Comments by Rafael Repullo on

The Conundrum of Zero APR An Analytical Framework

Lukasz Drozd and Michal Kowalik

30th FINANCE FORUM

Málaga, 7 July 2023

Introduction (i)

- Paper addresses very interesting topic
 - \rightarrow Promotional pricing of credit card debt in US
 - → Zero initial APR (Annual Percentage Rate)
- Structure or paper
 - \rightarrow Review of the stylized facts
 - \rightarrow Theoretical models that can account for the facts

Introduction (ii)

- This discussion
 - \rightarrow Brief summary of facts
 - \rightarrow Brief review of main model
 - \rightarrow Simpler model that can account for some of the facts

Part 1 Stylized facts

Data

- Amazing dataset
 - \rightarrow Panel of all credit card accounts reported by BHCs
 - \rightarrow Monthly data for 2018 and 2019
 - \rightarrow Including credit scores and zip code
 - \rightarrow Promotional accounts identified by lenders

Stylized facts

- 1. A quarter of credit card debt has introductory promotional status, in most cases with zero APR
- 2. Expiration of a promotion involves a sizable rate hike
- 3. There is no systematic change in default risk between the origination and the expiration of a promotion
- 4. Promotions are associated with large movement of debt across credit cards

Part 2 Model setup

Model setup (i)

- Three dates (t = 1, 2, 3)
- Large number of risk-neutral competitive lenders

 \rightarrow Cost of funds normalized to zero

- Large number of consumer families
 - \rightarrow Each family has continuum of members
 - \rightarrow Family members face perfectly correlated income risk
 - \rightarrow Concave utility function $u(c_t)$ and discount factor β

Model setup (ii)

- Income risk
 - \rightarrow With probability *p* negative income shock at t = 2 or t = 3
 - \rightarrow Default in low income state
- Credit line contract
 - \rightarrow Introductory interest rate and credit limit
 - \rightarrow Reset interest rate and credit limit
 - \rightarrow Reset terms can be sweetened ex post (irrelevant)
 - \rightarrow Refinancing offer by other lenders with probability ρ

Main result

- Equilibrium contract characterized by
 - \rightarrow Not binding credit limits
 - \rightarrow No refinancing
 - \rightarrow No promotions

Extensions

• Hidden savings

 \rightarrow Similar results as in original model

- Strategic default
 - \rightarrow No income risk and non-pecuniary cost of default
 - \rightarrow Main result: Binding credit limits
- Hyperbolic discounting
 - \rightarrow Consumers can or cannot be aware of time inconsistency
 - \rightarrow Main result: Promotional pricing may arise in equilibrium

Some comments

• Results of theoretical model are somewhat disappointing

 \rightarrow Cannot account for stylized facts

• Model with hyperbolic discounting seems promising

 \rightarrow Should it be the focus of the paper?

• Unclear why bother with consumer families

 \rightarrow If members face perfectly correlated income shocks

Part 3 A simpler model

Model setup (i)

- Three dates (t = 1, 2, 3)
- Consumers characterized by

 \rightarrow Utility function

$$u(c_1) + E[u(c_3)]$$

 \rightarrow Risky endowment at t = 3

$$y_3 = \begin{cases} y, & \text{with probability } 1 - p \\ y - \Delta, & \text{with probability } p \end{cases}$$

 \rightarrow Information about income shock is not available at t = 2

 \rightarrow No change in default risk between t = 1 and t = 2

14

Model setup (ii)

- Initial lender offers contract characterized by
 - \rightarrow Loan amount c_1
 - \rightarrow Gross interest rate R_2 if contract is liquidated at t = 2
 - \rightarrow Gross interest rate R_3 if contract is liquidated at t = 3
- At t = 2 a refinancing offer may arrive with probability ρ
 - \rightarrow Loan amount $c_1 R_2$
 - \rightarrow Gross interest rate \hat{R}_3

Model setup (iii)

• Participation constraint of initial lender

$$\rho R_2 + (1 - \rho)(1 - p)R_3 = 1$$

• Participation constraint of new lender

$$(1-p)\hat{R}_3 = R_2$$

 \rightarrow Substituting the second constraint into the first gives

$$(1-p)\left[\rho\hat{R}_{3}+(1-\rho)R_{3}\right]=1$$

Optimal contract (i)

• Competitive lenders' maximization problem

$$\max_{c_1,R_3,\hat{R}_3} \left[u(c_1) + (1-p) \left(\rho u(y - c_1 \hat{R}_3) + (1-\rho) u(y - c_1 R_3) \right) + p u(y - \Delta) \right]$$

subject to

$$(1-p)\left[\rho\hat{R}_{3}+(1-\rho)R_{3}\right]=1$$

Optimal contract (ii)

• First-order conditions

 \rightarrow with respect to c_1

$$u'(c_1) = (1-p) \left(\rho \hat{R}_3 u'(\hat{c}_3) + (1-\rho) R_3 u'(c_3) \right)$$

 \rightarrow with respect to R_3

$$u'(c_3)c_1 = \lambda$$

 \rightarrow with respect to \hat{R}_3

$$u'(\hat{c}_3)c_1 = \lambda$$

 \rightarrow where λ is the Lagrange multiplier of the constraint

Optimal contract (iii)

• Putting together the last two first-order conditions gives

$$u'(c_3)c_1 = u'(\hat{c}_3)c_1 = \lambda$$

 \rightarrow which implies

$$c_3 = y - c_1 R_3 = y - c_1 \hat{R}_3 = \hat{c}_3$$

 \rightarrow which implies

$$R_3 = \hat{R}_3$$

Optimal contract (iv)

• From here it follows that

$$R_2 = (1-p)\hat{R}_3 = (1-p)\left[\rho\hat{R}_3 + (1-\rho)R_3\right] = 1$$

 \rightarrow Initial lender sets a zero APR for one period!

What's the intuition?

• Recall household's objective function

$$u(c_1) + (1-p) \Big(\rho u(y - c_1 \hat{R}_3) + (1-\rho) u(y - c_1 R_3) \Big) + p u(y - \Delta)$$

$$\rightarrow$$
 Setting $R_2 = 1$ ensures that $R_3 = \hat{R}_3$

- \rightarrow Consumption is equalized across high income states
- \rightarrow Utility maximizing for risk-averse households

Summing up

- Simpler model is consistent with
 - \rightarrow Introductory zero APR
 - \rightarrow Sizable rate hike when promotion expires
- Simpler model assumes
 - \rightarrow No change in default risk between t = 1 and t = 2
- Simpler model cannot explain
 - \rightarrow Movement of debt across lenders
 - \rightarrow Consumer is indifferent between original and new lender

Concluding remarks

Concluding remarks

• Paper presents very interesting and novel set of stylized facts

 \rightarrow Evidence in search of a theoretical model

- Models in the paper are somewhat disappointing
 - \rightarrow Too complicated
 - \rightarrow Cannot account for stylized facts
- Model with hyperbolic discounting seems promising

 \rightarrow Could be simplified to yield results consistent with facts?