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Let θ be a parameter vector identified from the moment condition

Eψ (w, θ) = 0

such that dim (θ) = dim (ψ). Consider a sample W = {w1, ..., wN} and a consistent estimator bθ that
solves the sample moment conditions (up to a small order term).

The function ψ (w, θ) may denote orthogonality conditions in a just-identified GMM estimation

problem or the first-order conditions in an m-estimation problem. Alternatively ψ (w, θ) may be re-

garded as a linear combination of a larger moment vector ϕ (w, θ) in an overidentified GMM estimation

problem, so that ψ (w, θ) = B0ϕ (w, θ).

Assume that conditions for the following asymptotically linear representation of the scaled estima-

tion error and asymptotic normality hold:
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where D0 = ∂Eψ (w, θ) /∂c0 is the Jacobian of the population moments and V0 is the limiting variance:
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To get standard errors of bθ we need estimates ofD0 and V0. A natural estimate ofD0 is bD = 1
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is the kth column of bDi, for some small �N > 0,

and δk is the kth unit vector. As for V0 the situation is different under independent or cluster sampling.

Independent sampling Denote ψi = ψ (wi, θ) and bψi = ψ
³
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If they are also identically distributed V0 = E
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. Regardless of the latter a consistent estimate

of V0 under independence is
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A consistent estimate of the asymptotic variance of bθ under independent sampling is:
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Cluster sampling We now obtain a consistent estimate of the asymptotic variance of bθ when
the sample consists of H groups (or clusters) of Mh observations each (N =M1+ ...+MH) such that

observations are independent across groups but dependent within groups, H → ∞ and Mh is fixed

for all h. For convenience we order observations by groups and use the double-index notation whm so

that W = {w11, ..., w1M1 | ... | wH1, ..., wHMH
}.

Under cluster sampling, letting ψh =
PMh
m=1 ψhm and eψh =PMh

m=1
bψhm we have
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Thus, a consistent estimate of V0 is
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The estimated asymptotic variance of bθ allowing unrestricted within-cluster correlation is therefore
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Note that (3) is of order 1/H whereas (1) is of order 1/N .

Examples A panel data example is

ψ (whm, θ) = xhm
¡
yhm − x0hmθ

¢
where h denotes units and m time periods. If the variables are in deviations from means bθ is the
within-group estimator. In this case bDhm = −xhmx0hm and eψh = PMh

m=1 xhmbuhm where buhm are

within-group residuals. The result is the (large H, fixedMh) formula for within-group standard errors

that are robust to heteroskedasticity and serial correlation of arbitrary form in Arellano (1987):
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Another example is a τ -quantile regression with moments
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1 eψh =PMh
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1This choice of D corresponds to selecting an (i, k)-specific scaled "N given by ξN/xik.
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Equicorrelated moments within-cluster The variance formula (3) is valid for arbitrary cor-

relation patterns among cluster members. Here we explore the consequences for variance estimation

of assuming that the dependence between any pair of members of a cluster is the same. Under the

error-component structure
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The natural estimator of Ωv is the within-group variance bΩv. When all clusters are of the same size
(Mh = M for all h), the natural estimator of Ωη is the between-group variance minus the within

variance times 1/M :2
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Noting that M2/M1 =M , it turns out that the plug-in estimate of V0 is identical to eV in (2):
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When cluster sizes differ, a method-of-moments estimator of Ωη is a weighted between-group variance

minus the within variance times a weighted average of 1/Mh:
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for some weights wh such that

PH
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h/M2 as weights, the

plug-in estimate of V0 is identical to eV :
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The conclusion is that imposing within-cluster equicorrelation is essentially innocuous for the

purpose of calculating cluster-robust standard errors.
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2The within-group sample variance is Ωv = 1

H(M1−1)
H
h=1
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m=1 ψhm − ψh

Mh
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0
. As for the between-

group variance note that overall means are equal to zero at θ (Arellano, 2003, section 3.1 on error-component estimation).
3For example, wh = 1, wh =Mh/M1 or wh =M2

h/M2.
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