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1 Introduction

The capital deficits revealed among banks during the 2007-2009 global financial crisis and

the goal to prevent tax payers from having to bail out the banks in a future crisis have lead

to an unprecedented reinforcement in banks’ loss-absorbing capacity. Specifically, Basel III

has increased the minimum Tier 1 capital requirement first from 4% to 6% (since 2015) and

then to 8.5% (from 2019, once the so-called capital conservation buffer gets fully loaded). In

addition, the Financial Stability Board (FSB, 2015) has stipulated that global systemically

important banks should have ‘Total Loss-Absorbing Capacity’ (or TLAC) equal to 16% of

risk weighted assets (RWA) from January 2019 and up to 18% of RWA since 2022. Policy

makers expect a significant fraction of such TLAC to come from liabilities other than common

equity. Accordingly, liabilities such as so-called bail-in debt will be first to take a loss after

equity is wiped out and before a bank receives any support from resolution funds, deposit

insurance schemes or taxpayers.

The introduction of TLAC requirements aims to enhance the credibility of commitments

to minimize public support to banks during crises and to increase market discipline. However,

relatively little analysis exists on whether it should be satisfied with equity or with bail-in

debt, and more generally on banks’ optimal level and composition of loss-absorbing liabilities.

In this paper we study these issues in the context of a model in which the choice between

equity and bail-in debt is driven by their impact on the incentives of bank insiders.

We use a standard Merton-type model of a bank and add to it two agency frictions which

will shape the key capital structure trade-offs faced by the bank and its regulator. The bank

is run by controlling shareholders (called insiders) who take two types of hidden actions under

limited liability. The first is a standard unobservable risk shifting choice while the second is a

choice of how much private benefits to extract at a cost in terms of the overall revenues of the

bank. We consider a situation in which insiders’ monetary incentives are determined by the

payoffs of their equity stakes at the bank and, hence, in which the bank’s capital structure

(i.e. the combination of liabilities through which funding is raised among outside investors)
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is initially decided taking into account its subsequent impact on insiders’ incentives.1 As

established in the literature, the risk shifting incentives are minimized by choosing an equity

heavy capital structure (Jensen and Meckling, 1976). In contrast, excessive private benefit

taking can be minimized by giving a large equity stake to insiders and raising all the outside

funding in the form of debt (Innes, 1990).

Putting both elements together intuitively produces trade-offs that potentially lead to

interior solutions. However, it is not possible to obtain unambiguous analytical results since

all depends on the relative importance of the distortions (Hellwig, 2009). Hence, in this

paper we take a quantitative route, doing our best to calibrate the parameters on the basis

of direct and indirect evidence on US banks.

In order to ensure the quantitative relevance of the predictions, the model incorporates

additional departures from the ideal conditions of Modigliani-Miller. First, we assume that

insured deposits provide a liquidity convenience yield to investors, so that, other things

equal, they are a cheaper source of funding to the bank than bail-in debt.2 Second, we

assume that defaulting on insured deposits (or, equivalently, causing losses to the deposit

insurance agency, DIA) involves deadweight costs larger than causing equivalent losses to

the holders of bail-in debt. Therefore bail-in debt in the model is uninsured debt with three

distinctive features: it is junior to insured deposits; it provides no special liquidity services

to its holders; it implies lower deadweight losses in case of default.3 For realism, the model

also includes a deposit insurance premium, paid on a flat rate basis per unit of deposits, and

corporate taxes levied on banks’ positive earnings after interest.

The result is what, to a first approximation, might be seen as a double-decker model in

1This description implies abstracting from the potential conflict of interest between the controlling share-
holders and the managers. So, when applying the model to a large banking organization, our insiders can
be thought of as the coalition between controlling shareholders and managers.

2The liquidity role of bank deposits is microfounded by Diamond and Dybvig (1983) and plays a key
role in the assessment of capital regulation provided by Van den Heuvel (2008) and Begenau (2015), among
others. Deposit insurance is present in most countries as a guarantee on retail deposits and a protection
against bank runs.

3Specifically, in the baseline calibration we assume that defaulting on deposits causes deadweight resolu-
tion costs equal to a positive proportion of the assets repossed by the DIA, while bail-in debt can be subject
to haircuts without causing deadweight losses. Some recent experiences in Europe suggest that defaulting
on bail-in debt may also carry deadweight losses (see Ip, 2016). We discuss such a case as an extension.
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which the (socially) optimal size of the bank’s TLAC (equity plus bail-in debt) is mainly

determined by the trade-off between the liquidity services provided by deposits and the

deadweight costs of defaulting on them, while the (privately or socially) optimal composition

of such TLAC is mainly determined by the relative importance of the two agency problems.4

There are, however, interesting connections between the two deckers. For instance, when

asset returns are more volatile and the risk shifting problem is more severe, debt finance,

either in the form of insured deposits or bail-in debt, is more costly so the socially optimal

level of TLAC and the part of it consisting of equity simultaneously increase. Or if the

liquidity yield of insured deposits increases, the socially optimal TLAC diminishes, while the

part of it consisting of equity simultaneously increases (so as to offset the otherwise increased

costs of risk shifting).

We calibrate the model by matching a large set of key moments from US banking and

financial data and then examine its quantitative implications for banks’ socially optimal

capital structure. As is common in the literature, the presence of insured deposits provides a

strong need for loss absorbency requirements since banks would otherwise choose to operate

with no buffers to take maximum advantage of the corresponding guarantees (Kareken and

Wallace, 1978).5 We find that imposing total TLAC requirements similar in size to those

currently proposed by the FSB properly trades off the preservation of liquidity services linked

to deposits with the protection of the DIA against deadweight default costs.

Yet, our baseline results —obtained under the assumption that defaulting on bail-in debt

involves zero deadweight losses— imply an optimal mix of equity and bail-in debt quite differ-

ent from that implied by forthcoming regulation. We find that, once TLAC is large enough

to make the default on insured deposits relatively unlikely, equity should only represent

slightly above one quarter of optimal TLAC (or a little over 4% of total assets), with bail-in

4As insiders neglect the cost of defaulting on insured deposits, the privately optimal size of TLAC is zero
except for unrealistically high deposit insurance premia.

5This is so under the calibrated value of the deposit insurance premium. As acknowledged in the literature,
the bank’s incentive to lever up excessively would disappear under a sufficiently higher premium and could
be controlled with alternative means such as, for instance, a deposit insurance premium increasing in the
bank’s leverage.
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debt thus constituting the bulk of the loss-absorbing buffers. This is because, conditional

on a large TLAC, private benefit taking is more tempting and socially costly at the margin

than risk shifting. Intuitively, once the bailout subsidy associated with insured deposits is

negligible, residual risk shifting does not involve large deadweight losses: it has mostly a

redistributional impact (from bail-in debt holders to equity holders) which is compensated,

in equilibrium, via the pricing of bail-in debt.6 As discussed in an extension, the last result

gets modified if defaulting on bail-in debt is costly. In such a case, the socially optimal

capital buffer increases while the socially optimal TLAC requirement decreases significantly

and bail-in debt plays a very limited loss-absorbing role.

Our paper belongs to the novel and growing field of quantitative banking, which includes

contributions such as Van den Heuvel (2008), Bhattacharya et al. (2015), Davila and Gold-

stein (2016), Mankart, Michaelides and Pagratis (2017), Kashyap, Tsomocos and Vardoulakis

(2017), Segura and Suarez (2017), among others. As several of the models in this field (and

differently from what is common in macroeconomics), we abstract from dynamics because

the goal is to quantify the trade-offs that determine banks’ privately and socially optimal

capital structures rather some dynamic responses to shocks.

Initial discussions on banks’ loss-absorbing liabilities different from equity centered on

policy proposals suggesting the use of contingent convertibles (Flannery, 2005) or capital

insurance (Kashyap, Rajan, and Stein, 2008) as means to ‘prepackage’ the recapitalization

of banks in trouble, reduce the reliance on government bail-outs, and prevent their negative

ex ante incentive effects. Despite the early acknowledgement that bail-in debt could protect

deposits or other senior debt against default losses (French et al, 2010), most extant research

focuses on the going-concern version of contingent convertibles (‘cocos’), entertaining issues

such as the choice of triggers (McDonald, 2013) and conversion rates (Pennacchi, Vermaelen,

and Wolff, 2014), and their influence on the possibility of supporting multiple equilibria

(Sundaresan and Wang, 2015), discouraging risk shifting (Pennacchi, 2010; Martynova and

Perotti, 2017), or providing committment capacity in a resolution context (Walther and

6In contrast, in the absence of the buffer provided by bail-in debt, risk shifting would make deposits
overly exposed to default, causing disproportionate deadweight losses.
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White, 2016).

Most of these papers study the effects of adding an ad hoc amount of contingent con-

vertibles to some predetermined bank capital structure (often in substitution for part of

the uninsured debt). Our paper differs from them in that it focuses on the loss-absorbency

(rather than contingent convertibility) of bail-in debt and addresses the capital structure and

optimal regulation problems altogether, extracting conclusions for both the optimal size and

the optimal composition of TLAC requirements. Conceptually, the most innovative aspect

of our contribution is the consideration of a dual agency problem that makes the choice

between bail-in debt and equity non-trivial.7

The paper is structured as follows. Section 2 describes the model, the capital structure

problem solved by the bank, and the expression for the net social surplus generated by the

bank. Section 3 describes the calibration of the model. Section 4 examines its implications

for the capital and TLAC requirements that maximize social surplus. In Section 5 we

explore extensions of the model in which defaulting on bail-in debt involves deadweight

losses and in which bank default causes external systemic costs. Section 6 contains the

conclusions. Appendix A provides the derivation of the mathematical formulas used in the

analysis. Appendix B analyzes the sensitivity of the baseline quantitative results to the key

parameters of the model.

2 The Model

This section describes the ingredients of the model, the capital structure problem solved by

the bank, and the expression for net social surplus relevant for the normative analysis.

7Papers in the above-mentioned literature typically abstract from agency problems between inside and
outside equityholders. So their models feature an implicit or explicit dominance, in terms of efficiency, of
equity over bail-in debt or cocos, unless equity issuance costs or corporate taxes provide an extra advantage
to the latter.
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2.1 Ingredients of the model

We consider a bank owned by a group of risk-neutral shareholders who, to sharpen the

presentation, are assumed to be penniless and yet essential to manage the bank; we call

them the insiders.8 The bank is a one-period firm that invests in a fixed amount of assets

with size normalized to one. The assets originated at a date t = 0 yield a random return

R̃ at t = 1 that depends on the realization of an idiosyncratic continuous bank-performance

shock z at t = 1, the realization of a dichotomic risk state i = 0, 1 at t = 1, as well as two

unobservable choices made by the insiders at t = 0: (a) a private benefit taking decision ∆

and (b) a risk shifting decision ε.9

Specifically, bank asset returns conditional on reaching risk state i at t = 1 are given by:

R̃i = (1−∆− h (ε))Ra exp(σiz − σ2i/2), (1)

where z ∼ N(0, 1) and independent of the realization of i. So bank asset returns are,

conditional on i, log-normally distributed with an expected value equal to (1−∆−h (ε))Ra,

and a variance that grows with σi, which switches depending on the risk state i.10 We assume

σ0 < σ1 so that i = 0 represents a safe state and i = 1 represents a risky state. Ra is the

(exogenous) expected rate of return on bank assets when ∆ = h (ε) = 0.

The probability of ending up in the risky state i = 1 equals ε and, hence, is directly

controlled by insiders’ unobservable risk shifting decision ε ∈ [0, 1]. The function h(ε),

increasing and convex in ε, captures the negative impact of risk shifting on expected asset

returns as commonly modelled in banking (e.g. Stiglitz and Weiss, 1981, and Allen and Gale,

2000, ch. 8).

8As further pointed out below (footnote 14), the analysis could be trivially extended to consider the
case in which insiders are endowed with some wealth that they can use to finance the bank. All the results
qualitatively go through if such wealth is small relative to the loss-absorbency buffer needed by the bank.

9Given that we focus the analysis on a single bank, the risk state i can be thought of as indistinctly
capturing idiosyncratic or aggregate factors affecting bank performance. In the latter case, ε could be
thought of as the exposure of the individual bank to an aggregate risky state rather than directly the
probability of such state.
10Having log-normal returns conditional on each risk state leads to having close form solutions for the

valuation of bank securities similar to those in Black and Scholes (1973) and Merton (1977), while the
variation of the risk state produces fat tails in the unconditional distribution of bank asset returns.
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Insiders’ unobservable private benefit taking diminishes expected asset returns by a frac-

tion ∆ but directly provides a utility g (∆) to insiders (as in, e.g., Holmstrom and Tirole,

1997). Specifically, insiders maximize the expected value at t = 0 of a utility function U

which is linear in their private benefits g (∆) and their consumption c at t = 1:

U = g (∆) + βc, (2)

where β ∈ (0, 1) is the subjective discount factor. The function g (·) is strictly concave and
satisfies g0 (0) = +∞ and g0(∆̄) = 0 at some ∆̄ sufficiently lower than 1 − h(1), so that

insiders’ choice of ∆ is always contained in the interval (0, ∆̄) and equilibrium solutions

satisfy 1−∆− h (ε) > 0 for all ε.

Bank assets are financed with endogenously determined amounts of insured deposits d,

uninusured bail-in debt b, and common equity e, all raised from outside investors. Outside

investors are also risk neutral and have the same subjective discount factor β as the insiders,

but they are ‘deep pockets’ and, hence, able to supply funds elastically at an expected

gross rate of return equal to 1/β. Insured deposits and bail-in debt promise endogenously

determined gross returns of, respectively, Rd and Rb at t = 1 per unit of funds invested at

t = 0, while common equity is a standard limited-liability claim on the residual cash flow

of the bank at t = 1. Importantly, insured deposits provide a per-unit liquidity convenience

yield ψ at t = 1 to their holders, who are then willing to accept a gross deposit rate Rd equal

to 1/β − ψ.

We denote the fraction of common equity sold to outside investors by γ, which means that

the insiders retain the remaining fraction 1− γ. So insiders’ financial payoffs at t = 1 have

the form of a fraction 1 − γ of common equity payoffs. This is consistent with considering

insiders’ compensation as (realistically) junior to the repayment obligations associated with

deposits and bail-in debt but implies constraining attention to simple linear sharing rules for

the division of the residual payoffs between the insiders and the outside equityholders.11

11Instead of a linear sharing rule, an optimal contract might involve some endogenous nonlinearity in equity
returns, which would complicate the numerical solution of the model. We think that the linear sharing rule
is not a bad approximation under the assumption, also used in the calibration, that the relevant insiders
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When the asset returns R̃ at t = 1 are insufficient to pay Rdd to insured depositors, the

bank is insolvent. In such a case, the DIA takes over the bank, pays insured deposits in

full, and assumes residual losses equal to Rdd− (1− μd)R̃, where μd is a deadweight asset-

repossession cost. The DIA charges a premium p per unit of deposits at t = 0 and offsets

any surplus/deficit in its budget at t = 1 with lump sum transfers to/from taxpayers.

Since the bail-in debt is junior to insured deposits, the bank may fail to pay it in full

without defaulting on deposits. This happens when Rdd < R̃ < Rdd + Rbb. In these

cases, bail-in debt pays off (1− μb)max{R̃−Rdd, 0}, where μb ≤ μd is a deadweight asset-

repossession cost.12

The bank is subject to two regulatory constraints: (a) a minimum capital requirement

which imposes that its equity e must be at least a fraction φ of its risky assets, that is, e ≥ φ,

and (b) a minimum TLAC requirement which imposes that loss-bearing liabilities (equity or

bail-in debt) must be at least a fraction χ > φ of its risky assets, that is, e + b ≥ χ.13 So,

out of total loss-bearing liabilities, at least a fraction φ must be common equity, while the

remaining χ− φ can be indistinctly made up of bail-in debt or common equity.

Finally, the bank is also subject to corporate taxes: as under most common corporate

tax codes (including the one currently applicable to US banks), a tax rate τ is levied on

positive earnings after interest (EAI) at t = 1.

2.2 The bank’s capital structure problem

At date 0, prior to making their unobservable risk shifting and private benefit taking deci-

sions, ∆ and ε, the bank insiders establish an overarching contract with the outside investors.

The contract fixes the capital structure of the bank as described by e and b, the fraction of

bank equity retained by the insiders γ, the (gross) interest rates promised by bail-in debt Rb

include controlling shareholders in a broad sense rather than just executives (whose compensation based on
stock options might indeed involve nonlinearities).
12Having μb ≤ μd could be justified as the result of especial resolution provisions that allow bail-in debt

to be automatically converted into common equity or subject to hair-cuts in such a way that prevents the
bank from being forced to liquidate illiquid assets in order to pay its bail-in debt.
13As in reality, both requirements are set in terms of the book value of the corresponding items at t = 0.
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and insured deposits Rd and, implicitly, the insiders’ subsequent unobservable choices of ∆

and ε. The corresponding contract problem can be formally described as follows:

max
e,b,γ,Rb,Rd,∆,ε

g(∆) + γE (3)

subject to:

(1− γ)E ≥ e [PCe] (4)

J −E ≥ b [PCb] (5)

β(Rd + ψ) ≥ 1 [PCd] (6)

(∆, ε) = argmax(∆0,ε0) γE + g (∆0) [IC] (7)

e > φ [CR] (8)

e+ b > χ [TLAC] (9)

where J and E are functions specified below. E represents the overall value at t = 0 of the

bank’s common equity (that is, the stakes owned by both insiders and outsiders) and J is

the joint value at t = 0 of the common equity and the bail-in debt (so that the value of

bail-in debt can be obtained as the difference J −E).

Reflecting competition between the outside investors, the contract maximizes the insid-

ers’ expected utility, U = g(∆) + γE, which equals the private benefits obtained from the

control of bank assets, g (∆) , plus the present value of their equity stake, γE. The con-

straints of the maximization problem include the participation constraints of the investors

who provide the bank with equity financing, (4), bail-in debt financing, (5), and insured

deposit financing, (6).14 The constraints also include (7) which is the incentive compatibility

condition describing how insiders decide on ∆ and ε once the contract is in place.15 Finally

(8) and (9) reflect the existence of a minimum capital requirement φ and a minimum TLAC

requirement χ.
14Extending the analysis to the case in which insiders can contribute some wealth w < e as equity financing

to the bank would simply require replacing (4) with (1− γ)E ≥ e− w.
15If the solutions in (∆, ε) are interior, (7) can be replaced, as usual, with the first order conditions

associated with each of the choice variables.
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The fact that, conditional on each risk state at t = 1, the gross asset returns of the bank,

specified in (1), are log-normally distributed makes E and J easily expressible in terms of

conventional Black-Scholes type formulas (see the Appendix for all derivations), with:

E = β
X
i=0,1

εi [(1−∆− h (ε))RaF (si)−BF (si − σi)]− T, (10)

where F (·) is the cumulative distribution function (CDF) of a N(0, 1) random variable,

si =
1

σi

£
ln(1−∆− h (ε)) + lnRa − lnB + σ2i /2

¤
, (11)

B = Rdd+Rbb is the overall contractual repayment obligation on deposits and bail-in debt,

and T is the expected present value of corporate taxes. The amount of deposit funding d

needed to pay for the initial asset investment of one and the deposit insurance premium pd

under any given choices of e and b can be found as the solution to e+ b+ d = 1 + pd:16

d =
1− e− b

1− p
. (12)

As shown in the Appendix, the threshold si is such that F (si − σi) is the probability with

which bail-in debt is paid back in full in state i.

Conveniently, the joint value of equity and bail-in debt can be expressed as follows:

J = β
X
i=0,1

εi[(1—∆—h (ε))RaF (wi)—RddF (wi—σi)− μb (1—∆—h (ε))Ra (F (wi)—F (si))]− T,

(13)

where

wi =
1

σi

£
ln(1−∆− h (ε)) + lnRa − lnRd − ln d+ σ2i /2

¤
, (14)

and F (wi − σi) is the probability with which the bank is able to pay back its insured deposits

in full in state i.17 The term multiplied by μb accounts for the deadweight losses incurred

16For simplicity, we assume that pd is paid and recorded as an expense after the bank’s compliance with
the regulatory requirements has been checked at t = 0. Otherwise, the bank’s book value of equity relevant
for regulatory purposes would decline to e−pd and the expression for the requirements in (8) and (9) would
become unnecessarily convoluted.
17The presence of bail-in debt, Rbb, makes B > Rdd and hence si < wi.
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when the bail-in debt cannot be paid in full but the bank does not default on its deposits.

The value of the bail-in debt at t = 0 is therefore equal to J −E.

Finally, the expected present value of corporate taxes can be written as

T = βτ
X
i=0,1

εi [(1−∆− h (ε))RaF (ti)− (B + e)F (ti − σi)] , (15)

where

ti =
1

σi

£
ln(1−∆− h (ε)) + lnRa − ln (B + e) + σ2i /2

¤
, (16)

and F (ti − σi) is the probability with which the bank obtains positive EAI (and hence pays

positive taxes) in state i.18 As confirmed by the derivations in the Appendix, the way B+ e

enters (15) and (16) takes into account that the interest paid on deposits and bail-in debt is

tax deductible while the (net) payouts to equity are not.

2.3 Deposit insurance costs and the social value of the bank

The presence of the safety net for depositors implies the existence of a liability for the DIA,

the so-called Merton Put (Merton, 1977). After netting the deposit insurance premium paid

by the bank at t = 0, the expected present value of the DIA’s deficit (or surplus) that

taxpayers will cover (or receive) if positive (negative) at t = 1 is:

DI = β
X
i=0,1

εi [Rdd (1− F (wi − σi))− (1− μd) (1−∆− h (ε))Ra (1− F (wi))]− pd. (17)

Finally, the net social surplus generated by the bank can be computed as:

W = U + T −DI, (18)

so it is determined by the surplus accruing to the bank’s insiders, U , the revenue from the

corporate taxes paid by the bank, T, and the net cost of deposit insurance to the taxpayers,

DI. Other stakeholders (namely the outside investors investing in deposits, bail-in debt or

equity) simply break-even when their participation constraints in (4)-(6) are binding, as they

happen to be in equilibrium, so they make no surplus contribution to (18).

18Clearly, with e >0, we have ti < si, implying the existence of an interval of asset return realizations for
which the bank does not default on deposits but still has negative EAI and, hence, pays no taxes.
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3 Calibration

The calibration of the model strives to make its quantitative predictions empirically relevant.

We calibrate the parameters either directly, by relating them to available data or existing

empirical evidence, or indirectly, by finding values that allow the model-implied moments

to match their counterparts in the data. Table 1 displays the baseline parameter values,

briefly referring to how each parameter is calibrated. The only parameters not previously

introduced are those describing functions h(·) and g(·), which will be specified below.
The model is calibrated by assuming that one period is one year. The discount rate β

equals 0.9838, delivering a real annual risk free interest rate of 1.65% which is the average ex-

post real interest rate on 3-month US Treasury bills over the 1985-2006 period. This period

is chosen to represent ‘normal times,’ avoiding the Great Inflation and subsequent Volcker

disinflation years prior to 1985, and also the 2007-2010 financial crisis and its aftermath.

The ex post real interest rate is computed by subtracting CPI inflation from the nominal

yield.

Table 1: Baseline parameter values (one period = one year)*
Investors’ discount factor β 0.983 risk-free rate: 1.65% [1]
Deposits’ liquidity convenience yield ψ 0.0071 cost-adjusted spread T-bill - deposit yields [1]
Gross return on bank assets (if ∆=ε=0) Ra 1.03 real cost-adjusted interest earned on assets [1]
Deadweight loss from default on deposits μd 0.20 Bennet-Unal 2014 (FDIC resolutions 1986-2007)
Deadweight loss from default on bail-in debt μb 0.00 (no evidence so far)
Deposit insurance premium p 0.0006 2.5-9bps for CAMELS 1&2 (FDIC after 2011)
Corporate tax rate τ 0.25 Damodaran database, financials’ average rate
Capital requirement (CET1) φ 0.04 minimum Tier 1 capital (T1) in Basel II
TLAC requirement (CET1 + other TLAC) χ 0.08 minimum T1 + Tier 2 capital (T2) in Basel II
Private benefit level parameter [2] g1 0.0058 inside ownership 17.2% (Berger-Bonaccorsi 2006)
Private benefit elasticity parameter g2 0.1669 56.3% buffer-adjusted share T1/(T1+T2) [1]
Private benefit extra curvature parameter g3 0.15 arbitrary (technical, unimportant in equilibrium)
Cost of risk shifting parameter h1 0.2894 5% annual crisis probability
Risk shifting elasticity parameter h2 2.2103 d(Z-score)/de=0.2 (Laeven-Levine 2010)
Asset risk in the safe state σ0 0.0319 0.05% normal-times failure rate (arbitrary, small)
Asset risk in the risky state σ1 0.1145 20% crises failure rate (Laeven-Valencia 2010)

Notes: [1] US data, 1985-2006. [2] Functional forms: g (∆) = g1∆
g2 − g3∆ and h (ε) = h1ε

h2 .

The liquidity convenience yield ψ is set by matching the difference between the average
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return on 3-month Treasury bills and the average return on bank deposits after adjusting

for the bank’s costs of deposit-taking activities.19 To find these returns, we also use data

for 1985-2006. We obtain Treasury yields data from FRED and use FDIC data to estimate

the return on bank deposits as Total Interest Expense over Total Debt. To estimate the

bank’s non-interest cost of deposit-taking activities, we rely on FDIC data on banks’ Total

Non-interest Expense. However, such item does not distinguish between costs related to

taking deposits and costs related to asset-side activities. If all of the non-interest expenses

were linked to asset-side activities, the liquidity premium would be around 140bps. At the

other extreme, if 2/3 of the costs were attributed to deposit-taking, the liquidity premium

would be zero. The calibrated value of 70.6bps is the mid-point of this range, which implies

attributing 1/3 of non-interest expenses to the provision of deposit services.

To calibrate the asset return Ra, we also use FDIC data for 1985-2006, we compute the

average nominal return earned on bank assets as Total Interest Income over Total Assets

and subtract from it the CPI inflation rate and the 2/3 of non-interest expenses attributted

to asset-side activities. This gives a real cost-adjusted rate of return on bank assets of 3.16%

per annum, which explains the calibrated value of Ra.

The bankruptcy cost parameter for insured deposits μd is set equal to 0.2 in line with

the findings of Bennett and Unal (2014) based on FDIC resolutions in the 1986-2007 period.

In the baseline calibration, the deadweight loss implied by bail-in debt haircuts, μb, is set

to zero. This polar choice is based on the inexistence of evidence allowing us to calibrate

it from the the data and implies assuming that the current legal bank resolution framework

guarantees a frictionless bail-in process. We explore different values for this parameter in

extensions to the baseline analysis in Section 5.

We set the capital requirement φ equal to 0.04 in line with the requirement of Tier 1

capital under Basel II (assuming a reference risk weight of 100% on bank assets). As for

the TLAC requirement χ, we set it equal to 0.08 in line with the Tier 1 plus Tier 2 capital

19In particular, we take the difference between Treasury yields and deposit rates as a measure of a ‘gross
ψ’ that reflects depositors’ willingness to pay for the liquidity services provided by deposits and obtain a
‘net ψ’ by subtracting from it the imputed cost of providing those liquidity services. We feed all the model
formulas with such ‘net ψ’.
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requirement in Basel II, assuming that the type of liabilities other than common equity

that qualify as Tier 2 capital (preferred stock and subordinated debt) have loss-absorbing

capacity similar to that currently foreseen for bail-in debt.

We treat the DI premium p as a flat-rate premium. In the US the DI premium charged

on each bank depends on its CAMELS rating. However, Bassett, Lee and Spiller (2012)

document that, in 2006, around 92% of US banks were in the highest two CAMELS ratings

(versus 60% in 2009), which we read as meaning that it is very hard to make the DI premium

p truly risk-sensitive ex ante. So we set p equal to 6 bps, in line with the premium paid

by US banks in Risk Category I (CAMELS ratings 1 and 2) since 2011.20 In fact, under

our calibration, the bank’s model-implied Z-score is close to 3.3 which is consistent with

attaining a CAMELS rating 1 or 2.21

The bank corporate tax rate τ is set equal to 25% in line with the average tax rate for

financials reported in the data set maintained by Aswath Damodaran.22

The private benefits function is specified as follows:

g (∆) = g1∆
g2 − g3∆ (19)

with g1 ≥ 0, 0 < g2 < 1 and g3 ≥ g1g2. This specification makes g (∆) concave for 0 <

∆ < 1, with g0 (0) =∞ and g0 (1) ≤ 0, guaranteeing equilibrium choices of ∆ lower than 1.

Parameter g1 controls the size of the private benefits while g2 controls the elasticity of ∆ with

respect to insiders’ equity share γ. Parameter g3 is introduced for purely technical reasons:

setting it sufficiently above g1g2 helps to guarantee 1−∆−h (ε) > 0 when numerically solving
the contract problem without significantly affecting the equilibrium contract. Similarly, the

sacrifice in expected returns associated with risk shifting is assumed to be given by

h (ε) = h1ε
h2, (20)

20Since 2011, the FDIC requires DI premia in the range from 2.5 to 9bps for banks with CAMELS ratings
1 and 2. Our choice of 6bps roughly corresponds to the middle of this range. For more information, see
https://www.fdic.gov/deposit/insurance/assessments/proposed.html
21The Z-score is conventionally defined as (ROA+Equity Ratio)/(Standard Deviation of ROA), which in

model terms we can measure as Z-score=
P

i=0,1 εi{[(1−∆− h (ε))Ra − 1] + (e+ b)}/σi where i indexes
the risk state and we interpret the Equity Ratio broadly as the share of all loss absorbing liabilities, e + b,
in the initial assets.
22See http://www.stern.nyu.edu/~adamodar/pc/datasets/taxrate.xls.
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with h1 > 0 and h2 > 1.

In the absence of directly observable or external estimates for the private benefit para-

meters (essentially, g1 and g2), the cost of risk shifting parameters (h1 and h2), and the asset

return volatilities in the safe and risky states (σ0 and σ1), we set them in order to match six

data moments.23 The calibration procedure seeks the parameter vector (g1, g2, h1, h2, σ1, σ2)

which minimizes the sum of squared percentage deviations of the model implied moments

from the six targets.24 Conceptually, each of the targets can be mainly associated with one

of the parameters (that we indicate in parenthesis in the list below), although formally the

six parameters are found jointly as just described.

Target 1 (g1). We set a target for the fraction of bank equity owned by insiders (γ) of

17.2% based on Berger and Bonaccorsi (2006), who study US banks over the 1990-95 period.

Such target relies on a broad definition that includes, additional to direct management

and close family ownership (9.3%), the stake of institutional shareholders and other large

shareholders (7.9%) who can effectively hold management to account.

Target 2 (g2). To parameterize the curvature of the g (∆) function, we target the share

of Tier 1 Capital in Total Capital after adjusting for voluntary buffers. For the 1986-2006

period, the average value of that share for US banks is roughly 75%. However, most banks

hold voluntary capital buffers (typically in the form of Tier 1 Capital) on top of the regulatory

minima to avoid the risk of suddenly breaching the minima. Since our model does not produce

voluntary buffers, we control for them by subtracting the average excess of the Total Capital

ratio over the regulatory 8% from both the Tier 1 Capital ratio and the Total Capital ratio.

After this adjustment, the average share of Tier 1 Capital in Total Capital is 56.3%.25

Target 3 (h1). For calibration purposes, we will interpret the ‘risky state’ in the model

23We arbitrarily set g3 equal to 0.025. It can be show that g3 has a small effect on the shape of the function
g (∆) at low values of ∆ (which are the economically relevant ones) but a significant effect at large values,
helping the numerical solution method to avoid corner solutions.
24The procedure is performed with the Nelder-Meade algorithm as implemented in the Matlab function

fminsearch.m.
25Thus, the target capital ratio is very close to the baseline minimal capital requirement. In fact, the

capital requirement is binding in the baseline solution of the model, which means that it would be easier to
match the remaining targets if the capital ratio were allowed to be lower than the regulatory minimum.
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as capturing aggregate conditions in which bank failure is abnormally high (that is, financial

crises) and the ‘safe state’ as representing normal times. We therefore target the probability

of the risky state (ε) that matches the observed frequency of banking crises in the US. From

1900 to 2016, the US has experienced four banking crises implying a crisis probability of

around 3% per annum.26 However, the period since 1900 includes the Second World and the

Bretton Woods period (1939-1972) when financial repression ensured that the financial sys-

tem was unusually stable. Excluding this period leaves 4 crises in 83 years or approximately

a 5% annual crisis probability, which is the moment we target.27

Target 4 (h2). To parameterize the curvature of the h (ε) function, we use the evidence in

Laeven and Levine (2009) who estimate that the derivative of banks’ Z-score with respect to

the capital ratio is equal to 0.2, with a standard deviation of 0.09. We compute the numerical

derivative of the bank’s Z-score with respect to φ around the baseline parameterization and

aim to match it with its point estimate in Laeven and Levine (2009).28

Targets 5 (σ0) and 6 (σ1). We match the probability of bank failure generated by the

model in ‘normal times’ (P0 = 1−F (w0−σ0)) and ‘risky times’ (P1 = 1−F (w1−σ1)) with

the observation that the failure of major banks in normal times is very rare (so we target

a very low 0.05% default rate in the safe state) and the evidence in Laeven and Valencia

(2010) on bank defaults during crises. They analyze bank failures during the last financial

crisis and find that US banks experiencing formal bankruptcy held no more than 6% of total

US bank deposits. However, if one defines bank failure as receiving large scale government

assistance, the fraction of total deposits at ‘failed’ banks reaches values above 20%. Adopting

this broader definition of bank failure, we target a bank default rate of 20% in the risky state.

26Those were the 1907 crisis, the Great Depression, the Savings and Loan Crisis and the recent Global
Financial Crisis.
27In reference to international evidence, Schularick and Taylor (2012) state: “The frequency of crises in

the 1945—71 period was virtually zero, when liquidity hoards were ample and leverage was low; but since
1971, as these hoards evaporated and banks levered up, crises became more frequent, occurring with a 4%
annual probability.”
28See footnote 21 for a definition of the model-implied Z-score.
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4 Quantitative Results

Table 2 below summarizes the solution to the bank’s capital structure problem under the

baseline parameters values. The values of many variables equal or are very close to the

targets set in the calibration of the parameters. For the equity retained by bank insiders

(γ), the solution is higher than the targeted 17.2%, but is still in line with the international

evidence. Specifically, the value is consistent with Caprio, Laeven and Levine (2007), who

use a sample of 244 banks from 44 countries and report average cash flow rights for banks’

ultimate controlling owners of 26%.

The results regarding the decisions directly affected by agency problems imply that the

reduction in asset returns due to private benefit taking (∆) and risk shifting (h(ε)) amount

around 0.15% and 0.04% of total bank assets, respectively. So direct agency costs under our

baseline calibration are significant but small relative to deadweight default losses.

The unconditional expected value of the deposit insurance subsidy, DI, is around 0.19%

of total bank assets which implies that deposit insurance is underpriced. Specifically, deposit

insurance premia cover well the liabilities of the DIA in the safe state but not in the less

likely risky state, where they represent about 3.4% of bank assets while deposit insurance

premia are only about 0.055% of bank assets. These numbers are broadly consistent with

the deposit insurance costs during crises documented by Laeven and Valencia (2010), whose

median estimate is 2.1% of bank assets for advanced economies and 12.7% of bank assets for

all economies. Most of the losses suffered by the DIA are accounted for by the deadweight

losses (DWL) associated with the presence of the asset repossession cost μd > 0 incurred

whenever the bank defaults on its deposits.

Insiders’ overall payoff U amounts to around 1.5% of bank assets, of which equity payoffs

represent about 1.3% of bank assets and private benefits the remaining 0.2%. Finally, the

net social surplus generated by the bankW equals 1.94% of bank assets. This is higher than

the private surplus U, reflecting that the average corporate taxes T paid by the bank (0.64%

of bank assets) substantially exceed the average net deposit insurance subsidy DI (0.19% of

bank assets)
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Table 2: Baseline results
Common equity as % of assets e 4.00
Bail-in debt as % of assets b 4.00
Insider equity as % of total equity γ 24.2
Asset returns lost due to private benefit taking (%) ∆ 0.15
Asset returns lost due to risk shifting (%) h (ε) 0.04
Probability of the risky state realizing (%) ε 5.02
Bank Z-score (as defined in footnote 21) Z-score 3.31
Derivative of Z-score with respect to equity ∂ (Z-score) /∂e 0.32
Probability of defaulting on deposits in the safe state (%) P0 0.07
Probability of defaulting on deposits in the risky state (%) P1 20.1
Deposit insurance subsidy as % of assets DI 0.19
Deadweight default losses as % of assets DWL 0.18
Expected NPV of taxes as % of assets T 0.64
Private value of the bank as % of assets U 1.49
Social value of the bank as % of assets W 1.94

4.1 Examining the role of agency costs

In order to disentangle the trade-offs associated with each agency problem we begin by first

analyzing special cases in which either none or only one of the agency problems is present.

Later on we study the socially optimal capital and TLAC requirements when both of them

are present.

4.1.1 The model without agency costs

To analyze the case in which ∆ and ε are fully contractible, we solve the problem stated

in (3)-(9) without imposing (7). Table 3 shows the solution to the bank’s capital structure

problem for different levels of the capital and TLAC requirements, φ and χ. As a reference,

the first row of the table reports the results under the baseline regime with φ=0.04 and

χ=0.08. In the last row of the table we present the results under the capital and bail-in debt

requirements that maximize social welfare in this special case.
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Table 3: Effects of regulation with no agency costs (%)
e b γ ∆ ε P0 P1 DI T U W

Baseline regime* 4.00 4.00 26.0 0.03 2.12 0.06 19.7 0.05 0.65 1.55 2.16
φ=χ=0.08 8.00 0.00 13.8 0.03 1.44 0.06 19.7 0.03 0.67 1.53 2.18
φ=0,χ=0.08 0.00 8.00 100 0.03 3.43 0.06 19.7 0.11 0.51 1.70 2.10

Optimal regime** 9.78 0.00 12.3 0.03 0.02 0.04 15.3 -0.05 0.67 1.51 2.23

* In the baseline regime (φ, χ)=(0.04,0.08). ** In the optimal regime φ=χ=0.098.

The model without agency costs works very differently from the full model when subject

to the baseline regulatory regime. Since private benefit taking is fully contractible, ∆ is

extremely low compared to the outcome under the baseline calibration with the full model.

Equally, the full contractibility of the bank’s risk choice ε results in a low value of 2.1% per

annum. Nevertheless, ε remains above its asset return maximizing value of zero because

the bank still has an incentive to take excessive risk in order to enjoy the DI subsidy. In

other words, the contract that maximizes insiders’ value still delivers more risk-taking than

is socially optimal. This discrepancy provides a rationale for regulating the bank’s capital

structure decisions also in this case.29

The next row in the table examines the consequences of forcing the bank to use only

common equity (φ=χ=0.08). More ‘skin in the game’ for shareholders leads to a smaller

exposure to the risky state (ε falls to 1.4% per annum), while the lower reliance on debt

leads to a slight increase in the corporate tax bill. Thus the private value of the bank

(U) declines while its social value (W ) rises relative to the baseline regulatory regime. In

contrast, removing the requirement to issue any common equity (φ=0, χ=0.08) increases U

and decreases W . This happens because, by using bail-in debt as the only loss absorbing

liability, the bank economizes on corporate taxes but increases its risk shifting choice ε, to

the detriment of the DIA.

The final row shows the optimal regulatory regime in this version of the model, which re-

29Of course, in the case when ∆ and ε are observable, the regulator could directly regulate those. In
this case, it could set the first best value of ∆ and ε = 0, and the composition of the total loss absorbing
buffer would be irrelevant for welfare. For didactic reasons, we restrict attention to regulations exclusively
involving the requirements φ and χ as in the full model where ∆ and ε are unobservable.
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lies exclusively on capital (φ=χ=0.098). Making the loss-absorbing buffer entirely composed

of common equity reduces insiders’ risk shifting incentives dramatically (ε falls to 0.02%)

and turns DI negative, so that the DIA obtains a surplus. The optimal total buffer size

trades off liquidity convenience yield versus deadweight default costs. Further increases in

φ could drive ε even closer to zero but at the cost of further reducing the supply of insured

deposits (and sacrificing the corresponding liquidity convenience yield), which makes them

socially unworthy.

While bank owners would prefer a buffer entirely made of bail-in debt, due to its tax

advantages, common equity is preferred from a social standpoint because the latter is more

effective in keeping insiders’ risk shifting incentives under control. Achieving the same re-

duction of risk shifting with bail-in debt only would have required a larger overall buffer and

hence a larger cost in terms of foregone liquidity benefits of insured deposits.

4.1.2 Risk shifting only

In this second special case, we only shut down the agency problem associated with private

benefit taking: we assume that the choice of ∆ is fully contractible, while the risk shifting

choice ε remains unobservable. In this case, we solve the problem stated in (3)-(9) with a

version of (7) in which insiders’ only private decision is ε.

Table 4: Effects of regulation with uncontractible risk shifting only (%)
e b γ ∆ ε P0 P1 DI T U W

Baseline regime* 4.00 8.00 25.8 0.03 4.93 0.06 19.8 0.18 0.67 1.54 2.03
φ=χ=0.08 8.00 0.00 14.7 0.03 1.44 0.06 19.7 0.03 0.67 1.53 2.18
φ=0,χ=0.08 1.23 6.77 53.3 0.03 9.18 0.07 20.0 0.37 0.59 1.55 1.77

Optimal regime** 9.78 0.00 12.3 0.03 0.02 0.04 15.3 -0.05 0.67 1.51 2.23

* In the baseline regime (φ, χ)=(0.04,0.08). ** In the optimal regime φ=χ=0.098.

Under the baseline regulatory regime, the model with only risk shifting distortions works

similarly to the full model. The TLAC requirement is binding in order to take maximum

advantage of the liquidity yield associated with insured deposits. The capital requirement is

binding because higher leverage allows the bank to pay lower taxes and maximize the value
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of the Merton put.

The next row examines the consequences of making the requirement exclusively based

on common equity (φ=χ=0.08). This leads the bank to reduce dramatically its risk taking.

The net cost of deposit insurance DI declines considerably, mainly due to saving on bank

default costs. As a result, social surplus W increases substantially while the private value of

the bank U only falls slightly.

The third row demonstrates the consequences of leaving the buffer composition entirely

to the bank’s discretion (φ=0,χ=0.08). Opting for outside equity financing would be a way

for insiders to commit not to shift too much risk ex post. However, given that the costs of

risk shifting are mainly suffered by the DIA, insiders’ privately optimal choice of e is rather

small, risk shifting is very large (with ε higher than 9%), and the social surplus generated

by the bank is much lower than in any of the other rows.

The socially optimal regulatory regime for this special case, which appears in the fourth

row of the table, relies exclusively on the capital requirement (φ=χ=0.098). Similarly to

Table 4, a high capital ratio pushes risk shifting close to zero and brings the social surplus

W very close to its value in the case in which both ∆ and ε were contractible.

4.1.3 Private benefit taking only

To examine the case in which only the private benefit taking decision ∆ is unobservable,

we solve the problem stated in (3)-(9) with a version of (7) in which insiders’ only private

decision is ∆.

Table 5: Effects of regulation with uncontractible private benefit taking only (%)
e b γ ∆ ε P0 P1 DI T U W

Baseline regime* 4.00 4.00 24.6 0.15 2.07 0.07 20.0 0.04 0.63 1.50 2.08
φ=χ=0.08 8.00 0.00 12.9 0.28 1.44 0.08 20.3 0.03 0.63 1.39 1.99
φ=0,χ=0.08 0.00 8.00 100 0.05 3.38 0.06 19.8 0.11 0.51 1.69 2.09

Optimal regime** 0.16 13.4 90.2 0.06 1.12 0.00 8.05 -0.03 0.51 1.64 2.18

* In the baseline regime (φ, χ)=(0.04,0.08). ** In the optimal regime (φ, χ)=(0.002,0.136).

The first row of Table 5 presents the results under the baseline regulatory regime in this
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version of the model. The outcomes are similar to those emerging in the full model under the

same regulation (Table 2), except for the decline of ε (which here is contractible) to 2.1%.

Again ε does not fall to the surplus maximizing value of zero due to the distortions created

by deposit insurance.

If regulation consists solely on a capital requirement (φ=χ=0.08), the bank is pushed to

place more equity among outsiders, insiders’ equity ownership gets diluted (γ falls) and, as a

result, private benefit taking increases substantially. Intuitively, having less skin in the game

leads insiders to extract a higher level of private benefits. The losses from private benefit

taking eat into asset returns, the probability of bank default increases in both states, and

social surplus declines substantially.

The third row explores the regime that only relies on the TLAC requirement (φ=0,

χ=0.08). In this case, if banks can decide how to satisfy such requirement, they choose

bail-in debt only. A debt based capital structure makes private benefit taking ∆ to be low

(less that 25% of its value under φ=χ=0.08) and the private and social values of the bank

improve relative to the first two rows. So to a first approximation, bail-in debt works better

than outside equity. However, under this regulatory regime, the residual deposit insurance

distortion encourages the bank to increase its risk shifting ε to 3.4%.

This explains why the optimal regulatory regime, which appears in the fourth row of

the table, involves a positive (albeit tiny) capital requirement (0.16%) and a large TLAC

requirment (13.6%).30 Essentially, by reducing the probability of defaulting on deposits

(and, hence, the marginal DI subsidy), the optimal policy also reduces insiders’ risk shifting

incentives. In fact, an even larger loss absorbing buffer could take ε further down but this

would not be socially desirable because it would involve an excessive sacrifice of the liquidity

convenience yield associated with insured deposits.

30Of course, if ε were directly regulated (which in this case is theoretically feasible), it could be set equal
to its socially optimal value of zero and there would be no residual role for φ > 0. The protection against
the deadweight losses from bank default would entirely rely on bail-in debt.

22



4.2 Optimal capital and TLAC requirements in the full model

From the special cases discussed in previous sections, we learned that bail-in debt provides

better incentives than equity against private benefit taking, while equity is superior to bail-in

debt in dealing with risk shifting. In this section we consider the full model with both agency

distortions.

Table 6: Effects of regulation in the full model (%)
e b γ ∆ ε P0 P1 DI T U W

Baseline regime* 4.00 4.00 24.4 0.15 5.02 0.07 20.1 0.19 0.64 1.49 1.94
φ=χ=0.08 8.00 0.00 12.9 0.28 1.56 0.08 20.3 0.03 0.63 1.39 1.99
φ=0, χ=0.08 0.97 7.03 58.4 0.08 10.0 0.07 20.2 0.42 0.56 1.53 1.68

Optimal regime** 4.33 12.2 21.6 0.17 4.76 0.00 4.55 -0.01 0.62 1.39 2.02

* In the baseline regime (φ, χ)=(0.04,0.08). ** In the optimal regime (φ, χ)=(0.043,0.166).

Table 6, with the same structure as the tables used in the special cases, shows that a

regulatory regime with the same overall TLAC as the baseline regime but based exclusively

on capital (φ=χ=0.08) improves in terms of social surplus over the baseline regime but is

not the best solution. Specifically, it reduces risk shifting significantly (and with it the bank

default costs suffered by the DIA). However, these improvements come at the cost of an

increase in private benefit taking (∆ almost doubles). In the opposite extreme, imposing

only a TLAC requirement (φ=0.0, χ=0.08), would reduce private benefit taking relative to

the baseline but at the cost of increasing risk shifting (ε almost doubles). In this case, DI

increases so much that makes social surplus fall dramatically relative to the baseline.

In the optimal regulatory regime (φ=0.043,χ=0.166), the increase in bail-in debt relative

to the baseline reduces the probability of default on bank deposits quite a bit (as reflected in

the decline in DI) without significantly altering the decisions subject to an agency problem

(∆ increases only slightly, while ε decreases only slightly). The value of the bank to its

owners (U) declines because of, among other factors, the fall in the rents associated with

the convenience yield of bank deposits, which follows from the replacement of deposits with

bail-in debt.
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Thus, relative to the baseline regulatory regime, our calibration implies significantly

larger overall buffers (16.6% vs. 8%) and prescribes that most of the increase should consist

of bail-in debt. This somewhat surprising result reflects the fact that, once the likelihood

of defaulting on insured deposits is sufficiently low (thanks to the large buffers), the risk

shifting problem (against which equity is the most effective tool) becomes a lesser evil at the

margin than private benefit taking (against which bail-in debt works better). Risk shifting

still causes the return losses captured by h(ε). It also exposes bail-in debt holders to the

risk of experiencing haircuts in the risky state, but this risk is compensated through the

endogenously high yields paid on bail-in debt.

Finally, notice that the social value of the bank in the socially optimal regime of Table 6

is considerably lower than its counterparts in either of the two single-distortion cases (Tables

4 and 5). This reflects that the combination of the two agency problems produces trade-offs

between addressing each of them that contribute to keep the second best allocation further

distant from the first best.

4.2.1 Importance of the two requirements

The optimal regulatory regime involves a minimum capital requirement as well as a minimum

TLAC requirement, instead of just one of the two. In Table 7, we study the implications of

removing the minimum capital requirement (that is, making φ=0 while keeping χ=0.166) as

well as the implications of ignoring bail-in debt (making φ=χ) and imposing the social value

maximizing capital requirement (φ=0.085).

Table 7: Importance of capital and bail-in debt in the optimal regime (%)
e b γ ∆ ε P0 P1 DI T U W

Optimal regime* 4.33 12.2 21.6 0.17 4.76 0.00 4.55 -0.01 0.62 1.39 2.02
φ=0, χ=0.166 1.90 14.7 39.3 0.10 8.07 0.00 4.57 0.02 0.58 1.41 1.97
φ=χ=0.085 8.47 0.00 12.1 0.29 1.21 0.04 19.1 0.01 0.62 1.37 1.99

* In the optimal regime (φ,χ)=(0.043,0.166).

Interestingly, the second row of Table 7 shows that banks would voluntarily raise some of

their TLAC in the form of equity (e=0.019) but not as much as it would be socially optimal
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(e=0.043). The chosen value of e reflects that banks internalize the impact of equity funding

on risk shifting incentives and, through it, on the pricing of bail-in debt–a clear ‘market

discipline’ effect. Yet the voluntarily chosen value of e is lower than the socially optimal

one because the losses caused to the DIA are not internalized. In any case, as shown in the

relevant columns of the table, the size of the DI subsidy with TLAC of 16.6% is quite small

for any φ and the welfare losses from the sub-optimal choice of φ are significant but not

enormous (around 5bps of bank assets).

Finally, in the third row of Table 7, we consider how the optimal regulatory regime would

change if bail-in debt were not considered as a possible source of loss absorbing capacity and

the only regulatory tool were the capital requirement (φ=χ). In this setup the optimal loss

absorbing buffer is considerably smaller than in the unrestricted optimum (just 8.5% instead

of 16.6%). This leads to higher bank default in both the risky and the safe state. The

reason for the smaller buffer lies in the agency costs of outside equity. Increasing φ leads to

a dilution of insiders’ ownership γ and boosts their private benefit taking ∆. On the positive

side, risk shifting declines (ε falls to less than a quarter of its baseline value) but the overall

risk of defaulting on deposits (which can be inferred from the size of DI) increases relative

to the unconstrained optimal regime due to the decline in the size of the total loss absorbing

buffer. All in all, the impact of restricting the bank to only build buffers using common

equity is to reduce social welfare in an amount equivalent to 3bps of bank assets.

4.2.2 Marginal effects of the TLAC requirements

To further explore the mechanisms underlying the explanations provided above, Figure 1

shows how key variables from the bank’s optimal capital structure problem change as a

function of the TLAC requirement χ while the capital requirement remains fixed at the

value of 4.3% that it has in the optimal regime. The most important effect of increasing χ is

to reduce the unconditional probability of defaulting on insured deposits, P̄ = (1−ε)P0+εP1,
called ‘Default Probability’ in this and subsequent figures. The fall in P̄ is due entirely to the

mechanical protection provided by the loss-absorbing buffers. In fact, increasing χ pushes the
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bank to use expensive bail-in debt instead of cheaper deposits, damaging its profitability and,

with it, insiders’ incentives regarding ∆ and ε. Hence, the two underlying agency problems

worsen, although quantitatively the effects are small.
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Figure 1: Equilibrium outcomes as a function of the TLAC requirement χ

The bottom right panel in the figure shows our measure of social welfare –the social

value of the bank W– which obviously reaches its maximum when χ equals its previously

identified optimal value of 16.6%. Interestingly,W deteriorates significantly when the TLAC

requirement falls below 10% (due to the increase in deadweight default losses). Instead, the

fall in W when χ moves further above its socially optimal value happens more slowly (due

to the loss of the liquidity convenience yield of insured deposits).

4.2.3 Marginal effects of the capital requirement

Figure 2 describes the effects of varying the capital requirement φ while keeping the TLAC

requirement at its optimal value of 16.6%.
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Figure 2: Equilibrium outcomes as a function of the capital requirement φ

The top left panel shows that when φ is lower than about 3%, the capital requirement

is no longer binding as the bank voluntarily opts for an equity buffer of about 3%. Above

such level, rising φ produces dilution in insiders’ ownership, increasing their private benefit

taking. However, as already identified in prior discussions, risk shifting falls, which explains

the fall in the unconditional probability of defaulting on deposits and the increase in welfare

up to the point in which φ equals its previously identified optimal value of 4.3%.

5 Extensions

5.1 Deadweight losses from bail-in debt write-offs

For the baseline results, we have assumed that the deadweight costs from writing off bail-in

debt, μb, are zero. We made this assumption mainly because of the inexistence of evidence

allowing us to calibrate μb. In Table 8 we show the sensitivity of the results to this parameter.
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Table 8: Optimal policy with deadweight losses on bail-in debt (%)
e b γ ∆ ε P0 P1 DI T U W

μb=0.00* 4.33 12.2 21.6 0.17 4.76 0.00 4.55 -0.01 0.62 1.39 2.02
μb=0.03 7.67 1.76 13.3 0.27 1.82 0.01 16.6 0.01 0.63 1.38 1.99
μb=0.06 8.39 0.21 12.2 0.29 1.27 0.04 18.8 0.01 0.62 1.37 1.99
μb=0.09 8.47 0.00 12.1 0.29 1.21 0.04 19.1 0.01 0.62 1.37 1.99

* The optimal requirements under each μb can be found as φ=e and χ=e+ b.

The relevance of bail-in debt under the optimal regulatory regime, b, declines sharply

with μb. In parallel, the optimal capital requirement increases but not enough to avoid a

sizeable fall in χ. For a small positive value of μb such as 3%, the total buffer size declines

from 16.6% to 8.5% and bail-in debt declines from 12.2% to 1.8%. Equity is used much

more intensively and, as a result, the losses associated with private benefit taking increase

significantly. On the positive side, the higher equity ratio leads to a large reduction in risk

taking as evidenced by the big decline in ε. Further increases in μb gradually lead to the

complete elimination of bail-in debt from the optimal capital structure. When μb=0.09 the

overall buffer is 8.47% while bail-in debt is not used at all.

The above analysis shows that the usefulness of bail-in debt rests crucially on the possibil-

ity to impose haircuts on it without suffering deadweight default costs. This explains recent

regulatory efforts to reform bankruptcy proceedings and clarify the legal status of bail-in

debt so as to reduce the risk of legal tangles or other costly frictions when imposing losses

on its holders. For example, several European countries have created a dedicated category

of ‘senior non-preferred debt’ on which to apply the bail-in prescriptions of the European

bank resolution legislation.

5.2 Systemic costs of bank default

We can also extend the analysis to the case of a systemic bank by assuming that its default on

insured deposits causes external or system-wide costs equal to a proportion μed of its initial

assets. To consider these costs, the social value of the bank in (18) needs to be modified to

W = U + T −DI −EC, (21)
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where

EC = β
X
i=0,1

εi [μed (1− F (wi − σi)) + μeb (F (wi − σi)− F (si − σi))] . (22)

Table 9: Optimal policy with social costs of defaulting on deposits (%)
e b γ ∆ ε P0 P1 DI EC T U W

μed=0.0 4.33 12.2 21.6 0.17 4.76 0.00 4.55 -0.01 0.00 0.62 1.39 2.02
μed=0.5 4.06 18.5 22.2 0.17 5.08 0.00 0.96 -0.04 0.02 0.61 1.35 1.98
μed=1.0 3.94 20.6 22.6 0.16 5.23 0.00 0.51 -0.04 0.01 0.61 1.34 1.98

* The optimal requirements under each μb can be found as φ=e and χ=e+ b.

Table 9 above shows that the main impact of introducing an external cost associated

with the default of the bank on its deposits is to dramatically increase the size of the socially

optimal buffers to values that approach 25% in the μed = 1.0 case. Interestingly, when we

allow for values of μed larger than zero, the model prescribes an even lower capital requirement

than in the baseline (4% when μed = 0.5), reflecting a change in the relative importance of

the two agency problems around the new optimal regime. The change happens for two

reasons. First, substituting cheaper deposits for more expensive bail-in debt reduces bank

profits and makes insiders more inclined towards private benefit taking. In parallel, the low

probability of default contributes to keep risk shifting incentives under control. As a result,

the optimal capital requirement falls, making equity represent an even lower share of TLAC

than in the baseline model.

6 Conclusions

The increase in capital requirements and the revision of regulation regarding non-equity

liabilities such as bail-in debt that may provide banks with total loss-absorbing capacity

(TLAC) are two important aspects of the deep reform of bank solvency regulation undertaken

in the aftermath of the global financial crisis. Yet surprisingly little research has been done

on the optimal size and composition of TLAC.

In this paper we build a banking model in the spirit of Merton (1977) and insert in it a

number of relevant frictions, including two agency problems commonly included in theoretical
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models but rarely taken into account in quantitative models. The result is a framework which

we think is useful for the analysis of banks’ capital structure and its optimal regulation. Our

banks have the possibility to issue deposits that are a cheap source of funding due to the fact

that they provide a liquidity convenience yield to their holders. However, defaulting on these

deposits produces large social deadweight costs. Hence, this model assigns an important role

to liabilities with loss-absorbing capability (such as common equity, bail-in debt and other

possible components of TLAC), even if these liabilities are inferior to deposits in terms of

liquidity provision.

In our model, equity and bail-in debt are perfect substitutes in their role of offering

protection against deadweight losses from bank default but greatly differ in their impact

on incentives. Bank insiders take two unobservable decisions based on self-serving motives

but which have implications for other stakeholders and for society at large. One decision

concerns risk shifting (exposing the bank to riskier but lower on average asset returns) and

the other concerns private benefit taking (extracting utility from the bank to the detriment

of its asset returns).

These two agency problems bring in the key trade-off driving the optimal composition

of banks’ TLAC. Incentivizing banks to restrain their risk shifting requires that the loss-

absorbing buffer is mainly made up of equity. This is because, intuitively, bail-in debt

counts like debt in terms of inviting equity holders to gamble. However, following the logic

of the analysis of Innes (1990), forcing banks to issue large amounts of outside equity has

the disadvantage of reducing insiders’ equity share, which pushes them into excessive private

benefit taking. The optimal composition of TLAC is determined by trading off these two

competing agency problems. Under our calibration of the model, the optimal regulatory

regime features a large TLAC requirement (16.6% of assets) and a significant though limited

capital requirement (4.3%), therefore assigning a very important role to bail-in debt (12.3%).

The intuition for the sparing use of equity financing under our baseline calibration is that,

once overall buffers are large enough to make the bank relatively unlikely to default on its

insured deposits, private benefit taking becomes marginally more important for the social
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surplus generated by the bank than risk shifting.

As extensions to the baseline model, we have explored the sensitivity of the results to

introducing a deadweight loss associated with the write-off of bail-in debt and some external

social costs due to the bank’s default on its deposits. As one might expect, if inducing

losses on bail-in debt involves deadweight losses, the attractiveness of this form of TLAC

declines very sharply, and the optimal regulatory regime approaches one in which TLAC is

much lower and entirely made of equity. In contrast, if the bank’s default on its deposits

causes system-wide costs, the optimal loss absorbing buffer increases, with a composition if

anything more tilted towards bail-in debt.
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Appendices

A Derivation of the formulas for E, J, T and DI

Formula for the value of equity E Investors’ risk neutrality implies that the overall
value of equity can be found as

E = β
X
i=0,1

εiEi − T, (23)

where Ei = E(max{R̃i −B, 0}) are residual equity payoffs gross of corporate taxes and E is
the expectations operator. B = Rdd + Rbb are total promised repayments to deposits and
bail-in debt, and T is the present value of expected corporate tax payments. Using (1), we
can write

Ei = E
¡
max{(1−∆− h (ε))Ra exp(σiz − σ2i /2)−B, 0}¢

= (1−∆− h (ε))Ra

Z ∞

z̄i

exp(σiz − σ2i /2)f(z)dz −B (1− F (z̄i)) , (24)

where f(z) and F (z) are the density and CDF of a N(0, 1) random variable, and z̄i is
implicitly defined by (1—∆—h (ε))Ra exp(σiz̄i—σ2i /2)—B = 0, so

z̄i =
1

σi

£
lnB − ln(1−∆− h (ε))− lnRa + σ2i /2

¤
.

Now, the fact that f(z) = 1√
π
exp(−z2/2) allows us to writeZ ∞

z̄i

exp(σiz − σ2i /2)f(z)dz =

Z ∞

z̄i

1√
π
exp(σiz − σ2i /2− z2/2)f(z)dz

=

Z ∞

z̄i

1√
π
exp(−(z − σi)

2/2)f(z)dz

=

Z ∞

z̄i−σi

1√
π
exp(−1

2
y2)f(y)dy = 1− F (z̄i − σi),

where the last line follows from the change of variable y = z − σi.

Finally, using the symmetry of the normal distribution and prior definitions we have that
1—F (z̄i—σi) = F (σi—z̄i) = F (si) and 1—F (z̄i) = F (—z̄i) = F (si—σi) , so (24) can be expressed
as

Ei = (1−∆− h (ε))RaF (si)−BF (si − σi) , (25)

which substituted into (23) yields (10).
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Formula for the joint value of equity and bail-in debt J To obtain the expression
for the joint value of equity and bail-in debt, J, we can similarly write

J = β
X
i=0,1

εiJi − T, (26)

with
Ji = E(max{R̃i −Rdd, 0})− μbE(ξ(R̃i −B < 0)max{R̃i −Rdd, 0}),

where ξ(R̃i −B < 0) is an indicator function taking value 1 when the condition R̃i −B < 0

holds. So the term multiplied by μb accounts for the deadweight losses incurred if the bank
does not default on insured deposits but fails to pay its bail-in debt in full.
Reproducing the steps followed for the derivation of (25), we can find

Ji = [(1−∆− h (ε))RaF (wi)−RddF (wi − σi)]− μb ((1−∆− h (ε))Ra [F (wi)− F (si)]) ,

(27)
where

wi =
1

σi

£
ln(1−∆− h (ε)) + lnRa − lnRd − ln d+ σ2i /2

¤
, (28)

justifying equations (13) and (14) in the main text.

Formula for the value of the corporate taxes paid by the bank T Corporate taxes
are proportional to EAI as long as EAI are positive and zero otherwise. EAI in state i are
given by the difference between the net return on assets and the net cost of debt liabilities:

EAIi = (R̃i − 1)− [(Rd − 1) + p] d− (Rb − 1)b
= R̃i − (Rdd+Rbb)− (1 + pd− d− b)

= R̃i −B − e,

where the second equality follows from having B = Rdd+Rbb and the banks’ balance sheet
constraint at t = 0, which implies e + b + d = 1 + pd. Thus the expected present value of
corporate taxes can be written as

T = β
X
i=0,1

εiTi, (29)

where

Ti = τE(max{EAIi, 0})
= τE(max{R̃i −B − e, 0}).

Following steps similar to those leading to (25), we can find
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Ti = τ [(1−∆− h (ε))RaF (ti)− (B + e)F (ti − σi)] , (30)

where
ti =

1

σi

£
ln(1−∆− h (ε)) + lnRa − ln (B + e) + σ2i /2

¤
, (31)

which substituted in (29) yields (15).

Formula for the net cost of deposit insurance to taxpayers DI To derive the
expression forDI in (17), it is convenient to start with the special case in which μd = μb = 0.

In such case DI is given by

DI|μd=0 = β
X
i=0,1

εi (Rdd−Di)− pd, (32)

where Di = E(min{Rdd, R̃i}) represents the expected value of the bank’s final payments on
deposits under μ = 0, taking into account that the bank defaults on them when R̃i < Rdd,
paying back R̃i rather than Rdd.

Now, given that min{Rdd, R̃i} = R̃i—max{R̃i −Rdd, 0}, we can write

Di|μd=0 = E(R̃i)− Ji|μb=0. (33)

But then, substituting E(R̃i) = (1—∆—h (ε))Ra and (27) in (33), we find

Di|μd=0 = RddF (wi − σi) + (1−∆− h (ε))Ra (1− F (wi)) , (34)

where the first and second terms account for the bank’s payments on deposits in non-default
states and default states, respectively.
Plugging (34) into (32) and reordering yields

DI|μ=0 = β
X
i=0,1

εi [Rdd (1− F (wi − σi))− (1−∆− h (ε))Ra (1− F (wi))]− pd. (35)

In the general case with μd ≥ 0 and μb ≥ 0 the only required adjustment is to add to DI

the expected deadweight losses incurred when the bank defaults on insured deposits, which
are μd (1—∆—h (ε))Ra (1—F (wi)) in each state i. Adding them to (35) leads to (17).
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B Sensitivity analysis

In this section we examine how the optimal capital and TLAC requirements and the equilib-
rium outcomes associated with them, change in response to variations in relevant parameters
of the model. The results help better understand the qualitative trade-offs behind our core
quantitative results and provide guidance on the dependence of the optimal regulatory regime
on characteristics of the environment.

B.1 Sensitivity to the return cost of risk shifting (h1)

Figure B1 shows the socially optimal arrangement and its associated equilibrium outcomes
change as h1 increases from 20% below the baseline value to 20% above. This parameter is
directly related to the return cost of risk shifting and, hence, inversely related to the severity
of this agency problem. Other things equal, both risk shifting and its social cost fall with h1.
Increases in h1 are then optimally accommodated with declines in the capital requirement
φ (as the marginal importance of risk shifting declines) and the TLAC requirement χ (as
there is less of a reason to sacrifice the liquidity value of deposit funding).
Interestingly, when h1 increases, the trade-off between providing insiders with incentives

not to shift risk and not to take private benefits improves. Specifically, reducing φ allows
insiders’ ownership to be increased, which implies that private benefit taking can also be
reduced. Welfare increases but, somewhat paradoxically, the unconditional probability that
the bank defaults on its deposits, P̄ , slightly increases.

Figure B1: Sensitivity of the optimal regulatory ratios and related outcomes to h1
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B.2 Sensitivity to the volatility of asset returns (σ0 and σ1)

Figure B2 shows how the optimal regulatory ratios and the implied equilibrium outcomes
respond to changes in the variance of asset returns. Because this variance is different across
risk states, we explore the case in which the baseline values of σ0 and σ1 get multiplied by a
same factor σ, which is depicted on the horizontal axes. So with σ=1 we have the baseline
where the optimal capital requirement is around 4.3% and the optimal TLAC ratio is 16.6%.
On most of the explored range, increasing σ increases the levels of both requirements.
Increasing the variance of asset returns rises the exogenous risk faced by the bank and,

other things equal, its probability of default. This increases the incidence of the deadweight
default costs suffered by the DIA. It is then optimal to impose a higher TLAC requirement
χ. In parallel, the greater exogenous risk makes insiders’ temptation to shift risk stronger,
calling for a larger capital requirement φ. However, increasing the capital requirement re-
duces insiders’ share in total equity and pushes them into greater private benefit taking, so
eventually the two agency problems worsen as σ increases. Even after optimally adjusting
the regulatory ratios, welfare decreases and the unconditional probability of bank failure
increases.

Figure B2: Sensitivity of the optimal regulatory ratios and related outcomes to σi
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B.3 Sensitivity to the value of private benefit taking (g1)

Figure B3 shows the implications of changing the parameter g1 which measures the size of
the private gains that insiders may get by increasing ∆. So from a private perspective and
other things equal, a larger g1 means that insiders will be tempted to divert more resources
from the bank. From a social perspective, however, such diversion implies a lower net social
value loss when g1 is higher. The results show that the social planner responds to the
prospects of larger ∆ by increasing the TLAC requirement χ (which explains the fall in
the unconditional probability of defaulting on deposits, P̄ ) and its bail-in debt component,
χ−φ, but less aggressively so than if (increased) value of private benefits were not considered
part of the social surplus generated by the bank. This last fact explains why social welfare
increases with g1 over a significant range of values of this parameter.
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Figure B3: Sensitivity of the optimal regulatory ratios and related outcomes to g1
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B.4 Sensitivity to the deadweight costs of bank default (μd)

Figure B4 shows the impact of varying the deadweight costs of defaulting on insured deposits
μd. As might be expected, the optimal TLAC requirement χ is increasing in μd, while the
optimal capital requirement is barely sensitive to μd. Intuitively, replacing insured deposits
with bail-in debt reduces the probability of defaulting on the former, thus avoiding the
corresponding deadweight loss. However, such substitution increases funding costs and,
thus, reduces the profitability of the bank. The lowering profitability increases the dilution
of insiders’ ownership needed to raise any given amount of outside equity and, hence, worsen
the private benefit taking problem. The social planner counteracts this problem by making
the additional buffers to consist fully of bail-in debt (thus tolerating a slight deterioration of
the risk shifting problem).

Figure B4: Sensitivity of the optimal regulatory ratios and related outcomes to μd
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B.5 Sensitivity to deposits’ liquidity convenience yield (ψ)

Figure B5 shows the effects of changing the liquidity convenience yield of insured deposits
ψ. The most direct effects of this parameter are to increase bank profitability and the social
opportunity cost of reducing deposit funding (i.e. rising the TLAC requirement χ). Other
things equal, the rise in profitability has a positive impact on the two underlying incentive
problems and makes the social planner more willing to reduce χ and to tolerate a rise in
the probability of bank default. In fact both effects reinforce each other, as the decline in χ

has additional positive effects on profitability and incentives, which in turn reduces the need
for large regulatory buffers. As ψ and χ falls, the relative marginal importance of the two
agency problems gets slightly altered, inducing a small increase in φ and a decline in risk
shifting. The U-shaped relationship between private benefit taking ∆ and ψ is explained by
the combined impact of the profitability effect (which tends to reduce ∆) and the dilution
of insiders’ ownership eventually caused by the rise in φ (which tends to increase ∆).

Figure B5: Sensitivity of the optimal regulatory ratios and related outcomes to ψ
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