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1 Introduction

The purpose of this paper is to review recently developed bias-adjusted methods of es-
timation of nonlinear panel data models with fixed effects. Standard estimators such as
maximum likelihood estimators are usually inconsistent if the number of individuals n
goes to infinity while the number of time periods T is held fixed. For some models, like
static linear and logit regressions, there exist fixed-T' consistent estimators as n — oo
(see, e.g., Andersen, 1970). Fixed T consistency is a desirable property because for many
panels T' is much smaller than n. However, these type of estimators are not available in
general, and when they are, their properties do not normally extend to estimates of aver-
age marginal effects, which are often parameters of interest. Moreover, without auxiliary
assumptions, the common parameters of certain nonlinear fixed effects models are simply
unidentified in a fixed T" setting, so that fixed-T" consistent point estimation is not possible

(see, e.g., Chamberlain, 1992). In other cases, although identifiable, fixed-T' consistent
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estimation at the standard root-n rate is impossible (see, e.g., Honoré and Kyriazidou,
2000, and Hahn, 2001).

The number of periods available for many household, firm-level or country panels is
such that it is not less natural to talk of time-series finite sample bias than of fixed-T'
inconsistency or underidentification. In this light, an alternative reaction to the fact that
micro panels are short is to ask for approximately unbiased estimators as opposed to
estimators with no bias at all. That is, estimators with biases of order 1/7? as opposed to
the standard magnitude of 1/T". This alternative approach has the potential of overcoming
some of the fixed-T identification difficulties and the advantage of generality.

The paper is organized as follows. Section 2 describes fixed effects estimators and
the incidental parameters problem. Section 3 explains how to construct analytical bias
correction of estimators. Section 4 describes bias correction of the moment equation.
Section 5 presents bias corrections for the concentrated likelihood. Section 6 discusses
other approaches leading to bias correction, including Cox and Reid’s and Lancaster’s
approaches based on orthogonality, and their extensions. Section 7 describes quasi max-
imum likelihood estimation for dynamic models. Section 8 considers the estimation of
marginal effects. Section 9 discusses automatic methods based on simulation. Section 10

concludes.

2 Incidental Parameters Problem with Large T’

We first describe fixed effects estimators. Let the data observations be denoted by z;; =
(yi, %), (t=1,..,T;i=1,...,n), where y; denotes the ‘dependent’ variable, and x;

denotes the strictly exogenous ‘explanatory’ variable.! Let § denote a parameter that is

!Throughout most of the paper except in Section 7, we will assume away dynamics or feedback.



common to all 7, ; a scalar individual effect,? and f (y;1, - - ., vir | 6o, vio)

f(yila - YiT | 9070@0) = f(yih - YiT | Tily - - - 7$iT790,04i0)

a density function of y;1,...,y;r conditional on the strictly exogenous explanatory vari-
ables x;1,...,x;p. Assuming that y; are independent across i and ¢, we obtain the log

likelihood

n T
Z Z log fit (yit | 0, ) .

=1 t=1

where f;; (i | 0, ;) denotes the density of y;; conditional on z;1,...,z;r. For notational
simplicity, we will write f for f;; below. The fixed effects estimator is obtained by doing
maximum likelihood treating each a; as a parameter to be estimated. Concentrating out
the «; leads to the characterization
n T T
Or = argrenaxz Zlogf (yie | 0,2 (0)), i (0) = argranabegf (yit | 0, ).
i=1 t=1 t=1
Here the @; (f) depends on the data only through the ith observation z;, ..., z;r. Let
n T
LO)=lmnY E|> logf(yl6,a: ()
i=1 t=1
It will follow from the usual extremum estimator properties (e.g. Amemiya, 1985) that
as n — oo with 7T fixed, O = 07 + op (1), where 0 = argmax, L (6). In general, 0 # 6.
This is the incidental parameters problem noted by Neyman and Scott (1948). The
source of this problem is the estimation error of @; (f). Because only a finite number T
of observations are available to estimate each «;, the estimation error of @; (¢) does not
vanish as the sample size n grows, and this error contaminates the estimates of parameters

of interest.

2Qur analysis extends easily, albeit with some notational complication, to the case where there are

multiple fixed effects, i.e., where «; is a multi-dimensional vector.



Example 1 Consider a simple model where y;; SE N (i, 0d), (t=1,..,T;i=1,..,n),
or

1 Yir — i)’
log f (yit; 02,ozi) =C— 3 log o® — %.

This is a simpler version of the model considered by Chamberlain (1980). Here, we may

write 0 = o2, and the MLE is such that
1 T 1 n T
ai_TZyzt—yi7 e_nT, Z(yzt Yi) -
t=1 i=1 t=1
It is straightforward to show that 0= 0o — %6’0 +0,(1) as n — oo with T fized. In this

example, the bias is easy to fix by equating the denominator with the correct degrees of

freedom n (T —1).

Note that the bias should be small for large enough T, i.e., limy_., 07 = 6y. Further-

more, for smooth likelihoods we usually have

B 1
Or =0p + = — 1
T =Uo+ T + 0 <T2> (1)
for some B. In Example 1, B = —6,. The fixed effects estimator 0 will in general be as-

ymptotically normal, although it will be centered at 0r: as n,T — oo, vVnT (@ — 9T> LR
N (0,92) for some 2. Under these general conditions the fixed effects estimator is asymp-

totically biased even if T" grows at the same rate as n. For n/T — p, say,

~ ~ B
vnT <9 . 90) —V/nT <9 - eT) +VnT— +0 ( %) 4 N (Byp, Q).
Thus, even when T' grows as fast as n, asymptotic confidence intervals based on the fixed
effects estimator will be incorrect, due to the limiting distribution of vnT <5 — 90) not
being centered at 0.

Similar to the bias of the fixed effects estimand 67 — 6, the bias in the expected fixed

effects score at 6y and the bias in the expected concentrated likelihood at an arbitrary 6



can also be expanded in orders of magnitude of T":
1

E T aaelogf (yzt | 80, (673 (80))] = %bz (80) +o0 <%) (2)

and

Zlogf (i | 0,0 (0 ——ZIng (ye | 0,0 (0))

where @; (6) maximizes limy_,o, F [T‘l S log f (v | 0, oz)] . These expansions motivate
alternative approaches to bias correction based on adjusting the estimator, the estimating
equation, or the objective function. We next discuss these three approaches in turn. We
shall refer to B/T, b;/T, and 3;/T as the order 1/T biases of the fixed effects estimand,

expected score, and expected concentrated likelihood, respectively.

3 Bias-Correction of the Estimator

An analytical bias correction is to plug into the formula for B estimators of its unknown

components to construct B , and then form a bias corrected estimator

~1

-

(4)

ﬂlbw

3.1 Formulae for the Order 1/7T Bias

In order to implement this idea, we need to have an explicit formula for B. For this

purpose, it is convenient to define

0
ui (0,0) = aelogf(ynle a), U“(e’a)zaai (yitl0, @) ,
Dvi (6,
Vo (6,0) = U;(e,aw%,
o U (6o,
Ui (6,0) = e (6r0) = v (O0) ELG 1 Bliy]. 7= - [ 200l

Note that E [U;‘] = 0, which in the MLE case implies that U and v;; are orthogonalized.

We will denote the derivative with respect to 6 or «; by appropriate superscripts, e.g.,

)



U (0, ) = 0Uy (0, ) /O, UG (0, ) = 02Uy (0, ) /Oa?. For notational convenience
we suppress the arguments when expressions are evaluated at the true values 6y and «;,
e.g. Ugi = 6vit (90, aio) /8@1

It can be shown that

-1

1 7 li b; (0o) 5
(ﬁ& 1 Z ) Jim 2 Z 0 )
where b; (6g) /T is the 1/T bias of the score function. It can also be shown that

__(EluUy] E[UF™] E[vy]
b; (o) = < B[] 2 (E [Uf,ff])2 > . (6)

or

) = (gt ) |-t (P - Floii
)| )

Intuition on the derivation of the bias of the score function is provided in Section 4 below.

g

e ( B g — B ) =t
2E [Ulogb] ( [U’Lt ] [vzt ] E [ng]

See also Hahn and Newey (2004), for example. The bias correction formula (5) does not
depend on the likelihood setting, and so would be valid for any fixed effects m-estimator.
However, in the likelihood setting because of the information identity E [v2] = —F [v5]

and the Bartlett equality

. 1 . 1
E [vithZl] + §E [Uitl Z] = _§E [V2itUit] ) (8)

we can alternatively write

-1
1 ] — 1 & E Uy Vay)

B=—-1[ lim — Z; lim — _—
2 (nl—{go n Z > n1—>r£>lo n P E [ng] (9)



In Example 1 with 8 = 02, we can see that

w = o % o= P00 B = -
1 (g — o)
Eluyvy] = 0, Uit:uit:_Q_eO %7
2
BE) - g Veem Bl oo
E [UVai] = ei %:_%
171\ t1
v i) am
and we obtain )
~1 ~ B T4 1~
91:9—72%6.

Recall that 6 = 6y — +00 + 0, (1) as n — oo with T fixed. It follows that
~1 1
0 :eg—ﬁeo—f—Op(l),

which shows that the bias of order 7! is removed.

3.2 Estimators of the Bias

An estimator of the bias term can be formed using a sample counterpart of the previous

formulae. One possibility is

where

(12)




where Er (.) = ST L) /T, @l =l (6, (0)), 0% = ul (6, (0)), etc. The bias cor-
rected estimator can then be formed with B = B (9T>.
The other possibility exploits the likelihood setting to replace some derivatives by

outer product terms:

- (% ZZ) A0 (13)

where
T = — (Er[uity) — Er [l Br [03) 7 Broutly)) = ~Br (UaUi) . (19)
’57: (6) _ Z;T 1 Azt (‘9 az (‘9)) ‘/2it (67 az (‘9))7 (15)
257 w3 (0,3 ()
and N
Uy = Uy (0,0 (0)) = uy (6,0 (0)) — Mvit (0,a;(0)), (16)

Er [02)]

so that an alternative bias correction can be formed with B = B <§T>

3.3 Infinitely Iterated Analytic Bias-Correction

If 0 is heavily biased and it is used in the construction of B , it may adversely affect the
properties of 51. One way to deal with this problem is to use 51 in the construction of
another B, and then form a new bias corrected estimator as in equation (4). One could
even iterate this procedure, updating B several times using the previous estimator of
9. To be precise, let B () denote an estimator of B depending on 6, and suppose that
Ez?(@). Then §' :b\—E(@) /T Tterating gives/ék —6— E( ) /T, (k=2,3,..).

If this estimator were iterated to convergence, it would give f solving
0 =0-B <ﬁ’°) JT. (17)

In general this estimator will not have improved asymptotic properties, but may have

lower bias for small 7. In Example 1 with 6, = 02, we can see that

~%  TE4TFI4 41~ T _1 o T
6 = frd 0_>
Tk TF(T — 1) T-—1

8



as k — oo, and the limit 9™ has zero bias.

4 Bias-Correction of the Moment Equation

Another approach to bias correction for fixed effects is to construct the estimator as the
solution to a bias corrected version of the first-order conditions. Recall that the expected
fixed effects score has the 1/T bias equal to b; (6p) at the true value, as noted in (2). Let us
consider S (0) = Yoy ST u (8,35 (9)) / (nT), so that the fixed effects estimator solves
S <5T> = 0, and let b; (0) /T be an estimator of the 1/T" bias of the expected score at
the true value. A score-corrected estimator is obtained by solving the modified moment

equation
~ 1 ~
S(0)——=> bi(6)=0. (18)
In order to understand the idea of correcting the moment equation and its connection

to estimating B, it is convenient to note that the MLE 9 is a solution to

n T
=1 t=1

Consider an infeasible estimator 6 based on @; (6y) rather than @;, where 6 solves the first

order condition 0 = Y7 , Zthl Uit (5, @; (0y)). Standard arguments suggest that

VT (3 —6,) ~ <% zy_lzi)_ J_zz ST Us (60,35 (60))

Because E [U;; (0o, @; (6p))] # 0, we cannot apply the central limit theorem to the numer-
ator on the right side. We use a second order Taylor series expansion to approximate

Uit (90, &z (‘90)) around (6718

\/_Zz IZt Uit (00, @i (0o)) ~ \/_Zz IZt 1 Uit
\/_Zz S Ui (@ (60) — o) + \/—Zl L D U (@ (00) — cio)®.



The first term on the right will follow a central limit theorem because E [U;]| = 0. As for
the second and third terms, we note that &; (fg) — cio ~ =T~ 131, vy (E [v%]) ™", and
substituting for a@; (fp) — ayo in the approximation for Uy (6g, @; (6p)) leads to
Z? 1 21 Uit (60, @ (90)) ~ Y Y U
Zt 1 Uzt [U i ]
< i . 19
> ] [ s (o - £, o

Taking an expectation of the second term on the right and subtracting it from the LHS,

we expect that

[0 Ug E [U%%) B [v2
Zz IZt L Uit (60, @; (60)) +Z( i ’t] U] [%:])

E [viy] 2(E [vy])”

Zz 1Zt 1 Zt eﬂaaz 90 Zb 90

is more centered at zero than ) ., ST Ui (60, @i (69))-
An estimator of the 1/7 bias of the moment equation is given by b, (0) /T in (12). We

then expect the solution to

S [T wa (0.8 (6) ~ B (6)] = 0 (20)

to be less biased than the MLE ET. Alternatively, the bias can be estimated using the
estimator of the bias in (15) that exploits Bartlett identities, leading to the moment

equation

S0y | wa (0,6 (6) — b (9)] = 0. (21)

The first expression would be valid for any fixed effects m-estimator, whereas the second is

appropriate in a likelihood setting. These two versions of bias corrected moment equation
are discussed in Hahn and Newey (2004).

In a likelihood setting it is also possible to form an estimate of b; (f) that uses expected

rather than observed quantities, giving rise to alternative score-corrected estimators, such

as those considered by Carro (2004) and Fernéndez-Val (2005) for binary choice models.

10



In order to see a connection between bias-correction of the moment equation and
iterated bias-correction of the estimator, it is useful to note that 9™ solves the equation
0—0=B(0) /T or
Xn: {Z 0 (0-0) - %Ei (9)} —0 (22)

=1

where B (f) is as in (10) or (13). This equation can be regarded as an approxima-
tion to the previous corrected moment equations as long as Z; (/) is an estimator of
OEr [uy (0,0; (0))] /00 and b; () /T is an estimator of the 1/T bias for Ex [uy (0,a; (0))].
Thus, the bias-correction of the moment equation can be loosely understood to be an

infinitely iterated bias-correction of the estimator.

5 Bias-Correction of the Concentrated Likelihood

Due to the noise of estimating a; (6), the expectation of the concentrated likelihood is not
maximized at the true value of the parameter. See (3). In this section, we discuss how
such problem can be avoided by correcting the concentrated likelihood.

Let 4;(0,a) = S, by (8,0) /T where £ (0,a) = log f (i | ,a) denotes the log
likelihood of one observation. Moreover, let @; (f) = argmax,, plim,_  ¢; (6, @), so that
under regularity conditions @; (6y) = ayo. Following Severini (2000) and Pace and Salvan

(2005), the concentrated log likelihood for unit i

t; (0) = ¢; (0,0 (0)) (23)
can be regarded as an estimate of the unfeasible concentrated log likelihood

0 (0) = £; (0,7 (0)). (24)

The function ¢; () is a proper log likelihood which assigns data a density of occurrence
according to values of # and values of the effects along the curve @; (). It is a least-

favorable target log likelihood in the sense that the expected information for 6 calculated

11



from ¢; (f) coincides with the partial expected information for 6 (c.f. Stein, 1956; Severini
and Wong, 1992; and Newey, 1990, for related discussion on semiparametric bounds).
/; () has the usual log likelihood properties: it has zero mean expected score, it satisfies

the information matrix identity, and is maximized at 6.
Now, define

) = - [ 252 0) = B {07 ).

A stochastic expansion for an arbitrary fixed 6 gives

a; (0) — @, (0) ~ H71 (0)v; (0, (9)) (25)

(3

where v; (8, ) = Y1, vy (8, ) /T. Next, expanding ¢; (8,@; (6)) around @; (8) for fixed

6, we get
4; (0,0 (0)) —£; (0,0 (0)) ~ v; (6,0 () [a; () — 2 (6)] — %Hz (0) [ (0) — @ (6))*. (26)
Substituting (25) we get
t; (0,0; (0)) — €; (0,0; (0)) = %Hz (0) [ (0) — @ (0))”. (27)
Taking expectations, we obtain
B[40, (6)) — £ (0, (0))] ~ 3H, (6) Var [6(0)] ~ 63@
where
8. (6) = %Hi 6) Var (VT @ (6) @ (6)]) = %H{l (0) T (6). (28)

Thus, we expect that
n T

PIPICACEACHESIEAC)

i=1 t=1

is a closer approximation to the target log likelihood than 327 S°T £, (8,@; (8)). Letting
Bi (f) be an estimated bias, we then expect an estimator 6 that solves
0 = arg mgx;‘ ;zit (6,3 (0)) — B, (0) (29)

12



to be less biased than the MLE §T.

We can consistently estimate (3; (6) by

AURE (—% ) %) =D v (6, (6)) (30)

t=1

Using this form of Bl (#) in (29), 6 solves the first-order conditions

SN i (8,a; () - %9(6) =0. (31)

i=1 t=1 i=1
Because a; (0) satisfies

0="> vi(8,a:(0)), (32)

t=1
we can obtain

0Gi (6) _ >oiy i (0.6 (0))

= ——— ) (33)
09 i vy (0,5 (6))
Using this equation and the fact v, = ufy, it follows that
95;(0) _+
i _ 3. 4
A0 ) (34)

where b; (0) corresponds to the estimated score bias in (12). Therefore, the first-order
conditions from (29) and the bias corrected moment (20) are identical.

Moreover, in the likelihood context, we can consider a local version of the estimated
bias constructed as an expansion of 3; () at 6 using that at the truth H; 1 (05) i (00) = 1

(Pace and Salvan, 2005):
5.60) =5 +0(7) (35)

,(6) = 2 log <_% 3 W) +5log {% S [vi (6, 8 <0>)F} . (36)

t=1 t=1

This form of the estimated bias leads to the modified concentrated likelihood

{6, (6)) + 5 log {—% > |G } g {% S fou (0. <e>>12} . (7)



This adjustment was considered by DiCiccio and Stern (1993) and DiCiccio, Martin,
Stern, and Young (1996). They showed that (37) reduces the bias of the concentrated
score to O (1/T') in the likelihood setting. In fact, it can be shown that (37) is maximized
at ﬁ S S (i —7;)7 in Example 1.

It can be easily shown that

0B, (0) _  Br[oy] 5.0, (38)

0 (-Br@))

Therefore, the DiCiccio—Stern first-order condition is using a valid estimate of the con-

centrated score 1/T bias as long as the information identity holds, so that in general it
will be appropriate in likelihood settings. Note that 83, (0) /86 differs from b; () in (15),
which exploits Bartlett identities as well as the information equality.

In the likelihood setting it is also possible to form estimates of H; (6) and Y; (f) that
use expected rather than observed quantities. An estimator of the bias of the form of (36)
that uses the observed Hessian but an expectation-based estimate of the outer product
term Y; (0) is closely related to Severini (1998)’s approximation to the modified profile
likelihood. Severini (2002) extends his earlier results to pseudo ML estimation prob-
lems, and Sartori (2003) considers double asymptotic properties of modified concentrated

likelihoods in the context of independent panel or stratified data with fixed effects.

6 Other Approaches Leading to Bias Correction

The incidental parameters problem in panel data models can be broadly viewed as a
problem of inference in the presence of many nuisance parameters. The leading statis-
tical approach under this circumstance has been to search for suitable modification of
conditional or marginal likelihoods. The modified profile likelihood of Barndorff-Nielsen
(1983) and the approximate conditional likelihood of Cox and Reid (1987) belong to this

category (see Reid (1995) for an overview). However, the Barndorff-Nielsen formula is

14



not generally operational, and the one in Cox and Reid requires the availability of an
orthogonal effect.
We begin with discussion of Cox and Reid’s (1987) adjustment to the concentrated

likelihood followed by Lancaster’s (2002) proposal.

6.1 Approaches Based on Orthogonality

6.1.1 Cox and Reid’s Adjusted Profile Likelihood Approach

Cox and Reid (1987) considered the general problem of inference for a parameter of interest
in the presence of nuisance parameters. They proposed a first-order adjustment to the
concentrated likelihood to take account of the estimation of the nuisance parameters.

Their formulation required information orthogonality between the two types of para-
meters. That is, that the information matrix be block diagonal between the parameters of
il%terest and the nuisance parameters. Suppose that the individual likelihood is given by
H f (yit | 0, ;). In general, the information matrix for (6, ;) will not be block-diagonal,
;Ttlhough it may be possible to reparameterize a; as a function of # and some 7, such
that the information matrix for (6,7;,) is block-diagonal (Cox and Reid explained how to
construct orthogonal parameters).

The discussion of orthogonality in the context of panel data models is due to Lancaster
(2000, 2002), together with a Bayesian proposal that we consider below. The nature of
the adjustment in a fixed effects model and some examples were also discussed in Cox
and Reid (1992).

In the panel context, the Cox-Reid (1987) approach maximizes

ZZZit (g 0, 8 (9)) _ % Zlog (_ Z 0%y (yz(;,of;, Q; (‘9))> ‘ (39)

i=1 t=1 i =1

The adjusted profile likelihood function (39) was derived by Cox and Reid as an approx-

imation to the conditional likelihood given @; (f). Their approach was motivated by the

15



fact that in an exponential family model, it is optimal to condition on sufficient statistics
for the nuisance parameters, and these can be regarded as the MLE of nuisance parame-
ters chosen in a form to be orthogonal to the parameters of interest. For more general
problems the idea was to derive a concentrated likelihood for # conditioned on the MLE

a; (0), having ensured via orthogonality that a; (6) changes slowly with 6.

Relation to Bias-Correction of the Moment Equation It is useful to spell out the

first order condition corresponding to the adjusted profile likelihood:

=< o IS g 0,ai(0) LS v (0,0 (9))
= Uit Q,ozi ‘9 T
Z [; ( ( 2 Zt 1V (9 Q; (9)) 2 t=1 zt (9 87 (9))

=1

(40)
where we used the fact v%, = uf’. Moreover, using equations (32) and (33), we obtain that
the moment equation of the adjusted profile likelihood is equal to

) [ZUt (8@ (6)) — b " (0)] =0 (41)

=1 |t=1

where

LBy @] 1 Br (o) By i)
2 Brlog] 2 (ET[E"DQ

Ferguson, Reid, and Cox (1991) showed that under orthogonality the expected moment

bCE (9) = (42)

equation has a bias of a smaller order of magnitude than the standard expected ML score.
Under information orthogonality E [ujy’] = 0 and E [vius’] = —E [uy®']. Using these

facts and the information identity, the bias formula (7) becomes

1 E [uf]

b (00) = 5 e

(43)
Comparison with the Cox—Reid moment equation adjustment E-CR (0) reveals that the
latter has an extra term whose population counterpart is equal to zero under orthogonality.

It can in fact be shown that this term does not contribute anything to the asymptotic

distribution of the resultant estimator under the large n large T asymptotics.

16



Relation to Bias-Correction of the Concentrated Likelihood To see the connec-
tion between the Cox—Reid’s adjustment, which requires orthogonalization, and the one
derived from the bias-reduction perspective in the previous section, which does not, note
that (37) can be written as
N 1 < Ovy (0,0, (9)) 1, — ~ _
£ (6,3:(6)) 2 1og{ 7o |G } — L log Var (VT @ 60) — i (0))) (44)
TS

where

ot (VT @ (0) i (0))) — Lo [vit<e,ai<e>>122_ (45)
( ) (0 o (0, (0))])

Thus, a criterion of the form (44) can be regarded as a generalized Cox—Reid adjusted
likelihood with an extra term given by an estimate of the variance of v/T (@ (6) — @; (),
which accounts for nonorthogonality (the discussion of this link is due to Pace and Salvan,
2005). Under orthogonality the extra term is irrelevant because the variance of @; () does

not change much with 6.

Other Features of Adjusted Likelihood Approach We note that Cox and Reid’s
(1987) proposal and other methods in the same literature, were not developed to explicitly
address the incidental parameter problem in the panel data context. Rather, they were
concerned with inference in models with many nuisance parameters.

We also note that this class of approaches was not developed for the sole purpose of
correcting for the bias of the resultant estimator. It was developed with the ambitious goal
of making the modified concentrated likelihood behave like a proper likelihood, including
the goal of stabilizing the behavior of the likelihood ratio statistic. We can see that it
achieves some of these other goals at least in the context of Example 1, where it can be

shown that
n T

0= —r—— ) DY e —7)

i=1 t=1

17



26
n(T-1)

maximizes (39), and the second derivative of (39) delivers as the estimated variance

of 8. Because the actual variance of @ is equal to %ﬁl), we can note that the Cox-
Reid approach even takes care of the problem of correctly estimating the variance of the
estimator. It is not clear whether such success is specific to the particular example, or
not. More complete analysis of other aspects of inference such as variance estimation is

beyond the scope of this survey.

6.1.2 Lancaster’s (2002) Bayesian Inference

Lancaster (2002) proposed a method of Bayesian inference that is robust to the inci-
dental parameters problem, which like Cox and Reid’s method critically hinges on the
availability of parameter orthogonality, which may not be feasible in many applications.
Sweeting (1987) pointed out that such procedure is in fact approximately Bayesian. These
approaches have been later generalized by Woutersen (2002) and Arellano (2003) to sit-
uations where orthogonality may not be available. Their generalization are based on
correcting the first order condition of the adjusted profile likelihood estimator, and will
be discussed in the next section.

In a Bayesian setting, fixed effects are integrated out of the likelihood with respect to
the prior distribution conditional on the common parameters (and covariates, if present)

7 (o | 0). In this way, we get an integrated (or random effects) log likelihood of the form

2 (0) = log / 76O (o | 6) da

As is well known, the problem with inferences from ¢/ () is that they depend on the choice
of prior for the effects and are not in general consistent with 7" fixed. It can be shown
that under regularity conditions the maximizer of Y, ¢/ (f) has a bias of order O (1/T)
regardless of 7 (a | #). However, if o and 6 are information orthogonal, the bias can be

reduced to O (1/T7?).
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Lancaster (2002) proposes to integrate out the fixed effects 1, by using a noninforma-
tive prior, say a uniform prior, and use the posterior mode as an estimate of §. The idea
is to rely on prior independence between fixed effects and 6, having chosen an orthogonal
reparameterization, say «; = « (60, 7;,), that separates the common parameter 6 from the
fixed effects n; in the information matrix sense. In other words, his estimator 6, takes

the form
T

5,; :argrenax/-~~/HHf(yit|970é(977li))d771"'dnn- (46)

=1 t=1

In Example 1 with § = 02, we have F [u;v;] = 0 so the reparameterization is unnec-

essary. Lancaster’s estimator would therefore maximize

T

i=1 t=1

and
N n T
(

1 2
eL:mZZ yit_yi) .

i=1 t=1

Note that 9,; has a zero bias.
Asymptotic properties of EL are not yet fully worked out except in a small number of
specific examples. It is in general expected b\L removes bias only up to O (T~1), although

we can find examples where 6, eliminates bias of even higher order.

6.2 Overcoming Infeasibility of Orthogonalization

The Cox-Reid and Lancaster approaches are successful only when the parameter of in-
terest can be orthogonalized with respect to the nuisance parameters. In general, such
reparameterization requires solving some partial differential equations, and the solution
may not exist. Because parameter orthogonalization is not feasible in general, such ap-
proach cannot be implemented for arbitrary models. This problem can be overcome by

adjusting the moment equation instead of the concentrated likelihood. We discuss two
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approaches in this regard, one introduced by Woutersen (2002) and the other by Arellano

(2003). We will note that these two approaches result in identical estimators.

6.2.1 Woutersen’s (2002) Approximation

Woutersen (2002) provided an insight on the role of Lancaster’s posterior calculation in
reducing the bias of the fixed effects. Assume for simplicity that the common parameter
6 is orthogonal to «; in the information sense, and no reparameterization is necessary to

implement Lancaster’s proposal. Given the posterior

n T

H (/Hf(yit|07ai) dai) ,

=1 t=1
the first order condition that characterize the posterior mode can be written as
/<Zt y it (0 az)H f (it 0, Oéz)dOéz
=1 /H _ f yzt| 0 051) daz

Woutersen (2002) pointed out that the ith summand on the right can be approximated

(47)

by

Z“ 12{21ugiai(e,ai(9)) 1( Lvé’zi“i(&&iw)))( 1 g (0, ozz(9>>)
" 2 Y05 (0.8:(0) 2 (ST, v (0.5,(0))) |

tlzt

where @; (6) is a solution to S, vy (8,@; (8)) = 0. Therefore, Woutersen’s estimator

under parameter orthogonality is the solution to

w6, (0 AEEE] BB )|
; ; l 2 Brliy] 2 (ET[F’]Y )

Note that this estimator solves the same moment equation as Cox & Reid’s moment
equation (41).
Woutersen pointed out that the moment function
Ui (0, ) = uy (0, ) — p; (0, ) vy (0, ) (49)
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where

Ju (y;0,a) fi (y;0,0) dy
pi(6,) = Jv(y; 0,0) fi (y; 0, ) dy

would satisfy the orthogonality requirement in the sense that at true values

(50)

FE [6102 (90, aio)] =0.

Recall that Uy (0, ;) = wyy — vy B [v?t]_l E [viuyy] defined in Section 3 cannot be used
as a basis of estimation because the ratio F [v2] " E [vius] is not known in general. It
was used only as a theoretical device to understand the asymptotic property of various
estimators. On the other hand, p (6, aio) = E [v2] ™ E [u2] = E [v2] " E [vuy)], so we can
consider w; (6, ;) as a feasible version of Uy (0, ;). Woutersen’s moment equation when

parameter orthogonality is unavailable is therefore obtained by replacing u; (6, @; (9)) in

(48) by Uyt (6, @ (0)).
6.2.2 Arellano’s (2003) Proposal

An orthogonal transformation is a function n; = n; (6, @) such that

7]92 - pz (9 Oé)
Nai

where 1y, = 0n,;/00, n,; = 0n;/0a, and p; (6, ) is given in (50). Such a function may or
may not exist, and if it does it need not be unique.

Arellano (2003) considers a Cox & Reid’s (1987) objective function that is written
for some transformation of the effects n, = 7, (0,a) and he rewrites it in terms of the
original parameterization. The resulting criterion is given by (39) with the addition of

the Jacobian of the transformation:

T T ~

1 0%t (yir; 0, &; (0 N
Zezt Yits 8 051 )) - 5 IOg <_ Z : (y(;ag ( ))> + log (nai)
t=1 7

t=1

where 7, = ( i |a=a:(0) ) The corresponding moment equation is
Zuit (6,3 (0)) — bE(0) + m; (0)
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where bCF (6) is given in (42) and

0 Aai Aaai aal 0
m(0) = O log () = 1ot 4. 69< :

ai N

If n, (0, ) is an orthogonal transformation

dp, (0, ) Mo | B [05] ~
m; (0) = ——"—= |a=ay() ———= | =——= —p, (0,; (0 51
(9) Ta |a=a(0) r \ By o2 p; (0,a;(0)) (51)
so that
dp; (0o, 1
m; (0) = % |a=a(60) +O (f) :

Thus, regardless of the existence of an orthogonal transformation, it is always possible to
obtain a locally orthogonal Cox & Reid moment equation. Arellano’s moment equation
is therefore obtained as

n T

=3 Do 0. ) 5% (0) + 20 ra-w)] 7 (52)

i=1 Li=1
after supressing the transformation specific term in (51) that is irrelevant for the purpose
of bias reduction. Indeed, Carro (2004) has shown that Arellano’s moment equation
reduces the order of the score bias regardless of the existence of an information orthogonal
reparameterization.

It can be shown that this moment equation is identical to Woutersen’s (2002) moment
equation. This can be shown in the following way. Now note that Woutersen’s (2002)
moment equation is equal to

n T alal ~
o (0.8, - Lo T (0.8,(0)
I RACIOE
i=1 [t=1 Zt 1 Vi (0,05 (0))
T [e 7407} fol T —Qy; A~
(S v 0,80 0) (ST we (0.3 0)))
2 T 2
(T v (0.3 0))
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Using (32), we can obtain:

and
T
ZUZM 0,a; (0 Zua“’l (0, @ ( (Z vy (0, @ (9))> pi (0, )|z, 0)
o op; (0, a)
—2 vy (6, (9))) —
(; oo

Plugging these expressions to (53), we obtain after some simplification an alternative

a=a;(0)

characterization of Woutersen’s (2002) moment equation:

e o I U (0,6 (6))

Uit ‘9,0&7;9
le (0.0 22“ (6,3 ()
a (

i=1 Lt=1

i (X0 v (0.6 (9)))2 da

a=a;(0)

which can be seen to be identical to moment equation (52). We can therefore conclude

that Woutesen’s (2002) is identical to Arellano’s (2003).

6.2.3 Relation to Bias-Correction of the Moment Equation

The moment equation used by Woutersen, Arellano, and Carro can be written as

Z [Zuzt (6,4 (6)) — b (9)] =0 (54)

i=1 Lt=1

where
~ ~ Op; (0, a)
W gy _ 7CR gy _ 9Pi\0; N
bt (0) = b (0) = =3 " la=ai(0); (55)
B0 (0) = = ( B[ — B (o) 2] )
2E7 [U3'] T [Uif']



and at true values

B lug]

E [v%]
(56)

Ip; (gt; ig) = [103] (E 2] — B oo B
Comparing the resulting expression with the theoretical bias (7), we note that moment
condition (54) is using a valid estimate of the concentrated score 1/7T bias as long as the
information identity holds, so that in general it will be appropriate in likelihood settings.
The estimated bias ZZV (0) uses a combination of observed and expected terms. Note that,
contrary to the situation under orthogonality when the theoretical bias reduces to (43),
there is no redundant term here.

The term 0dp; (6,a; (0)) /Oa in (52) can be interpreted as a measure of how much
the variance of @; (6) changes with 6. In this respect, note the equivalence between the

derivative of the log variance of @; (f) in (45) and a sample counterpart of (56):

91 — _ _
— > log Var (\/T (@ (0) — @ (9)))
1 ~ Epla
= Brfag) - B o) 2
Er [vi'] Er [
1 S e B an B [0
+/\7/\ (ET [u/‘;;vit] — Er [Uitlvit] /\T [Qioi]> . (57)
(—ET [vlt]) T [0

7 QMLE for Dynamic Models

The starting point of our discussion so far has been the assumption that the fixed effects
estimator actually maximizes the likelihood. When we defined ET to be a maximizer of
n T
D0 log f (yul 0, (0)),
i=1 t=1
we assumed that (i) xs are strictly exogenous, (ii) ys are independent over t given s,
and (iii) f is the correct (conditional) density of y given . We noted that some of the

bias-correction methods did not depend on the likelihood setting, while others, that relied
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on the information or Bartlett identities, did. However, in all cases assumptions (i) and

(ii) were maintained. For example, if the binary response model
Yi = L (23,0 + o + e > 0), (58)

where the marginal distribution of e; is A (0, 1), is such that e; is independent over t,
and if it is estimated by nonlinear least squares, our first bias formula is valid.

In the likelihood setting, assumption (ii) can be relaxed choosing estimates of bias
corrections that use expected rather than observed quantities. This is possible because
the likelihood fully specifies the dynamics, and it is simple if the required expected quan-
tities have closed form expressions, as in the dynamic probit models in Carro (2004) and
Ferndndez-Val (2005).

In a nonlikelihood setting, our analysis can be generalized to the case when the fixed

effects estimator maximizes

D> 0 (zs 0,0 (0))

i=1 t=1

for an arbitrary ¢ under some regularity conditions, thereby relaxing assumptions (i) and
(ii). For example, the binary response model (58) can still be analyzed by considering the
fixed effects probit MLE even when e;; has an arbitrary unknown serial correlation.

The intuition for this more general model can still be obtained from the approximation

of the moment equation as in (19), which can be corrected by calculating the approximate
expectation of the correction term
Z Zt 1 Uzt

VTE [V Z( U_}f}]@ﬁ)] |

The analysis for this more general model gets to be more complicated because calculation

of the expectation should incorporate the serial correlation in v; and Ug', which was a
non-issue in the simpler context. Hahn and Kuersteiner (2004) provide an analysis that

incorporate such complication.
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8 Estimation of Marginal Effects

It is sometimes of interest to estimate quantities such as
TR
T ;;m (zit; 0, ;) (59)
where z;; = (yu, 7,)". For example, it may be of interest to estimate the mean marginal

effects

n T
%ZZgb(m;t@vLai)@

i=1 t=1
for the binary response model (58), where ¢ denotes the density of A (0, 1). It would be
sensible to estimate such quantities by
3 m (s ()
i=1 t=1
where § denotes a bias corrected version of 0 computed by one of the methods discussed
before, and @; (5) denotes the estimate of o; at 8. Hahn and Newey (2004), Carro (2004),
and Fernandez-Val (2005) discuss estimation and bias-correction of such quantity.
In order to relate our discussion with the bias-correction formula developed there, it is

useful to think about the quantity (59) as a solution to the (infeasible) moment equation

n T T

DD (m(za;ai (00) — 1) =0, Y v (2 (6p)) =0 (60)

=1 t=1 t=1

where, for simplicity of notation, we suppressed the dependence of m on 6. Let

Em® (25 ;)]
E v (2445 ;)]

M (Zit; Oéi) =m (Zit; Oéi) —v (Zit; ai)

and note that g in (60) solves

n T

=D (M (20 (60)) — 1) - (61)

i=1 t=1
Assuming that serial correlation can be ignored, we can bias-correct this moment equation

using the same intuition as in Section 4. We then obtain a bias corrected version of the
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moment equation

n

o—zz(zmwmuwzjt;af+t;;, (62)
i=1 t=1 i=1 t=1Yit 2< 1 vitl)
when the fixed effects estimator is based on a correctly specified likelihood, or
n T

O_ZZ< (zit; @i (00)) >+Z > 1thMZ‘§Z B (Zt . Zt) ST 1M3a

v
i=1 t=1 tlzt 2<t11t

in general. Replacing M (z;; 0o, @; (6p)) in (62) by the feasible version

”4%ﬁ@&®)ﬂ4%ﬁ@4@)Ziww(%ﬁ@4®)

ZtT:1 v (zit;g, Q; <5)>

we obtain the same bias corrected estimator 7i as in Hahn and Newey (2004), and

Fernandez-Val (2005).

9 Automatic methods

We have so far discussed methods of bias correction based on some analytic formulae.
Depending on applications, we may be able to by-pass such analysis, and rely on numerical

methods. We discuss two such procedures here.

9.1 Panel Jackknife

The panel jackknife is an automatic method of bias correction. To describe it, let g(t) be
the fixed effects estimator based on the subsample excluding the observations of the tth

period. The jackknife estimator is
~ o~ T ~
0=T0—(T—1)Y 0u/T (64)
t=1

or

fea)
[l
)
|
S|

E 1 T ~ ~
y ? — (T—l) <? Zt—le(t) —9) .



To explain the bias correction from this estimator it is helpful to consider a further

expansion

B D 1
‘9T:‘90+?+ﬁ+0<ﬁ)~ (65)

The limit of 8 for fixed T’ and how it changes with T" shows the effect of the bias correction.

The estimator 6 will converge in probability to

11 1 1
T9T—(T—1)8T_1:00+(?—H>D+O<ﬁ) =0O+O<ﬁ) (66)

or

(T—l)(eT_l—eT)=§+0(%>.

Thus, we see that the asymptotic bias of the jackknife corrected estimator is of order
1/T?%. Consequently, this estimator will have an asymptotic distribution centered at 0
when n/T — p. Hahn and Newey (2004) formally established that v/nT (5 — 90) has
the same asymptotic variance as v/nT <§— 90> when n/T — p. This implies that the
bias reduction is achieved without any increase in the asymptotic variance. This suggests
that, although there may be some small increase in variance as a result of bias reduction,
the increase is so small that it is ignored when n/T — p.
In Example 1, it is straightforward to show that

D= o2 -7 (67)

i=1 t=1

which is the estimator that takes care of the degrees of freedom problem. It is interest-
ing to note that the jackknife bias correction completely removed bias in this example:
E (5) = . This happens only because the O (T2) term is identically equal to zero in
this particular example, which is not expected to happen too often in practice.

It is natural to speculate that a higher order version of the panel jackknife may correct
even higher order bias. For this purpose, assume that an expansion even higher than (65)

is valid:

0—0+B+D+F+G+O !
T=vr e s T5 )
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Because

%TQGT —(T—1)%6p, + % (T —2) 07
F 3T — 6T + 2 (1) <1)
= 0o+ + G+O(=]=0+0(=],
CTTT-1)(T-2) (T -1)°(T -2 T3 T3

we can conjecture that an estimator of the form

T 7 ~
7 O 1 sy Os.sr

T T(T—1)"

DO =

where 5(575/) denotes the delete-2 estimator, will be centered at zero even at the asymptotics
where n = o (T®).

The panel jackknife is easiest to understand when y;; is independent over time. When
it is serially correlated, which is to be expected in many applications, it is not yet clear
how it should be modified. In order to understand the gist of the problem, it is useful
to investigate the role of Y7, /H\(t)/ T in (64). Note that it is the sample analog of 7,
in (66). When y; is serially correlated, what should be used as the sample analog?
One natural candidate is to use the same formula as in (64), with the understanding
that g(t) should be the MLE maximizing the likelihood of (y;1,. .., Yit—1,Yit+1,---, Y1)
1 = 1,...,n. We are not aware of any formal result that establishes the asymptotic
properties of the panel jackknife estimator, even in the simple dynamic panel model
where y; = o; + 0y;4—1 + ey with g4 ~ N (0,0%). Even if this approach is shown
to have a desirable asymptotic property, we should bear in mind that such approach
requires complete parametric specification of the distribution of (y;1,...,yr). In many
applications, we do not have a complete specification of the likelihood.

Another possibility is to use E(T) as the sample analog of 87_;. Note that E(T) is the
MLE based on the first T" — 1 observations. It turns out that such procedure will be

accompanied by some large increase in variance. In order to understand this problem, it
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is useful to examine Example 1 again. It can be shown that

—~ T ~ T n )
Or_1) = 0 — E Y. — Yi
(T-1) = 77 n(T—1)2 £ (Y; — yir)

and therefore,
T0 — (T = 1)1y = S i (@ —vir)*.
n(T—1) <=

We can write with some abuse of notation that T8 — (T )5 7_1) ~ 22, whereas 6 in
(67) is distributed as (4;) Xn(T 1)+ This implies that (i) T' 06— (T 1)9(T_1) is indeed bias
free; and (ii) the variance of T8 — (T )b\ r-1) is T'— 1 times as large as that of as the
jackknife estimator 6. When T is sufficiently large, this delete-last-observation approach
will be unacceptable. We expect a similar problem when y;; is subject to serial correlation,
and eliminate 76 — (T — 1)5@_1) from our consideration.

We argued that the panel jackknife may not be attractive when serial correlation is
suspected. The bootstrap is another way of reducing bias. A time series version of the
bootstrap is block-bootstrap, which has been shown in many occasions to have desirable
properties. We conjecture that some version of a bootstrap bias correction would also

remove the asymptotic bias (e.g. with truncation as in Hahn, Kuersteiner, and Newey,

2002).

9.2 Bootstrap Adjusted Concentrated Likelihood

Simulation methods can also be used for bias correction of moment equations and objective
functions. Pace and Salvan (2005) have suggested a bootstrap approach to adjust the
concentrated likelihood.

Consider generating parametric bootstrap samples {y;1 () , ..., yir () }iey (r =1,..., R)

from the models {Hle f (yt | a, &i) }n to obtain aﬁ.’"] (0) as the solution to

T

o/’ (6) = argmax Y log f (u (1) [ 6,0)  (r=1,...R).

t=1
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Pace and Salvan (2005)’s simulation adjusted log-likelihood for the i-th unit is
P =13y all(
i()—E;;&t(e& > (68)
The criterion Zf (0) is invariant under one-to-one reparameterizations of «; that leave ¢
fixed (invariant under “interest respecting reparameterizations”).
Alternatively, Pace and Salvan consider the form in (30), using a bootstrap estimate
of V; [a; (0)] given by
Vil o) =753 [al o) - a0 (69)

which leads to

OESAAC) —%( Z“““l )>V;[ai<e>1. (70)

10 Concluding Remarks

We discussed a variety of methods of estimation of nonlinear fixed effects panel data
models with reduced bias properties. Alternative approaches to bias correction based
on adjusting the estimator, the moment equation, and the criterion function have been
considered. We have also discussed approaches relying on orthogonalization and automatic
methods, as well as the connections among the various approaches.

All the approaches that we discuss in the paper are based on an asymptotic approx-
imation where n and T grow to infinity at the same rate. Therefore, they are likely to
be useful in applications in which the value of T' is not negligible relative to n. Examples
of this kind include data sets constructed from country or regional level macropanels, the
balance-sheet-based company panels that are available in many countries, or the house-
hold incomes panel in the US (PSID). However, for n too large relative to T, the sampling
distributions of the 1/T" bias-corrected estimators will not provide accurate confidence in-

tervals because their standard deviation will be small relative to bias. In those situations,

31



an asymptotic approximation where n/T3 converges to a constant may be called for, lead-
ing to 1/T? bias-corrected estimators. A more general issue is how good are the n and
T asymptotic approximations when the objective is to produce confidence intervals, or to
test a statistical hypothesis. This is a question beyond the scope of this paper.

Next in the agenda, it is important to find out how well each of these bias correction
methods work for specific models and data sets of interest in applied econometrics. In this
regard, the Monte Carlo results and empirical estimates obtained by Carro (2004) and
Fernandez-Val (2005) for binary choice models are very encouraging. For a dynamic logit
model, using the same simulation design as in Honoré and Kyriazidou (2000), they find
that a score-corrected estimator and two one-step analytical bias-corrected estimators are
broadly comparable to the Honoré—Kyriazidou estimator (which is consistent for fixed T')
when T' = 8 and n = 250. However, the finite sample properties of the bias correction seem
to depend on how they are done. For dynamic logit, Carro’s score-corrected estimator and
Fernandez-Val’s bias-corrected estimator, which use expected quantities, are somewhat
superior to a bias-corrected estimator using observed quantities, but more results are
needed for other models and simulation designs.

We have focused on bias reduction, but other theoretical properties should play a role
in narrowing the choice of bias-reducing estimation methods. In the likelihood context it
is natural to seek an adjusted concentrated likelihood that behaves like a proper likeli-
hood. In this respect, information bias reduction and invariance to reparameterization are

relevant properties in establishing the relative merits of different bias-reducing estimators.
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