
Least Squares Predictions and
Mean-Variance Analysis

Enrique Sentana
CEMFI

Working Paper No. 9711
September 1997

I would like to thank Manuel Arellano, Rafael Repullo and Sushil Wadhwani
for very useful discussions. Of course, the usual caveat applies. (e-mail: sen-
tana@cem….es).

CEMFI, Casado del Alisal 5, 28014 Madrid, Spain.
Tel: 341 4290551, fax: 341 4291056, http://www.cem….es.



Abstract

In an economy with one riskless and one risky asset, we compare the Sharpe ratios

of investment funds that follow: i) timing strategies which forecast the market

using simple regressions; ii) a strategy which uses multiple regression instead; and

iii) a passive allocation which combines the funds in i) with constant weightings.

We show that iii) dominates i) and ii), as it implicitly uses the linear forecasting

rule that maximizes the Sharpe ratio of actively traded portfolios, but the ranking

of i) and ii) is generally unclear. We also discuss under what circumstances the

performance of ii) and iii) coincides.



1 Introduction

From a formal point of view, mean-variance analysis and linear projections

are very closely related, as both are the result of the minimization of a mean

square norm over a closed linear subspace of the set of all random variables with

…nite second moments. From a practical point of view, they are also closely con-

nected, since many …nancial market practitioners combine the predictions from

their regression equations with a mean-variance optimizer in order to make dy-

namic portfolio allocation decisions. In fact, given a set of variables which help

predict stock market returns or other …nancial assets, one would think a priori

that this is a rather natural way to time the market.

The purpose of this note is to determine to what extent this intuition is correct.

We do so in the context of a model with a safe asset and a risky one, in which

closed-form analytical solutions are available. Under the maintained assumption

that fund managers are conditional mean-variance optimizers, we consider alter-

native linear prediction rules, and rank them in terms of the Sharpe ratios of the

associated market timing strategies. In particular, we compare the performance

of investment funds that follow: i) dynamic portfolio allocations which use simple

regressions to forecast the market; ii) an active strategy which uses multiple re-

gression instead; and iii) a passive portfolio allocation which combines the funds in

i) with constant weightings. Furthermore, we obtain an expression for the linear
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forecasting rule that maximizes the Sharpe ratio of an actively traded portfolio,

and discuss under which circumstances such “optimal” forecasts coincide with

least squares predictions.

The rest of this note is organized as follows. We introduce the theoretical set-

up in section 2, and derive the active and passive portfolio strategies mentioned

above. Then, in section 3, we discuss in detail a special case of our model in which

returns and predictor variables are jointly normally distributed. General results

in terms of Sharpe ratios are obtained in section 4. Finally, section 5 contains a

discussion of our results in relation to several areas of current research interest in

the …nance and econometrics literatures.

2 Basic Set-up

Let’s consider a world with a safe asset and a risky one (i.e. the “market”). Let

rt be the excess return on the risky asset, and suppose that there are k indicator

variables, x0t = (x1t; : : : ; xkt), known in period t¡ 1; which help predict rt.

If uninformed investors allocate their wealth between the two assets accord-

ing to standard (i.e. unconditional) mean-variance analysis, they will invest a

constant fraction E(rt)= [®V (rt)] of their wealth in the risky asset, where ® is

their common risk aversion parameter. To make the comparisons simpler, we as-

sume that E(rt) = 0; so that in the absence of information (our benchmark case),
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individual investors only hold cash.

Let’s now suppose that there are k fund managers, each endowed with infor-

mation on a single indicator variable, xjt; j = 1; : : : ; k, who pursue active portfolio

strategies according to a variant of conditional mean-variance analysis, in which

conditional expectations are replaced by linear projections, and conditional vari-

ances by mean square forecast errors. More precisely, we assume that the objective

function of manager j at time t¡ 1 is

max
w(xjt)

½
w(xjt)E

¤(rt j xjt)¡
®

2
w2(xjt)E [rt ¡E¤(rt j xjt)]2

¾

where E¤(y j z) denotes the least squares projection of y on the linear span

generated by a constant and z, and E¤(y) = E(y) (see e.g. Hansen and Sargent

(1991)). Importantly, we assume that there are no transaction costs or other

impediments to trade, and in particular, that short-sales are allowed. We also

assume that the sizes of the investment funds are such that their behaviour does

not alter the distribution of returns.

To keep the notation simple, de…ne ~xjt = xjt ¡ ºj as the demeaned value

of the jth predictor variable, ±j = ¾jr=¾rr as the coe¢cient in the (theoretical)

simple regression of rt on xjt; "jt = rjt ¡ ±jxjt as the associated prediction error,

¾"j"j = ¾rr ¡ ¾2jr=¾jj as its variance, and ½jr = ¾jr=
p
¾rr¾xjxj as the theoretical

correlation coe¢cient between rjt and xjt. Then, excess returns on each fund will

3



be

rjt =
1

®
¢ ±j~xjt
¾"j"j

¢ rt (1)

so that

E(rjt) =
1

®
¢ ±j¾jr
¾"j"j

=
1

®
¢ ½2jr
1¡ ½2jr

¸ 0 (2)

with equality if and only if the jth indicator variable has no predictive power at

all. Notice that rjt is not only more pro…table on average than the benchmark

strategy of holding cash, but also its pro…tability increases with the predictive

power of xjt. However, such a timing strategy is also riskier, since obviously

V (rjt) ¸ 0. For that reason, and in line with standard practice, we shall use the

unconditional risk-return trade-o¤ (or Sharpe ratio) of manager j0s portfolio to

evaluate its performance taking into account its risk. In particular, since

V (rjt) =
1

®2
±2j¸jj

¾2"j"j
(3)

where ¸jj = V (~xjtrt), manager j0s Sharpe ratio is

sj =
E(rjt)q
V (rjt)

=
j¾jrjq
¸jj

(4)

Suppose that there is another fund manager, a say, who also follows an active

investment strategy based on the same mean-variance analysis rule as the …rst

k managers, but this time knowing the whole of xt. Let ¯ = §¡1
xx¾xr be the

coe¢cients of the (theoretical) multiple regression of returns on the indicators,

r̂t = E(rt)+¾
0
xr§

¡1
xx (xt¡º) = ¯0~xt the …tted values from that regression, ut = rt¡
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¯0~xt the prediction errors, ¾r̂r̂ = ¾0xr§
¡1
xx¾xr the variance of the predicted values,

¾uu = ¾rr ¡ ¾0xr§¡1
xx¾xr the variance of the residuals, and …nally R2 = (¾r̂r̂=¾rr)

the theoretical multiple correlation coe¢cient. Such a dynamic portfolio strategy

produces an excess return of

rat =
1

®

¯0~xt
¾uu

¢ rt (5)

Then, since E(~xtrt) = ¾xr

E(rat) =
1

®

¾r̂r̂
¾uu

=
1

®
¢ R2

1¡R2 (6)

so that E(rjt) · E(rat) for j = 1; : : : ; k, as R2 ¸ ½2jr. Also, since

V (rat) =
1

®2
¯0¤¯

¾2uu
(7)

where ¤ = V (~xtrt), manager a’s Sharpe ratio will be

sa =
¾r̂r̂q
¯0¤¯

(8)

Finally, suppose that there is yet another manager, p say, who does not observe

xt at all, but constructs an “umbrella” fund of the k individual funds and the safe

asset with constant weightings, according to the rules of unconditional mean-

variance analysis. Let’s call ¹ = E(rt) and ­ = V (rt), where rt is the vector of

excess returns on each fund, i.e. r0t = (r1t; : : : ; rkt). Let © be a k £ k diagonal

matrix with typical element Ájj = ±j=¾"j"j , so that in vector notation, we can

write
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rt =
1

®
©~xtrt (9)

¹ =
1

®
©¾xr (10)

­ =
1

®2
©¤© (11)

As is well known, the optimal proportions of manager p’s resources invested

in each fund will be given by the vector

w¤
p =

1

®
­¡1¹ = ©¡1¤¡1¾xr

Hence, the excess return from her static portfolio allocation will be

rpt = w
¤0
p rt =

1

®
¾0xr¤

¡1~xtrt (12)

From here, it is straightforward to see that

E(rpt) =
1

®
¾0xr¤

¡1¾xr ¸ 0 (13)

V (rpt) =
1

®2
¾0xr¤

¡1¾xr (14)

and

sp =
E(rpt)q
V (rpt)

=
q
¾0xr¤

¡1¾xr (15)
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3 A multivariate normal example

Let’s initially assume that rt and xt are jointly normally distributed.1 Using

well known results on fourth moments of the multivariate normal distribution (see

e.g. Fang, Kotz and Ng (1990)), we have that ¤ = ¾rr§xx + ¾xr¾0xr. Then, on

the basis of the Woodbury formula, we get:

¤¡1 =
1

¾rr
§¡1
xx ¡ 1

¾2rr(1 +R
2)
¯¯0

After some algebraic manipulations, we …nally obtain that the returns on the

passive strategy will be

rpt =
1

®

¯0~x

(¾rr + ¾r̂r̂)
¢ rt

Therefore, rpt is exactly proportional to rat (cf. (5)), with a time-invariant

factor of proportionality equal to ¾uu=(¾rr+¾r̂r̂) = (1¡R2)=(1+R2) · 1: Several

interesting results can be derived from this relationship:

a) The correlation between rpt and rat is trivially one. Hence, although the

mean and variance of rat are higher because manager a follows an apparently

riskier strategy based on her superior information, the two Sharpe ratios coincide.

b) If an indicator variable has no additional predictive power, so that the

corresponding element of ¯ is zero, the desired holdings of the relevant fund will

be zero, even though the individual fund may be very pro…table.

1Note that in this case, conditional expectations and linear projections on the one hand, and
conditional variances and mean square errors on the other, coincide.
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c) Manager p’s behaviour is observationally equivalent to that of a portfolio

manager who, in order to time the market, uses ¯0~xt ¢ (1 ¡ R2)=(1 + R2) as her

linear prediction rule.

d) Since we know from the theory of mean-variance analysis with a safe asset

that the Sharpe ratio of the optimal portfolio will be higher than the Sharpe ratio

of any other portfolio, including the original assets, the Sharpe ratio of rat, will

be at least as high as the Sharpe ratio of any rjt. Therefore, fund manager a, who

uses information on the entire vector xt, will do at least as well as any manager

who only uses information on a particular xjt, or indeed a subset of them.

More explicitly, since in this case

E(rpt) =
1

®

¾r̂r̂
(¾rr + ¾r̂r̂)

=
1

®
¢ R2

1 +R2

the unconditional Sharpe ratio of rpt and rat is

sa = sp =

s
¾r̂r̂

(¾rr + ¾r̂r̂)
=

s
R2

1 +R2

Hence, not only the expected return but also the return to risk ratio of the

actively managed fund improves with the predictability of returns. Similarly, the

Sharpe ratio for each fund will be

sj =
j¾jrjq

¾rr¾jj + ¾2jr
=

¯̄
¯½jr

¯̄
¯

q
1 + ½2jr

As a consequence, the Sharpe ratio of an individual fund will also be higher

the more correlated xjt is with rt (in absolute value), but it could never exceed
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the Sharpe ratio of rat.

4 A general inequality

The above results, though, depend crucially on the normality assumption.

Since

¤ = V (~xtrt) = E(r
2
t ~xt~x

0
t)¡ E(~xtrt)E(~x0trt)

and

E(r2t ~xt~x
0
t) = E

h
E(r2t j ~xt)~xt~x0t

i

we could alternatively make assumptions about E(r2t j ~xt), or V (rt j ~xt) and

E(rt j ~xt). In particular, if we make the somewhat contrived assumption that

E(r2t j ~xt) = E(r2t ) = ¾rr, we obtain the remarkable result that rpt = rat. In

general, though, we would not expect rpt and rat to be proportional. Nevertheless,

we can still compare their Sharpe ratios.

By the Cauchy-Schwartz inequality,

¾r̂r̂ = (¾
0
xr§

¡1
xx¾xr)

2 · (¾0xr¤
¡1¾xr)(¾

0
xr§

¡1
xx¤§

¡1
xx¾xr) = (¾

0
xr¤

¡1¾xr)(¯
0¤¯)

so

s2p ¸ s2a (16)

and sp ¸ sa given that they are both positive. Hence, in terms of unconditional

risk-return trade-o¤s, manager p; who pursues a passive portfolio strategy, does

9



always at least as well as, and often better than, manager a, who pursues an

active portfolio strategy. In this respect, it is worth mentioning that equality is

achieved in (16) not only under Gaussianity, but also for all multivariate elliptically

symmetric distributions with bounded fourth moments. The reason is that for this

family of distributions

¤ = (·+ 1)¾rr§xx + (2· + 1)¾xr¾
0
xr

where · is the coe¢cient of multivariate (excess) kurtosis (see Fang, Kotz and Ng

(1990)), so that ¤¡1=2¾xr and ¤1=2¯(= ¤1=2§¡1xx¾xr) are proportional. Examples

include the multivariate normal in section 3 (· = 0), the multivariate t with º > 4

degrees of freedom (· = 2=(º ¡ 4)), as well as uniform distributions on the unit

sphere.

As discussed in the previous section, we also know that sp ¸ sj for all j.

However, we cannot rank in general sa and sj , so that manager a, who uses

information on the entire vector xt, may do better or worse than a manager who

only uses information on a particular xjt, despite the fact that expected excess

returns for a are always higher. In principle, we would expect sp ¸ sa ¸ sj for

all j. However, it is possible to construct numerical counterexamples in which

sa < sj < sp for some j.

Finally, notice that manager p’s behaviour is observationally equivalent to that

of an active portfolio manager who used (¾uu)¾0xr¤
¡1~xt instead of ¾0xr§

¡1
xx~xt as
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her linear prediction rule. In fact, it turns out that ¾0xr¤
¡1~xt is (proportional

to) the linear forecasting rule, °¤0~xt say, that maximizes the ratio of excess mean

return to standard deviation of an actively traded portfolio. The proof of this

result, which generalizes (16), is based on the fact that ¾0xr¤
¡1 is (proportional

to) the eigenvector associated with the maximum eigenvalue of the rank 1 matrix

¾xr¾
0
xr in the metric of ¤. That is, max°

° 0¾xr¾0xr°
° 0¤° = ¸1(¤

¡1=2¾xr¾0xr¤
¡1=2) =

¾0xr¤
¡1¾xr = s2p, where ¸1(A) denotes the largest eigenvalue of the matrix A.

5 Summary and Discussion

In an economy with one riskless and one risky asset, we show that a dynamic

portfolio strategy which combines multiple regression with a mean-variance op-

timizer, cannot beat in terms of unconditional Sharpe ratios, a passive portfolio

strategy which combines individual funds that trade on the basis of a single infor-

mation variable each. In fact, it is possible to construct counterexamples in which

the manager who uses all the available information will perform strictly worse than

a manager who only uses information on a particular variable. We also show that

such a passive portfolio allocation implicitly uses the linear forecasting rule that

maximizes the Sharpe ratio of actively traded portfolios. Nevertheless, we prove

that if excess returns and predictor variables are jointly elliptically distributed,

least squares regression-based forecasts are optimal.
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Our results, though, are not totally surprising. First, from the asset pricing

literature, we know that conditional mean-variance e¢ciency does not necessar-

ily imply unconditional mean-variance e¢ciency (see e.g. Hansen and Richard

(1987)). Second, we also know from the portfolio evaluation literature, that one-

parameter performance measures such as Sharpe ratios, designed to compare pas-

sive portfolio strategies, may often yield misleading results if fund managers pursue

market timing strategies (see Chen and Knez (1996), and the references therein).

On the other hand, there has been increasing attention recently in the time

series econometrics literature on the estimation of models based on alternative

prediction loss functions (see e.g. Weiss (1996)). In this respect, our results can

be understood as saying that the quadratic loss function implicit in least squares

regressions will not generally lead to estimators which maximize unconditional

Sharpe ratios. At the same time, since the behaviour of fund manager a is, in

economic terms, to be preferred to the behaviour of fund manager p, our results

also provide a note of warning regarding the use of such estimation methods.
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