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Introduction

Life is uncertain but some risks are worth taking. Unfortunately, it is not easy to

decide which ones fall in that category. We need to estimate the benefits and costs of

our actions as well as the odds of success and failure. Nowhere is this perhaps more

evident than in financial markets, which are an integral part of the global economy.

Nevertheless, laypeople often have the impression that the prices of stocks, bonds and

other financial assets, as well as the exchange rates between different currencies, go up

and down without any apparent pattern, as if they reacted to the whims of the gods or

the instincts and emotions of the participants in those markets.

However, in the same manner as classical science rose to the challenge of explaining

the apparent motion of the planets, economics have slowly but steadily made progress in

putting some order into seemingly chaotic financial markets. In fact, nowadays financial

volatility is one of the best understood topics among research economists. The same is

true of the relationship between different financial assets, which sometimes seem to move

independently and others at unison, especially after big price falls, as if they followed

the pattern of a communicable disease.

In this paper I describe in detail the concepts of volatility, diversification and con-

tagion, three basic keys to understand the seemingly whimsical behaviour of financial

markets. After introducing those concepts and briefly reviewing some of the approaches

developed to measuring them, I will use several examples of the recent financial crisis of

2007-2008 and the euro sovereign debt crisis of 2010-2012 for illustrative purposes, paying

special attention to the effects they had on the Spanish stock market. The approach that

I take is deliberately empirical, highlighting stylised facts instead of theoretical models.

Given that the academic literature on these topics is huge, I will often immodestly refer

to my own work, which contains detailed references to many other more substantial

contributions.

The rest of the paper consists of three main sections centred around those key con-

cepts, followed by some conclusions and a list of references.
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1 Volatility

1.1 Financial assets and their returns

Before talking about volatility, it is convenient to introduce some notation. Let Dt

be the payoff received by the owner of a financial asset at the end of period t, which

usually takes the form of a coupon for bonds or a dividend for stocks. A period could be

a day, a week, a month, etc. depending on the context. Further, let Pt denote the price

of this financial asset at the end of period t once the payoff has been made. This price is

often known as the “ex coupon”or “ex dividend”price because at that point the asset

no longer includes the right to perceive Dt.

Although the prices of financial assets attract all the media attention, research eco-

nomists prefer to work with returns, which reflect all the gains investors really obtain. In

addition, they make both intertemporal and across asset comparisons much easier. For

example, the largest ever fall in the Dow Jones Industrial Average so far has been the

1,175-point wipe out that took place on February 5th, 2018. However, this represented

a capital loss of 4.6% only, while the 508-point fall on the so-called “black Monday”

(October 19th, 1987) represented a drop of almost 23%. Thus, we can define

Rt =
Dt + Pt
Pt−1

as the one period holding return over period t on an asset bought at the end of period

t− 1. This gross return, which represents the total payoff per unit invested, should not

be confused with the commonly reported net return, Rt − 1, which can conveniently

be additively decomposed into the dividend yield Dt/Pt−1 and the proportional capital

gain (Pt − Pt−1)/Pt−1.1 In turn, these gross and net returns, which are arithmetic in

nature, should not be confused with the geometric return, lnRt, which measures the

instantaneous rate such that if it were continuously compounded between t− 1 and t, it

would yield precisely exp(lnRt) = Rt.2

1Net returns are often reported on % terms and annualised, although the annualisation process is
far from uncontroversial, as the recent discussion of the European Securities and Markets Authority
(ESMA) regulation of the key information document (KID) for packaged retail investment products
(PRIPs) illustrates [see Financial Conduit Authority (2018), as well as Lo (2002) for more formal
arguments].

2Arithmetic gross and net returns conveniently aggregate across assets, as I will show in section 2,
but they do not exactly aggregate over time. For example, a sequence of net returns of 10% and -10%
(or vice versa) leaves a investor with 99 cents per unit invested. In contrast, geometric returns exactly
aggregate over time but they only aggregate across assets for investments of infinitesimal duration [see
chapter 1 in Campbell, Lo and MacKinlay (1997) for further details].
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In what follows, I will assume that there is a (conditionally) safe asset, whose returns

over period t, say Rst, are known with certainty at time t− 1, although they can change

from period to period. The interbank loans underlying the Euro OverNight Index Aver-

age (EONIA) rate, and short term Treasury bills would be two obvious examples. The

existence of a safe asset, though, is not a trivial assumption for at least two reasons.

First, investors often care about the value of their investments in real terms, that is, in

terms of the amount of goods they will be able to buy in the future. Although inflation

has recently been very low and predictable in the eurozone and most other developed

countries, there are other countries and historical periods in which this is certainly not

the case.3 Second, the issuers of these supposedly safe assets, which are often sovereign

states or large financial institutions, might default on their obligations, or at least modify

the terms of their repayments, as we have seen in recent financial crises.

In any case, in what follows I will denote by rt = Rt − Rst the returns on a risky

asset in excess of the returns of the safe asset. Interestingly, those excess returns are the

payoffs at time t to an investor who buys the risky asset on credit at the end of period

t− 1 using funds she has borrowed at the safe rate. As a result, rt cannot be understood

as a payoff per unit invested because there are no net outflows at time t− 1. In fact, if

I further assume that there are constant returns to scale in the investment technology,

so that the returns of buying 100 units of an asset are 10 times the returns of buying

10 units,4 rt could be scaled up or down as much as desired because krt would simply

represent the payoffs at time t to an investor who buys k units of the risk asset on credit

at the end of period t−1. The multiplicative factor k is usually referred to as the degree

of leverage of the position. Although it may seem that only large institutional investors

can benefit from leverage, financial forward and futures contracts allow retail investors

to modify k rather easily, even to make it negative by taking the opposite side of the

contract.5

3Inflation-linked bonds provide protection about future unexpected falls in the purchasing power of
the currency in which they are denominated, but because of lags in the reporting of price indices, they
are not 100% perfect.

4This is a reasonably good approximation for medium size investments but not for very small or
very large ones due to pure transaction costs, market microstructure effects, and slippage (the usually
negative impact of investors’own actions on prices), which are closely related to liquidity, especially
during fire sales.

5A forward is a contract in which the parties agree to exchange the underlying asset at a certain
future date T (the delivery date) at a certain price K specifed at the contract date t. The forward price
K is determined by the condition that its initial value be zero, so payments between the parties only
take place at the expiration date. When τ = T − t = 1, those payoffs can be exactly replicated by a
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If investors only care about the payoffs they will receive in the future regardless of the

circumstances in which they accrue,6 the probability distribution of returns contains all

the relevant information for making investment decisions. Figure 1 depicts the density

functions of three hypothetical return distributions: a normal, a symmetric Student t

with 10 degrees of freedom and an asymmetric Student t with 10 degrees of freedom too

but skewness parameter -1.5 [see Mencía and Sentana (2012) for details]. These functions

have a very intuitive interpretation: the area under a density function between points a

and b (say -1 and 0) measures the probability that the realised returns will take some

value larger than a but smaller than b.

Unfortunately, most investors, including professional ones, suffer an information over-

load when looking at these densities. For that reason, they often focus on a few summary

numbers. Specifically, many only pay attention to the mean (or expected value) and

standard deviation of the return distribution. As is well known, the expected return is

defined as the sum of all possible returns one might obtain weighted by the probability

of obtaining them. More formally,

ν = E(R) =

∫ Rmax

Rmin

udF (u),

where
∫
means the “sum”between the smallest and largest possible returns, Rmin and

Rmax, and dF (u) the probability of R taking a value arbitrarily close to u. It is the most

common measure of the centre (or location) of a return distribution.

On the other hand, the standard deviation is defined as the square root of the vari-

ance, which in turn is the sum of the square differences between the returns and their

expected values, weighted again by the probability of observing them. More formally,

σ2 = V (R) =

∫ Rmax

Rmin

(u− ν)2dF (u). (1)

The standard deviation is the most common measure of return dispersion (or scale), the

square root guaranteeing that it has the same units as the returns and their mean. In

fact, it is often reported as the sole measure of risk of a financial asset, even though

portfolio which buys one unit of the underlying risky asset by selling Pt units of the safe one. Therefore,
absence of arbitrage requires that K = PtRst.

6Socially responsible investors, who avoid certain industries or commercial practices, as well as those
who might refuse to benefit from shortages resulting from natural catastrophes, violate this assumption.
Similarly, buyers of unit linked products with a life insurance component covering their own death most
likely treat future payoffs differently depending on whether they or their heirs receive them.
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mean and standard deviation only provide a partial characterisation of a probability dis-

tribution, except in some special but empirically unrealistic cases, such as when returns

are Gaussian. This point is clearly illustrated by the markedly different shapes of the

densities in Figure 1, even though all three underlying random variables have zero mean

and unit standard deviation by construction.

Interestingly, the mean excess return, E(r), which I will henceforth denote by µ, is

trivially ν−Rs, while V (r) = V (R) precisely because the safe asset is riskless. A popular

descriptive measure of the excess returns on a risky asset is its Sharpe ratio, which is

the ratio of its mean µ to its standard deviation σ. It was introduced by Sharpe (1966)

to measure the performance of an investment irrespective of its leverage.

The unconditional standard deviation of a financial return series relates to its dis-

persion over the long run. Volatility, in contrast, is usually defined as the conditional

standard deviation

σ2t = V ar(rt|It−1),

where It−1 denotes the information available to market participants at time t− 1, when

they make their investment decisions. In principle, one would expect volatility to change

over time as new information is observed. For example, a priori volatility should be larger

at the outset of an economic downturn than half way through an expansion. Surprisingly,

though, volatility was traditionally assumed to be constant by both financial economists

and market participants. However, the 1970’s oil crises and the economic policies adopted

to mitigate their effects showed that the assumption of constant volatility in financial

markets was untenable. The “black Monday”of October 1987, when most stock markets

around the world fell in unison, convinced even the most recalcitrant believers. Nowadays

neither academics nor financial market participants question the time varying nature of

volatility, which manifests itself through three different channels:

a. volatility clusters, with fairly calmed —low uncertainty - phases of reasonable but

random length in which price changes tend to be small followed by more turbulent —

high uncertainty - periods with large price changes,

b. fat tailed unconditional distributions for returns with both too many big move-

ments and too many modest ones relative to the “normal”, and

c. substantial serial correlation in the magnitudes (but not the levels) of returns.
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1.2 Volatility measures

Volatility is a crucial ingredient in many different areas of finance: asset allocation,

option pricing, risk management or systemic risk measurement. Unfortunately, in real

life the true distribution of the returns on an asset between t − 1 and t, given the

information available to investors at time t − 1, is unknown. We only observe ex post

what has happened, a single number, not all that might happen ex ante. We would

need a machine that could travel across the multiverse of “parallel universes”to observe

all possible return realisations and their relative frequencies. Although some theoretical

physicists dream of this machine, it remains science fiction. Therefore, volatility is one of

those elegant concepts favoured by economists which cannot be unequivocally measured,

a fact that sometimes raises eyebrows among scientists from other disciplines.

Still, economists have developed ingenious ways of filtering volatility out from data.

In fact, there are at least four common ways of measuring volatility in financial markets:

1. Sample standard deviations over rolling windows The simplest vol estimate

is the square root of the so-called historical variance

hist,S =
1

S

S∑
s=1

r2t−s, (2)

which is the average of the daily square excess returns computed over a rolling window

of the previous S trading days.7 This is a fairly natural way of estimating σ2t because the

use of the most recent observations helps keep track of changes in volatility. However, it

has at least two shortcomings. First, the length of the rolling window must be chosen

somehow. If S is too large, hist,S will be essentially constant. If, on the other hand, S

is very small, say 2 or 3, estimated volatility will be very noisy. Therefore, in practice

a compromise has to be found, usually by trial and error. But even if one chooses a

sensible value for S, there is a second, more fundamental problem. The expression above

gives equal weight to all observations in the current rolling window, but zero weights

to all prior observations. However, when volatility changes slowly over time, it seems

more natural to give proportionally more weight to the most recent observations and

less weight to the most distant ones. The popular commercial risk management software

7There are several popular slight variations of this expression. Some subtract the mean excess return
before squaring, as in expression (1), while others use geometric returns instead of arithmetic ones.
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RiskMetrics does precisely that. The default estimate of volatility at the core of its code

is based on the following exponentially weighted moving average (EWMA)

RMt = (1− λ)
∞∑
s=1

λs−1r2t−s = (1− λ)r2t−1 + λRMt−1, (3)

where λ is a decay parameter between 0 and 1, which, according to the original RiskMet-

rics (1996) manual, should be set to .94 for daily observations. In effect, this decay

parameter plays the role that S played in the historical vol estimate (2), the half-life of

the weights being 11.2(=ln(2)/ ln(.94)) days (i.e. the weight on day 11 is approximately

half of the weight on day 1).

2. Econometric models The acronym Arch (Autoregressive conditional heteroske-

dasticity) refers a class of parametric time series models for volatility proposed by Robert

Engle (1982). His original baseline specification, the Arch(1) model, is not empirically

realistic, but it led to the development of an entire subdiscipline: Financial Econometrics.

In fact, his proposal became so influential that the Royal Swedish Academy of Sciences

awarded him the Nobel Memorial Prize in Economic Sciences in 2003 “for methods of

analyzing economic time series with time-varying volatility”. The most popular version

is the Garch(1,1) specification put forward by Tim Bollerslev (1986), one of Engle’s

PhD students, which is such that

σ2t =
θ

1− α− β + α
∞∑
s=1

βs−1r2t−s = θ + αr2t−1 + βσ2t−1,

where θ, α and β are parameters to be estimated from the data. In this sense, expression

(3) can be regarded as a special case of a Garch(1,1) model in which θ = 0, α = 1− β

and β = .94.8 There are many other variations of the Arch model, including the

Gqarch(1,1) process I proposed in Sentana (1995):

σ2t = θ + αr2t−1 + γrt−1 + βσ2t−1,

which allows volatility to increase more after negative returns than after positive ones,

thereby capturing an empirical phenomenon known as the “leverage effect”, but without

sacrificing analytical tractability.9

8A Garch(1,1) model in which α + β = 1 is said to be Integrated. Nelson (1990) proved that an
Integrated (Igarch) process with θ = 0 would converge to 0 with probability 1, so the RiskMetrics
model (3) can only be understood as a volatility filter, as opposed to the true data generating process.

9This model was used by BARRA, another major commercial provider of risk management solutions
for the financial industry, in its US equity model to capture the volatility of the thousands of stocks
traded in the New York Stock Exchange [see BARRA (1998)].
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The parameters of this and many other variants can be readily estimated by maximum

likelihood10 using the numerical optimisation routines provided by the dominant com-

mercially available econometric packages, such as Eviews and Stata [see IHS Global

Inc (2015) and StataCorp LP (2015)]. A minimum requirement for a Garch model is

that it should not generate negative volatilities. In the standard Gqarch(1,1) case, this

is guaranteed when 4αθ−γ2 ≥ 0, α ≥ 0 and β ≥ 0, but in most higher-order models the

required positivity conditions remain largely unknown.11

The main conceptual problem with the Arch family of models is that they all

implicitly assume that the volatility of an asset is a function of its own past returns

only, thereby ignoring all other possible sources of publicly available information. The

stochastic volatility literature attempts to break this link by assuming that volatility

follows a process of its own, with shocks that cannot be fully accounted for by past

returns [see Andersen and Shephard (2009)]. From the practitioners’ point of view,

though, the estimation of the parameters characterising stochastic volatility models re-

quire fairly sophisticated simulation techniques [see e.g. Kim, Shephard and Chib (1998)

or Calzolari, Fiorentini and Sentana (2004)], which have not yet been coded by the most

popular econometric packages.

3. Realised volatility using intraday data In the 1990s, the ultra high frequency

intraday observations on foreign exchange quotes and prices made available to researchers

by Charles Goodhart at the LSE and Richard Olsen in Zurich allowed them to compute

daily measures of “realised”volatility analogous to the rolling window ones, but based

on geometric returns over 15-minutes, 5-minutes, 1-minute or even higher frequencies.12

Following an explosion of work formally linking these model-free measures to quad-

ratic variation, which is a fundamental concept in the theory of stochastic processes

[see e.g. Barndorff-Nielsen and Shephard (2007)], these realised volatility measures have

become very popular among researchers and financial market participants, not only be-

cause they can be estimated in real time during a trading session, but also because they

provide better forecasts of future realised volatility than the measures based on daily

10This is a classical estimation procedure which effectively chooses the parameter values that maximise
the ex-ante probability of observing the data we see in the sample.
11But see Nelson and Cao (1992) and Demos and Sentana (1992) for some special cases.
12French, Schwert and Stambaugh (1987) carried out an early application of this approach in which

they used daily data to compute realised volatility at the monthly frequency.
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observations that I have previously discussed [see e.g. Andersen, Bollerslev and Diebold

(2009)].

Although many academic studies have proposed clever modifications of these simple

realised volatility measures that deal with market micro-structure effects arising from

the fact that in practice a financial asset has not a single price but an entire pricing

curve which depends on the number of units an investor might want to buy or sell [see

Barndorff-Nielsen et al (2006) and Zhang, Mykland and Aït-Sahalia (2005)] subsampling

realised variance estimates based on the simple average of the variances of the 5 possible

series of 5-minute returns one can construct on any given day (covering minutes 1-5, 2-6,

3-7, 4-8 and 5-9, etc.) remain the most popular [see Liu, Patton and Sheppard (2015)].

Nevertheless, further work is needed in two important practical areas: the treatment of

overnight returns, and infrequently traded assets [see Hansen and Lunde (2005)].

4. Implied vols obtained from financial derivatives Formally, a European call

option with strike price K and expiration T written on an asset whose current price is

Pt is a contract that gives the holder the right but not the obligation to buy the asset at

the expiration date T at the exercise (or strike) price K.13 Therefore, the holder of this

option will presumably exercise it if and only if the price of the asset at expiration, PT ,

exceeds the strike price. The seller of the option, in contrast, has the obligation to sell

the asset for K to any buyer who wants to exercise her option, even if she could buy the

asset in the spot market at a lower price. Black and Scholes (1973) and Merton (1973)

derived a closed-form expression for the price of a European call option on a non-dividend

paying asset under the assumption that its geometric return between t and T follows a

normal distribution with constant variance σ2 for all T .14 Their formula, known as the

Black - Scholes formula, makes the price of the call option a function of four observable

quantities: the current price, Pt, the strike price, K, the time to maturity, τ = T −t, and
13There are many other varieties of call options, including American options, which give the right to

buy the asset at any point before the expiration date, Bermudan options, in which the early exercise can
only happen at some pre-specified dates, and more exotic versions, such as Canary and Verde options,
whose names reflect the fact that their namesake archipelagos lie in the middle of the Atlantic ocean,
which separates the European and American continents. In addition, there are put options, whose
European variety gives the holder the right but not the obligation to sell the underlying asset at the
strike price on the expiration date.
14The idea is to create a self-financing portfolio of the underlying and safe assets that replicates the

final payoff of the call, so the value of the option at any time is equal to the value of this portfolio. The
investment strategy is dynamic in the sense that the weights of the two assets are continuously adjusted
according to the evolution of the price of the underlying asset.
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the constant (continuously compounded) safe interest rate lnRs; and one unobservable

one: the volatility of the underlying asset, σ.15 Specifically,

CallBS(Pt, K, τ , r, σ) = PtΦ(d)−KR−τs Φ(d− σ
√
τ),

where Φ(.) is the cumulative distribution function of a standard normal variable (see

Figure 1), which is computed as the integral of its density function φ(.) such that Φ(z) =

P (Z ≤ z) =
∫ z
−∞ φ(u)du, and

d =
1

σ
√
τ

[
ln

(
PtR

τ
s

K

)
+

1

2
σ2τ

]
.

Importantly, ln(PtR
τ
s/K), which is the (log) ratio of the current price of a forward

contract written on the asset to the strike price, is a measure of the “moneyness”of the

option. Thus, “in the money”options that at expiration would always be exercised will

tend to have a positive value for this “moneyness”indicator, which will become negative

for “out of the money” options that at expiration would never be exercised. Finally,

at the money options are those whose strike price (approximately) coincides with the

forward price.

By combining the actual market price of a call option with Pt, K, τ and Rs, one can

invert the Black - Scholes formula to obtain the implied value σ. For that reason, this

estimate of σ is known as the Black - Scholes implied vol. Given that the call price is

monotonically increasing in σ, the existence and uniqueness of the solution is guaranteed.

In addition, given that the payments at expiration of a call option are equal to those of

a portfolio with one put option, one unit of the risky asset, and −K units of the safe

asset, the law of one price implies the model-free put-call parity condition:

Callt(K, τ) = Putt(K, τ) + Pt −KR−τs ,

where Putt(K, τ) and Callt(K, τ) are the market prices at time t of European put and

call options written on Pt with strike K and time-to-maturity τ , which allows one to

obtain implied vols from put option prices too.

In practice, however, the Black-Scholes-Merton assumptions are empirically unreal-

istic, and instead of a single vol number, one ends up with volatility smiles or smirks,

15Robert Merton and Myron Scholes also received the Nobel Memorial Price in Economics in 1997
“for a new method to determine the value of derivatives”. Fischer Black had passed away two years
before.
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which depict an entire curve of values of Black-Scholes implied vols obtained from call

and put options with different strike prices but the same expiration date. In fact, there

is a term structure of implied volatility smiles and smirks which varies with the time to

maturity τ , usually represented by means of an implied vol surface.

Initially, Black-Scholes implied volatility measures were computed from at the money

options because they are often the most actively traded. However, this procedure ignored

all other option prices. Although there are many possible ways of summarising the in-

formation in those volatility smiles in a single number, nowadays the industry standard is,

in effect, a nonparametric procedure based on an alternative over the counter derivative

asset known as a variance swap.

In a variance swap, the buyer will pay an amount that depends on the realised variance

of the daily geometric (log) returns of the underlying asset between its inception and

expiration in exchange for a fixed amount (the strike), which is set at the time the

contract is signed. Under certain assumptions, a variance swap may be replicated using

a portfolio of European call and put options with weights inversely proportional to the

square of their strikes. Specifically, the “variance swap rate” can be computed from

observations across all strikes as follows:

τσ2τ (t)=2

∫ Pt

0

{1+ln[Pt/K]}
K2

Putt(K, τ)dK+2

∫ ∞
Pt

{1−ln[K/Pt]}
K2

Callt(K, τ)dK (4)

[see Bakshi, Kapadia and Madan (2003) for further details, and Martin (2011) for a

critical review of the variance swap and a more robust alternative derivative asset].16

The Chicago Board Options Exchange (CBOE) volatility index, widely known by its

ticker symbol VIX, is the best known application of this methodology, and has effectively

become the standard measure of volatility risk for investors in the US stock market, at

least judged by the amount of prime time devoted to it in the main business channels.

Although it was originally introduced in 1993 to track the Black-Scholes implied volatil-

ities of options on the S&P100 with near-the-money strikes, its rise to stardom came in

2003 when the CBOE redefined it as a model-free measure and released a time series of

daily closing prices starting in January 1990. Nowadays, VIX is computed in real time

using as inputs the mid bid-ask market prices for most calls and puts on the S&P500

16To compute the integral that yields the desired value of the variance swap, σ2τ (t), one would need a
continuum of option prices. In practice, one can compute a discretised approximation to those integrals
based on the available options. To do so, one can linearly interpolate their prices inside the observable
range, and extrapolate them by keeping the implied volatilities constant at the extremes.
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index for the front month and the second month expirations [see CBOE (2009a) for

details].

Formally, it is the square root of the risk neutral expectation of the integrated variance

of the S&P500 over the next 30 calendar days, reported on an annualised basis. Despite

this rather technical definition, both financial market participants and the media pay

a lot of attention to its movements. To some extent, its popularity is due to the fact

that VIX changes are negatively correlated to changes in stock prices, the most plausible

explanation being that investors trade options on the S&P500 to buy protection in

periods of market turmoil, which increases the value of the VIX.

The advantage of these implied vol measures is that they are forward looking. In

that regard, Blair, Poon and Taylor (2001) present evidence showing that there is little

additional information in high frequency data for the purposes of predicting future vol

once lagged implied vols are taken into account. But as Andersen and Bodarenko (2007)

and many others show, implied vol often contains a positive risk premium, in the sense

that it almost uniformly exceeds realised volatility because investors are on average

willing to pay a sizeable premium to acquire a positive exposure to future equity-index

volatility. For that reason, some commentators refer to the VIX as the market’s fear

gauge, even though a high value does not necessarily imply negative future returns. In

fact, there is a complex dynamic relationship between volatility and returns: over the

long run, higher volatility is usually associated with higher average returns, but over the

short run, sudden increases in volatility often coincide with market falls, which in turn

lead to further increases in volatility.

The VIX has been so successful that the CBOE currently applies the same meth-

odology to an ever increasing set of financial assets, including 3-month options on the

S&P500, as well as 1-month options on the most important US stock market indices:

DJIA, S&P100, Nasdaq 100 and Russell 2000. They also construct analogous short term

volatility indices for several actively traded individual stocks, including Amazon, Apple,

Goldman Sachs, Alphabet (formerly known as Google) and IBM, as well as international

stock indices for developed markets, emerging markets, China and Brasil. In addition,

there are volatility indices for 10-year Treasury notes, interest rate swaps, crude oil, gold

and the US $/euro, US $/yen and US $/sterling exchange rates.
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1.3 Stylised facts

Figure 2a displays the temporal evolution of the VIX over its entire history. Visually,

one can easily see two salient characteristics, which are also shared by the RiskMet-

rics EWMA estimates, volatilities generated by Garch models and realised volatilities

computed from ultra high frequency data:

a. Sudden spikes, in which volatility jumps from (relatively) low levels to (relatively)

high ones, often in the course of a single day,

b. Slow, exponential declines, which bring down volatility to more reasonable levels

following a spike.

Recent examples of the first phenomenon are the surge in volatility in August 2015

motivated by concerns about the Chinese economy, or the recent increase on February 5

this year following some indicators of inflation pressures building up in the US at the time

of a changing of the guard at the Federal Reserve and an unusually expansionary fiscal

policy on the part of the Trump administration. The sudden spikes make predicting

volatility movements a very diffi cult task. Nevertheless, mean reversion implies that

even in the worst days of the 2008 global financial crisis, investors expected volatility to

return to more reasonable values, eventually [see Schwert (2011)]. This is confirmed in

Figure 2b by the fact that during the autumn of 2008, the VIX3M, which has a constant

three-month horizon, was clearly below the VIX, which has a one-month horizon. In

contrast, in the fourth quarter of 2017, the opposite was true.

However, there is a third characteristic which can only be observed over such a

long time span: volatility contains a slowly moving trend which is itself very slowly

mean reverting to the long run mean, with high volatility phases alternating with low

volatility ones that can last for several quarters or even years.17 For example, volatility

was remarkably low between February 2006 and July 2007, with values well below the

long run historical average of around 20. In fact, the lowest value over this period was

9.89 on January 24, 2007, in what some called “the calm before the storm”.18 Over the

following year, VIX increased to values between 20 and 35. Finally, in the autumn of 2008

it reached unprecedented levels, with the largest historical closing price (80.86) taking

17This phenomenon has been related to the long memory properties of the Nile flooding cycle, pop-
ularly known for the biblical reference to seven years of plenty and seven years of famine.
18Even lower values were observed in the last few months of 2017 and again in January 2018, with an

all-time lowest intraday value of 8.56 on Friday 24 November 2017.
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place on November 20, 2008, although on October 24 the VIX reached an intraday value

of 89.53. After this peak, VIX followed a decreasing trend over the following months

until the beginning of April, 2010, when the Greek debt crisis unfolded.

1.4 Volatility derivatives

Nowadays it is possible to directly invest in volatility by means of VIX derivatives

[see Rhoads (2011)]. Specifically, in March 2004, trading in futures on the VIX began on

the CBOE Futures Exchange (CFE). Further, in February 2006, European-style options

on the VIX index were also launched on the CBOE. Like VIX futures, they are cash

settled according to the difference between the value of the VIX at expiration and their

strike price. More recently, several volatility-related Exchange Traded Notes (ETNs)

have provided investors with equity-like long and short exposure to constant maturity

futures on the VIX, and even dynamic combinations of long-short exposures to different

maturities. Although the poor performance of investors with long positions on some

of these derivative assets during steadily decreasing volatility periods, as well as those

holding short positions during volatility spikes, have raised some serious concerns about

their risks and their suitability for retail investors, especially those with a heart condition,

trading in VIX-related assets recently reached unprecedented levels, representing a non-

neglibigle fraction of total volume trade on U.S. exchanges.

One of the main reasons for the high interest in these products is that VIX derivative

positions can be used to provide protection against the risks inherent in the S&P500

index, especially in downturns. At the same time, VIX derivatives allow investors to

achieve exposure to S&P500 volatility more cheaply than by using traditional derivatives

on this broad stock market index.

Although these new assets certainly offer additional investment and hedging oppor-

tunities, their correct use requires reliable valuation models that adequately capture the

features of the VIX, which is an index and not a tradeable asset.

In Mencía and Sentana (2013, 2016), we developed two complementary approaches

to price VIX derivatives. Although they differ in many important details, both of them

exploit the empirically relevant features of the VIX mentioned in the previous section.

The markedly different volatility periods observed over recent years provide a very useful

testing ground to assess the empirical performance of the different pricing models that
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we consider: a continuous time model for the log of the VIX and a discrete time process

for its level, which explicitly takes into account the positivity of this index.

As usual, we analyse the discrepancies between actual and theoretical derivatives

prices. But we also go beyond pricing errors, and analyse the implications of our models

for the term structures of VIX futures and options, which are of considerable independent

interest. Since we combine futures and options data, we can also assess which features

of our models are more relevant for pricing futures, and which ones are more important

for options. Moreover, by combining data on VIX derivatives with historical data on

the VIX itself in the estimation of the model parameters, we can not only cover a much

longer time span with different volatility phases, but also look at risk premia.

2 Diversification

2.1 Portfolio choice and diversification gains

So far I have considered a single risky financial asset, but in practice there are plenty

to choose from. For that reason, it is of the utmost practical importance to consider

multiple assets simultaneously. Let R = (R1, R2, . . . , RN)′ the vector of gross returns

on a finite set of N risky assets. The discussion in section 1.1 allows us to think about

the N marginal distributions of those risky assets on an asset by asset basis, which in

turn allows us to figure out the N associated expected returns ν = (ν1, ν2, . . . , νN)′

and standard deviations, σ = (σ1, σ2, . . . , σN). However, those objects tell us nothing

whatsoever about the joint probability distribution of returns.

The relevant object is the joint density, such as those depicted in Figure 3 for the case

of two risky assets whose distribution is either bivariate normal, a symmetric Student

t with 8 degrees of freedom or an asymmetric Student t with 8 degrees of freedom but

skewness parameters (-2,-2) [see again Mencía and Sentana (2012) for details]. Once

again, we can interpret the volume under those functions over a square with opposite

vertices (a1, a2) and (b1, b2) as providing the probability that the first return takes values

in the range (a1, b1) and the second one takes values in the range (a2, b2) simulta-

neously. If most investors suffer from information overload when looking at a single

marginal distribution, one can only wonder how their brain scans will look like when

they try to visualise these joint densities in their minds.

Financial engineering has a bad press reputation but at the end of the day its simple
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objective is to combine existing assets to create new ones. Under my maintained assump-

tion of constant returns to scale in the investment technology, the payoffs to a portfolio

of the riskless asset and the N risky ones with fixed weights given by ws and the vector

w = (w1, w2, . . . , wN)′, respectively, will be given by p = wsRs + w1R1 + . . . + wNRN .

Therefore, investors could safely ignore joint distributions if they could figure out the

probability density function of p for every conceivable combination of weights w. Unfor-

tunately, except in some special cases I will discuss in section 3.1, this is far from trivial.

For that reason, investors often characterise dependence by means of the pairwise cov-

ariance between any two risky financial returns.

A straightforward generalisation of the variance concept, covariance is defined as the

sum of the cross products of the differences of each return to its expected value, weighted

by the probability that such a pair of returns simultaneously realises. More formally,

σij = cov(Ri, Rj) =

∫ Rimax

Rimin

∫ Rjmax

Rjmin

(ui − νi)(uj − νj)dF (ui, uj),

where (ui, uj) are a possible combination of values for the two returns, while dF (ui, uj)

is the probability that Ri and Rj take values arbitrarily close to ui and uj, respectively.

Trivially, σij = σji, so there is effectively a single covariance between any two assets. In

addition, V (Ri) can be understood as the covariance of an asset return with itself.

If combinations of two asset returns either above their means or below their means

are more likely to occur than alternative combinations in which one asset return is

above while the other one below their respective means, the covariance will typically

be positive. In contrast, if the opposite happens then the covariance will typically be

negative. Finally, when the returns of the two assets are (stochastically) independent,

so that the probability of observing a given pair is exactly equal to the product of the

probabilities of observing each of its components, and the “sum”above is well defined,

their covariance will be 0. However, zero covariance is far weaker than independence.

For example, one can easily construct counterexamples such as R2 = R21 in which there

is extreme dependence but zero covariance if the distribution of R1 is symmetric around

its mean. As in the case of a single asset, therefore, mean, variances and covariances only

provide a partial characterisation of a joint distribution. This point is clearly illustrated

by the markedly different shapes of the densities in Figure 3, even though all three

underlying bivariate random vectors have zero means, unit standard deviations and zero

covariance by construction.
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Interestingly, the covariance between the excess returns of assets i and j, ri = Ri−Rs

and rj = Rj −Rs, coincides with the covariance between their gross returns, the reason

being once again that the safe asset is riskless.

Although as I explain below covariances play a fundamental role in the classical theory

of optimal portfolio allocation, they are not ideal as descriptive measures because they

are influenced by the way in which one measures returns (% or pure numbers, annualised,

leveraged, etc.). A far more common measure of linear dependence is Pearson correlation

coeffi cient

ρij =
σij

σi · σj
,

which is effectively the covariance between two excess returns leveraged or deleveraged

so that they both have unit volatility. This unitless measure always lies between -1 and

+1, which facilitates comparisons across asset pairs. A correlation of 1 implies that there

must be an upward sloping deterministic, linear relationship between the two variables

while a value of -1 implies a downward sloping one.

One of the most important advantages of creating new assets by means of portfolios

of risky assets is that they can have lower risk than any of the two original ones. In

particular, in the case of two risky assets with gross returns Ri and Rj, the variance of

a convex combination of them with weights w and 1− w will be:

σ2(w) = w2σ2i + (1− w)2σ2j + 2w(1− w)σij.

This expression is minimised for

wMV =
σ2j − σij

σ2i + σ2j − 2σij
,

which yields

σ2(wMV ) =
σ2iσ

2
j − σ2ij

σ2i + σ2j − 2σij
,

so that

σ2i − σ2(wMV ) =
(σ2i − σij)

2

σ2i + σ2j − 2σij
≥ 0

because the denominator is the variance of a portfolio that takes a long position on one

of the assets and a short position on the other one. This (weak) inequality confirms that

we can generally find a portfolio of unit cost whose variance is lower than the variance

of each of its constituents. The only exception arises when the two assets are in fact
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identical. This simple mathematical argument is behind the idea of diversification gains,

which is often expressed by the adage “don’t put all your eggs in one basket”.

Nevertheless, several observations are in order. First, in deriving wMV , I have not

imposed any leverage or short-selling restrictions on w, which could be either negative

or bigger than 1. In the presence of short sale constraints, diversification gains diminish

but they do not disappear. Second, and more important, minimising risk by minimising

variance usually involves an opportunity cost in terms of reducing expected returns too.

In fact, there is a trade off between risk and return. Modern portfolio choice theory, also

known as mean-variance portfolio analysis, is effectively built around this trade-off.

Despite its simplicity, and the fact that over six and a half decades have elapsed

since Markowitz published his seminal work on the theory of portfolio allocation under

uncertainty [Markowitz (1952)], mean-variance analysis remains the most widely used

asset allocation method. There are several reasons for its popularity. First, it provides a

very intuitive assessment of the relative merits of alternative portfolios, as their risk and

expected return characteristics can be compared in a two-dimensional graph. Second,

it can be shown that return mean-variance frontiers are spanned by only two funds,

a property that simplifies their calculation and interpretation. Finally, mean-variance

analysis is fully compatible with expected utility maximisation if we assume Gaussian or

elliptical distributions19 for asset returns [see e.g. Chamberlain (1983), Owen and Ra-

binovitch (1983) and Berk (1997)], or if the mutual fund separation conditions hold [see

Ross (1978)]. Not surprisingly, Harry Markowitz received the 1990 Nobel Memorial Prize

in Economics, together with Merton Miller and William Sharpe, “for their pioneering

work in the theory of financial economics”.

Let Σ denote the N ×N covariance matrix of returns, a square array whose diagonal

elements contain the individual variances of theN assets and whose off-diagonal elements

contain the covariances of all possible pairs. It is easy to see that the mean and variance

of a portfolio with weights w written on these assets will be given by

ν(w) =
∑N

i=1
wiνi = w′ν

19Spherically symmetric distributions are a generalisation of the multivariate normal with zero mean
vector and identity covariance matrix, in the sense that the density contours are concentric circles, but
with flexibility is the relative assignment of probability between the centre and the tails. Examples
include the multivariate normal and Student t depicted in Figure 3, as well as the multivariate Laplace
and all scale mixtures of normals [see Amengual and Sentana (2010) for further details]. Elliptical
distributions are simple affi ne transformations of spherical ones.
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and

σ2(w) =
∑N

i=1

∑N

j=1
wiwjσij =

∑N

i=1
w2i σ

2
i + 2

∑N−1

i=1

∑N

j=i+1
wiwjσij = w′Σw.

When a safe asset is available, the unrestricted optimal solution in the mean - variance

sense is to take a unit position on the safe asset, and N positions on the zero cost

portfolios underlying each of the excess returns with weights proportional to Σ−1µ.20

The lower the absolute value of the weights, the lower the degree of leverage of the

position and the lower the expected returns one can obtain. However, the risk of the

optimal portfolio decreases commensurately, the extreme case being given by a unit

position on Rs but zero positions on all the risky assets, which eliminates all risks. More

generally, if P denotes the correlation matrix and s = (µ1/σ1, . . . , µN/σN) the vector of

Sharpe ratios for the underlying assets, the aggregate risk-return trade off in the presence

of a safe asset will be given by
√
µ′Σ−1µ =

√
s′P−1s, which is the highest Sharpe ratio

any investor can achieve. This quantity corresponds to the slope of the mean - variance

frontier in mean - standard deviation space.

Nevertheless, a successful practical implementation of mean variance analysis is far

from trivial, as it requires assigning reasonably accurate values to the vector of risk

premia µ and the covariance matrix Σ, whose elements can change over time.21 Given

the focus of this paper, I will concentrate on Σ henceforth.

2.2 Correlation measures

As I have just explained, the covariance matrix plays a fundamental role in the theory

of optimal portfolio allocation. However, the volatility measures discussed in section 1.2

20In the case of two asset returns, the optimal weights are proportional to:

{E(r1)− [cov(r1, r2)/V (r2)]E(r2)} /[V (r1)− cov2(r1, r2)/V (r2)]
{E(r2)− [cov(r1, r2)/V (r1)]E(r1)} /[V (r2)− cov2(r1, r2)/V (r1)]

The numerators of those expressions are the intercepts in the linear least squares projection of one
excess return on a constant and the other one. In turn, the denominators are the mean square errors
of those projections. {E(r1)− [cov(r1, r2)/V (r2)]E(r2)} /

√
V (r1)− cov2(r1, r2)/V (r2) is called the “in-

formation ratio”of the first asset relative to the second one, which coincides with its Sharpe ratio if and
only if cov(r1, r2) = 0.
21For that reason, simpler investment rules such as (i) equally weighted portfolios, which is mean -

variance optimal when all risk premia in µ are identical and Σ has the equicorrelated structure I discuss
in the next section, or (ii) risk parity portfolios, which in turn are mean - variance optimal when all
Sharpe ratios µi/σi are identical and Σ is diagonal but not scalar, have become very popular among
both retail and institutional investors.
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only contain information about its diagonal. Therefore, it is necessary to obtain its off-

diagonal elements too. Next, I briefly discuss the generalisation of the four methods in

section 1.2 to the case of multiple assets.

1. Sample covariance matrices over rolling windows The simplest estimate is

the so-called historical covariance matrix

hist,S =
1

S

S∑
s=1

rt−sr
′
t−s, (5)

which is the average of the squares and cross-products of the daily returns computed

over a rolling window of the previous S trading days.22 The criticisms I made in the

univariate case apply here too.

Similarly, RiskMetrics EWMA version uses

RMt = (1− λ)
∞∑
s=1

λsrt−sr
′
t−s = (1− λ)rt−1r

′
t−1 + λRMt−1, (6)

where λ is the common decay parameter.

Both these measures have two important practical advantages: they contain the

corresponding (square) volatility estimate for each asset along their diagonal, and they

give rise to non-negative variances for any portfolio one could think of.

2. Econometric models Multivariate versions of Arch models are conceptually

straightforward. In the Garch(1,1) case, we would have

vech(Σt) = vech(Θ) + Avech(rt−1r
′
t−1) + Bvech(Σt−1),

where Θ is an N × N matrix of intercepts, A and B are N(N + 1)/2 × N(N + 1)/2

matrices of coeffi cients, and vech() is an operator which re-arranges the N(N + 1)/2

different elements of the conditional covariance matrix Σt by stacking its columns on top

of each other in vector form and getting rid of the duplications [see Bauwens, Laurent

and Rombouts (2006) for a survey].

However, these models have been far less successful than their univariate counterparts

because of two main reasons. First, the unrestricted version involves a large number of

parameters in A and B, which increases with the fourth power of N , an extreme version

22Again, some slight variants of this expression subtract the mean excess returns before computing
squares and cross-products, while others use geometric returns instead of arithmetic ones.
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of the so-called curse of dimensionality. Second, except in some special cases, it is

incredibly diffi cult to derive conditions on the coeffi cients that guarantee that they will

give rise to non-negative variance for every conceivable portfolio.23

Some restricted versions have been popular, though. The simplest multivariate

Garch(1,1) model is the so-called scalar version [see Ding and Engle (2001)], in which

Σt = Θ + αrt−1r
′
t−1 + βΣt−1.

In fact, the RiskMetrics model (6) can be regarded as a special case of this structure in

which β = 1− α and Θ = 0.

Other versions combine several univariate Garch models with a simplified correl-

ation structure. The simplest possible example is the conditional correlation model of

Bollerslev (1987), which allows for time-varying volatilities but forces correlations to be

constant. Given its lack of realism, this model has been largely superseded by the dy-

namic conditional correlation (DCC) models of Engle (2002) and Tse and Tsuy (2002),

which impose an approximately scalar Garch(1,1) structure on the conditionally stand-

ardised returns rit/σit (i = 1, . . . , N) [see Aielli (2013) for details].

Another popular version is the conditionally heteroskedastic analogue to the common

factor model that has been used to represent large covariance structures for stock returns

for decades, and which inspired Ross’ (1976) Arbitrage Pricing Theory [see Connor,

Goldberg and Korajczik (2010)]. In the single factor case put forward by Diebold and

Nerlove (1989),

rt = µ+ bft + ut, (7)

where ft is a common risk factor which affects all asset returns simultaneously, ut =

(u1t, . . . , uNt) are N conditionally uncorrelated idiosyncratic factors which affect one

asset only and b are the coeffi cients which measure the sensitivity of the assets to the

common factor. Assuming that ft and ut have conditional variances given by λt and

Γt = diag(γ1t, . . . , γNt), respectively, the conditional covariance matrix will be given by

Σt = bb′λt + Γt.

The diagonal elements of this matrix, which represent the conditional variances of

23In He, Sentana and Teräsvirta (2008), we made some progress by writting multivariate Archmodels
as vector autoregressions (Vars) with random coeffi cients.
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each of the returns, are given by

σ2it = b2iλt + γit,

while the conditional covariances in the off-diagonal elements will be

σijt = bibjλt.

As a result, the conditional correlation between the returns of assets i and j will be

ρijt =
bibjλt√

b2iλt + γit

√
b2jλt + γjt

.

Assuming that the factor loadings bi and bj are both positive, King, Sentana and Wad-

hwani (1994) proved that ∂ρijt/∂λt > 0 and ∂ρijt/∂γit < 0, which implies that in this

model correlations will increase (decrease) when, ceteris paribus, the volatility of the

common (specific) risk component increases. I will revisit this issue in section 2.3.

A special case of this model is one in which b is (proportional to) a vector of N ones

and Γt is scalar. Then, all pairwise correlations will be given by

λt
λt + γt

.

This model is called an equicorrelated model, and has been extensively used in many

other contexts [see e.g. Vasicek’s (1987) loan portfolio model]. Engle and Kelly (2012)

proposed a generalisation in which the equicorrelated structure is effectively applied to

conditionally standardised returns.

Multivariate versions of stochastic volatility models have evolved along similar lines

[see Chib, Nardari and Shephard (2006)], but their use remains limited.24

3. Realised covariance matrices using intraday data Again, it is possible to use

ultra high frequency intraday observations to compute daily measures of covariances and

correlations. Guaranteeing positivity of the portfolio variances for every portfolio is also

tricky but several methods have been proposed that achieve this [see e.g. Barndorff-

Nielsen et al (2011)]. However, in addition to the issues highlighted in section 1.2, the

24In fact, if the conditional variances of the common and idiosyncratic latent factors in (7) follow
univariate Garch processes, then this model effectively becomes a stochastic volatility model, in the
sense that there are more shocks than observed returns. Fiorentini, Sentana and Shephard (2004) and
Sentana, Calzolari and Fiorentini (2008) propose simulation methods for the estimation of the model
parameters in that case, which they apply to moderately large cross-sections of stock returns.
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main practical diffi culty here is dealing with return pairs in which one of the assets trades

far less frequently than the other. In addition, in some cases it is simply impossible to

compute a realised covariance, the obvious example being the US and Japanese stock

market indices, whose trading hours do not overlap.

4. Implied correlations obtained from financial derivatives The triangular

equality of exchange rates implies that, absent arbitrage opportunities, the (log) capital

gain obtained by trading the US dollar - Japanese Yen cross rate has to be the difference

between the (log) capital gain obtained by trading the US dollar - euro and Japanese Yen

- euro rates. As a result, in a Black-Scholes world, the implied square vol of the dollar

- Yen rate should be equal to the implied square vol of the dollar - euro rate plus the

implied square vol of the dollar - Yen rate minus twice the implied covariance between

the last two. Therefore, if there are actively traded options for all three currencies, one

can easily obtain a forward-looking, market-based measure of correlation, known as the

implied correlation [see e.g. Campa and Chang (1998)].

More generally, one could analogously obtain the implied correlation between two

assets by combining the implied vols of each of them with the implied vol of any portfolio

based on them, regardless of the portfolio weights. Unfortunately, there are very few

“basket”options, that is, options written on portfolios, and they are frequently over the

counter products bespoke to satisfy the specific needs of some large investors. The main

exception are options written on stock market indices, which are incredibly popular. The

complication there is that they usually involve many assets, not just one pair, so without

further assumptions it is impossible to obtain the N(N − 1)/2 correlations involved in

an index that combines N risky assets. In the case of the S&P 500 index, the number

of potentially different correlations is 124,750!

There are at least two practical approaches to deal with this problem. The first

one is to assume an equicorrelated structure, as in the previous section. This is the

methodology of the CBOE S&P 500 Implied Correlation Index [see CBOE (2009b)].

Specifically, the τ -maturity implied correlation index can be obtained as

ρIndex,τ (t) =
σ2Index,τ (t)−

∑N
i=1w

2
i σ

2
i,τ (t)

2
∑N−1

i=1

∑N
j=i+1wiwj

√
σ2i,τ (t)σ

2
j,τ (t)

, (8)

where wi (i = 1, . . . , N) are the index weights.
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In recent years, though, the numerator of (8), known as the overdispersion, which

measures the difference between the actual variance of the index and its hypothetical

value if the returns to all its constituents were mutually uncorrelated, has gained in-

creased attention among both practitioners and researchers [see e.g. Jones and Vischer

(2015)].25 Unlike ρIndex,τ (t), this measure makes no restrictive assumptions on the cor-

relation structure of the individual constituents of an index.

2.3 Stylised facts

Two stylised facts related to time-varying correlations are that (i) there are certain

periods when markets seem to move persistently in unison and others when the correla-

tion between them appears to be systematically low; and (ii) periods when markets are

increasingly correlated are also times when markets are volatile [see King and Wadhwani

(1990) and Roll (1989) for some early evidence]. Indeed, King and Wadhwani (1990)

argued that this might be because a rise in volatility might lead agents to pay greater

attention to other markets. As I mentioned in the previous section, conditionally hetero-

skedastic factor models in general, and equicorrelated structures in particular, account

for these observations. For example, King, Sentana and Wadhwani (1994) confirmed

both the time-varying nature of correlations and the fact that periods of high volatility

in the common global risk factors are also periods of increased correlation across na-

tional stock markets, which in turn substantially reduces the gains from international

diversification.

Figure 4a compares the CBOE implied vols of three major US stock indices: S&P500,

Nasdaq 100 and Russell 2000. The S&P 500 index contains the 500 largest companies

in terms of capitalisation whose shares trade on U.S. exchanges. In contrast, the Russell

2000 index contains the 2000 smallest companies in the Russell 3000 index, which in turn

contains the 3000 largest companies whose stocks trade on U.S. exchanges. Finally, the

Nasdaq 100 is made up of the largest non-financial stocks on the Nasdaq, which is heavily

specialised in technology stocks. Therefore, while there should be no overlap between

S&P500 and Russell 2000, there is an increasing degree of overlap between S&P500 and

Nasdaq 100 because of the current prominence of Apple, Amazon, Facebook, Microsoft

25Although in theory the overdispersion should always be non-negative and the implied correlation
below 1, the indirect way in which one computes these quantities might occasionally lead to violations
of those bounds. For example, the implied correlation for the S&P500 offi cially reported by the CBOE
exceeds 1 occassionally.
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and Alphabet. Not surprisingly, the correlations between the geometric returns on those

indices are very high:

return correlations Nasdaq 100 Russell 2000
S&P 500 .9216 .9177
Nasdaq 100 .8698

However, the correlations between their implied vols are even higher:

vol correlations Nasdaq 100 Russell 2000
S&P 500 .9789 .9805
Nasdaq 100 .9418

In turn, Figure 4b compares the VIX with the V2X, which is the analogue volatility

index for the Euro Stoxx 50, a market-based capitalisation index of the largest and most

liquid publicly traded companies in the eurozone. Once again, this picture confirms the

strong comovements in international stock markets. In this case, however, the differ-

ence between the correlation of those two volatilities (.942) and the correlation of the

underlying (geometric) returns (.615) is even more striking.

More generally, Bollerslev et al (2018) show that the high degree of correlation across

volatilities that I have just documented happens not only within an asset class but also

across asset classes.

Turning now to the correlations between returns, Amengual and Sentana (2017a)

present a simple decomposition of the implied vol of the IBEX 35 index into two compon-

ents: the implied vol that this index would have if all the pairwise correlations between

its constituents were 0, which we denote by “constituents”, and the rest, denoted by

“dispersion”, which is exclusively due to the off-diagonal elements of the conditional co-

variance matrix. Their figure 8a, which I reproduce here as Figure 5a, confirms that both

the volatility of the individual constituents and their dependence rises in crisis periods.

Nevertheless, the importance of both components is roughly similar, except in the last

part of the sample, when a large fraction in the reduction of the implied vol of the index

seems to be due to the reduction of the implied vols of its constituents. One possible ex-

planation for this phenomenon is that the largest Spanish companies are internationally

diversified, with approximately two third of their revenues from foreign markets, so that

their income sources are more affected by sectoral factors than country risks.

Amengual and Sentana (2017a) also compute the implied correlation of the IBEX

35, which I reproduce in Figure 5b. The median value of this implied correlation is 67%,
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and although it positively correlated with the implied vol of the IBEX, the relationship

is not too strong. Interestingly, the persistence of the IBEX implied correlation series,

as measured by its correlogram, is lower than the persistence of its implied vol series,

which might be due to the cross-sectional averaging involved in the implied correlation

calculation.

Correlations across asset classes, though, are far more diffi cult to capture. The

paradigmatic example is the correlation between US stocks and bonds, which changes

sign from time to time [see e.g. Campbell, Pflueger and Viceira (2015)].

2.4 Value at risk

The 1996 Amendment to the first Basel Capital Adequacy Accord forced banks and

other financial institutions to develop models to quantify their market risks accurately

[see Basel Committee on Banking Supervision (1997)]. In practice, most institutions

chose the so-called Value at Risk (VaR) framework popularised by JP Morgan in 1994 in

order to determine the capital necessary to cover their exposure to those risks. Nowadays,

retail investors routinely receive information on this statistic when they buy a mutual

fund, although sometimes its meaning is not properly explained. As I will show in the rest

of this section, VaR is another concept intimately related to volatility and correlation.

To understand it better, consider again the portfolio selection problem of an investor

with an initial wealthW that can be invested in N risky assets with gross returnsR with

means ν and covariance matrix Σ, and a safe asset with gross return Rs. Let w denote

the vector that represents the proportion of his wealth invested in the risky assets, so

that w0 = 1 − w′`N is the fraction invested in the riskless asset, with `N denoting a

vector of N ones.

The random wealth of the investor at date 1 will be W (Rs + w′r), so she will bear

losses when W (Rs + w′r) < W , i.e., when the gross return of her portfolio, Rs + w′r,

is less than 1. In this context, for a given a confidence level 1 − α (say 99%), with

0 < α < 1/2, the Value at Risk (VaR) associated to portfolio w is the (1−α)th quantile

of the probability distribution of losses, i.e., the critical value V aR(w) such that

P [1− (Rs + w′r) > V aR(w)/W ] = α.

For convenience, though, the portfolio VaR is often reported in fractional form as
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−V aR(w)/W . Hence,

V aR(w)/W = −F−1(α; w)σ(w)−Rs + 1− µ(w),

where µ(w) = w′µ, σ2(w) = w′Σw, F (·; w) denotes the cdf of the portfolio excess

returns w′r after having been standardised and F−1(α; w) is its inverse (i.e. the quantile

function).26 It is important to emphasise that V aR(w)/W is a quantile (lower bound)

on the losses that may materialise. If the model used to compute it is correct, we know

that, on average, 100α% of the time the losses will be at least as large. For that reason,

expected shortfall, which estimates the expected losses beyond the VaR threshold, has

become increasingly popular [see Artzner et al (1999)].

There are many ways of computing the VaR of a portfolio. A rather popular procedure

employed by many financial institutions all over the world is the so-called historical

method, which relies on the empirical quantiles of the returns to the current portfolio

over the last S observations. As a result, it suffers from the same problem as historical

volatilities, although it does not make any assumption about the distribution of returns.

On the other hand, the original RiskMetrics methodology ignores the mean compon-

ent µ(w) on the grounds that expected overnight returns are usually tiny relative to

their volatility [but see Meddahi and Yamashita (2017)], and uses the covariance matrix

in (6) to compute the variance of the current portfolio as w′RMtw. A second gener-

ation version of RiskMetrics offered the choice of a Gaussian distribution or a Student

t distribution with 5 degrees of freedom to compute the quantile [see Zumbach (2007)],

while the latest one allows for normal-gamma mixtures. In that regard, it is often argued

that the fact that the distribution of returns has fatter tails than the normal invalidates

the Gaussian VaR. While this is strictly speaking true, the effects of misspecifying the

distribution, which depend on a complex manner on the interaction between confidence

level and true distribution, are not necessarily important [see Amengual, Fiorentini and

Sentana (2013) for further discussion]. For example, when α = .025, it is well known

that the Gaussian critical value is Φ−1(α) = 1.9599. What is far less known, however, is

26In Sentana (2003), I proved that the combinations of portfolio means and standard deviations
which give rise to the same (proportional) VaR lie on the positively sloped straight line in (µ, σ) space,
µ = (1− Rs − V aR/W )− F−1(α)σ, which I call an “IsoVaR”, provided that F (α;w) does not in fact
depend on the portfolio weights w. This result does not rely on normality, and it will hold as long as
the distribution of w′r depends on w only through its mean and variance. In particular, it will hold
under for elliptical distributions too. The superposition of these IsoVaRs on the mean - variance frontier
immediately determines the solution to a mean - variance portfolio problem with a VaR constraint [see
Sentana (2003) for further details].
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that 1.9599 is also the 97.5% quantile of a standardised Student t distribution with 3.222

degrees of freedom despite the fact that this distribution has unbounded fourth moments.

Intuitively, the reason is the fact that the area under the curve of any valid density is

necessarily one because that is the probability of observing some return. Fatter tails and

a higher peak with more mass near the mean return implies that the Student t density

must be leaner in between (see again Figure 1). As a result, the cumulative distribution

functions of standardised version of the normal and Student t random variables cross

not only at 0, but also near each of the extremes.

3 Contagion

3.1 Alternative dependence measures

The analysis in section 2 might give the impression that diversification is a panacea.

Unfortunately, financial markets that show little correlation in normal periods show a

tendency to fall together during crisis periods. For instance, when Russia defaulted in

August 1998, most stock markets around the world fell at unison. This had really terrible

consequences for those investors who thought that they could eliminate most of the risk

of their portfolios by holding assets that looked seemingly uncorrelated.27

The blame falls partly on Pearson correlation coeffi cients, which only provide a com-

plete description of dependence under multivariate normality, in which case the con-

ditional mean of one variable given others is a linear function of the latter and the

corresponding conditional variance constant. Attractive alternatives are provided by

Spearman rank correlation coeffi cients, which are formally defined as Pearson correl-

ation coeffi cients of the marginal probability integral transforms (PITs) of each of the

returns. These coeffi cient are computed as follows. First, one instantaneously transforms

each of the elements of R into N uniform random variables ui = G1i(Ri) (i = 1, . . . , N),

where G1i(.) is the marginal cumulative distribution function of Ri. Although this pro-

cedure may sound a little daunting, in any given sample this initial step simply replaces

the original returns on each asset by their observed ranks divided by the number of ob-

servations S (+1), so that the smallest sample value becomes 1/(S + 1) and the largest

S/(S+1). Then, one computes the usual correlation coeffi cient between ui and uj. Thus,

27The 1998 Russian default also created havoc for seemingly riskless portfolios that exploited almost
perfect arbitrage opportunities (convergence trades) along the yield curve, leading to the collapse of the
hedge fund Long Term Capital Management, in which Merton and Scholes were heavily involved.
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the resulting coeffi cient will also be between -1 and 1 by construction. Interestingly, a

Spearman rank correlation of 1 implies that there must be a monotonically increasing,

deterministic relationship between the two variables, while a value of -1 implies a mono-

tonically decreasing one. Given that Pearson correlation coeffi cients only attain those

extreme values when the deterministic relationship is in fact linear, these rank correl-

ation coeffi cients can capture non-linear relationships between returns that might go

undetected with the usual procedures.

However, the correlation between ranks is diffi cult to visualise in a two dimensional

scatter plot. In that regard, a third possibility is the so-called Gaussian rank correlation,

which is Pearson correlation coeffi cient of the Gaussian ranks, defined as the Gaussian

quantiles corresponding to the uniform ranks ui. More formally, the Gaussian rank of

the sth observation on the gross return on the ith asset is defined as Φ−1[G1i(Ris)], where

Φ−1(.) denotes the quantile function of a standard normal variable, which is defined as

the inverse of its cdf Φ(.) so that Φ[Φ−1(ui)] = ui. These ranks have standard normal

marginal distributions by construction, which makes the interpretation of their scatter

plots easier [see Amengual and Sentana (2018)].

Nevertheless, both Spearman and Gaussian rank correlations continue to look at the

entire distribution, while investors might worry more about certain regions. For that

reason, Longin and Solnik (2000) proposed a more targeted measure of “tail depend-

ence”, which they called exceedance correlation. This is simply a sequence of Pearson

correlations defined over nested sections of the third quadrant, in which both returns

are negative, and the first quadrant, when the returns are simultaneously positive. More

formally,

ρij(κ) =

{
cor(ri, rj|ri > κ, rj > κ) if κ > 0
cor(ri, rj|ri < κ, rj < κ) if κ < 0

Figure 6 presents the pattern of exceedance correlation for the three bivariate dis-

tributions in Figure 3, whose marginal elements have zero mean and unit variance and

whose Pearson correlation coeffi cients are 0 by construction. As expected, in the Gaus-

sian distribution ρij(κ) = 0 for all κ because lack of correlation implies independence.

On the other hand, there is tail dependence in the symmetric Student t distribution, but

it is the same in the first and third quadrants because of its spherical nature. In contrast,

the asymmetric Student t distribution shows much higher exceedance correlation in the

third quadrant than in the first one.
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Therefore, negative tail dependence is a phenomenon that the multivariate normal

distribution cannot account for, and elliptical distributions struggle with. For that

reason, it is convenient to consider more flexible multivariate distributions. The two

main problems with non-elliptical distributions is that the number of parameters may

increase very rapidly with the number of assets, and that it is not always easy to find

the marginal distributions that they imply for the returns of portfolios constructed from

the original risky assets. In this second regard, the generalised hyperbolic family, finite

mixtures of multivariate Gaussian distributions or Hermite expansions are examples of

joint distributions whose marginal components belong to the same class [see Mencía and

Sentana (2009, 2012), as well as Amengual and Sentana (2015)].

An alternative way of modelling dependence is through copulas. Formally, copulas

are joint distribution functions with uniform marginals defined over the unit hypercube

in RN . Intuitively, the idea is very simple. After transforming again the returns on

each asset into their ranks by means of the corresponding marginal probability integral

transform, one models the dependence of the random vector of uniform ranks u =

(u1, . . . , uK)′ through a joint density function, known as the copula density.

Nowadays copulas are extensively used in many economic and finance applications.

Although there are many well known examples of bivariate copulas, some of them are

popular simply because they are mathematically convenient, as opposed to being mo-

tivated by empirical observations on real life phenomena. More importantly, they are

diffi cult to generalize to multiple dimensions. On the other hand, the Gaussian copula

is a popular choice both in bivariate and multivariate contexts since it is easily scalable.

Unfortunately, it rules out non-linear dependence, particularly in the lower tail. For that

reason, the validity of this copula in finance has been the subject of considerable public

debate, to the extent that the media declared it “the formula that felled Wall Street”

[see the provocative article by Salmon (2009), the more nuanced analysis by MacKenzie

and Spears (2012), and the academic response by Donnelly and Embrechts (2010)]. In

Amengual and Sentana (2017b), we develop specification tests for a Gaussian copula

against the copulas associated to some of the flexible generalisations of the multivariate

normal distribution I mentioned above.
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3.2 Financial contagion

Financial crises are not a modern phenomenon, but their incidence, and the extent

to which they have gone from being a domestic problem to a regional one, and more

recently, a truly global concern, is definitely a sign of our times. This largely undesired

globalisation of financial crises is intimately related to the concept of contagion. By ana-

logy to the epidemiological concept of communicable disease, financial contagion literally

means that the economic and financial diffi culties in a country get quickly transmitted

to other more or less closely linked economies. The 1982 Latin America debt crisis,

the 1994 Mexican peso “tequila” crisis, the 1997 Asian financial crisis and the follow-

ing year’s Russian one, the 2007-2008 global financial crisis and the 2010-2012 European

sovereign debt crisis are obvious examples of this phenomenon. Although several authors

have developed detailed narratives for each of them [see e.g. Baldwin et al (2015) for

the eurozone], all those crises share an important characteristic: they typically start in

a single country but they rapidly spread to others, even though the direct economic and

financial links between the original country and some of the affected ones are fairly weak.

For that reason, financial contagion at such a grand scale has been a fundamental driving

force behind financial regulation, both at the domestic level and at the international one.

Nevertheless, the academic definition of contagion is not necessarily the same as

the informal definition used by the media and the national and international financial

regulators. Two confounding facts that I mentioned before are that (i) there are certain

periods when markets seem to move in unison and others when the correlation between

them appears to be low; and (ii) periods when markets are increasingly correlated are also

times when markets are volatile. But these correlation increases cannot be really called

contagion. For that reason, most previous approaches to identify real contagion episodes

have started from a factor model for returns of the type that I discussed in section 2.2

[see Dungey et al (2005) for a survey, with special emphasis on methodological aspects].

According to Forbes and Rigobon (2002), contagion would then arise if and only if there

is a “significant increase in cross-market linkages after a shock to an individual country

or group of countries”.

The empirical finance literature on contagion has focus almost exclusively on stock

returns. Nevertheless, stock returns on their own are not necessarily informative enough

about tail dependence between financial markets, the reason being that by definition
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such simultaneous events only occur occasionally. As recently illustrated by Andersen,

Fusari and Todorov (2016, 2017), financial derivatives in general, and out-of-the money

put options, in particular, contain a lot of information about the left tail. For that

reason, in Amengual and Sentana (2017a) we combine data on several national stock

market indices with options written on them. In that regard, our approach is related

to the literature on risky debt, both corporate and sovereign, which has successfully

combined data on bond yields with data on credit default swaps (CDSs) to increase our

knowledge of default risk and loss given default, and the common movements in credit

ratings observed in practice [see e.g. Pan and Singleton (2008) or Duffi e et al (2009)].

3.3 Volatility, correlation and dependence during the recent
financial crises

The euro, formally launched on January 1st, 1999, brought about a period of low in-

terest rates that coincided with a reduction in inflation levels and an increase in growth

rates across the world. However, important imbalances began to build up very soon.

The so-called peripheral countries, or GIIPS (Greece, Ireland, Italy, Portugal and Spain)

accumulated important current account deficits, which were effectively financed by the

core countries (Austria, Belgium, Finland, France, Germany, Luxembourg and the Neth-

erlands). More importantly, they suffered a progressive deterioration of competitiveness

due to their inflation differentials.

Still, Spain had a modest ratio of public debt to GDP of 36% at the outset of the global

financial crisis. In addition, the initial effects of the European sovereign debt crisis on

the country were arguably triggered by events in Greece and elsewhere. As it is usually

the case in episodes of financial contagion, though, Spain had some serious economic

problems of its own. Its seemingly good fiscal position was largely due to the huge

construction-related tax revenues generated during the housing bubble, which allowed for

large increases in local, regional and federal government spending in public consumption

and infrastructure (not necessarily guided by economic effi ciency criteria) to remain

blurred in the aggregate figures. While NINJA (no income, no jobs, no assets) mortgages

did not exist as such, and regular residential mortgages were a relative minor problem

for banks thanks to their recoursing character and the safety net provided by families,

competition for market share earlier on, implemented through generous revolving credit
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facilities to property developers, quickly increased the volume of “zombie”loans on the

books of some financial institutions, which were betting on resurrection hoping for “green

shoots”. The socialist government first, and the conservative one that was elected at the

end of 2011, implemented three tepid and arguably misguided financial reforms, but

to no avail. On June 1st, 2012, just three weeks after nationalising Bankia, a bank

resulting from the merger two years earlier of seven regional savings banks in diffi culties,

the Spanish 10-year bond reached 548 basis points above its German counterpart on

intraday trading. The Spanish government eventually agreed to a very large European

financial rescue package for its banks, but in the second half of July the spread on German

bunds reached 6%, and the irreversibility of EMU was in doubt. The famous “whatever

it takes”speech by the president of the ECB backed by the German chancellor, and a far

more aggressive reform of the Spanish financial system as a result of the Memorandum of

Understanding signed with the EU, which included the creation of a bad bank, reduced

those spreads by 140 basis points in only five days. By mid October, interest rate

differentials were a mere 2.4%, and the Spanish Treasury was able to issue short term

debt at less than 1%.

Figures 5a and 5b clearly indicate that the events in Greece, Ireland and Portugal

substantially affected the implied volatility of the Spanish stock market. To assess the

extent to which the channel was the negative feedback loop between banks and weak

sovereigns, in Amengual and Sentana (2017a) we compare the implied vols of the two

largest Spanish banks (Santander and BBVA) with the implied vols of its two largest

utility companies (Iberdrola and Gas Natural). Figures 9a and 9b in that paper, which I

reproduce here as Figures 7a and b, show that banks had larger implied vols on average

than utilities, which to some extent reflects the procyclical nature of their revenue base

but also the leveraged nature of their capital structure. More importantly, those figures

show that the banks reacted more strongly to the European sovereign debt crisis than

the implied vols of the utilities, which might be interpreted as evidence in favour of the

diabolic loop. Somewhat surprisingly, while both Santander and BBVA were affected

by the turmoil in financial markets after the Lehmann Brothers collapse, the effects of

the European sovereign debt crisis on them was relatively mild in the spring of 2010,

when the first Greek aid package was been discussed, and especially in the second half

of 2011, a period in which the details of the private debt re-structuring deal for Greece
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were being discussed. Nevertheless, the dramatic increase of all four series in the spring

of 2012, which is precisely when the yields on Spanish public debt rocketed, reflects the

extent to which investors were concerned about the prospects of the Spanish economy

before the government decided to negotiate with the European institutions an assistance

package for the financial sector.

4 Conclusion

In this paper I describe in detail the concepts of volatility, diversification and con-

tagion, three basic keys to understand the seemingly whimsical behaviour of financial

markets. The presentation is deliberately not very technical and largely self-contained,

with most required concepts defined along the way. Nevertheless, the analysis is mostly

empirically oriented, with an emphasis on the methods that have been proposed to

measure those concepts and a discussion of the stylised facts that the resulting measures

imply. I also use those measures to study the effects of the financial crisis of 2007-2008

and the euro sovereign debt crisis of 2010-2012 on Spain.

The three concepts that I discuss illustrate the interest of financial markets parti-

cipants in having at their disposal accurate and timely measures of risk on which to base

their decisions. At the same time, they also raise many research possibilities for academ-

ics. Life is indeed uncertain, but the interest in volatility, diversification and contagion

is bound to increase over time.
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Figure 1: Densities of three standardised random variables: Gaussian, symmetric

Student t and asymmetric Student t

­4 ­3 ­2 ­1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Note: The asymmetric Student t has ten degrees of freedom, as its symmetric counterpart,
but skewness parameter −1.5. All three distributions, including the Gaussian one (dotted line),
have been standardised so that they have zero mean and unit standard deviation.



Figure 2: Temporal evolution of the S&P500 implied volatilities

Figure 2a: 1-month (1990-2018)
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Figure 2b: 1- and 3-months (2007-2018)
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Note: Figure 2a displays the temporal evolution of the VIX (one-month horizon) over its
entire history, while Figure 2b, which also displays the VIX-3M (three-month horizon), starts
at the time of the global financial crisis.
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Figure 3a: Standardised Figure 3b: Contours of a standardised
bivariate normal density bivariate normal density
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Figure 3c: Standardised bivariate Figure 3d: Contours of a standardised
Student t density with 8 degrees bivariate Student t density with
of freedom (η = .125) 8 degrees of freedom (η = .125)
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Figure 3e: Standardised bivariate asymmetric t Figure 3f: Contours of a standardised bivariate
density with 8 degrees of freedom asymmetric t density with 8 degrees of
(η = .125) and β = (−2,−2) freedom (η = .125) and β = (−2,−2)
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Notes: All three bivariate distributions have uncorrelated components and marginals with zero
means and unit standard deviations. Panels a-b: Gaussian. Panels c-d: Student t with 8
degrees of freedom. Panels e-f: Asymmetric Student t with 8 degrees of freedom and skewness
parameters -2.
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Figure 4: Comparison of implied vol measures for stock indices

Figure 4a: S&P500, Nasdaq 100 and Russell 2000
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Figure 4b: S&P500 and Euro Stoxx
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Note: Figure 4a compares the CBOE volatility indices for the S&P500 (VIX), Nasdaq 100
(VXN) and Russell 2000 (RVX), while Figure 4b compares the VIX with the V2X, which is
the analogue volatility index for the Euro Stoxx 50.



Figure 5: Implied vol decomposition and implied correlation for the IBEX 35

Figure 5a: Implied vol decomposition
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Figure 5b: Implied correlation
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Notes: These figures plot the implied vol decomposition of the annualized three-months
time-to-maturity variance swap rates for the IBEX 35 (Spain), as well as its implied correlation.
The sampling period is from May 14th, 2007 to November 30th, 2016. Variance swap rates for
each index/stock are computed using observations across all strikes of out-the-money (OTM)
options from the OptionMetrics Ivy DB Europe database, following the methodology proposed
by Bakshi, Kapadia and Madan (2003). Vertical lines correspond to 15-Sep-2008, 23-Apr-2010,
29-Nov-2010, 21-Jul-2011, 26-Oct-2011 and 1-Jun-2012.



Figure 6: Excedance correlations for bivariate normal, Student t and asymmetric
Student t whose components are uncorrelated
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Note: The three bivariate random variables coincide with the ones in Figure 3. There-
fore, the asymmetric Student t has eight degrees of freedom, as its symmetric counterpart, but
skewness parameters (-2,-2). Furthermore, all three bivariate distributions have been stand-
ardised so that their components are uncorrelated and their marginals have zero means and
unit standard deviations.
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Figure 7: Volatilities from three-month time-to-maturity variance swap rates during
the European sovereign debt crisis

Figure 7a: IBEX35 and main Spanish banks
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Figure 7b: IBEX35 and main utilities companies
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Notes: These figures plot the square root of the annualized variance swap rates for the
IBEX35 (largest companies in Spain), Banco Santander (SAN), Banco Bilbao Vizcaya Argent-
aria (BBVA), Gas Natural SDG (GAS) and Iberdrola (IBE). The sampling period is from June
1st, 2007 to November 30th, 2016. Variance swap rates for each index are computed using ob-
servations across all strikes of out-the-money (OTM) options from the OptionMetrics Ivy DB
Europe database, following the methodology proposed by Bakshi, Kapadia and Madan (2003).
Vertical lines correspond to 15-Sep-2008, 23-Apr-2010, 29-Nov-2010, 21-Jul-2011, 26-Oct-2011
and 1-Jun-2012.


