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Abstract

In this paper we study identification and estimation of the causal effect of a small change in
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calorie consumption with respect to total outlay for a sample of poor Nicaraguan households.
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1 Introduction

That the availability of multiple observations of the same sampling unit (e.g., individual, firm,

etc.) over time can help to control for the presence of unobserved heterogeneity is both intuitive

and plausible. The inclusion of unit-specific intercepts in linear regression models is among the

most widespread methods of ‘controlling for’ omitted variables in empirical work (e.g., Griliches,

1979; Currie and Thomas, 1995; Card, 1996; Altonji and Dunn, 1996). The appropriateness of

this modelling strategy, however, hinges on any time-invariant correlated heterogeneity entering the

outcome equation additively. Unfortunately, additivity, while statistically convenient, is difficult

to motivate economically (cf., Imbens, 2007).2 Browning and Carro (2007) present a number of

empirical panel data examples where non-additive forms of unobserved heterogeneity appear to be

empirically relevant.

In this paper we study the use of panel data for identifying and estimating what is arguably the

simplest statistical model admitting nonseparable heterogeneity: the correlated random coefficients

(CRC) model. Let Zt = (Yt, X 0
t)
0 be a random variable measured in each of t = 1, . . . , T periods for

N randomly sampled units. In the most basic model we analyze the structural outcome equation

is given by

Yt = a (A,Ut) + b (A,Ut)Xt (1)

where Yt is a scalar continuously-valued outcome of interest, Xt a scalar choice variable, A time-

invariant unobserved unit-level heterogeneity and Ut a time-varying disturbance. Both A and Ut

may be vector-valued. Equation (1) is structural in the sense that the unit-specific function

Yt (xt) = a (A, Ut) + b (A,Ut)xt (2)

traces out a unit’s period t potential outcome under different hypothetical values of xt.3 Equation

(2) differs from the the textbook linear panel data model (with unit-specific intercepts, but otherwise

constant regressor coefficients) in that the effect of a small change in xt generally varies across units.

We study estimands which characterize the effect on an exogenous change in Xt on the proba-

bility distribution of Yt. For concreteness we focus on identification and estimation of the average

partial effect (APE) (cf., Chamberlain, 1984; Blundell and Powell, 2003; Wooldridge, 2005a) and

the local average response (LAR) (cf., Altonji and Matzkin, 2005; Bester and Hansen, 2007). In the

binary regressor case these two objects correspond to the average treatment effect (ATE) and the

average treatment effect on the treated (ATT) (cf., Florens, Heckman, Meghir and Vytlacil, 2008).4

The average partial effect is given by

βt ≡ E
∙
∂Yt (xt)

∂xt

¸
= E [b (A,Ut)] . (3)

2Chamberlain (1984) presents several well-formulated economic models that do imply linear specifications with
unit-specific intercepts.

3Throughout we use capital letters to denote random variables and lower case letters specific realizations of them.
4 In a companion paper we study quantile partial effects (QPEs) (Graham, Hahn and Powell, 2008).

1



Because of linearity of (2), βt does not depend on xt.5

The local average response gives the average partial effect within a subpopulation defined by its

choice of Xt = xt; it is given by

γt (xt) ≡ E
∙
∂Yt (xt)

∂xt

¯̄̄̄
Xt = xt

¸
= E [b (A,Ut)|Xt = xt] . (4)

Identification and estimation of (3) and (4) is nontrivial because Xt may vary systematically with

A and/or Ut. For example, the derivative of the regression function of Yt given Xt does not identify

γt (xt). Differentiating through the integral we have

∂E [Yt|Xt = xt]

∂xt
= γt (xt) +

Z Z
{a (a, ut) + b (a, ut)xt} ∂f (a, ut| xt)

∂xt
dm (a) dm (ut) .

The second term is what Chamberlain (1982) calls heterogeneity bias.

To contextualize our contribution within the wider panel data literature it is useful to consider

the more general outcome response function:

Yt (xt) = m (xt, A,Ut) .

Identification of the APE and LAR in the above model may be achieved by one of two main classes

of restrictions. The correlated random effects approach invokes smoothness priors on the joint

distribution of (U,A)|X ; with U = (U1, . . . , UT )0 and X = (X1, . . . ,XT )0. Mundlak (1978) and
Chamberlain (1980a, 1984) develop this approach for the case where m (Xt, A,Ut) and F (U,A|X)
are parametrically specified. Newey (1994a) considers a semiparametric specification for F (U,A|X)
(cf., Arellano and Carrasco 2003). Recently, Altonji and Matzkin (2005) have extended this idea to

the case where m (Xt, A,Ut) is either semi- or non-parametric along with F (U,A|X) (cf., Bester
and Hansen 2007).

The fixed effects approach imposes restrictions on m (Xt, A,Ut) and F (U |X,A), while leaving

F (A|X), the distribution of the time-invariant heterogeneity, the so-called ‘fixed effects’, unre-
stricted. Chamberlain (1980a, 1984, 1992), Manski (1987), Honoré (1992) and Abrevaya (2000) are

examples of this approach. Depending on the form of m (Xt, A,Ut), the fixed effect approach may

not allow for a complete characterization of the effect of exogenous changes in Xt on the probability

distribution of Yt. Instead only certain features of this relationship may be identified (e.g., ratios

of the average partial effect of two regressors) (cf., Chamberlain 1984, 1992b, Arellano and Honoré

2001, Arellano 2003).

Our methods are of the ‘fixed effect’ variety. In addition to assuming the CRC structure for

Yt (xt) we impose a marginal stationarity restriction on F (Ut|X,A) , a restriction also used by

Manski (1987), Honoré (1992) and Abrevaya (2000), however we leave F (A|X) nonparametric. In
our setup both the APE and LAR are identified when Xt is continuously-valued. In fact, we are

5We also study the case where Xt is itself a function of a lower-dimensional choice variable Rt. In that case, the
APE, defined in terms of rt, may vary with rt. Extending our results to this case is straightforward.

2



able to provide a characterization of when these estimands are semiparametrically just-identified.

In that sense, our maintained assumptions are minimally sufficient (although not necessary).6

Motivated by heterogeneity in the labor market returns to schooling, Card (1995, 2001) and

Heckman and Vytlacil (1998) have studied identification and estimation of the CRC model using

cross section data and ‘instrumental variables’ (cf., Garen 1984, Wooldridge 1997, 2001, 2005a).

This work belongs to larger body of research on nonparametric triangular systems (e.g., Imbens

and Angrist, 1994; Angrist, Imbens and Rubin, 1996; Heckman and Vytlacil, 2001; Blundell and

Powell, 2003; Imbens and Newey, 2007; Florens, Heckman, Meghir and Vytlacil, 2008).7

The value of panel data for identification and estimation in the CRC model is comparatively less

well understood. Mundlak (1961), while primarily focusing on a constant coefficients linear panel

data model with unit-specific intercepts, briefly, and verbally, refers to the CRC model (p. 45).8

The first formal analysis of the CRC model in the context of panel data appears in Chamberlain

(1980b, 1982). In later work Chamberlain (1992a, pp. 579 - 585) proposed an ingenious method-of-

moments estimator for the APE, however, the regularity conditions required for his estimator, as we

discuss further below, rule out substantively important economic models. Wooldridge (2005a) also

analyzes a CRC panel data model. His focus is on providing conditions under which the usual linear

fixed effects (FE) estimator is consistent despite the presence of correlated random coefficients (cf.,

Chamberlain, 1982, p. 11). Fernández-Val (2005) develops bias correction methods for the CRC

model in a large-N, large-T setting.

Altonji and Matzkin (2005) and Bester and Hansen (2007) have developed new methods for

using panel data to control for nonseparable unobserved heterogeneity. As their approaches are

of the random effects variety, while our’s are of the fixed effect variety, we view our methods as

complementary to theirs.

Chernozhukov, Fernández-Val, Hahn and Newey (2007) study identification of the APE in a

probit model with unit-specific intercepts (in the index function) and a discrete or continuous

scalar regressor. They show that the maximum likelihood estimator which estimates the unit-

specific intercepts along with the coefficient on Xt can be used to construct bounds on the ATE

despite the incidental parameters problem (cf., Hahn, 2001). Porter (1996) and Das (2003) study

nonparametric estimation of panel data model with additive unobserved heterogeneity. Honoré

(1992) and Abrevaya (2000) consider models with nonseparable heterogeneity but, like Manski

(1987), only identify index coefficients, not the APE or LAR.

The next section reports identification results for the APE and LAR in a two period version of

our core model. When Xt is discretely-valued our assumptions generally only bound the APE and

LAR (appropriately defined to account for the discreteness of Xt). Our analysis of this case also

suggests useful interpretations of the probability limits of the linear fixed effects (FE) estimator

and the ‘difference-in-differences’ (DID) estimator of the program evaluation literature (Card, 1990;

6Chesher (2007) provides an extended discussion of the value of ‘just identifying’ semiparametric restrictions.
7Much of this research is surveyed by Imbens (2007).
8The exact reference is “The key to the estimation of the [average] slope of the infrafirm function is have at least

two points of data on each fi. In this case it is possible to get the slope of each of the lines fi, average them and get
the final estimate. That requires a combination of time series and cross section data.”
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Meyer, 1995; Angrist and Krueger, 1999; Athey and Imbens, 2006). When Xt is continuously valued

the APE and LAR are point identified. We also contrast our approach to identification with the

semiparametric random effects methods employed by Altonji and Matzkin (2005).

Section 3 details our estimation approach. We begin with a discussion of the two period case. We

then introduce a general multiple period CRC model and discuss its estimation. In that section we

also relate our results to those of Chamberlain (1992a). Under Chamberlain’s (1992a) conditions,

which are not satisfied in our leading example, the APE is estimable at parametric rates. In

contrast, our estimator has asymptotic properties similar to a standard one-dimensional kernel

regression problem.

In Section 5, we use our methods to estimate the average elasticity of calorie demand with respect

to total household resources in a sample of poor rural communities in Nicaragua. Our sample is

drawn from a population that participated in a pilot of the conditional cash transfer program Red

de Protección Social (RPS). Hunger, conventionally measured, is widespread in the communities

from which our sample is drawn; we estimate that almost forty percent of households have less then

the required number of calories needed for all their members to engage in ‘light activity’ on a daily

basis.9

Worldwide, the Food and Agricultural Organization (FAO) estimates that 854 million people

suffered from protein-energy malnutrition in 2001-03 (FAO, 2006). Halving this number by 2015,

in proportion to the world’s total population, is the first United Nations Millennium Development

Goal. Chronic malnutrition, particularly in early childhood, may adversely affect cognitive abil-

ity and economic productivity in the long-run (e.g., Dasgupta, 1993; Grantham-McGregor and

Baker-Henningham, 2005; Case and Paxson, 2006; Hoddinott et al., 2008). A stated goal of the

RPS program is to reduce childhood malnutrition, and consequently increase human capital, by

directly augmenting household income in exchange for regular school attendance and participation

in preventive health care check-ups.

The efficacy of this approach to reducing childhood malnutrition largely depends on the size of

the average elasticity of calories demanded with respect to income across poor households.10 While

most estimates of the elasticity of calorie demand are significantly positive, several recent estimates

are small in value, casting doubt on the value of income-oriented anti-hunger programs (Behrman

and Deolalikar, 1987; Strauss and Thomas, 1995; Subramanian and Deaton, 1996; Hoddinott,

Skoufias and Washburn, 2000). Wolfe and Behrman (1983), using data from pre-revolutionary

Nicaragua, estimate a calorie elasticity of just 0.01. Their estimate, if accurate, suggests that the

income supplements provided by the RPS program should have little effect on caloric intake.

Disagreement about the size of the elasticity of calorie demand has prompted a vigorous method-

9We use Food and Agricultural Organization (FAO, 2001) gender- and age-specific energy requirements for ‘light
activity’, as reported in Appendix 8 of Smith and Subandoro (2007), and our estimates of total calories available at the
household-level to calculate the fraction of households suffering from ‘food insecurity’. This approach to measuring
food insecurity is not without its critics (e.g., Edmundson and Sukhatme 1990). Ferro-Luzzi (2005) provides a historical
and conceptual overview of FAO/WHO food energy recommendations.
10Another motivation for studying this elasticity has to do with its role in theoretical models of nutrition-based

poverty traps (e.g., Mirlees, 1975; Stiglitz, 1976; Bliss and Stern, 1978; Dasgupta and Ray, 1986, 1987).
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ological debate in development economics. Much of this debate has centered, appropriately so, on

issues of measurement and measurement error (e.g., Behrman and Deolalikar, 1987; Bouis and

Haddad, 1992; Bouis, 1994; Subramanian and Deaton 1996). The implications of household-level

correlated heterogeneity in the underlying elasticity for estimating its average, in contrast, have

not been examined. If, for example, a households’ food preferences, or preferences towards child

welfare, co-vary with those governing labor supply, then its elasticity will be correlated with total

household resources. An estimation approach which presumes the absence of such heterogeneity

will generally be inconsistent for the parameter of interest. Our statistical model and corresponding

estimator provides an opportunity, albeit in a specific setting, for assessing the relevance these types

of heterogeneities.

Section 5.3 summarizes and suggests areas for further research.

2 Identification: the two period case with a scalar regressor

We illustrate each of our main identification results for the case where Xt is scalar and T = 2.

We generalize to panels are arbitrary length and multiple regressors in Section 3 below. Our first

assumption is that the data generating process takes a correlated random coefficients form.

Assumption 2.1 (Correlated Random Coefficients)

Yt = a (A,Ut) + b (A,Ut)Xt.

Our second key identifying assumption is marginal stationarity of the time-varying unobserved

heterogeneity, Ut.

Assumption 2.2 (Marginal Stationarity) (i)

Ut|X,A
D
= Us|X,A, t 6= s,

(ii) the distribution of Ut given X and A is non-degenerate for all (X,A) ∈ X ×A.

Assumption 2.2 does not restrict the conditional distribution of A given X . In this sense A is a

‘fixed effect’. Nevertheless Assumption 2.2, while allowing for serial dependence in Ut and certain

forms of heteroscedasticity, is restrictive. For example it rules out heteroscedasticity over time (cf.,

Arellano 2003).

To formally close the model we make the following sampling assumption:

Assumption 2.3 (Random Sampling) {(X1i,X2i, Y1i, Y2i, Ai)}∞i=1 is an independently and iden-
tically distributed random sequence drawn from the distribution F0.

Let X = (X1,X2)
0 and

βt (x) ≡ E [b (A,Ut)|X = x]
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denote the average effect of a small change in xt within the subpopulation of units where X =

x = (x1, x2)0. Observe that βt (x) , while closely related, is the distinct from the LAR. It gives the

average effect within a subpopulation defined by a common complete history of choices for Xt. Our

first result shows that βt (x) is just-identified when x1 6= x2.

Proposition 2.1 Under Assumptions 2.1, 2.2 and 2.3 β1 (x) = β2 (x) = β (x) is just-identified by

the ratio

β (x) =
E [Y2|X = x]− E [Y1|X = x]

x2 − x1
(5)

for all x ∈ {x : x ∈ X , x1 6= x2}.

Proof. Under Assumptions 2.1 and 2.3 we have

E [Y1|X] = α1 (X) + β1 (X)X1

E [Y2|X] = α2 (X) + β2 (X)X2,

for αt (X) = E [a (A,Ut)|X] and βt (X) = E [b (A,Ut)|X] . Iterated expectations (which is al-
lowable by part (ii) of Assumption 2.2), marginal stationarity (part (i) of Assumption 2.2) and

time-invariance of A give

βt (X) = E [b (A,Ut)|X] = E [E [b (A,Ut)|X,A]|X] = E
heb (X,A)

¯̄̄
X
i
= β (X) ,

for eb (X,A) = E [b (A,Ut)|X,A] . This gives β1 (X) = β2 (X) = β (X); a similar calculation gives

αt (X) = E [a (A,Ut)|X] = α (X). Taking differences across time periods and solving for β (X) then

gives (5). That β (x) is just-identified follows directly from its definition as a conditional expectation

function, linearity of Yt in a (A,Ut) and b (A,Ut) , and just-identification of E [Y1|X] and E [Y2|X] .

To recover the APE we average β (X) over the marginal distribution of X :

β = E [β (X)] .

Since β (x) is only identified on those points of the support of X for which X1 6= X2 (i.e., for

‘movers’ or units which alter their choice of Xt across periods) we cannot, in general, calculate

E [β (X)] without further assumptions (Chamberlain 1982, p. 13). Consequently, unless all units
change their value of Xt across periods, the APE is not identified. When Xt is discrete it is natural

to construct bounds for β or to compute the average of β (X) among ‘movers’. The latter approach

is particularly simple and foreshadows our approach to estimation in the continuous case. When

Xt is continuous we impose smoothness restrictions on β (x) which are sufficient to point identify

β. We consider each case in turn.

Discrete regressor If Xt ∈ {0, . . . ,M}, then β (x) is only identified for the M (M + 1) possible

sequences of x = (x1, x2) where x1 6= x2. Although the APE is not identified, we can compute the

6



average partial effect in the subpopulation of units who change their values of Xt across the two

periods (Chamberlain 1980b, 1982). Define, invoking marginal stationarity, the ‘movers’ average

partial effect (MAPE) as

βM ≡ E [b (A,Ut)|∆X 6= 0] = E [1 (∆X 6= 0)β (X)]
E [1 (∆X 6= 0)] . (6)

Expression (6) is implicit in Chamberlain (1982, p. 13) who also noted that we have no information

on βS = E [b (A,Ut)|∆X = 0], or the ‘stayers’ average partial effect (SAPE). The data are consistent

with βS taking on any feasible value. When Y is continuously-valued along the real line, then any

value for β = E [β (X)] is consistent with any given value for βM . However, if Y has bounded

support then βM can be used to construct sharp bounds on β using the general approach of Manski

(2003).

Consider, to illustrate the main ideas, the case where Xt is binary, for example an indicator for

union membership, and Yt ∈
£
y, y
¤
.11 In that case the APE is given by

β =
X

i,j=0,1

πijβ (i, j) ,

where πij = Pr (X1 = i,X2 = j). Recall, however, that β (0, 0) and β (1, 1), the partial effects

associated with the two types of stayers are only partially identified with respective identification

regions of12

H {β (0, 0)} = £y − E [Yt|X1 = 0, X2 = 0] , y − E [Yt|X1 = 0,X2 = 0]
¤

and

H {β (1, 1)} = £E [Yt|X1 = 1,X2 = 1]− y,E [Yt|X1 = 1, X2 = 1]− y
¤
.

The identified set for the APE, β, is thus

H {β}
∈ £π00 ¡y − E [Yt|X1 = 0,X2 = 0]

¢
+ π01β (0, 1) + π10β (1, 0) + π11 (E [Yt|X1 = 1,X2 = 1]− y) ,

π00 (y − E [Yt|X1 = 0,X2 = 0]) + π01β (0, 1) + π10β (1, 0) + π11
¡
E [Yt|X1 = 1,X2 = 1]− y

¢¤
.

11Note that for Xt binary the CRC structure is unrestrictive (although our marginal stationarity assumption is
restrictive). In independent work Chernozhukov, Fernández-Val, Hahn and Newey (2007) develop bounds for β for
the case where Yt is binary. They show that if, in our notation, E [Yt (xt)|A = a] = Φ (x0tγ + a), tighter bounds are
available.
12Observe that, from equation (2),

β (0, 0) = E [Yt (1)|X1 = 0,X2 = 0]− E [Yt (0)|X1 = 0,X2 = 0]

The data reveal
E [Yt (0)|X1 = 0,X2 = 0] = E [Yt|X1 = 0,X2 = 0]

but do not reveal E [Yt (1)|X1 = 0,X2 = 0], which may lie anywhere in the interval y, y .
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The width of H {β} is (π00 + π11)
¡
y − y

¢
: the more ‘stayers’ the less informative the data are for

β. Unfortunately a preponderance of stayers is common in many microeconometric applications. In

Card’s (1996) analysis of the union wage premium, less than 10 percent of workers switch between

collective bargaining coverage and non-coverage across periods (Table V, p. 971). In such cases βM

is an average over a very particular population, while bounds on β will be quite wide. When Xt is

discrete, however, this is the very best we can do without invoking additional assumptions.13

Before turning to the continuous case we briefly discuss identification of the LAR when Xt is

discrete. As with the APE, the LAR is generally not identified. Instead we can identify the ‘movers’

local average response (MLAR). This is given by

γMt (xt) ≡ E [b (A,Ut)|Xt = xt,∆X 6= 0] = E [1 (Xt = xt)1 (∆X 6= 0)β (X)]
E [1 (Xt = xt)1 (∆X 6= 0)] . (7)

It is straightforward to construct bounds on γt (xt) along the lines of those given for β above.

Continuous regressor When X is continuous the set {x : x ∈ X , x1 = x2} will generally be of
measure zero. This suggests that, under mild smoothness conditions, β (x) should be identifiable

for all x ∈ X . In particular, at those points where x1 = x2, we can then identify β (x) by the limit

β (x1, x1) = lim
h↓0
E [Y2|X = (x1, x1 + h)]− E [Y1|X = (x1, x1)]

h
. (8)

A sufficient condition for the above limit to exist is:

Assumption 2.4 (Smoothness) β (x) is continuous and differentiable in X .

Under this smoothness restriction we have the following Theorem.

Theorem 2.1 (Identification) If Xt is continuously-valued and Assumptions 2.1, 2.2, 2.3 and

2.4 hold, then βt (xt) = β and γt (xt) are identified by

β = E [β (X)] , γt (xt) = E [β (X)|Xt = xt]

with β (x) given by (5) or (8) as appropriate.

Proof. Straightforward and therefore omitted.
Observe that β (x) is an average over the conditional distribution of (A,Ut) given X. Thus

smoothness of β (x) suggests that the distribution function of A given X = x is smooth in x. Such

13As an example of an informative and potential plausible additional restriction assume that selection into collective
bargaining coverage implies that

β (0, 0) ≤ β (0, 1) ≤ β (1, 1)

β (0, 0) ≤ β (1, 0) ≤ β (1, 1) ,

or that the return to selecting Xt = 1 is highest, on average, for the subpopulation of units that make this choice in
both periods and lowest in the subpopulation that never choose Xt = 1.
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smoothness conditions are often implied by correlated random effect specifications for A. A fixed

effects purist could thus call our model (when Xt is continuous) a correlated random effects one.

We maintain the fixed effects characterization because we view Assumption 2.4 as rather weak. In

anycase estimation would be impossible without it.

2.1 Aggregate time effects

Although the APE is only partially identified when Xt is discrete and ‘just-identified’ when Xt is

continuous, our CRC model nevertheless has testable implications. In particular the CRC outcome

response and marginal stationarity imply that:

E [∆Y |X = x] = E
£
∆Y |X = x0

¤
= 0,

where x and x0 denote two different types of ‘stayers’:

©
x, x0 : x, x0 ∈ X , x1 = x2, x01 = x02, x1 6= x01

ª
.

Linearity of Yt (x) in x, and constancy of the conditional mean of the random slopes over time

(given all leads and lags of Xt) means that outcome changes for stayers are driven soley by changes

in a (A,Ut) over time. Since marginal stationarity also implies constancy of the conditional mean

of a (A,Ut), however, our model implies that, on average, outcomes do not change across periods

for stayers. Since, when Xt is continuous, there may be many types of stayers, corresponding to

different values of x2 (with x1 = x2), our set-up generates many testable restrictions.

We can use these extra model restrictions to incorporate aggregate time effects into our model

in a fairly flexible way. Consider the model

Yt = at (A,Ut) + b (A,Ut)Xt, (9)

where at (A,Ut) the mapping from A and Ut into the intercept is time-specific but restricted by the

following assumption:

Assumption 2.5 (Conditional Common Average Trends)

E [a2 (A,Ut)− a1 (A,Ut)|X] = δ (X2) .

Assumption 2.5 allows for heterogeneity in the period two aggregate time shock across units. In

particular, the average shock may differ across subpopulations defined in terms of their period two

choice. For example, if Xt denotes union membership, then Assumption 2.5 allows for the period

two shock to affect mean earnings in the union and non-union sectors differently.

Let x = (x1, x2)
0 with x1 6= x2 and x0 = (x01, x02)

0 with x01 = x02 = x2. Observe that

E
£
Y2|X = x0

¤− E £Y1|X = x0
¤
= δ (x2) ,
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while

E [Y2|X = x]− E [Y1|X = x] = δ (x2) + β (x) (x2 − x1) .

We therefore have

β (x) =
E [Y2|X = x]− E [Y1|X = x]− {E [Y2|X = x0]− E [Y1|X = x0]}

x2 − x1
(10)

We may adapt expression (8) to get β (x) for stayers. With β (x) identified, identification of the

APE and LAR follows directly.

Assumption 2.5 is a substantial generalization of the deterministic ‘common trends’ assumption

routinely made in program evaluation studies (Heckman and Robb, 1985; Meyer, 1995; Angrist and

Krueger, 1999). In that literature Assumption 2.5 is invoked with the additional the requirement

that δ (X2) ≡ δ is constant in X2; which is an ‘unconditional’ common average trends assumption.

For estimation purposes it is convenient to assume a parametric form for δ (X2). A natural

specification, given the CRC form for the outcome response, is δ (X2) = δa + δbX2. Note that this

specification for δ (X2) is isomorphic to the pair of restrictions

E [a2 (A,Ut)− a1 (A,Ut)|X] = δa, E [b2 (A,Ut)− b1 (A,Ut)|X] = δb,

in the model where bt (A,Ut) the mapping from A and Ut into the slope is also time-specific (i.e.,

Yt = at (A,Ut) + bt (A,Ut)Xt). Put differently, linearity of δ (X2) is equivalent to a CRC model

which allows for aggregate common intercept and slope drift across periods. Such a model allows

for a fairly flexible pattern of heterogeneous macroeconomic shocks over time, while at the same

time remaining easy to interpret and, importantly, easy to estimate. At the same time it provides

a set of testable restrictions which may be used to judge model adequacy. Namely that for any two

stayers with X = x0 and X = x00 we have

E [∆Y |X = x00]− E [∆Y |X = x0]
x001 − x01

= δb.

We work with this specification for δ (X2) for the next subsection and with the even simpler constant

in X2 aggregate effect δ (X2) = δ in our initial discussion of estimation. We return to more general

models for aggregate time effects in Section 4 below.

2.2 Relationship to linear ‘fixed effects’ (FE) estimator

Our model can be used to provide a representation of the probability limit of the textbook FE

estimator under CRC misspecification. Assume that the researcher posits a model of

Yt = δt + βXt +A+ Ut, E [Ut|A,X] = 0, t = 1, 2 (11)

when in fact the true model is as described by Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 with δ (X2) =

δa + δbX2.
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In the T = 2 case the linear FE estimator has a probability limit equal to the coefficient, bFE , on

∆X in the (mean squared error minimizing) linear predictor of ∆Y given ∆X. It is straightforward

to show that

bFE = β + δb

½
1− C(X1,X2)

V(∆X)

¾
+ E [ω (∆X) (β (X)− β)] , ω (∆X) =

∆X (∆X − E [∆X])
V(∆X)

.

(12)

The first term in (12) reflects the failure of the textbook model to account for aggregate slope drift,

while the second is due to its failure to account for slope heterogeneity. This second term is similar

to the local average treatment effect (LATE) representation of the Wald-IV estimator’s probability

limit (Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996; Imbens, 2007). If slope drift

is not a concern (i.e., δb = 0), we can view bFE as a movers weighted average partial effect since

E [ω (∆X)] = 1 and ω (0) = 0. An important difference between (12) and the LATE is that ‘movers’,
unlike ‘compliers’, can be directly identified from the data. Consequently the weights in (12) are

estimable.

To get a sense of whether bFE is likely to be interpretable it is helpful to consider some stylized

examples. For simplicity assume we assume, for the remainder of this subsection, the absence of

slope drift (i.e., that δb = 0). If X1 and X2 are independent and identically distributed normal

random variables, then ω (∆X) will be a χ21 random variable and bFE will be ‘dominated’ by those

few units with very large values of ∆X. This suggests that bFE will be more representative of the

partial effect of those units who change their choice of Xt dramatically across periods.

The binary Xt case is also informative. Let πij denote the probability that X1 = i and X2 = j

(with i, j ∈ {0, 1}), we can show that

bFE = ω (−1)β (0, 1) + (1− ω (−1))β (1, 0) , ω (−1) = π01 (1− π01 + π10)

π01 (1− π01) + π10 (1− π10) + 2π01π10

which is a weighted average of the average partial effect of those units who ‘move’ from X1 = 0 to

X2 = 1 and those who move from X1 = 1 to X2 = 0. If π10 = π01 such that E [∆X] = 0, then

bFE = βM , however, in general the two estimands will differ (this equality also holds when (11)

does not include time-specific intercepts).14

The linear FE estimator is especially interpretable in the ‘classical’ difference-in-differences

(DID) set-up. In that setting there are two sets of regions. In both sets of regions the program is

unavailable in period one. In treatment regions it becomes available in period two, while in control

regions it remains unavailable. In that case π10 = 0 and it is easy to see that

bFE = β (0, 1) ,

which also equals the average treatment effect on the treated (ATT).

Wooldridge (2005b), who maintains the CRC structure as we do, imposes the additional re-

14 In independent work, Chernozhukov, Fernández-Val, Hahn and Newey (2007, Section 3.3) obtain a related result
in the context of a fixed effects binary choice model (without time effects).
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striction (in our notation) that β (x) = E [b (A,Ut)] for x1 6= x2 (cf., Equation (14) on p. 387).15

In that case equivalency of the FE probability limit and the APE follows directly by the prop-

erty that E [ω (∆X)] = 1. Chamberlain (1982, p. 11) makes a similar point. He notes, again

in our notation, that if C(b (A,U1) ,X1) = C(b (A,U2) ,X2), then E∗ [β (X)|∆X] = E [β (X)] so
that E [β (X)|∆X] = E [β (X)]. Iterated expectations applied to (12) then gives the equality

bFE = E [β (X)].
While, covariance stationarity of the random slopes may be plausible in some settings, it will

strain credibility in others. Consider a government which allocates a certain program across regions.

Assume that initially, in period 1, the program is regressively targeted in the sense that it is placed

in those regions with where returns, b (A,U1) , are low, while in period 2 targeting takes an opposite,

progressive form. In that case C(b (A,U1) ,X1) < 0 < C(b (A,U2) ,X2) and bFE 6= E [β (X)]. This
example may be of more than intellectual interest: policy ‘experiments’ are often associated with

changes of government or legislation that involves alterations of the implicit targeting rule (e.g.,

Duflo, 2001). However, in other cases, covariance stationarity may be reasonable. For example, the

pattern of selection into unions is plausibly stable across two adjacent years with similar macro-

economic conditions (as in Card, 1996). In any case, our approach does not require these types of

restrictions.

2.3 Relationship to semiparametric correlated random effects methods

Altonji and Matzkin (2005) also study semiparametric panel data models. They work with the

general model given by

Yt = mt (Xt, A, Ut) (13)

and the following exchangeability assumption:

Assumption 2.6 (Exchangeability) (i)

A,Ut|X1, . . .XT
D
= A,Ut|Xp(1), . . . Xp(T ),

for p (t) ∈ {1, . . . , T} , p (t) 6= p (t0) , (ii) the distribution of (A,Ut) given X is non-degenerate for

all X ∈ X .

Observe that Assumption 2.6, unlike Assumption 2.2 above, does restrict the conditional distri-

bution of A given X. Under Assumption 2.6 Altonji and Matzkin (2005, pp. 1062 - 3) show that

the Fundamental Theorem of Symmetric Functions and the Weierstrass Approximation Theorem

imply the distributional equality

A|X1, . . .XT
D
= A|ζ1 (X) , . . . , ζT (X) ,

15Wooldridge (2005a) also assumes that the correlated random coefficients are time invariant.
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where ζ t (X) is the t
th elementary symmetric polynomial on X .16 Because Assumption 2.6 is not

sufficient to identify βt (x) Altonji and Matzkin (2005, pp. 1063 - 4) suggest either further restricting

the conditional distribution of (A,Ut) given X or the form of the structural outcome equation.17

Following their second suggestion, the imposition of our CRC structure on (13) and Assumption

2.6 implies that

E [Yt|X] = αt (X) + βt (X)Xt

= αt (ζ1 (X) , ζ2 (X)) + βt (ζ1 (X) , ζ2 (X))Xt,

for t = 1, 2.

Now consider x and x0 such that x1 = x02 and x2 = x01 with x1 6= x2 (i.e., x0 is a permutation of
x). It is easy to show that βt (x) is identified by

βt (x) =
E [Yt|X = x]− E [Yt|X 0 = x0]

xt − x0t
.

Exchangeability and the CRC structure are sufficient to identify βt (x) even if the outcome variable

is only observed for a single period as along as Xt is observed in each period. Altonji and Matzkin

(2005, p. 1065 - 66) argue that this feature of their approach is particularly attractive in the context

of sibling studies where the outcome (e.g., wages) may only be observed for a single older sibling,

while the endogenous regressor (e.g., school quality) might be measured for younger as well as older

siblings. In contrast, our approach requires that we observe Yt in both periods.

Neither Assumption 2.2 or 2.6 nest the other. For example, while Assumption 2.2 does not

restrict the conditional distribution of A given X it does exclude time-varying heteroscedasticty

allowed by Assumption 2.6.

A natural combination of the two assumptions is:

Assumption 2.7 (Stationarity and Exchangeability) (i)

Ut|X,A
D
= Us|X,A, t 6= s,

(ii) the distribution of Ut given X and A is non-degenerate for all (X,A) ∈ X ×A, (iii)

A|X1, . . .XT
D
= A|Xp(1), . . .Xp(T ),

for p (t) ∈ {1, . . . , T} , p (t) 6= p (t0) .
16These polynomials take the form ζ1 (X) = 1≤i≤T Xi, ζ2 (X) = 1≤i<j≤T XiXj, ζ3 (X) =

1≤i<j<k≤T XiXjXk, ζ4 (X) = 1≤i<j<k<l≤T XiXjXkXl and so on up to ζT (X) =
T
i=1Xi.

17One suggestion made by Altonji and Matzkin (2005) is to impose a correlated random coefficients structure on
mt (Xt, A,Ut) , as we do here (Equation immediately prior to Equation (2.6) on p. 1064).
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Under Assumption 2.7 β (x) is overidentified since

β (x) =
E [Y2|X = x]− E [Y1|X = x]

x2 − x1
=
E [Y2|X 0 = x0]− E [Y1|X 0 = x0]

x02 − x01
,

when x0 is a permutation of x.

3 Estimation

In this section we discuss estimation of the movers average partial effect, βM , and movers local

average response, γMt (xt), when the regressors are discretely-valued, and the average partial effect,

β, and local average response, γt (xt), with continuously-valued regressors. To keep the exposition

simple we work with the constant in X2 aggregate time effects specification δ (X2) = δ.

3.1 Discrete regressor case

We begin with the discrete regressor case, as it straightforward, and foreshadows our estimation

approach for continuous regressors. Under our assumptions we can identify the common trend by

the average change in Yt across the two periods among the subpopulation of ‘stayers’. That is

δ ≡ E [∆Y |∆X = 0] =
E [1 (∆X = 0)∆Y ]

E [1 (∆X = 0)]
.

We, of course, require that Pr (∆X = 0) is greater than zero: it is the presence of stayers which

identifies δ0. Now consider the subpopulation of movers, we have

E [∆Y |X = x] = δ0 + β (x)∆x,

and hence, with δ identified, we may write

βM ≡
E
h
1 (∆X 6= 0) E[∆Y |X ]−δ

∆X

i
E [1 (∆X 6= 0)] =

E
£
1 (∆X 6= 0) ∆Y−δ

∆X

¤
E [1 (∆X 6= 0)] .

Let θ =
¡
δ, βM

¢0
, the above expressions generate the following 2×1 vector of moment restrictions

E [ψ (Z, θ0)] = 0, with

ψ (Z, θ) =

Ã
1 (∆X = 0) (∆Y − δ)

1(∆X 6=0)
∆X

¡
∆Y − δ − βM∆X

¢ ! .

The GMM estimate bβM is very easy to compute, being the coefficient on ∆X in the linear in-

strumental variables fit of ∆Y on a constant and ∆X with 1 (∆X = 0) and 1(∆X 6=0)
∆X serving as

excluded instruments (this follows since 1 (∆X = 0)
¡
∆Y − δ − βM∆X

¢
= 1 (∆X = 0) (∆Y − δ)).

Conventional ‘robust’ standard errors reported by most software packages will be asymptotically

valid.

14



Since it foreshadows portions of our results for the continuous Xt case we present a closed-

form expression for the asymptotic sampling variance of bβM . Let Γ0 = E
£
∂ψ (Z, θ0) /∂θ

0¤ and
Ω0 = E

£
ψ (Z, θ0)ψ (Z, θ0)

0¤ and further define
π0 = Pr (∆X = 0) , σ20 = V (Y |∆X = 0)

ξ = E
∙
1

∆X

¯̄̄̄
∆X 6= 0

¸
, κ = E

∙
V
∙
∆Y

∆X

¯̄̄̄
X

¸¯̄̄̄
∆X 6= 0

¸
+ V (β (X)|∆X 6= 0) .

We have

Γ0 = −
Ã

π0 0

(1− π0) ξ (1− φ0)

!
, Ω0 =

Ã
π0σ20 0

0 (1− π0)κ

!
,

and hence, by standard results for GMM (e.g., Newey and McFadden, 1994), an asymptotic sampling

distribution for bθ of
√
N

Ã bδ − δbβM − βM

!
d→ N

Ã
0,

Ã
σ20
π0

−σ20
π0
ξ

−σ20
π0
ξ κ+

σ20
π0
ξ2

!!
.

Estimation of the MLAR is also straightforward. An argument analogous to that given for βM

yields the representation

γMt (xt) =
E
£
1 (Xt = xt)1 (∆X 6= 0) ∆Y−δ

∆X

¤
E [1 (Xt = xt)1 (∆X 6= 0)] .

We may therefore estimate θ =
¡
δ, γMt (xt)

¢0 by the analog estimator based on the population
moment restriction E [ψ (Z, θ0)] = 0 with

ψ (Z, θ) =

Ã
1 (∆X = 0) (∆Y − δ)

1(Xt=xt)1(∆X 6=0)
∆X

¡
∆Y − δ − γMt (xt)∆X

¢ ! .

3.2 Continuous regressor case

3.2.1 No time effect

When Xt is continuously distributed — or, more precisely, when ∆X is continuously distributed in

a neighborhood of zero — and no aggregate time effects are present (δ (X2) = 0), then Theorem 2.1

implies that the average partial effect β is identified by

β = E
∙
E [∆Y |X ]
∆X

¸
= E

∙
E [∆Y |X]
∆X

|∆X 6= 0
¸
.

Given the second equality a natural estimator of the APE, β, would be that proposed for the discrete

case above, that is,

eβ = PN
i=1 1(∆Xi 6= 0)

³
∆Yi
∆Xi

´
PN

i=1 1(∆Xi 6= 0)
=
1

N

NX
i=1

∆Yi
∆Xi

..
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This estimator was informally suggested by Mundlak (1961, p.45); as Chamberlain (1980b, 1982)

notes, it will be strongly consistent if E[|∆Y/∆X |] < ∞ by the strong law of large numbers.

However, if∆X has a positive, continuous density at zero — and if E[|∆Y | | ∆X = d] does not vanish

at d = 0 — then eβ will be inconsistent in general, since ∆Y/∆X will not have finite expectation

(unlike β(X) =E [∆Y |X] /∆X whose expectation exists by assumption). For example, if (Yt, Xt)

is independently and identically distributed according to the bivariate normal distribution then

∆Y/∆X will be distributed according to the Cauchy distribution.

To ensure quadratic-mean convergence, we consider instead a ‘trimmed’ estimator of the form

bβ(hN ) ≡
PN

i=1 1(|∆Xi| > hN )
³

∆Yi
∆Xi

´
PN

i=1 1(|∆Xi| > hN )
, (14)

where hN is a deterministic bandwidth sequence tending to zero as N tends to infinity.18

The estimator bβ(hN) — which is consistent for βM when X has finite support — has asymptotic

properties similar to a standard (uniform) kernel regression estimator for a one-dimensional problem.

In particular, it is straightforward to verify that

V(bβ) = O

µ
1

NhN

¶
À O

µ
1

N

¶
,

so the rate of convergence is necessarily slower than 1/N when hN → 0. Assuming in addition that

the bias of bβ(hN ) is geometric in the bandwidth parameter hN — that is

E
∙
1(|∆X| > hN)

µ
∆Y

∆X

¶
− β(X)

¸
= E [1(|∆X| ≤ hN)β(X)] = O(hpN)

for some p > 0 (typically p = 2) — the fastest rate of convergence of bβ to β in quadratic mean will
be achieved when the bandwidth sequence takes the form

h∗N = h0 N
−1/(2p+1),

which yields

bβ(h∗N )− β = Op(N
−p/(2p+1))

À Op(N
−1/2).

While the bandwidth sequence h∗N achieves the fastest rate of convergence for this estimator, the
corresponding asymptotic normal distribution for bβ(h∗N ) will be centered at a bias term involving

the derivative of E[β(X)|∆X = d] at d = 0. The estimator bβ will have an asymptotic (normal)
18An alternative consistent estimator would replace the denominator by the sample size N.
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distribution centered at zero if the bandwidth hN converges to zero faster than h∗N ; assuming

hN = o(N−1/(2p+1)),

routine application of Liapunov’s CLT for triangular arrays yields the asymptotic distribution forbβ, p
NhN(bβ − β)

d→ N (0, 2φ0σ20),

where

φ0 ≡ lim
h↓0

Pr{|∆X | ≤ h}
2h

is the density of ∆X at zero and

σ20 ≡ V (∆Y |∆X = 0) = lim
h↓0
V (∆Y |− h < ∆X < h) .

Assuming p = 2, the asymptotic distribution of bβ is similar as the asymptotic distribution of
a (uniform) kernel regression estimator of E[∆Y |∆X = 0], except that the variance of the latter

varies inversely with the density φ0.

3.2.2 Aggregate time effect

When aggregate time effects are present, and the ‘common trends’ condition (Assumption 2.5) holds

with δ (X2) = δ, then (10) implies that the average partial effect β is identified by

β = E
∙
E [∆Y |X]− δ

∆X

¸
= E

∙
E [∆Y |X ]− δ

∆X

¯̄̄̄
∆X 6= 0

¸
,

recalling that δ ≡ E[∆Y |∆X = 0]. If δ were known, a straightforward modification of the estimator

proposed in the preceding section would be

bβI =
PN

i=1 1(|∆Xi| > hN )
³
∆Yi−δ
∆Xi

´
PN

i=1 1(|∆Xi| > hN )
,

which would inherit the large sample properties of bβ above.
When δ is unknown, a natural counterpart to the infeasible estimator bβI replaces δ with the

uniform kernel estimator, bδ ≡ PN
i=1 1(|∆Xi| ≤ hN )∆YiPN

i=1 1(|∆Xi| ≤ hN )
, (15)

whose asymptotic properties are well-known when ∆X is continuously distributed. Under standard

regularity conditions a normalized version of bδ has the asymptotic distribution,p
NhN (bδ − δ)

d→ N (0, σ20/2φ0),
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where φ0 and σ20 are defined above. Furthermore, bβI and bδ will be asymptotically independent, as
the product of their influence functions will be zero by construction.

Given this estimator of the common trend δ, a feasible estimator of the APE β would be

bβF =
PN

i=1 1(|∆Xi| > hN)
³
∆Yi−δ
∆Xi

´
PN

i=1 1(|∆Xi| > hN )
. (16)

Though simple in appearance, derivation of the large-sample properties of bβF is difficult, as its

rate of convergence depends in a delicate way on the distribution of the regressors X . Writing the

normalized version of bβF in terms of its infeasible counterpart bβI yields
p
NhN (bβF − β) =

p
NhN (bβI − β)−

p
NhN (bδ − δ)×

⎡⎣PN
i=1 1(|∆Xi| > hN)

³
1

∆Xi

´
PN

i=1 1(|∆Xi| > hN )

⎤⎦ .
While the asymptotic behavior of the first two terms in this decomposition are straightforward, the

rate of convergence of the third term,

bξ ≡ PN
i=1 1(|∆Xi| > hN)

³
1

∆Xi

´
PN

i=1 1(|∆Xi| > hN )
,

will crucially depend upon the behavior of

τ(d) ≡ E [sgn{∆X}| |∆X| = d]

for d in a neighborhood of zero.

If, for example, X1 and X2 are exchangeable, so that∆X is symmetrically distributed about zero

(at least for |∆X| in a neighborhood of zero), then τ(d) ≡ 0 and ξ̂ will converge in probability to zero,
ensuring the asymptotic equivalence of the feasible estimator bβF and its infeasible counterpart bβI .
Alternatively, if there is constant positive drift in the distribution of regressors, so that τ(0) > 0, then

the third term bξ will diverge, with expectation of O(log(h−1N )), which is O(log(N)) if hN = O(N−r)
for some r > 0. In the latter case, the asymptotic distribution of the feasible estimator bβF will be
dominated by the asymptotic distribution of the estimator bδ of the common trend. An intermediate
case could have τ(d) = O(d) in a neighborhood of zero, with the third term converging in probability

to some nonzero limit.

In any event, an asymptotic variance estimator for bβF can be constructed if consistent estimators
of the density φ0 and conditional variance σ

2
0 terms appearing in the asymptotic variances of bβI

and bδ can be constructed. Under standard regularity conditions, the kernel estimators
bφ ≡ 1

2NhN

NX
i=1

1(|∆Xi| ≤ hN ), bσ2 ≡ PN
i=1 1(|∆Xi| ≤ hN ) (∆Yi)

2PN
i=1 1(|∆Xi| ≤ hN )

− bδ2
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should converge in probability to φ0 and σ
2
0; given these estimators, an estimator of the asymptotic

variance of the feasible estimator bβF can be constructed as
\AV ar(bβF ) = bσ2

NhN

Ã
2bφ+ bξ2

2bφ
!
,

for bξ as defined above. This estimator will automatically adapt to divergence of bξ or its convergence
to a (possibly nonzero) constant in probability.

3.2.3 Mixed discrete-continuous regressors

In some applications the distribution of the regressors (X1,X2) may have mass points at a finite

set of values, and will be continuously distributed elsewhere. If there is overlap in the mass points

of X1 and X2, then the distribution of first differences ∆X will generally have a mass point at

zero, and will otherwise be continuously distributed in a neighborhood of zero. In this setting, the

average partial effect β will generally differ from its ‘movers’ counterpart βM , due to the nonzero

probability that ∆X = 0; while this mass point simplifies estimation of a nonzero common trend

component δ (and the conditional variance of ∆Y given ∆X = 0), it complicates estimation of the

APE. This is because β typically differs from βM , which is the implicit estimand of (14) and (16)

above, when ‘stayers’ are a non-negligble portion of the population.

When π0 ≡ Pr (∆X = 0) > 0, the estimator

eδ ≡ PN
i=1 1(∆Xi = 0) ·∆YiPN

i=1 1(∆Xi = 0)
,

used for the discrete Xt case discussed above, is clearly
√
N-consistent and asymptotically normal

estimator for δ, as would be the (asymptotically equivalent) estimator bδ, defined in the previous sub-
section (under standard regularity conditions). Using the decomposition for the feasible estimatorbβF of βM ≡ E[β(X)|∆X 6= 0] in the previous section, it follows thatp

NhN(bβF − βM ) =
p
NhN (bβF − βM ) +Op(

p
hN) ·Op(log(h

−1
n ))

=
p
NhN (bβ − βM ) + op(1),

so that preliminary estimation of the common trend component δ will not affect the asymptotic

distribution of the feasible estimator bβF . If a consistent estimator of the stayers effect
βS ≡ E[β(X)| ∆X = 0]

can be constructed, a corresponding consistent estimator of the APE β = π0β
S +(1−π0)βM would

be bβ ≡ bπbβS + (1− bπ)bβF ,
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where bπ ≡PN
ι=1 1(|∆X | ≤ hN )/N is a

√
N-consistent estimator for π0.

Defining

ν(d) ≡ E [∆Y | |∆X | = d] ,

the results of Section 2 above imply that

βS = lim
h↓0

ν(h)− ν(0)

h
;

thus, estimation of βS amounts to estimation of a (left) derivative at zero of the conditional mean

of ∆Y given ∆X = 0. One such consistent estimator would be the slope coefficient of a local linear

regression of ∆Y on a constant term and ∆X, i.e.,Ã
δbβS
!
= argmin

d,bS

NX
i=1

1(|∆Xi| ≤ hN) · (∆Yi − d− bS∆Xi)
2, (17)

with the intercept δ being an alternative (
√
N-)consistent estimator of the common trend δ. Since

the rate of convergence of a nonparametric estimator of the derivative of a regression function is

lower than for its level, the rate of convergence the combined estimator bβ ≡ bπbβS +(1− bπ)bβF of the
APE β will be the same as for bβS, and the asymptotic distribution of the latter would dominate
the asymptotic distribution of bβ in this setting.
3.2.4 Local average response [Incomplete]

A consistent estimate of γt (xt) is

bγt (xt) =
PN

i=1K
³
Xit−xt
h2N

´
1(|∆Xi| > h1N )

³
∆Yi−δ
∆Xi

´
PN

i=1 K
³
Xit−xt
h2N

´
1(|∆Xi| > h1N )

where bδ is given by (15) above.
3.2.5 Computation

APE For estimation of, and inference on, the APE we propose using a simple ‘instrumental

variables’ procedure. Consider the instrumental variables fit associated with the linear regression

of ∆Y on a constant and the interactions 1(|∆X | > hN ) · ∆X and 1(|∆X| ≤ hN) · ∆X with

1(|∆X| ≤ hN ), 1(|∆X| ≤ hN )·∆X and 1(|∆X|>hN )
∆X serving as excluded instruments. The coefficients

on the first two regressors will equal those defined by (17) above, while the coefficient on the last

regressors is equal to (16) (with δ replacing bδ). The robust standard errors reported by most

statistical packages will be asymptotically valid.19

19Note these standard errors will implicitly include estimates of asymptotically negligible terms. However, this may
improve small sample coverage of the resulting confidence intervals (cf., Newey 1994b).
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If the mixed discrete-continuous case discussed above is of relevance, then choosing bθ (hN ) =
(bπ, δ, bβS, bβM )0 to solve

NX
i=1

ψ(Z,bθ (hN))/N = 0,

with

ψ (Z, θ(hN))

=

⎛⎜⎜⎜⎜⎝
1(|∆X| ≤ hN )− π

1(|∆X | ≤ hN )
¡
∆Y − δ − βM {1(|∆X | > hN ) ·∆X}− βS {1(|∆X| ≤ hN ) ·∆X}

¢
{1(|∆X | ≤ hN ) ·∆X}

¡
∆Y − δ − βM {1(|∆X| > hN) ·∆X}− βS {1(|∆X | ≤ hN ) ·∆X}

¢
1(|∆X|>hN )

∆X

¡
∆Y − δ − βM {1(|∆X | > hN ) ·∆X}− βS {1(|∆X| ≤ hN ) ·∆X}

¢

⎞⎟⎟⎟⎟⎠ ,

recovers all the components needed to form an estimate of the average partial effect

bβ ≡ bπbβS + (1− bπ)bβF .
In practice, a combination of the conventional GMM covariance matrix for bθ (hN) and the textbook
delta method may be used to form standard errors for bβ.
4 Multiple regressors and time periods

In this section we extend our basic model to permit multiple non-constant regressors and panels of

arbitrary length. We analyze the following correlated random coefficients model:

Yt =W
0
td (A,Ut) +X

0
tb (A,Ut) , t = 1, ..., T,

where Wt and Xt are q × 1 and p × 1 vectors of observable regressors and d (Ut) and b (A,Ut)

corresponding random coefficients (all with bounded moments).

Our marginal stationarity restriction is

Ut|W,X,A∼ Us|W,X,A,

for s 6= t, W =(W1, . . . ,WT )
0 and X =(X1, . . . ,XT )

0. This implies that

E[d (A,Ut) |W,X] = δ (W,X)

and

E[b (A,Ut) |W,X] = β (W,X) .

To complete the model we make the additional restrictions that

δ (W,X) ≡ δ, β (W,X) = β (X) .
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In this model W is a T × q matrix of aggregate ‘time shifters’. Typically we think of these

regressors as varying deterministically with t, and hence the coefficients d (A,Ut) as capturing time-

and individual-specific trends. The T ×p matrix of regressors X includes the choice/policy variables

of primary interest.

The two period model considered in the preceding sections is contained within the above family

with T = p = 2 and q = 1. The matrix of time shifters and its corresponding coefficient vector

parameterize the common intercept shift across periods:

W =

Ã
0

1

!
, δ =δ,

while the choice variable and the conditional means of the random coefficients are given by

X =

Ã
1 X1

1 X2

!
, β (X)=

Ã
α (X)

β (X)

!
.

As before, the parameters of interest are δ ≡ E[d (A,Ut)], β≡ E[b (A,Ut)] and γt (xt)≡ E[b (A,Ut)|Xt =

xt].

The above model is a special case of the CRC model proposed and analyzed by Chamberlain

(1992a), who worked with a more general setup where regressors and trend coefficients were permit-

ted to vary parametrically (i.e.,W =W(θ), X = X(θ), and δ = δ(θ)). Identification of δ and β in

the overidentified setup T > p was considered in detail by Chamberlain (1992a), we begin with ‘just

identified’ case T = p, which he did not consider, and return to the overidentified case subsequently.

4.1 Just identification

Writing Y = (Y1, ..., YT )
0 we have

E[Y|W,X] =Wδ +Xβ(X). (18)

Define X̃ to be the (scalar) determinant of the matrix of regressors,

X̃ = det(X),

and X∗ to be the adjoint (or adjunct) matrix to X, i.e., the transpose of the matrix of cofactors of
X,

X∗ ≡ adj(X),

so that, X∗X = X̃ · I, and, when X̃ 6= 0, X−1 = (1/X̃) · X∗ (recall that with T = p that X is a

square matrix). Premultiplication of the vector of conditional means of Yt by the adjoint matrix

X∗ thus yields
E[X∗Y|W,X] = X∗Wδ + X̃ · β(X),
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which implies that

E[X∗Y|X,W, X̃ = 0] = X∗Wδ,

assuming Y and X have at least T + 1 moments finite (ensuring E[||X∗Y||] <∞).
Provided the random (T × q) matrix X∗W has q-dimensional support conditional on X̃ = 0,

the coefficient vector δ is identified by a population regression of X∗Y on X∗W conditional on

X̃ ≡ det(X) = 0. By analogy with the estimation results for the scalar case presented above, a

consistent estimator of δ can be constructed using a weighted least-squares regression of X∗iYi on

X∗iWi across all observations i = 1, ...,N, with weights equal to 1(|X̃i| ≤ hN ). Thus, estimation

of δ still involves a one-dimensional nonparametric regression problem in the (scalar) conditioning

variable X̃i.

In the T = 2 case considered in the preceding sections we have

X̃ = det

Ã
1 X1

1 X2

!
= ∆X,

so that

X∗Wδ =

"
X2 −X1
−1 1

#Ã
0

1

!
δ =

Ã
−X1δ

δ

!
,

and

X∗Y =

Ã
X2Y1 −X1Y2

∆Y

!
.

When X̃ = ∆X = 0, the two rows of X∗Y −X∗Wδ are proportional to each other, and either

could be used to define a nonparametric estimator of δ; in the preceding sections, the second row

was used.

Returning to the general case T = p ≥ 2, given identification of δ, identification of βM follows

from the equality

E[Y −Wδ|W,X] = Xβ(X).

When X̃ ≡ det(X) 6= 0, premultiplying both sides of this relation by X−1 yields

E[X−1(Y−Wδ) | X = x] ≡ β(x),

so that, assuming Pr
³
X̃ 6= 0

´
> 0

E[X−1(Y −Wδ) | X̃ 6= 0] = E[β(X) | X̃ 6= 0] ≡ βM

by iterated expectations.

If X̃ 6= 0 with probability one, then the movers average partial effect coincides with the overall
or full average partial effect (i.e., βM =β= E[b (A,Ut)]). Heuristically, βM is identified as an average

of a generalized least-squares regression of the detrended conditional mean E[Y|W,X]−Wδ on

X, averaging over those observations with X̃ = det(X) 6= 0.
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Because the expectation of X−1(Y −Wδ) will generally be undefined when X̃ is continuously

distributed with positive density near zero, estimation of βM will involve the same trimmed mean

as discussed for the special case T = p = 2 above. The extension of the feasible estimator bβF to

this context is

bβF =

PN
i=1 1(

¯̄̄
X̃i

¯̄̄
> hN) ·X−1i (Yi−Wi

bδ)PN
i=1 1(

¯̄̄
X̃i

¯̄̄
> hN )

,

where bδ is the nonparametric estimator
bδ = " NX

i=1

1(
¯̄̄
X̃i

¯̄̄
≤ hN) (X

∗
iWi)

0 (X∗iWi)

#−1
×

NX
i=1

1(
¯̄̄
X̃i

¯̄̄
≤ hN ) (X

∗
iWi)

0 (X∗Y) .

This estimator will converge in probability to βM at a one-dimensional nonparametric rate if

hN → 0 at the appropriate rate, provided the term

ξ̂ ≡
PN

i=1 1(
¯̄̄
X̃i

¯̄̄
> hN ) ·X−1i WiPN

i=1 1(
¯̄̄
X̃i

¯̄̄
> hN )

does not diverge too quickly as N →∞.

In the mixed discrete-continuous case Pr
³
X̃ = 0

´
> 0, and estimation of β̂ requires estimation

of

βS = lim
h↓0

ν(h)− ν(0)
h

,

where

ν(x) ≡ E[X−1Y|X̃ = x];

the resulting estimator converges at the rate for nonparametric estimation of the derivative of a

one-dimensional regression function.

4.2 Overidentification

When T > p, the vector of common trend parameters δ will satisfy some conditional moment restric-

tions, and, as Chamberlain (1992a) shows, these typically suffice for identification and construction

of root-N-consistent and asymptotically-normal estimators of δ. In this overidentified setting, for

each realized matrix of regressors X there will be a T × (T − p) matrix Z ≡ ζ(X) of functions of X

for which

Z0X = 0;

from the relation (18) above, it follows that

Z0E[Y|W,X] ≡ Z0Wδ + Z0Xβ(X)

= Z0Wδ,
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so that

E[Z0(Y −Wδ) |W,X] = 0,

which, depending upon the form ofW, will typically serve to identify the trend coefficients δ.

For example, in the T = 2 example considered above, suppose the restriction α(x) ≡ α is

imposed, so that

δ ≡ (α, δ)0, W =

Ã
1 0

1 1

!
, X ≡ (X1,X2)

0;

then, taking Z = (X2,−X1)0, the parameters α and δ will satisfy

E[X2Y1 −X1Y2 − α(X1 +X2)− δX1|X1,X2] = 0,

which implies that α and δ will be identified as population least-squares regression coefficients of

X2Y1 −X1Y2 on (X1 +X2) and X1, respectively. Alternatively, restricting β(x) = β but leaving

a(x) unrestricted, δ and β will be identified by the population regression of ∆Y on a constant and

∆X, that is, the population analogue of the usual fixed-effects regression estimator.

Even in the just-identified setting (T = p), it may be possible to obtain consistent estimators of

δ that achieve the parametric rate of convergence. If

W̃ ≡W− E[W | X]

has a covariance matrix of full rank, then δ will be identified by

δ =V(W̃)
−1C(W̃,Y),

and as long as the rank of V(W̃) is nonzero, some linear combinations of δ will be identified by a

similar argument. For the special cases considered above, whereW = ω(X), this is not applicable,

but such restrictions may be useful whenW includes regressors which are not deterministic functions

of X even when T = p.

Overidentification also makes estimation of β less problematic. As Chamberlain (1992a) shows,

defining bβi ≡ (X0iV−1i Xi)
−1X0

iV
−1
i (Yi −Wi

bδ)
for bδ a root-N-consistent estimator of δ and Vi ≡ ν(Wi,Xi) positive definite with probability one,

the sample mean of bβi will be a root-N -consistent estimator of β when Vi = V( Yi −Wiδ|Xi)

and

E
∙

1

det(X0V−1X)

¸
<∞. (19)

This estimator also attains the semiparametric efficiency bound for estimation of β. Chamberlain

(1992a) shows that a feasible version, based upon an efficient estimator of δ and consistent estimators

of {Vi}Ni=1, will also be semiparametrically efficient.
As the order of overidentification T − p increases, condition (19) becomes less restrictive even
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if the components of X are continuously distributed. For example, consider the p = 2 case with

Xt = (1,Xt)0 and suppose that Xt
iid∼ N (0, 1) and Vi ≡ I; then

det(X0iV
−1
i Xi) =

TX
t=1

(Xt − X̄)2 ∼ χ2T−1,

and (19) will hold as long as T − 1 > 2, i.e., T ≥ 4 here. More generally, as T − p increases, the

density of det(X0
iV
−1
i Xi) should approach zero more rapidly as its argument approaches zero —

ensuring (19) holds — provided the continuous components of Xi are weakly dependent across rows

and the matrix Vi is well-behaved.

Nevertheless, the trimming scheme used to estimate β in the just-identified setting may still be

helpful in the overidentified case, even when (19) holds. Defining the (infeasible) trimmed mean

β̂ =

PN
i=1 1(det(X

0
iV

−1
i Xi) > hN ) · (X0iV−1i Xi)

−1X0
iV
−1
i (Yi−Wiδ)PN

i=1 1(det(X
0
iV
−1
i Xi) > hN )

,

it is straightforward to show this will be asymptotically equivalent to the sample mean of β̂i when

E[β(X)|det(X0iV−1i Xi) ≤ h] is smooth (Lipschitz-continuous) in h, condition (19) holds, and hN =

o(1/
√
N). Since β̂ will still be consistent for β even when (19) fails, a feasible version of the trimmed

mean β̂ may be better behaved in finite samples if the design matrix (X0iV
−1
i Xi) is nearly singular

for some observations.

5 Empirical application: the demand for calories

5.1 Data description and overview

We use data collected in conjunction with an external evaluation of the Nicaraguan conditional

cash transfer program Red de Protección Social (RPS) (see IFPRI 2005). The RPS evaluation

sample is a panel of 1,581 households from 42 rural communities in the departments of Madriz and

Matagalpa, located in the northern part of the Central Region of Nicaragua. Twenty one of the

sampled communities were randomly assigned to participate in the RPS program. Each sampled

household was first interviewed in August/September 2000 with follow-ups attempted in October

of both 2001 and 2002. Here we analyze a balanced panel of 1,358 households from the 2001 and

2002 waves.20

The survey was fielded using an abbreviated version of the 1998 Nicaraguan Living Standards

Measurement Survey (LSMS) instrument. As such it includes a detailed consumption module with

information on household expenditure, both actual and in kind, on 59 specific foods and several

dozen other common budget categories (e.g., housing and utilities, health, education, and house-

hold goods). The responses to these questions were combined to form an annualized consumption

aggregate, Cit. In forming this variable we followed the algorithm outlined by Deaton and Zaidi

20A total of 1,359 households were successfully interviewed in all three waves. One of these households reports zero
food expenditures (and hence caloric availability) in one wave and is dropped from our sample.
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(2002).

In addition to recording food expenditures, actual quantities of foods acquired are available.

Using conversion factors listed in the World Bank (1998) and INEC (2005) we converted all food

quantities into grams. We then used the caloric content and edible percent information in the

INCAP (2000) food composition tables to construct a measure of daily total calories available for

each household.21 The logarithm of this measure, Yit, serves as the dependent variable in our

analysis.

The combination of both expenditure and quantity information at the household-level also al-

lowed us to estimate unit prices for foods. These unit values were used to form a Paasche cost-of-

living index for the ith household in year t of

Iit =

∙
Sit

½XF

f=1
Wf,it

³
P b
f /Pf,it

´¾
+ (1− Sit)Jit

¸−1
, (20)

where Sit is the fraction of household spending devoted to food, Wf,it the share of overall food

spending devoted to the f th specific food, Pf,it the year t unit price paid by the household for food

f , and P b
f its ‘base’ price (equal to the relevant 2001 sample median price). To avoid the introduction

of spurious noise we, following the suggestion of Deaton and Zaidi (2002), replace household-level

unit prices with village medians. In the absence of price information on nonfood goods we set Jit
equal to one in 2001 and to the national consumer price index (CPI) in 2002. Our independent

variable of interest is the logarithm of real consumption: Xit = ln (Cit/Iit).

Table 1 summarizes some key features of our estimation sample. Panel A gives the share of

total food spending devoted to each of eleven broad food categories as well as the share of total

calories derived from each group. Spending on staples (cereals, roots and pulses) accounts for about

half of the average household’s food budget and over two thirds of its calories. Among the poorest

quartile of households an average of around 55 percent of budgets are devoted to, and over three

quarters of calories available derived from, staples. Spending on vegetables, fruit and meat accounts

for less than 15 percent of the average household’s food budget and less than 3 percent of calories

available. That such a large fraction of calories are derived from staples, while not good dietary

practice, is not uncommon in poor households elsewhere in the developing world (cf., Subramanian

and Deaton, 1996; Smith and Subandoro, 2007).

Panel B of the table lists real annual expenditure in Cordobas per adult equivalent and per

capita. Adult equivalents are defined in terms of age- and gender-specific FAO (2001) recommended

energy intakes for individuals engaging in ‘light activity’ relative to prime-aged males. As a point

of reference the 2001 average annual expenditure per capita across all of Nicaragua was a nominal

C$7,781, while amongst rural households it was C$5,038 (World Bank. 2003). The 42 communities

in our sample, consistent with their participation in an anti-poverty demonstration experiment, are

considerably poorer than the average Nicaraguan rural community.22

21 In forming our measure of calorie availability we followed the general recommendations of Smith and Subandoro
(2007).
22 In October of 2001 the Coroba-to-US$ exchange rate was 13.65. Therefore per capita consumption levels in our
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Using the FAO (2001) energy intake recommendations for ‘light activity’ we categorized each

household, on the basis of its demographic structure, as energy deficient, or not. By this criterion

approximately 40 percent of households in our sample are energy deficient each period. Amongst

the poorest quartile this fraction rises to over 75 percent. These figures are reported in Panel B of

Table 1.

Table 2 reports the median amount of Cordobas paid per one thousand calories by food type

and expenditure quartiles. As found in other parts of the developing world, ‘rich’ households spend

more per calorie than poor households, however, these price differences are not especially large in

our sample. If quality upgrading is an important feature of food demand, then the elasticity of

calorie demand with respect to total expenditure may be quite low even if the elasticity of food

expenditure is quite high (Behrman and Deolalikar, 1987; Subramanian and Deaton, 1996).

5.2 Estimation results

We assume that the logarithm of total calorie availability in period t, Yt, varies according to

Yt =W 0
1tδ1 + at(A,Ut) + bt(A,Ut)Xt,

where W1t is a q1 × 1 vector of time-varying demographic controls capturing the age and gender
composition of the household, Xt is the logarithm of real total outlay, and at(A,Ut) and bt(A,Ut)

are the household and time specific intercept and calorie elasticity. We allow for common intercept

and elasticity drift of the form:

E [a2 (A,Ut)− a1 (A,Ut)|W1,X] = δa, E [b2 (A,Ut)− b1 (A,Ut)|W1, X] = δb.

DefiningW1=(W11,W12)
0 with

W2 =

Ã
0 0

1 X2

!
, X =

Ã
1 X1

1 X2

!

andW =(W1,W2) gives our general model

E[Y|W,X] =Wδ +Xβ(X),

with δ =
¡
δ01, δa, δb

¢0 and β(x) = (α (x) , β (x))0 = (E[a1 (A,Ut)|X = x],E[b1 (A,Ut)|X = x])0 .
We estimate the time shift coefficients and the stayers average partial effect by the solution to

the local linear regressionÃ
δbβS

!
= argmin

d,bS

NX
i=1

1(
¯̄̄
X̃i

¯̄̄
≤ hN ) · (X∗iYi −X∗iWid− X̃ib

S)2,

sample averaged less than US$ 300 per year.

28



the movers average partial effect is then calculated using

bβM
=

PN
i=1 1(

¯̄̄
X̃i

¯̄̄
> hN) ·X−1i (Yi−Wiδ)PN

i=1 1(
¯̄̄
X̃i

¯̄̄
> hN)

.

The distribution ofXt does not appear to have an discrete components, therefore bβM
should provide

a consistent estimate of the overall average elasticity of calorie demand as well as the movers average

elasticity. Nevertheless we also report estimates of β based on

bβ = bπbβS
+ (1− bπ) bβM

,

with bπ =PN
i=1 1(

¯̄̄
X̃i

¯̄̄
≤ hN )/N .

Practically we compute ‘instrumental variables’ estimates of π, δ, βS and βM by solving the

sample ‘moment conditions’

0 =
NX
i=1

ψi

³bθ (hN )´ ,
for bθ (hN) = ³bπ, bδ0,bβS0

, bβM 0´0
where

ψi (θ (hN )) =

⎛⎜⎜⎜⎝
1(
¯̄̄
X̃i

¯̄̄
≤ hN )− π

Z0i

⎛⎝Ỹi − W̃iδ − X̃i

⎛⎝ 1(
¯̄̄
X̃i

¯̄̄
≤ h) 0

0 1(
¯̄̄
X̃i

¯̄̄
> h)

⎞⎠Ã βS

βM

!⎞⎠
⎞⎟⎟⎟⎠

with

Ỹi = X
∗
iYi, W̃i = X

∗
iWi,

and a T × q × 2p instrument matrix given by

Zi ≡
⎡⎣1(¯̄̄X̃i

¯̄̄
≤ h) · W̃,1(

¯̄̄
X̃i

¯̄̄
≤ h) · X̃i · Ip,

1(
¯̄̄
X̃i

¯̄̄
> h)

X̃i

· Ip
⎤⎦ .

We use several different values of the bandwidth h; our default choice is the value that minimizes

the ‘cross-validation’ criterion

CV (h) ≡
NX
i=1

ψi

³bθ−i (h)´0 ψi

³bθ−i (h)´ /N
where bθ−i (h) is the IV estimate calculated by omitting the ith observation from the sample. For

comparison purposes, the estimated standard deviation of X̃i ≡ det(Xi) for this sample is σ̂ =

0.5315, so σ̂ · N−1/5 = 0.1256, which gives a ‘rule-of-thumb’ benchmark against which the cross-

validated choice can be compared.
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5.3 Summary and extensions

[To be completed].
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Panel A: Expenditure Shares (%) Calorie Shares (%)
All Lower 25% Upper 25% All Lower 25% Upper 25%

2001 2002 2001 2002 2001 2002 2001 2002 2001 2002 2001 2002
Cereals 36.0 32.7 41.0 35.6 32.2 29.4 60.3 59.9 63.7 61.9 58.1 58.2
Roots 3.1 2.7 2.3 1.7 3.5 3.8 1.5 1.6 1.4 1.2 1.7 2.3
Pulses 12.5 13.6 14.6 16.6 10.1 10.9 11.3 12.8 11.8 13.6 10.5 11.7
Vegetables 4.9 4.5 4.0 3.2 5.8 5.6 0.7 0.6 0.5 0.4 0.9 0.8
Fruit 0.9 1.1 0.6 0.9 1.1 1.3 0.5 0.4 0.2 0.3 0.7 5.8
Meat 6.9 7.7 3.6 4.7 9.7 10.6 1.3 1.3 0.6 0.7 2.1 1.9
Dairy 14.7 17.3 11.5 15.5 16.2 19.5 4.3 3.7 1.7 2.2 4.6 5.0
Oil 5.0 5.0 5.4 5.2 4.0 4.5 7.6 7.1 6.2 5.9 7.6 7.6
Other foods 16.0 15.4 17.0 16.5 14.2 14.5 12.6 10.3 9.5 9.8 11.8 10.5
Staples♦ 51.6 49.0 57.8 54.0 45.7 44.0 73.1 74.3 76.9 76.8 70.3 72.1

Panel B: Total Real Expenditure & Calories
Expenditure per adult 4, 679 4, 510 2, 225 2, 061 7, 766 7, 773
(Expenditure per capita) (3, 764) (3, 887) (1, 947) (1, 991) (5, 970) (6, 320)
Food share 69.2 68.8 68.4 68.5 68.7 68.2

Calories per adult 3, 015 2, 949 2, 045 1, 952 3, 981 3, 878
(Calories per capita) (2, 435) (2, 530) (1, 776) (1, 825) (3, 050) (3, 121)
Percent energy deficient 39.3 39.7 73.5 77.6 12.7 10.6

Table 1: Real food expenditure and calorie shares of RPS households in 2001 and 2002
NOTES: Authors’ calculations based on a balanced panel of 1,358 households from the RPS evaluation dataset (see IFPRI (2005)). Real
household expenditure equals total annualized nominal outlay divided by a Paasche cost-of-living index. Base prices for the price index
are 2001 sample medians. The nomial exchange rate in October of 2001 was 13.65 Cordobas per US dollar. Total calorie availability is
calculated using the RPS food quantity data and the calorie content and edible portion information contained in INCAP (2000). The
Data Appendix provides complete details. Lower and upper 25 percent refers to the bottom and top quartiles of households based on the
sum of 2001 and 2002 real consumption per adult equivalent and thus contains the same set of households in both years.
♦ Sum of cereal, roots and pulses.
"Adults" correspond to adult equivalents based on FAO (2001) recommended energy requirements for light activity.
Percentage of households with estimated calorie availability less than FAO (2001) recommendations for light activity given household
demographics.
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Median Cordobas per 1,000 calories
All Bottom 25% Top 25%

2001 2002 2001 2002 2001 2002
Cereals 1.3 1.2 1.2 1.0 1.5 1.4
Roots 8.6 7.2 7.6 6.0 8.6 7.2
Pulses 2.6 2.3 2.6 2.4 2.6 2.6
Vegetables 23.2 22.7 22.7 19.6 24.2 23.8
Fruit 6.3 6.6 5.4 5.5 6.6 7.1
Meat 19.1 18.6 18.6 18.1 19.9 19.3
Dairy 10.1 10.0 10.9 10.4 10.3 10.1
Oil 1.5 1.5 1.6 1.5 1.5 1.5
Other foods 3.1 3.1 2.9 2.8 3.4 3.6

All foods 2.4 2.4 2.0 2.0 3.0 2.9

Table 2: Real Cordobas spent by RPS households in 2001 and 2002 per 1,000 calories available by
food category
NOTES: Authors’ calculations based on a balanced panel of 1,358 households from the RPS evalua-
tion dataset (IFPRI, 2005). Reported calorie prices are the median among households with positive
consumption in the relevant category. Lower and upper 25 percent refers to the bottom and top
quartiles of households based on the sum of 2001 and 2002 real consumption per adult equivalent.
See notes to Table 1 and the Data Appendix for additional details.

Pooled OLS FE-OLS
(1.a) (1.b) (2.a) (2.b)

log(Expenditure)
0.7383
(0.0377)

0.6089
(0.0377)

0.6325
(0.0383)

0.6255
(0.0382)

1(Year=2002)
0.0423
(0.0320)

0.0385
(0.0300)

0.0286
(0.0285)

0.0274
(0.0286)

Demographics No Yes No Yes

Table 3: Conventional estimates of the elasticity of calorie demand with respect to household
expenditure
NOTES: Estimates based on the balanced panel of 1,358 households described in the main text.
"Pooled OLS" denotes least squares applied to the pooled 2001 and 2002 samples, "FE-OLS" denotes
least squares estimates with household-specific intercepts. The standard errors are computed in a
way that allows for arbitrary within-village correlation in disturbances across households and time.
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