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1. Introduction

It is common in econometric practice to encounter one of two different phenomena.
Either the data are sufficiently powerful to reject the model, or the sample evidence
is sufficiently weak so as to suspect that identification is tenuous. We provide a
way to test for underidentification using a method that is commonly employed as
a test for overidentification.

We study the identification of an econometric model that is linear in parame-
ters. We adopt a generalized-method-of-moments (GMM) perspective and write

the model as:

E(W)a =0 (1.1)

where « is a k + 1-dimensional unknown parameter vector in the null space of the

population matrix F(V¥;) where ¥, is an r by k+ 1 matrix constructed from data.

*Very preliminary draft. We thank Javier Alvarez, Raquel Carrasco, and Francisco
Penaranda for able research assistance, and John Campbell for kindly allowing us to use his
data.



We suppose the order condition (r > k) is satisfied, but not necessarily the rank
condition. Thus the maximal possible rank of the matrix E(¥;) is max{r, k + 1}.
The model is said to be identified when the null space of F(V,) is precisely one
dimensional. In this case the parameter vector of interest is obtained by imposing
a normalization that selects one element from the null space. The selection rule
can restrict one of the components of « to be one, or it might require that |a| =1
together with a sign restriction on one of the nonzero coefficients. Identification
follows when the matrix £'(¥;) has rank k. When r > k and the model is identified,
it is said to be over-identified because the rank of the matrix E(¥;) now must not
be full. Instead of having maximal rank k + 1, F(V;) has reduced rank k. This
implication is known to be testable and statistical tests of overidentification are
often conducted in practice.

The model is said to be under-identified when the rank of F(W,) is less than k.
In this case the null space of E(¥;) will have more than one dimension. A single
normalization will no longer select a unique element from the parameter space.

Instead there exists another solution a* not proportional to « such that
E(¥)a* =0. (1.2)

Tests for underidentification are not common in econometric practice, and the
aim of this paper to propose and implement such a test.

To test for the lack of identification, we ask whether there exists another
normalized vector o that satisfies (1.2). We approach this question by thinking
of (1.1) and (1.2) as emerging from a new augmented model. We attempt to
determine (o, @*) simultaneously and ask whether they satisfy the combined over-

identifying moment restrictions. If they do, then we may conclude that the original



econometric relation is not identified or equivalently is under-identified. Thus
by building an augmented equation system, we may pose the null hypothesis of
underidentification as a hypothesis that the augmented equation system is over-
identified. Rejections of the over-identifying restrictions for the augmented model
provide evidence that the original model is indeed identified. Posed in this way,
underidentification can be tested simply by applying appropriately an existing test
for overidentification. For instance, a standard test for overidentification such as
that of Sargan (1958) (and extended by Hansen, 1982) is potentially applicable
to the augmented model.

As we will see, there are two complications that must be considered in this
implementation. First, under the null hypothesis of underidentification, we are
compelled to extend the normalization to extract multiple, linearly independent
elements from the null space of E(¥,). For instance, if (a,a*) satisfies (1.1)
and (1.2), then so does any pair of linear combinations of o and o*. Since the
parameter estimates of the augmented model are of no particular interest to us, it
is of little consequence which rule is used to achieve identification. Any convenient
normalizations will suffice, and it is known how to construct GMM estimators
that are insensitive to normalization. Second, when we duplicate the moment
relations to achieve identification of the augmented model, we may introduce some
redundancy into the system. As a consequence, sometimes we will be compelled
to use less than the full 2r moment conditions from the augmented system when
testing for underidentification. We will provide some guidance as to when to
expect redundancy in the moment conditions.

The remainder of the paper is organized as follows. Section 2 considers identifi-

cation testing in the context of a single structural equation, including comparisons



to other approaches. We discuss the relationship of our method with the minimum
eigenvalue tests suggested by Koopmans and Hood (1953) and Sargan (1958), and
the reduced form approach proposed by Cragg and Donald (1993). Section 3 deals
with cross-equation restrictions, discussing an example motivated in the estima-
tion of an intertemporal asset pricing model. Section 4 considers identification
testing in autoregressive models with individual effects for short panels. This is an
example of a system of equations in which the valid instruments differ for different
equations, and the model has a nonstandard reduced form. We provide empirical
illustrations and Monte Carlo simulations for the asset pricing and the panel data

examples. Finally, section 5 contains the conclusions.

2. Single Equation

To illustrate our method and compare to other approaches, in this section we

consider a single equation from a simultaneous system. Suppose that:
Wi = uy (2.1)

where the scalar disturbance term w; is orthogonal to an r-dimensional vector z
of instrumental variables:

E (zu) = 0. (2.2a)

Typically, the first coefficient of « is set to one so that a = (1, 3'), where 3 is a

k-dimensional vector of parameters. Form:
/
\Ilt = ZtWy.

Then orthogonality condition (2.2a) is equivalent to « satisfying the moment

relation (1.1).



The parameter vector o will be identified up to scale, if and only if the rank
of E(zw),) is equal to k, which requires the order condition r > k. If the rank of
E(zwy) is k — 1 or less, the equation is not identified regardless of the difference
between r and k.

Let us assume that r» > k but the rank of E(zw;) is actually &k — 1. This
means that all the parameter values compatible with (2.2a) will lie in a linear
subspace of dimension 2. Then we can write all the admissible equations as linear

combinations of the 2r moment conditions

E(zw))a = 0

E(zw,)a* = 0.

Thus to test for underidentification, we effectively introduce a second equation to
the system:

wia = vy (2.3)

combined with the orthogonality condition:
E (Zt'l}t) = O,

and we study the simultaneous overidentification of the two econometric equations
(2.1) and (2.3). Even after normalizing each equation, there are two superfluous
dimensions to this parameterization. It may be possible, for example, to avoid
indeterminacy by choosing the two top rows of (a, &) equal to the identity matrix
of order two, which eliminates two parameters per equation. Alternatively, we
can impose the normalizing restrictions (o, a*)'(«, a*) = I, and set the (1,2)-th
element of («, a*) to zero. In any event, the effective number of parameters is 2k—2

and the number of moment conditions is 2r. If the 2(r — k) + 2 over-identifying
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restrictions for the newly constructed two-equation system are rejected, then we
have rejected the underidentification of the original econometric relation. We may
be confident in that our single equation model is identified.

In practice, it is desirable to construct a test statistic of underidentification
using a version of the test of over-identifying restrictions that is invariant to nor-
malization, such as those based on continuously updated GMM (Hansen, Heaton,
and Yaron, 1996), empirical likelihood estimation, or other information-theoretic
alternatives (Imbens, 1997, Kitamura and Stutzer, 1997, Imbens, Spady, and
Johnson, 1998).

Underidentification of a Higher Order Although the null hypothesis
that sets the rank of E(zw;) to k— 1 is the natural leading case in testing for un-
deridentification, it is straightforward to extend the previous discussion to higher
orders of underidentification. Suppose that the rank of E(z;w}) is k — j for some
j. Then we can write all the admissible equations as linear combinations of the

(7 + 1)r orthogonality conditions
E(zw;) (o, af, ...,af) = 0. (2.4)

If we impose (j+1)* normalizing restrictions on (a, aj, ..., a}) to avoid indeter-
minacy,' the effective number of parameters is (j+1)(k+1)—(j+1)? = (j+1)(k—j)
and the number of moment conditions is (j + 1)r. Therefore, by testing the
(j + 1)(r — k + j) over-identifying restrictions in (2.4) we test the null that « is

underidentified of order j against the alternative of underidentification of order

'For instance, we may make the top j + 1 rows of A = (a,a?, ..., oz;f) equal to the identity

matrix of order j + 1. More generally, we can impose the (j + 1)? normalizing restrictions
A'A = I(j41) and a; = 0 for £ > i, where a; denotes the (i, £)-th element of A.



less than j or identification.

Other Approaches Tests of underidentification in a single structural equa-
tion were first considered by Koopmans and Hood (1953) and Sargan (1958).

When r > k and the rank of E(zw}) is k, under the additional assumptions
that the error term w; is conditionally homoskedastic and serially uncorrelated,
an asymptotic chi-square test statistic of over-identifying restrictions with r — k
degrees of freedom is given by T'A;, where
dW'Z(Z2'Z) " ZWa

aW'Wa ’

and Z'W = T-'S L zw), etc. Thus )\; is the smallest characteristic root of
W'Z(Z'Z)"' Z'W in the metric of W'IW (Anderson and Rubin, 1949, Sargan,
1958).

A1 — min
a

Koopmans and Hood, and Sargan indicated that when the rank of E(zw;) is
k — 1 instead, if Ay is the second smallest characteristic root, T'(A; + A2) has an
asymptotic chi-square distribution with 2(r — k) + 2 degrees of freedom. These
authors suggested that this result could be used as a test of the hypothesis that the
equation is underidentified and that any possible equation has a homoskedastic
and non-autocorrelated error.

The statistic T (A; + A2) has a straightforward interpretation in terms of our
approach. Indeed, it can be regarded as a continuously updated GMM test of
over-identifying restrictions of the augmented model (2.1) and (2.3), subject to
the additional restrictions on the error terms mentioned above. To see this, let
A = (a,a*) and consider the minimizer of

!
(ﬂVsz%ﬂAW%%®Z@*<ZWG>

Z'Wa*
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subject to A'/W'W A = I,. The constraint restricts the sample covariance matrix
of the disturbance vector to be an identity matrix. It is used as a convenient
normalization for the two equation system.? The minimization problem may be
written equivalently as

dW'Z(Z'Z) " ZWa+a"W'Z(Z2'Z)" Z'Wa,

min
aW'Wa*=0,0/W'Wa=1,a*" W' Wa*=1

and the minimized value coincides with A\; + Ay (Rao, 1973, page 63).

More recently, Cragg and Donald (1993) considered single equation tests of un-
deridentification based on the reduced form. Let us partition w; into a (p+1)- and
a r1-dimensional vectors of endogenous and predetermined variables, respectively,
wy = (y}, 24;)’, so that k = p + ry and z = (21,, 25,;), where zy is the vector of 1y
instruments excluded from the equation. Moreover, let Il and II = Y'Z(Z'Z) " be
the (p+ 1) x r matrices of population and sample reduced form linear-projection
coefficients, respectively. With this notation and the partition IT = (II, IIy) cor-
responding to that of z, if the rank of Il, is p, « is identified up to scale, but it
is underidentified if the rank is p — 1 or less.

To test for underidentification Cragg and Donald considered the minimizer of

the minimum distance criterion
Tlvee(Il — )]V wec(I — II) (2.5)

subject to the restriction that the rank of Il; is p — 1. Under the null of lack of
identification and standard regularity conditions, this provides a minimum chi-

square statistic with 2(r — k) 4+ 2 degrees of freedom, as long as V' is a consistent

2This normalization does not fully identify a set of parameters of (2.1) and (2.3), but it is
enough to provide an explicit expression for the test statistic.



estimate of the asymptotic variance of vec(II).?

To relate (2.5) to our framework, write the augmented model (2.1) and (2.3)
as a complete system by adding to it p — 1 reduced form equations, and denote it
by

By, + Cz = uI )

Then noting that vec(Il—11) = (B® Z'Z) ' L, (ul ® z), (2.5) can be expressed

as
T T

S (ul@z)[(BeZZ)V(B @ Z'Z)] ™"y (uf @ ),

t=1 t=1

which is in the form of a continuously updated GMM criterion that depends
on (a,a*) and the coefficients in the additional p — 1 reduced form equations.
Since B does not depend on the latter, they can be easily concentrated out of
the criterion. A convenient feature of this criterion is that it is invariant to

normalization through the updating of B while V' is kept fixed.

3. Cross-Equation Restrictions

In the standard simultaneous equations system, we may test for identification
equation by equation using the approach described in Section 2. Moreover, if we
were to look at multiple equations simultaneously, our implicit null hypothesis
would be that none of the equations are identified. Rejecting this hypothesis we
could only conclude that at least one of the equations is identified. We could not

conclude that all equations are identified from this one system test. Thus in the

3If the rank of ITy is p—1, there are two linearly independent vectors, denoted by I, such that
ITI,T" = 0. For some ordering of the rows of Ily, we can normalize I' as IV = (I,T'%). Partitioning
Iy accordingly as I, = (I14,,115,), we then have that II5; = —II5,T's. To enforce the rank
restriction, Cragg and Donald considered II as a function of II;,Ilso and T's.



absence of cross-equation restrictions it seems only interesting to proceed with

one equation at a time.?

When cross equation restrictions are present matters are different. It now
makes sense to look at more than one equation at a time when testing for identi-
fication, since parameters are no longer uniquely tied to equations. In so doing,
we may encounter a problem of redundancy in our moment conditions, as we now

illustrate.
Example 3.1. Consider the following two equation model:

Yie = aq +xF+ uy

Yor = Qo+ x0 + ug

where vy, y2: and z; are endogenous variables. Let z; denote a vector of instru-

mental variables appropriate for both equations:

FE (ztult) = 0

E(ZtUQt) = 0.

To test for underidentification in the first equation alone we would introduce a

second equation and three additional normalizations:

Yie = Y1+ Vi

Ty = Yo+ Vot

4Qur formulation of the moment conditions (1.1) imposed a single normalization. If the test
just described were of interest for multiple equations without cross-equation restrictions, then
the effective number of parameters for the augmented model would be altered to account for
the multiple normalizations in the original model.
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But for the two equation system, we do not want to augment each equation be-
cause in both cases we would arrive at the same econometric relation for x;. Thus
to test for underidentification, we are led to study a three equation nonredundant

system. Therefore, what is tested is:

Elz(yie —71)] = 0
Elz(yat —79)] = 0
Elzi(xs — )] = 0.

This example illustrates a common phenomenon. Suppose we look at m equa-
tions with g endogenous variables. If the instrumental variables are the same for
each of the m equations, then augmenting the m equations to 2m equations in the
g variables will generate redundant moment conditions whenever 2m exceeds g.
The maximal number of additional nonredundant equations is min {2m, g}. As we
will see in the next section, matters are a bit more complicated when instrumental

variables appropriate for each equation differ.

An Asset Pricing Model The previous example can be motivated in the
GMM estimation of a standard consumption-based capital asset-pricing model.
Suppose a representative agent who maximizes expected isoelastic utility over
present and future consumption. The Euler equations for the agent’s consumption

and portfolio allocation decision are given by

Etfl[exp(yjt + hlp - ﬁxt)] =1 (.7 = 17 ;m)

where z; denotes the change in log consumption between ¢t — 1 and ¢, y;; is the

(continuously compounded) return on the j-th financial asset in period ¢, 3 is
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the coefficient of relative risk aversion, and p is the discount factor (Hansen and
Singleton, 1983). There are m assets, and the conditional expectation is taken
with respect to the agent’s information set in period ¢ — 1, which includes past
returns and consumption. Moreover if (x¢, y1¢, ..., Yym¢) are conditionally jointly

normally distributed with a constant covariance matrix, then

Et71<yjt — Qy — ﬁxt) =0 (.7 = ]-7 "'7m)7 (31)

where the asset-specific intercepts «; depend on the discount factor, and the
conditional variances and covariances of asset returns and consumption growth.
In the example there are two assets, and estimation of the parameters «; and

[ is based on the unconditional moment restrictions:
Elz(yj — aj — Bry)] =0 (3:2)

where z; is a vector of instrumental variables whose values are known in ¢ — 1.
The coefficient of relative risk aversion is identified as the common slope of linear
combinations of asset returns and consumption growth that are unpredictable on
the basis of the vector of instruments. However, if cov(z;, ;) = cov(z,yj) = 0
(the null of our test in this example) there will be a multiplicity of linear com-
binations with the same property, and as a result the true value of 5 will not be

empirically identifiable from (3.2).

Empirical Application to US Data We illustrate the situation discussed
above using US annual data on returns and consumption growth for the period
1889-1994. The asset returns are (1) the real commercial paper rate and (2) the
real stock return. Consumption growth is the annual growth rate of real non-

durables and services consumption. Apart from the constant, the instruments are
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one lag of the real commercial paper rate, the real consumption growth rate, and
the log dividend-price ratio. The data is the same as in section 8.2 of Campbell,
Lo and MacKinlay (1997), where further details can be found.

In Table 1 we report two-step and continuously updated GMM estimates of the
parameters in the original model as well as those in the augmented model. We also
report test statistics of overidentifying restrictions for both the augmented and the
original models (denoted the I and the J tests, respectively). The estimates and
test statistics are robust to heteroskedasticity but not to serial correlation. There-
fore, the I statistic is really testing the null hypothesis that the original system
is underidentified and that any possible equation has non-autocorrelated errors.
While lack of serial correlation is an implication of (3.1), one could argue that in-
ferences that are robust to serial correlation as well as to heteroskedasticity would
be more appropriate, since the exercise is aimed at testing underidentification on
the basis of (3.2) alone.

According to our results, there seems to be information in the instruments
employed since the I tests reject the null of underidentification. However, the
results are not very encouraging for the original specification, since the J tests
only marginally accept the overidentifying restrictions (at the one percent level,
but not at five percent), and the estimated relative risk aversion parameter has

the wrong sign.

Monte Carlo Experiment in the Asset Pricing Setting We generated
10,000 time series of size T' = 100 from the following model:

yie = o1+ B+ (e + T +wa)] +en

Yu = o+ B+ 6(yie—1) + Tio1 +win)] + e
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T = pAO(Yie—1) + Te1 +we) + e

Wy = TWp_1 + E4¢-

This specification ensured that the moment restrictions (3.2) were satisfied
with 2z, = (1, %1(t-1), T+—1, w—1)" as in the empirical application. It also had the
property that none of the variables’ forecasts would improve by using ys—1) (the
lagged real stock return). We considered one experiment under the null hypoth-
esis of underidentification, setting & = 0, and another under the alternative of
identification with 6 = 0.05. In both cases, we set a1 = as =0, p = 0.05, § =1,
and m = 0.9 (to reflect observed persistence in the log dividend-price ratio). Dis-
turbances were generated as N(0,7), and the initial observations were obtained
from the stationary distribution of the process.

Table 2 shows the 10, 5, and 1 percent rejection frequencies for the (het-
eroskedasticity robust) two-step and continuously updated GMM versions of the
I test statistic. Their behaviour is broadly the same, although the continuously
updated test is slightly more conservative than the two-step. Size distortion in
the experiment conducted under the null is not negligible, as both tests show a
tendency to under-reject relative to nominal sizes. The rejection frequencies under
the alternative (§ = 0.05) are at least four times those obtained under the null,
and give an idea of the power the test can be expected to have for small values of

6 in this environment.

4. Sequential Moments: Panel Data AR Models

We now turn to consider systems of equations in which the valid instruments

differ for different equations. A leading example is given by autoregressive models
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with individual effects for short panels. In those cases our approach provides a
straightforward way of testing for underidentification, which is specially useful
since the models have a nonstandard reduced form. We first discuss the AR(2)
case, and subsequently generalize the result to an autoregressive process of an
arbitrary order.

Consider a second-order autoregressive model for panel data with an individual

specific intercept 7,:

Yie —1; = Oél(yz'(t—l) —n;) + 042(yi(t—2) =)+ (t=3,..,7T), (4.1)

such that 7" > 4 but small, {1, ..., ¥ir,n;} is an i.i.d. random vector and

E(vis | Yir, -, Yie—1)) = 0. (4.2)

We consider GMM estimation of ar; and s based on a random sample of size
N {yi1, .., yir 2, and the unconditional moment restrictions (as in Arellano and

Bond, 1991):
E[ylt_2<Ath — alAyi(t—l) — OCQAyi(t_Q))] =0 (t == 4:, <oy T) (43)

where y¢ = (yi1,...,¥is)’- Thus, we have a system of T — 3 equations in first-
differences with an expanding set of admissible instruments but common parame-
ters.

With T' = 4 there is a single equation in first differences with two instruments
so that a;; and ap are just identified at most. Testing for underidentification in this
case is therefore an example of the situation discussed in section 2. It amounts to

testing for overidentification the following four moments involving two unknown
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coefficients ~y; and 7,

p|(1)e(Suzndm )] =0 1)
If (4.4) holds, (4.3) will hold not only for the true values o; and aw, but
also for any other o} and o3 along the line o = 7,7, — ajv,. Note that if the
autoregressive process contains a unit root so that a; + as = 1, the moment
conditions (4.4) hold with v, = vy, = —as.
With T' = 5 a second equation and three additional instruments become avail-
able. Single equation testing for the second equation would be based on:
Yi1 Ayss — 71 Ay
| e (Bmnsm)) -
However, the moments E[(y;1,yi2)(Ayia — 72Ay;3)] = 0 are clearly redundant
given those in (4.4) implying that v, = 7,. Moreover, although associated with
the second equation, the restriction E[y;3(Ayi — v,Ay:3)] = 0 can be actually
tested with 7' = 4.
For larger values of T" we obtain a similar pattern of redundancies. Namely,
all the moments associated with the second equation in the augmented system,

except the last one, are redundant given those for the earlier periods. Therefore,

for T' > 5 a test of underidentification will be based on the (7'—1)7"/2—1 moments

E [yffl (Ayit - ’hAyi(tq))} =0, (t=3,...,7). (4.5)

= . . . .
° An equivalent normalization is

Yi1 . Ayiy — VTAZM
FE ® =0
K Yi2 > ( Ayiz — v2Ayiz >]

with 7 = 77,
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Since there is only one unknown coefficient, an [ test statistic will have an as-
ymptotic x? distribution with (7' — 1)T'/2 — 2 degrees of freedom provided (4.5)
holds.

Generalizing the previous argument, an [ test for an autoregressive process of

order p with individual effects will be a test for overidentification based on

E [yf*l (Ayzt — ’YlAyi(t—l)-" - ’Y(p—l)Ayi(t—p—&—l))} = 0 (t =p + 1, ceey T) (46)
In particular, for a first-order process the relevant orthogonality conditions are

Elyl 'Aya] =0, (t=2,..,7). (4.7)

Empirical Illustration As an illustration of the previous results, we present
in Table 3 parameter estimates, and I and J test statistics for an AR(2) model
of employment using the Arellano-Bond dataset. These data consists of an un-
balanced panel of 140 quoted firms from the U.K. for which seven, eight, or nine
continuous annual observations are available for the period 1976-1984.

The AR(2) results were reported by Alonso-Borrego and Arellano (1999), who
interpreted the large disparities between two-step and continuously updated GMM
as indicating that the estimates were much less reliable than what their asymptotic
standard errors would suggest. Note that the J test statistics give no indication of
misspecification. All the statistics shown in the table are robust to heteroskedas-
ticity.

The I test statistics are borderline, since the null hypothesis that the relation-
ship is a priori unidentified can be marginally rejected at the five percent level
but not at one percent. In any event, the I statistic in this case provides a useful

qualitative indication that the estimates are not very well identified.
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Monte Carlo Simulation We simulated data to acquire some information
about the size and power properties of the I test in an environment that is related
to the application.

In order to investigate possible size distortion, we simulated 10,000 balanced
panels of size N = 150 and 7' = 7 from model (4.1) with vy ~ iid N(0,1) and a
unit root. Specifically, if we denote by p; and p, the largest and smallest roots of
the AR(2) polynomial, so that oy = p; + piy and g = —p; 19, we chose p; = 1 and
ty = 0.4. The latter was chosen to mimic the estimate obtained for v, with the
empirical data. As for initial conditions, we first generated w;; = pow;—1y + vis,
with initial values drawn independently from its unconditional distribution, and
then generated y;; = p;9it—1)+wi, setting the initial values to zero and discarding
the first ten observations. To investigate local power we produced another round
of simulations in which the unit root was replaced with p; = 0.98 and individual
effects were set to zero. The other features of the experiment remained the same
as in the first one.

Table 4 shows some rejection frequencies for the (heteroskedasticity robust)
two-step and continuously updated versions of the test statistic. The two forms of
the test exhibit a similar performance. Size distortion is small, taking into account
that sample size is not large, although there is some tendency to over-reject at
the 10 percent significance level. We might expect larger size distortion for larger
values of y1,. Indeed, for u, = 1 the AR(2) model would exhibit a larger degree of
underidentification since not only «; and a4 but also v; would be underidentified.
If this were the relevant null, an I test could be easily constructed for it, but the
I test statistics that assume the uniqueness of v, would not have an asymptotic

chi-square distribution.
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Rejection frequencies under the chosen alternative are about twice the size of
those obtained under the null, so power is not very high in our experiment, but

it would obviously increase for smaller p; and larger N.

5. Conclusions

In instrumental variables estimation of an econometric model it is useful to have a
statistical test designed to ascertain whether the model is underidentified. Indeed

Koopmans and Hood (1953, page 184) wrote:

“It is ... natural to abandon without further computation the set of
restrictions strongly rejected by the (likelihood ratio) test. Similarly,
it is natural to apply a test of identifiability before proceeding with the
computation of the sampling variance of estimates ... and to forego any

use of the estimates, if the indication of nonidentifiability is strong.”

While it was recognized in the early econometric literature on simultaneous equa-
tions systems that underidentification is testable, to date such tests are uncommon
in econometric practice. Nevertheless, many econometric models of interest often
imply a large number of moment restrictions relative to the number of unknown
parameters and are therefore seemingly over-identified. However, this situation is
often coupled with informal evidence that identification may be at fault. In those
cases, an identification test may provide a useful diagnostic of the extent to which
estimates are well identified.

In this paper we have proposed a method for constructing tests of underiden-
tification based on the structural form of the equation system. We regard under-

identification as a set of over-identifying restrictions imposed on an augmented
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structural model. Therefore, our proposal is to test for underidentification by test-
ing for overidentification in the augmented model using standard testing methods
that are available in the literature.

We show that our approach can be used not only for single equation models,
but also for systems with cross-equation restrictions, possibly with different valid
instruments for different equations. As examples we consider intertemporal asset
pricing models, and autoregressive models with individual effects for short pan-
els. We also provide empirical calculations and Monte Carlo simulations in order
to illustrate the use and finite sample properties of identification tests in those
environments.

A relevant issue which is outside the scope of this paper is whether and how
these procedures could be extended to testing for underidentification in nonlinear

GMM problems.
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Table 1
Consumption-Based Capital Asset-Pricing Model
GMM Estimates from US Annual Data

Two-step Continuous-updating
1G] -1.533 -3.108
(1.12) (1.70)
a .054 .085
(.020) (.031)
Qg 101 127
(.025) (.035)
Yo 022 024
(.003) (.003)
o2 022 024
(.004) (.004)
Yo 078 084
(.015) (.014)
I test (df) 23.94 (9) 23.93 (9)
p-value (%) 0.4 0.4
J test (df) 13.2 (5) 11.6 (5)
p-value (%) 2.1 4.0

NOTE: The sample period is 1889-1994.

Asymptotic standard errors robust to heteroskedasticity shown in parentheses.
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Table 2
Size and Power of the I Tests in the Asset Pricing Example
Rejection Frequencies (%) (df=9)

Nominal Under the null (§ = 0) Under the alternative (6 = .05)
level Two-step Continuous-updating Two-step Continuous-updating
10 9.0 8.6 33.1 31.8
5 3.7 34 19.9 19.7
1 0.4 0.3 5.1 4.3
Mean 9.1 9.1 12.9 12.7
Variance 14.9 14.4 23.7 22.5

NOTE: 10,000 replications, T' = 100, v;; ~ iid N (0, I).
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Table 3
AR(2) Employment Models with Individual Effects
GMM Estimates in First Differences from a Panel of U.K. Firms

Two-step Continuous-updating
a .320 092
(.053) (.047)
Qg .022 218
(.023) (.019)
o) 314 416
(.022) (.022)
I test (df) 51.1 (34) 48.8 (34)
p-value (%) 3.0 4.8
J test (df) 32.8 (25) 31.7 (25)
p-value (%) 13.7 16.6

NOTE: Unbalanced panel of 140 companies with 7, 8, or 9 annual observations.
The sample period is 1976-1984. Time dummies are included in all equations.
Asymptotic standard errors robust to heteroskedasticity shown in parentheses.
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Table 4

Size and Power of the I Tests in the Panel Example
Rejection Frequencies (%) (df=19)

Nominal Under the null (x4, = 1) Under the alternative (p; = .98)
level Two-step Continuous-updating Two-step Continuous-updating
10 10.9 10.9 194 18.8
5 5.5 5.3 10.2 9.8
1 1.0 0.9 2.3 2.2
Mean 19.8 19.7 21.9 21.8
Variance 36.0 35.5 41.0 40.2

NOTE: 10,000 replications, N = 150, T' =7, vy ~ iid N(0,1), n, = 0.

Smaller root is set to py = 0.4.
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