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Introduction

� Panel data models with �xed e¤ects play an important role in applied econometrics.
� In the linear case several estimation methods are available (within groups, IV &
GMM, likelihood methods...).

� Applications of these methods are widespread.
� The purpose of these lectures is to provide an overview of the literature on nonlinear
panel data methods, including some emphasis on bias-reduction approaches.

� To set the stage, we begin with a review of some basic concepts of linear panels and
random coe¢ cients models.

� The focus is on microeconometrics: individuals, households, and �rms, but also
cross-country growth and development studies.

� Business cycle and �nancial volatility studies that relate to time series panels and
factor models are out of scope here.
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Linear panels and random coe¢ cients

� Basic motivation in microeconometrics: Identifying models that cannot be identi�ed
on single outcome data. Two leading situations:

� Fixed e¤ects endogeneity (e.g. productivity analysis, price e¤ects in demand models,
wage e¤ects in labor supply).

� Error components, variance decomposition (e.g. inequality, mobility studies,
quality-adjusted price indices).
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GMM perspective

� The generalized method of moments has proved very useful for linear panel models as
an organizing principle.

General idea:

� Start from a set of moment conditions suggested by the model.

� Use sample counterpart to get estimates of common parameters.
� Invoke a central limit theorem to approximate the distribution of standardized
estimates by a normal distribution.

� If more moments than parameters are available, form linear combinations.
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Leading example: within-groups

yit = x
0
it θ0 + αi + vit E (vit j xi1, ..., xiT , αi ) = 0.

� In this model xit may be correlated with αi but not with vis for all t, s . We say that xit
is endogenous wrt the �xed e¤ect but strictly exogenous wrt the time-varying error.

� Letting exit = xit � x i , the WG model implies the moment conditions
E

"
T

∑
t=1

exit �eyit � ex 0it θ0�
#
= 0.

� The WG estimator bθWG solves the sample moments
N

∑
i=1

T

∑
t=1

exit �eyit � ex 0itbθWG � = 0.
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Leading example: within-groups (continued)

� Inference can be based on the large N , �xed T approximation:

bV �1/2
�bθWG � θ0

�
� N (0, I )

where bV = H�1  N

∑
i=1

T

∑
t=1

T

∑
s=1

bvitbvisexitex 0is
!
H�1,

bvit = eyit � ex 0itbθWG , and H = ∑Ni=1 ∑Tt=1 exitex 0it .
� The resulting "cluster-robust" standard errors are robust to heteroskedasticity and
serial correlation but rely on cross-sectional independence.
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Cluster-robust bootstrap standard errors

� A bootstrap approach is as follows. Let Wi =
�
yi1, x 0i1, ..., yiT , x

0
iT

�0 and regard
W1, ...,WN as a multivariate random sample of size N according to some cdf F .

� The WG estimator is a function of the data bθWG = h (W1, ...,WN ) whose distribution
we want to estimate

Pr
�bθWG � r� = PrF [h (W1, ...,WN ) � r ] .

� A simple candidate is the plug-in estimator. It replaces F by the empirical cdf bFN :
bFN (s) = 1

N

N

∑
i=1

1 (Wi � s) ,

which assigns probability 1/N to each of the observed values w1, ...,wN of W1, ...,WN
� Letting W �

1 , ...,W
�
N denote a random sample from bFN , the resulting estimator is then

PrbFN [h (W �
1 , ...,W

�
N ) � r ] , (1)

which is conceptually simple but prohibitive to calculate.
� The bootrstap method evaluates (1) by simulation. M of samples W �

1 , ...,W
�
N (the

bootstrap samples) are drawn from bFN , and the frequency with which
h (W �

1 , ...,W
�
N ) � r

provides the desired approximation to the estimator (1).
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Cluster-robust bootstrap standard errors (continued)

� As a result of resampling we have available M estimates from the arti�cial samples:bθ(1)WG , ...,bθ(M )WG .

� A bootstrap standard error is then obtained as"
1

M � 1
M

∑
m=1

�bθ(m)WG � bθWG�2
#1/2

where bθWG = ∑Mm=1 bθ(m)WG /M .
� The bootstrap method is very �exible and applicable to many di¤erent situations such
as the bias and variance of an estimator, the calculation of con�dence intervals, etc.

� Under general regularity conditions, using the bootstrap standard error to construct
test statistics has the same asymptotic justi�cation as conventional asymptotic
procedures.

� Sometimes a data producer will provide users with replicate weights, which enable the
estimation of the sampling distribution of estimators from complex sample designs
without disclosing con�dential information.
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Generalizations

Improved GMM under heteroskedasticity and autocorrelation of unknown form

� Improved GMM based on the larger set of moments E [xi (eyit � ex 0it θ0)] = 0,
(t = 1, ...,T ) or

E
�
xi
�
∆yit � ∆x 0it θ0

��
= 0, (t = 2, ...,T )

where xi stacks xi1, ..., xiT .

Instrumental variable �xed e¤ects models

� IV versions where the starting assumption is

E (vit j zi1, ..., ziT , αi ) = 0

for some strictly exogenous instrument z (e.g. tax component of price variation).

� The moments become
E
�
zi
�eyit � ex 0it θ0�� = 0.

� In this case x is treated as a strictly endogenous variable.
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Generalizations (continued)

Testing for correlated e¤ects

� If x is uncorrelated with α, valid moments are E [xi (yit � x 0it θ0)] = 0, (t = 1, ...,T ),
which include E [xi (∆yit � ∆x 0it θ0)] = 0, (t = 2, ...,T ) as a subset.

� Thus, an incremental Sargan test can be used for testing the null of �xed-e¤ects
exogeneity (Hausman type testing).

Models with both time-invariant and time-varying variables

� A model with a FE-exogenous time-invariant regressor w satis�es the moments:

E
�
xi
�eyit � ex 0it θ0�� = 0

E
�
wi
�
y i � x 0i θ0 � wi δ0

��
= 0.

� In an IV version the second moment would specify the orthogonality between the
average error and an external time-invariant instrument.
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Error in variables
� In a measurement error version of the WG model where x is measured with an iid
error, valid moments are

E
h�
xi1, ..., xi (t�2), xi (t+1), ..., xiT

� �
∆yit � ∆x 0it θ0

�i
= 0 (t = 2, ...,T ) .

� Instruments are relevant as long as there is persistence in latent x�s.
� If ignored �rst di¤erencing may exacerbate measurement error bias as illustrated next.

� In a linear regression y = βx� + u with classical measurement error x = x� + ε where
u, x�, ε are mutually independent, the OLS parameter satis�es

Cov (y , x)
Var (x)

=
Cov (y , x�)

Var (x�) + Var (ε)
=

β

1+ λ

where λ = Var (ε) /Var (x�).
� Similarly, letting λ∆ = Var (∆ε) /Var (∆x�), the OLS parameter of the regression in
di¤erences satis�es

Cov (∆y ,∆x)
Var (∆x)

=
β

1+ λ∆
.

� If Cov (εt , εt�1) = 0 but Cov
�
x�t , x

�
t�1
�
> 0 then λ∆ > λ. Under these conditions,

which are relevant in applications, di¤erencing magni�es measurement error bias.
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Illustration: measuring economies of scale in �rm money demand

� Bover and Watson (2005) estimate �rm-level money demand equations of the form

logmit = c(t) log sit + b(t) + ηi + vit .

where m is demand for cash and s denotes output (or sales).

� The economies of scale coe¢ cient c(t) is speci�ed as a polynomial in t to allow for
changes over the sample period.

� The year dummies b(t) capture changes in relative interest rates together with other
aggregate e¤ects.

� The individual e¤ect is meant to represent permanent di¤erences across �rms in the
production of transaction services (so that η varies inversely with the �rm�s �nancial
sophistication), and v contains measurement errors in cash holdings and sales.

� We would expect Cov (log s , η) � 0 and a downward unobserved heterogeneity bias in
economies of scale.

� We also expect measurement error to account for a larger share of variation in sales
growth than in the level of sales.
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Firm money demand estimates
Sample period 1986�1996

OLS OLS OLS GMM GMM GMM
Levels WG 1st-di¤. 1st-di¤. 1st-di¤. Levels

m. error m. error
Log sales .72 .56 .45 .49 .99 .75

(30.) (16.) (12.) (16.) (7.5) (35.)

Log sales �.02 �.03 �.03 �.03 �.03 �.03
�trend (3.2) (9.7) (4.9) (5.3) (5.0) (4.0)

Log sales .001 .002 .001 .001 .001 .001
�trend2 (1.2) (6.6) (1.9) (2.0) (2.3) (1.4)

Sargan .12 .39 .00
(p-value)
All estimates include year dummies, and those in levels also include industry
dummies. t-ratios in brackets robust to heteroskedasticity & serial correlation.
N=5649. Source: Bover and Watson (2005).

All estimates in the table are obtained from an unbalanced panel of 5649 Spanish �rms
with at least four consecutive annual observations during the period 1986�1996.
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� The comparison between OLS-levels and WG (cols 1 & 2) is consistent with a
positive �xed-e¤ects bias (counter to expectation), but the smaller OLS-di¤ sales
e¤ect (col 3) suggests that measurement error bias may be important.

� Col 4 shows GMM estimates based on the moments E (log sit∆vis ) = 0 for all t, s .
Absent measurement error, we would expect them to be similar to WG and OLS-di¤.

� Col 5 shows GMM estimates based on

E (log sit∆vis ) = 0 (t = 1, ..., s � 2, s + 1, ..,T ; s = 1, ...,T ),
thus allowing for both correlated �rm e¤ects and measurement error in sales.

� Interestingly, now the leading sales coe¢ cient is much higher and close to unity, and
the Sargan test has a p-value close to 40 per cent.

� Finally, col 6 shows GMM estimates based on

E (log sitvis ) = 0 (t = 1, ..., s � 1, s + 1, ..,T ; s = 1, ...,T ),
which allow for measurement error in sales but not for correlated e¤ects. The leading
sales e¤ect in this case is close to OLS in levels, suggesting that in levels the
measurement error bias is not as important as in di¤erences.

Conclusion
� What is interesting about this example is that a comparison between estimates in
levels and deviations without consideration of measurement error (e.g. restricted to
compare cols 1 & 2, or 1 & 3, as in Hausman-type testing), would lead to the
conclusion of correlated e¤ects, but with biases going in entirely the wrong direction.
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Predeterminedness and dynamics

Time patterns
� The previous examples include �xed e¤ects but do not allow for time patterns in the
dependence between x and time-varying errors.

� However, the time dimension makes it possible to go beyond the cross-sectional
notions of strict exogeneity and strict endogeneity, whereby the time series of a
regressor is either fully independent or fully dependent of the time series of errors.

� Thus, x may depend on past v�s but not on future v�s (predeterminedness), or on v�s
that are close in time but not on v�s from distant periods.

� A linear model with general predetermined variables replaces the strict exogeneity
assumption E (vit j xi1, ..., xiT , αi ) = 0 with the sequential conditioning assumption

E (vit j xi1, ..., xit , αi ) = 0.
Letting x ti = (xi1, ..., xit ), such model implies the moments:

E
h
x t�1i

�
∆yit � ∆x 0it θ0

�i
= 0.

� This notion can be generalized to external instruments and to alternative patterns of
leads or lags.

� An example is the relationship between the presence of small children at home and
female labor supply. Treating children as strictly exogenous in this context is a much
more restrictive assumption than treating them as predetermined.
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First-stage and second-stage regressions in panel GMM
� In Arellano-Bond GMM estimation there is a sequence of period-by-period �rst-stage
regressions and a pooled second-stage regression.

� Letting for simplicity T = 3 and a single predetermined regressor, the period-by-
period �rst-stage �tted values ared∆xi2 = bπ21xi1d∆xi3 = bπ31xi1 + bπ32xi2
where bπ21 is the cross-sectional OLS coe¢ cient of ∆xi2 on xi1, etc. (in practice,
orthogonal deviations are preferred to �rst-di¤erences but the idea is the same).

� The second-stage is a pooled IV regression of (∆yi2,∆yi3) on (∆xi2,∆xi3) using�d∆xi2, d∆xi3� as instruments.
� The latter is very di¤erent to the time-series perspective where instruments would
come from a pooled �rst-stage regression: g∆xi2g∆xi3

!
= eπ� xi1

xi2

�
where eπ is the pooled OLS coe¢ cient of (∆xi2,∆xi3) on (xi1, xi2). The 2nd-stage
would be pooled IV of (∆yi2,∆yi3) on (∆xi2,∆xi3) using

�g∆xi2, g∆xi3� as instruments.
� In a pooled �rst-stage regression one cannot easily project on di¤erent x�s at di¤erent
periods as one does using period-by-period �rst stage regressions.
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Dynamic models

� Time patterns of dependence arise naturally in the context of dynamic models. These
are models that consider the e¤ects of lagged outcomes and/or lagged and current
independent explanatory variables on current outcomes.

� The simplest example is an autoregressive model, which is a special case of the above
with xit = yi (t�1).

� The basic moments are:

E
h
y t�2i

�
∆yit � ∆yi (t�1)θ0

�i
= 0,

� Under mean stationarity, the following moments for the errors in levels are also
available:

E
h
∆yi (t�1)

�
yit � yi (t�1)θ0

�i
= 0.

� Autoregressive models are the workhorse in the analysis of individual earnings and
household income dynamics.
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Permanent-transitory income models

� Permanent-transitory models are common in the literature that looks at the
relationship between household income and consumption from a life-cycle perspective.

� Examples include Hall & Mishkin (1982) (HM), Blundell, Pistaferri & Preston (2008),
and Kaplan & Violante (2010).

� HM used food consumption and labour income from a PSID sample of N = 2309 US
households over T = 7 years to test the predictions of a permanent income model.

� We use HM as an illustration of permanent-transitory covariance structures.

� HM speci�ed means of income and consumption changes as regressions on age,
age^2, time, and changes in the number of children and adults in the household.

� They implicitly allowed for unobserved intercept heterogeneity in the levels of the
variables, but only for observed heterogeneity in their changes.

� Deviations from the individual means of income and consumption, denoted y it and c it
respectively, were speci�ed as follows.
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Income process

� HM assumed that income errors y it were the result of two di¤erent types of shocks,
permanent and transitory:

y it = y
L
it + y

S
it .

� They also assumed that agents were able to distinguish one type of shock from the
other and respond to them accordingly.

� The permanent component yLit was speci�ed as a random walk

yLit = y
L
i (t�1) + εit ,

and the transitory component ySit as a moving average process

ySit = ηit + ρ1ηi (t�1) + ρ2ηi (t�2).

� A limitation was lack of measurement error in observed income (a component to
which consumption does not respond). This is important since measurement error in
PSID income is large, but identi�cation requires cross-validation information.
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Consumption process

� Mean deviations in consumption changes were speci�ed to respond one-to-one to
permanent income shocks and by a fraction β to transitory shocks.

� The magnitude of β depends on the persistence in transitory shocks (ρ1 and ρ2) and
real interest rates. Dependence on age is ignored for simplicity.

� This model can be formally derived from an optimization problem with quadratic
utility, and constant interest rates that are equal to the subjective discount factor.

� Since only food consumption is observed, an adjustment was made by assuming a
constant marginal propensity to consume food α.

� With these assumptions we have

∆c it = αεit + αβηit .

� HM also introduced a measurement error in the level of consumption (or transitory
consumption that is independent of income shocks) with an MA(2) speci�cation:

cSit = vit + λ1vi (t�1) + λ2vi (t�2).
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Bivariate covariance structure

� The model that is taken to the data consists of a joint speci�cation for mean
deviations in consumption and income changes as follows:

∆c it = αεit + αβηit + vit � (1� λ1) vi (t�1) � (λ1 � λ2) vi (t�2) � λ2vi (t�3)

∆y it = εit + ηit � (1� ρ1) ηi (t�1) � (ρ1 � ρ2) ηi (t�2) � ρ2ηi (t�3).

� The three innovations are mutually independent with variances σ2ε , σ2η and σ2v . Thus,
the model contains 9 coe¢ cients:

θ =
�

α β λ1 λ2 ρ1 ρ2 σ2ε σ2η σ2v

�0
.

� The model speci�es a covariance structure for the 12� 1 vector

wi =
�

∆c i2 ∆c i3 � � � ∆c i7 ∆y i2 ∆y i3 � � � ∆y i7
�0

E
�
wiw

0
i
�
= Ω(θ).
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Bivariate covariance structure (continued)

� Let us look at the form of some elements of Ω(θ).

Var (∆y it ) = σ2ε + 2
�
1� ρ1 � ρ1ρ2 + ρ21 + ρ22

�
σ2η (t = 2, ..., 7)

Cov (∆y it ,∆y i (t�1)) = � [(1� ρ1)� (1� ρ1 + ρ2) (ρ1 � ρ2)] σ
2
η

and also
Cov (∆c it ,∆y it ) = ασ2ε + αβσ2η (t = 2, ..., 7) (2)

Cov (∆c it ,∆y i (t�1)) = 0 (3)

Cov (∆c i (t�1),∆y it ) = �αβ (1� ρ1) σ2η . (4)

� A fundamental restriction of the model is lack of correlation between current
consumption changes and lagged income changes, as captured by (3).

� The model, nevertheless, predicts correlation between current consumption changes
and current and future income changes, as seen from (2) and (4).
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Empirical results

� HM estimated their model by Gaussian PML. They estimated bβ = 0.3, which given
their estimates of ρ1 and ρ2 (bρ1 = 0.3, bρ2 = 0.1) turned out to be consistent with the
model only for unrealistic values of real interest rates (above 30 percent).

� Moreover, they estimated the marginal propensity to consume food as bα = 0.1, and
the moving average parameters for transitory consumption as bλ1 = 0.2 and bλ2 = 0.1.

� The variance of the permanent income shocks was twice as large as that of the
transitory shocks: bσ2ε = 3.4 and bσ2η = 1.5.

� They tested the covariance structure focusing on the fundamental restriction of lack
of correlation between current changes in consumption and lagged changes in income.
They found a negative covariance which was signi�cantly di¤erent from zero.

� As a result of this �nding they considered an extended version of the model in which
a fraction of consumers spent their current income.
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GMM estimation of covariance structures
� The previous model speci�es a structure on a data covariance matrix. Abstracting
from mean components, suppose the covariance matrix of a p � 1 time series yi is a
function of a k � 1 parameter vector θ given by

E (yi y
0
i ) = Ω(θ).

� If yi is a scalar time series its dimension will be T , but in the HM context p = 2T .
� Vectorizing the expression and eliminating redundant elements (due to symmetry) we
obtain a vector of moments of order r = (p + 1)p/2:

vechE
�
yi y

0
i �Ω(θ)

�
= E [si �ω(θ)] ,

where the vech operator stacks by rows the lower triangle of a square matrix.
� If r > k and H(θ) = ∂ω(θ)/∂θ0 has full column rank, the model is overidenti�ed. In
that case a standard optimal GMM estimator solves:bθ = arg min

c
[s �ω(c)]0 bV �1 [s �ω(c)]

where s is the sample mean vector of si :

s =
1
N ∑N

i=1 si

and bV is some consistent estimator of V = Var (si ). A natural choice is the sample
covariance matrix of si : bV = 1

N ∑N
i=1 si s

0
i � ss 0.
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GMM estimation of covariance structures (continued)

� The �rst-order conditions from the optimization problem are

�H(c)0 bV �1 [s �ω(c)] = 0.

� The two standard results for large sample inference are, �rstly, asymptotic normality
of the scaled estimation error�

1
N
H(bθ)0 bV �1H(bθ)��1/2 �bθ � θ

�
d! N (0, I )

and, secondly, the asymptotic chi-square distribution of the minimized estimation
criterion (test statistic of overidentifying restrictions)

S = N
h
s �ω(bθ)i0 bV �1 hs �ω(bθ)i d! χ2r�k .
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Random coe¢ cients

� Fixed e¤ects methods are a standard way of controlling for endogeneity or unobserved
heterogeneity in the estimation of common parameters.

� But sometimes we wish to treat a parameter as a heterogeneous quantity and
therefore its mean and other characteristics of its distribution become central objects
of interest.

� Examples are random trend earnings models, heterogeneous production functions, and
heterogeneous treatment e¤ects.

� The T equations of the random coe¢ cients model in compact form can be written as

yi = Zi δ0 + Xiγi + vi E (vi j Zi ,Xi ,γi ) = 0.

� The WG model is a special case in which the only random coe¢ cient is the intercept.
� We assume that T > dim (γi ) = q and only consider the subpopulation with
det (X 0i Xi ) 6= 0.

� The parameters of interest are δ0 and characteristics of the distribution of γi , such as
γ0 = E (γi ) and Σ0 = Var (γi ).

� Now instead of considering LS in deviations from means we consider LS of the
residuals in individual-speci�c regressions of y and z on x (exit is the residual of a
regression of the i -th time series of x on an intercept).
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Estimating common parameters and average e¤ects

� The generalized WG operator Qi = I � Xi (X 0i Xi )
�1 Xi leads to the transformed

equation
Qi yi = QiZi δ0 +Qi vi

and the moments
E
�
Z 0i (Qi yi �QiZi δ0)

�
= 0.

� The WG estimator is bδ =  N

∑
i=1

Z 0i QiZi

!�1 N

∑
i=1

Z 0i Qi yi

� Pre-multiplying the model by the LS operator Hi = (X 0i Xi )
�1 X 0i we get

Hi (yi � Zi δ0) = γi +Hi vi

so that γ0 satis�es the moment

γ0 = E [Hi (yi � Zi δ0)]
and a large-N consistent estimator is

bγ = 1
N

N

∑
i=1

�
X 0i Xi

��1 X 0i �yi � Zibδ� � 1
N

N

∑
i=1
bγi .
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Is bγi informative about γi? An illustration

� Consider the random trend model:

yit = αi + βi t + vit

where αi and βi are bivariate normal (or bimodal normal mixture), vit is normal
AR(1) with autoregressive coe¢ cient ρ.

� Roughly calibrate the parameters to match Guvenen (2008): ρ = .8, Var(αi ) = .02,
Var(βi ) = .0004 (corr. = �.2), σ2v = .03.

� Question: compare the density of bβi (resp. bαi ) to that of βi (αi ).
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Densities: true βi (solid) and fixed-effects estimates β̂i (dashed)

T = 5 T = 10

T = 20 T = 50



Densities: true βi (solid) and fixed-effects estimates β̂i (dashed)

T = 5 T = 10

T = 20 T = 50

⇒ Must correct the densities of fixed-effects estimates for the sample

noise (for fixed T).



Estimating variances of e¤ects and distributions

� Without further restrictions Σ0 is not identi�ed. To see this let Ωi = E (vi v 0i j Xi ) and
note that only the variance of Qi vi is identi�ed, which is of reduced rank. In general

Σ0 = Var [Hi (yi � Zi δ0)]� E
�
HiΩiH

0
i
�
.

� If Ωi = σ2IT then Σ0 can be estimated as

bΣ = 1
N

N

∑
i=1
(bγi � bγ) (bγi � bγ)0 � bσ2 1N N

∑
i=1

�
X 0i Xi

��1
where bσ2 = 1

N (T � q)
N

∑
i=1

�
yi � Zibδ�0 Qi �yi � Zibδ� .

� Note that E (Qi vi v 0i Qi ) = σ2E (Qi ) and E (v 0i Qi vi ) = σ2 (T � q).
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Estimating variances of e¤ects and distributions (continued)

� The previous situation can be generalized to less restrictive covariance patterns in Ωi .
� In general

E [(yi � Zi δ0)
 (yi � Zi δ0) j Zi ,Xi ] = (Xi 
 Xi )E (γi 
 γi j Zi ,Xi ) + vec (Ωi ) .

� A WG operator Mi = I �Gi (G 0i Gi )
�1 G 0i for the cross-products Gi = Xi 
Xi leads to

MiE [(yi � Zi δ0)
 (yi � Zi δ0) j Zi ,Xi ] = Mi vec (Ωi )

but since Mi is singular, (moving-average) restrictions on Ωi are needed:

vec (Ωi ) = S2ωi

where S2 is a known selection matrix and ωi is a vector of unrestricted parameters.
� The rank condition for identi�cation of Ωi is

rank (MiS2) = dim (ωi ) .

� The variance of γi is identi�ed if Ωi is known.

� Moreover, replacing mean independence by full independence assumptions a similar
argument can be developed for distributions using second derivatives of log
characteristic functions (Arellano and Bonhomme 2012).
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Distributions
� Assume that γi and vi are independent given Wi = (Zi ,Xi ).
� Statistical independence leads to functional restrictions on the second derivatives of
log characteristic functions, which are formally analogous to the covariance
restrictions.

� To derive the identi�cation results, it is convenient to work with characteristic
functions.

Properties of characteristic functions

� The conditional characteristic function of Y (of dimension L) given X = x is de�ned
as:

ΨY jX (t jx) = E
�
exp(jt 0Y )jx

�
, t 2 RL

where j =
p
�1.

� Inverse Fourier transform

fY jX (y jx) =
1

(2π)L

Z
exp

�
�jt 0y

�
ΨY jX (t jx)dt.

� If Y1 and Y2 are independent given X then

ΨY1+Y2 jX (t jx) = ΨY1 jX (t jx)ΨY2 jX (t jx).
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Distributions (continued)

� Independence implies that for all t we have:

Ψyi�Zi δ0 jW i
(t jWi ) = Ψγi jW i

(X 0i t jWi )Ψvi jW i
(t jWi ).

� Assuming that the characteristic functions Ψγi jW i
and Ψvi jW i

are nonvanishing we can
take logs:

logΨyi�Zi δ0 jW i
(t jWi ) = logΨγi jW i

(X 0i t jWi ) + logΨvi jW i
(t jWi ).

� If Ψvi jW i
is identi�ed, Ψγi jW i

is also identi�ed.

� Taking second derivatives:

∂2 logΨyi�Zi δ0 jW i
(t jWi )

∂t∂t 0
= Xi

 
∂2 logΨγi jW i

(X 0i t jWi )

∂t∂t 0

!
X 0i +

∂2 logΨvi jW i
(t jWi )

∂t∂t 0
.

� Evaluating this expression at t = 0 we are back at the variance case.
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Distributions (continued)

� An independent moving-average model implies the following restrictions:

vec

 
∂2 logΨvi jW i

(t jWi )

∂t∂t 0

!
= S2ωi (t) , t 2 RT .

� So, if Mi (Xi 
 Xi ) = 0 then

Mi vec

 
∂2 logΨyi�Zi δ0 jW i

(t jWi )

∂t∂t 0

!
= MiS2ωi (t) .

� The rank and order conditions for identi�cation are the same as for variances.
� ωi (t) identi�ed for all t implies that Ψvi jW i

is identi�ed, because the �rst derivative
of logΨvi jW i

at t = 0 vanishes due to mean independence.
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Illustration: the e¤ect of smoking on children outcomes

� Arellano and Bonhomme (2012) apply this methodology to a matched panel dataset
of mothers and births constructed in Abrevaya (2006).

� They �nd that the mean smoking e¤ect on birthweight is signi�cantly negative (�160
grams). Moreover, the e¤ect shows substantial heterogeneity across mothers, the
e¤ect being very negative (�400 g) below the 20th percentile.

� The model is
yij = z0ijδ+ αi + βi sij + vij j = 1, 2, 3

i=mother, j=child. yij= weight at birth, sij = 1 if mother smoked during pregnancy
of child j .

� vij are assumed i.i.d.
� Production function interpretation. The e¤ect of smoking is mother-speci�c.
� Abrevaya (2006) estimates a restricted version, where βi is homogeneous.

� The focus is on mothers with at least 3 children to be able to allow for two
heterogeneous quantities.

� Also need xij to vary for every mother. So only 1445 mothers who changed smoking
status between the three births are considered.

� Under predeterminedness of smoking behavior the moments of βi are unidenti�ed.
However, several interesting average e¤ects can still be identi�ed and estimated when
there are no time-varying regressors.
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Estimates of common parameters δ

Generalized within-groups

Variable Estimate Standard error

Male 130 22.8
Age 39.0 32.0
Age-sq -.638 .577
Kessner=2 -82.0 52.7
Kessner=3 -159 81.9
No visit -18.0 124
Visit=2 83.2 53.9
Visit=3 136 99.2
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Regressions of αi and βi on mother-speci�c characteristics

Variable Estimate Standard error
αi

High-school 15.1 42.7
Some college 38.5 55.3
College graduate 58.7 72.1
Married 3.51 34.6
Black -364 54.0
Mean smoking -161 83.9
Constant 2879 419

corrected R2= .113 (instead of .055, uncorrected)
βi

High-school -15.9 42.8
Some college -15.9 42.8
College graduate 64.5 63.8
Married 31.9 41.8
Black 132 60.6
Mean smoking -49.8 101
Constant -172 67.1

R2= .021 (instead of .005)
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Moments of αi and βi

Moment Estimate Standard error

Mean αi 2782 435
St. Dev. αi 357 21.2
Skewness αi -1.67 .43
Kurtosis αi 7.12 2.28

Mean βi -161 17.0
St. Dev. βi 313 34.6
Skewness βi -1.29 .91
Kurtosis βi -.34 7.84

Correlation (αi , βi ) -.47 .07

� Mean e¤ect of smoking is �161 grams, close to Abrevaya�s FE estimate of �144 g.
� Density of βi and bβi .
� Quantile function of βi and bβi .
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