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1 Introduction

The use of fixed effects is a simple and well understood way of dealing with

endogenous explanatory variables in linear panel data models. In such a

context, least squares or instrumental variable methods for errors in differ-

ences provide consistent estimates that control for unobserved heterogeneity

in short panels of large cross-sections (small T , large N). However, the situa-

tion is fundamentally different in models with nonlinear errors; for example,

when one intends to use fixed effects to deal with an endogenous explanatory

variable in a probit model. In those cases, estimates of the parameters of

interest, jointly estimated with the effects, are typically inconsistent if T is

fixed (incidental parameter problem). Moreover, fixed effects estimates in

a spirit similar to differencing in the linear case are not available for many

models of practical importance.

There are also random effect methods that achieve fixed T consistency

subject to a particular specification of the form of the dependence between

the explanatory variables and the effects, but they rely on strong and un-

testable auxiliary assumptions, and even these methods are often out of reach.

Without auxiliary assumptions, the common parameters of certain nonlinear

fixed effects models are simply unidentifiable in a fixed T setting, so that

fixed-T consistent estimation is not possible at all. In other cases, although

identifiable, fixed-T consistent estimation at the standard root-N rate is

impossible.

An alternative reaction to the fact that micro panels are short is to ask

for estimators with small biases as opposed to no bias at all; specifically,

estimators with biases of order 1/T 2 instead of the standard magnitude of

1/T . This alternative approach has the potential of overcoming some of the

fixed-T identification difficulties and the advantage of generality.

The purpose of this lecture is twofold. First I review the incidental pa-

rameter problem (Sections 2 and 3), fixed-T solutions (Section 4), and iden-

tification problems (Section 5), all in the context of the static binary choice
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model with explanatory variables that are correlated with an individual ef-

fect. Second, I discuss the modified concentrated likelihood of Cox and Reid

(1987), its role in achieving consistency up to a certain order of magnitude

in T (Section 6), and a double asymptotic formulation which provides an

effective discrimination between estimators with and without bias reduction

(Section 7).

I focus on the static binary case for simplicity and because many results

are only available for this case. Thus, dynamic models, multinomial choice,

and models with random effects that are uncorrelated with the explanatory

variables are all left out (see Arellano and Honoré (2001) for a fuller survey of

the fixed-T panel data discrete choice literature). My intention is to exhibit

the strengths and weaknesses of fixed-T approaches, and to illustrate the

usefulness of double asymptotic arguments in providing both approximately

unbiased moment conditions, and approximations to sampling distributions

even for fairly short panels, which is the main theme of the paper.

2 Models and Parameters of Interest

I begin by considering the following static binary choice model

yit = 1 {x0itβ0 + ηi + vit ≥ 0} (t = 1, ..., T ; i = 1, ..., N) (1)

where the errors vit are independently distributed with cdf F conditional on

ηi and xi = (x
0
i1, ..., x

0
iT )

0, so that

Pr(yit = 1 | xi, ηi) = F (x0itβ0 + ηi) . (2)

The Linear Model as a Benchmark In a linear model of the form

E(yit | xi, ηi) = x0itβ0 + ηi, (3)

β0 is identifiable from the regression in first differences or deviations from

means in a cross-sectional population for fixed T , regardless of the form of
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the distribution of ηi | xi. That is, we have

plim
N→∞

1

TN

NX
i=1

TX
t=1

(xit − xi)
£
(yit − yi)− (xit − xi)0 β0

¤
= 0, (4)

which is uniquely satisfied by the true value β0 provided

plim
N→∞

1

TN

NX
i=1

TX
t=1

(xit − xi) (xit − xi)0 (5)

is non-singular. So, the value bβ that solves
1

TN

NX
i=1

TX
t=1

(xit − xi)
h
(yit − yi)− (xit − xi)0 bβi = 0 (6)

(the “within-group” estimator) is a consistent estimator of β0 for large N ,

no matter how small is T as long as T ≥ 2 (see, for example, Arellano, 2003,
or Hsiao, 2003).

This is of economic interest if one hopes that by conditioning on ηi, β0
measures a more relevant (causal or structural) effect of x on y. The con-

sistency result matters because one wants to make sure that gets the right

answer when calculating bβ from a large cross-sectional panel with a small

time series dimension, which is a typical situation in microeconometrics.

The motivation and aim in a binary choice fixed effects model is to get

similar results as in the linear case when the form of the model is given by

(1). In our context, the term “fixed effects” has nothing to do with the nature

of sampling. It just refers to a model for the effect of x on y given x and

η, in which we observe y and x but not η, and the distribution of η | x is
left unrestricted. Following the usage in the econometric literature, the term

“random effects” will be reserved for models in which some knowledge about

the form of the distribution of η | x is assumed.

Parameters of Interest The micropanel data literature has empha-

sized the large-N -short-T identification of β0 with an unspecified distribution
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of ηi | xi. However, a natural parameter of interest is the mean effect on the
probability of yit = 1 of changing x1it from za to zb, say. A consistent esti-

mator of this is:

1

N

NX
i=1

Z
[F (zaβ01 + x

0
2itβ02 + η)− F (zbβ01 + x02itβ02 + η)] dG(η | x2it) (7)

where G(. | x2it) is the cdf of ηi conditional on x2it, and x1it denotes the first
component of xit. Thus, measuring this effect would require us to specify G,

which is not in the nature of the fixed effects approach.1

The direct information we can get from the β coefficients only concerns

the relative impacts of explanatory variables on the probabilities. If x1it and

x2it are continuous variables we have:
β02
β01

=
∂ Pr ob(yit = 1 | xi, ηi)

∂x2it
/
∂ Pr ob(yit = 1 | xi, ηi)

∂x1it
. (8)

3 The Problem

The log-likelihood function from (1) assuming that the yit are independent

conditional on xi and ηi is given by
NX
i=1

`i (β, ηi) (9)

where

`i (β, ηi) =
TX
t=1

{yit logFit + (1− yit) log (1− Fit)} (10)

and Fit = F (x0itβ + ηi). Moreover, the scores are

dηi (β, ηi) ≡
∂`i (β, ηi)

∂ηi
=

TX
t=1

fit
Fit (1− Fit) (yit − Fit) (11)

dβi (β, ηi) ≡
∂`i (β, ηi)

∂β
=

TX
t=1

fit
Fit (1− Fit)xit (yit − Fit) (12)

1An alternative is to obtain the difference in probabilities for specific values of η and
x2t (e.g. their means), but this may only be relevant for a small part of the population
(see Chamberlain, 1984).
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where fit denotes the pdf corresponding to Fit.

For the logit model F is the logistic cdf Λ(r) = er/ (1 + er) and we have

fit
Fit (1− Fit) = 1

so that in this case the scores are simply dηi (β, ηi) =
PT

t=1 (yit − Fit) and
dβi (β, ηi) =

PT
t=1 xit (yit − Fit).

Let the MLE of ηi for given β be

bηi (β) = argmax
η
`i (β, ηi) (13)

so that bηi (β) solves
dηi (β,bηi (β)) = 0. (14)

Therefore, the MLE of β is given by the maximizer of the concentrated (or

profile) log-likelihood

bβ = argmax
β

NX
i=1

`i (β,bηi (β)) (15)

which solves the first order conditions

bTN(β) =
1

TN

NX
i=1

½
dβi (β,bηi (β)) + dηi (β,bηi (β)) ∂bηi (β)∂β

¾

=
1

TN

NX
i=1

dβi (β,bηi (β)) (16)

The problem is that bTN(β) evaluated at β = β0 does not converge to

zero in probability when N → ∞ for T fixed (although it does converge to

zero when T → ∞). This situation is known as the incidental parameters
problem since Neyman and Scott (1948). A discussion of this problem for

discrete choice models is in Heckman (1981).
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An Example As a classic illustration let us consider a model in which

T = 2, f is symmetric, β is scalar, and xit is a time dummy such that

xi1 = 0 and xi2 = 1 (Andersen, 1973; Heckman, 1981). For observations with

(yi1, yi2) = (0, 0) we have bηi (β)→ −∞ and `i (β,bηi (β)) = logF (−bηi (β)) +
logF (−bηi (β)− β) → 0. For observations with (yi1, yi2) = (1, 1) we havebηi (β) → ∞ and `i (β,bηi (β)) = logF (bηi (β)) + logF (bηi (β) + β) → 0. Fi-

nally, for (0, 1) or (1, 0) observations we have, respectively,

`i (β, η) = logF (−η) + logF (η + β)

or

`i (β, η) = logF (η) + logF (−η − β) ,

which in both cases are maximized at

bηi (β) = −β

2
. (17)

The implication is that the contributions of observations (0, 0) and (1, 1)

to the concentrated log-likelihood are equal to zero, a (0, 1) observation con-

tributes a term of the form 2 logF (β/2), and a (1, 0) observation contributes

with 2 log [1− F (β/2)]. So the concentrated log-likelihood is given by

2
NX
i=1

{d10i log [1− F (β/2)] + d01i logF (β/2)} (18)

where d10i = 1(yi1 = 1, yi2 = 0) and d01i = 1(yi1 = 0, yi2 = 1).

Moreover, the MLE of p = F (β/2) is

bp = PN
i=1 d01iPN

i=1 1(yi1 + yi2 = 1)
, (19)

so that bβ = 2F−1 (bp) . (20)

Note that bp is the sample counterpart of p0 = Pr (yi1 = 0, yi2 = 1 | yi1 + yi2 = 1).
Thus the MLE bβ satisfies

plim
N→∞

bβ = 2F−1 (p0) . (21)
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Moreover, we have

p0 =

Z
Pr (yi1 = 0, yi2 = 1 | yi1 + yi2 = 1, η) dG (η | yi1 + yi2 = 1) .

For the logit model Pr (yi1 = 0, yi2 = 1 | yi1 + yi2 = 1, η) does not depend on
η and it turns out that p0 = Λ (β0) where β0 is the true value. Therefore,

in such a case plimN→∞ bβ = 2Λ−1 [Λ (β0)] = 2β0, so that ML would be

estimating a relative log odds ratio that is twice as large as its true value.

More generally, using Bayes formula

p0 =

Z
Pr (yi1 = 0, yi2 = 1 | η)
Pr (yi1 + yi2 = 1 | η)

Pr (yi1 + yi2 = 1 | η)
Pr (yi1 + yi2 = 1)

dG (η)

or

p0 =
Eη [Pr (yi1 = 0, yi2 = 1 | η)]
Eη [Pr (yi1 + yi2 = 1 | η)] , (22)

so that

plim
N→∞

bβ = 2F−1½ Eη [F (−η)F (β + η)]

Eη [F (−η)F (β + η)] +Eη [F (η)F (−β − η)]

¾
. (23)

Thus, in general the form of the asymptotic bias of bβ depends on the distri-
bution of the individual effects.

For probit, under η ∼ N ¡0,σ2η¢ an explicit expression is available. Let-
ting β∗ = β/

¡
1 + σ2η

¢1/2
and ρ = σ2η/

¡
1 + σ2η

¢
we have Eη [Φ (η)] = Φ (0) =

0.5, Eη [Φ (β + η)] = Φ (β∗), and Eη [Φ (η)Φ (β + η)] = Φ2 (0,β
∗; ρ), so that

plim
N→∞

bβ = 2Φ−1 · Φ (β∗)− Φ2 (0, β
∗; ρ)

Φ (β∗) + 0.5− 2Φ2 (0,β∗; ρ)
¸

(24)

where Φ2 (., .; ρ)is the cdf of the standardized bivariate normal density with

correlation coefficient ρ. As noted by Heckman (1981), we get p0 → F (β)

as ση → 0, in which case we get a similar bias result as for the logistic in

a limiting situation. Numerical calculations of (24) are reported below in

Section 6.
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4 Fixed T Solutions

4.1 Conditional MLE

A sufficient statistic for ηi, Si say, is a function of the data such that the

distribution of the data given Si does not depend on ηi. The idea is to

use the likelihood conditioned on Si to make inference about β0 (Andersen,

1970). This works as long as β0 is identified from the conditional likelihood

of the data, which obviously requires that the conditional likelihood depends

on β0. Unfortunately, this is not the case except for the logit model.

In the logit model
PT

t=1 yit is a sufficient statistic for ηi. Indeed, we have

Pr

Ã
yi1, ..., yiT |

TX
t=1

yit, xi

!
=

exp
³PT

t=1 yitx
0
itβ0

´
P

(d1,...,dT )∈Bi exp
³PT

t=1 dtx
0
itβ0

´ (25)

where Bi is the set of all 0− 1 sequences such that
PT

t=1 dt =
PT

t=1 yit. This

result was first obtained by Rasch (1960, 1961) (for surveys see Chamberlain,

1984, or Arellano and Honoré, 2001). For example, with T = 2 we have

Pr (yi1, yi2 | yi1 + yi2, xi) =
 1
1− Λ (∆x0i2β0)
Λ (∆x0i2β0)

if (yi1, yi2) = (0, 0) or (1, 1)
if (yi1, yi2) = (1, 0)
if (yi1, yi2) = (0, 1).

(26)

Therefore, the log-likelihood conditioned on yi1 + yi2 is given by2

Lc (β) =
NX
i=1

{d10i log [1− Λ (∆x0i2β)] + d01i logΛ (∆x
0
i2β)} (27)

and the score takes the form

∂Lc (β)

∂β
=

NX
i=1

∆xi2 {d01i − Λ (∆x0i2β) 1(yi1 + yi2 = 1)} . (28)

2The contributions of (0, 0) or (1, 1) observations is zero.

8



4.2 Maximum Score Estimation

The previous technique crucially relied on the logit assumption. Manski

(1987) considered a more general model of the form (1) in which the cdf of

−vit | xi, ηi was non-parametric and could depend on xi and ηi in a time-

invariant way. Namely, for all t and s

Pr(−vit ≤ r | xi, ηi) = Pr(−vis ≤ r | xi, ηi) = F (r | xi, ηi) , (29)

so that F (r | xi, ηi) does not change with t but is otherwise unrestricted.
This assumption imposes stationarity and strict exogeneity, but allows

for serial dependence in the errors vit. It also allows for a certain kind

of conditional heteroskedasticity, though not a very plausible one, since

V ar (vit | xi, ηi) may depend on xi but vit is not allowed to be more sensitive
to xit than to other x’s. Similarly if the expectations E (vit | xi, ηi) exist,
they may depend on xi but not their first-differences E (∆vit | xi, ηi) = 0.
The time-invariance of F implies that for T = 2:3

med (yi2 − yi1 | xi, yi1 + yi2 = 1) = sgn (∆x0i2β0) . (30)

To see this note that, given yi1+ yi2 = 1, the difference yi2− yi1 can only
equal 1 or −1. So the median will be one or the other depending on whether
Pr (yi2 = 1, yi1 = 0 | xi) Q Pr (yi2 = 0, yi1 = 1 | xi). Thus4

med (yi2 − yi1 | xi, yi1 + yi2 = 1) = sgn[Pr (yi2 = 1, yi1 = 0 | xi)−
−Pr (yi2 = 0, yi1 = 1 | xi)] = sgn [Pr (yi2 = 1 | xi)− Pr (yi1 = 1 | xi)] .

3The sign function is defined as

sgn (u) = 1 (u > 0)− 1 (u < 0) ,
i.e. sgn (u) = −1 if u < 0, sgn (u) = 0 if u = 0 and sgn (u) = 1 if u > 0.

4The second equality follows from

Pr (yi2 = 1 | xi) = Pr (yi2 = 1, yi1 = 0 | xi) + Pr (yi2 = 1, yi1 = 1 | xi)
Pr (yi1 = 1 | xi) = Pr (yi2 = 0, yi1 = 1 | xi) + Pr (yi2 = 1, yi1 = 1 | xi) .
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Moreover, from the model’s specification, i.e.

Pr (yi1 = 1 | xi, ηi) = F (x0i1β0 + ηi | xi, ηi)
Pr (yi2 = 1 | xi, ηi) = F (x0i2β0 + ηi | xi, ηi) ,

and the monotonicity of F , we have that for any ηi (the constancy of F over

time becomes crucial at this point):

Pr (yi2 = 1 | xi, ηi) Q Pr (yi1 = 1 | xi, ηi)⇔ x0i2β0 Q x0i1β0.

Therefore, the implication also holds unconditionally relative to ηi:

Pr (yi2 = 1 | xi) Q Pr (yi1 = 1 | xi)⇔ x0i2β0 Q x0i1β0.

or

sgn [Pr (yi2 = 1 | xi)− Pr (yi1 = 1 | xi)] = sgn (∆x0i2β0) .
Manski showed that the true value of β0 uniquely maximizes (up to scale)

the expected agreement between the sign of ∆x0i2β and that of ∆yi2 condi-

tioned on yi1 + yi2 = 1. This identification result required an unbounded

support for at least one of the explanatory variables with a non-zero co-

efficient. That is, letting x0it = (zit, w
0
it) and β00 = (γ0,α

0
0), the minimal

requirement for identification is that zit has unbounded support and γ0 6= 0.
Identification fails at γ0 = 0, so that γ0 = 0 is not a testable hypothesis.

Manski’s identification result implies that we can learn about the relative

effects of the variables wit under the maintained assumption that γ0 6= 0.
Manski then proposed to estimate β0 by selecting the value that matches

the sign of ∆x0i2β with that of ∆yi2 for as many observations as possible in

the subsample with yi1 + yi2 = 1. The suggested estimator is

bβ = argmax
β

NX
i=1

sgn (∆x0i2β) (yi2 − yi1) (31)
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subject to the normalization k β k= 1.5 This is the maximum score estima-

tor applied to the observations with yi1+ yi2 = 1 (notice that the estimation

criterion is unaffected by removing observations having yi1 = yi2). It is con-

sistent under the assumption that there is at least one unbounded continuous

regressor, but it is not root-N consistent, and not asymptotically normal.

An alternative form of the score objective function is

SN(β) =
NX
i=1

{d10i1 (∆x0i2β < 0) + d01i1 (∆x0i2β ≥ 0)} . (32)

The score SN(β) gives the number of correct predictions we would make

if we predicted (yi1, yi2) to be (0, 1) whenever ∆x0i2β ≥ 0. In contrast,PN
i=1 sgn (∆x

0
i2β)∆yi2 gives the number of successes minus the number of

failures. Yet another form of the estimator suggested by the median regres-

sion interpretation is as the minimizer of the number of failures, which is

given by
1

2

NX
i=1

1 (yi1 6= yi2) |∆yi2 − sgn (∆x0i2β)| . (33)

Smoothed Maximum Score It is possible to consider a smoothed

version of the maximum score estimator along the lines of Horowitz (1992),

which does have an asymptotic normal distribution, although the rate of

convergence remains slower than root-N (Charlier, Melenberg and van Soest,

1995, and Kyriazidou, 1997).6 The idea is to replace SN(β) with a smooth

function S∗N(β) whose limit a.s. as N →∞ is the same as SN(β). This is of

the form

S∗N(β) =
NX
i=1

{d10i [1−K (∆x0i2β/γN)] + d01iK (∆x0i2β/γN)} (34)

5In the logit case the scale normalization is imposed through the variance of the logistic
distribution. More generally, if F is a known distribution a priori, the scale normalization
is determined by the form of F . Comparisons can be made by considering ratios of
coefficients.

6Chamberlain (1986) showed that there is no root-N consistent estimator of β under
the assumptions of Manski for his maximum score method.
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where K(.) is analogous to a cdf and γN is a sequence of positive numbers

such that limN→∞ γN = 0.

4.3 Random Effects

In general

Pr (yi1, ..., yiT | xi) =
Z
Pr (yi1, ..., yiT | xi, ηi) dG (ηi | xi) (35)

where G (ηi | xi) is the cdf of ηi | xi. The substantive model specifies

Pr (yi1, ..., yiT | xi, ηi), but only Pr (yi1, ..., yiT | xi) has an empirical counter-
part. For example, we may have specified

Pr (yi1, ..., yiT | xi, ηi) =
TY
t=1

Pr (yit | xi, ηi) =
TY
t=1

F yitit (1− Fit)(1−yit) .

In a fixed effects model we seek to make inferences about parameters in

Pr (yi1, ..., yiT | xi, ηi) without restricting the form of G. In a random effects

model G is typically parametric or semiparametric, and the parameters of

interest may or may not be identified with G unrestricted. Thus a fixed

effects model can be regarded as a random effects model that leaves the

distribution of the effects unrestricted.

The choice between fixed and random effects models often involves a

trade-off between robustness in the specification of Pr (yi1, ..., yiT | xi, ηi) and
robustness in G, in the sense that achieving fixed-T identification with unre-

strictedG usually requires a more restrictive specification of Pr (yi1, ..., yiT | xi, ηi).
Chamberlain (1980, 1984) considered a random effects model in which

the effects are of the form

ηi = µ (xi) + εi (36)

and εi is independent of xi. He also made the normality assumptions

vit | xi, ηi ∼ N (0,ωtt) (37)

εi | xi ∼ N
¡
0,σ2η

¢
, (38)
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which imply that

Pr (yit = 1 | xi) = Φ
£
σ−1t (x0itβ0 + µ (xi))

¤
. (39)

where σ2t = σ2η + ωtt and Φ (.) is the standard normal cdf. In this model the

vit may be serially dependent and heteroskedastic over time.

Chamberlain assumed a linear specification µ (xi) = λ0+x
0
iλ, and Newey

(1994) generalized the model to a non-parametric µ (xi). In the linear case,

β0, λ0, λ, and the σ
2
t can be estimated subject to the normalization σ21 = 1

by combining the period-by-period probit likelihood functions (see Bover

and Arellano, 1997, for a discussion of alternative estimators). In the semi-

parametric case, Newey used the fact that

σtΦ
−1 [Pr (yit = 1 | xi)]− σt−1Φ−1

£
Pr
¡
yi(t−1) = 1 | xi

¢¤
= ∆x0itβ0 (40)

together with non-parametric estimates of the probabilities Pr (yit = 1 | xi)
to obtain an estimator of β0 and the relative scales. A further generalization

of the model is to drop the normality assumptions and allow the distribution

of the errors εi + vit | xi to be unknown. This case has been considered by
Chen (1998).

Another semi-parametric approach has been followed by Lee (1999). Un-

der certain assumptions on the joint distribution of xi and ηi, Lee proposed

a maximum rank correlation-type estimator which is
√
N-consistent and as-

ymptotically normal.

5 Identification Problems with Fixed T

It would be useful to know which models for Pr (yi1, ..., yiT | xi, ηi) are iden-
tified without placing restrictions in the form of G (ηi | xi) (i.e. fixed-effects
identification with fixed T ) and which are not.

A model is given by a 2T×1 vector p (xi, ηi,β0) with elements that specify
the probabilities

Pr ((yi1, ..., yiT ) = dj | xi, ηi) (j = 1, ..., 2T ) (41)
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where dj is a 0 − 1 sequence of order T . Let the true cdf of ηi | xi be
G0 (η | x). Identification will fail at β0 if for all x in the support of xi there
is a cdf G∗ (η | x) and β∗ 6= β0 in the parameter space, such thatZ

p (x, η,β0) dG0 (η | x) =
Z
p (x, η,β∗) dG∗ (η | x) . (42)

If this is so, (β0, G0) and (β
∗, G∗) give the same conditional distribution for

(yi1, ..., yiT ) given xi. Therefore, they are observationally equivalent relative

to such distribution.

Chamberlain (1992) studied the identification of a fixed effects binary

choice model with T = 2. He considered the model

yit = 1 (x
0
itβ0 + ηi + vit ≥ 0) (t = 1, 2)

together with the assumption that the −vit are independent of xi, ηi and are
i.i.d. over time with a known cdf F . The distribution F is strictly increasing

on the whole line, with a bounded, continuous derivative. Moreover, we have

the partitions x0it = (dt, z
0
it) and β00 = (α0, γ

0
0), where dt is a time dummy

such that d1 = 0 and d2 = 1, and zi is a continuous random vector with

bounded support.

With these assumptions Chamberlain showed that if F is not logistic, then

there is a value of α such that identification fails for all β0 in a neighborhood

of (α, 0). This seems puzzling since Manski (1987) proved identification un-

der less restrictive assumptions. He required, however, the presence of an

explanatory variable with unbounded support. Indeed, the difference be-

tween the identification result of Manski and the underidentification result

of Chamberlain is due to the bounded support for the explanatory variables.

The line between identification and underidentification in this context

is very subtle. Under Manski’s assumptions identification will fail at β00 =

(α0, 0) even if zit has unbounded support, but there will be identification as

long as a component of γ0 is different from zero. Chamberlain shows that if

zit is bounded β0 is underidentified not only when β00 = (α0, 0), but also for
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all β0 in a neighborhood of (α0, 0) for a certain value of α0. So it seems to

be a case of local underidentification at zero versus local underidentification

in a neighborhood around zero.

The lesson from these findings is the fragility of fixed-T identification

results and the special role of the logistic assumption. Chamberlain (1992)

also showed that when the support of zit is unbounded (so that identification

holds to the exclusion of γ0 = 0 from the parameter space) the information

bound for β0 is zero unless F is logistic. Thus, root-N consistent estimation

is possible only for the logit model.

Chamberlain’s proof can be sketched as follows. In his case p (x, η,β0) is

p (x, η,β0) =


(1− F1) (1− F2)
(1− F1)F2
F1 (1− F2)
F1F2


where F1 = F (z01γ0 + η) and F2 = F (α0 + z02γ0 + η).

Let β∗ = (α, 0) and define the 4× 4 matrix

H (x, η1, ..., η4,β
∗) = [p (x, η1, β

∗) , ..., p (x, η4,β
∗)] .

which does not vary with x when evaluated at β∗.

The proof proceeds by showing that unless H (x, η1, ..., η4,β
∗) is singular

for every α and η1, ..., η4, there will be lack of identification for all β0 in a

neighborhood of some β∗. Next it is shown that H (x, η1, ..., η4,β
∗) can only

be singular if F is logistic.

Let us choose a pmf π∗ = (π∗1, ...,π
∗
4)
0, π∗j > 0,

P4
j=1 π

∗
j = 1. If for some

other pmf π0 (x) we have

H (x, η1, ..., η4,β0) π0 (x) = H (x, η1, ..., η4,β
∗)π∗,

then the models characterized by (β0,π0 (x)) and (β
∗,π∗) give the same un-

conditional choice probabilities, hence creating an identification problem. To

rule this out we have to rule out that H is invertible. To see this, suppose

15



that H (x, η1, ..., η4,β
∗) is nonsingular for some α and η1, ..., η4. Since x is

bounded, for β0 6= β∗ in a neighborhood of β∗, H (x, η1, ..., η4,β0) will also

be nonsingular for all admissible values of x. We can now define

π0 (x) = H (x, η1, ..., η4,β0)
−1H (x, η1, ..., η4, β

∗)π∗,

such that π0j (x) > 0 for all admissible x. Moreover, since ι0H = ι0 where ι

is a 4× 1 vector of ones, we also have ι0H−1 = ι0 and ι0π0 (x) = 1. Therefore,

4X
j=1

p
¡
x, ηj, β0

¢
π0j (x) =

4X
j=1

p
¡
x, ηj, β

∗¢π∗j
which implies that β0 cannot be distinguished from β∗.

The singularity of H (x, η1, ..., η4, β
∗) requires that

ψ1 [1− F (η)] [1− F (α+ η)] + ψ2 [1− F (η)]F (α+ η)

+ψ3F (η) [1− F (α+ η)] + ψ4F (η)F (α+ η) = 0

for all η and some scalars ψ1, ...,ψ4 that are not all zero. Taking limits as η

tends to ±∞ gives ψ1 = ψ4 = 0. Thus we are left with

ψ2Q (α+ η) + ψ3Q (η) = 0

where Q ≡ F/ (1− F ). For η = 0 we obtain ψ3/ψ2 = −Q (α) /Q(0). There-
fore the singularity of H requires that for all α and η we have

q (α+ η) = q (α) + q (η)− q (0) .

This can only happen if the log odd ratios q ≡ logQ are linear or equivalently
if F is logistic.

6 Adjusting the Concentrated Likelihood

Cox and Reid (1987) considered the general problem of doing inference for

a parameter of interest in the absence of knowledge about nuisance parame-

ters. They proposed a first-order adjustment to the concentrated likelihood
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to take account of the estimation of the nuisance parameters (the modified

profile likelihood). Their formulation required information orthogonality be-

tween the two types of parameters. That is, that the expected information

matrix be block diagonal between the parameters of interest and the nuisance

parameters; something that may be achieved by transformation of the latter

(Cox and Reid explained how to construct orthogonal parameters). A dis-

cussion of orthogonality in the context of panel data models and a Bayesian

perspective have been given by Lancaster (2000, 2002). The nature of the

adjustment in a fixed effects model and some examples are also discussed in

Cox and Reid (1992).

6.1 Orthogonalization

Let `i (β, ηi) be the log-likelihood for unit i (conditional on xi and ηi). A

strong form of orthogonality arises when for some parameterization of ηi we

have

`i (β, ηi) = `1i (β) + `2i (ηi) , (43)

for in this case the MLE of ηi for given β does not depend on β,bηi (β) = bηi.
The implication is that the MLE of β is unaffected by lack of knowledge

of ηi. In this case ∂2`i (β, ηi) /∂β∂ηi = 0 for all i. Unfortunately, such

factorization does not hold for binary choice models. In contrast, information

orthogonality just requires the cross derivatives to be zero on average.

Suppose that a reparameterization is made from (β, ηi) to (β,λi) chosen

so that β and λi are information orthogonal. Thus ηi = η (β,λi) is chosen

such that the reparameterized log likelihood

`∗i (β,λi) = `i (β, η (β,λi)) (44)

satisfies (at true values):

E

µ
∂2`∗i (β0,λi)

∂β∂λi
| xi, ηi

¶
= 0. (45)
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Since we have
∂`∗i
∂β

=
∂`i
∂β

+
∂ηi
∂β

∂`i
∂ηi

(46)

and7

E

µ
∂2`∗i
∂β∂λi

| xi, ηi
¶
=

∂ηi
∂λi

E

µ
∂2`i
∂β∂ηi

| xi, ηi
¶
+

∂ηi
∂λi

∂ηi
∂β
E

µ
∂2`i
∂η2i

| xi, ηi
¶
,

(47)

following Cox and Reid (1987) and Lancaster (2002), the function η(β,λi)

must satisfy the partial differential equations

∂ηi
∂β

= −E
µ

∂2`i
∂β∂ηi

| xi, ηi
¶
/E

µ
∂2`i
∂η2i

| xi, ηi
¶
. (48)

Orthogonal Effects in Binary Choice Let us now consider the form

of information orthogonal fixed effects for model (1)-(2). These have been

obtained by Lancaster (1998, 2000). For binary choice we have

E

µ
∂2`i (β0, ηi)

∂β∂ηi
| xi, ηi

¶
= −

TX
t=1

h (x0itβ0 + ηi)xit (49)

E

µ
∂2`i (β0, ηi)

∂η2i
| xi, ηi

¶
= −

TX
t=1

h (x0itβ0 + ηi) (50)

where

h (r) =
f (r)2

F (r) [1− F (r)] . (51)

Since in general (49) is different from zero, β and ηi are not information

orthogonal. In view of (48), an orthogonal transformation of the effects will

satisfy
∂ηi
∂β

= − 1PT
t=1 hit

TX
t=1

hitxit (52)

where hit = h (x0itβ + ηi).

7Note that there is a term that vanishes: (∂2ηi/∂β∂λi)E (∂`i/∂ηi | xi, ηi) = 0.
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Moreover, letting φ (r) = h0 (r) and φit = φ (x0itβ + ηi), since

∂2ηi
∂β∂λi

= −∂ηi
∂λi

"
1PT
t=1 hit

XT

t=1
φit

µ
xit +

∂ηi
∂β

¶#

and

∂2ηi
∂β∂λi

/
∂ηi
∂λi

=
∂

∂β
log

¯̄̄̄
∂ηi
∂λi

¯̄̄̄
, (53)

it turns out that
∂ηi
∂λi

=
1PT
t=1 hit

. (54)

Hence, Lancaster’s orthogonal reparameterization is

λi =
TX
t=1

Z x0itβ+ηi

−∞
h (r) dr. (55)

When F (r) is the logistic distribution h(r) coincides with the logistic

density, so that an orthogonal effect for the logit model is

λi =
TX
t=1

Λ (x0itβ + ηi) . (56)

6.2 Modified Profile Likelihood

The modified profile log likelihood function of Cox and Reid (1987) can be

written as

LM (β) =
X
i

`Mi (β)

and

`Mi (β) = `
∗
i

³
β, bλi (β)´− 1

2
log
h
−d∗λλi

³
β, bλi (β)´i , (57)

where bλi (β) is the MLE of λi for given β, and d∗λλi (β,λi) = ∂2`∗i /∂λ
2
i . In-

tuitively, the role of the second term is to penalize values of β for which the

information about the effects is relatively large.
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An individual’s modified score is of the form

dMi (β) = dCi (β)−
d∗λλβi

³
β, bλi (β)´+ d∗λλλi ³β, bλi (β)´ h∂bλi (β) /∂βi

2d∗λλi
³
β, bλi (β)´ (58)

where dCi (β) is the standard score from the concentrated likelihood function,

d∗λλβi (β,λi) = ∂3`∗i /∂λ
2
i∂β and d

∗
λλλi (β,λi) = ∂3`∗i /∂λ

3
i .

The function (57) was derived by Cox and Reid as an approximation to

the conditional likelihood given bλi (β). Their approach was motivated by
the fact that in an exponential family model, it is optimal to condition on

sufficient statistics for the nuisance parameters, and these can be regarded

as the MLE of nuisance parameters chosen in a form to be orthogonal to the

parameters of interest. For more general problems the idea was to derive a

concentrated likelihood for β conditioned on the MLE bλi (β), having ensured
via orthogonality that bλi (β) changes slowly with β.

Another motivation for using (57) is that the corresponding expected

score has a bias of a smaller order of magnitude than the standard ML score

(cf. Liang, 1987, McCullagh and Tibshirani, 1990, and Ferguson, Reid, and

Cox, 1991). Seen in this way, the objective of the adjustment is to center

the concentrated score function to achieve consistency up to a certain or-

der of magnitude in T . Specifically, while the difference between the score

with known λi and the concentrated score is in general of order Op (1), the

corresponding difference with the modified concentrated score is of order

Op
¡
T−1/2

¢
(see Appendix). This leads to a bias of order O (T−1) in the ex-

pected modified score, as opposed to O (1) in the concentrated score without

modification.

The Adjustment in Terms of the Original Parameterization Cox

and Reid’s motivation for modifying the concentrated likelihood relied on the

orthogonality between common and nuisance parameters. Nevertheless, the

mpl function (57) can be expressed in terms of the original parameterization.
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Firstly, note that because of the invariance of MLE bηi (β) = η(β, bλi (β)) and
`∗i
³
β, bλi (β)´ = `i (β,bηi (β)) . (59)

Next, the term d∗λλi
³
β, bλi (β)´ can be calculated as the product of the

Fisher information in the (β, ηi) parameterization and the square of the Ja-

cobian of the transformation from (β, ηi) to (β,λi) (Cox and Reid, 1987, p.

10). That is, since the second derivatives of `∗i and `i are related by the

expression
∂2`∗i
∂λ2i

=
∂2`i
∂η2i

µ
∂ηi
∂λi

¶2
+

∂`i
∂ηi

µ
∂2ηi
∂λ2i

¶
,

and ∂`i/∂ηi vanishes at bηi (β), letting dηηi (β, ηi) = ∂2`i/∂η
2
i we have

d∗λλi
³
β, bλi (β)´ = dηηi (β,bηi (β))µ∂ηi

∂λi
|λi=bλi(β)

¶2
. (60)

Thus, the mpl can be written as

`Mi (β) = `i (β,bηi (β))− 12 log [−dηηi (β,bηi (β))] + log
µ
∂λi
∂ηi

|ηi=bηi(β)
¶
. (61)

Finally, in view of (48) and (53), the derivative with respect to β of the

Jacobian term (the required term for the modified score) can be expressed

as
∂

∂β
log

¯̄̄̄
∂λi
∂ηi

¯̄̄̄
= − ∂

∂ηi
qi (β, ηi) , (62)

where qi (β, ηi) = −κβηi (β, ηi) /κηηi (β, ηi) and

κβηi (β0, ηi) = E

·
1

T
dβηi (β0, ηi) | xi, ηi

¸
(63)

κηηi (β0, ηi) = E

·
1

T
dηηi (β0, ηi) | xi, ηi

¸
. (64)

Modified Profile Likelihood for Binary Choice Replacing (54) in

(61) we have

`Mi (β) = `i (β,bηi (β))− 12 log [−dηηi (β,bηi (β))] + log
Ã

TX
t=1

bhit (β)! (65)
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where bhit (β) = h (x0itβ + bηi (β)),
`i (β, ηi) =

TX
t=1

{yit logFit + (1− yit) log (1− Fit)}

and

dηηi (β, ηi) = −
TX
t=1

[hit − ρit (yit − Fit)] (66)

where ρit = ρ (x0itβ + ηi) and

ρ (r) =
f 0 (r)− h (r) [1− 2F (r)]

F (r) [1− F (r)] . (67)

For logit, the MLE bλi (β) for given β solves

bλi (β) = TX
t=1

Λ (x0itβ + bηi (β)) = TX
t=1

yit (68)

so that it does not vary with β. Therefore, the likelihood conditioned onbλi (β) coincides with the conditional logit likelihood given a sufficient statistic
for the fixed effect discussed in Section 4.1.

For the logistic distribution ρ (r) = 0. The modified profile likelihood

(mpl) for logit is therefore

`Mi (β) = `i (β,bηi (β)) + 12 log
Ã

TX
t=1

fΛ (x
0
itβ + bηi (β))

!
(69)

where fΛ (r) = Λ (r) [1− Λ (r)] is the logistic density and `Mi (β) is defined

for observations such that
PT

t=1 yit is not zero or T .
8

6.3 Numerical Comparisons for Logit and Probit

Comparisons for the Two-Period Logit Model The mpl for logit

(69) differs from Andersen’s conditional likelihood, and the estimator bβMML
8If bηi (β)→ ±∞, then log

³PT
t=1 fΛ (x

0
itβ + bηi (β))´ tends to −∞ for any β. So obser-

vations for individuals that never change state are uninformative about β.
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that maximizes the mpl is inconsistent for fixed T . Pursuing the example in

Section 3, we compare the large-N biases of ML and MML for T = 2 and

∆xi2 = 1. Thus we are assessing the value of the large-T adjustment in (69)

when T = 2.

When T = 2, for individuals who change state bηi (β) = −β/2 so that the
second term in (69) becomes

1

2
log [fΛ (−β/2) + fΛ (β/2)] . (70)

Collecting terms and ignoring constants, the modified profile log-likelihood

takes the form

1

N

NX
i=1

`Mi (β) =
1

N

NX
i=1

{2d10i log [1− Λ(β/2)] + 2d01i logΛ(β/2)

+ (d10i + d01i)
1

2
(logΛ(β/2) + log [1− Λ(β/2)])}

∝ 1

N

NX
i=1

{(5d10i + d01i) log [1− Λ(β/2)] + (5d01i + d10i) logΛ(β/2)}

∝ (5− 4bp) log [1− Λ(β/2)] + (4bp+ 1) logΛ(β/2) (71)

where d10i = 1(yi1 = 1, yi2 = 0), d01i = 1(yi1 = 0, yi2 = 1) and bp is as defined
in (19). This is maximized at

bβMML = 2Λ−1µ4bp+ 16
¶
= 2 log

µ
4bp+ 1
5− 4bp

¶
. (72)

Therefore,

plim
N→∞

bβMML = 2 logµ4p0 + 15− 4p0

¶
= 2 log

µ
4Λ (β0) + 1

5− 4Λ (β0)
¶
. (73)

Figure 1 shows the probability limits of MML for positive values of β0,

together with those of ML (the 2β0 line) and conditional ML (the 45
◦ line)

for comparisons.9 In this example the adjustment produces a surprisingly
9See McCullagh and Tibshirani (1990, pp. 337-8) for a similar exercise using different

adjusted likelihood functions.
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Figure 1: Probability limits for a logit model with T = 2

good improvement given that we are relying on a large T argument with

T = 2. For example, for p0 = 0.65, we have β0 = 0.62, βML = 1.24 and

βMML = 0.81. Since the MML biases are of order O (1/T 2), the result

suggests that, although the biases are not negligible for T = 2, they may be

so for values of T as small as 5 or 6.

Comparisons for the Two-Period Probit Model If f (r) is the

standard normal pdf we have h (−r) = h (r) and ρ (−r) = −ρ (r). Thus,
in the two-period case, bhi1 = h [bηi (β)] = h (−β/2) = h (β/2) and bhi2 =
h [β + bηi (β)] = h (β/2). Also bFi1 = F (−β/2) and bFi2 = F (β/2). Finally,bρi1 = ρ (−β/2) = −ρ (β/2) and bρi2 = ρ (β/2).

Therefore, for observations with yi1 + yi2 = 1 we have:

`Mi (β) = `i (β,bηi (β))− 12 log hbhi1 − bρi1 ³yi1 − bFi1´+ bhi2 − bρi2 ³yi2 − bFi2´i
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+ log
³bhi1 (β) + bhi2 (β)´ (74)

and

`Mi (β) ∝ 2 [d10i logF (−β/2) + d01i logF (β/2)]
−1
2
d10i log [2h (β/2) + 2ρ (β/2)F (β/2)] (75)

−1
2
d01i log [2h (β/2) + 2ρ (−β/2)F (−β/2)] + log h (β/2) .

Next, collecting terms, ignoring constants, averaging over observations with

yi1 + yi2 = 1, and using the notation

q (r) = 1 +
ρ (r)F (r)

h (r)
=

Φ (r)

1− Φ (r)
− rΦ (r)

φ (r)
,

we have

1

N1

N1X
i=1

`Mi (β) = (1− bp) ·2 logF (−β/2) + 1
2
log h (β/2)− 1

2
log q (β/2)

¸
+bp ·2 logF (β/2) + 1

2
log h (β/2)− 1

2
log q (−β/2)

¸
.(76)

Thus, the probability limit of bβMML for probit maximizes the limiting
modified log likelihood as follows

plim
N→∞

bβMML = argmax
β

½
p0

·
2 logF (β/2) +

1

2
log h (β/2)− 1

2
log q (−β/2)

¸
+(1− p0)

·
2 logF (−β/2) + 1

2
log h (β/2)− 1

2
log q (β/2)

¸¾
.

(77)

Figure 2 shows the probability limits of probit ML and MML for normally

distributed individual effects with variances 0.1, 1, and 10, as well as for

Cauchy distributed effects. The range of values of β has been chosen for

comparability with Figure 1, in the sense that both figures cover similar

intervals of p0 values. The impact of changing the distribution of the effects
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Figure 2: Probability limits for a probit model with T = 2

is noticeably small for both ML and MML. The adjustment for probit also

produces a good improvement given that T is only two, although less so than

in the logit case. For example, for β0 = 0.60, the relevant ranges of values

are [1.21, 1.30] for βML, [0.90, 0.96] for βMML, and [0.73, 0.74] for p0.

7 N and T Asymptotics

The panel data literature has probably overemphasized the quest for fixed-T

large-N consistent estimation of non-linear models with fixed effects. We

have already seen the difficulties that arise in trying to obtain a root-N

consistent estimator for a simple static fixed effects probit model. Not sur-

prisingly, the difficulties become even more serious for dynamic binary choice

models. In a sense, insisting on fixed T consistency has similarities with (and

may be as restrictive as) requiring exactly unbiased estimation in non-linear
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models. Panels with T = 2 are more common in theoretical discussions than

in econometric practice. For a micro panel with 7 or 8 time series observa-

tions, whether estimation biases are of order O (1/T ) or O (1/T 2) may make

all the difference. So it seems useful to consider a wider class of estimation

methods than those providing fixed-T consistency, and assess their merits

with regard to alternative N and T asymptotic plans. There are multiple

possible asymptotic formulations, and it is a matter of judgement to decide

which one provides the best approximation for the sample sizes involved in

a given application.

Here we consider the asymptotic properties of the estimators that maxi-

mize the concentrated likelihood (ML) and the modified concentrated likeli-

hood (MML) when T/N tends to a constant (related results for autoregres-

sive models are in Alvarez and Arellano, 2003, and Hahn and Kuersteiner,

2002).10

Consistency The ML estimator of β can be shown to be consistent as

T →∞ regardless of N using the arguments and the consistency theorem in

Amemiya (1985, pp. 270-72). The consistency of MML follows from noting

that the concentrated likelihood and the mpl converge to the same objective

function uniformly in probability as T →∞.
Letting bρit (β) = ρ (x0itβ + bηi (β)) and bFit (β) = F (x0itβ + bηi (β)), from

(65) we have

p lim
T→∞

1

T
`Mi (β) = p lim

T→∞
1

T
`i (β,bηi (β)) + p lim

T→∞
1

T
log

Ã
1

T

TX
t=1

bhit (β)! (78)

−p lim
T→∞

1

T
log

Ã
1

T

TX
t=1

hbhit (β)− bρit (β)³yit − bFit (β)´i
!1/2

,

10Since this lecture was first written I have become aware of recent work on double
asymptotic formulations for nonlinear fixed effect models by Woutersen (2001) and Li,
Lindsay, and Waterman (2002). Moreover, a modified ML estimator for dynamic binary
choice models has been developed in Carro (2003) and its properties investigated in sim-
ulations and empirical calculations.
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where the convergence is uniform in β in a neighborhood of β0, and the last

two terms vanish.

Asymptotic Normality When T/N → c, 0 < c < ∞, both ML and
MML are asymptotically normal but, unlike MML, the ML estimator has

a bias in the asymptotic distribution. An informal calculation of the terms

arising in the asymptotic distributions is given in the Appendix. The results

are as follows:¡
H 0
NTV

−1
NTHNT

¢1/2√
NT

µbβML − β0 +
1

T
H−1
NT bN

¶
d→ N (0, I) (79)

³
H†0
NTV

−1
NTH

†
NT

´1/2√
NT

³bβMML − β0

´
d→ N (0, I) . (80)

where κ∗βλλi = E
£
T−1d∗βλλi (β0,λi0) | xi,λi

¤
, κ∗λλi = E [T

−1d∗λλi (β0,λi0) | xi,λi],

bN =
1

N

NX
i=1

µ
κ∗βλλi
2κ∗λλi

¶
, (81)

VNT =
1

NT

NX
i=1

d∗βi (β0,λi0) d
∗
βi (β0,λi0)

0 , (82)

HNT =
1

NT

NX
i=1

∂

∂β0
d∗βi
³
β0, bλi (β0)´ , (83)

and

H†
NT =

1

NT

NX
i=1

∂

∂β0
dMi (β0) . (84)

Thus, the asymptotic distribution of the ML estimator will contain a bias

term unless κ∗βλλi = 0.

8 Concluding Remarks

In this paper we have considered ML and modified ML estimators, but the

estimation problem can be put more generally in terms of moment conditions
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in a GMM framework. Fixed-T consistent estimators rely on exactly unbiased

moment conditions. When T/N tends to a constant, a GMM estimator

from moment conditions with a O (1/T ) bias will typically exhibit a bias in

the asymptotic distribution, but not if the estimator is based on moment

conditions with a O (1/T 2) bias. Thus, in the context of binary choice and

other non-linear microeconometric models, a search for optimal orthogonality

conditions that are unbiased to order O (1/T 2) or greater seems a useful

research agenda.

But do these biases really matter? Heckman (1981) reported a Monte

Carlo experiment for ML estimation of a probit model with strictly exoge-

nous variables and fixed effects, T = 8 and N = 100. Using a random effects

estimator as a benchmark, he concluded that the MLE of the common pa-

rameters (jointly estimated with the effects) performed well. According to

this, it would seem that even for fairly small panels there is not much to

be gained from the use of fixed-T unbiased or approximately unbiased or-

thogonality conditions. For models with only strictly exogenous explanatory

variables this may well be the case. But these are models that are found to

be too restrictive in many applications.

When modelling panel data, state dependence, predetermined regressors,

and serial correlation often matter. Heckman (1981) found that when a

lagged dependent variable was included the ML probit estimator performed

badly. This is not surprising since similar problems occur with linear au-

toregressive models. The difference is that while standard tools are available

in the literature that ensure fixed T consistency for linear dynamic models,

very little is known for dynamic binary choice.11 This is therefore a promis-

ing area of application of asymptotic arguments to both the construction of

estimating equations and useful approximations to sampling distributions.

11See Keane (1994), Hyslop (1999), Honoré and Kyriazidou (2000), Magnac (2000),
Honoré and Lewbel (2002), Arellano and Carrasco (2003), and Arellano and Honoré (2001)
for a survey and more references.
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Appendix

Expansion for the Score of the Concentrated Likelihood Let us

consider a second order expansion of the score of the concentrated likelihood

around the true value of the orthogonal effect.

The log likelihood is `∗i (β,λi); its vector of partial derivatives with re-

spect to β is d∗βi (β,λi) = ∂`∗i (β,λi) /∂β; the concentrated likelihood is

`∗i
³
β, bλi (β)´ and its score is given by d∗βi ³β, bλi (β)´. An approximation

at β0 around the true value λi0 is

d∗βi
³
β0, bλi (β0)´ = d∗βi (β0,λi0) + d

∗
βλi (β0,λi0)

³bλi (β0)− λi0
´

(A1)

+
1

2
d∗βλλi (β0,λi0)

³bλi (β0)− λi0
´2
+Op

¡
T−1/2

¢
where d∗βλi (β,λi) = ∂2`∗i (β,λi) /∂β∂λi and d

∗
βλλi (β0,λi0) = ∂3`∗i (β,λi) /∂β∂λ

2
i .

In general, the first three terms are Op
¡
T 1/2

¢
, Op

¡
T 1/2

¢
, and Op (1), but be-

cause of orthogonality d∗βλi (β0,λi0) is Op
³√
T
´
as opposed to Op (T ).12

Expansion for bλi (β0) − λi0 Letting d∗λi (β,λi) = ∂`∗i (β,λi) /∂λi, the

estimator bλi (β0) solves d∗λi ³β0, bλi (β0)´ = 0. Let us also introduce notation
for the terms:

κ∗λλi ≡ κ∗λλ (β0,λi0) = E
·
1

T
d∗λλi (β0,λi0) | xi,λi

¸
κ∗βλλi ≡ κ∗βλλ (β0,λi0) = E

·
1

T
d∗βλλi (β0,λi0) | xi,λi

¸
Note that κ∗λλi and κ∗βλλi are individual specific because they depend on λi0,

but they do not depend on the y’s.13 Moreover, from the information matrix

identity

E

·
1

T
d∗λi (β0,λi0) d

∗
λi (β0,λi0) | xi,λi

¸
= −κ∗λλi.

12Since
√
T
h
1
T d
∗
βλi (β0,λi0)− 0

i
= Op (1), we have d∗βλi (β0,λi0) = Op

³√
T
´
.

13Also 1
T d
∗
λλi (β0,λi0) = κ∗λλ (β0,λi0) + Op

³
1√
T

´
, which holds as√

T
¡
1
T d
∗
λλi (β0,λi0)− κ∗λλ (β0,λi0)

¢
= Op (1) .
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Expanding T−1/2d∗λi
³
β0, bλi (β0)´ in the usual way we obtain

0 =
1√
T
d∗λi
³
β0, bλi (β0)´

=
1√
T
d∗λi (β0,λi0) +

1

T
d∗λλi (β0,λi0)

√
T
³bλi (β0)− λi0

´
+Op

µ
1√
T

¶
or

0 =
1√
T
d∗λi (β0,λi0) + κ∗λλi

√
T
³bλi (β0)− λi0

´
+Op

µ
1√
T

¶
,

Hence, also
√
T
³bλi (β0)− λi0

´
= − 1

κ∗λλi

1√
T
d∗λi (β0,λi0) +Op

µ
1√
T

¶
, (A2)

and

T
³bλi (β0)− λi0

´2
=

1

(κ∗λλi)
2

1

T
[d∗λi (β0,λi0)]

2+Op

µ
1√
T

¶
= − 1

κ∗λλi
+Op

µ
1√
T

¶
.

(A3)

Combining (A1), (A2) and (A3):

d∗βi
³
β0, bλi (β0)´ = d∗βi (β0,λi0)−

1

κ∗λλi
d∗βλi (β0,λi0)

·
1

T
d∗λi (β0,λi0) +Op

µ
1

T

¶¸
+
1

2
d∗βλλi (β0,λi0)

1

T

·
− 1

κ∗λλi
+Op

µ
1√
T

¶¸
+Op

µ
1√
T

¶
= d∗βi (β0,λi0)−

1

κ∗λλi

1

T
d∗βλi (β0,λi0) d

∗
λi (β0,λi0)

−κ∗βλλi
2κ∗λλi

+Op

µ
1√
T

¶
= d∗βi (β0,λi0) +

κ∗βλλi
2κ∗λλi

+Op

µ
1√
T

¶
(A4)

where we have made use of the facts that due to the orthogonality between

λi and β we have d∗βλi (β0,λi0) = Op
³√
T
´
and14

E

·
1

T
d∗βλi (β0,λi0) d

∗
λi (β0,λi0)

¸
= −κ∗βλλi.

14Let f = f (x;β,λ) and write information orthogonality asZ
∂2 log f

∂β∂λ
fdx = 0.

36



Finally, given the zero-mean property of the score

E
£
d∗βi (β0,λi0) | xi,λi

¤
= 0

the bias of the concentrated score is O (1) and can be written as

E
h
d∗βi
³
β0, bλi (β0)´ | xi,λii = κ∗βλλi

2κ∗λλi
+O

µ
1

T

¶
.

The remainder is O (T−1) since the Op
¡
T−1/2

¢
terms in the concentrated

score have zero mean (cf. Ferguson et al., 1991, p. 290).

Expansion for the Score of the Modified Concentrated Likeli-
hood The mpf is given by

`Mi (β) = `
∗
i

³
β, bλi (β)´− 1

2
log
h
−d∗λλi

³
β, bλi (β)´i

and the mpf score

dMi (β) = d
∗
βi

³
β, bλi (β)´− 1

2

d

dβ
log
h
−d∗λλi

³
β, bλi (β)´i .

Let us consider the form of the difference between the modified and ordinary

concentrated scores at β0:

dMi (β0)− d∗βi
³
β0, bλi (β0)´

=
−1

2 1
T
d∗λλi

³
β0, bλi (β0)´

Ã
1

T
d∗λλβi

³
β0, bλi (β0)´+ 1

T
d∗λλλi

³
β0, bλi (β0)´ ∂bλi (β0)

∂β

!
.

Taking derivatives with respect to λ we obtain:Z
∂3 log f

∂β∂λ2
fdx+

Z
∂2 log f

∂β∂λ

∂ log f

∂λ
fdx = 0.

Thus,

E

µ
∂2 log f

∂β∂λ

∂ log f

∂λ

¶
= −E

µ
∂3 log f

∂β∂λ2

¶
.
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Since bλi (β0) = λi0 +Op
¡
T−1/2

¢
we have

dMi (β0)− d∗βi
³
β0, bλi (β0)´ = − 1

2κ∗λλi

Ã
κ∗βλλi + κ∗λλλi

∂bλi (β0)
∂β

!
+Op

µ
1√
T

¶
where κ∗λλλi = E [T

−1d∗λλλi (β0,λi0) | xi,λi].
Now, differentiating d∗λi

³
β, bλi (β)´ = 0 we obtain

d∗βλi
³
β, bλi (β)´+ d∗λλi ³β, bλi (β)´ ∂bλi (β)

∂β
= 0

or

∂bλi (β)
∂β

= −
d∗βλi

³
β, bλi (β)´

d∗λλi
³
β, bλi (β)´ .

Therefore,
∂bλi (β0)

∂β
= −κ∗βλi

κ∗λλi
+Op

µ
1√
T

¶
,

but because of orthogonality κ∗βλi = E
£
T−1d∗βλi (β0,λi0) | xi,λi

¤
= 0, so that

∂bλi (β0) /∂β is Op ¡T−1/2¢ and
dMi (β0)− d∗βi

³
β0, bλi (β0)´ = −κ∗βλλi

2κ∗λλi
+Op

µ
1√
T

¶
.

Finally, combining this result with (A4) we obtain

dMi (β0) = d
∗
βi (β0,λi0) +Op

µ
1√
T

¶
. (A5)

Thus, the difference between the concentrated likelihood and the modified

concentrated likelihood depends primarily on the value of κ∗βλλi. If κ
∗
βλλi = 0

the scores from both functions will have biases of the same order of magnitude

(Cox and Reid, 1992).
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Asymptotic Normality of the ML Estimator Let us begin by as-

suming that, as T/N → c, 0 < c < ∞, a standard central limit theorem
applies to the true score d∗βi (β,λi) = ∂`∗i (β,λi) /∂β, so that we have

V
−1/2
NT

1√
NT

NX
i=1

d∗βi (β0,λi0)
d→ N (0, I) (A6)

where VNT = (NT )
−1PN

i=1 d
∗
βi (β0,λi0) d

∗
βi (β0,λi0)

0.

Using (A4) we can write

1√
NT

NX
i=1

d∗βi
³
β0, bλi (β0)´ = 1√

NT

NX
i=1

d∗βi (β0,λi0) +

r
N

T
bN +

r
N

T 2
aN

where bN = N−1PN
i=1

£
κ∗βλλi/ (2κ

∗
λλi)
¤
, aN = N−1PN

i=1 ai, and ai is an Op (1)

term. Therefore,

V
−1/2
NT { 1√

NT

NX
i=1

d∗βi
³
β0, bλi (β0)´−rNT bN} d→ N (0, I) . (A7)

Next, from a first order expansion of the concentrated score around the

true value, we obtain

HNT
√
NT

³bβ − β0

´
= − 1√

NT

NX
i=1

d∗βi
³
β0, bλi (β0)´+Opµ 1√

NT

¶
(A8)

where

HNT =
1

NT

NX
i=1

∂

∂β0
d∗βi
³
β0, bλi (β0)´ .

Combining (A7) and (A8) we can write

V
−1/2
NT HNT

√
NT

µbβ − β0 +
1

T
H−1
NT bN

¶
=

−V −1/2NT { 1√
NT

NX
i=1

d∗βi
³
β0, bλi (β0)´−rNT bN}+Op

µ
1√
NT

¶
.

and finally,¡
H 0
NTV

−1
NTHNT

¢1/2√
NT

µbβ − β0 +
1

T
H−1
NT bN

¶
d→ N (0, I) .
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Asymptotic Normality of the MML Estimator We now turn to

consider the asymptotic distribution of the modified ML estimator as T/N →
c, 0 < c <∞. In view of (A5), given (A6) we have

V
−1/2
NT

1√
NT

NX
i=1

dMi (β0)
d→ N (0, I) . (A9)

Next, from a first order expansion of the modified score around the true

value, we obtain

H†
NT

√
NT

³bβMML − β0

´
= − 1√

NT

NX
i=1

dMi (β0) +Op

µ
1√
NT

¶
(A10)

where

H†
NT =

1

NT

NX
i=1

∂dMi (β0)

∂β0
.

Finally, combining (A9) and (A10) we can write

V
−1/2
NT H†

NT

√
NT

³bβMML − β0

´
= −V −1/2NT

1√
NT

NX
i=1

dMi (β0) +Op

µ
1√
NT

¶
and ³

H†0
NTV

−1
NTH

†
NT

´1/2√
NT

³bβMML − β0

´
d→ N (0, I) .
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