Comments by Rafael Repullo on

Money in a Theory of Banking

Douglas Diamond and Raghu Rajan

Fundación Ramón Areces Conference on Information and Behavioral Biases in Capital Markets Madrid, 9 July 2005

Introduction

Purpose of paper

Introduce money (and monetary policy) in the theory of banking developed in earlier papers (*JF* 2000, *JPE* 2001, *JF* 2005)

- What happens with *nominal* deposit contracts?
- Can monetary policy help avert bank failures?
- Is there a bank lending channel and how does it operate?

Introduction

"It is with peculiar diffidence and even apprehension that one ventures to open ones' mouth on the subject of money."

John R. Hicks (1935)

General comments

- Important issues on which original research is needed
- Starting point: theory of banking with microfoundations
- But way in which money is introduced is very complicated
 - Model with six dates and five types of agents
 - Special structure of preferences and endowments
 - Transactions and fiscal demands for money
 - Government taxes (payable in cash), etc.

- Three dates (t = 0, 1, 2)
- Three risk-neutral agents: investors, entrepreneurs, bankers
- Single consumption good that can be costlessly stored

- Investors
 - Unit endowment at t = 0
 - Utility function $U(c_0, c_1) = c_0 + c_1$

• Entrepreneurs

- Zero endowments
- Project that requires unit investment at t = 0 and yields

t = 1 t = 2 proportion early C 0 α late 0 C 1- α

- Utility function $U(c_1, c_2) = c_1 + c_2$
- Aggregate uncertainty: α is a random variable with cdf F(α)

Bankers

- Zero endowments
- Raise (real) demand deposits from investors at t = 0
- Offer (real) short-term loans to entrepreneurs at t = 0
- Can enforce repayment of a fraction γ of project returns
- Utility function $U(c_1, c_2) = c_1 + c_2$

Bankers

- Can collect γC at t = 1 from early entrepreneurs
- Can collect γC at t = 2 from late entrepreneurs
- Can collect c at t = 1 from late entrepreneurs (liquidation)

 $c < 1 < \gamma C < C$

- Can raise fresh deposits at t = 1 from early entrepreneurs

- Notation
 - d = (gross) deposit rate
 - $\lambda = (gross)$ loan rate

• Assumption

There are more entrepreneurs than investors $\rightarrow \lambda = \gamma C$

- If $d \le \alpha \gamma C$ bankers can pay investors with loan proceeds
 - Investors get d
 - Entrepreneurs get

$$\alpha(1-\gamma)C + (1-\alpha)(1-\gamma)C = (1-\gamma)C$$

– Bankers get

$$(\alpha \gamma C - d) + (1 - \alpha)\gamma C = \gamma C - d$$

- If $d > \alpha \gamma C$ bankers need to
 - either raise new deposits from early entrepreneurs at rate r

 $t = 1 \qquad t = 2$ $payoffs \qquad 1 \qquad -r$ $- \text{ or liquidate late projects} \qquad t = 1 \qquad t = 2$ $payoffs \qquad c \qquad -\gamma C$

• Lemma 1

Bankers prefer to raise new deposits if $\gamma C/c > r$

Bankers prefer to liquidate late projects $\gamma C/c < r$

• If $d > \alpha \gamma C$ and

$$\alpha(1-\gamma)C \geq d - \alpha\gamma C \ \Leftrightarrow \ d \leq \alpha C$$

- early entrepreneurs have sufficient funds to cover shortfall

- -r = 1 and bankers raise new deposits
- If $d > \alpha \gamma C$ and $d > \alpha C$
 - bankers need to liquidate late projects
 - $-r = \gamma C/c$ and total funds available are

 $\alpha \gamma C + \mu (1 - \alpha)c + (1 - \mu)(1 - \alpha)\gamma C/r = \alpha \gamma C + (1 - \alpha)c$

where μ denotes share of late projects liquidated

Summing up: 4 regions in α -d space

• $d \le \alpha \gamma C$

 \rightarrow Bankers do not have to raise new funds

• $\alpha \gamma C < d \leq \alpha C$

 \rightarrow They raise funds from early entrepreneurs at rate r = 1

- $\alpha C < d \le \alpha \gamma C + (1 \alpha)c$
 - \rightarrow They raise funds from early entrepreneurs at rate r = γ C/c and liquidate some late projects
- $d > \alpha \gamma C + (1 \alpha)c$
 - \rightarrow Bank fails

Equilibrium at t = 0

• Competitive banks drive profits to zero

 \rightarrow Deposit rate d = Loan rate $\lambda = \gamma C$

- Equilibrium payoffs
 - Investors $\gamma C[1 F(\gamma)] + cF(\gamma)$
 - Entrepreneurs $(1 \gamma)C[1 F(\gamma)]$
 - Bankers: 0

What about money?

- Suppose that we have nominal deposits
- Let d now denote the nominal deposit rate
- Let $P(\alpha)$ denote the nominal price of the good at t = 1
- Assume that $P'(\alpha) < 0$

 \rightarrow nominal prices are decreasing in the level of output

• Change in regions in α -d space

 \rightarrow e.g. bankers do not have to raise funds when $d \leq \alpha \gamma CP(\alpha)$

 \rightarrow Fall in α is compensated by increase in P(α)

Key results

- Nominal deposits hedge banking system against real shocks
- With cash-in-advance $P(\alpha) \propto 1/\alpha$, so perfect hedge!
- But nominal deposits expose system to nominal shocks

 \rightarrow Potential role for monetary policy

Final comments

• Very interesting result, but I would be happier with a simpler model of determinants of nominal prices

Role of lender of last resort should be discussed
→ Real vs. nominal liquidity shortages

- We have nominal deposit contracts and real loan contracts
 - \rightarrow Does not seem very realistic
 - \rightarrow But with nominal loans we would be back to square one