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Abstract

Nonlinear panel data models arise naturally in economic applications, yet their analysis is chal-

lenging. Here we provide a progress report on some recent advances in the area. We start by re-

viewing the properties of random-effects likelihood approaches. We emphasize a link with Bayesian

computation and Markov Chain Monte Carlo, which provides a convenient approach to estimation

and inference. Relaxing parametric assumptions on the distribution of individual effects raises se-

rious identification problems. In discrete choice models, common parameters and average marginal

effects are generally set-identified. The availability of continuous outcomes, however, provides op-

portunities for point-identification. We end the paper by reviewing recent progress on non fixed-T

approaches. In panel applications where the time dimension is not negligible relative to the size of

the cross-section, it makes sense to view the estimation problem as a time-series finite sample bias.

Several perspectives to bias reduction are now available. We review their properties, with a special

emphasis on random-effects methods.

JEL codes: C23.

Keywords: Panel data, incidental parameters.

1 Introduction

The great advantage of panel data is that they allow identification of models that would not be

identified on single-outcome data. This is due to observing repeated choices or outcomes from the same

economic units over time. Included in this category are models with heterogeneous preferences and/or

heterogeneous constraints, as well as models with state dependent choices and/or state dependent

shocks. Typically, the identification gains from panel data happen in combination with additional

assumptions, which place some form of stability in the time pattern of choices and requirements on

the number of outcomes per unit.
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acknowledged.
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The worthiness of panel data has by now been well established in such diverse areas of empirical

research as household-level demand and labor supply decisions, workers’ wage processes, firm-level

productivity, or cross-country determinants of economic growth.1 However, the empirical success of

panel data is mostly confined to linear models and special nonlinearities, for which a more or less

complete understanding of identification and inference is available.2

For many other nonlinear models of interest in economics the situation is very different. We have

a collection of point-identification (and more recently set-identification) results concerning particular

model quantities under certain assumptions. Associated to these results, there are some innovative

estimation methods, but often little is known about their statistical and numerical properties in

practice. We think it is fair to say that we are still short of answers for panel versions of many

commonly used models in applied work.

In this survey we attempt to provide a progress report from traditional and more recent perspectives

on the current state of the econometrics of nonlinear panel data models. We hope the paper will appeal

to both econometricians and empirical economists interested in the use of panel data.

Outline of the paper. In an attempt to provide applied motivation for our review, we start in

Section 2 with a list of linear and nonlinear example panel data models of applied interest. In many

economic applications, nonlinearity arises naturally when flexible response functions or preferences are

sought.

Section 3 introduces a general estimation approach: the so-called “random-effects” (or “correlated

random-effects”) perspective. We emphasize the link with the Bayesian approach, which provides

alternative methods to compute the random-effects estimates and their confidence intervals. The

random-effects approach, however, relies on parametric assumptions on the joint distribution of indi-

vidual effects and exogenous covariates. When these assumptions are relaxed, the estimates are subject

to an incidental parameter problem, just as in standard fixed-effects maximum likelihood (Neyman

and Scott, 1948). As a result, random-effects estimators are generally inconsistent for a fixed number

of time periods T . Moreover, point-identification itself becomes problematic.

In Section 4, we discuss in some detail the identification problem when T is fixed and the distri-

bution of individual effects is left unrestricted. In discrete choice panel models, structural parameters

are typically set-identified, unless the model belongs to a very specific parametric class (logistic).

We review various approaches to construct population identified sets, and discuss ways of conducting

estimation and inference.

Next, we argue that panel data offer opportunities for point-identification. One reason for this is

that, even in discrete choice models, some quantities of interest such as average marginal effects may

be point-identified, although others are not. Also, in panel data models with continuous outcomes, the

1Arellano (2003) provides examples of panel data applications in these areas.
2See the survey by Arellano and Honoré (2001).

2



availability of repeated outcomes for a time-invariant structure of heterogeneity is a powerful source

of identification. Lastly, restricting the conditional distribution of individual effects given exogenous

covariates may be another useful source of (point-) identification.

In many applications, the time-series dimension T of the panel is not negligible relative to its

cross-sectional dimension N . In such cases, it makes sense to view the incidental parameter problem as

time-series finite-sample bias. In Section 5, we review some recently proposed bias reduction methods.

We also study the properties of random-effects estimators in this context. In general, random-effects

estimates are consistent as T increases but suffer from finite-sample bias. We discuss estimation of

average marginal effects in this context.

Lastly, Section 6 concludes.

2 A menu of panel models

The overriding characteristic of panel data is the presence of time. Variation over time and timing

considerations provide a host of opportunities for addressing richer economic questions and conducting

more sophisticated empirical analyses than those affordable from purely cross-sectional data. These

opportunities include individual-specific effects, time-dependent patterns of endogeneity and exogene-

ity, and dynamic relationships.

Individual effects. Firstly, individual specific effects are a way of allowing for fixed-effects endo-

geneity and heterogeneous responses. The most standard setup is a linear model with an additive

time-invariant effect:

yit = x′itβ + αi + σvit,

together with an assumption of some form of independence between vit and (xi1, ..., xiT , αi). These

variables may represent, for example, (transformations of) individual consumer or leisure demand

(yit), prices (xit), the marginal utility of initial wealth (αi), and a preference shifter (vit). The model

allows for fixed-effects endogeneity (cross-sectional correlation between prices and αi), but rules out

any dependence between prices and preference shifters (strict exogeneity of xit). An alternative version

of the model is to transfer the strict exogeneity assumption to an external instrumental variable zit

(e.g. a tax component of the price), thereby allowing xit to be strictly endogenous.

The motives for using the previous model quickly lead to nonlinearities if more flexible response

functions or preferences are sought. A simple specification with interactions between observables and

unobservables is a location-scale model with heterogeneous volatility:

yit =
(
x′itβ + α0i

)
+ σ

(
x′itγ + α1i

)
vit.

A semiparametric generalization of the above is the quantile model

yit = x′itβ (uit) + αiγ (uit)
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where uit is the rank of the error vit, so that

uit | xi1, ..., xiT , αi ∼ U (0, 1) , (1)

and β (u) and γ (u) are nonparametric functions. While the econometrics of the linear model is

standard for both least-squares and instrumental-variable versions, the one of the location-scale model

is not, and the quantile panel model is a topic of ongoing research.3 Other forms of interaction between

observables and unobservables arise in Chamberlain (1992)’s linear random coefficient model:4

yit = g0 (xit, θ) + g1 (xit, θ)
′ αi + vit,

which has been recently re-examined in work by Graham and Powell (2010) and Arellano and Bon-

homme (2010).

Non-additive unobservables arise naturally in the context of discrete choice models, such as corner-

solution models of leisure demand, of the form

yit = 1
{
F
(
x′itβ + αi

)
≥ uit

}
,

where yit is a 0 − 1 indicator of participation, 1 (.) is the indicator function, uit is a rank variable as

before, and F (.) is a cumulative distribution function. However, non-additive fixed effects may also

arise in continuous response functions. An example is the following heterogeneous constant elasticity

of substitution (CES) production function:

log yit = λ log ℓit + (1− λ) log [γxσi

it + (1− γ) zσi

it ]
1/σi + αi + vit, (2)

which allows for different degrees of complementarity between low-skill labor (ℓit), high-skill labor

(xit), and capital equipment (zit). More generally, equilibrium conditions suggest a broad class of

GMM estimation problems for instrumental variable models à la Hansen and Singleton (1982) with

fixed effects:

E [zi ⊗ g (yit, xit, θ, αi)] = 0.

Time patterns. The previous examples include fixed effects but do not allow for time patterns

in the dependence between observables and time-varying unobservables. However, the availability

of a time dimension makes it conceptually possible to go beyond the cross-sectional notions of strict

exogeneity and strict endogeneity, whereby the full time series of a regressor is either fully independent

or fully dependent of the full time series of error terms. Thus, x may depend on past v’s but not on

future v’s (predeterminedness), or on v’s that are close in time but not on v’s from distant periods.

3See Koenker (2004) and Abrevaya and Dahl (2008), for example.
4See also Wooldridge (1997, 1999).
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For example, a discrete choice model or a quantile model with general predetermined variables would

replace the strict exogeneity assumption (1) with the sequential conditioning assumption

uit | xi1, ..., xit, αi ∼ U (0, 1) . (3)

Time patterns of dependence arise naturally in the context of dynamic models. These are models

that consider the effects of lagged outcomes and/or lagged and current interventions on current out-

comes, and also models of the transition between states. In this context the gap between what is well

known for the econometrics of linear and nonlinear models is particularly large, despite the existence of

a broad array of nonlinear situations of applied interest.5 Examples include mixed discrete/continuous

VAR models of transmission of shocks

yit =
(
ρyit−1 + x′itβ + α1i + vit

)
dit

dit = 1
{
γdit−1 + z′itδ + α2i + φvit + εit ≥ 0

}
,

or state-dependent discrete choice responses

yit = 1
{
F
(
γyit−1 + x′itβ + αi

)
≥ uit

}
,

where uit | xti, yt−1
i , αi ∼ U (0, 1), and the feedback process f

(
xit | xt−1

i , yt−1
i , αi

)
and the probabil-

ity distribution of initial conditions f (yi1, xi1, αi) are unrestricted, where xti denotes the sequence

(xi1, ..., xit).

3 Random effects and incidental parameters

Random-effects approaches provide a general solution to the estimation of panel data models. We ar-

gue that these approaches are conveniently interpreted from a Bayesian perspective, and that Markov

Chain Monte Carlo (MCMC) methods are useful tools for estimation and inference in this context.

When the parametric assumptions on the distribution of individual effects are relaxed, however,

random-effects estimators suffer from an incidental parameter problem, just as fixed-effects maximum

likelihood.

3.1 Average likelihood

We start by presenting the general setup. Let yi = (yi1, ..., yiT ) denote the full sequence of outcomes,

and let xi = (xi1, ..., xiT ) denote a sequence of strictly exogenous covariates. The likelihood of yi

conditioned on xi and the vector of individual effects αi is assumed to belong to a parametric family

fy|x,α (yi|xi, αi; θ) characterized by the parameter θ.

5See for example Altonji, Smith and Vidangos (2009), Arellano and Carrasco (2003), Honoré and Kyriazidou (2000),

and Wooldridge (2005).
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This framework is not limited to static models. One can include a finite number of lagged outcomes,

as:

fy|x,α(yi|xi, αi; θ) =
T∏

t=1

fyt|yt−1,x,α(yit|yt−1
i , xi, αi; θ),

where yti = (yit, yi,t−1, ...), in which case xi contains strictly exogenous regressors and initial conditions.

As a simple (linear) example, let us consider the dynamic Gaussian autoregressive model:

yit = ρyi,t−1 + x′itβ + αi + vit, (4)

where vit is i.i.d. across individuals and time, and follows a normal distribution with zero mean and

variance σ2. In this case, the conditional likelihood function is fully characterized by the parameter

θ =
(
ρ, β, σ2

)
, and is given by:

fy|x,α(yi|xi, yi0, αi; θ) =
1

σT

T∏

t=1

φ

(
yit − ρyi,t−1 − x′itβ − αi

σ

)
,

where φ denotes the standard normal density, and yi0 is the initial observation of the yi process.

Additionally, when yit is a vector of random variables (e.g., containing outcomes per se as well

as non-exogenous regressors), this representation allows for general feedback effects, as long as the

researcher is willing to parametrically specify the feedback process– that is, the conditional distribution

of xit given x
t−1
i , yt−1

i , and αi. General predetermined regressors, in the sense of variables associated

with unrestricted feedback processes, would give rise to a semiparametric likelihood, and are therefore

not covered in this discussion.

In a random-effects fashion, the researcher will complete the model by specifying a parametric

distribution for the individual effects, conditional on exogenous covariates and initial conditions. Let

fα|x (αi|xi; ξ) denote that distribution, which is fully characterized by the parameter ξ.

A popular example is to specify αi to be Gaussian with a mean that is a linear combination of

exogenous covariates, and a constant variance, yielding:

fα|x (αi|xi; ξ) =
1

ν
φ

(
αi − x′iµ

ν

)
,

where ξ = (µ, ν). Chamberlain (1984) introduces this specification in the static probit model. Al-

varez and Arellano (2003) use a similar specification for the distribution of individual effects of an

autoregressive model where the conditional mean of αi is linear in the initial condition of the process.

Once a distribution has been postulated for the individual effects, the researcher will base inference

on the average (or integrated) likelihood:

fy|x(yi|xi; θ, ξ) =
∫
fy|x,α(yi|xi, α; θ)fα|x (α|xi; ξ) dα, (5)

where the integral is taken over the support of the distribution of individual effects (typically the

real line when αi is scalar). Note that the integrated likelihood function is fully characterized by the

parameter (θ, ξ) so that, under correct specification, a parametric approach can be used for estimation

and inference.
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Bayesian interpretation. The average likelihood function given by (5) is also appealing from a

Bayesian perspective. A Bayesian researcher would start by specifying a joint prior distribution for

(α1, ..., αN , θ). Viewing α1, ..., αN as an i.i.d. sample of missing data, it is natural to assume prior

conditional independence of α1, ..., αN given θ. Under this assumption, the joint prior conditioned on

covariates can be decomposed as:

π (α1, ..., αN , θ) = π1 (α1|θ)× ...× πN (αN |θ)× π (θ) .

In this case the posterior distribution for θ is proportional to:

p (θ|y1, ..., yN , x1, ..., xN ) ∝ π (θ)

∫
fy|x,α(y1|x1, α1; θ)π1 (α1|θ) dα1 × ...

...×
∫
fy|x,α(yN |xN , αN ; θ)πN (αN |θ) dαN . (6)

Therefore, the random-effects integrated likelihood (5) can be interpreted in a Bayesian perspective

as a marginal likelihood, where the (hierarchical) prior specification on individual effects is given by:

πi (αi|θ; ξ) = fα|x (αi|xi; ξ) .

In words, random-effects specifications are a special case of hierarchical Bayesian approaches, where

the prior distribution of individual effects is assumed independent of common parameters.

3.2 Integration versus simulation

Suppose first that interest centers on structural parameters θ only. For example, in the above example

of the CES production function given by (2), the researcher may be interested in the relative elasticity

λ of low-skill labor. A classical approach to estimation is to maximize the log-average likelihood, and

to estimate θ as:

θ̂ = argmax
θ

(
argmax

ξ

N∑

i=1

log

∫
fy|x,α(yi|xi, α; θ)fα|x (α|xi; ξ) dα

)
, (7)

where the integral is taken on the support of individual effects.

Solving (7) requires computing integrals with respect to α. In the linear autoregressive model with

a Gaussian specification for αi, the average likelihood function is analytical (e.g., Alvarez and Arellano,

2003). However, in nonlinear panel models the integrals are generally not available in closed form and

must be approximated numerically. Quadrature methods (Butler and Moffitt, 1982), and simulation-

based approaches such as importance sampling (Geweke, 1989) may be used for this purpose.6

The connection with Bayesian approaches, which we have emphasized above, suggests another

way to estimate θ. Indeed, from (6) the classical random-effects estimator θ̂ in (7) coincides with the

6Judd (1998) is a useful reference on numerical integration techniques.
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posterior mode of θ, where the prior for αi is fα|x (.|xi; ξ), and where θ and the hyperparameter ξ have

been endowed with independent flat (improper) priors. So, an alternative approach to estimation

is to generate a Markov chain of parameter draws, in a purely Bayesian fashion, using these prior

specifications. This approach may be interpreted as a computationally convenient way of calculating

the random-effects maximum likelihood estimate θ̂.

It is well-known that the statistical equivalence between Bayesian and classical approaches is not

limited to the case of the posterior mode with flat priors. Using any non-dogmatic priors on θ and ξ

instead will result in asymptotically equivalent estimates as N tends to infinity. Also, using posterior

mean instead of posterior mode will have a negligible effect on the asymptotic distribution of the

estimate.7

As a result of the increase in computation power over the last decades, Bayesian estimation ap-

proaches have become increasingly attractive from a practical perspective. This is leading in turn

to a pragmatic synthesis of Bayesian and frequentist approaches, as MCMC methods can be viewed

as a way of computing estimators that are justified from a frequentist point of view. As we will see

below, Bayesian techniques are also useful devices to compute frequentist confidence intervals for the

parameters of interest.

The principle of Markov Chain Monte Carlo (MCMC) methods is to generate a sequence of draws

from the posterior distribution of the model’s parameters. The draws are generated in a recursive

manner, starting with initial parameter values. The posterior distribution corresponds to the equilib-

rium distribution of the Markov chain, which is usually reached after a sufficiently large number of

steps. The output of the chain– that is, the sequence of parameter values– is then interpreted as a

sequence of draws from the posterior distribution of the parameter, and features of that distribution

(such as mean, mode, or quantiles) can be directly computed.

In a panel data context, it is often convenient to introduce α1, ..., αN as additional parameters

that we will draw jointly with θ and the hyperparameters ξ. The sth step of the Markov chain then

typically takes the following form, reminiscent of the Gibbs sampler:

• Update ξ(s) given α
(s−1)
1 , ..., α

(s−1)
N .

This step treats the draws of individual effects obtained in the previous step as observations.

• For each i = 1, ..., N , update α
(s)
i given yi, xi, θ

(s−1), and ξ(s).

For example, when αi is scalar and enters yit additively, this second step requires to draw from

the posterior distribution of a mean of T observations (N times).

• Update θ(s) given y1, ..., yN , x1, ..., xN , and α
(s)
1 , ..., α

(s)
N .

7However, the priors on α1, ..., αN are very informative when T is small. See the discussion of misspecification in

Subsection 3.3 below.
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To draw θ, the researcher proceeds as if the individual effects were observed. Metropolis methods

are typically used here.

Parametric Bayesian approaches have been used in many economic applications, some good ex-

amples being Rossi, McCulloch and Allenby (1995) for demand analysis in marketing, and Geweke

and Keane (2000) for modelling earnings dynamics. See also Hajivassiliou and McFadden (1998). The

textbook of Tony Lancaster (2004) devotes a chapter to the application of Bayesian techniques to

panel data models.

An appealing feature of Bayesian techniques is that the output of the Markov chain does not only

provide estimates of θ and ξ, but also asymptotically valid frequentist confidence intervals. Under quite

general conditions (see van der Vaart, 2007, p. 141), the Bernstein-Von Mises theorem guarantees

that 5%-95% quantiles of the posterior distribution of θ are equivalent (in a first-order sense) to the

endpoints of a frequentist 90%-confidence interval of θ̂ as N tends to infinity.

Average marginal effects. So far, we have discussed estimation and inference for the vector of

structural parameters θ. In many applications, the researcher is also interested in averages of indi-

vidual responses taken over the distribution of individual effects. These policy parameters, or average

marginal effects, take the general form:

M = E [m (xi, αi; θ)] ,

wherem() is a known function, and where the expectation is taken with respect to the joint distribution

of xi and αi.
8

For example, in the CES production function (2), one may be interested in the average (semi-)

elasticity of high-skill labor. That is, including all common parameters in θ:

E

[
∂E (log yit|xi, ℓi, zi, αi, σi; θ)

∂xit

]
= E

[
γ(1− λ)xσi−1

it

γxσi

it + (1− γ)zσi

it

]
. (8)

Note that this quantity involves an integral over the distribution of individual effects.

A first approach to estimate the average elasticity in (8) is to replace the distribution of individual

effects by its random-effects estimate, and to substitute the latter in the expectation. This results in

the following estimate:

1

NT

N∑

i=1

T∑

t=1

∫
γ̂(1− λ̂)xσ−1

it

γ̂xσit + (1− γ̂)zσit
fσ|x

(
σ|xi; ξ̂

)
dσ, (9)

where fσ|x denotes the postulated random-effects distribution of σi. Under correct specification, the

classical estimate (9) is typically root-N consistent for the average elasticity, and asymptotic standard

8One may also consider expectations with respect to other distributions. See for example Altonji and Matzkin (2005),

and Blundell and Powell (2004).
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errors can be obtained via the delta-method. Note that evaluating (9) requires to compute an integral

numerically.

Here also, an alternative estimate may be computed from the outcome of a Markov chain. To see

this, let us denote as:

M (γ, λ, σ1, ..., σN ) =
1

NT

N∑

i=1

T∑

t=1

γ(1− λ)xσi−1
it

γxσi

it + (1− γ)zσi

it

. (10)

MCMC techniques will deliver a sequence of draws of the model parameters γ, λ, and the individual

effects σ1, .., σN , from which it is easy to construct a sequence of draws from the posterior distribution

of the average marginal effect M (γ, λ, σ1, ..., σN ), simply using (10). A natural estimate is then the

posterior mode, or mean, of the effect (as proposed in Arellano and Bonhomme, 2009).

Under correct specification of the distribution of individual effects, the advantage of using the

posterior mode or mean of M (γ, λ, σ1, ..., σN ) instead of the classical random-effects estimate (8) is

computational, as no extra calculation (i.e, numerical integration) is needed once the Markov chain is

available. Moreover, as in the case of common parameters, frequentist confidence intervals can be read

on the posterior distribution of the average marginal effect. In Section 5, we will see that when the

distribution of individual effects is misspecified, there is an additional reason for using the posterior

mean or mode to estimate average marginal effects, as the latter is consistent as T tends to infinity

while the classical random-effects estimator is not. This is due to the fact that as the time-series

information accumulates, the impact of the prior distribution of the effects on the posterior of the

policy parameter tends to disappear.

3.3 Properties under misspecification

Panel data researchers have long been concerned with the possibility that the functional form of the

distribution of αi might be misspecified (e.g., Chamberlain, 1980). The standard approach in the

literature is to maintain parametric assumptions on the conditional distribution of yi given xi and αi,

while at the same time leaving the distribution of αi given xi unrestricted. The asymmetry between

the two parts of the average likelihood function is usually motivated by the desire to treat αi as missing

data given the availability of repeated outcomes for each unit.

Formally, the researcher will thus interpret (5) as an average pseudo-likelihood, possibly mis-

specified if the population cross-sectional distribution of individual effects does not belong to the

parametric family fα|x (.|xi; ξ). Robustness of estimation methods to possible misspecification is often

an important issue in empirical applications. One source of misspecification may be that the marginal

distribution of αi is incorrect (for example, the true distribution of αi is not Gaussian). Another,

empirically relevant, source is the incorrect conditioning with respect to exogenous covariates. This

second problem is especially severe in dynamic models, where one needs to properly control for initial
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conditions.9

In linear models, simple random-effects specifications may lead to consistent estimates, even though

they are misspecified. This situation arises in the linear autoregressive model when one postulates

a Gaussian distribution for the individual effects, where the conditional mean of αi is linear in the

initial condition yi0. In this model, correlated Gaussian random-effects remains consistent even if

the population distribution of individual effects is not Gaussian. One simply needs to adjust the

computation of standard errors (Alvarez and Arellano, 2003).

Incidental parameters. In nonlinear models, however, we are not aware of similar robustness

results for random-effects specifications. Random-effects maximum likelihood falls into the general

class of pseudo-likelihood approaches. As a consequence, it will asymptotically deliver pseudo-true

parameter values, which minimize the (Kullback-Leibler) distance between the postulated parametric

family of distributions and the population distribution of the data (White, 1982). In nonlinear models,

there does not seem to be any special reason to expect pseudo-true parameter values to coincide with

true parameter values in general. Random-effects maximum likelihood will thus yield inconsistent

estimates of the parameters.

A notable exception is given by models where the conditional likelihood factors as:

fy|x,α(yi|xi, α; θ) = g (yi, xi; θ)h (yi, xi, α) , (11)

as in the panel Poisson counts model (Lancaster, 2002, Blundell et al., 2002). The reason is that,

when (11) holds, θ satisfies moment conditions that do not depend on the postulated distribution of

the effects.10 However, this likelihood property is very rarely exactly satisfied in nonlinear models.

Interestingly, as T increases random-effects estimators become consistent, irrespective of the form

of the postulated distribution of individual effects (Arellano and Bonhomme, 2009). The reason is

that:

log fy|x,α(yi|xi, α; θ) =
T∑

t=1

log fyt|yt−1,x,α(yit|yt−1
i , xi, α; θ)

is a sum of T time-series observations, so the effect of the prior distribution fα|x becomes negligible

compared to that of the likelihood as the number of time periods increases. For small T , however, the

estimator suffers from a bias of order 1/T under standard regularity conditions.

The properties of misspecified random-effects maximum likelihood are thus similar to those of a

“fixed-effects” maximum likelihood (ML) approach that treats the individual effects as parameters to

be estimated jointly with θ. In this case, the ML estimates of αi suffer from an estimation bias. As

a consequence, in a nonlinear setup the ML estimate of θ is generally inconsistent for fixed T .11 As

9Heckman (1981) andWooldridge (2005) describe different approaches to the treatment of initial conditions in dynamic

panel data models.
10Specifically, E [∂ log g (yi, xi; θ) /∂θ] = 0.
11Here also, an exception is given by models where the conditional likelihood factors as in (11).
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the precision of the αi estimates increases as T increases, the ML estimate of θ is consistent in the

limit. However, it suffers from a 1/T bias. The fixed-T inconsistency of fixed-effects and random-

effects maximum likelihood approaches may thus be viewed as a manifestation of the same incidental

parameter problem.

Flexible random-effects. In contexts where the parameter θ is point-identified, a general solution

is to postulate a flexible parametric model for the individual effects, and to let the dimension of the

parameter ξ increase with the sample size. Sieve– random-effects– maximum likelihood (Shen, 1997,

Chen, 2007) has been advocated in the context of nonlinear models with latent variables such as panel

data models (Hu and Schennach, 2008, Bester and Hansen, 2007). A related approach is given by

nonparametric Bayesian methods based on Dirichlet process priors (West, Müller and Escobar, 1994).

Hirano (2002) applies these methods to an autoregressive panel data model. A challenge in panel data

applications is the conditioning on (time-series sequences of) covariates and initial conditions, which

raises an issue of curse of dimensionality.

Recent work, however, has emphasized the possibility that common parameters– and average

marginal effects– may fail to be point-identified. As we will see in the next section, lack of identification

may arise in simple semiparametric models such as probit, where the only nonstandard feature of the

model is due to the presence of an unrestricted distribution for the individual effects. When point-

identification fails, “flexible” random-effects estimation approaches may provide misleading answers

in short panels. For this reason, the study of identification is an important part of nonlinear panel

data analysis.

4 Fixed-T , fixed-effects (set)-identification

Identification requires that the parameter values that generate the data be uniquely defined. In

panel data analysis, the model’s parameters include the unknown distribution of individual effects,

so identification is a non-trivial issue. Recent work in panel data emphasizes the possibility that the

parameters of interest be set-identified in some of the most widely used models. Here we first review

part of this work. Then, we discuss some situations where quantities of interest are point-identified

for fixed T .

4.1 Widespread identification failure...

When panel data outcomes are discrete, serious identification issues arise. This point was made clear in

an early paper by Gary Chamberlain (recently published in 2010), and has recently been re-emphasized

in the literature.

As before, we will work with a parametric conditional model for yi given xi and αi characterized

by a parameter θ. Assuming that outcomes have discrete support, the average likelihood function of
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an individual observation is given by:

Pr (yi|xi; θ) =
∫

Pr (yi|xi, α; θ) fα|x (α|xi) dα, (12)

As an example, one may consider a static binary choice model of the form:

yit = 1
{
x′itθ + αi ≥ vit

}
, (13)

where vit are i.i.d. draws from a known distribution F (e.g. normal, logistic), independent from the

sequence of x’s and the individual effects. In this case the conditional outcome probabilities are given

by:

Pr (yi|xi, α; θ) =
T∏

t=1

F
(
x′itθ + α

)yit [1− F
(
x′itθ + α

)]1−yit .

The identification problem comes from the fact that the individual effects are unobserved to the

econometrician, so the conditional probabilities P (yi|xi, α; θ) have no direct counterpart in the data.

Here we leave the conditional distribution of individual effects unrestricted, consistently with a “fixed-

effects” perspective. Thus, via (12), the observed data frequencies involve an unknown mixing distri-

bution.

Chamberlain’s underidentification argument. Suppose that the researcher is interested in es-

timating the structural parameter vector θ. The identification question is the following: is there a

unique value of θ such that (12) is satisfied for some conditional distribution of individual effects

fα|x? In the static binary choice model (13), with T = 2 and exogenous covariates with bounded

support, Chamberlain (2010) finds a surprisingly simple answer to the identification question: θ is not

point-identified, unless F is the logistic distribution.

Chamberlain’s proof has two steps. In a first step, it is shown that for θ to be identified, there

must exist a linear combination of the conditional probabilities that is equal to zero. In other words,

there must exist some non-trivial ψj ’s, possibly dependent on x, such that:

ψ1 Pr (0, 0|x, α; θ) + ψ2 Pr (1, 0|x, α; θ) + ψ3 Pr (0, 1|x, α; θ) + ψ4 Pr (1, 1|x, α; θ) = 0, for all x, α.

(14)

The second step in the proof is to show that the logistic distribution is the only continuous distri-

bution for which (14) is satisfied. To see this, note that taking α → ±∞ in (14) yields ψ1 = ψ4 = 0,

provided αi is supported on the full real line given x. It thus follows that:

ψ2F
(
x′1θ + α

) (
1− F

(
x′2θ + α

))
= ψ3F

(
x′2θ + α

) (
1− F

(
x′1θ + α

))
.

This is an equation of the form:

G(u+ d) = a(d)G(u),

with d = (x2 − x1)
′ θ and G(u) = F (u)/ (1− F (u)), the solution of which is G(u) = ea+bu. This

solution for G yields the logistic form for F : F (u) = ea+bu/
(
1 + ea+bu

)
.
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Restricting the support of individual effects. To provide some intuition about Chamberlain’s

underidentification result, it is useful to work under the assumption that the distribution of individual

effects has known discrete support. We will denote its points of support as αk, k = 1, ...,K, with K

possibly very large. Then, (12) takes the form of a simple linear system of equations:

Pr (yi|xi; θ) =
K∑

k=1

Pk (yi|xi; θ)πk (xi) , (15)

where πk (xi), k = 1, ...,K, denote the conditional probabilities of individual effects given covariates,

and where:

Pk (yi|xi; θ) = Pr (yi|xi, αi = αk; θ) , k = 1, ...K.

Bonhomme (2010) notes that, when the number of points of support of yi is large enough relative

to K, there exists a simple way to obtain restrictions on θ that do not involve the individual effects.

To see this, let Px (θ) denote the 2T × K matrix of conditional probabilities Pk (y|x; θ) for a given

value xi = x of the exogenous covariates, and denote as Py|x the 2T × 1 vector of data frequencies,

and as πx the K × 1 vector of probabilities of individual effects. Writing (15) in matrix form yields:

Py|x = Px (θ)πx, for all x.

So, assuming that Px(θ) has independent columns,12 we obtain the following restrictions on θ alone:

[
I − Px(θ)

(
Px(θ)

′Px(θ)
)−1

Px(θ)
′
]
Py|x = 0, (16)

where I is the identity matrix of size 2T .

This “functional differencing” approach differences out the probability distribution of the individual

effects. A differencing strategy is feasible even though the panel data model is nonlinear, as the system

(15) that relates outcome probabilities to the probabilities of individual effects is linear. Moreover,

as the projection matrix in (16) multiplies the vector of outcome probabilities, this approach delivers

conditional moment restrictions– given covariates xi– on common parameters θ.

In discrete choice models with large K, the moment restrictions (16) will often be noninformative

about θ. Indeed, the projection matrix on the left-hand side of (16) is zero when the rows of Px(θ)

are linearly independent. When T = 2, the dimensions of the matrix Px(θ) are 4 × K. So, when

K ≥ 4 the rows of Px(θ) are independent in general. An important exception is obtained for the logit

model. To see the link with Chamberlain (2010)’s argument, note that (14) simply means that the

rows of the Px(θ) are dependent. In the logit model, even when K is large relative to 2T , the functional

differencing approach delivers informative moment restrictions on θ, which actually coincide with the

first-order conditions of the conditional maximum likelihood estimator of Andersen (1970).

12This assumption may be easily relaxed, using a generalized matrix pseudo-inverse (e.g., Moore-Penrose).
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In situations where the support of individual effects is less rich than the support of outcomes, this

discussion also highlights identification possibilities.13 Indeed, when K is smaller than the number of

points of support of yi (that is, 2
T ) the rows of Px(θ) are necessarily linearly dependent. As a result,

(16) is generally informative about θ. This suggests that, when the support of outcomes is richer than

the support of individual effects, panel data offer the possibility to derive restrictions on θ that do

not depend on αi. This intuition will be important when discussing the identification of panel data

models with continuous outcomes.

Partial identification. In many instances, however, the researcher is unwilling to limit a priori the

number of values that αi can take. When αi can take an arbitrarily large number of values, Chamber-

lain (2010)’s result suggests that most discrete outcomes panel data models with discrete regressors

will not be point-identified. Recently, several authors have acknowledged the widespread identification

failure of fixed-effects discrete choice panel models with discrete x’s, and proposed methods that deal

with the lack of point-identification.

When parameters fail to be point-identified, one may still be able to characterize the region where

the true parameter belongs. This is the identified set of the parameter θ, which is given by:

ΘI =
{
θ’s, there exists a set of probabilities πk(x) such that:

Pr (yi = y|xi = x) =
K∑

k=1

Pk (y|x; θ)πk (x) for all values of y, x.
}

One method to construct ΘI is given in Honoré and Tamer (2006). They start by fixing a value θ

of common parameters. Then, they note that θ belongs to the identified set if and only if a system

of linear equality and inequality restrictions is satisfied.14 So, checking that θ ∈ ΘI may be done in

the same way as one verifies the feasibility of a linear program, for which there exist fast and widely

available algorithms. Chernozhukov, Hahn and Newey (2005) and Honoré and Tamer (2006) show

that a linear programming approach can also be used to compute bounds on average marginal effects.

Another approach to construct θ is given in Chernozhukov et al. (2007). They note that true

values of θ can be characterized as the minimand of the (weighted) Euclidean distance between the

data frequencies Pr (yi = y|xi = x) and the model predictions
∑K

k=1 Pk (y|x; θ)πk (x), across outcome

and regressor values, where the minimization is with respect to the vector of probabilities of individual

effects πk(x). Hence, an alternative approach to compute the identified set ΘI is to solve this quadratic

programming problem, where the probabilities πk(x) are constrained to belong to the unit simplex.

There exists interesting evidence on the size of identified sets in some simple models. In a dynamic

probit model without regressors, Honoré and Tamer (2006) find that the identified region for the

13See the recent paper by Browning and Carro (2009) for a related approach, in the context of dynamic binary outcome

models.
14The inequality restrictions come from the fact that πk(x)– which is a probability– must be nonnegative.
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autoregressive parameter θ is indistinguishable from a singleton when T ≥ 4. This means that θ is

“nearly” point-identified in this model. In the static probit model with an i.i.d. binary regressor,

the numerical calculations in Chernozhukov et al. (2007) suggest that the identified set for the slope

coefficient shrinks very fast as T increases. However, they also emphasize that the convergence rate

of the identified set to a singleton as T increases depends on the properties of the joint distribution

or regressors and individual effects.

The main advantage of the approach in Chernozhukov et al. relative to Honoré and Tamer’s is

that it can be used for estimation and inference on the identified set. Indeed, part of the linear

equality constraints that define the identified set in the Honoré and Tamer approach involve data

frequencies. When population quantities are replaced by empirical counterparts, these constraints

will not hold in general. In contrast, the quadratic program of Chernozhukov et al. can be applied

to empirical frequencies. Building on the recent literature on estimation and inference of partially

identified models (i.e., Chernozhukov, Hong and Tamer, 2007), Chernozhukov et al. (2007) propose to

estimate the identified region as the set of θ’s for which the quadratic objective function is small enough.

They provide a consistency result for their estimator and show how to construct asymptotically valid

confidence regions for the identified set ΘI .

So far, these approaches are limited to simple setups with discrete outcomes and discrete regressors.

At the same time, the econometric literature on partial identification and inference is rapidly developing

(e.g., Tamer, 2010). Thus, we expect progress to be done in this direction, which could be part of a

future survey on nonlinear panel data analysis.

A numerical illustration. As an illustration, we compute the population identified set in a simple

static probit model:

yit = 1 {θ(t− 1) + αi ≥ vit} ,

where vit is i.i.d. standard normal. We vary the number of points of support K of αi, that we suppose

uniformly distributed on the interval (−3, 3). In addition, to generate the data we take θ = .7, and

we choose the probabilities πk to closely resemble those of a normal distribution, as in Honoré and

Tamer (2006):

πk = Φ

(
αk + αk+1

2

)
− Φ

(
αk + αk−1

2

)
, k = 2, ...,K − 1,

where Φ is the cumulative distribution function of the standard normal distribution. In addition,

π1 = Φ
(
α
1
+α

2

2

)
, and πK = 1− Φ

(
αK+αK−1

2

)
.

Figure 1 shows the results, for T = 2 and T = 3, and for various values of K. We have used a

quadratic programming method to compute the identified sets. We see that, when the support of αi

is known and smaller than 2T − 1 (that is, K = 3 for T = 2, and K = 7 for T = 3), the structural

parameter θ is point-identified. This suggests that excess support in outcomes relative to individual
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effects may lead to point-identification. When K is larger, the parameter is partially identified. For

T = 3, the identified set is already very small in this model.

Figure 1: Identified sets in a simple static logit model with time trend
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Note: The true θ is .7, and αi has K points of support, where K is shown on the x-axis. The y-axis features

the identified set for θ.

4.2 ... but there is room for point-identification

The conclusion of the previous subsection may seem pessimistic: in many panel data models, point-

identification is rather the exception than the rule. So one needs to resort to (yet) non-standard

set estimation and inference approaches, which are (so far) limited to simple setups. Here we argue,

however, that panel data, thanks to the presence of time variation, offer opportunities for point-

identification.

4.2.1 Point-identified objects of interest

Binary choice. In various panel models, some objects of interest are point-identified, although

others are not. For illustration, let us start by considering a simple static probit model:

yit = 1 {θxit + αi ≥ vit} , (17)

where vit are i.i.d. standard normal, and where xit is a sequence of binary exogenous regressors. We

have seen above that θ is not point-identified in this model. However, in an application, the researcher
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may not be interested in θ per se, but rather in the average marginal effect of an increase in xit from

0 to 1, that is:

∆ = E [E (yit|xit = 1, αi)− E (yit|xit = 0, αi)]

= E [Φ (θ + αi)− Φ (αi)] ,

where Φ is the cumulative distribution function of the standard normal distribution.

In this model, although the overall average ∆ is not point-identified for fixed T , the average effect

on the subpopulation of units whose x’s change over time is point-identified (Chamberlain, 1982, Hahn,

2001). To see this, let us take T = 2. We have:

∆10 = E

[
E (yi1|xi1 = 1, αi)− E (yi1|xi1 = 0, αi)

∣∣∣xi1 = 1, xi2 = 0
]

= E

[
E (yi1|xi1 = 1, xi2 = 0, αi)− E (yi2|xi2 = 0, αi)

∣∣∣xi1 = 1, xi2 = 0
]

= E

[
E (yi1|xi1 = 1, xi2 = 0, αi)− E (yi2|xi1 = 1, xi2 = 0, αi)

∣∣∣xi1 = 1, xi2 = 0
]

= E [yi1|xi1 = 1, xi2 = 0]− E [yi2|xi1 = 1, xi2 = 0] .

To derive this series of equalities, we have used two types of assumptions. Note that the normality

assumption is not needed. The first assumption we have used is the strict exogeneity of xit, which

ensures that E (yi1|xi1, xi2, αi) and E (yi1|xi1, αi) coincide. The second is a marginal stationarity

assumption, which implies that the conditional expectation E (yit|xit, αi) does not depend on t. These

two types of assumptions have been used in other contexts to derive point- and set-identified effects

of interest (Chernozhukov et al., 2009, Hoderlein and White, 2010).

It thus follows that:

∆10 = E [yi1 − yi2|xi1 = 1, xi2 = 0] ,

so that ∆10 is point-identified from the data. A similar result holds for the average effect in the subpop-

ulation of units for which xi1 = 0 and xi2 = 1. However, in this model, the two remaining conditional

averages– for (xi1, xi2) = (0, 0) or (1, 1)– are not point-identified. The approach in Chernozhukov et

al. (2007) delivers bounds on these terms, hence on the unconditional effect ∆.

Random coefficients. As another example where point-identified average marginal effects are avail-

able, consider the following random coefficient model:

yit = z′itδ + αi + βixit + vit, (18)

where xit ∈ {0, 1} and zit are strictly exogenous. In this model, identification of δ is obtained via

quasi-differencing, provided T ≥ 3 (Chamberlain, 1992).

Here, the marginal effect of xit for individual i is:

E (yit|xit = 1, αi, βi)− E (yit|xit = 0, αi, βi) = βi.
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The researcher may be interested in estimating average marginal effects, i.e. means of βi in specific

subpopulations. Arellano and Bonhomme (2010) use this framework to model the effect that a mother

smokes during pregnancy (xit = 1) on the weight of the child at birth (yit). The “panel” component of

the data comes from the fact that mothers have multiple children. They are interested in estimating

the mean effect of smoking across mothers, while acknowledging that this effect may be heterogeneous.

Note that (18) implies that:

E (βi∆xit|xi) = E

[
∆
(
yit − z′itδ

) ∣∣∣xi
]

is point-identified, where ∆wit = wit − wi,t−1 is the first-difference operator, and xi denotes the full

sequence of regressors xit. Therefore, similarly to the above binary choice model, and taking T = 2

for simplicity, the mean of βi is point-identified in the subpopulation of individuals whose x’s vary

over time. In the smoking example, this means that the average smoking effect is identified in the

subpopulation of mothers whose smoking status changed between pregnancies. However, unlike the

binary choice example, bounds on the smoking effect for mothers whose smoking status did not change

will not be informative here, as the range of the outcome variable is too wide. This means that there

will be considerable uncertainty about the overall average smoking effect in the total population.

When xit is continuous instead of binary and the subpopulation of units whose x’s change over

time coincides with the total population, the researcher will be able to identify the overall average

effect. The analysis in Graham and Powell (2010), however, shows that one must proceed with caution

in estimation. To see why, let us write the population average of βi as:

E (βi) = E

[
∆(yit − z′itδ)

∆xit

]
. (19)

The estimation problem comes from the presence of the denominator in (19): when xit is a persistent

process, ∆xit will be close to zero with non-negligible probability, so a naive empirical counterpart

of (19) will be very imprecise. Graham and Powell solve this problem by using a trimming strategy,

dropping a small percentage of problematic observations that goes to zero as the sample size increases.

Predetermined regressors. Lastly, although we have focused on static models, it may also be that

interesting average effects are point-identified in models with dynamics. To give a simple example,

let us consider again model (18), but now allowing that xit be predetermined, as opposed to strictly

exogenous. Namely, xit is allowed to be correlated to past shocks vi,t−1, vi,t−2, ..., though not to current

and future ones. Predeterminedness seems more appealing than strict exogeneity in the context of

smoking behavior, as one could expect that a mother whose first child had a low birthweight (i.e., low

vi1) could react by quitting smoking before her second pregnancy (xi2 = 0).

Let us start by assuming that δ = 0. It turns out that interesting average effects remain point-
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identified when regressors are predetermined. To see why, note that

E (∆yit|xi,t−1 = 1) = E (βi∆xit|xi,t−1 = 1) + E (∆vit|xi,t−1 = 1)

= E (βi∆xit|xi,t−1 = 1) ,

where we have used that both vit and vi,t−1 are mean independent of xi,t−1. Moreover, using that xit

can take only two values:

E (βi∆xit|xi,t−1 = 1) = −Pr (xit = 0|xi,t−1 = 1)E (βi|xit = 0, xi,t−1 = 1) .

A similar argument shows that the mean of βi on the subpopulation for which xit = 1 and xi,t−1 = 0

is also identified. This shows that, when T = 2, the mean of βi in the subpopulation of mothers whose

smoking status changes over time remains point-identified when smoking behavior is predetermined.

Note, however, that δ has been assumed known (and normalized to zero) in the discussion. In this

framework, when δ is unknown and in the absence of external sources of identification (for example,

an instrument), the above average effects are not point-identified. See Chamberlain (1993) for an

illustration of this remark. Finding interesting point-identified effects in dynamic panel data models

seems an interesting research question.

4.2.2 Exploiting excess support

Our analysis of discrete choice panel models suggests that the identification failure is due to the lack

of support in the outcome variables, when the researcher wants to allow for a rich specification of

unobserved heterogeneity (i.e., a continuously distributed vector of individual effects). In panel data

models with continuously distributed outcomes, however, the situation is very different, and time

variation offers opportunities for point-identification.

Kotlarski’s result. As a first example, let us consider the simple linear model:

yit = x′itθ + αi + vit, t = 1, 2. (20)

We assume that xit is strictly exogenous, so that E (vit|xi1, xi2, αi) = 0. Then, θ and the mean of αi

are point-identified. When the dependence structure of (vi1, vi2) is unrestricted, however, the variance

of αi is fundamentally unidentified.

In many applications, it makes sense to restrict the dynamics of time-varying errors, which the

researcher interprets as transitory, though persistent, shocks. Suppose in the simple linear model

that vi1 and vi2 are assumed statistically independent. In addition, let us assume that the errors

are statistically independent of the individual effects αi. Then, a remarkable result due to Kotlarski
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(1967) shows that, under weak technical conditions, the three distributions of αi, vi1 and vi2 are

nonparametrically point-identified.15

Kotlarski’s result emphasizes the identification power of having repeated continuous outcomes and

time-invariant individual effects. Here, the data provide the researcher with a bivariate continuous

distribution– that of (yi1, yi2)– while the three unknown distributions are univariate. Excess support

in outcome variables is thus at the heart of the result.

Extensions. Kotlarski’s insight has been generalized in several ways in relation to panel data mod-

elling. Arellano and Bonhomme (2010) provide nonparametric identification results for the joint

distribution of (αi, βi) and for the distribution of vit in the random coefficients model (18). Their

analysis requires T ≥ 3, in order to recover a bivariate distribution of individual effects. Moreover,

they show that the assumption of statistically independent errors which underlies Kotlarski’s result

can be relaxed when T > 3, and that it is possible to allow for moving average or autoregressive error

structures with independent underlying disturbances.

Evdokimov (2010) uses Kotlarski’s intuition in a different model. He considers a nonlinear regres-

sion model of the form:

yit = g (xit, αi) + vit, t = 1, 2, (21)

where αi is a scalar individual effects, vi1 and vi2 are independent, and the function g() is unknown,

weakly increasing in αi. His analysis proceeds in three steps. First, Kotlarski’s argument is applied

conditionally on xi1 = xi2 to recover the distribution of vit. In a second step, a similar (“deconvolu-

tion”) argument is applied given xit = x to recover the conditional distribution of g (xit, αi). Lastly, the

function g() and the distribution of αi given covariates are identified using the monotonicity property

of g(). The intuition behind this result is similar to Kotlarski: from the knowledge of a bivariate distri-

bution of outcomes, it is possible to recover three univariate distributions (of αi, vi1 and vi2) together

with the univariate function α 7→ g(α, x). Evdokimov’s result thus also emphasizes the identification

power of repeated continuous outcomes.

Functional differencing. Bonhomme (2010) considers a general parametric conditional model of

outcomes given individual effects with parameter θ, as in Section 3. When outcomes are continuously

distributed, the matrix Px (θ) of conditional probabilities becomes a linear mapping, or operator, which

maps function of q-dimensional vectors α, where q is the dimension of the vector of individual effects

(e.g., q = 1 when αi is scalar), to functions of T -dimensional vectors y. The image of a function g(α)

by this operator is given by a function Lθ,xg of y such that:

[Lθ,xg] (y) =

∫
fy|x,α (y|x, α; θ) g(α)dα, for all y. (22)

15Independently, Horowitz and Markatou (1996) showed identification of these distributions under symmetry of tran-

sitory errors.
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Bonhomme shows that a similar projection (“functional differencing”) approach as in the discrete

case can be applied in the continuous case, yielding a system of equations similar to (16). This approach

provides conditional moment restrictions on θ that do not involve αi. For these restrictions to be

informative, it is necessary that the operator Lθ,x be non-surjective. In other words, its image must

not span the whole space of functions of y. In the discrete case, this condition requires that the rows of

the matrix Px(θ) be linearly dependent, and is automatically satisfied provided the number of points

of support of yi exceeds that of αi. In the continuous case, primitive conditions for non-surjectivity

are given in the censored panel data model with random coefficients and normal disturbances, and a

nonlinear regression model with independent errors. These examples lead to the conjecture that Lθ,x

should be generally non-surjective provided T > q, i.e. provided the support of outcomes be richer

than the support of individual effects.

Conditional independence restrictions. The analysis of Bonhomme (2010) is limited to setups

where the distribution of yi given xi and αi is parametric. In more general models where that dis-

tribution is not assumed to belong to a parametric family, conditional independence restrictions may

be a powerful source of identification. In the related context of nonlinear measurement error models,

general nonparametric identification results have been derived recently (Hu, 2008, Hu and Schennach,

2008, Hu and Shum, 2009). Nonlinear panel models often satisfy the type of conditional indepen-

dence restrictions that these papers assume. For example, Hu and Shum (2009) exploit the identifying

power of Markovian restrictions. An interesting aspect of their work is that they allow for general

time-varying unobservables. These identification results, however, depend on high-level assumptions

(such as operator injectivity). Providing primitive conditions in the context of specific panel data

models seems of interest.

4.2.3 The role of covariates

In a fixed-effects setting, the conditional distribution of individual effects is left completely unspecified.

This contrasts with the strong (e.g., parametric) assumptions that are often made on the conditional

distribution of outcomes given individual effects and covariates. In empirical applications, researchers

may be willing to impose some assumptions on the distribution of αi given xi, in order to gain some

flexibility on the other part of the model.

Independent random-effects. A first example where restricting the distribution of αi given xi may

be useful is given by discrete choice models. Assuming that some continuously distributed covariates

are statistically independent of individual effects may be enough to ensure identification. In effect, this

type of assumption allows to compensate for the lack of variation in the outcomes by using continuous

variation in the regressors that is unrelated to the individual effects.
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To see this, let us consider the binary choice model (13), where for simplicity we assume that

individual effects have finite support. Assuming that xi is statistically independent of αi yields, using

(15):

Pr (yi|xi; θ) =
K∑

k=1

Pk (yi|xi; θ)πk, (23)

where now πk does not depend on xi. On the left-hand side of (23) there are as many frequencies as

points in the joint support of (yi, xi), while there are K+dim θ unknown parameters. Therefore, there

will be room for point-identification of θ when K is small relative to the number of points of support

of (yi, xi). Even though yit is binary and T is small, θ may thus be point-identified in the presence

of a rich distribution of individual effects (i.e, a large K), provided the support of xi be sufficiently

rich.16

Under this type of independence restrictions, panel data are actually not needed for identification,

and a cross-section of data is enough. Beran and Hall (1992) and Hoderlein et al. (2010) apply this

idea to a cross-sectional linear model with random coefficients, while Gautier and Kitamura (2009)

treat the case of a binary choice model. Honoré and Lewbel (2002) use a similar strategy to deal

with a panel data binary choice model with predetermined regressors, where one of the regressors is

assumed independent of αi given the other covariates. They discuss some empirical applications where

this assumption makes sense. The plausibility of this type of excluding restrictions should be argued

on a case-by-case basis, just as the validity of instrumental variables in general.

Exchangeability. Finally, the identification strategy in Altonji and Matzkin (2005) also exploits

restrictions on the conditional distribution of individual effects. Their approach relies on an assumption

of exchangeability, according to which the conditional distribution of unobservables (including the

individual effects) given the sequence of regressors xi1, ..., xiT does not depend on the order in which the

xit appear. Exchangeability is natural in sibling applications, less so in proper panel data applications

where t indexes time and dependence of xit over time may be expected.

To mention a simple case where exchangeability holds, let us consider a general response model:

yit = g (xit, αi, vit) , t = 1, 2, (24)

where we suppose that the αi and vit are independent of xit given the mean covariates xi, and where

g() is an unspecified function. For simplicity, we also suppose that xit is binary, although the approach

can be generalized to continuous x’s. In this case, the average marginal effect of an increase of xi1

16See Kasahara and Shimotsu (2009) for related work concerning structural dynamic discrete choice models with

heterogeneity.
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from 0 to 1 is point-identified as, for example:

∆1 = E [g (1, αi, vi1)− g (0, αi, vi1) |xi1 = 1]

= E [yi1|xi1 = 1]− E [E (g (0, αi, vi1) |xi1 = 1, xi) |xi1 = 1]

= E [yi1|xi1 = 1]− E [E (g (0, αi, vi1) |xi1 = 0, xi) |xi1 = 1]

= E [yi1|xi1 = 1]− E [E (yi1|xi1 = 0, xi) |xi1 = 1] , (25)

where in the third equality we have used the conditional independence assumption:

E [g (0, αi, vi1) |xi1 = 1, xi] = E [g (0, αi, vi1) |xi1 = 0, xi] .

Similarly, the average effect given xi1 = 0 is also-point identified, and so is the unconditional average.

Note that this situation contrasts with the binary choice model (17) that we analyzed above, where

the unconditional average is not point-identified. Exchangeability (in this case, conditional indepen-

dence given the mean covariates), when justified, thus appears as a useful source of identification.

Note also that repeated outcomes are not needed for the Altonji-Matzkin strategy to work. Data

on the first period outcomes and regressors and the mean regressor xi will be sufficient to estimate

an empirical counterpart of (25). This makes this approach very different from the other approaches

to identification that we mentioned in this subsection, where repeated observations on yit is often

essential.

5 When the choice of population framework matters

Due to the incidental parameter problem, many natural estimation approaches– such as maximum

likelihood– lead to inconsistent estimators in the presence of fixed effects, when the number of time

periods T is fixed. In this perspective, point-identification itself is sometimes problematic. In many

applications, however, the time dimension T of the panel is not negligible relative to its cross-sectional

dimension N . Following this insight, it has been recently argued that the incidental parameter problem

may be viewed as time-series finite sample bias. This change of population framework yields a very

different view of panel data estimators, which we now review.

5.1 Non fixed-T asymptotic properties

Let us consider the same setup as in Section 3, based on a parametric likelihood function for yi given

xi and αi, characterized by a parameter θ, and an unrestricted conditional distribution for αi given xi.

Following Arellano and Bonhomme (2009), we note that many estimation approaches to θ are based

on an average likelihood that assigns weights to different values of αi:

fa(yi|xi; θ) =
∫
fy|x,α(yi|xi, α; θ)ωi (α) dα, (26)
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where the weights ωi (α) may depend on θ and exogenous covariates xi.

The random-effects integrated likelihood (5) of Section 3 is a first example. In this case, ωi (α)

depends on hyperparameters ξ, and possibly on exogenous covariates or initial conditions. However,

it is independent of θ. In a Bayesian approach, (26) will be the marginal likelihood on which to base

inference, provided the researcher has assumed prior conditional independence of individual effects

given θ. In this situation, ωi (α) is understood as the prior distribution of αi given θ.

A fixed-effects approach that estimates α1, ..., αN jointly with θ by maximum likelihood is another

special case of the average likelihood representation (26). To see this, note that the fixed-effects

maximum likelihood estimator is given by:

θ̂ML = argmax
θ,α1,...,αN

N∑

i=1

log fy|x,α(yi|xi, αi; θ)

= argmax
θ

N∑

i=1

log fy|x,α(yi|xi, α̂i (θ) ; θ),

where α̂i (θ) = argmaxαi
log fy|x,α(yi|xi, αi; θ). It thus follows that fixed-effects maximum likelihood

may be interpreted as an average likelihood approach, where the weight ωi (α) assigns all mass to the

fixed-effects estimate α̂i (θ).

When T is fixed and N tends to infinity, all these average likelihood approaches will generally

be inconsistent, as a consequence of the incidental parameter problem. This inconsistency reflects a

poor finite-sample performance when T is very small relative to N . However, in many panel data

applications, the ratio T/N is not negligible. For example, in panel growth applications (e.g., Caselli

et al., 1996) N and T are of similar orders of magnitude. In microeconometric applications, the

widely used PSID dataset now has a total of T ≈ 30 years for a few thousands individuals. In these

applications, it makes sense to consider an alternative asymptotic experiment where N and T tend

jointly to infinity.

In this perspective, let us consider the properties of a generic average likelihood estimator:

θ̂ = argmax
θ

N∑

i=1

log fa(yi|xi; θ), (27)

where fa(yi|xi; θ) is given by (26) for some weights ωi (α). Under standard regularity conditions, the

probability limit θT of θ̂ as N tends to infinity may be expanded as follows:

θT = θ +
B

T
+O

(
1

T 2

)
. (28)

In general, θT differs from the true value θ of the parameter, reflecting the fact that θ̂ is inconsistent

for fixed T . Moreover, the first-order bias B/T is generally non-zero. The recent panel data literature

on non fixed-T asymptotics emphasizes the possibility to remove that term, so that the resulting bias-

reduced estimator has a bias of order 1/T 2, as opposed to 1/T . When T is moderately large, bias

reduction may improve the finite-sample properties of θ̂ substantially.
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Asymptotic distribution. An interesting property of panel data estimators is that bias reduction

happens with no increase in the asymptotic variance as T/N tends to a constant. When conditions

are met that ensure that the average likelihood estimator is asymptotically normal, we will have:

√
NT

(
θ̂ − θT

)
d→ N (0, V ) , (29)

where (under general conditions) V is the large-T asymptotic variance of the maximum likelihood

estimator. A bias-reduced estimator θ̂
R
will satisfy:

θ̂
R
= θ̂ − B

T
+ op (1) .

So:

θ̂
R − θ = θ̂ − θ − B

T
+ op (1)

= θ̂ − θT + op (1) .

It thus follows that, as T and N tend to infinitely simultaneously such that T/N tends to a non-zero

constant: √
NT

(
θ̂
R − θ

)
d→ N (0, V ) ,

where V is the same asymptotic variance as in (29). This situation contrasts with the pure time-series

case, where bias reduction is usually associated with variance inflation.

Note that if N/T tends to 0, then:

√
NT

(
θ̂ − θ

)
d→ N (0, V ) ,

whereas if N/T 3 → 0
√
NT

(
θ̂ − θ − B

T

)
d→ N (0, V ) .

To obtain sufficiently accurate confidence intervals from this type of asymptotic approximation, the

bias should be small relative to the standard deviation. For first-order bias corrected estimators, this

requires that N be small relative to T 3 (for example, N small relative to 1, 000 or to 8, 000 for T = 10

or 20, respectively).

Non-standard situations. Before reviewing the various approaches to bias reduction used in the

literature, it is interesting to mention two cases where the asymptotic expansion (28), on which stan-

dard bias reduction techniques are based, is invalid. The first case corresponds to non-regular models,

where the objective function is not smooth. An example is the panel data quantile regression esti-

mator (Koenker, 2004). Galvao et al. (2010) have recently argued that quantile estimates satisfy

non-standard asymptotic expansions, so that usual bias reduction approaches cannot be applied in

this context.
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The second case arises in the presence of time effects: unlike the fixed-T case, allowing for time

dummies is difficult here, as there is a “double” incidental parameter problem when N (the number of

individual effects) and T (the number of time effects) grow simultaneously. This will have an effect on

the asymptotic expansion of average likelihood estimates: in addition to a O(1/T ) term that reflects

the estimation of individual effects, the expansion also involves a term of the order 1/N which is due

to the estimation of the time effects (Fernández-Val and Weidner, 2010).

5.2 Varieties of bias reduction

The first class of approaches to reduce the bias of average likelihood estimators is based on analytical

methods. Suppose, indeed, that we have constructed a consistent estimator of B in (28).17 Then, the

following estimator:

θ̂
R
= θ̂ − B̂

T

has a small bias by construction.

Analytical calculations of B are available (Hahn and Newey, 2004), and may be used to construct

an empirical counterpart B̂. Moreover, a similar approach can be used to reduce the bias of the

estimating equations– as opposed to reducing the bias of the estimator– and the bias of the objective

function. Arellano and Hahn (2007) provide a thorough review of the literature based on analytical

bias corrections.

Bias-reducing priors. A different approach to bias reduction is introduced in Arellano and Bon-

homme (2009). Focusing on estimators that maximize an average likelihood with weights ωi(α), they

ask the following question: how should one choose the weights so that the average likelihood estimator

be unbiased to first-order, so that the B term in (28) be zero? A feature of their analysis is that it

covers fixed-effects, random-effects and Bayesian approaches in a single framework.

As shown by Sweeting (1987) in his discussion of Cox and Reid (1987)’s classic paper, the answer

is simple when θ and αi are information orthogonal, i.e. when the likelihood function satisfies:

E

(
∂2 log fy|x,α (yi|xi, αi; θ)

∂θ∂α′
i

)
= 0. (30)

When parameters are information orthogonal, choosing uniform weights ωi(α) = 1 will lead to first-

order unbiasedness. More generally, taking as weight– or prior– for αi any distribution that is inde-

pendent of θ will also be bias-reducing for the average likelihood estimator.

Lancaster (2002) noted that a similar approach can be applied in situations where there exists

a reparameterization of the effects where information orthogonality (30) is satisfied. Orthogonal

reparametrizations exist in first-order linear autoregressive models and in static binary choice, for

17Here, “consistency” is understood as N and T tend to infinity.
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example. In these models, using as weight (or prior) the Jacobian of the reparameterization will lead

to bias-reduction.

However, orthogonal reparameterizations do not always exist. For example, in most of the models

of applied interest reviewed in Section 2, Lancaster (2002)’s approach will not be applicable. Arellano

and Bonhomme (2009) provide general conditions for weights to lead to biased-reduced estimates. In

the absence of orthogonal reparameterizations, the bias-reducing weights– or “priors”– depend on the

distribution of the data. In particular, they show that using as weights the normal approximation to

the sampling distribution of the estimated individual effects given θ:

ωi(α) =
1√

V̂ar [α̂i (θ)]

φ


 α− α̂i (θ)√

V̂ar [α̂i (θ)]


 (31)

leads to bias-reduction. Using (31) is intuitive: when individual effects are precisely estimated given

θ, then the weights are tightly concentrated around the maximum likelihood estimate, while when

α̂i (θ) is imprecise, the attached weight or prior on αi is very diffuse. Moreover, this choice of weights

represents a general solution to bias reduction that does not rely on parameter orthogonality.

The average likelihood approach based on bias-reducing weights such as (31) is computationally

attractive, as it relies on simulation rather than integration. Just as in the random-effects approach

reviewed in Section 3, one may generate a Markov chain of parameter draws and compute the estimate

as the posterior mode or mean of the chain. In addition, frequentist asymptotic confidence intervals

can be directly read on the posterior distribution.18

Automatic approaches. In addition to analytical approaches and weighted likelihood approaches

based on suitable weights, the recent literature has emphasized automatic approaches to bias reduction.

In static panel data models, Hahn and Newey (2004) propose to use the delete-one jackknife. The split-

panel jackknife method of Dhaene and Jochmans (2010), which we now review, allows for dynamics.

The idea is to estimate the average likelihood estimator θ̂ on the two subsamples [1, T/2] and [T/2+1, T ]

(assuming T even for simplicity). Let θ̂1 and θ̂2 denote the two estimates, and let θ̂ denote the estimate

based on the full sample. The first-order bias term of θ̂1 is B/(T/2) = 2B/T , while that of θ̂ is B/T .

It thus follows that:

θ̂
R
= 2θ̂ − θ̂1 + θ̂2

2
(32)

is unbiased to first order.

The available evidence on the finite-sample performance of the various approaches to bias reduction

is encouraging. In static and dynamic settings (e.g., Carro, 2007), these techniques tend to remove at

least half of the bias, while keeping the variance virtually unchanged. An issue concerns the possibility

18The large-T validity of this inference method relies on the properties of the pseudo-Bayesian approach of Cher-

nozhukov and Hong (2003). See Arellano and Bonhomme (2009).
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to reduce the bias further. Second-order bias reduction can be simply implemented using a variant

of the split-panel jackknife approach. However, the Monte Carlo evidence presented in Dhaene et al.

(2010) suggests that higher-order bias reduction may be associated with increased variance.

To conclude this brief review, there is so far too little comparison of the various bias reduction

approaches on simulated data. Moreover, although panel data bias reduction has been used in some

empirical applications (e.g., Hospido, 2010, Fernández-Val and Vella, 2009), more applications are

needed.

5.3 The bias of random-effects estimators

Random-effects specifications are an important special case of average likelihood approaches. It is

thus interesting to study their properties when N and T tend to infinity simultaneously.

Arellano and Bonhomme (2009) provide conditions for the first-order bias term of random-effects

maximum likelihood estimates to be zero. The conditions they find are quite restrictive. They are

satisfied by Gaussian random-effects when the model is linear. However, in nonlinear models, usual

random-effects specifications (e.g. Gaussian, Gamma) lead very generally to the presence of a first-

order bias.

In addition, they show that the bias term B/T in (28) is a function of the distance (in a Kullback-

Leibler sense) between the population cross-sectional density of the individual effects and its best

approximation in the parametric family fα|x (.|xi; ξ). As a special case, the bias is zero when the

population density belongs to the random-effects family. Indeed, in this case the random-effects

maximum likelihood estimator is fixed-T consistent.

This characterization suggests that one may achieve bias reduction by letting the parametric distri-

bution of individual effects become increasingly flexible as N increases. In a model without covariates,

Arellano and Bonhomme (2009) model the distribution of αi as a mixture of normals with an increas-

ing number of components, and show that the resulting sieve random-effects estimator of θ is unbiased

to first order. In the presence of covariates, however, achieving the required level of “flexibility” so as

to remove the first-order bias on the parameter of interest seems challenging.

Average marginal effects. In applications, the researcher is usually not interested only in common

parameters θ, but also in average marginal effects. In Section 3, we have mentioned two different ways

to estimate average marginal effects. When N and T grow simultaneously, and when the population

distribution of individual effects does not necessarily belong to the postulated random-effects family,

these two estimation approaches have strikingly different properties.

The classical estimate relies on the postulated distribution fα|x(.|xi; ξ), see equation (9). When

that distribution is misspecified, the estimate is generally inconsistent as T tends to infinity. To give a

simple example, suppose that the prior specification imposes that αi and xi are independent. Then a
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classical estimate of the correlation between αi and any component of xi will be zero by construction.

This will be true even if αi and xi are not independent in the population, and no matter how large T

is.

In contrast, the posterior mean (or mode) of the average marginal effect uses the random-effects

model as a prior specification that is updated using data information. As a result, the posterior mean

will be consistent as T tends to infinity. In the previous example, as T grows, the posterior mean of

the correlation between αi and xi will increasingly reflect the degree of correlation that exists in the

population.19

This discussion highlights an interesting contrast. Random-effects estimates of structural parame-

ters θ are always consistent as T tends to infinity, even under incorrect specification. This is due to the

fact that the “prior” information embodied in the random-effects distribution vanishes as T increases.

However, only posterior means (or modes) of average marginal effects remain consistent for large T

under misspecification. This is because, unlike the classical estimates, the posterior mean updates the

prior information by using the data.

Lastly, although they are consistent as T tends to infinity, posterior mean estimates of average

marginal effects suffer from a first-order bias in general. Arellano and Bonhomme (2009) derive the

expression of bias-reducing weights in this case. As in the analytical approach of Hahn and Newey

(2004), the bias-reducing weights depend on the form of the marginal effect. Here also, in the absence

of covariates, a sieve random-effects approach will remove the first-order bias.

6 Conclusion

Linearity and homogeneity assumptions are rarely justified by the economics of a problem. The

availability of panel data makes it conceptually possible to tackle the issues of nonlinearity and unob-

served heterogeneity simultaneously. However, the analysis of nonlinear panel data models remains a

challenge for econometricians. This survey presents some recent advances in this area.

A general approach is to postulate a parametric model, which includes in particular a model for

the distribution of the unobserved individual effects. We have emphasized the relationship between

classical “random-effects” approaches and Bayesian computation techniques, as we think that Markov

Chain Monte Carlo methods are convenient tools for estimation and inference in this context.

Random-effects methods are parametric in nature. Relaxing this assumption and leaving the

conditional distribution of individual effects unrestricted raises an identification challenge. There is

growing evidence that discrete-choice panel data models are partially identified in general. In this

19Consider the model yit = ρyi,t−1 + αi + vit, where vit is i.i.d. Gaussian (0, σ2), and ρ and σ2 are known. Assuming

a random-effects specification according to which αi is Gaussian (0, σ2

α) independent of yi0, it can be shown that the

posterior mean of M = E [αiyi0] is M/(1+ σ2

Tσ2
α

). In contrast, the classical random-effects estimate of M is zero, therefore

inconsistent as T tends to infinity.
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context, estimation and inference methods are needed. In models with continuous outcomes, however,

panel data offer opportunities for point-identification that, for a large part, remain to be explored.
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