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1 Introduction

The most popular empirically oriented asset pricing models e¤ectively assume the existence

of a common stochastic discount factor (SDF) that is linear in some risk factors, which discounts

uncertain payo¤s di¤erently across di¤erent states of the world. Those factors can be either the

returns on some traded securities, non-traded economy wide sources of uncertainty related to

macroeconomic variables, or a combination of the two. The empirical success of such models

at explaining the so called CAPM anomalies was initially limited, but researchers have progres-

sively entertained a broader and broader set of factors, which has resulted in several success

claims. Harvey, Liu and Zhu (2016) contains a comprehensive and up to date list of references,

cataloguing 315(!) di¤erent factors.

However, several authors have warned that some of those factors, or more generally linear

combinations of them, could be uncorrelated with the vector of asset payo¤s that they are meant

to price, which would result in economically meaningless models (see Burnside (2016), Gospodi-

nov, Khan and Robotti (2015) and the references therein). Further, those papers forcefully

argue that such situations can lead to misleading econometric conclusions.

In this context, the purpose of our paper is to study the estimation of risk prices and the

testing of the cross-sectional restrictions imposed by overspeci�ed linear factor pricing models.

By overspeci�ed models we mean those with at least one non-zero SDF which is uncorrelated

with the excess returns on the vector of test assets. We discuss in detail several examples of

this situation, which illustrate two important di¤erences between our work and related studies.

First, the presence of uncorrelated risk factors is su¢ cient but not necessary for overspeci�cation.

As a result, attempts to �nd out which factors are uncorrelated on an individual basis fail to

provide a complete answer. Second, overspeci�cation is necessary but not su¢ cient for the

model parameters to be underidenti�ed. Therefore, studying parameter identi�cation by means

of rank tests does not provide a full answer either.

Our point of departure from the existing literature is that we do not focus exclusively on

the properties of the usual estimators and tests. Instead, we use the econometric framework in

Arellano, Hansen and Sentana (2012).1 Thus, we can identify a linear subspace of risk prices

compatible with the cross-sectional asset pricing restrictions, a basis of which we can easily

parametrize and e¢ ciently estimate using standard GMM methods.

We follow Peñaranda and Sentana (2015) in using single-step procedures, such as the con-

tinuously updated GMM estimator (CU-GMM) of Hansen, Heaton and Yaron (1996), to obtain

numerically identical test statistics and risk price estimates for SDF and regression methods,

1 In this sense, our paper can be regarded as a substantial extension of Manresa (2009).
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with uncentred or centred moments and symmetric or asymmetric normalizations. GEL meth-

ods such as Empirical Likelihood or Exponentially Tilted also share the numerical invariance

properties of CU-GMM. However, given that these methods are often more di¢ cult to compute

than two-step estimators, and they may sometimes give rise to multiple local minima, we propose

simple, intuitive consistent parameter estimators that can be used as sensible initial values, and

which will be e¢ cient for elliptically distributed returns and factors. Interestingly, we can also

show that these consistent initial values coincide with the GMM estimators recommended by

Hansen and Jagannathan (1997), which use the second moment of returns as weighting matrix.

For simplicity of exposition, we initially focus on excess returns, but later on extend our

analysis to cover gross returns too. Importantly, we show that single-step GMM procedures

yield the same numerical results with both types of payo¤s.

In addition to the usual overidenti�cation test, which is informative about the existence

of admissible SDFs, we propose simple tests that can diagnose economically meaningless but

empirically relevant cases in which the expected values of all SDFs in the identi�ed set are 0,

which is equivalent to their being uncorrelated to the test assets. We refer to this situation as

complete overspeci�cation, which should not apply to credible empirical models.

In our empirical application, we investigate the potential overspeci�cation of the three-factor

extension of the Epstein and Zin (1989) version of the consumption CAPM in Yogo (2006) us-

ing quarterly data from the usual Fama and French cross-section of excess returns on size and

book-to-market sorted portfolios. Aside from its undisputable in�uence on the subsequent liter-

ature, an important characteristic of this model is that his chosen risk factors were theoretically

motivated and not the result of either an extensive search or a reverse engineering process. Nev-

ertheless, the results we obtain with our novel inference procedures indicate that the admissible

SDFs in the linearized version of this model lie on a two-dimensional subspace, so there is lack

of identi�cation. In addition, we cannot reject the null hypothesis that all those SDFs have zero

means, which is tantamount to complete overspeci�cation. Importantly, our simulations show

that these empirical �ndings are not due to lack of power. On the contrary, if anything, our

proposed tests tend to overreject for the sample size of this data set.

Our conclusions about the Yogo (2006) model sharpen the analysis in Lewellen, Nagel and

Shanken (2010). These authors show that the strong factor covariance structure in the size and

book-to-market portfolios implies that it should be possible to �nd models with macroeconomic

factors that can price those test assets. In fact, we �nd not only one (up to scale) admissible

SDF using Yogo�s (2006) risk factors, but an entire two-dimensional subspace of SDFs which

can price those assets, a situation that standard GMM asymptotic theory cannot cope with.
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The rest of the paper is organized as follows. Section 2 introduces linear factor pricing models,

and precisely characterizes their potential overspeci�cation. Next, we present our econometric

methodology in section 3. Then, we empirically analyze in detail the aforementioned asset pricing

model in section 4 and report our simulation evidence in section 5. Finally, we summarize our

conclusions and discuss some avenues for further research in section 6. Proofs of formal results

and a detailed description of all the possible situations that may arise in models with up to three

factors are relegated to appendix A, while appendix B contains the Monte Carlo design.

2 Overspeci�ed Asset Pricing Models

2.1 Stochastic discount factors and moment conditions

Let r be a given n�1 vector of excess returns, whose means E(r) we assume are not all equal

to zero. Standard arguments such as lack of arbitrage opportunities or the �rst order conditions

of a representative investor imply that

E(mr) = 0

for some random variable m called SDF, which discounts uncertain payo¤s in such a way that

their expected discounted value equals their cost.

The standard approach in empirical �nance is to model the SDF as an a¢ ne transformation

of some k < n observable risk factors f , even though this ignores that m must be positive with

probability 1 to avoid arbitrage opportunities, which would require non-linear speci�cations for

m (see Hansen and Jagannathan (1991)). In particular, researchers typically express the pricing

equation as

E[(a+ b0f)r] = 0 (1)

for some coe¢ cients (a;b), which we can refer to as the intercept and slopes of the a¢ ne SDF

m = a+ b0f .

We can also estimate the SDF mean c = E(m) by adding the moment condition

E(a+ b0f � c) = 0; (2)

which exactly identi�es c for given (a;b). A non-trivial advantage of this approach is that (1)

and (2) are linear in (a;b; c).2

2There are two alternative popular approaches to test asset pricing models. One uses Cov(r; f) instead of
E(rf 0) in explaining the cross-section of risk premia, while the other one relies on the regression of r onto a
constant and f . Both require a higher number of parameters to estimate from a higher number of moments, and
for that reason we shall not explicitly consider them in this paper. Nevertheless, it is straightforward to extend
the results in Peñaranda and Sentana (2015) to our context, so as to prove that all three approaches provide
numerically equivalent tests and prices of risk estimates when one uses single-step GMM procedures.
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It is pedagogically convenient for our purposes to think about the restrictions the linear

factor pricing model above imposes on the parameters (a;b; c) as we increase the number of

assets we consider. For simplicity, we focus on the case of two pricing factors.

When n = 1, there is always a two dimensional linear space of admissible solutions, which can

be regarded as the dual set to the combination line of expected excess returns and covariances

with the risk factors that can be generated by leveraging r1 up or down.

(Figure 1: One asset)

When n = 2, the two dimensional space generated by each asset will generally be di¤erent,

so their intersection will be a straight line.3

(Figure 2: Two assets)

Three assets is the minimum number required to be able to reject the model. The reason

is the following. If the asset pricing model does not hold, the three linear subspaces associated

to each of the assets will only intersect at the origin. We may then say that there is �nancial

markets segmentation, in the sense that there is no single SDF within the model that can price

all the assets.

(Figure 3: Three segmented asset markets)

If on the other hand the asset pricing model holds, the intersection will be a linear subspace

of positive dimension. This requires that the three assets are coplanar in the space of expected

excess returns and covariances with the risk factors, so that they all lie on the security market

plane. When this happens, we may say that there is �nancial markets integration.

(Figure 4: Three integrated asset markets)

Therefore, when there exist admissible parameter con�gurations other than the trivial one

(a;b; c) = (0;0; 0), we can at best identify a direction in (a;b; c) space, which leaves both

the scale and sign of the SDF undetermined. As forcefully argued by Hillier (1990) for single

equation IV models, this suggests that we should concentrate our e¤orts in estimating the

identi�ed direction. However, empirical researchers often prefer to estimate points rather than

directions, and for that reason they typically focus on some asymmetric scale normalization,

such as (1;b=a; c=a). In this regard, note that � = �b=a can be interpreted as prices of risk
3Occasionally, though, the two linear subspaces might coincide. This will happen when the two assets are

collinear in the space of expected excess returns and covariances with the risk factors. We will revisit this issue
when we discuss Figure 8 in section 2.2.
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since we may rewrite (1) as E(r) = E(rf 0)�. Other normalizations, such as (a=c;b=c; 1) or

b0b+ c2 = 1 are also popular.

(Figure 5: Normalizations)

Nevertheless, given that any asymmetric normalization is potentially restrictive, we prefer

to use invariant estimation methods, such as CU-GMM.

In what follows, we consider models in which the elements of f are either non-traded (or

treated as such) or they are portfolios of r. In those cases, the pricing conditions (1) and (2)

contain all the relevant information to estimate and test the asset pricing model. Nevertheless,

it would be very easy to extend our analysis to explicitly deal with traded factors whose excess

returns do not belong to the linear span of r. In that case, we should add moment conditions

such as

E[(a+ b0f)f ] = 0

to (1) and (2) to complete the asset pricing information that we should consider, as Lewellen,

Nagel and Shanken (2010) suggest.

2.2 Admissible SDFs sets

The pricing conditions (1) can be expressed in matrix notation as

[ E(r) E(rf 0) ]

0@ a

b

1A =M� = 0; (3)

where M is an n � (k + 1) matrix of �rst and second moments of data and � a (k + 1) � 1

parameter vector.

The highest possible rank ofM is its number of columns k + 1 because k < n. In that case,

though, the asset pricing model will not hold because the only value of � that satis�es (3) will

be the trivial solution � = 0.

On the other hand, if the rank of M is k then there will be a one-dimensional subspace of

��s that satisfy the pricing conditions (3), in which case the solution � is unique up to scale,

as we explained in the previous section. Not surprisingly, rank(M) = k coincides with the

usual identi�cation condition required for standard GMM inference (see e.g. Hansen (1982) and

Newey and McFadden (1994)).

Kan and Zhang (1999) and Burnside (2016) among others have forcefully argued that some

empirical asset pricing models e¤ectively rely on factors for which the matrix Cov(r; f) does not

have full column rank. The best known example is a useless factor, which would yield a zero
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column in the matrix Cov(r; f). To understand the implications, consider a two-factor model

with Cov(r; f2) = 0, so that the matrix M becomes

[ E(r) E(rf1) E(rf2) ] = [ E(r) E(rf1) E(r)E(f2) ]:

Given the rank failure of this matrix in those circumstances, we can always �nd at least a

one-dimensional subspace of SDFs whose parameters satisfy (3). Two di¤erent situations might

occur.

First, if E(r) and E(rf1) are linearly independent, then rank(M) = 2, the model parameters

will remain econometric identi�ed, and we can still rely on standard GMM inference.4 However,

E(r) and E(rf1) linearly independent together with absence of arbitrage opportunities implies

that the true SDF must depend at least on an additional genuine risk factor di¤erent from f1

and f2. As a result, there can be no admissible SDF a¢ ne in the two risk factors selected by the

empirical researcher with a meaningful economic interpretation that can explain cross-sectional

risk premia. Indeed, when Cov(r; f2) = 0 but E(r) 6= 0, the SDF conditions (1) will trivially

hold for any m / [f2 �E(f2)] because they will all satisfy E(m) = 0 and Cov(r;m) = 0, which

in turn implies that

E(rm) = E(r)E(m) + Cov(r;m) = 0:

As a result, the admissible SDFs will have b1 = 0 and c = E(m) = 0. Thus, this overspeci�ed

model is econometrically identi�ed but economically unattractive.

(Figure 6: Valid but unattractive model with a useless factor)

Second, if f1 were a valid pricing factor, so that E(r) = E(rf1)�1, then rank(M) = 1 because

[ E(r) E(rf1) E(rf2) ] = E(r)[ 1 1=�1 E(f2) ]:

Hence, this overspeci�ed pricing model will be economically meaningful but parametrically un-

deridenti�ed.

(Figure 7: Valid and attractive model with a useless factor)

More generally, there will be rank failures in Cov(r; f) whenever we can �nd a valid asset

pricing model with fewer factors even though no column of Cov(r; f) is zero. This will happen

in particular if there is only a true pricing factor but we include two di¤erent noisy proxies

for it, so that their di¤erence will be uncorrelated to the vector of excess returns. As in the

4Nevertheless, some asymmetric normalizations may be incompatible with these con�gurations; see section 4.4
in Peñaranda and Sentana (2015) for further details in the case of a single pricing factor.
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previous example, this alternative overspeci�ed two-factor model is economically meaningful

but parametrically underidenti�ed even though the two candidate pricing factors are correlated

with the returns on the test assets.

As a di¤erent example of the same type of overspeci�ed model, assume that both the CAPM

and the (linearized) CCAPM hold, in the sense that excess returns on the market and consump-

tion growth can price on their own a cross-section of excess returns, i.e. E(r) = E(rf1)�1 and

E(r) = E(rf2)�2. Then, an SDF that is linear in both factors, as in the (linearized) Epstein-Zin

model, implies that rank[(Cov(r; f)] = 1. As a consequence, the matrix M becomes

[ E (r) E (rf1) E (rf2) ] = E(r)( 1 1=�1 1=�2 );

which means that we can �nd a two-dimensional subspace of SDFs whose parameters satisfy

M� = 0, a basis of which will be given bym1 = 1��1f1 andm2 = 1��2f2, with c1 = 1�E(f1)�1
and c2 = 1� E(f2)�2 both di¤erent from 0 because f1 and f2 are correlated with r.

(Figure 8: Two single factor models)

Finally, there will also be a two-dimensional subspace of SDFs whose parameters satisfy

M� = 0 when there are two useless factors, i.e. Cov(r; f1) = Cov(r; f2) = 0. Speci�cally, if

[ E(r) E(rf1) E(rf2) ] = E(r)[ 1 E(f1) E(f2) ];

then any SDF which is a linear combination of [f1 � E(f1)] and [f2 � E(f2)] will work.

(Figure 9: Two useless factors)

The special feature of this completely overspeci�ed case is that c = 0 for all admissible SDFs,

so there is not only underidenti�cation but also the absence of any meaningful speci�cation.

3 Econometric methodology

3.1 Set estimation

Given our previous discussion, it is of the utmost importance to use statistical inference

tools that can successfully deal with situations in which rank(M) � k. Following Arellano,

Hansen and Sentana (2012), we begin by specifying the dimension of the subspace of solutions

to the pricing conditions (3), which we denote d, so that rank(M) = (k+1)� d. Given that we

maintain the hypothesis that E(r) 6= 0, we could in principle consider ranks for M as low as 1

or, equivalently, any positive integer d up to a maximum value of k.
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As we mentioned before, when d = 1 we can rely on standard GMM to estimate a unique

� (up to normalization) and use its associated J test to assess the validity of the asset pricing

restrictions. However, when d � 2, we will have a multidimensional subspace of admissible SDFs

even after �xing their scale. Nevertheless, we can e¢ ciently estimate a basis of that subspace

by replicating d times the moment conditions (3) as follows:

[ E(r) E(rf 0) ]�1 = 0;

[ E(r) E(rf 0) ]�2 = 0;

...

[ E(r) E(rf 0) ]�d = 0;

9>>>>>>>=>>>>>>>;
(4)

and imposing enough normalizations on (�1;�2; :::;�d) to ensure the point identi�cation of a

basis of the null space of M.

In this setting, the familiar J test from the work of Sargan (1958) and Hansen (1982) for

overidenti�cation of the augmented model becomes a test for �underidenti�cation�of the original

model. The rationale is as follows: if we can identify a linear subspace of risk prices without

statistical rejection, then the original asset pricing model is not well identi�ed. In contrast, a

statistical rejection provides evidence that the prices of risk in the original model are indeed point

identi�ed, unless of course the familiar J test continues to reject its overidentifying restrictions.

We can also add moment conditions to estimate (c1; c2; : : : ; cd), which characterize the ex-

pected values of the basis SDF�s. Speci�cally, we can combine (4) with the moment conditions

[ 1 E(f 0) ]�1 � c1 = 0;

[ 1 E(f 0) ]�2 � c2 = 0;
...

[ 1 E(f 0) ]�d � cd = 0;

9>>>>>>>=>>>>>>>;
(5)

which are exactly identi�ed for given values of (�1;�2; :::;�d).

3.2 Normalizations and starting values

In the presentation of our empirical results, we will use the popular SDF normalization

discussed in section 2.1, which �xes the �rst element of �i to 1, thereby de�ning the prices of

risk as �i = �bi=ai. Additionally, we need to impose enough zero restrictions on the prices of

risk to achieve identi�cation.5 Once again, though, the advantage of CU-GMM and other GEL

estimators is that our inferences will be numerically invariant to the chosen normalization.

5Alternatively, we could make a d � d block of (a permutation of) the matrix (�1;�2; :::;�d) equal to the
identity matrix of order d.

8



Nevertheless, one drawback of these single-step methods is that they involve a non-linear

optimization procedure even though the moment conditions are linear in parameters, which

may result in multiple local minima. For that reason, we propose to use as starting value a

computationally simple intuitive estimator that is always consistent, but which would become

e¢ cient when the returns and factors are i:i:d: elliptical. This family of distributions includes

the multivariate normal and Student t distributions as special cases, which are often assumed

in theoretical and empirical �nance.

Let us de�ne (f1; f2; :::; fd) as the vectors of factors that enter each one of the SDFs in (4)

after imposing the necessary restrictions that guarantee the point identi�cation of the basis of

risk prices (�1; �2; :::; �d), so that the corresponding Jacobian matrices E(rf 0i) have full rank. As

a result, we can re-write (4) as

E

26666664
(1� f 01�1)r

(1� f 02�2)r
...

(1� f 0d�d)r

37777775 = 0; (6)

and (5) as

E(1� f 0i�i � ci) = 0; i = 1; 2; ::; d: (7)

Let rt and ft denote the values of the excess returns on the n assets and the k factors at time

t. We can then prove that

Proposition 1 If (rt; ft) is an i.i.d. elliptical random vector with bounded fourth moments such
that (6) holds, then:
a) The most e¢ cient GMM estimator of �i (i = 1; : : : ; d) from the system (6) will be given by

��iT =

 
TX
t=1

~r+it~r
+0
it

!�1 TX
t=1

~r+it ; (8)

where ~r+it are the relevant elements of the sample factor mimicking portfolios

~r+t =

 
TX
s=1

fsr
0
s

! 
TX
s=1

rsr
0
s

!�1
rt: (9)

b) When we combine the moment conditions (6) with (7), the most e¢ cient GMM estimator of
each �i is the same as in a), and the most e¢ cient GMM estimator each ci is the sample mean
of the corresponding SDF.

Intuitively, Proposition 1 states that the optimal GMM estimator in an elliptical setting is

such that it prices without error the factor mimicking portfolios in any given sample.

Although the elliptical family is rather broad (see Fang, Kotz and Ng (1990)), it is important

to stress that (8) will remain consistent under correct speci�cation even if the assumptions of

serial independence and a multivariate elliptical distribution do not hold in practice.
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In addition, we can provide a rather di¤erent justi�cation for (8). Speci�cally, we can prove

that��iT in (8) coincides with the GMM estimator that we would obtain if we used as weighting

matrix the second moment of the vector of excess returns r. In other words,��iT minimizes the

sample counterpart to the Hansen and Jagannathan (1997) distance

E
��
1� f 0i�i

�
r
�0 �
E
�
rr0
���1

E
��
1� f 0i�i

�
r
�

irrespective of the distribution of returns and the validity of the asset pricing model. The reason

is that the f.o.c. of this minimization is

E
�
fir

0� �E �rr0���1E ��1� f 0i�i� r� = 0;
which is equivalent to the exact pricing of the factor mimicking portfolios in Proposition 1.

3.3 Testing restrictions on admissible SDF sets

As we have just seen, our inference framework allows us to estimate the set of SDFs that is

compatible with the pricing conditions (1). But we can also use it to test if the elements of this

set satisfy some relevant restrictions.

A particularly important null hypothesis that empirical researchers would like to �nd evi-

dence against is that all SDFs compatible with the data have zero means, a situation we have

termed �complete overspeci�cation�. In that case, there will be no element in the admissible

SDF set that explains the cross-section of expected returns from a meaningful economic perspec-

tive, as we illustrated in section 2.2 for d = 1 and d = 2 in Figures 6 and 9, respectively. Both

those �gures show completely overspeci�ed models in which all the SDFs in the correspond-

ing admissible set are uncorrelated with the asset payo¤s, which renders them economically

uninteresting.

In any given sample, though, the estimated values of the means of the admissible SDFs will

not be 0. Given that the SDF means are associated to the parameters (c1; c2; :::; cd) by virtue

of (7), a distance metric (DM) test of H0 : ci = 0 i = 1; : : : ; d will give us a valid test of the null

hypothesis of complete overspeci�cation. As is well known, a DM test simply compares the GMM

criterion functions (J statistics) with and without those constraints. We can trivially compute

the criterion function without the zero mean constraints from the system (6), or equivalently,

from the joint system that also considers the exactly identi�ed moment conditions (7). In turn,

we can construct the criterion function that imposes the zero mean constraints on all the SDFs

from the system

E

24 (1� f 0i�i)r
1� f 0i�i

35 = E �(1� f 0i�i)x� = 0; i = 1; 2; ::; d; (10)
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where x0 = (r0; 1), which is analogous to (6) for an extended vector of payo¤s that includes a

�ctional unit safe payo¤.6

Again, normalization-invariant procedures are crucial to avoid obtaining di¤erent results for

di¤erent basis of the admissible SDF set. But given the numerical complications that they may

entail, we again propose to use as starting value a computationally simple intuitive estimator

that is always consistent, but which would become e¢ cient when the returns and factors are

i:i:d: elliptical. In fact, we can prove that the optimal estimator of the prices of risk continues

to have the same structure as in Proposition 1 if we de�ne the factor mimicking portfolios over

the extended payo¤ space. Speci�cally:

Proposition 2 If (rt; ft) is an i.i.d. elliptical random vector with bounded fourth moments such
that (10) holds, then the most e¢ cient GMM estimator of �i (i = 1; : : : ; d) will be given by

_�iT =

 
TX
t=1

~x+it~x
+0
it

!�1 TX
t=1

~x+it ; (11)

where ~x+it are the relevant elements of the sample factor mimicking portfolios

~x+it =

 
TX
s=1

fsx
0
s

! 
TX
s=1

xsx
0
s

!�1
xt: (12)

Another interesting null hypothesis that we may also want to test is whether some partic-

ular pricing factor does not appear in any admissible SDF. Formally, the corresponding null

hypothesis would be that the entry of b associated to this factor being zero in all the vectors

(�1;�2; :::;�d).

(Figure 10: An unpriced second factor)

Again, a DM test based on single-step GMM procedures will be ideally suited for testing

this restriction on the space of admissible SDFs.7

3.4 Comparison to the existing literature

Burnside (2016) and Gospodinov, Kan and Robotti (2015) study the identi�cation of the

prices of risk of the linear factor pricing model (1) (or its centred version in (A1), with m =

6 If there really existed an unconditionally safe asset, an SDF that satis�ed E (xm) = 0 would allow for
arbitrage opportunities in the extended payo¤ space. Although no such an asset exists in real life, the fact that all
the SDFs in the admissible set satisfy those moment conditions signals the problematic economic interpretation
of a completely overspeci�ed model.

7Given that the moment conditions (5) and (6) are linear in parameters and the restrictions to test are
homogenous, the results in Newey and West (1987b) imply that the Wald, Lagrange Multiplier and DM tests
would be numerically identical for two-step GMM methods that shared the same weighting matrices. More
generally, though, DM tests might be more reliable than Wald tests in non-standard situations with potential
identi�cation failures (see Dufour (1997) for closely related results in a likelihood context).
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c+b0 (f � �), where � = E(f) is the vector of risk factor means) by applying the tests proposed

by Cragg and Donald (1997) and Kleibergen and Paap (2006) to assess the rank of E(rf 0) (or

Cov(r; f)), which coincide with the expected Jacobian matrices of the GMM conditions (3) (or

their centred counterparts).

As we mentioned in the introduction, though, overspeci�cation is a necessary but not su¢ -

cient condition for underidenti�cation. In that regard, we can prove the following result:

Proposition 3 The CU version of the overidenti�cation test of the original SDF moment con-
ditions (4) and (5) after imposing the d restrictions c1 = : : : = cd = 0 numerically coincides
with the CU version of the test of the null hypothesis rank[Cov(r; f)] = k � d.

As a result, the DM test of c1 = ::: = cd = 0 we introduced in the previous section can be

interpreted as a test of the null hypothesis that rank[Cov(r; f)] = k � d under the maintained

hypothesis that rank(M) = (k+1)� d. In other words, this DM test implicitly checks whether

the di¤erence in the rank of those two matrices is one, or equivalently, whether E(r) cannot

be spanned by Cov(r; f), in which case the only admissible SDFs would be those economically

meaningless random variables that exploit the rank failure in Cov(r; f) in setting to zero the

pricing conditions (1).

In contrast, the test of the rank of Cov(r; f) in Proposition 3 is often uninformative about the

existence of economically meaningful SDFs precisely because it does not maintain any hypothesis

on the rank ofM.8 For example, both in the model with a valid factor and a useless one depicted

in Figure 7, and in the double single factor model described in Figure 8, the matrix Cov(r; f)

has rank 1 instead of 2 whileM has rank 1 instead of 3. As a result, E(r) belongs to the span of

Cov(r; f), which con�rms that in those two examples there exist economically meaningful SDFs

that correctly price r.

On the other hand, Figure 6 shows another possible situation with rank[Cov(r; f)] = 1

instead of 2 in which E(r) cannot be spanned by Cov(r; f) because the rank of M is 2, so that

the only admissible SDFs must be uncorrelated to the vector of excess returns.

The other main di¤erence with those papers is that they focus on the implications of those

rank failures for standard GMM procedures, which assume point identi�cation, while we propose

alternative inference procedures that explicitly handle set identi�cation.

3.5 Gross returns

Let R denote a vector of gross returns on N = n+ 1 assets. Without loss of generality, we

can understand the vector of excess returns r that we have used so far as the di¤erence between
8The only exception is the extreme case of Cov(r; f) = 0, which necessarily means rank(M) = 1 when

E(r) 6= 0, making it impossible to �nd meaningful SDFs that can explain E(r), as Figure 9 illustrates.

12



the gross returns of the last n assets and the �rst one, R say. In practice, this reference asset

could be the real return on US T-bills, whose payo¤s are not constant. The relevant pricing

equation for R becomes:

E[R(a+ b0f)] = `;

where ` is a vector ofN ones. Without loss of generality, we can re-write these moment conditions

as the combination of (1) with:

E
�
R(a+ b0f)

�
= 1: (13)

In addition, we can continue to estimate the SDF mean from the moment condition (2).

The addition of the pricing of R in (13) implies that we no longer require an arbitrary

normalization of (a;b; c). As Peñaranda and Sentana (2015) prove in their Appendix A, though,

the empirical evidence obtained by single-step methods applied to R is consistent with the

analogous evidence obtained from r alone. In particular, the overidenti�cation restriction test

for the joint system (1) and (13) is numerically identical to the one for (1) alone, and the

normalized estimate of �� obtained from the moment conditions for excess returns coincides

with the ratio of the estimates of b to a obtained using all the assets. Intuitively, the addition

of gross returns allows us to pin down a and the mean of the SDF, c, but otherwise, it simply

re-scales this variable.

More formally, we can re-express the SDF as a(1� f 0�) and re-write the moment conditions

(1) and (13) as E[(1 � f 0�)r] = 0 and E[a(1 � f 0�)R] = 1, respectively. This last equation

does not contain any additional information about the prices of risk �, it only pins down a, or

equivalently c.

Finally, the same comments apply to those situations with d > 1. The only di¤erence is that

they involve several SDFs of the form ai(1� f 0i�i) for i = 1; : : : ; d. But since we add one moment

and one parameter for each dimension, the equivalence between the results for excess and gross

returns we have just discussed for d = 1 continues to hold for any d.

4 Empirical Application

4.1 Original results

To illustrate the practical relevance of our proposed methods, in this section we analyze in

detail the linear version of the three-factor model in Yogo (2006) in order to assess the potential

overspeci�cation of this popular empirical model.

As is well known, his theoretical model extends the CCAPM by assuming recursive prefer-

ences over a consumption bundle of nondurable and durable goods.9 Therefore, in the linearized
9Eichenbaum and Hansen (1990) were the �rst authors to empirically entertain the idea that it might be
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version of his model, the SDF will depend on three factors: the market return, and the con-

sumption growth of nondurables and durables, so that we can write it as:

m = a (1� �1f1 � �2f2 � �3f3) :

In practice, the log-growth rate of US real per capita consumption of nondurables and services

and durables are identi�ed with f2 and f3, respectively. In turn, the return on wealth - proxied

by the (log) return on the value-weighted U.S. stock market measured in real terms - is associated

with f1.

We initially evaluate this model with the original data, which corresponds to quarterly

excess returns on the Fama-French cross-section of 25 size and book-to-market sorted portfolios

from 1951 to 2001 (see Fama and French (1993) for further details).10 In addition to the

insightful nature of Yogo�s (2006) theoretically motivated SDF speci�cation, his results became

very in�uential because not only did he fail to reject the asset pricing restrictions but also

because he succeeded in aligning the risk premia in the data with the risk premia generated by

his model.

(Figure 11: Risk premia from 2S-GMM)

Nevertheless, the theoretical results in Burnside (2016) and Gospodinov, Kan and Robotti

(2015) indicate that a high cross-sectional R2 may spuriously arise in models with useless factors.

As an aside, we �nd that the results in Figure 11 depend on the estimation method (2-

step GMM) and the imposition of some restrictions on the prices of risk.11 Speci�cally, if we

use instead iterated GMM starting from the 2-step estimates, we encounter a cycle with four

di¤erent solutions.

(Figure 12: Risk premia from IT-GMM)

Convergence does not improve if we free up the price of risk coe¢ cients: iterated GMM

enters yet another cycle of three di¤erent solutions.

(Figure 13: Risk premia from IT-GMM, free coe¢ cients)

These discrepancies highlight the advantages of single step methods.

necessary to look at di¤erent consumption subaggregates to successfully explain asset risk premia.Yogo�s (2006)
empirical model goes one important step further by combining their ideas with those in Epstein and Zin (1989).
10Note that although the market return is a traded factor, we do not add its pricing condition to (1) because

it can e¤ectively be generated as a portfolio of the cross-section of excess returns that we want to price.
11 In this section, we follow Yogo (2006) in using the moment conditions of the centred SDF approach mentioned

in footnote 2, which are given by equation (A1) in the proof of Proposition 2 with the normalization c = 1. As
Peñaranda and Sentana (2015) argue, this matters for two step and iterated GMM, but not for CU-GMM.
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4.2 Overspeci�cation

The sensitivity of the empirical results to the estimation method might be a sign of over-

speci�cation. For that reason, we apply our methodology to the same data. Speci�cally, we use

the moment conditions (6) with d = 1, 2 and 3 to test for one, two and three-dimensional linear

subsets of valid SDFs, respectively. In all cases, we augment those moment conditions with the

exactly identi�ed moment conditions (7) to obtain the associated SDF means. As we mentioned

in section 3.3, we can then assess whether the model is completely overspeci�ed by testing the

joint signi�cance of those means.

We estimate the di¤erent subspaces for risk prices and SDFs using single-step GMM methods

choosing those normalizations which are arguably easiest to interpret in each context. In the case

of d = 2, in particular, we present the results for the simple normalization of the prices of risk

given by (�1; �2; 0) and (�1; 0; �3).12 Since the �rst factor is the market, we can interpret those

two SDFs as two variants of the linearized Epstein and Zin (1989) model, one with nondurable

consumption and another with durable consumption. In contrast, in the case of d = 3 we present

the results for the simple normalization (�1; 0; 0), (0; �2; 0) and (0; 0; �3), which e¤ectively imposes

that each factor can separately explain risk premia.

Table 1 shows the results of our overspeci�cation analysis of the model. This table displays

estimates of the SDF parameters and associated J tests. The criterion function is also reported

under the restriction of zero SDF means, which is equivalent to a rank test for Cov(r; f) from

Proposition 3. The p-values of the di¤erent J tests are shown in parenthesis.

We complement the J tests with signi�cance tests for the SDF prices of risk. In particular,

to the right of the point estimates we report in parenthesis the p-value of the DM test of the

null hypothesis of a zero parameter value. The �rst, second and third blocks of columns refer

to SDF sets of dimension 1, 2 and 3, respectively. All the reported results correspond to a

weighting matrix a la Newey and West (1987a) with one lag, but we obtain qualitatively similar

conclusions when we use a VARHAC procedure also with one lag.13

(Table 1: Empirical evaluation of the model 1951-2001)

The results for the one-dimensional set entirely agree with the results in Yogo (2006), who

�nds that (i) the J test of two-step GMM does not reject his model for these 25 size- and

value-sorted portfolios and (ii) durable consumption provides the only non-zero price of risk. In

12This normalization is identi�ed as long as �2 6= 0 and �3 6= 0. In that regard, Table 1 below shows that the
DM tests that we proposed in section 3.3 reject both �2 = 0 and �3 = 0:
13Den Haan and Levin�s (1997) VARHAC procedure assumes that the moment conditions have a �nite VAR

representation, which they exploit to estimate the required long run covariance matrix.
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this regard, the usual overidenti�cation test reported in the �rst column of Table 1 does not

reject the null hypothesis that there exists an SDF a¢ ne in the three factors that can price the

cross-section of securities (p-value=53:7%).

However, the validity of the asymptotic distribution of this J test crucially depends on the

model parameters being point identi�ed. For that reason, we also report the overidenti�cation

test for d = 2. As explained before, this test assesses whether there is a linear subspace of

dimension 2 of admissible SDFs that can price the cross section of risk premia. We obtain

a p-value of 13:4%, which suggests that a model with the market together with durable and

nondurable consumption as risk factors might be overspeci�ed. In contrast, the overidenti�cation

test corresponding to d = 3 is rejected.

Therefore, we �nd evidence that the admissible SDFs of this model lie on a two-dimensional

subspace. In addition, the DM test of the null hypothesis that all the admissible SDFs have zero

means when d = 2 has a p-value of 49:4%. This suggests that the seeming pricing ability of this

set of SDFs simply exploits the lack of correlation of its elements with r. In other words, the

vector of risk premia does not appear to lie in the span of the covariance matrix of the excess

returns and the factors, which suggests the model is completely overspeci�ed.

Our results are in line with Burnside (2016), who �nds that the matrix Cov(r; f) for this

combination of test assets and risk factors has rank 1 only. His evidence implies that there are

SDFs that price the test assets in an economic unattractive manner. Our results con�rm that

those SDFs seem to be the only admissible ones that a linearized extension of Epstein and Zin

(1989) CCAPM combining durable and nondurable consumption can generate.

4.3 Robustness exercises

One potential concern with our methods is that the number of moments involved may be

too large relative to the sample size. For that reason, we assess the reliability of the empirical

results in Table 1 in two di¤erent ways: using a sample with a longer time span, and also

with a smaller cross-section of test assets. In the �rst case, we use the same data as Burnside

(2016), whose sample period is 1949-2012, while in the second one we make use of the 6 size-

and value-sorted Fama-French portfolios over the same time span.

Table 2 shows that our main �ndings are robust to these changes.14 Speci�cally, we continue

to �nd that the admissible SDFs lie on a two-dimensional subspace, and that the entire set of

admissible SDFs has zero means.
14We follow Burnside (2016) in using real excess returns, while Yogo (2006) used nominal excess returns. Given

that the e¤ect of in�ation is second order for excess returns, the choice between nominal and real returns is
inconsequential for our results.
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(Table 2: Empirical evaluation of the model 1949-2012)

5 Monte Carlo Evidence

In this section, we assess the �nite sample size and power properties of the testing procedures

discussed above by means of several extensive Monte Carlo exercises. The exact design of

our experiments is described in Appendix B. Given that the number of mean, variance and

correlation parameters for returns and factors is large, we have simpli�ed the data generating

process (DGP) as much as possible without losing generality, so that in the end we only had to

select a handful of parameters whose interpretation is very simple.

We use n = 6 and T = 200. This number of test assets coincides with the dimension of one

of the Fama-French cross-sections in the previous section, while the sample size represents �fty

years of quarterly data. Further, we also run simulations with T = 600, which corresponds to

�fty years of monthly data. In all instances, we simulate 10; 000 samples for each design.

5.1 Numerical details

The main practical di¢ culty is that we have to rely on numerical optimization methods to

maximize the non-linear CU-GMM criterion function even though the moment conditions are

linear in the parameters. For that reason, we compute the criterion by means of the auxiliary

OLS regressions described in appendix B of Peñaranda and Sentana (2012). We achieve further

gains in numerical reliability by using the consistent estimators in Propositions 1 and 2 as

starting values.

Given that single-step methods are invariant to di¤erent parametrizations of the SDF, we

use the uncentered version in (6) because it is the most parsimonious in terms of parameters.

Nevertheless, one could exploit the numerical equivalence of the di¤erent approaches mentioned

in footnote 2, as well as the di¤erent normalizations, to check that a global minimum has been

reached.

In view of the exactly identi�ed nature of the moment conditions (5), further speed gains

can be achieved by minimizing the original moment conditions (6) with respect to �1; : : : ; �d

only. Once this is done, the joint criterion function can be minimized with respect to c1; : : : ; cd

only, keeping �1; : : : ; �d �xed at their CUEs and using the sample means of the estimated SDF

basis as consistent starting values.

5.2 Two-dimensional set of admissible SDFs

Table 3 displays the rejection rates of the J and DM tests when there is a two-dimension

set of admissible SDFs. In our two factor setting, this means that any of the factors can price
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the cross-section of returns on its own. Our standard asymptotic theory implies that we expect

rejection rates close to size for the J test for d = 2. In contrast, the usual J test for d = 1 should

under-reject because of its generic lack of identi�cation. The only exception arises when c = 0,

in which case there will be a unique linear combination of the factors that yields an admissible

SDF with zero mean, even though the two SDFs that we use in this design have nonzero means.

Thus, the J test for d = 1 that imposes a zero SDF mean should yield rejection rates close to

size too.

Panel A reports the rejection rates when most SDFs in the admissible set have nonzero

means, while Panel B shows the corresponding �gures when the asset pricing model is completely

overspeci�ed. To achieve this, we use two factors that are uncorrelated with the cross-section

of returns as the DGP of Panel B. In each panel, we report the rates for 6 tests: the J tests for

d = 2 and d = 1, their variants restricted to have zero SDF means, and the corresponding DM

tests.

(Table 3: Rejection rates for a two-dimensional set of admissible SDFs)

The �rst result we can see in Panel A of Table 3 is that the J test for d = 2 performs well,

showing only a slight overrejection under the null, and considerable power against c = 0. As

expected, the J test for d = 1 massively under-rejects when we do not impose the restriction

that c = 0; while it has rejection rates close to size if we do.

On the other hand, Panel B of Table 3 con�rms that the J test for d = 2 underrejects, the

restricted J test performs well, with only a slight overrejection, and the corresponding DM test

overrejects. This last overrejection indicates that the fact that this DM test does not reject in

our empirical application is not due to lack of power. In that regard, Table B1 in the Appendix

shows that this DM test no longer shows any noticeable size distortions for T = 600.

5.3 One-dimensional set of admissible SDFs

Table 4 displays the rejection rates of the J and DM tests when the true model contains

only one (up to scale) admissible SDF. In that case, we expect that the J test for d = 1 yields

rejection rates close to size, while the J test for d = 2 should now show substantial power.

Once again, Panel A contains the rejection rates when the SDF has a nonzero mean, while

Panel B reports the corresponding �gures when the model is overspeci�ed. To achieve this, we

impose that one the factors is uncorrelated with the cross-section of returns as the DGP of Panel

B.

(Table 4: Rejection rates for a one-dimensional set of admissible SDFs)
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As expected, Panel A of Table 4 con�rms that the J test for d = 1 performs well while the J

test for d = 2 has indeed power. Therefore, our �nding an overspeci�ed model in the empirical

application cannot be due to lack of power of this second test.

In Panel B of Table 4, the J test for d = 2 shows considerable power. Further, the J test

for d = 1 underrejects, the restricted J test performs well, and the corresponding DM test

overrejects. As in the previous section, Table B2 in the Appendix shows that this DM test no

longer shows any noticeable size distortions for T = 600.

Finally, we also simulated a design where the admissible set of SDFs is empty, as described

in Appendix B. In this case, all the tests that we study should reject their respective null

hypotheses. Our results, which are available upon request, con�rm the power of our proposed

procedures such a design.

6 Conclusions

We study the estimation of risk prices and the testing of the cross-sectional restrictions

imposed by overspeci�ed linear factor pricing models in which there is at least one non-zero

SDF which is uncorrelated with the excess returns of the test assets chosen by the researcher.

We provide several examples of this situation, which is necessary but not su¢ cient for the

model parameters to be underidenti�ed. In addition, we also emphasize the distinction between

a model with uncorrelated pricing factors, which is necessarily overidenti�ed, from a model with

uncorrelated SDFs.

Unlike previous studies, which focus on the non-standard asymptotic properties of the usual

estimators and tests, our methods directly estimate the linear subspaces of prices of risk and

associated SDFs compatible with the pricing restrictions of the model, which we can easily

express in terms of linear moment conditions and e¢ ciently estimate using standard GMM

methods. In this regard, a non-trivial advantage of our unusual procedures is that they have

standard asymptotic distributions.

We use single-step GMM procedures, and in particular continuously updated GMM, to

obtain identical test statistics and risk price estimates for SDF and regression methods, with

uncentered or centred moments and symmetric or asymmetric normalizations. Another non-

trivial advantage of these methods is that they yield exactly the same conclusions for excess

returns and gross returns.

We also propose simple tests to detect economically unattractive but empirically relevant

situations in which the expected values of all SDFs in the identi�ed set are 0, which is equivalent

to their being uncorrelated to the test assets. In our opinion, researchers could convince readers
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that their results are meaningful by systematically reporting that they reject the restrictions

implicit in these completely overspeci�ed models.

In our empirical application, we investigate the potential overspeci�cation of the three-factor

extension of the Epstein and Zin (1989) version of the consumption CAPMmodel in Yogo (2006),

which combines two macroeconomic factors: non-durable and durable consumption, and a stock

market factor.

We evaluate the linearized version of this model with the original data, which corresponds to

excess returns on the Fama-French cross-section of 25 size and book-to-market sorted portfolios

from 1951 to 2001. Our results indicate that the admissible SDFs lie on a two-dimensional

subspace. In addition, we cannot reject the null hypothesis that model is completely overspeci-

�ed. Importantly, our results hold both when we update the sample and when we consider the

Fama-French cross-section of 6 portfolios. In addition, our simulations show that these empirical

�ndings are not due to lack of power. On the contrary, if anything, our proposed tests tend to

overreject for the sample sizes of our datasets.

Our econometric methodology is positive in nature, in the sense that our main objective has

been to complement the diagnostics that researchers typically report in support of their preferred

linear factor pricing speci�cation so as to increase the empirical credibility of their results.

Nevertheless, it might be interesting to combine our procedures with normative econometric

methods that some researchers use to come up with an acceptable speci�cation. Three recent

proposals are Harvey, Liu and Zhu (2016), Bryzgalova (2016) and Kozak, Nagel and Santosh

(2017). The application of our proposed diagnostics to models that have been selected after

an implicit or explicit speci�cation search raises multiple testing issues that we leave for future

research.

Another interesting avenue for further research would be to consider bootstrap versions of

our tests to improve their �nite sample reliability. Finally, we could also apply our methods to

other popular empirical asset pricing models, such as the ones in Jagannathan and Wang (1996)

or Lettau and Ludvigson (2001). We are currently pursuing some of these extensions.
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Appendices

A Proofs and special cases

A.1 Proofs

Proposition 1

We develop most of the proof for the case d = 2 to simplify the expressions, but explain

the extension to d > 2 at the end.

a) When d = 2, the moment conditions (6) become

E (m
 r) = E

0@ m1r

m2r

1A = E

0@ (1� f 01�1) r

(1� f 02�2) r

1A = 0:

We know from Hansen (1982) that the optimal moments correspond to the linear combina-

tions
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where D is the expected Jacobian and S the corresponding long-run variance
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In this setting, the expected Jacobian trivially is

D =

0@ D1 0

0 D2

1A ; Di = �E
�
rf 0i
�
:

Since we assume that the chosen normalization (�1; �2) is identi�ed, D has full column rank,

which in turn implies that both D1 and D2 must have full column rank too.

When (rt; ft) is an i.i.d. elliptical random vector with bounded fourth moments, we can

tediously show that the long-run covariance matrix of the in�uence functions will be

S = A
 E
�
rr0
�
� B 
 E (r)E (r)0 ;

A = (1 + �)V (m) + E (m)E (m)0 ; B = �V (m) + 2 (1� �)E (m)E (m)0 ;

where � is the coe¢ cient of multivariate excess kurtosis (see Fang, Kotz and Ng (1990)).

To relate the optimal moments to the factor mimicking portfolios

r+i = Cir; Ci = E
�
rf 0i
�0
E�1

�
rr0
�
;

it is convenient to de�ne the matrix

C0 =

0@ C01 0

0 C02

1A ;
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on the basis of which we can compute
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1A :
Given that the existence of two valid SDFs implies that E(r) = E(rf 01)�1 = E(rf 02)�2, we

can write these matrices as
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Gi = E

�
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�0
E�1

�
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�
E
�
rf 0i
�
:

In addition, let us de�ne the matrices Qi such that E(rf 01) = E(rf 02)Q1 and E(rf
0
2) =

E(rf 01)Q2, which are related by Q2 = Q�11 . The existence of these matrices is guaranteed by

the lack of full column rank of E(rf 0) together with the full column rank of E(rf 01) and E(rf
0
2).

Thus, we can write

SC0 = DQ;

Q = �

0@ A11I1 � B11�1�01G1 Q2
�
A12I1 � B12�2�02G2

�
Q1
�
A12I2 � B12�1�01G1

�
A22I2 � B22�2�02G2

1A :
The assumption that D0S�1 has full row rank guarantees that the same is true for C, so

that Q will be invertible. Therefore, we have found that

D0S�1 = Q0�1C:

In other words, the rows of D0S�1 are spanned by the rows of C, which con�rms that the factor

mimicking portfolios span the optimal instrumental variables.

As a result, the optimal moments can be expressed as0@ C1 0

0 C2

1A 1

T

TX
t=1

0@ m1trt

m2trt

1A =
1

T

TX
t=1

0@ r+1tm1t

r+2tm2t

1A = 0;

which proves that the optimal estimator of each vector of risk prices simply uses the correspond-

ing factor mimicking portfolios. This estimator is infeasible because we do not know Ci, but

under standard regularity conditions we can replace r+it by its sample counterpart in (9) without

a¤ecting the asymptotic distribution.
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b) When d = 2, the joint system of moments (6) and (7)

E (h) = E

0@ m
 r

m� c

1A ;
is composed by

E (m
 r) = E
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m2r

1A = E

0@ (1� f 01�1) r

(1� f 02�2) r

1A = 0;

E (m� c) = E

0@ m1 � c1
m2 � c2

1A = E

0@ 1� f 01�1 � c1
1� f 02�2 � c1

1A = 0;

with the parameters being

� =
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0@ �1
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1A ; c =
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1A :
The optimal moments correspond to the linear combinations

D0S�1 1
T

TX
t=1

ht;

where D is the expected Jacobian and S the corresponding long-run variance

S = avar
"
1p
T

TX
t=1

ht

#
:

In this setting, the expected Jacobian can be decomposed as

D =

0@ D 0

D �I2

1A ;
where D contains the Jacobian of m� c with respect to �, and I2 is the identity matrix of order

2. The long-run variance for i.i.d. returns and factors can be decomposed as

S =

0@ S E (mm0 
 r)

E (mm0 
 r0) V ar (m)

1A :
Once again, we can exploit the structure of the optimal moments to show that the optimal

estimator of � satis�es the moment conditions

D0S�1
1
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(mt 
 rt) = 0:

Hence, the optimal estimator of c will satisfy the moment conditions

1
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25



Obviously, as the additional moments E (m� c) = 0 are exactly identi�ed, the moment

conditions that de�ne the optimal estimator of � coincide with the conditions in point a), and

consequently the same estimator is obtained. The optimal estimator of c is equal to

1

T

TX
t=1

mt � E
�
mm0 
 r0

�
S�1

1

T

TX
t=1

(mt 
 rt) ;

with mt evaluated at the optimal estimator of �.

When (rt; ft) is an i.i.d. elliptical random vector with bounded fourth moments, we can show

that

E
�
mm0 
 r0

�
= C 
 E (r)0 ; C = V ar (m)� E (m)E (m)0 :

There are two valid SDFs: E (r) = E
�
rf 01
�
�1 = E

�
rf 02
�
�2. Thus, we can write

E
�
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 r0
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Let us focus on the optimal estimator of c1. We can express it as

1
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where the second term must be zero by de�nition of the optimal estimator of �. A similar

argument can be applied to the optimal estimator of c2. Hence, we can conclude that

ĉ =
1

T

TX
t=1

mt

will be the optimal estimator of the SDF means in an elliptical setting. �
Finally, we can easily extend our proof to d > 2 because the structures of D, S, and C

are entirely analogous. Speci�cally, S will continue to be the same function of A and B above,

although the dimension of these matrices becomes d instead of 2. In turn, D and C will remain

block-diagonal, but with d blocks instead of 2 along the diagonal. Lastly, E (mm0 
 r0) will

continue to be the same function of C above.

Proposition 2

One again, we develop most of the proof for the case d = 2 to simplify the expressions, but

explaining the extension to d > 2 at the end.
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When d = 2, the moment conditions (10) become

E (m
 x) = E

0@ m1x

m2x

1A = E

0@ (1� f 01�1)x

(1� f 02�2)x

1A = 0:

The optimal moments correspond to the linear combinations

D0S�1
1

T

TX
t=1

0@ m1txt

m2txt

1A ;
where D is the expected Jacobian and S the corresponding long-run variance. In this setting,

the expected Jacobian is block-diagonal with blocks �E
�
xf 0i
�
.

When (rt; ft) is an i.i.d. elliptical random vector with bounded fourth moments, and E (m) =

0, we can use our previous results in the proof of Proposition 1 to show that the long-run

covariance matrix of the in�uence functions will be

S = A
 E
�
xx0
�
� B 
 E (x)E (x)0 ;

A = (1 + �)E
�
mm0� ; B = �E

�
mm0� ;

where � is the coe¢ cient of multivariate excess kurtosis.

The structure of D and S are similar to the proof of Proposition 1. Therefore, we can follow

the same argument to conclude that if we de�ne the factor mimicking portfolios on the extended

payo¤ space as

x+i = Cix; Ci = E
�
xf 0i
�0
E�1

�
xx0
�
;

then the sample version of the optimal moments can be expressed as0@ C1 0

0 C2

1A 1

T

TX
t=1
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m2txt

1A =
1

T

TX
t=1

0@ x+1tm1t

x+2tm2t

1A :
This expression proves that the optimal estimator of each vector of risk prices simply uses the

corresponding factor mimicking portfolios. Once again, this estimator is infeasible because we

do not know Ci, but under standard regularity conditions we can replace x+it by its sample

counterpart in (12) without a¤ecting the asymptotic distribution. �
As in the case of Proposition 1, we can easily extend our proof to d > 2 because the structures

of D, S, and C is entirely analogous. Speci�cally, S will continue to be the same function of A

and B above, although the dimension of these matrices becomes d instead of 2: In turn, D and

C will remain block-diagonal, but with d blocks instead of 2 along the diagonal.
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Proposition 3

The proof is simpler if we express the pricing conditions (1) in terms of central moments,

which is numerically inconsequential for CU-GMM. Speci�cally, we can add and subtract b0�

from a+ b0f and de�ne c = a+ b0� as the expected value of the a¢ ne SDF. This allows us to

re-write the pricing conditions as

E

8<: [c+ b0 (f � �)] r

f � �

9=; = 0: (A1)

In this way, the unknown parameters become (c;b;�) instead of (a;b), as we have added k extra

moments to estimate �. Empirical researchers often use the implicit normalization c = 1, but

this would be incompatible with the null hypothesis H0 : c = 0 that we want to test. In contrast,

the symmetric normalization b0b+ c2 = 1 is perfectly compatible with this null hypothesis.

To deal with a d�dimensional subspace of admissible SDFs, we need to replicate d times

the pricing conditions in (A1). Thus, the centred SDF counterpart to (4) will be based on the

moment conditions

E

0BBBBBB@
f � �

rm1

...

rmd

1CCCCCCA = 0; mi = ci + (fi��i)0 bi; (A2)

where (f1; f2; :::; fd) are the vectors of factors that enter each one of the SDFs after imposing the

necessary restrictions that guarantee the point identi�cation of the basis (b1;b2; :::;bd).

Let us denote by J the CU-GMM value of the overidentifying restrictions test with free

(c1; c2; :::; cd) in (A2). Similarly, let us denote by J0 the CU-GMM value of the corresponding

overidentifying restrictions test after imposing c1 = ::: = cd = 0. In this context, it is straight-

forward to see that the overidenti�cation test based on J0 is trivially a rank test on Cov(r; f)

because it is testing the existence of d linear combinations of the columns of this covariance

matrix with weights bi that are equal to zero. By the invariance properties of single-step GMM

methods, it is easy to prove that we would obtain the same value for the overidenti�cation test

from the moment conditions (4) and (5). �
Finally, note that our DM test of the null hypothesis c1 = ::: = cd = 0 is based on J0 � J .

A.2 Possible cases with one, two and three factors

We describe all the possible cases for models with one, two or three factors under the

maintained assumption that E(r) 6= 0. As a result, we only study cases where the rank ofM is

one or higher.
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One factor

We cannot have an underidenti�ed single-factor model because the valid SDFs are unique

up to scale:

� Identi�cation (d = 1): The rank of M is one.

�E(r) is not in the span of Cov(r; f): The rank of Cov(r; f) is zero, and the model is

completely overspeci�ed.

�E(r) is in the span of Cov(r; f): The rank of Cov(r; f) is one.

� Lack of a valid SDF: The rank of M is two, while the rank of Cov(r; f) is one.

Two factors

The valid SDFs may belong to a two-dimensional subspace, so we may �nd underiden-

ti�ed two-factor models:

� Underidenti�cation with d = 2: The rank of M is one.

�E(r) is not in the span of Cov(r; f): The rank of Cov(r; f) is zero, and the model is

completely overspeci�ed.

�E(r) is in the span of Cov(r; f): The rank of Cov(r; f) one, so the model is only

partially overspeci�ed.

� Identi�cation (d = 1): The rank of M is two.

�E(r) is not in the span of Cov(r; f): The rank of Cov(r; f) is one, and the model is

completely overspeci�ed.

�E(r) is in the span of Cov(r; f): The rank of Cov(r; f) is two.

� Lack of a valid SDF: The rank of M is three, while the rank of Cov(r; f) is two.

Three factors

The valid SDFs may belong to a three-dimensional subspace:

� Underidenti�cation with d = 3: The rank of M is one.

�E(r) is not in the span of Cov(r; f): The rank of Cov(r; f) is zero, and the model is

completely overspeci�ed.
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�E(r) is in the span of Cov(r; f): The rank of Cov(r; f) is one, so the model is only

partially overspeci�ed.

� Underidenti�cation with d = 2: The rank of M is two.

�E(r) is not in the span of Cov(r; f): The rank of Cov(r; f) is one, and the model is

completely overspeci�ed.

�E(r) is in the span of Cov(r; f): The rank of Cov(r; f) is two, so the model is only

partially overspeci�ed.

� Identi�cation (d = 1): The rank of M is three.

�E(r) is not in the span of Cov(r; f): The rank of Cov(r; f) is two, and the model is

completely overspeci�ed.

�E(r) is in the span of Cov(r; f): The rank of Cov(r; f) is three.

� Lack of a valid SDF: The rank of M is four, while the rank of Cov(r; f) is three.

B Monte Carlo design

B.1 Data generating process

In this appendix, we extend the design of the single factor Monte Carlo experiment in

Peñaranda and Sentana (2015) to a two-factor model. An unrestricted (i.i.d.) Gaussian data

generating process (DGP) for (f ; r) is

f � N (�;�) ;

r = �r +Br (f � �) + ur; ur � N (0;
rr) ;

where the n� 2 matrix Br is de�ned by the two beta vectors

Br =
�
�1 �2

�
:

Without loss of generality, we construct the two factors so that their covariance matrix is

the identity matrix. In addition, given that we use the simulated data to test that an a¢ ne

function of f is orthogonal to r, the only thing that matters is the linear span of r. As a result,

we can substantially reduce the number of parameters characterizing the conditional DGP for r

by means of the following steps:

1. a Cholesky transformation of r which e¤ectively sets the residual variance 
rr equal to

the identity matrix,
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2. a Householder transformation that makes the second to the last entries of the vector of

risk premia �r equal to zero (see Householder (1964)),

3. another Householder transformation that makes the third to the last entries of �1 equal

to zero,

4. a �nal third Householder transformation that makes the fourth to the last entries of �2

equal to zero.

As a result, our simpli�ed DGP for excess returns will be

r = �re1 + (�11e1 + �21e2) (f1 � �1) + (�12e1 + �22e2 + �32e3) (f2 � �2) + ur;

ur � N (0; In) ;

where (e1; e2; e3) are the �rst, second, and third columns of the identity matrix, and

f � N (�; I2) :

B.2 Model restrictions

We set the values of the three parameters of � to 1. In turn, we calibrate the six parameters

that de�ne r as follows. First, we de�ne a Hansen-Jagannathan (HJ) distance for this three-

factor model as the minimum with respect to � of the quadratic form

�0M0V ar�1 (r)M�;

where

M� = [ E (r) Cov (r; f) ]

0@ c

b

1A :
Note that M� =M� and rank(M) = rank(M).

The 3� 3 weighting matrix

W =M0V ar�1 (r)M

=

0@ E (r)0 V ar�1 (r)E (r) E (r)0 V ar�1 (r)Cov (r; f)

� Cov (r; f)0 V ar�1 (r)Cov (r; f)

1A =

0BBB@
�00 �01 �02

� �11 �12

� � �22

1CCCA
can be interpreted as the variance matrix of three noteworthy portfolios. The �rst one yields

the maximum Sharpe ratio

r0 = r
0V ar�1 (r)E (r) ;
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while the other two are the centred factor mimicking portfolios

ri = r
0V ar�1 (r)Cov (r; fi) ; i = 1; 2:

Note that if we minimize the above quadratic form subject to the symmetric normalization

�0� = 1, then this HJ distance will be equal to the minimum eigenvalue of the covariance matrix

W.

The �rst entry of W is the variance of r0 or, equivalently, the squared maximum Sharpe

ratio. The other two diagonal entries are the variances of (r1; r2) or, equivalently, the R2 of

their respective regressions. Finally, the three di¤erent o¤-diagonal elements correspond to the

covariances between these three portfolios, which we can pin down by their correlations. In this

way, we have six parameters that are easy to interpret and calibrate, from which we can obtain

the six parameters that our DGP requires for r.

We start from the free design and progressively add more and more constraints. In addi-

tion, we can interpret the constraints that the di¤erent models impose as forcing certain linear

combinations of (r0; r1; r2) with coe¢ cients (c; b1; b2) to have zero variance. We de�ne 3 designs

(with some variants) indexed by the dimension of the subspace of prices of risk d.

� Design d = 0: The matrix W has full rank. We need to give values to the six parameters

with the interpretations mentioned before. We calibrate their values to the data as ex-

plained below. The rest of designs require constraints on the matrix W, which we impose

by means of small changes in that matrix.

� Design d = 1: The matrixW has one rank failure de�ned by a one-dimensional subspace of

vectors (c; b1; b2). At least one of the factors must enter the SDF to avoid risk neutrality,

so we can assume that b2 6= 0. Thus, we can choose a linear combination (c�; b�1;�1) with

zero variance. Equivalently, we can express r2 as

r2 � �2 = c�(r0 � �0) + b�1 (r1 � �1) ;

and change the last column of matrix W to

�02 = c
��00 + b

�
1�01;

�12 = c
��01 + b

�
1�11;

�22 = c
�2�00 + b

�2
1 �11 + 2c

�b�1�01:

We keep the three parameters that de�ne the covariance matrix of (r0; r1) equal to the

values they take in design d = 0. This design will have two variants: one with nonzero c
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in the linear combination (c; b1; b2), and a second one with c� = 0. In the former variant,

we choose c� and b�1 to keep the same �02 and �22 as in the design d = 0. In the second

variant, we chose c� = b�1 = 0, which is equivalent to an uncorrelated factor, so that

�02 = �12 = �22 = 0.

� Design d = 2: The matrix W has two rank failures de�ned by a two-dimensional subspace

of vectors (c; b1; b2). We maintain the linear combination (c�; b�1;�1) with zero variance

from design d = 1, and add a second linear combination (c��;�1; 0) with zero variance.

Equivalently, we can express r1 as

r1 � �1 = c�� (r0 � �0) ;

and modify the matrix W accordingly

�01 = c
���00;

�11 = c
��2�00;

with (�02; �12; �22) satisfying the same equations as in design d = 1. We keep �00 equal

to the value in design d = 0. This design will again have two variants: one with nonzero

c in the linear combinations (c; b1; b2), and a second one with c� = c�� = 0. In the former

variant, we choose c�� to keep the same �11 as in the design d = 0. In the second variant,

we have two uncorrelated factors, and hence all entries of W except �00 are equal to 0.

B.3 Numerical values

� Design d = 0: We calibrate the matrix W from the data. After orthogonalizing the

factors (with the market being the �rst factor), we set the correlations of (r0; r1; r2) and

the variances of (r1; r2) to values similar to those in the data. In contrast, we lower the

variance of r0, which can be interpreted as the squared maximum Sharpe ratio, so as to

ensure a realistic risk-return trade o¤. Thus, the matrix that we use is

W =

0BBB@
0:090 0:198 0:063

� 0:980 0

� � 0:100

1CCCA ;
which is associated to the following DGP

r = 1:433e1+(6:907e1 + 1:140e2) (f1 � �1)+(0:049e1 � 0:297e2 + 0:143e3) (f2 � �2)+ur:
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� Design d = 1: We study two variants. In the �rst one, we impose the existence of an SDF

with coe¢ cients 0BBB@
c�

b�1

b�2

1CCCA =

0BBB@
1:406

�0:319

�1

1CCCA
by means of the matrix

W =

0BBB@
0:090 0:198 0:063

� 0:980 �0:035

� � 0:100

1CCCA ;
which is associated to the following DGP

r = 1:464e1 + (7:158e1 + 1:167e2) (f1 � �1) + (�0:229e1 � 0:373e2) (f2 � �2) + ur:

In the second one, we impose the existence of an SDF with coe¢ cients0BBB@
c�

b�1

b�2

1CCCA =

0BBB@
0

0

�1

1CCCA
by means of the matrix

W =

0BBB@
0:090 0:198 0

� 0:980 0

� � 0

1CCCA ;
which is associated to the following DGP

r = 1:432e1 + (6:914e1 + 1:093e2) (f1 � �1) + ur:

� Design d = 2: We study two variants. In the �rst one, we impose the existence of two

SDFs with coe¢ cients 0BBB@
c� c��

b�1 b��1

b�2 b��2

1CCCA =

0BBB@
1:406 3:300

�0:319 �1

�1 0

1CCCA
by means of the matrix

W =

0BBB@
0:090 0:297 0:032

� 0:980 0:104

� � 0:011

1CCCA ;
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which is associated to the following DGP

r = 3:182e1 + 10:500e1 (f1 � �1) + 1:118e1 (f2 � �2) + ur:

In the second one, we impose the existence of two SDFs with coe¢ cients0BBB@
c� c��

b�1 b��1

b�2 b��2

1CCCA =

0BBB@
0 0

0 �1

�1 0

1CCCA
by means of the matrix

W =

0BBB@
0:090 0 0

� 0 0

� � 0

1CCCA ;
which is associated to the following DGP

r = 0:300e1 + ur:
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Table 1: Empirical evaluation of the model 1951-2001

One-dimensional Set Two-dimensional Set Three-dimensional Set

Market 0.200 (0.805) -3.888 0.514 (0.002) 4.793 0 0

Nondur. 24.765 (0.458) 222.902 0 (0.000) 0 115.687 0

Durables 92.229 (0.035) 0 99.333 (0.000) 0 0 121.320

Mean 0.014 ( 0.790) -0.099 0.034 (0.494) 0.852 0.421 -0.029

Criterion 20.743 (0.537) 56.687 (0.134) 215.144 (0.000)

Criterion c = 0 20.814 (0.592) 58.098 (0.151)

Note: This table displays estimates of the SDF parameters, as well as the J tests (with free and

constrained SDF means) with p-values in parenthesis (). The �rst, second and third blocks of columns

report the results for sets of SDFs of dimension 1, 2 and 3, respectively. We display the estimates for a

particular normalization, but our results are numerically invariant to the chosen normalization because

we use CU-GMM. The J tests are complemented with signi�cance tests of some SDF parameters. In

particular, the p-value of the distance metric test of the null hypothesis of zero parameters is reported in

parenthesis to the right of the estimates. Distance metric tests are not reported when the p-value of the

J test is lower than 0:01. The payo¤s of the test assets correspond to 25 nominal excess returns of size

and book-to-market sorted portfolios on a quarterly basis.
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Table 2: Empirical evaluation of the model 1949-2012

One-dimensional Set Two-dimensional Set Three-dimensional Set

Panel A. 25 size and book-to-market sorted portfolios

Market 0.766 (0.673) -1.878 0.882 (0.000) 12.882 0 0

Nondur. -6.452 (0.834) 192.583 0 (0.000) 0 169.191 0

Durables 106.144 (0.024) 0 97.810 (0.000) 0 0 110.143

Mean 0.003 (0.972) 0.052 0.008 (0.757) 0.411 0.065 -0.075

Criterion 18.278 (0.689) 54.818 (0.175) 165.053 (0.000)

Criterion c = 0 18.279 (0.742) 55.375 (0.216)

Panel B. 6 size and book-to-market sorted portfolios

Market 0.504 (0.542) -1.873 0.597 (0.053) 4.148 0 0

Nondur. 12.831 (0.837) 208.870 0 (0.000) 0 152.818 0

Durables 92.619 (0.158) 0 100.563 (0.000) 0 0 121.767

Mean 0.021 (0.836) 0.076 0.007 (0.810) 0.875 0.326 -0.173

Criterion 0.526 (0.913) 3.787 (0.876) 47.695 (0.000)

Criterion c = 0 0.568 (0.967) 4.207 (0.938)

Note: This table displays estimates of the SDF parameters, as well as the J tests (with free and

constrained SDF means) with p-values in parenthesis (). The �rst, second and third blocks of columns

report the results for sets of SDFs of dimension 1, 2 and 3, respectively. We display the estimates for a

particular normalization, but our results are numerically invariant to the chosen normalization because

we use CU GMM. The J tests are complemented with signi�cance tests of some SDF parameters. In

particular, the p-value of the distance metric test of the null hypothesis of zero parameters is reported in

parenthesis to the right of the estimates. Distance metric tests are not reported when the p-value of the

J test is lower than 0:01. The payo¤s of the test assets correspond to 25 (Panel A) and 6 (Panel B) real

excess returns of size and book-to-market sorted portfolios at the quarterly frequency.
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Table 3: Rejection rates for a two-dimensional set of admissible SDFs (T = 200)

Nominal size

10 5 1

Panel A. Some SDFs have nonzero mean

J d=2 13.65 7.03 1.61

J d=2, c=0 99.62 99.62 99.62

DM c=0 99.62 99.62 99.62

J d=1 1.03 0.37 0.01

J d=1 c=0 11.78 3.07 1.20

DM c=0 39.97 28.01 10.89

Panel B. All SDFs have zero mean

J d=2 8.97 4.49 0.71

J d=2, c=0 14.26 7.73 1.72

DM c=0 21.46 13.69 4.34

J d=1 0.75 0.15 0.00

J d=1, c=0 0.89 0.31 0.00

DM c=0 8.03 3.37 0.30

Note: This table displays the rejection rates of CU J tests, their variants restricted to zero SDF

means, and the corresponding DM tests, as described in Section 3. The rates are shown in percentage for

the asymptotic critical values at 10, 5, and 1%. 10000 samples of 6 excess returns are simulated under

the two variants of a two-dimensional set of admissible SDFs in Appendix B, where the parameter values

of the DGP are explained. Panel A reports the results for the �rst variant, when most of these SDFs have

nonzero means, and Panel B reports the results for the second variant, when the asset pricing model is

completely overspeci�ed.
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Table 4: Rejection rates for a one-dimensional set of admissible SDFs (T = 200)

Nominal size

10 5 1

Panel A. Some SDFs have nonzero mean

J d=2 99.17 98.03 92.79

J d=2, c=0 99.99 99.99 99.99

DM c=0 99.97 99.97 99.97

J d=1 10.06 4.99 0.98

J d=1 c=0 97.92 95.39 84.25

DM c=0 99.24 98.71 95.57

Panel B. All SDFs have zero mean

J d=2 68.55 56.95 33.30

J d=2, c=0 99.85 99.85 99.85

DM c=0 99.84 99.84 99.84

J d=1 6.29 2.66 0.33

J d=1, c=0 11.65 5.96 1.20

DM c=0 20.51 12.92 3.88

Note: This table displays the rejection rates of CU J tests, their variants restricted to zero SDF

means, and the corresponding DM tests, as described in Section 3. The rates are shown in percentage

for the asymptotic critical values at 10, 5, and 1%. 10000 samples of 6 excess returns are simulated

under the two variants of a one-dimensional set of admissible SDFs in Appendix B, where the parameter

values of the DGP are explained. Panel A reports the results for the �rst variant, when the SDF has a

nonzero mean, and Panel B reports the results for the second variant, when the asset pricing model is

overspeci�ed.
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Table B1: Rejection rates for a two-dimensional set of admissible SDFs (T = 600)

Nominal size

10 5 1

Panel A. Some SDFs have nonzero mean

J d=2 10.80 5.55 1.13

J d=2, c=0 99.55 99.55 99.55

DM c=0 99.55 99.55 99.55

J d=1 0.78 0.16 0.00

J d=1 c=0 10.36 5.20 1.23

DM c=0 37.94 26.15 9.82

Panel B. All SDFs have zero mean

J d=2 10.15 5.03 0.99

J d=2, c=0 11.58 5.98 1.28

DM c=0 13.63 7.58 1.63

J d=1 0.77 0.16 0.00

J d=1, c=0 0.82 0.13 0.00

DM c=0 5.94 2.09 0.19

Note: This table displays the rejection rates of CU J tests, their variants restricted to zero SDF

means, and the corresponding DM tests, as described in Section 3. The rates are shown in percentage for

the asymptotic critical values at 10, 5, and 1%. 10000 samples of 6 excess returns are simulated under

the two variants of a two-dimensional set of admissible SDFs in Appendix B, where the parameter values

of the DGP are explained. Panel A reports the results for the �rst variant, when most of these SDFs have

nonzero means, and Panel B reports the results for the second variant, when the asset pricing model is

completely overspeci�ed.
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Table B2: Rejection rates for a one-dimensional set of admissible SDFs (T = 600)

Nominal size

10 5 1

Panel A. Some SDFs have nonzero mean

J d=2 100 100 100

J d=2, c=0 100 100 100

DM c=0 100 100 100

J d=1 9.94 5.00 1.06

J d=1 c=0 100 100 100

DM c=0 100 100 100

Panel B. All SDFs have zero mean

J d=2 99.06 97.97 92.69

J d=2, c=0 100.00 100.00 100.00

DM c=0 100.00 100.00 100.00

J d=1 8.87 4.26 0.82

J d=1, c=0 10.50 5.25 1.11

DM c=0 12.79 6.63 1.60

Note: This table displays the rejection rates of CU J tests, their variants restricted to zero SDF

means, and the corresponding DM tests, as described in Section 3. The rates are shown in percentage

for the asymptotic critical values at 10, 5, and 1%. 10000 samples of 6 excess returns are simulated

under the two variants of a one-dimensional set of admissible SDFs in Appendix B, where the parameter

values of the DGP are explained. Panel A reports the results for the �rst variant, when the SDF has a

nonzero mean, and Panel B reports the results for the second variant, when the asset pricing model is

overspeci�ed.
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Figure 1: One asset

Figure 2: Two assets

42



Figure 3: Three segmented asset markets

Figure 4: Three integrated asset markets
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Figure 5: Normalizations

Figure 6: Valid but unattractive model with a useless factor
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Figure 7: Valid and attractive model with a useless factor

Figure 8: Two single factor models
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Figure 9: Two useless factors

Figure 10: An unpriced second factor
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Figure 11: Risk premia from 2S-GMM
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Figure 12: Risk premia from IT-GMM
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Figure 13: Risk premia from IT-GMM, free coe¢ cients
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