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1 Introduction

Standard GMM distribution theory requires differentiability of the moment functions. Differentiability

is used to establish asymptotic normality by expanding the sample moments evaluated at the estimator

around true values. However, there are important estimation problems where the sample moments

are non-differentiable or even discontinuous. These include quantile methods and simulated moment

estimators.

Typically population moments will be differentiable even if sample moments are not. It turns out

that in such situations we can mimic the traditional approach under certain regularity conditions,

which effectively allow us to interchange the order of expectation and differentiation. That is, we may

be able to approximate the scaled estimation error by a linear combination of sample moments at the

truth, with weights given by derivatives of expectations as opposed to expectations of derivatives.

Here we discuss a set of regularity conditions under which asymptotic normality can be established

for consistent estimators that approximately solve nondifferentiable moments equations. This leads us

to describe the general form of asymptotic variances and how to obtain them. We conclude with the

statement of a formal asymptotic normality theorem taken from Newey and McFadden (1994). As a

simple illustration we discuss the estimation of unconditional quantiles throughout.

2 Unconditional quantiles

Let F (r) = Pr (Y ≤ r). For τ ∈ (0, 1), the τth population quantile of Y is defined to be

qτ ≡ F−1 (τ) = inf {r : F (r) ≥ τ} .

F−1 (τ) is a generalized inverse function. It is a left-continuous function with range equal to the

support of F and hence often unbounded

Let us define the “check” function (or asymmetric absolute loss function). For τ ∈ (0, 1)

ρτ (u) = [τ1 (u ≥ 0) + (1− τ)1 (u < 0)]× |u| = [τ − 1 (u < 0)]u

Note that ρτ (u) is a continuous piecewise linear function, but nondifferentiable at u = 0. We should

think of u as an individual error u = y − r and ρτ (u) as the loss associated with u.

Using ρτ (u) as a specification of loss, it is well known that qτ minimizes expected loss:

s0 (r) ≡ E [ρτ (Y − r)] = τ

Z ∞

r
(y − r) dF (y)− (1− τ)

Z r

−∞
(y − r) dF (y) .
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Any element of {r : F (r) = τ} minimizes expected loss. If the solution is unique, it coincides with qτ
as defined above. If not, we have an interval of τth quantiles and the smallest element is chosen so

that the quantile function is left-continuous (by convention).

Given a random sample {Y1, ..., Yn} we obtain sample quantiles replacing F by the empirical cdf:

Fn (r) =
1

n

nX
i=1

1(Yi ≤ r).

That is, we choose bqτ = F−1n (τ) ≡ inf {r : Fn (r) ≥ τ}, which minimizes

sn (r) =

Z
ρτ (y − r) dFn (y) =

1

n

nX
i=1

ρτ (Yi − r) .

An important advantage of expressing the calculation of sample quantiles as an optimization problem,

as opposed to a problem of ordering the observations, is computational (specially in the regression

context). The optimization perspective is also useful for studying statistical properties.

The sample objective function sn (r) is continuous but not differentiable for all r. Moreover, the

gradient or moment condition

bn (r) =
1

n

nX
i=1

[1(Yi ≤ r)− τ ]

is not continuous in r. Note that if each Yi is distinct, so that we can reorder the observations to

satisfy Y1 < Y2 < ... < Yn, for all τ we have

|bn (bqτ )| ≡ |Fn (bqτ )− τ | ≤ 1

n
.

We can now illustrate the point that, despite lack of smoothness in sn (r) or bn (r), smoothness of

the distribution of the data can smooth their population counterparts. Suppose that F is differentiable

at qτ with positive derivative f (qτ ), then s0 (r) is twice continuously differentiable with derivatives:

d

dr
E [ρτ (Y − r)] = −τ [1− F (r)] + (1− τ)F (r) = F (r)− τ ≡ E [1(Y ≤ r)− τ ]

d2

dr2
E [ρτ (Y − r)] = f (r) .

3 Consistency

The basic requirements for consistency of an extremum estimator are that the limiting objective func-

tion is uniquely maximized at the truth (identification), boundedness of the parameter set, continuity

of the objective function, and uniform convergence. Here we state a slightly different version to

Amemiya (1985)’s consistency theorem, which replaces the requirement of continuity of the objective

function by continuity of the limiting objective function. In this way the theorem covers, for example,

GMM objective functions based on sample moments that are not continuous. The theorem is taken

from Newey and McFadden (1994, Theorem 2.1).
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Consistency Theorem Suppose that bθ maximizes the objective function Sn (θ) in the parameter
space Θ. Assume the following:

(a) Θ is a compact.

(b) Sn (θ) converges uniformly in probability to S0 (θ).

(c) S0 (θ) is continuous.

(d) S0 (θ) is uniquely maximized at θ0.

Then bθ p→ θ0. (Proof: See Newey and McFadden, 1994, p. 2121—2).

Example Consistency of sample quantiles follows from this theorem under fairly general assump-

tions. The quantile sample objective function sn (r) is continuous and convex in r. Suppose that F is

such that s0 (r) is uniquely maximized at qτ . By the law of large numbers sn (r) converges pointwise to

s0 (r). Then use the fact that pointwise convergence of convex functions implies uniform convergence

on compact sets.

Alternatively, one can argue that the requirement of uniform convergence of the criterion function:

lim
n→∞

1

n

nX
i=1

ρτ (Yi − r) =
Z

ρτ (y − r) dF (y) uniformly in r,

is guaranteed by the Glivenko-Cantelli theorem, which establishes that the empirical cdf Fn (r) from

an iid sequence with cdf F (r), converges a.s. uniformly to F (r).1

4 Asymptotic normality

The asymptotic normality of sample quantiles cannot be established in the standard way because of

the nondifferentiability of the objective function. However, it has long been known that under suitable

conditions sample quantiles are asymptotically normal and there are direct approaches to establish

the result. See for example the proofs in Cox and Hinckley (1974, p. 468) and Amemiya (1985, p.

148—150). But here quantiles are only used to illustrate the applicability of a general approach.

We seek a methodology of proof that resembles as closely as possible the familiar approach for

differentiable problems. It turns out that as long as the limiting objective function is differentiable

such approach is possible if a reminder term in the approximating argument is sufficiently small. We

first discuss the argument in a just-identified GMM problem for simplicity.

1See Amemiya (1985, p. 150) for a proof of consistency of the median, and Koenker (2005, p. 117—119) for conditional

and unconditional quantiles. A simple proof of the Glivenko-Cantelli theorem is given in van der Vaart (1998, p. 266).
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Consider a population quantity θ0 ∈ Rk that satisfies a set of k moments or first-order conditions

b (θ) ≡ Eψ (W, θ)

so that b (θ0) = 0. Also consider a consistent estimator bθ that approximately satisfies the sample
moment conditions, in the sense that

lim
n→∞

√
nbn

³bθ´ a.s.→ 0, (1)

where

bn (θ) =
1

n

nX
i=1

ψ (Wi, θ) .

We are interested in situations where ψ (Wi, θ) is not differentiable in θ and possibly not continuous

(such as ψ (W, θ) = 1 (W ≤ θ) − τ). In these situations it is not possible to establish asymptotic

normality of bθ by expanding √nbn ³bθ´ around θ0, as is usual in differentiable moment problems.

Provided b (θ) is differentiable in θ, consider instead a mean value expansion of b (θ0) around bθ:
0 =
√
nb (θ0) =

√
nb
³bθ´− ∂b

³eθ´
∂θ0

√
n
³bθ − θ0

´
where eθ is such that °°°eθ − θ0

°°° ≤ °°°bθ − θ0

°°° and takes different values for each column of ∂b³eθ´ /∂θ0.
With iid observations and continuity of ∂b (θ) /∂θ0 at θ0:

plim
n→∞

∂b
³eθ´
∂θ0

=
∂b (θ0)

∂θ0
≡ D0.

Thus, provided D0 is nonsingular

√
n
³bθ − θ0

´
=
£
D−10 + op (1)

¤√
nb
³bθ´

Next, let us define the empirical process at ψ (Wi, θ):

vn (θ) =
√
n
£
bn (θ)− b (θ)

¤
Note that for fixed θ 6= θ0, bn (θ)− b (θ) = 1

n

Pn
i=1

£
ψ (Wi, θ)− b (θ)

¤
is a sample average of zero-mean

iid variables so that vn (θ) is Op (1) and asymptotically normal.

Using this notation we can write

−√nb
³bθ´ =

h√
nbn

³bθ´−√nb³bθ´i−√nbn ³bθ´
=

h
vn

³bθ´− vn (θ0)i+ vn (θ0)−√nbn ³bθ´
or in view of (1) and vn (θ0) ≡ √nbn (θ0), also

−√nb
³bθ´ = √nbn (θ0) + hvn ³bθ´− vn (θ0)i+ op (1) .
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Note that under standard conditions,

√
nbn (θ0) ≡ 1√

n

nX
i=1

ψ (Wi, θ0)
d→ N (0, V0)

where

V0 = E
£
ψ (Wi, θ0)ψ (Wi, θ0)

0¤ .
The critical assumption is

vn

³bθ´− vn (θ0) ≡ √n hbn ³bθ´− bn (θ0)− b³bθ´i = op (1) . (2)

An empirical process that satisfies this type of condition is said to be stochastically equicontinuous.

Note that stochastic equicontinuity requires that
√
n
£
bn (θ0)− b (θ0)

¤
and

√
n
h
bn

³bθ´− b³bθ´i are
asymptotically equivalent.

Thus, under (2) we have

√
n
³bθ − θ0

´
= −D−10

√
nbn (θ0) + op (1)

d→ N ¡
0,D−10 V0D

−1
0

¢
.

The previous discussion follows Andrews (1994, p. 2255—2258)’ heuristic description of the problem.

A general theorem for overidentified GMM due to Newey and McFadden (1994) is stated below. In the

proofs of these results the most difficult condition to check is the stochastic equicontinuity assumption,

which asserts that a scaled difference in differences expression between sample and expected moments

evaluated at the estimator and the truth is of small order. General results in the literature of empirical

processes tend to rely on a regularity condition of stochastic equicontinuity, but finding more primitive

conditions that are applicable to specific problems is often difficult. An early contribution in this line

of reasoning is Huber (1967). In econometrics, Powell (1984, 1986) applied Huber’s conditions to

censored regression quantiles. See also Amemiya (1985)’s argument for LAD (p. 154).

Asymptotic Normality Theorem Suppose that bn
³bθ´0Anbn ³bθ´ ≤ infθ∈Θ bn (θ)0Anbn (θ) +

op
¡
n−1

¢
, bθ p→ θ0, and An

p→ A0 ≥ 0, where there is b (θ) such that

1. b (θ0) = 0;

2. b (θ) is differentiable at θ0 with derivative D0 such that D00A0D0 is nonsingular:

3. θ0 is an interior point of Θ.

4.
√
nbn (θ0)

d→ N (0, V0);
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5. Stochastic equicontinuity assumption: For any δn → 0,

sup
kθ−θ0k≤δn

√
n
°°bn (θ)− b (θ)− bn (θ0)°°
1 +
√
n kθ − θ0k

p→ 0.

Then,

√
n
³bθ − θ0

´
d→ N

h
0,
¡
D00A0D0

¢−1
D00A0V0A0D0

¡
D00A0D0

¢−1i
.

(Proof: See Newey and McFadden, 1994, Theorem 7.2, p. 2186).

In this theorem bn (θ) is allowed to be discontinuous. The theorem is also similar to Huber (1967)

and Pakes and Pollard (1989) in a case where the number of moments and parameters coincide.

Newey and McFadden also provide a more general theorem for extremum estimators (their Theorem

7.1), which covers the previous one as a special case. Although not made explicit in the theorem, the

function b (θ) should be thought of as the limit of bn (θ).

Newey and McFadden’s form of the stochastic equicontinuity assumption (condition 5) is similar

to Huber (1967)’s and sightly more general than the alternative form consisting of condition 5 without

the denominator term:

sup
kθ−θ0k≤δn

√
n
°°bn (θ)− b (θ)− bn (θ0)°° p→ 0. (3)

Andrews (1994) discusses more primitive conditions that lead to this result. Andrews (1994) also

discusses two equivalent definitions of stochastic equicontinuity (see appendix), which make explicit

the connection between (2) and (3).

Example The asymptotic normality result for unconditional quantiles given below, follows di-

rectly from the previous discussion, once the stochastic equicontinuity condition is checked for the

empirical process

vn (θ) =
1√
n

nX
i=1

[1 (Yi ≤ θ)− F (θ)] .

Letting

rn (θ, θ0) =
√
n
£
bn (θ)− b (θ)− bn (θ0)

¤
= vn (θ)− vn (θ0) ,

note that for any θ

E [rn (θ, θ0)] = 0

V ar [rn (θ, θ0)] = F (θ) [1− F (θ)] + F (θ0) [1− F (θ0)]− 2F (min (θ, θ0)) [1− F (max (θ, θ0))] ,
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so that V ar [rn (θ, θ0)]→ 0 as δn → 0. Therefore, pointwise convergence in probability for kθ − θ0k ≤
δn is readily established: rn (θ, θ0)

p→ 0.

The function ψ (Y − θ) = 1 (Y − θ ≤ 0) − τ belongs to the type I class of functions discussed

in Andrews (1994). In such a case stochastic equicontinuity is trivially verified given that ψ (.) is

bounded. Andrews (p. 2273) provides formal sufficient conditions for stochastic equicontinuity of

first-order conditions of M -estimators, of which unconditional quantiles is a simple special case.

Theorem: Asymptotic normality of unconditional sample quantiles Fix 0 < τ < 1. If

F is differentiable at qτ with positive derivative f (qτ ), then

√
n (bqτ − qτ ) = − 1√

n

nX
i=1

1 (Yi ≤ qτ )− τ

f (qτ )
+ op (1) .

Consequently,

√
n (bqτ − qτ ) d→ N

µ
0,
τ (1− τ)

[f (qτ )]
2

¶
.

See van der Vaart, 1998, p. 307, Corollary 21.5.

In terms of the general notation, the example has bθ = bqτ , θ0 = qτ , ψ (Wi, θ0) = 1 (Yi ≤ qτ )− τ ,

bn (θ) =
1

n

nX
i=1

[1 (Yi ≤ θ)− τ ] , b (θ) = F (θ)− τ

D0 = f (qτ ) , V0 = E
n
[1 (Yi ≤ qτ )− τ ]2

o
= τ (1− τ) .

The term τ (1− τ) in the numerator of the asymptotic variance tends to make bqτ more precise in
the tails, whereas the density term in the denominator tends to make bqτ less precise in regions of
low density. Typically the latter effect will dominate so that quantiles closer to the extremes will be

estimated with less precision.
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A Convergence, continuity, and equicontinuity

A.1 Pointwise and uniform convergence of a sequence of (nonrandom) functions

Suppose Θ ⊆ Rq and that for each n ∈ N , gn is a function from Θ to R. We may think of the functions
g1, g2, g3,..., as forming a sequence of functions {gn}. Of course, this is very different from a sequence

of real numbers, but it is still possible to formulate some idea of ‘limit’ in this context. There are two

main ways in which we might do this. One is through the definition of pointwise convergence and the

other through uniform convergence. The following definitions describe these.

Definition 1 (Pointwise convergence) The sequence {gn} converges pointwise to the function g
on Θ if and only if for each θ ∈ Θ, gn (θ) → g (θ) as n → ∞; that is, given θ ∈ Θ, and ε > 0, there

exists n = n (θ, ε) such that

n > n (θ, ε)⇒ |gn (θ)− g (θ)| < ε.

Definition 2 (Uniform convergence) The sequence {gn} converges uniformly to the function g on
Θ if and only if given ε > 0, there exists n = n (ε) such that

n > n (ε)⇒ |gn (θ)− g (θ)| < ε, for all θ ∈ Θ.

The difference between these definitions is that, with uniform convergence, the n depends only on

ε so that the same n works for every θ ∈ Θ, whereas in pointwise convergence, θ is given, and n can
depend on θ as well as on ε. Uniform convergence is a stronger property than pointwise convergence.

The former implies the latter but not the converse. The following example illustrates this point.

Suppose that we take Θ = [0, 1] and gn(θ) = θn. Then it is easy to see that {gn} converges
pointwise on [0, 1] to the function g (θ) = 1 (θ = 1), but the convergence is not uniform because the

rate of convergence is not independent of θ.

It is easy to show that the sequence {gn (θ)}∞n=1 converges uniformly to g (θ) if and only if

lim
n→∞ supθ∈Θ

|gn (θ)− g (θ)| = 0

(See André Khuri (1993), Advanced Calculus with Applications in Statistics, Wiley, Theorem 5.3.1, p.

166).

A.2 Pointwise and uniform convergence of a sequence of random functions

Definition 3 (Pointwise convergence in probability) The random sequence {gn (θ)} converges
pointwise in probability to the function g (θ) on Θ if and only if for each θ ∈ Θ, |gn (θ)− g (θ)| p→ 0

as n→∞, or equivalently, if and only if for each θ ∈ Θ,

lim
n→∞Pr (|gn (θ)− g (θ)| > δ) = 0 for any δ > 0.
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That is, given θ ∈ Θ and ε > 0, there exists n = n (θ, ε) such that

n > n (θ, ε)⇒ Pr (|gn (θ)− g (θ)| > δ) < ε for any δ > 0.

Definition 4 (Uniform convergence in probability) The random sequence {gn (θ)} converges
uniformly in probability to the function g (θ) on Θ if and only if supθ∈Θ |gn (θ)− g (θ)| p→ 0 as n→∞,
or equivalently, if and only if

lim
n→∞Pr

µ
sup
θ∈Θ

|gn (θ)− g (θ)| > δ

¶
= 0 for any δ > 0.

A.3 Equicontinuity

A sequence of (nonrandom) functions is equicontinuous if all the functions are continuous and they have

equal variation over a given neighborhood in the sense described below. We collect formal definitions

for the purpose of comparisons with stochastic generalizations.

Equicontinuity The sequence {gn (θ)}∞n=1 is equicontinuous at θ0 ∈ Θ, if for every � > 0 there

exists a δ = δ (�, θ0) > 0 such that for all n, and all θ ∈ Θ such that |θ − θ0| < δ:

|θ − θ0| < δ (�, θ0)⇒ |gn (θ)− gn (θ0)| < �.

The sequence is equicontinuous if it is equicontinuous at each point of Θ.

Uniform equicontinuity The sequence {gn (θ)}∞n=1 is uniformly equicontinuous if for every
� > 0 there exists a δ = δ (�) > 0 such that for all n, and all θ1, θ2 ∈ Θ such that |θ1 − θ2| < δ:

|θ1 − θ2| < δ (�)⇒ |gn (θ1)− gn (θ2)| < �.

That is, a sequence of functions is (uniformly) equicontinuous if they are continuous uniformly in n.

Let us compare these concepts with continuity:

Continuity gn (θ) is a continuous function at θ0 ∈ Θ, if for every � > 0 there exists a δ =

δ (�, θ0, n) > 0 such that for all n, and all θ ∈ Θ such that |θ − θ0| < δ:

|θ − θ0| < δ (�, θ0, n)⇒ |gn (θ)− gn (θ0)| < �.

So, for continuity, δ may depend on �, θ0 and n; for equicontinuity, δ must be independent of n;

and for uniform equicontinuity, δ must be independent of both n and θ0.
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Stochastic equicontinuity The random sequence {gn (θ)}∞n=1 is stochastically equicontinuous
if and only if for every sequence of positive constants {δn} that converges to zero, we have

sup
|θ1−θ2|≤δn

|gn (θ1)− gn (θ2)| p→ 0.

or equivalently, if and only if

lim
n→∞Pr

Ã
sup

|θ1−θ2|≤δn
|gn (θ1)− gn (θ2)| < �

!
= 1 for any � > 0.

Basically, {gn (θ)}∞n=1 is stochastically equicontinuous if gn (θ) is continuous in θ uniformly over Θ at

least with high probability and for n large.

An alternative, equivalent definition of stochastic equicontinuity is as follows:

The random sequence {gn (θ)}∞n=1 is stochastically equicontinuous if and only if for all sequences
of random elements

nbθ1no and nbθ2no that satisfy ¯̄̄bθ1n − bθ2n ¯̄̄ p→ 0, we have

vn

³bθ1n´− vn ³bθ2n´ p→ 0.

See Andrews (1994, p. 2252).
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