 σ

2
tkt, and kt = dt ⊗ dt.

Thus, also

∂LC
∂σ2

t

=
1

2

N∑
i=1

d′t
(
DΛD′

)−1 (
Dviv

′
iD
′ −DΛD′

) (
DΛD′

)−1
dt (t = 1, ..., T ) . (A.4)

Maximizing LC in (23) with respect to ωT and (ϕ1...ϕT ) for given α, subject to the adding-up restric-
tion ι′Φι = 1, the first-order conditions for variance parameters can be written in a form analogous to
(15) and (18) as

N∑
i=1

[
1

(T − 1)
v′i
(
Φ− Φιι′Φ

)
vi − ωT

]
= 0 (A.5)

N∑
i=1

[
(vit − vi)2 −

(
vi(t−1) − vi

)2 − (σ2
t − σ2

t−1

)]
= 0 (t = 2, ..., T ) . (A.6)

The details are as follows. For a matrix A = (a1, ..., an)′, we use the notation vec (A) = (a′1, ..., a
′
n)′

and A⊗B = {ajkB}. The derivative of LC with respect ωT is

∂LC
∂ωT

=
1

ω2
T

N∑
i=1

[
v′i
(
Φ− Φιι′Φ

)
vi − (T − 1)ωT

]
.

The concentrated likelihood with respect to ωT is

L∗C =
N

2

T∑
t=1

lnϕt −
N (T − 1)

2
ln

N∑
i=1

T∑
t=1

ϕt (vit − vi)2 ,

and the Lagrangean

L = L∗C + λ

(
1−

T∑
t=1

ϕt

)
,
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so that

∂L
∂ϕt

=
N

2

1

ϕt
− 1

2ω̂T

N∑
i=1

[
(vit − vi)2 − 2vitvi

(
1−

T∑
s=1

ϕs

)]
− λ

∂L
∂λ

= 1−
T∑
t=1

ϕt.

Inserting the restriction, the first-order conditions for the weights are

1

ϕt
=

1

ω̂T

1

N

N∑
i=1

(vit − vi)2 + λ,

and taking first-differences to eliminate the Lagrange multiplier

ω̂T
ϕt
− ω̂T
ϕt−1

=
1

N

N∑
i=1

[
(vit − vi)2 −

(
vi(t−1) − vi

)2]
.

Nonnegativity constraints: The nonnegativity constraints σ2
t > 0 may be enforced through the

parameterization (ωT , ϕ1, ..., ϕT ) imposing adding-up and non-negativity restrictions to the weights.
Alternatively, transformed variances for errors in orthogonal deviations can be used, which confine
nonnegativity restrictions to σ2

T . This transformation is discussed next.

A.2 Heteroskedastic Orthogonal Deviations

The following equivalences also hold

v′D′
(
DΛD′

)−1
Dv =

T−1∑
t=1

ṽ2
t

σ̃2
t

(A.7)

ln det
(
DΛD′

)
=

T∑
t=1

lnσ2
t + ln

(
σ−2

1 + ...+ σ−2
T

)
=

T−1∑
t=1

ln σ̃2
t (A.8)

where the heteroskedastic orthogonal deviations are given by

ṽt =


vT−1 − vT for t = T − 1

vt −
σ−2
t+1vt+1+...+σ−2

T vT

σ−2
t+1+...+σ−2

T

for t = T − 2, ..., 1

(A.9)

σ̃2
t =


σ2
T−1 + σ2

T for t = T − 1

σ2
t + 1

σ−2
t+1+...+σ−2

T

for t = T − 2, ..., 1

. (A.10)

or

ṽt =


vT−1 − vT for t = T − 1

(vt − vt+1) + λt+1ṽt+1 for t = T − 2, ..., 1

(A.11)
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where λt = σ2
t /σ̃

2
t , (t = T − 1, ..., 1).

To clarify the mapping between
(
σ2

1, ..., σ
2
T

)
and

(
σ̃2

1, ..., σ̃
2
T−1

)
note that

E [(vT−1 − vT ) (vT−2 − vT )] = σ2
T

E (ṽt) = σ̃2
t (t = T − 1, ..., 1) .

So we identify σ2
T as a covariance between (vT−1 − vT ) and (vT−2 − vT ), and σ̃2

T−1 as the variance of
ṽT−1 = (vT−1 − vT ), so that σ2

T−1 = σ̃2
T−1 − σ2

T . We can get

λT−1 =
σ2
T−1

σ̃2
T−1

=
σ2
T−1

σ2
T−1 + σ2

T

and use it to form

ṽT−2 = (vT−2 − vT−1) + λT−1ṽT−1,

which allows us to get σ̃2
T−2. Now we can get σ

2
T−2 = σ̃2

T−2 − 1/
(
σ−2
T−1 + σ−2

T

)
, λT−2 = σ2

T−2/σ̃
2
T−2,

and proceed recursively to obtain the remaining terms. Note that the σ̃2
t will be nonnegative by

construction, so that the non-negativity problem is confined to σ2
T .

A.3 Score Bias Function

Proof of (28): We have

E
[
X ′iD

′ (DΛD′
)−1

Dvi

]
= E

(
X ′iΛ

−1vi
)
− ωTE

(
X ′iΛ

−1ιι′Λ−1vi
)

= −ωTE


x′1iΛ

−1ιι′Λ−1vi
...

x′piΛ
−1ιι′Λ−1vi

 = −ωT


ι′Λ−1E (x1iv

′
i) Λ−1ι

...

ι′Λ−1E (xpiv
′
i) Λ−1ι


To obtain an expression for E (xjiv

′
i) we need to develop a suitable notation. Let us write(

Ip 0

BTp BT

)(
y0
i

yi

)
=

(
y0
i

ηiι+ vi

)
(A.12)

where

(
BTp BT

)
=



−αp −αp−1 . . . −α1 1 0 . . . 0 . . . 0 0

0 −αp . . . −α2 −α1 1 0 . . . 0 0

0 0
. . . −α2 −α1

. . . 0 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 0 0 0 1 0

0 0 . . . 0 0 0 . . . −αp . . . −α1 1


.

Moreover,(
y0
i

yi

)
=

(
Ip 0

CTp CT

)(
y0
i

ηiι+ vi

)
(A.13)
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where CT = B−1
T and CTp = −B−1

T BTp, so that

yi = CTpy
0
i + ηiCT ι+ CT vi. (A.14)

Thus,

E
(
yiv
′
i

)
= CTpE

(
y0
i v
′
i

)
+ CTE

(
viv
′
i

)
= CTΛ. (A.15)

Let us consider now an expression for xji =
(
yi(1−j), ..., yi0, yi1, ..., yi(T−j)

)′. Since we have
yi(1−j)
...

yi0

 =
(

0 Ij

)
y0
i

and 
yi1
...

yi(T−j)

 = C(T−j)py
0
i + ηiCT−jιT−j + CT−j


vi1
...

vi(T−j)

 ,

we can write xji as

xji =

(
0 Ij

C(T−j)p

)
y0
i + ηi

(
0 0

CT−j 0

)(
ιT−j

ιj

)
+

(
0 0

CT−j 0

)



vi1
...

vi(T−j)




vi(T−j+1)

...

viT




or

xji = CjTpy
0
i + ηiCjι+ Cjvi (j = 1, ..., p) (A.16)

where

Cj =

(
0 0

CT−j 0

)
CjTp =

(
0 Ij

C(T−j)p

)
.

Therefore,

E
(
xjiv

′
i

)
= CjΛ, (A.17)

and in view of the previous expression

E
[
X ′iD

′ (DΛD′
)−1

Dvi

]
= −ωT


ι′Λ−1C1ι

...

ι′Λ−1Cpι

 = −


ϕ′C1ι
...

ϕ′Cpι

 .
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Moreover, note that weighted averages are given by

xji = ϕ′xji = ηi
(
ϕ′Cjι

)
+
(
ϕ′CjTp

)
y0
i + ϕ′Cjvi (j = 1, ..., p) . (A.18)

Also note that the variance of the average error can be eliminated to give rise to moment conditions
that only depend on α and the weights.

Integral (42) of the Bias Function when p = 1:
To see that the integral of hT (α,ϕ) when p = 1 is given by (42) note that using

hT (α,ϕ) =

T−1∑
t=1

(
1 + α+ ..+ αt−1

)
ϕt+1

=

T−1∑
t=1

ϕt+1 + α

T−1∑
t=2

ϕt+1 + α2
T−1∑
t=3

ϕt+1 + ...+ αT−2ϕT ,

we can write

bT (α,ϕ) = α
T−1∑
s=1

ϕs+1 +
α2

2

T−1∑
s=2

ϕs+1 +
α3

3

T−1∑
s=3

ϕs+1 + ..+
αT−1

T − 1
ϕT

=

T−1∑
t=1

(
ϕt+1 + ...+ ϕT

)
t

αt.

Derivatives of bT (α,ϕ) with respect to ϕt are:

∂bT (α,ϕ)

∂ϕt
=

{
0 for t = 1∑t−1

s=1
αs

s for t > 1

and in view of (A.2):

∂bT (α,ϕ)

∂θ
=

(
∂ϕ

∂θ′

)′ ∂bT (α,ϕ)

∂ϕ
= −ΦD′

(
DΛD′

)−1
D



0

α

α+ α2

2

α+ α2

2 + α3

3
...


.

Proof of (53) and (54) for the Random Effects Scores:
Let ξi = ηi − φyi0, so that

σ2
ε = V ar (vi) + V ar (ξi) .

Using this expression and (A.18) we have

1

σ2
ε

E
[
xi
(
ui − φ′y0

i

)]
=

1

σ2
ε

{
E (xivi) + E

[
xi
(
ηi − φ′y0

i

)]}
=

1

σ2
ε

[
ω2
TΛ−1ι′E

(
viX

′
i

)
Λ−1ι+ hT (α,ϕ)E (ηiξi)

]
=

1

σ2
ε

[ωThT (α,ϕ) + hT (α,ϕ)Cov (ηi, ξi)]

= hT (α,ϕ)
1

σ2
ε

[V ar (vi) + V ar (ξi)] = hT (α,ϕ) .
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This proves result (53). Turning to (54), we have

E

[
1

σ2
ε

ΦD′
(
DΛD′

)−1
Dvi

(
ui − φ′y0

i

)]
=

=
1

σ2
ε

ΦD′
(
DΛD′

)−1
E (Dvivi)

=
1

σ2
ε

ΦD′
(
DΛD′

)−1
DE

(
viv
′
i

)
Φι

=
1

σ2
ε

ΦD′
(
DΛD′

)−1
DΛΦι

=
ωT
σ2
ε

ΦD′
(
DΛD′

)−1
DΛΛ−1ι =

ωT
σ2
ε

ΦD′
(
DΛD′

)−1
Dι = 0.

A.4 A linear OLS Estimator of Variance Weights

A simple consistent estimator of the variance weights for given α can be obtained from the fact that
E (ui∆vit) = 0. Such estimator may be useful for providing starting values for nonlinear likelihood-
based estimation.

Enforcing the adding-up constraint, the average error can be written as

ui = ϕ1ui1 + ...+ ϕT−1ui(T−1) +
(
1− ϕ1 − ...− ϕT−1

)
uiT (A.19)

= uiT − ϕ1 (uiT − ui1)− ...− ϕT−1

(
uiT − ui(T−1)

)
.

Letting ϕo =
(
ϕ1, ..., ϕT−1

)′ and wi =
[
(uiT − ui1) , ...,

(
uiT − ui(T−1)

)]′, we have orthogonality be-
tween wi and ui

E
[
wi
(
uiT − w′iϕo

)]
= 0, (A.20)

which suggests the following OLS estimator of ϕo for given α:

ϕ̃o =

(
N∑
i=1

wiw
′
i

)−1 N∑
i=1

wiuiT . (A.21)

This estimator satisfies the adding-up constraint, but not necessarily the non-negativity restrictions.
Given the ϕ̃t’s, estimates of ωT and the σ

2
t’s can be obtained from

ω̃T =
1

(T − 1)N

N∑
i=1

T∑
t=1

ϕ̃t (vit − vi)2 (A.22)

σ̃2
t =

ω̃T
ϕ̃t
. (A.23)
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B Asymptotic Variances of Estimators Under Normality

This Appendix presents the formulae for the asymptotic variances of RML and BCS estimators used
for the ineffi ciency calculations reported in the main body of the paper. They are calculated under the
assumption of normality for both homoskedastic and heteroskedastic estimators when p = 1. These
formulas are not suggested for empirical standard error calculations (for which we use robust sample
expressions that remain consistent under conditional heteroskedasticity and nonnormality), but in
order to facilitate numerical comparisons of relative effi ciency among alternative estimators.

B.1 Asymptotic Variance of the RML-dif Estimator

Letting η†i = ηi − (1− α) yi0, the AR(1) model can be written as

∆yi1 = η†i + vi1
∆yit = α∆yi(t−1) + ∆vit (t = 2, ..., T )

or in vector notation

B


∆yi1
...

∆yiT

 = D†


η†i + vi1

...

η†i + viT

 ≡ D†u†i
where B and D† are T × T matrices of the form

B =


1 0 . . . 0 0

−α 1 . . . 0 0
...

. . .
...

0 0 . . . −α 1

 , D† =

(
1 0 · · · 0 0

D

)
.

Moreover,

V ar
(
D†u†i

)
= D†

(
σ2
η†ιι
′ + Λ

)
D†′

where σ2
η† = V ar

(
η†i

)
and under homoskedascity Λ = σ2IT .

Therefore,

V ar


∆yi1
...

∆yiT

 = B−1D†
(
σ2
η†ιι
′ + Λ

)
D†′B−1′ ≡ Ω (γ) (B.1)

where γ =
(
α, σ2

1, ..., σ
2
T , σ

2
η†

)′
.

Moreover, note that the heteroskedastic marginal MLE for the data in differences can be written
as

(
α̂D, σ̂

2
1..., σ̂

2
T , σ̂

2
η†
)

= arg min

ln det Ω (γ) +
1

N

N∑
i=1

(∆yi1, ...,∆yiT ) Ω−1 (γ)


∆yi1
...

∆yiT


 .
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Thus, under normality the asymptotic variance matrix of
(
α̂D, σ̂

2
1..., σ̂

2
T , σ̂

2
η†
)
is given by23

2
{
H (γ)′D′

[
Ω−1 (γ)⊗ Ω−1 (γ)

]
DH (γ)

}−1
(B.2)

where

H (γ) =
∂vech [Ω (γ)]

∂γ′

and D is the selection matrix

D =
∂vecΩ

∂ (vechΩ)′
.

A similar expression is valid for the homoskedastic RML-dif estimator, except that in that case

the parameter vector is redefined as γ =
(
α, σ2, σ2

η†

)′
.

B.2 Asymptotic Variance of the RML-lev Estimator

In order to exploit the previous result for the differences, we express the covariance structure corre-
sponding to the levels using the transformation:

V ar


yi0

∆yi1
...

∆yiT

 =



γ00 γ0η† αγ0η† . . . αT−1γ0η†

γ0η†

αγ0η† Ω (γ)
...

αT−1γ0η†


= Ω∗ (γ∗)

where γ00 = V ar (yi0), γ0η† = Cov
(
yi0, η

†
i

)
, and γ∗ =

(
α, σ2

1, ..., σ
2
T , σ

2
η†, γ0η†, γ00

)′
.

Arguing as in the previous case, the marginal MLE for the data in levels can be written as(
α̂L, σ̃

2
1, ..., σ̃

2
T , σ̃

2
η†, γ̃0η†, γ̃00

)
=

arg min

ln det Ω∗ (γ∗) +
1

N

N∑
i=1

(yi0,∆yi1, ...,∆yiT ) Ω∗−1 (γ∗)


yi0

∆yi1
...

∆yiT



 .

Thus, under normality the asymptotic variance matrix of
(
α̂L, σ̃

2
1, ..., σ̃

2
T , σ̃

2
η†, γ̃0η†, γ̃00

)
is given by

2
{
H∗ (γ∗)′D∗′

[
Ω∗−1 (γ∗)⊗ Ω∗−1 (γ∗)

]
D∗H∗ (γ∗)

}−1
(B.3)

where

H∗ (γ∗) =
∂vech [Ω∗ (γ∗)]

∂γ∗′

23See for example Arellano (2003, p. 72).
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and D∗ is the selection matrix

D∗ =
∂vecΩ∗

∂ (vechΩ∗)′
.

Note that in this parameterization, under stationary initial conditions, γ00 remains a free parameter
(which determines σ2

η) given by

γ00 =
σ2
η

(1− α)2 + σ2
0

and

γ0η† ≡ Cov
(
yi0, η

†
i

)
= − (1− α)σ2

0

σ2
η† ≡ V ar

(
η†i

)
= (1− α)2 σ2

0,

so that the restriction under mean stationarity is γ0η†/σ
2
η† = −1/ (1− α). Homoskedasticity further

restricts these coeffi cients to satisfy σ2
0 = σ2/

(
1− α2

)
.

B.3 Asymptotic Variance of the Homoskedastic BCS Estimator

Because of the incidental parameters problem, the ML estimates of α and σ2 estimated jointly with
the effects are inconsistent for fixed T . However, as noted by Lancaster (2002), we can obtain score
adjusted estimators that are consistent in view of the moment relationships:

E
(
x∗′i v

∗
i

)
= −σ2hT (α)

E
(
v∗′i v

∗
i

)
= (T − 1)σ2

where x∗i and v
∗
i denote orthogonal deviations of the original variables.

By substituting the second equation we can eliminate σ2 and get

E [ψi (α)] = 0

where

ψi (α) = x∗′i v
∗
i + v∗′i v

∗
i

hT (α)

(T − 1)
. (B.4)

Under suitable regularity conditions, if there is a consistent root of the equation
∑N

i=1 ψi (a) = 0,24

its asymptotic variance is given by

vα =
v

d2
. (B.5)

where

v = E
[
ψ2
i (α)

]
and

d = E

[
∂ψi (α)

∂α

]
.

24A formal proof of consistency is given in Lancaster (2002), Theorem A1.
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Because of

∂ψi (α)

∂α
= −x∗′i x∗i − 2x∗′i v

∗
i

hT (α)

(T − 1)
+

v∗′i v
∗
i

(T − 1)
h′T (α) ,

we have

d = −E
(
x∗′i x

∗
i

)
+ 2σ2 h2

T

(T − 1)
+ σ2h′T (B.6)

where we are using hT and h′T for shortness.
Similarly,

v = E
[(
x∗′i v

∗
i

)2]
+ E

[(
v∗′i v

∗
i

)2] h2
T

(T − 1)2 + 2E
[(
x∗′i v

∗
i

) (
v∗′i v

∗
i

)] hT
(T − 1)

. (B.7)

The availability of expression (B.1) allows us to calculate the term E (x∗′i x
∗
i ) that appears in (B.6)

as follows

E
(
x∗′i x

∗
i

)
= E

(
x′iD

′ (DD′)−1
Dxi

)
= tr

[(
DD′

)−1
Ω∆11

]
(B.8)

where Ω∆11 = E (Dxix
′
iD
′) is the (T − 1)× (T − 1) north-west submatrix of Ω (γ) under homoskedas-

ticity.
Next, under normality and homoskedasticity we have

E
[(
x∗′i v

∗
i

)2]
= σ4h2

T + σ2E
(
x∗′i x

∗
i

)
+ σ4tr (QCTQCT ) (B.9)

E
[(
v∗′i v

∗
i

)2]
= σ4 (T + 1) (T − 1) (B.10)

E
[(
x∗′i v

∗
i

) (
v∗′i v

∗
i

)]
= −σ4hT (T + 1) (B.11)

where Q = IT − ιι′/T and CT is such that E (xiv
′
i) = σ2CT .

Thus,

v = σ4h2
T + σ2E

(
x∗′i x

∗
i

)
+ σ4tr (QCTQCT )− σ4h2

T

(
T + 1

T − 1

)
or

v = σ2E
(
x∗′i x

∗
i

)
+ σ4tr (QCTQCT )− 2

(T − 1)
σ4h2

T . (B.12)

To get the results (B.9)-(B.11) we have used the following intermediate formulae for moments of
quadratic forms in normal variables:

E
[(
x∗′i v

∗
i

)2]
=

[
E
(
x∗′i v

∗
i

)]2
+ tr

[
E
(
x∗ix

∗′
i

)
E
(
v∗i v
∗′
i

)]
+ tr

[
E
(
x∗i v
∗′
i

)
E
(
x∗i v
∗′
i

)]
E
[(
v∗′i v

∗
i

)2]
= tr2

[
E
(
v∗i v
∗′
i
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+ 2tr

[
E
(
v∗i v
∗′
i

)
E
(
v∗i v
∗′
i

)]
= (T − 1)2 σ4 + 2σ4 (T − 1)

E
[(
x∗′i v

∗
i

) (
v∗′i v

∗
i

)]
= E

(
x∗′i v

∗
i

)
E
(
v∗′i v

∗
i

)
+ 2tr

[
E
(
x∗i v
∗′
i

)
E
(
v∗i v
∗′
i

)]
= −σ4hT (T − 1)− 2σ4hT .
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B.4 Asymptotic Variance of the Heteroskedastic BCS Estimator

The i-th unit log-likelihood conditioned on the MLE of ηi and yi0 is given by

`i = −1

2
ln det

(
DΛD′

)
− 1

2
v′iD

′ (DΛD′
)−1

Dvi

where D is the (T − 1)× T first-difference matrix operator and Λ = diag
(
σ2

1, ..., σ
2
T

)
. Also, let dt be

the t-th column of D, so that DΛD′ =
∑T

t=1 σ
2
tdtd

′
t.

Using for shortness the notation Ω = DΛD′, the first and second derivatives of `i with respect to
α and σ2

t are given by
25

∂`i
∂α

= x′iD
′Ω−1Dvi

∂`i
∂σ2

t

=
1

2
d′tΩ

−1
(
Dviv

′
iD
′ − Ω

)
Ω−1dt (t = 1, ..., T )

∂2`i
∂α2

= −x′iD′Ω−1Dxi

∂2`i
∂σ2

t∂α
= −d′tΩ−1Dxiv

′
iD
′Ω−1dt (t = 1, ..., T )

∂2`i
∂σ2

t∂σ
2
s

= −
(
d′tΩ

−1ds
) (
d′tΩ

−1Dviv
′
iD
′Ω−1ds

)
+

1

2

(
d′tΩ

−1ds
)2
.

Let `1i = ∂`i/∂α, `2it = ∂`i/∂σ
2
t , `11i = ∂2`i/∂α

2, etc., γ =
(
α, σ2

1, ..., σ
2
T

)′, and h = −E (`1i),
h1 = ∂h/∂α, h2t = ∂h/∂σ2

t . BCS is the GMM estimator based on the moments

ψi =

(
ψ1i

ψ2i

)
=

(
`1i + h

`2i

)

whose asymptotic variance is

VBCS =
(
D′V −1D

)−1

where

D = E

(
∂ψi
∂γ′

)
= E

(
`11i `12i

`21i `22i

)
+

(
h1 h′2

0 0

)

and

V = E
(
ψiψ

′
i

)
= E

(
`21i `1i`

′
2i

`2i`1i `2i`
′
2i

)
−
(
h2 0

0 0

)
.

25Note that

∂d′tΩ
−1dt

∂σ2
s

= −
(
d′tΩ

−1ds
)2

and

∂

∂σ2
s

d′tΩ
−1 (Dviv′iD′)Ω−1dt = −2

(
d′tΩ

−1ds
) (
d′sΩ

−1Dviv
′
iD
′Ω−1dt

)
.
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Letting Ω∆11 = E (Dxix
′
iD
′), the expected second derivatives are

E (`11i) ≡ E
(
∂2`i
∂α2

)
= −tr

(
Ω−1Ω∆11

)
(B.13)

E (`21it) ≡ E
(

∂2`i
∂σ2

t∂α

)
= −d′tΩ−1DC1ΛD′Ω−1dt (B.14)

E (`22its) ≡ E
(

∂2`i
∂σ2

t∂σ
2
s

)
= −1

2

(
d′tΩ

−1ds
)2

(B.15)

where E (xiv
′
i) = C1Λ, and

C1 =

(
0 0

B−1
T−1 0

)
.

Finally, the outer product terms are given by

E
(
`21i
)

= E
[(
x′iD

′Ω−1Dvi
)2]

E (`2it`1i) =
1

2
E
[(
d′tΩ

−1Dvi
)2 (

x′iD
′Ω−1Dvi

)]
+

1

2

(
d′tΩ

−1dt
)
h

E (`2it`2is) =
1

4
E
[(
d′tΩ

−1Dvi
)2 (

d′sΩ
−1Dvi

)2]− 1

4

(
d′tΩ

−1dt
) (
d′sΩ

−1ds
)
.

Under normality:

E
(
`21i
)

= tr
(
Ω−1Ω∆11

)
+ tr

(
D′Ω−1DC1ΛD′Ω−1DC1Λ

)
+ h2 (B.16)

E (`2it`1i) = d′tΩ
−1DC1ΛD′Ω−1dt (B.17)

E (`2it`2is) =
1

2

(
d′tΩ

−1ds
)2

(B.18)

Proof: Note that under normality:

E
[(
d′tΩ

−1Dvi
)2 (

d′sΩ
−1Dvi

)2]
= E

[(
d′tΩ

−1Dvi
)2]

E
[(
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−1Dvi
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+2
{
E
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−1Dvi
) (
d′sΩ

−1Dvi
)]}2

=
(
d′tΩ

−1dt
) (
d′sΩ

−1ds
)

+ 2
(
d′tΩ

−1ds
)2
,

which proves (B.18) and also shows that E (`2it`2is) = −E (`22its).
To prove (B.16), let v∗i = Ω−1/2Dvi, x∗i = Ω−1/2Dxi and note that

E
(
`21i
)

= E
[(
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∗
i

)2]
=

[
E
(
x∗′i v

∗
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)]2
+ tr

[
E
(
x∗ix

∗′
i

)
E
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+ tr

[
E
(
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i

)
E
(
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∗′
i

)]
= h2 + tr

(
Ω−1Ω∆11

)
+ tr

(
Ω−1DC1ΛD′Ω−1DC1ΛD′

)
.

Finally, (B.17) can be proved as follows:

E
[
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−1Dviv
′
iD
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(
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′Ω−1Dvi
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[
d′tΩ
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i Ω−1/2dt

(
x∗′i v

∗
i

)]
= E

(
d′tΩ

−1/2′v∗i v
∗′
i Ω−1/2dt

)
E
(
x∗′i v

∗
i

)
+ 2E
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)
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)
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To see this, letting ṽit = d′tΩ
−1/2′v∗i , note that

E
[
d′tΩ

−1/2′v∗i v
∗′
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∗
i

)]
=
∑
s

E
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ṽ2
itx
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isv
∗
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)

=
∑
s

E
(
ṽ2
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)
E (x∗isv

∗
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∑
s

E (ṽitx
∗
is)E (ṽitv
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+ 2E
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i

)
E
(
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)
.

Thus, the information equality E (`2it`1i) = −E (`21it) also holds.
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C Modified Conditional ML Score Interpretation of BCS

For the heteroskedastic AR(1) model we saw that BCS can be given a modified conditional likelihood
interpretation when the weights ϕ are known. More generally, we show here that for a heteroskedastic
AR(p) model with unknown weights, the BCS estimating equations coincide with the modified score
vector discussed in Woutersen (2002), Arellano (2003b), and Arellano and Hahn (2007), which is first
reviewed for convenience.

C.1 The Modified CML Score

Let `i (β, ηi) be an individual log-likelihood conditioned on zi, and let dβi (β, ηi), dηi (β, ηi), dηηi (β, ηi)
and dβηi (β, ηi) be first and second partial derivatives. The first argument is a vector common para-
meter β and ηi is a scalar individual effect. Let `i (β, η̂i (β)) be the concentrated log-likelihood, so
that dβi (β, η̂i (β)) is the concentrated score.

The modified score discussed in Arellano (2003b) is given by

dMi (β) = dβi (β, η̂i (β))− 1

2

∂

∂β
ln [−dηηi (β, η̂i (β))] + qηi (β, η̂i (β)) (C.1)

where

qηi (β, ηi) =
∂

∂ηi
qi (β, ηi) (C.2)

qi (β, ηi) =
κβηi (β, ηi)

κηηi (β, ηi)
(C.3)

and

κβηi (β0, ηi) = E

[
1

T
dβηi (β0, ηi) | xi, ηi

]
(C.4)

κηηi (β0, ηi) = E

[
1

T
dηηi (β0, ηi) | xi, ηi

]
. (C.5)

The first modification term provides a “degrees of freedom adjustment”, whereas the second
corrects for nonorthogonality between β and ηi. Note that if β and ηi are information orthogonal
κβηi (β, ηi) = 0, so that qηi (β, ηi) = 0 as well.

If there exists a scalar function ci (β, ηi) such that

∂

∂β
ci (β, ηi) = qηi (β, ηi) , (C.6)

the modified score corresponds to the objective function

`i (β, η̂i (β))− 1

2
ln [−dηηi (β, η̂i (β))] + ci (β, ηi) , (C.7)

which coincides with the Cox and Reid modified profile likelihood based on an orthogonal reparame-
terization of the effects. If ci (β, ηi) does not exist, there is no orthogonal reparameterization but the
modified score dMi (β) may still achieve bias reduction relative to dβi (β, η̂i (β)).
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C.2 Application to AR(p) models

In the AR(p) model, β =
(
α′, θ′

)′, zi = y0
i , and

`i (β, ηi) = −.5 ln det Λ− .5v′iΛ−1vi, dηηi (β, ηi) = −1/ωT ,

dβηi (β, ηi) = −
(

1

ωT
x1i, ...,

1

ωT
xpi,

1

σ4
1

vi1, ...,
1

σ4
T

viT

)′
.

Thus, κηηi (β, ηi) = −1/ (TωT ),

κβηi (β0, ηi) = E

[
1

T
dβηi (β0, ηi) | y0

i , ηi

]
= − 1

TωT

(
E
(
x1i | y0

i , ηi
)
, ..., E

(
xpi | y0

i , ηi
)
, 0, ..., 0

)′
,

and

qi (β, ηi) =



ηi (ϕ′C1ι) +
(
ϕ′C1

Tp

)
y0
i

...

ηi (ϕ′Cpι) +
(
ϕ′CpTp

)
y0
i

0
...

0


, qηi (β, ηi) =



ϕ′C1ι
...

ϕ′Cpι

0
...

0


.

Therefore, the modified score vector is

dMi (β) = dβi (β, η̂i (β)) +
1

2

∂

∂β
lnωT +

(
ϕ′C1ι, ..., ϕ

′Cpι, 0, ..., 0
)′

where

dβi (β, η̂i (β)) =
∂

∂β

[
−1

2
ln det Φ− T

2
lnωT −

1

2ωT
v′i
(
Φ− Φιι′Φ

)
vi

]
,

which shows that BCS can be regarded as the solution to the estimating equations
∑N

i=1 dMi (β) = 0.
In this case it does not exist a function ci (β, ηi) such that

(∂/∂β) ci (β, ηi) =
(
ϕ′C1ι, ..., ϕ

′Cpι, 0, ..., 0
)′
.

This can be easily seen when p = 1. In that case hT (α,ϕ) = ∂bT (α,ϕ) /∂α where bT (α,ϕ) =∑T−1
t=1

(
ϕt+1 + ...+ ϕT

)
αt/t, so that possible solutions for ci (β, ηi) would be of the form bT (α,ϕ) +

c (θ). However, since ∂bT (α,ϕ) /∂σ2
t depends on α and varies with t,

26 there is no c (θ) that can make
∂ci (β, ηi) /∂σ

2
t equal to zero for any α and t as required.

Thus, in the heteroskedastic AR(p) setting, despite the lack of existence of an orthogonal transfor-
mation, a first-order bias adjustment to the score is an exact correction that removes fully the bias,
hence leading to fixed-T consistent estimation.

26The expression is ∂bT (α,ϕ) /∂σ2
t = −ϕ2

t

[
bT (α,ϕ) + α+ ..+ αt−1

]
/ωT .

45



D ARMA Models

Consider the model

yit = α1yi(t−1) + ...+ αpyi(t−p) + ηi + vit (t = 1, ..., T ; i = 1, ..., N) (D.1)

where vit is a moving average error of order q.
Following the notation introduced in (A.12), we can write(

Ip 0

BTp BT

)(
y0
i

yi

)
=

(
y0
i

ηiι+ vi

)
. (D.2)

For an AR(p) process we have

V ar

(
y0
i

ηiι+ vi

)
=

(
Γ00 γ0ηι

′
T

ιTγ
′
0η σ2

ηιT ι
′
T + Λ

)
(D.3)

where Λ = diag(σ2
1, ..., σ

2
T ).

Similarly, for an ARMA(p, q) process

V ar

(
y0
i

ηiι+ vi

)
=


Γ00 Υpq γ0ηι

′
T−q

Υ′pq

ιT−qγ
′
0η

σ2
ηιT ι

′
T + Λψ

 . (D.4)

If p ≤ q, the elements of Υpq are all unrestricted. However, if p > q only the last q rows are unrestricted,
and the (p− q) first elements of the columns of Υpq coincide with those of γ0η. Moreover, Λψ is a
moving average covariance matrix whose first q subdiagonals contain nonzero elements.

We adopt the following heteroskedastic moving-average specification for the errors in (D.1):

vit = σtv
†
it (D.5)

v†it = ζit − ψ1ζi(t−1) − ...− ψqζi(t−q) (D.6)

where ζit is an iid (0, 1) random error. In this way, we allow for arbitrary time series heteroskedasticity
and at the same time specify a stationary serial correlation pattern for vit. Thus,

vi = Λ1/2Ψ
(
ζi(1−q), ..., ζiT

)′
(D.7)

and

Λψ = Λ1/2ΨΨ′Λ1/2 (D.8)

where Ψ is the T × (T + q) matrix

Ψ =


−ψq −ψq−1 . . . −ψ1 1 0 . . . 0 . . . 0 0

0 −ψq . . . −ψ2 −ψ1 1 0 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 0 0 . . . −ψq . . . −ψ1 1

 .
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Therefore, the covariance matrix of yTi =
(
y0′
i , y

′
i

)′ is given by
Ω (γ∗) =

(
Ip 0

BTp BT

)−1


Γ00 Υpq γ0ηι

′
T−q

Υ′pq

ιT−qγ
′
0η

σ2
ηιT ι

′
T + Λψ


(

Ip 0

BTp BT

)−1′

(D.9)

where the parameter vector γ∗ consists of the autoregressive and moving average coeffi cients, γ0η, σ
2
η, σ

2
1, ..., σ

2
T ,

and the unrestricted elements in Γ00 and Υpq.
The ARMA(p, q) log-likelihood is given by

LRS = −N
2

ln det Ω (γ∗)− 1

2

∑N

i=1
yTi
′Ω (γ∗)−1 yTi . (D.10)

Noting that

det

(
Ip 0

BTp BT

)
= 1,

and letting ui = ηiι+ vi, Ω11 = σ2
ηιι
′ + Λψ, Γ01 =

(
Υpq γ0ηι

′
T−q

)
, and

(
Γ00 Γ01

Γ′01 Ω11

)−1

=

(
Γ00 Γ01

Γ01′ Ω11

)
,

where

Ω−1
11 = Ω11 − Γ01′ (Γ00

)−1
Γ01 (D.11)

det Ω (γ∗) = (det Ω11) /
(
det Γ00

)
, (D.12)

we have

yTi
′Ω (γ∗)−1 yTi =

(
y0′
i , u

′
i

)( Γ00 Γ01

Γ01′ Ω11

)(
y0
i

ui

)
(D.13)

= u′iΩ
−1
11 ui +

(
y0
i +

(
Γ00
)−1

Γ01ui

)′
Γ00

(
y0
i +

(
Γ00
)−1

Γ01ui

)
.

Therefore, letting Ψ00 =
(
Γ00
)−1 and Π01 = −

(
Γ00
)−1

Γ01 = Γ01Ω−1
11 , we obtain the following expres-

sion for LRS :

LRS = −N
2

ln det Ω11 −
1

2

N∑
i=1

u′iΩ
−1
11 ui (D.14)

−N
2

ln det Ψ00 −
1

2

N∑
i=1

(
y0
i −Π01ui

)′
Ψ−1

00

(
y0
i −Π01ui

)
.

Concentrating the likelihood with respect to Ψ00 (which is unrestricted), we get

L∗RS = −N
2

ln det Ω11 −
1

2

N∑
i=1

u′iΩ
−1
11 ui −

N

2
ln det

N∑
i=1

(
y0
i −Π01ui

) (
y0
i −Π01ui

)′
, (D.15)

which we found computationally very useful.
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Table 1

Relative Ineffi ciency Ratios∗

Homosk. Heterosk.

BCS RMLdif BCS RMLdif

α = 0.6

T o = 4 λ = 0 1.45 1.33 2.21 1.59

λ = 1 1.14 1.05 1.56 1.12

T o = 10 λ = 0 1.06 1.04 1.07 1.05

λ = 1 1.02 1.00 1.03 1.00

α = 0.8

T o = 4 λ = 0 1.93 1.70 3.16 2.15

λ = 1 1.22 1.07 1.69 1.15

T o = 10 λ = 0 1.22 1.13 1.28 1.15

λ = 1 1.08 1.01 1.12 1.01

∗Ratios of Asymptotic St.Deviations: Denominator is

St.Dev. of RML-lev; T o =no. of waves; λ = σ2
η/σ

2.
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Table 2

Autoregressive Model of Earnings

AR(1) Estimates for Spanish Data, 1994-1999

N = 632, T 0 = 6

WG GMM1 GMM2 System-GMM

α −0.022 0.042 0.038 0.183

(−0.95) (0.93) (0.87) (7.00)

Sargan test (df) 6.11(9) 22.71(13)

m1 −9.67 −9.89 −13.73

m2 0.27 0.23 1.83

Likelihood-based Estimates

BCS RML(r) RML(nr) RML(r) RML(r)

(robust) (robust) (homosk.) (mean stat.) (φ = 0)

α 0.218 0.200 0.207 0.164 0.926

(7.04) (7.07) (3.83) (5.32) (87.05)

σ2
1 (1995) 0.025 0.023 0.023 0.023 0.049

(11.34) (11.91) (25.14) (11.65) (12.81)

σ2
2 (1996) 0.022 0.021 0.021 0.042

(8.55) (9.28) (9.04) (14.40)

σ2
3 (1997) 0.023 0.023 0.023 0.039

(8.23) (9.55) (9.16) (15.96)

σ2
4 (1998) 0.023 0.023 0.022 0.039

(10.26) (10.60) (10.47) (14.74)

σ2
5 (1999) 0.023 0.025 0.025 0.047

(10.93) (11.63) (11.51) (14.80)

φ 0.567 0.560 0.607 0.†

(18.27) (11.72) (15.05)

σ2
ε 0.020 0.020 0.024† 0.003

(10.37) (7.53) (9.77)

γ00 0.111 0.100

(14.35) (16.13)

Data are log earnings residuals from a regression on age,

education and year dummies. γ00 is the sample variance of y0.

t−ratios robust to conditional heteroskedasticity.
m1 and m2 are serial correlation tests for differenced errors.(
φ, σ2

ε

)
are regression coeffs. of

(
y − αy−1

)
on y0. †Implied by constraint.51



Table 2 (continued)

Autoregressive Model of Earnings

AR(2) Estimates for Spanish Data, 1994-1999

N = 632, T 0 = 6

WG GMM1 GMM2 System-GMM

α1 −0.131 0.112 0.138 0.311

(5.06) (1.20) (1.58) (7.91)

α2 −0.118 0.051 0.070 0.176

(3.78) (0.93) (1.41) (4.87)

Sargan test (df) 4.21 (7) 16.02 (11)

m1 −6.41 −7.02 −11.56

m2 −0.75 −0.87 −1.55

Likelihood-based Estimates

BCS RML(r) RML(nr) RML(r) RML(r)

(robust) (robust) (homosk.) (mean stat.) (φ = 0)

α1 0.218 0.201 0.210 0.300 0.600

(4.47) (4.89) (2.73) (4.69) (25.40)

α2 0.104 0.094 0.100 0.102 0.338

(2.57) (2.47) (1.35) (2.16) (15.90)

σ2
1 (1996) 0.022 0.022 0.023 0.026 0.037

(7.93) (8.69) (25.14) (7.17) (11.90)

σ2
2 (1997) 0.025 0.024 0.026 0.035

(7.34) (9.15) (8.84) (13.59)

σ2
3 (1998) 0.023 0.023 0.024 0.033

(8.85) (9.87) (10.10) (12.85)

σ2
4 (1999) 0.024 0.024 0.034 0.035

(10.68) (11.34) (6.13) (13.04)

φ1 0.253 0.247 0.

(5.39) (5.50)

φ2 0.334 0.326 0.

(6.51) (6.12)

σ2
ε 0.016 0.015 0.005

(8.24) (7.57) (12.62)

Root1 0.450 0.424 0.437 0.503 0.954

Root2 −0.232 −0.223 −0.228 −0.203 −0.354
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Table 3

Autoregressive Model of Earnings

AR(1) Estimates for PSID Data, 1977-1983

N = 792, T 0 = 7

WG GMM1 GMM2 System-GMM

α 0.184 0.171 0.157 0.311

(6.08) (3.37) (3.54) (9.76)

Sargan test (df) 15.61 (14) 46.59 (19)

m1 −6.36 −6.40 −7.42

m2 1.82 1.64 2.36

Likelihood-based Estimates

BCS RML(r) RML(nr) RML(r) RML(r)

(robust) (robust) (homosk.) (mean stat.) (φ = 0)

α 0.387 0.367 0.416 0.366 0.902

(9.64) (10.09) (8.27) (10.04) (43.93)

σ2
1 (1978) 0.061 0.059 0.068 0.059 0.113

(7.73) (7.83) (28.14) (7.83) (10.14)

σ2
2 (1979) 0.062 0.058 0.058 0.085

(6.10) (6.08) (6.07) (8.73)

σ2
3 (1980) 0.054 0.052 0.052 0.079

(7.21) (7.55) (7.54) (9.02)

σ2
4 (1981) 0.046 0.046 0.046 0.080

(6.62) (7.41) (7.40) (8.79)

σ2
5 (1982) 0.094 0.096 0.096 0.114

(3.55) (3.68) (3.67) (4.66)

σ2
6 (1983) 0.086 0.091 0.091 0.132

(5.34) (5.31) (5.31) (6.97)

φ 0.385 0.352 0.384 0.†

(11.84) (8.35) (11.75)

σ2
ε 0.045 0.042 0.046† 0.008

(9.35) (7.55) (6.43)

γ00 0.239 0.237

(12.92) (13.34)

Data are log earnings residuals from a regression on age,

education and year dummies. γ00 is the sample variance of y0.
∗See notes to Table 1. †Value implied by constraint.53



Table 3 (continued)

Autoregressive Model of Earnings

AR(2) Estimates for PSID Data, 1977-1983

N = 792, T 0 = 7

WG GMM1 GMM2 System-GMM

α1 0.135 0.227 0.250 0.433

(3.61) (2.75) (3.37) (11.03)

α2 −0.028 0.047 0.062 0.119

(0.90) (1.17) (1.81) (3.93)

Sargan test (df) 12.29 (12) 30.96 (17)

m1 −4.94 −5.47 −7.05

m2 2.19 1.79 1.45

Likelihood-based Estimates

BCS RML(r) RML(nr) RML(r) RML(r)

(robust) (robust) (homosk.) (mean stat.) (φ = 0)

α1 0.473 0.419 0.496 0.518 0.673

(5.29) (8.32) (5.49) (8.79) (18.30)

α2 0.157 0.115 0.176 0.159 0.260

(2.78) (3.14) (2.55) (3.56) (8.26)

σ2
1 (1979) 0.070 0.064 0.076 0.071 0.082

(4.84) (6.19) (28.14) (7.00) (8.52)

σ2
2 (1980) 0.061 0.056 0.063 0.074

(5.50) (7.48) (8.34) (9.32)

σ2
3 (1981) 0.057 0.051 0.059 0.072

(5.21) (7.01) (7.88) (8.36)

σ2
4 (1982) 0.092 0.097 0.102 0.109

(3.69) (3.71) (3.91) (4.23)

σ2
5 (1983) 0.091 0.090 0.096 0.108

(4.88) (5.28) (5.68) (6.47)

φ1 0.096 0.065 0.

(2.95) (2.06)

φ2 0.262 0.174 0.

(4.73) (3.23)

σ2
ε 0.028 0.023 0.012

(7.23) (5.65) (8.38)

Root1 0.698 0.607 0.736 0.735 0.947

Root2 −0.225 −0.189 −0.240 −0.217 −0.27454



Table 4

ARMA Models of Earnings

RML Estimates for PSID Data, 1977-1983

N = 792, T 0 = 7

ARMA(1, 1) ARMA(1, 2) ARMA(2, 1)

α1 0.655 0.336 0.210

(3.34) (1.74) (0.32)

α2 0.194

(0.24)

ψ1 0.205 −0.068 −0.175

(1.69) (0.41) (0.18)

ψ2 −0.139

(2.62)

σ2
1978 0.069 0.057

(4.74) (6.63)

σ2
1979 0.063 0.062 0.065

(6.69) (6.11) (0.48)

σ2
1980 0.057 0.056 0.056

(6.50) (7.85) (1.43)

σ2
1981 0.055 0.049 0.048

(4.80) (6.43) (1.52)

σ2
1982 0.094 0.099 0.096

(3.63) (3.68) (2.87)

σ2
1983 0.093 0.092 0.089

(5.32) (5.36) (4.68)

σ2
η 0.021 0.073 0.064

(0.90) (1.75) (1.20)
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Table 5

Simulations for the First-Order Autoregressive Model

Means and standard deviations of the estimators

N = 792, T 0 = 7

WG GMM RML(nr) RML(r) BCS

True values: α = 0.4, σ2
0 = 0.11

α
0.178

(0.015)

0.396

(0.035)

0.430

(0.021)

0.400

(0.020)

0.400

(0.021)

σ2
1

0.059

(0.003)

0.059

(0.004)

σ2
2

0.058

(0.003)

0.058

(0.004)

σ2
3

0.052

(0.003)

0.052

(0.003)

σ2
4

0.046

(0.003)

0.046

(0.003)

σ2
5

0.096

(0.005)

0.096

(0.006)

σ2
6

0.091

(0.005)

0.091

(0.005)

True values: α = 0.8, σ2
0 = 0.28

α
0.488

(0.016)

0.772

(0.076)

0.882

(0.028)

0.804

(0.037)

0.804

(0.040)

σ2
1

0.059

(0.004)

0.059

(0.004)

σ2
2

0.058

(0.004)

0.058

(0.004)

σ2
3

0.052

(0.004)

0.052

(0.004)

σ2
4

0.046

(0.003)

0.046

(0.003)

σ2
5

0.096

(0.005)

0.096

(0.006)

σ2
6

0.091

(0.005)

0.091

(0.005)

1000 replications. Variance values: σ2
1 = 0.059, σ2

2 = 0.058,

σ2
3 = 0.052, σ2

4 = 0.046, σ2
5 = 0.096, σ2

6 = 0.091, σ2
η = 0.07.
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Table A1

Heteroskedasticity-consistent likelihood-based

estimators of Autoregressive Panel Models

Data in Data in

levels differences

Unrestricted BCS

initial conditions RML RML-dif

Imposing Conditional ML

mean stationarity RML-s ≡ RML-dif

RML: random effects maximum likelihood.

BCS: bias-corrected conditional score.

RML-dif: random effects ML in first-differences and

conditional ML under mean stationarity.

RML-s: random effects ML under mean stationarity.
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Table A2

Sample characteristics: Spanish Data, 1994-1999

N = 632, T 0 = 6

Mean Min Max

age 43.5 23 65

tenure (years of exp in the job) 13.4 0 20

real labor income (euros) 13296.8 3529.1 72825.8

real capital income (euros) 276.6 0 27761.8

% less than sec educ 28.3

% secondary educ 46.3

% university educ 25.4

% industry 37.0

% service 63.0

% private sector 65.0

Table A3

Regression results first-step

Dependent variable: log of real labor income

Spanish Data, 1994-1999

Coeffi cient t-ratio

constant 7.269 54.98

age 0.076 12.79

age2 -0.001 -11.47

sec educ 0.267 19.98

univ educ 0.717 46.48

private sector 0.073 5.73

services -0.006 -0.50

d94 -0.040 -2.15

d95 -0.051 -2.79

d96 -0.054 -2.95

d97 -0.049 -2.68

d98 -0.027 -1.50
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Table A4

Autoregressive Model of Earnings

AR(2) Estimates for Spanish Data, 1994-1999

N = 632, T 0 = 6

"Robust GMM" form of the estimates with RML

adding extra moment conditions to BCS

GMM RML BCS

α1 0.204 0.201 0.218

(4.76) (4.89) (4.47)

α2 0.098 0.094 0.104

(2.55) (2.47) (2.57)

σ2
1 (1996) 0.022 0.022 0.022

(8.84) (8.69) (7.93)

σ2
2 (1997) 0.024 0.024 0.025

(9.39) (9.15) (7.34)

σ2
3 (1998) 0.023 0.023 0.023

(10.02) (9.87) (8.85)

σ2
4 (1999) 0.024 0.024 0.024

(11.27) (11.34) (10.68)

φ1 0.251 0.253

(5.43) (5.39)

φ2 0.329 0.334

(6.37) (6.51)

σ2
ε 0.016 0.016

(8.24) (8.24)

Sargan test (p-value) 0.83 (0.84)

GMM uses the 2(T + 2) moments (56)-(60) in Section 4.

RML and BCS are as in Table 2 included here for convenience.
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Table A5

Autoregressive Model of Earnings

AR(2) Estimates for PSID Data, 1977-1983

N = 792, T 0 = 7

"Robust GMM" form of the estimates with RML

adding extra moment conditions to BCS

GMM RML BCS

α1 0.475 0.419 0.473

(7.38) (8.32) (5.29)

α2 0.134 0.115 0.157

(3.34) (3.14) (2.78)

σ2
1 (1979) 0.054 0.064 0.07

(9.34) (6.19) (4.84)

σ2
2 (1980) 0.052 0.056 0.061

(8.84) (7.48) (5.50)

σ2
3 (1981) 0.051 0.051 0.057

(7.88) (7.01) (5.21)

σ2
4 (1982) 0.075 0.097 0.092

(4.47) (3.71) (3.69)

σ2
5 (1983) 0.086 0.090 0.091

(5.65) (5.28) (4.88)

φ1 0.084 0.096

(2.61) (2.95)

φ2 0.212 0.262

(3.25) (4.73)

σ2
ε 0.023 0.028

(4.91) (7.23)

Sargan test (p-value) 10.78 (0.03)

See notes to Table A3.
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Figure 1
Relative Ineffi ciency Ratio (λ = 0)

Homoskedastic Estimators

Figure 2
Relative Ineffi ciency Ratio (λ = 1)

Homoskedastic Estimators
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Figure 3
Relative Ineffi ciency Under Nonstationary Initial Variance (T = 3, α = 0.9, λ = 0)

Homoskedastic Estimators

Figure 4
Relative Ineffi ciency Ratio (λ = 0)

Heteroskedastic Estimators
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Figure 5
Relative Ineffi ciency Ratio (λ = 1)

Heteroskedastic Estimators

Figure 6
Asymptotic Standard Deviation Under Unit Root (T = 6, α = 1, λ = 0)

By Location and Change in Single Break in Variances
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Figure 7
Distribution of Residuals in First Differences

Figure 8
Graphical Test of Normality of Individual Effects
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