Comments by Rafael Repullo on

The Conundrum of Zero APR An Analytical Framework

Lukasz Drozd and Michal Kowalik

> 30th FINANCE FORUM

Málaga, 7 July 2023

Introduction (i)

- Paper addresses very interesting topic
\rightarrow Promotional pricing of credit card debt in US
\rightarrow Zero initial APR (Annual Percentage Rate)
- Structure or paper
\rightarrow Review of the stylized facts
\rightarrow Theoretical models that can account for the facts

Introduction (ii)

- This discussion
\rightarrow Brief summary of facts
\rightarrow Brief review of main model
\rightarrow Simpler model that can account for some of the facts

Part 1

Stylized facts

Data

- Amazing dataset
\rightarrow Panel of all credit card accounts reported by BHCs
\rightarrow Monthly data for 2018 and 2019
\rightarrow Including credit scores and zip code
\rightarrow Promotional accounts identified by lenders

Stylized facts

1. A quarter of credit card debt has introductory promotional status, in most cases with zero APR
2. Expiration of a promotion involves a sizable rate hike
3. There is no systematic change in default risk between the origination and the expiration of a promotion
4. Promotions are associated with large movement of debt across credit cards

Part 2

Model setup

Model setup (i)

- Three dates $(t=1,2,3)$
- Large number of risk-neutral competitive lenders
\rightarrow Cost of funds normalized to zero
- Large number of consumer families
\rightarrow Each family has continuum of members
\rightarrow Family members face perfectly correlated income risk
\rightarrow Concave utility function $u\left(c_{t}\right)$ and discount factor β

Model setup (ii)

- Income risk
\rightarrow With probability p negative income shock at $t=2$ or $t=3$
\rightarrow Default in low income state
- Credit line contract
\rightarrow Introductory interest rate and credit limit
\rightarrow Reset interest rate and credit limit
\rightarrow Reset terms can be sweetened ex post (irrelevant)
\rightarrow Refinancing offer by other lenders with probability ρ

Main result

- Equilibrium contract characterized by
\rightarrow Not binding credit limits
\rightarrow No refinancing
\rightarrow No promotions

Extensions

- Hidden savings
\rightarrow Similar results as in original model
- Strategic default
\rightarrow No income risk and non-pecuniary cost of default
\rightarrow Main result: Binding credit limits
- Hyperbolic discounting
\rightarrow Consumers can or cannot be aware of time inconsistency
\rightarrow Main result: Promotional pricing may arise in equilibrium

Some comments

- Results of theoretical model are somewhat disappointing
\rightarrow Cannot account for stylized facts
- Model with hyperbolic discounting seems promising
\rightarrow Should it be the focus of the paper?
- Unclear why bother with consumer families
\rightarrow If members face perfectly correlated income shocks

Part 3

A simpler model

Model setup (i)

- Three dates $(t=1,2,3)$
- Consumers characterized by
\rightarrow Utility function

$$
u\left(c_{1}\right)+E\left[u\left(c_{3}\right)\right]
$$

\rightarrow Risky endowment at $t=3$

$$
y_{3}= \begin{cases}y, & \text { with probability } 1-p \\ y-\Delta, & \text { with probability } p\end{cases}
$$

\rightarrow Information about income shock is not available at $t=2$
\rightarrow No change in default risk between $t=1$ and $t=2$

Model setup (ii)

- Initial lender offers contract characterized by
\rightarrow Loan amount c_{1}
\rightarrow Gross interest rate R_{2} if contract is liquidated at $t=2$
\rightarrow Gross interest rate R_{3} if contract is liquidated at $t=3$
- At $t=2$ a refinancing offer may arrive with probability ρ
\rightarrow Loan amount $c_{1} R_{2}$
\rightarrow Gross interest rate \hat{R}_{3}

Model setup (iii)

- Participation constraint of initial lender

$$
\rho R_{2}+(1-\rho)(1-p) R_{3}=1
$$

- Participation constraint of new lender

$$
(1-p) \hat{R}_{3}=R_{2}
$$

\rightarrow Substituting the second constraint into the first gives

$$
(1-p)\left[\rho \hat{R}_{3}+(1-\rho) R_{3}\right]=1
$$

Optimal contract (i)

- Competitive lenders' maximization problem

$$
\max _{c_{1}, R_{3}, R_{3}}\left[u\left(c_{1}\right)+(1-p)\left(\rho u\left(y-c_{1} \hat{R}_{3}\right)+(1-\rho) u\left(y-c_{1} R_{3}\right)\right)+p u(y-\Delta)\right]
$$

subject to

$$
(1-p)\left[\rho \hat{R}_{3}+(1-\rho) R_{3}\right]=1
$$

Optimal contract (ii)

- First-order conditions
\rightarrow with respect to c_{1}

$$
u^{\prime}\left(c_{1}\right)=(1-p)\left(\rho \hat{R}_{3} u^{\prime}\left(\hat{c}_{3}\right)+(1-\rho) R_{3} u^{\prime}\left(c_{3}\right)\right)
$$

\rightarrow with respect to R_{3}

$$
u^{\prime}\left(c_{3}\right) c_{1}=\lambda
$$

\rightarrow with respect to \hat{R}_{3}

$$
u^{\prime}\left(\hat{c}_{3}\right) c_{1}=\lambda
$$

\rightarrow where λ is the Lagrange multiplier of the constraint

Optimal contract (iii)

- Putting together the last two first-order conditions gives

$$
u^{\prime}\left(c_{3}\right) c_{1}=u^{\prime}\left(\hat{c}_{3}\right) c_{1}=\lambda
$$

\rightarrow which implies

$$
c_{3}=y-c_{1} R_{3}=y-c_{1} \hat{R}_{3}=\hat{c}_{3}
$$

\rightarrow which implies

$$
R_{3}=\hat{R}_{3}
$$

Optimal contract (iv)

- From here it follows that

$$
R_{2}=(1-p) \hat{R}_{3}=(1-p)\left[\rho \hat{R}_{3}+(1-\rho) R_{3}\right]=1
$$

\rightarrow Initial lender sets a zero APR for one period!

What's the intuition?

- Recall household's objective function

$$
u\left(c_{1}\right)+(1-p)(\rho u(\underbrace{y-c_{1} \hat{R}_{3}})+(1-\rho) u(\underbrace{y-c_{1} R_{3}}))+p u(y-\Delta)
$$

\rightarrow Setting $R_{2}=1$ ensures that $R_{3}=\hat{R}_{3}$
\rightarrow Consumption is equalized across high income states
\rightarrow Utility maximizing for risk-averse households

Summing up

- Simpler model is consistent with
\rightarrow Introductory zero APR
\rightarrow Sizable rate hike when promotion expires
- Simpler model assumes
\rightarrow No change in default risk between $t=1$ and $t=2$
- Simpler model cannot explain
\rightarrow Movement of debt across lenders
\rightarrow Consumer is indifferent between original and new lender

Concluding remarks

Concluding remarks

- Paper presents very interesting and novel set of stylized facts
\rightarrow Evidence in search of a theoretical model
- Models in the paper are somewhat disappointing
\rightarrow Too complicated
\rightarrow Cannot account for stylized facts
- Model with hyperbolic discounting seems promising
\rightarrow Could be simplified to yield results consistent with facts?

