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1 Introduction

Goodness-of-�t tests are important to assess whether a parametric distribution provides

an appropriate representation of the data. These tests can be divided in two main categories:

(i) directional tests, which are designed to have power against speci�c alternatives, such as

Neyman smooth test (Neyman, 1937 and Rayner and Best, 1989), Jarque and Bera�s (1980)

test of normality, as well as those proposed by Sefton (1992), Fiorentini, Sentana and Calzolari

(2003), Bontemps and Meddahi (2005, 2012), Mencía and Sentana (2012) and Tuvaandorj and

Zinde-Walsh (2014) among many others; (ii) omnibus tests, which are consistent against any

alternative to the null hypothesis, for instance the integrated conditional moment test of Bierens

(1982) and Bierens and Ploberger (1997), the conditional Kolmogorov test of Andrews (1997),

and the copula goodness-of-�t test of Genest, Huang and Dufour (2013). Our proposed tests

fall in this second category.

In particular, our testing procedure is based on the di¤erence between the empirical and

theoretical characteristic functions (CF) for all possible values of their argument. This gives rise

to a continuum of moments in a L2 space. Our aim is to construct a J test for overidentifying

restrictions based on these moments, as in Hansen (1982). However, what plays the role of the

covariance matrix in his test becomes now a covariance operator, whose inverse is unbounded.

Therefore, some regularization is needed to stabilize the inverse. We propose to use Tikhonov

regularization (see Kress, 1999) and consider two types of tests. The �rst one uses a �xed value

of the regularization parameter �. Given that � can be regarded as a bandwidth, this approach

is analogous to the �xed b asymptotics used in Kiefer and Vogelsang (2002). The second type

of tests allows � to converge to zero at an appropriate rate, in which case our proposed test is

closer in spirit to Hansen (1982)�s J test. In this second instance, however, the statistics would

tend to a diverging �2 with in�nite degrees of freedom. For that reason, we center and rescale

it following the procedure put forward by Carrasco and Florens (2000), who presented this type

of test for the �rst time.

We will consider various versions of our proposed tests depending on whether the parameter

vector � is known in advance or replaced by a consistent estimator, and whether we make

use of the analytical expression for the covariance operator or estimate it. We will derive the

asymptotic distribution of our tests under the null hypothesis and under local alternatives. We

will also characterize the alternatives for which our tests have maximum power.

The advantages of using the CF are multiple: (a) in some important examples, the distri-

bution function is only known in integral form whereas the CF has a closed form expression,

as in the cases of stable distributions and a¢ ne di¤usions (see Singleton (2001) and Carrasco,
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Chernov, Florens, and Ghysels (2007)); (b) handling multivariate random variables can be done

just as easily as the scalar case; (c) our tests have the same form and are computed in the

same manner for any CF tested; (d) our tests are consistent against any alternative to the null

hypothesis.

Various tests based on the empirical CF have been previously proposed: Feuerverger and

Mureika (1977), Epps and Pulley (1983), Hall and Welsh (1983), Baringhaus and Henze (1988),

Ghosh and Ruymgaart (1992), Fan (1997), Hong (1999), Su and White (2007), Chen and Hong

(2010), Bierens and Wang (2012) and Leucht (2012) among others. The main di¤erence with

ours is that we not only consider a continuum of moments, but we also explicitly take into

account the correlation between the empirical CF for di¤erent values of its argument. Our work

is also related to Dufour and Valery (2016), who propose a regularized Wald test to deal with

the singularity of the covariance matrix.

The remainder of the paper is organized as follows. We introduce the tests in Section 2 and

derive the asymptotic properties of the J test with �xed regularization parameter � and known

(unknown) � in Section 3 (4). Next, we study the J test with vanishing � in Section 5. Finally,

Section 6 presents the results of our Monte Carlo simulations while Section 7 concludes. All the

proofs are collected in Appendix A and computational aspects are discussed in Appendix B.

2 Presentation of the tests and overview

Assume we observe a sample of random variables X1; X2; :::; Xn independent and identically

distributed (iid) taking their values on Rq with q � 1. The Xj have probability density function

(pdf) f (x; �) indexed by a �nite dimensional parameter �, which may be known or unknown,

and CF  (t; �) = E[eitX ], where t 2 Rq is its argument. As is well known, f (x; �) and  (t; �)

are intimately related because the former is the Fourier transform of the latter, i.e.

 (t; �) =

Z
eitxf (x; �) dx: (1)

Figure 1 presents the CFs for the univariate distributions that we consider in our Monte Carlo

study, namely, a standard normal, as well as standardized (zero mean - unit variance) versions

of the uniform and �2(2) distributions. Given that the �rst two examples are symmetrically

distributed around 0, the CF is real and symmetric around 0 too. In contrast, it contains an

(odd) imaginary component in the case of the asymmetric chi-square.

We are interested in testing H0 :  =  0 (:; �0), where  0 is a known CF and �0 is some

element of � � Rp. Our testing procedures are based on the di¤erence between the empirical
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and theoretical CFs. Speci�cally, the relevant in�uence functions are

ĥ (t; �) =
1

n

nX
j=1

hj (t; �) ; (2)

hj (t; �) = eitXj �  0 (t; �) : (3)

This gives rise to a continuum of moments since under the null E[hj (t; �0)] = 0 for all t 2 Rq:

Let � be an arbitrary probability density function on Rq. Then, the function hj (t; �) is a

random element of L2 (�), the space of complex-valued functions which are square integrable

with respect to the density �. The inner product on this space is de�ned for any functions f and

g of L2 (�) as hf; gi =
R
f (t) g (t)� (t) dt, where the bar denotes the complex conjugate. L2 (�)

is a Hilbert space and we will work on this space to derive the asymptotic distribution of our

test statistics.

By the central limit theorem of iid random elements of a separable Hilbert space (see e.g.

Example 1.8.5 of van der Vaart and Wellner (1996)), we have that under H0, as n goes to in�nity

p
nĥ (t; �0)) N (0;K)

in L2 (�), where N (0;K) denotes a Gaussian process of L2 (�). K is an integral operator from

L2 (�) to L2 (�) such that

(Kf) (s) =

Z
k (s; t) f (t)� (t) dt, (4)

where

k0 (s; t) = E[hj (s; �0)hj (s; �0)] =  0 (s� t; �0)�  0 (s; �0) 0 (�t; �0) : (5)

In the sequel, we denote by �j and �j the eigenvalues and eigenfunctions of K, respectively,

which are solutions to the functional equation (K�j)(t) = �j�j(t). Figures 2a and 2c present

the eigenfunctions associated with the largest two eigenvalues for the covariance operator K

for the standard normal when the weighting function � is itself a normal with zero mean and

scale parameter ! for two values of !. In turn, Figures 2b and 2d do the same but for the

corresponding operator of the standardised uniform distribution on (�
p
3;
p
3). As can be seen

in these �gures, if we arrange the eigenvalues in decreasing order, the eigenfunctions associated

to even (odd) eigenvalues are even (odd) functions in these two examples. We also report in

Figures 2e and 2f the largest �ve eigenvalues for those distributions. As we shall see below, the

main e¤ect of changing ! will be to change the relative weights given to small and large values

of the CF argument t.

We are interested in applying Hansen (1982)�s J test of overidentifying restrictions to our
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continuum of moments. To illustrate the di¢ culties that may arise, assume for a moment

that ĥ (�) is a �nite dimensional M -vector obtained from a rough discretization of Rq, so that
p
nĥ (�0)

d! N (0;K) and K is a nonsingular M �M matrix. Assuming for simplicity that both

K and � are known, the usual J test for overidentifying restrictions is

J = nĥ
?
(�)K�1ĥ(�); (6)

where ? denotes the complex conjugate transpose of a vector/matrix. Now if we let M grow by

taking a denser and denser grid, then the matrix K becomes increasingly ill-conditioned, in the

sense that the ratio of its largest eigenvalue to its smallest one increases dramatically, so K�1

may be numerically unreliable for large M .

In our setting, the covariance matrix K is replaced by the aforementioned covariance opera-

tor K (see Appendix B.1), which has a countable in�nite number of eigenvalues �j , j = 1; 2; : : :

(arranged in decreasing order) and associated eigenfunctions �j . As we will see later on, this

operator is compact, meaning that its inverse is not bounded. Consequently, its smallest eigen-

values will converge to zero as j goes to in�nity, so taking the inverse of K is problematic. In

terms of the spectral decomposition of K, the direct analogue to the J test statistic in (6) would

be written as Dp
nĥ;K�1pnĥ

E
=
X
j

1

�j

Dp
nĥ; �j

E2
(7)

where the dependence on � is omitted for simplicity. This expression will blow up because of

the division by the small eigenvalues �j for large j. This is related to the problem of solving

an integral equation Kf = g where g is known and f is the object of interest. This problem

is said to be ill-posed because f is not continuous in g. Indeed, a small perturbation in g will

result in a large change in f . To stabilize the solution, one needs to use some regularization

scheme (see Kress (1999) and Carrasco, Florens, and Renault (2007) for various possibilities).

As in Carrasco and Florens (2000), we use Tikhonov regularization, which consists in replacing

K�1g by the regularized solution
�
K2 + �I

��1
Kg where � � 0 is a regularization parameter:

We use the notation (K�)�1 for
�
K2 + �I

��1
K, which is the operator with eigenvalues �j

�2j+�

and corresponding eigenfunctions �j , and (K
�)�1=2 for the operator with eigenvalues

p
�jq

�2j+�

and the same eigenfunctions.

Thus, the regularized version of the J test is




(K�)�1=2
p
nĥ



2 =X

j

�j

�2j + �

Dp
nĥ; �j

E2
: (8)
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Comparing the expressions (7) and (8), we observe that 1
�j
has been replaced by �j

�2j+�
, which is

bounded.

We will consider various versions of this test depending on whether:

� � is known or estimated,

� K is known or estimated,

� � is �xed or goes to zero.

Consider the case where � is �xed; if we are willing to assume that � is known, so that the

distribution under the null hypothesis is completely speci�ed and the operator K is known, then

the �rst test we should consider is

J(�0;K) =
X
j

�j

�2j + �

Dp
nĥ; �j

E2
: (9)

As we explain in Appendix B.1, the test statistic (9) can be arbitrarily approximated from

a numerical point of view by a modi�ed version of the matrix expression (6). Speci�cally, if we

evaluated the CF at a very �ne but discrete grid of M points over a �nite range of values of the

argument t, then

J(�0;K) = nĥ (�)?
�
K
M

�1=2 "� K
M

�2
+ �I

#�1�
K
M

�1=2
ĥ (�) : (10)

Several issues related to the practical implementation of this test (in particular the compu-

tation of the eigenelements of K) are discussed in Appendix B.1.

When � is unknown, however, the operator K is only known up to �. Let ~� be a consistent

estimator of � obtained for instance from

~� = argmin
�2�




ĥ (:; �)


2 :
In this context, the integral operator K~� can be de�ned as in (4) but with kernel

k(s; t) =  0(s� t; ~�)�  0(s; ~�) 0(�t; ~�):

Let f�j~�; �j~�g j = 1; :::;M be the eigenvalues and eigenfunctions of the operator K~�. Then the

second test we consider is

J(�̂; K�̂) =
X
j

�j~�

�2
j~�
+ �

Dp
nĥ(:; �̂); �j~�

E2
= argmin

�2�

X
j

�j~�

�2
j~�
+ �

Dp
nĥ (:; �) ; �j~�

E2
:
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Alternatively, we may prefer to estimate K using a sample covariance operator. In fact, there

are two obvious possibilities. The �rst one is to use the integral estimator K̂ with uncentred

kernel

k̂(s; t) =
1

n

nX
i=1

hi(s; ~�)hi(�t; ~�);

where ~� is a consistent �rst step estimator of �. On the other hand, the second possibility is the

integral operator �K with centred kernel

�k (s; t) =
1

n

nX
i=1

hi (s)hi (�t) ;

where

hi (s) = hi (s; �)� ĥ (t; �) = eitXi � 1

n

nX
l=1

eitXl :

The advantage of the second estimator is that it does not require a �rst step estimator of �

and thereby it may be more robust to misspeci�cation. Either way, given that K̂ and �K have

�nite range, they will have at most n nonzero eigenvalues, which (under some conditions) will

be consistent estimators of the largest eigenvalues of K.

For computational reasons, it is convenient to rewrite the test statistics (8), which use as

eigenvalues and eigenfunctions those of K̂ and �K, in terms of certain matrices and vectors (see

Carrasco et al (2007) for analogous expressions for K̂ under time series dependence). Speci�cally,

we obtain the following two expressions:

i) The test based on K̂, which can be computed as

J(�; K̂~�) = argmin�2�
v (�)?

�
�I + C2

��1
v (�) (11)

where v (�) is a n � 1 vector with l-th element vl (�) =
R
hl(t; ~�)ĥ (t; �)� (t) dt, C is an n � n

matrix with (i; l) element cil=n with cil =
D
hl(t; ~�); hi(t; ~�)

E
(see Appendix B.2 for analytical

expressions for these integrals).

ii) The test based on �K, whose matrix expression is

J(�; �K) = argmin
�2�

�v (�)? [�I + �C2]�1�v (�) (12)

where�v (�) is a n�1 vector with l-th element�vl (�) =
R
hl (t)ĥ (t; �)� (t) dt; �C is an n�n matrix

with (i; l) element�cil=n with�cil = hhl (t) ; hi (t)i. In this regard, note that �C = (I� ``0=n)C(I�

``0=n), where ` is a vector of n ones.

In Sections 3 and 4, we will study the asymptotic distribution of the test statistics J(�0;K);

J(�̂; K�̂); J(�; K̂~�) and J(�;
�K) and show that they converge under H0 to a weighted sum of �2�s
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whose weights depend on �. Given the eigenvalues, those weights and hence their asymptotic

distributions are known, so we can compute the p-value of these quadratic forms in normal vari-

ables using Imhof (1961). Nevertheless, we rely on the parametric bootstrap in the simulations

to improve the small sample properties of our proposed procedures.

For all the tests presented so far, � is �xed, so that our regularized inverse (K�)�1 is a biased

approximation of K�1. It is possible to approach K�1 by letting � go to zero at a suitable rate.

However, a test based on (8) with � going to zero would tend to a chi-square with in�nite degrees

of freedom, and hence diverge. For that reason, we explain next how to center and rescale it

following Carrasco and Florens (2000). Let hj(t; �̂) denote the in�uence function (3) evaluated

at a consistent estimator of �. Similarly, let �̂j denote the eigenvalues of K̂,

âj =
�̂
2

j

�̂
2

j + �
; p̂n =

nX
j=1

âj and q̂n = 2
nX
j=1

â2j : (13)

After appropriate centering and rescaling, we obtain:

J�n(�̂; K�̂) =




(K̂�n)�1=2
p
nĥ(:; �̂)




2 � p̂n
p
q̂n

: (14)

In Section 5, we show that J�n converges to a standard normal distribution under the null.

3 J test when � is �xed and the parameter is known

3.1 Distribution under local alternatives

The J(�0;K) statistic in (9) with � �xed is part of a larger class of tests based on weighted

L2 statistics that we will denote by TB in the sequel. Let B be a nonrandom bounded linear

operator from L2 (�) to L2 (�) and Bn be a sequence of random bounded linear operators from

L2 (�) to L2 (�) such that kBn �Bk
P! 0 as n goes to in�nity, where k:k is the sup-norm. Assume

moreover that the null space of B equals f0g; otherwise the test would lack power against certain

alternatives. Popular choices of B satisfying our assumptions include B = I as in Epps and

Pulley (1983), Bierens and Wang (2012) and Leucht (2012), as well as B = (K�)�1=2 with � > 0

�xed.

In this section and the next one we focus on tests based on weighted L2 statistics

TB =



Bnpnĥ


2 = Z (Bnpnĥ)2 (t)� (t) dt; (15)

where ĥ (t) =
Pn

j=1[e
itXj �  0 (t)] and  0 (t) =  0 (t; �0).
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We look at local alternatives of the form

H1n :  n =  0 +
c�p
n
; (16)

where c is a scalar. In this context, � represents the direction of the alternative, while c represents

the distance from the null. To guarantee the uniqueness of the representation, � needs to be

normalized. There are many possibilities. As the results of this subsection are not a¤ected by

the choice of the normalization, we will not specify a normalization at this stage. Nevertheless,

we impose � (0) = 0 to preserve the property that  n (0) = 1 which every CF needs to satisfy.

Similarly, we also need � (t) = � (�t) to preserve the property that  n (t) =  n (�t) for any CF.

Assume moreover that there is a constant C > 0 such that j� (t)j � C for all t; and 0 < kB�k <1.

CFs need to satisfy the condition j nj � 1, which hopefully will be satis�ed by  n under H1n
for n su¢ ciently large.

First, we establish some results on the operator K of form (4) with kernel (5), suppressing

the dependence on �0 for simplicity.

Lemma 1 K is a self-adjoint positive de�nite Hilbert-Schmidt operator from L2 (�) to L2 (�)

and the sum of its eigenvalues is bounded by 1.

Lemma 1 implies two things: that K has a countable spectrum, and that the sum of its

eigenvalues is less than 1.

Example. Consider the CF of a univariate normal with mean � and variance �2; it turns

out that when using a normal weighting function with zero mean and scale parameter !, we can

obtain analytical solutions for the sums of both ��s and �2�s. Speci�cally, the expressions are

X
j

�j = 1�
1p

1 + 2�2!2

and X
j

�2j =
1

! + 2�2!3

0@ e
� 4�2!2

1+2�2!2

p
1 + 2�2!2

+
e
� 4�2!2

1+4�2!2

p
1 + 4�2!2

� 2p
1 + 4�2!2 + 3�4!4

1A :

As can be seen from the above expressions, the sums of both ��s and �2�s depend on the scale

! of the weighting function.

Proposition 2 Under H1n; as n goes to in�nity

p
nbh) N (c�;K)

in L2 (�) :
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Let aj , �j , j = 1; 2:::; J be the eigenvalues (arranged in decreasing order) and eigenvectors

of BKB�. Further, let �j = c2


B�; �j

�2
=aj .

Proposition 3 Under H1n, we have

TB
d!

1X
j=1

aj�
2
j (1; �j) =

1X
j=1

aj

 
ej +

c


B�; �j

�
p
aj

!2

where �2j (1; �j), j = 1; 2; ::: denote independent noncentral chi-square random variables with

1 degree of freedom and non centrality parameter �j while ej, j = 1; 2; ::: are the underlying

independent standard normal variables.

Remark 1. The previous proposition will not apply if B = K�1=2: In that case B is not

bounded violating one of the assumptions. Moreover, N (0; I) is not a Gaussian process because

the trace of its covariance operator (the identity operator) is in�nite. We will discuss the case

B = (K�)�1=2 when � goes to zero in Section 5.

Remark 2. We see that as soon as


B�; �j

�
6= 0 for some j, the test statistic TB will have non

trivial power. But because f�jg forms an orthonormal basis of L2 (�), then B� =
P

j



B�; �j

�
�j

and by Parseval�s identity, kB�k2 =
P

j



B�; �j

�2
> 0: It follows that



B�; �j

�
cannot all be

zero simultaneously. Therefore, TB has indeed non trivial power against all local alternatives

of the form H1n, and against all �xed alternatives a fortiori. However, if


B�; �j

�2 is small (as
will be the case for most j since the sequence



B�; �j

�2 is summable), the power against local
alternatives in the jth direction may be poor. In the next subsection, we will study the power

properties of these tests in more detail.

3.2 Alternatives with maximum power

It is well-known that there is no uniformly most powerful test for assessing H0 and that

goodness-of-�t tests have good power only against certain local alternatives (see Neuhaus (1976),

Janssen (2000), Escanciano (2009), and Lehmann and Romano (2005, Section 14.6)). In this

subsection, we will characterize the alternative with maximum power.

Given that there is a one-to-one mapping between the density and the CF through the

Fourier inversion theorem (see (1)), we can reformulate H0 and H1n in terms of the density

instead. Thus, we obtain

~H0 : f (x) = f0 (x) ;

~Hun (c) : fn (x) = f0 (x)
h
1 + cu(x)p

n

i
:

Let L2 (f0) < 1 denote the L2 space of real functions ' (X) such that we can de�ne

k'k2L2(f0) =
R
'2 (x) f0 (x) dx. Note that c in ~Hun (c) is the same as c in H1n and u (x) de-
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�ned in ~Hun (c) is related to � de�ned in H1n through the relations

u (x) =
1
2�

R
e�itx� (t) dt

f0 (x)
;

� (t) =

Z
eitxu (x) f0 (x) dx:

Moreover, the condition � (0) = 0 implies
R
u (x) f0 (x) dx = 0. Still, u needs to be normalized.

Many normalizations could be used. For convenience, we impose the normalization condition

kukL2(f0) = E[u2(X)] = 1, which corresponds to the following condition on �:

Z ����Z e�itx� (t) dt

����2 1

f0 (x)
dx = 1:

In this set up, we de�ne the asymptotic local power function �B (a; c; u) as

�B (a; c; u) = lim
n!1

P [TB � caj ~Hun (c)];

where ca is the critical value such that TB achieves a level a, i.e. limn!1 P (TB � cajH0) = a.

To analyze the power of these statistics, it is useful to rewrite K as T �T , where T is an

operator from L2 (�) to L2 (f0) and T � is the adjoint operator from L2 (f0) to L2 (�). Such a

decomposition has been used to study the power of Cramer von Mises type tests by Neuhaus

(1976, equation (1.9)) and Escanciano (2009, p.168).

The operators T and T � are as follows:

T : L2 (�)! L2 (f0) ;

(T') (X) =
R
h (X; t)' (t)� (t) dt;

T � : L2 (f0)! L2 (�) ; and

(T ��) (t) =
R
h (x; t)� (x) f0 (x) dx:

Moreover, TB� is compact and admits a singular system fpaj ; �j ; 'jg, where TB��j =
p
aj'j and BT

�'j =
p
aj�j . Therefore, �j are the eigenfunctions of BT

�TB� = BKB� and 'j

those of B�TT �B. Thus, 'j can be interpreted as principal components weights.

Observe that � = T �u. Indeed, if we use the property of Fourier transforms and the fact

that
R
u (x) f0 (x) dx = 0, we will have that

(T �u) (t) =

Z
[eitx �  0 (t)]u (x) f0 (x) dx

=

Z
eitxu (x) f0 (x) dx�  0 (t)

Z
u (x) f0 (x) dx = � (t) ;

Hence, the relation � = T �u implies that

10





B�; �j

�
p
aj

=



BT �u; �j

�
p
aj

=



u; TB��j

�
p
aj

=


u; 'j

�
: (17)

From (17) and Proposition 2, it follows that under ~Hun (c) ;

TB
d!

1X
j=1

aj(ej + c


u; 'j

�
)2: (18)

Note that the sequence 'j j = 1; 2; ::: forms a complete orthonormal basis of R (TB�) =

L2 (f0) \ fu : E (u) = 0g. Hence, the alternatives of interest are linear combinations of the

eigenfunctions 'j . In this context, the analysis of the limiting distribution in (18) and the

orthogonality of the '0js allow us to establish the following results:

Proposition 4 The limiting power of �B(�; c; u) has the following properties.

(a) f�B(a; c; u) : u 2 L2(f0); E(u) = 0; kukL2(f0) = 1g = �B(a; c; '1);

(b) �B(a; c; 'j) � �B(a; c; 'i) for 1 � j � i;

(c) limj!1�B(a; c; 'j) = a:

Proposition 4 says that (a) the maximum power is achieved for the local alternative u = '1

corresponding to the �rst principal component, (b) the power decreases when considering higher-

order principal components, (c) �nally, the power goes down to the level of the test, a; for the

highest frequency (case j !1).

As we saw before, in general 'j depends on B, so that the alternative with maximum power

will be di¤erent for di¤erent tests TB.

But if we consider more speci�cally the cases B = I and B = (K�)�1=2, the 'j are the same

because they correspond to the eigenfunctions of TT �. Hence, the alternative for which the tests

TB for B = I and B = (K�)�1=2 are the most powerful coincides, and corresponds to � = '1.

When B = I, then aj = �j , i.e. the eigenvalues of K, which decline quickly towards 0. So the

test TB with B = I concentrates its power on the �rst principal component. On the other hand,

when B = (K�)�1=2, aj =
�2j

�2j+�
instead, which will decline slower towards 0 if � is relatively

small. Consequently, power will be more balancedly spread among the �rst few directions when

B = (K�)�1=2 than when B = I. Figure 3 illustrates the decline of �j and aj in the case of a

uniform distribution. In the extreme case where � = 0, we would have aj = 1, which means that

power would be evenly spread among all alternatives. However, in this case the null distribution

is a Chi-square with in�nite degrees of freedom and the resulting test has power equal to size

for any local alternative; see Lemma 14.3.1 of Lehmann and Romano (2005). We will consider

the case where �! 0 in greater detail in Section 5.
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4 J test when � is �xed and the parameter is unknown

4.1 Distribution under local alternatives

Consider again local alternatives of the form (16), where c is a constant, � 2 L2 (�), � (0) =

0; � (t) = � (�t) and j� (t)j < C for some constant C.

Assumption 1. Xi, i = 1; 2; ::: are independent, identically distributed.

Assumption 2. Under H1n, kBn �Bk
P! 0. Under H1, kBn �B1k

P! 0 where both B and

B1 are bounded linear operators and B1 may di¤er from B: The null spaces of B and B1 equal

f0g :

In the sequel, we denote by P0 the law of Xi under H0, Pn the law of Xi under H1n; and P1

the law of Xi under H1:

Assumption 3. Pn is contiguous to P0.

This condition is standard in the goodness-of-�t literature and imposes some mild restriction

on the density. Su¢ cient conditions for this assumption to be true are given in Lehmann and

Romano (2005). They also provide a variety of examples.

Assumption 4. The parameter space � is a compact subset of Rp. The true parameter �0

is contained in the interior of �:  0 (� ; �) is continuously di¤erentiable with respect to �.

Assumption 5 (identi�cation).  0 (� ; �) =  0 (� ; �0) for all � , � = �0.

Let

�̂ = argmin
�2�




Bnĥ (:; �)



and de�ne

D0 =
@ 0 (:; �)

@�

����
�=�0

:

Note the result in Proposition 2 remains valid here. Namely,
p
nĥ (�0) ) N (c�;K) under

H1n, where K is an integral operator with kernel k (s; t) =  (s� t; �0)�  (s; �0) (�t; �0) :

Then

Proposition 5 Suppose Assumptions 1-5 hold. Under H0, �̂ is a consistent estimator of �0 and

p
n(�̂ � �0)

d! N (0; hBD0; BD0i�1 hBD0; (BKB�)BD0i hBD0; BD0i�1):

Moreover, under H1;

�̂
P1! �1 = argmin

�2�



B1EP1 (hj (:; �))

 :
Let L be the operator from L2 (�) to L2 (�) such that for all ' 2 L2 (�)

(L') (�) = ' (�)�D0 (�) hBD0; BD0i�1 hB�BD0; 'i :

12



Let ~K be the integral operator from L2 (�) to L2 (�) with kernel

~k (s; t) = k (s; t)�D0 (s) hBD0; BD0i�1 (KB�BD0) (t)

�D0 (t) hBD0; BD0i�1 (KB�BD0) (s)

+D0 (s) hBD0; BD0i�1 hBD0; (BKB�)BD0i hBD0; BD0i�1D0 (t)
0

In addition, let ~aj , ~�j , j = 1; 2:::; J denote the eigenvalues (arranged in decreasing order)

and eigenvectors of B ~KB�. Finally, de�ne ~�j = c2
D
BL�; ~�j

E2
=~aj .

Proposition 6 Suppose Assumptions 1-5 hold. Under H1n, we have

(i)
p
nĥ(�̂)) N (cL�; ~K) in L2 (�) :

(ii)

TB
d!

1X
j=1

~aj�
2
j (1;

~�j) =

1X
j=1

~aj

0@ej + c
D
BL�; ~�j

E
p
~aj

1A2

where �2j (1; ~�j), j = 1; 2; :::; L denote independent noncentral chi-square r.v. with 1 degree of

freedom and non centrality parameter ~�j and ej, j = 1; 2; ::: are the underlying independent

standard normal variables.

Proposition 6 implies that TB has non trivial power against all local alternatives � for which

L� 6= 0, i.e. those � such that � 6= v0D0, where v is some p�1 vector of constants. The following

example illustrates this condition:

Lemma 7 Assume H0 :  =  0 where  0 is the characteristic function of the N (�; �2). Let f0
be the pdf of the N (�; �2): The test TB has only trivial power against local alternatives of the

form

H1n :  n (�) =

�
1 +

ai�p
n
� b�2

2
p
n

�
 0 (�)

for some constants a and b. Moreover the density corresponding to  n is

fn (x) =

(
1 +

ap
n

(x� �)
�2

+
b

2
p
n

"
(x� �)2 � �2

2�4

#)
f0 (x) : (19)

It follows from Lemma 7 that when � and �2 are estimated, the test TB has trivial power

against alternatives of the form (19), which correspond to a second order Hermite expansion of

the Gaussian density. The two additive terms in (19) contain the �rst two Hermite polynomials,

which will be close to zero once � and �2 are estimated. This is similar to what is found in

other tests. For example, Bontemps and Meddahi (2005)�s moment test of normality cannot
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make use of the �rst two Hermite polynomials evaluated at the estimated parameters because

their sample means will converge to 0 in probability even after scaling them by
p
n.

The following result establishes that TB has power against all �xed alternatives (including

those such that L� = 0).

Proposition 8 Suppose Assumptions 1-5 hold. The test TB is consistent.

In the next subsection, we analyze the power of our test in more detail.

4.2 Alternative with maximum power

We can follow the same steps as in Section 3.2 to characterize the alternatives for which

the tests TB have maximum power.

As mentioned earlier, the null and alternatives can be equivalently expressed in terms of

either the characteristic function or the density of Xj . Consider the hypotheses ~H0 and ~Hun (c)

as de�ned in Section 3.2., where f0 denotes now f0 (x; �0). Let L2 (f0) and assume the same

normalization of u and the same power function �B (a; c; u) as before. Following Neuhaus (1976)

and Escanciano (2009), we can determine for which local alternative the test TB has maximum

power.

Let h (x; t) = eitx� 0 (:; �0). To analyze power, it is useful to rewrite the covariance operator
~K as ~T � ~T , where ~T is an operator from L2 (�) to L2 (f0) and ~T � is the operator from L2 (f0) to

L2 (�), ~T � being the adjoint of ~T . The operators ~T and ~T � are as follows;

~T : L2 (�)! L2 (f0) ;�
~T'
�
(X) =

R
[h (X; t)�D0 (t) hBD0; BD0i�1 hB�BD0; h (X; :)i]' (t)� (t) dt;

~T � : L2 (f0)! L2 (�) ; and

(T ��) (t) =
R
[h (x; t)�D0 (t) hBD0; BD0i�1 hB�BD0; h (x; :)i]� (x) f0 (x) dx:

Moreover, B ~T � ~TB� = B ~KB� is compact and admits a singular system f~aj ; ~�j ; ~'jg, where
~TB�j

~� =
p
~aj ~'j and ~B ~T �~'j =

p
~aj~�j . ~�j are the eigenfunctions of B ~T

� ~TB and ~'j are the

eigenfunctions of B� ~T ~T �B. ~'j , which can again be interpreted as principal components weights.

Observe that L� = ~T �u. Hence,D
BL�; ~�j

E
p
~aj

=

D
B ~T �u; ~�j

E
p
~aj

=

D
u; ~TB�~�j

E
p
~aj

=


u; ~'j

�
: (20)

From (17) and Proposition 5, it follows that under ~Hun (c) ;

TB
d!

1X
j=1

~aj
�
ej + c



u; ~'j

��2
: (21)
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For those u such that T �u = 0, the tests TB have power equal to size. Therefore, we will

focus on alternatives such that T �u 6= 0, alternatives which belong to the orthogonal space to

the null space of T � (denoted N (T �)) �these are the alternatives corresponding to � such that

L� 6= 0. For any compact operator T we have the relation, N (T �)? = R (T ), where R (T )

is the closure of the range of T . Note that the sequence ~'j , for j = 1; 2; ::: form a complete

orthonormal basis of R (T ). Hence, the alternatives of interest are linear combinations of the

~'j . The analysis of the limiting distribution in (21) and the orthogonality of the ~'j allow us to

establish an analogous result to Proposition 4:

Proposition 9 Suppose Assumptions 1-5 hold. The limiting power of �B (�; c; u) has the fol-

lowing properties.

(a) maxuf�B (a; c; u) : u 2 R(T ), kukL2(f0) = 1g = �B (a; c; ~'1) ;

(b) �B
�
a; c; ~'j

�
� �B (a; c; ~'i) for 1 � j � i;

(c) limj!1�B
�
a; c; ~'j

�
= a:

As before, we observe that the maximum power is reached for the �rst principal component,

and that power declines toward size a for subsequent directions.

5 J test when � goes to zero

5.1 Distribution under local alternatives

As we discussed at the end of Section 2, the continuum of moments analogue to the overi-

denti�cation restrictions test diverges when � goes to zero, so we need to center and re-scale

this statistic appropriately as in (14). But because q̂n in the denominator of this expression

diverges as n goes to in�nity, the rescaled test does not have power against contiguous alterna-

tives. Therefore, we need to consider alternatives that converges to H0 slower than the usual

n�1=2 rate. For that reason, in what follows we study the properties of J�n(�̂; K̂) under local

alternatives of the form

H2n :  n (t) =  0 (t; �0) + bn� (t)

where � 2 L2 (�), � (0) = 0; � (t) = � (�t), j� (t)j < C for some constant C, and bn is a sequence

of numbers going to zero at a rate slower than
p
n. The precise rate will be speci�ed later on.

In the sequel, P2n denotes the law of Xi under H2n.

Assumption 6. Under H2n,

p
n(�̂ � �0) = H�1

D
G (:) ;

p
nĥ (:; �0)

E
+ oP2n (1) ;

15



where H is a positive de�nite p� p matrix and G is a p� 1 vector of L2 (�).

The estimators mentioned in the previous sections satisfy this condition under H0. In par-

ticular, in the case of the GMM estimator:

�̂ = argmin
�2�




(K̂�)�1=2
p
nĥ(:; �̂)




2 ;
the condition is satis�ed under H0 for H =



K�1=2D0;K�1=2D0

�
= I and G = K�1D0, where

D0 (t) = @ 0 (t; �0) =@� and I is the information matrix provided � goes to zero at a certain

rate (see Carrasco and Florens (2000)). Similarly, the MLE satis�es also this assumption under

H0 with H = I and

G (t) =
1

� (t)

1

2�

Z
eitx

@ ln f0 (x)

@�
dx:

To see this, check that



eitx; G (t)

�
=

Z
eitxG (t)� (t) dt =

@ ln f0 (x)

@�

and

h 0 (t; �0) ; G (t)i = 0:

Under H2n, we have

p
nfĥ(:; �̂)� EP2n [ĥ(:; �̂)]g ) N (0;K!)

in L2 (�) where K! : L
2 (�)! L2 (�) such that

(K!') (s) =

Z
k! (s; t)� (t) dt

with

k! (s; t) = EP0 [
�
hj (s; �0)�D0 (s)H�1 hG; hj (:; �0)i

� �
hj (t; �0)�D0 (t)H�1 hG; hj (:; �0)i

��
]:

Assumption 7. Under H2n,



K̂ �K!




! 0 and



(K̂�)�1=2 � (K�

! )
�1=2




 = OPn

�
1p
n�3=4

�
.

The results stated in Assumption 7 are easy to establish under H0 (see Carrasco and Florens

(2000) and Carrasco et al (2007)).

Let f�j!; �j!g i = 1; 2; ::: be the eigenvalues and eigenfunctions of K! and aj! =
�2j!

�2j!+�
. Let

pn =
Pn

j=1 aj!, qn =
Pn

j=1 a
2
j!, and

(L!�) (s) = � (s)�D0 (s)H�1 hG; �i :
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Moreover, let HK be the reproducing kernel Hilbert space associated with K!, de�ned as

HK =

(
f 2 L2 (�) : kfk2K =

X

f; �j!

�2
�j!

<1
)
:

Assumption 8.

EPn [
p
nĥ(s; �̂)]�

p
nbn (L!�) (s) = �n (s)

where �n 2 HK and �n ! 0 as n goes to in�nity.

Assumption 8 slightly strengthens Assumption 6. Indeed by the mean value theorem, we

have

p
nĥ(s; �̂) =

p
nĥ (s; �0)�

@ 
�
��
�

@t
(�̂ � �0)

=
p
nĥ (s; �0)�D0 (s)H�1

D
G;
p
nĥ (:; �0)

E
+ oP2n (1) (22)

Moreover, EPn [
p
nĥ (s; �0)] =

p
nbn� (s). Thus, Assumption 8 says that the expectation of the

term oP2n (1) in Equation (22) belongs to the space HK .

Assumption 9. pn= (qnn�)! 0 and p2n=(qnn)! 0 as n goes to in�nity and � goes to zero:

Assumption 9 is very mild given that in Proposition 10 we will require n�2 ! 1, and also

from Lemma 9 in Carrasco and Florens (2000), it is known that if there exist 0 < 
 < 1 and

some positive constant c such that pn � c��
 , then qn � e��
 for some positive constant e (see

also remark 3 below).

Proposition 10 Suppose Assumptions 1, 4-9 hold. Assume that L!� 2 HK and

nb2np
qn
! d for some constant d: (23)

Under H2n; we have

J�n(�̂; K̂)
d! N (d kL!�k2K ; 1)

as n!1; �! 0; and n�2 !1.

Remarks.

1. Under H0, J�n(�̂; K̂) converges to the same pivotal distribution for any consistent esti-

mator satisfying Assumption 6. Hence, this test is robust to parameter uncertainty.

2. As the asymptotic distribution of J�n(�̂; K̂) is a standard normal distribution, critical

values from normal tabls can be readily used.

3. The condition (23) indicates the rate of bn, which is related to the rate of the eigenvalues

�j! through qn. Let us consider an example where �j! = j�m: Then qn � ��1=(2m) (see Carrasco
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and Florens (2000, Example 2) for the case m = 1 and Wahba (1975) for the general case). So

condition (23) can be rewritten as bn � n�1=2��1=(8m):

4. The test J�n(�̂; K̂) has nontrivial power against local alternatives  0 (t; �0) + cbn� (t)

provided L!� 6= 0. In the case of the GMM estimator, this condition requires that � 6= v0D0 for

any vector v.

5. The fact that J�n(�̂; K̂) has trivial power against 1=
p
n alternatives is linked to the

rescaling of the statistic. In fact, all tests involving centering and rescaling exhibit the same lack

of power against contiguous alternatives. This includes Neyman�s smooth test with an increasing

number of polynomials (see Lehmann and Romano), the chi-square type test for conditional

moments (De Jong and Bierens, 1994), the goodness-of-�t tests considered by Eubank and

LaRiccia (1992), Härdle and Mammen (1993) and the one considered by Aït-Sahalia, Bickel,

and Stocker (2001), among others.

6. In this section, we assumed � unknown. If � is known, one can use the test J�n(�̂; K̂)

after replacing �̂ by the true value �0 in the expression of the test statistic. The asymptotic

distribution remains the same. One could also use the known eigenvalues and eigenfunctions of

K instead of the estimated ones, but again the asymptotic distribution would not be altered.

7. Carrasco and Florens (2000) derived the asymptotic null distribution of J�n(�̂; K̂) under

a stronger assumption (Assumption 15: qn
p
�n ! 1). This assumption requires that the

eigenvalues go to zero very slowly, which is not realistic here. On the contrary, the eigenvalues

of K are likely to go to zero very fast, as illustrated in Figures 2e and 2f. For that reason, we

propose a new proof which relaxes this assumption.

8. The lack of power of J�n(�̂; K̂) against contiguous alternatives may speak in favor of tests

such that TB, which have power against contiguous alternatives. However, the test J�n(�̂; K̂)

may have higher power than TB for higher frequency alternatives (case j ! 1 in Proposition

8); see Theorem 3 in Eubank and LaRiccia (1992). The next remark considers this issue from a

di¤erent angle.

9. Proposition 10 establishes the asymptotic distribution of J�n(�̂; K̂) for � such that k�k2K <

1. However, this condition is not necessarily satis�ed, so it is of special interest to look at what

happens when it does not hold. Speci�cally, consider the case where

1
p
qn

nX
l=1

a2l!
�l!

jhL!�; �l!ij2 !1: (24)

The proof of Proposition 10 implies that the right rate for the alternatives H2n is such that

nb2n
1
p
qn

nX
l=1

a2l!
�l!

jhL!�; �l!ij2 ! d
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for some constant d. It follows from (24) that nb2n ! 0. Hence the test J�n(�̂; K̂) has power

against local alternatives which approach the null hypothesis at a faster rate than n�1=2. For

these alternatives, the power of the tests TB presented earlier remain n�1=2: So the test J�n(�̂; K̂)

is able to detect certain alternatives which are closer to the null than the tests based on a �xed �.

This result is similar to what was observed by Fan and Li (2000) in the context of speci�cation

tests for nonparametric regression. In particular, they show that nonparametric speci�cation

tests such as that of Härdle and Mammen (1993) with a �xed bandwidth has analogous properties

as the integrated conditional tests of Bierens (1982) and Bierens and Ploberger (1997). Further,

they show that kernel based tests with bandwidth going to zero can detect speci�c alternatives

(the so-called singular alternatives) at a faster rate than n�1=2. As we mentioned before, we can

interpret � as a bandwidth in our tests.

5.2 Numerical invariance to moment transformations

As is well known, the traditional J test corresponding to the continuous unpdated estimator

(CUE) is invariant to parameter-dependent linear transformations of the moments (see Hansen,

Heaton and Yaron (1995)). To illustrate this fact, let ĥ (�) be the sample average of a vector of

moments and M� be a (possibly complex-valued) square invertible matrix. Then, it is easy to

check that the J-test based on ĥ (�) is the same as the J-test based on M�ĥ (�) because:

J = nĥ (�)?M?
� (M�K̂�M?

� )
�1M�ĥ (�) = nĥ (�)? K̂�1� ĥ (�) :

When one uses regularization to invert the covariance matrix, this result is not true in

general. Indeed, we have that

nĥ (�)?M?
� (M�K̂�M?

� )
1=2[(M�K̂�M?

� )
2 + �I]�1(M�K̂�M?

� )
1=2M�ĥ (�)

is not usually equal to

nĥ (�)? K̂1=2� (K̂2� + �I)�1K̂
1=2
� ĥ (�)

unless M� is unitary, that is M�M
?
� =M?

�M� = I, in which case the two expressions coincide.

When there is a continuum of moment conditions, an analogous result turns out to be true

for unitary transformations of h.

De�ne U� as a nonrandom linear operator from L2 (�) into L2 (�) : Let U�� be the adjoint of
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U�. By the Riesz representation theorem, there is a unique g� (:; s) such that

(U�') (s) = hg� (:; s) ; ' (:)i =
Z
g� (t; s)' (t)� (t) dt:

Let K� be the covariance operator of hi (:; �) and ~K� be the covariance operator of U�hi (:; �) :

The kernel of ~K� is such that

~k� (s1; s2) = E [(U�hi (:; �)) (s1) (U�hi (:; �)) (s2)
?]

= E

�Z
g� (t; s1)hi (t; �)� (t) dt

Z
g� (u; s2)hi (u; �)� (u) du

�
=

Z
g� (t; s1)

�Z
E[hi (t; �)hi (u; �)]g� (u; s2)� (u) du

�
� (t) dt

= hg� (:; s1) ;K�g� (:; s2)i :

Then, we can characterize ~K�:�
~K�'

�
(�) =

Z Z
g� (t; �)

�Z
E[hi (t; �)hi (u; �)]g� (u; s)� (u) du

�
� (t) dt' (s)� (s) ds

= (U�K�U
�
�') (�) :

Proposition 11 Let U� be an unitary operator from L2 (�) to L2 (�) i.e. U��U� = U�U
�
� = I.

Then, the following equality holds:




U�ĥ (�)



(U�K�U

�
� )

� =



ĥ (�)




K�
�

(25)

regardless of the sample size n.

This means that the CUE versions of tests TB with B = (K�)�1=2 and J�n(�̂; K̂) are invariant

to unitary transformations of h. For non unitary transformations, the result is no longer true

because of the regularization. In contrast, TB with B = I for instance is not even invariant to

unitary transformations.

6 Monte Carlo experiments

In this section, we assess the �nite sample performance of our proposed tests by means of an

extensive Monte Carlo exercise. In addition, we compare them to several popular nonparametric

tests based on the empirical distribution function, as well as to directional tests that target

speci�c parametric alternatives to the null. In all cases, our sample size is n = 100.
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6.1 Testing univariate normality

The �rst design we consider is a univariate normal distribution, which is by far the most

common null hypothesis in distributional tests. In order to make our tests numerically invariant

to a¢ ne transformations of the observations, we systematically centre and standardize them us-

ing the sample mean and standard deviation (with denominator n), which are the ML estimators

under the null. As proved by Carrasco and Florens (2014), an asymptotically equivalent proce-

dure would estimate the mean and variance by minimizing the continuum of moment conditions

criterion function, but this would result in an increase of the computational costs. Either way,

we can set the true mean and variance to 0 and 1, respectively, without loss of generality.

We consider three versions of our test, which di¤er on the way the covariance operator is

estimated. The �rst one uses the theoretical covariance operator for a standard normal, which we

presented in Section 2. In turn, the second and third versions rely on the centred and uncentred

sample estimators using expressions (11) and (12), respectively, with the matrices C and �C

computed using the analytical integrals in Appendix B.2. Given that these two sample versions

produce very similar results, we only report the centred one in what follows. Importantly, the

test that uses the theoretical covariance operator o¤ers two notable computational advantages:

i) the calculation of its eigenvalues and eigenfunctions depends on the number of grid points M ,

which we set to 1,000, but not on the sample size, so it can be used with very large datasets;

and ii) we only need to compute those eigenelements once regardless of the number of Monte

Carlo simulations.

In view of the discussion in Section 2, we look at two values of the Tikhonov regularization

parameter � (.1 and .01) and two values for the scale parameter of the N (0; !2) density de�ning

inner products (1 and
p
10). As we have previously discussed, increasing ! not only changes

the eigenvalues and eigenfunctions, but more intuitively, it pays relative more attention to the

characteristic function for large (in absolute terms) values of its argument t.

In this univariate context, it is straightforward to compute the Cramer von Mises (CvM),

Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) statistics on the basis of the probability

integral transforms (PIT) of the standardized observations obtained through the standard nor-

mal cdf (see Appendix B.3 for details). Their usual asymptotic distributions are invalid, though,

because those PITs make use of the sample mean and variance.

Further, we also compute two moment-based tests: one focusing on the fourth Hermite

polynomial (z4 � 3z2 +1)=
p
24 and another one that simultaneously looks at the third Hermite

polynomial (z3� 3z)=
p
6 too. The advantage of working with Hermite polynomials is that they

are asymptotically invariant to parameter estimation under the null (see e.g. Bontemps and
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Meddahi (2005)). As is well known, these two statistics can be derived as Lagrange multiplier

tests against a variety of non-normal distributions (see e.g. Jarque and Bera (1980) or Mencía

and Sentana (2012)). Finally, we also compute the Bierens and Wang (2012) test described in

Appendix B.3 using a Matlab translation of their C+ code.

The �rst thing we do is to compute all the aforementioned tests for 10,000 simulated sam-

ples generated under the null, whence we obtain �nite sample critical values. This parametric

bootstrap procedure automatically generates size-adjusted rejection rates, as forcefully argued

by Horowitz and Savin (2000); see also Dufour (2006) for a discussion of Monte Carlo tests.

Panels A-F of Table 1 contain those rejection rates for six di¤erent alternatives: a symmetric

Student t with 12 degrees of freedom; an asymmetric Student t with the same number of degrees

of freedom but skewness parameter � = �:75; a scale mixture of two normals with the same

kurtosis as the symmetric t, 3:75, and mixture probability � = :1 (outlier case); another scale

mixture with the same kurtosis but � = :75 (inlier case); a location-scale mixture constructed in

such a way that it has same skewness and kurtosis as the normal and E(x5) = �1, E(x6) = 18;

and �nally the second order Hermite expansion of the normal density mentioned in Lemma 7

with parameters a = :4 and b = :5. Details on how we simulate those distributions can be

found in Appendix B.4. Figure 4 presents the densities of these alternative distributions once

they have been standardized so that they all have 0 means and unit standard deviations in the

population.

The �rst four columns of each panel in Table 1 report the results for the test that is based on

the theoretical covariance operator, J(�̂; K�̂), for the di¤erent values of � and ! that we consider.

In turn, the next four columns contain the same �gures for the test J(�̂; �K) which uses centred

sample estimator of the covariance operator. As can be seen across the di¤erent panels, in all

cases the results seem robust to the choice of the regularization parameter �. For the majority of

the DGPs, J(�̂; K�̂) has more power when ! = 1 while the performance of J(�̂;
�K) is better with

! =
p
10. In addition, they generally outperform the other consistent tests that we consider,

with AD being the most powerful of them. Somewhat surprisingly, this is also true when the

DGP is the second order Hermite expansion of the normal mentioned in Lemma 7 (Panel F).

Nevertheless, it is important to remember that this lemma refers to local alternatives, while our

test is consistent versus �xed alternatives. Not surprisingly, the LM tests are the most powerful

testing procedures when the distribution under the alternative is the one they are designed to

detect. Speci�cally, S�t, the LM test against symmetric Student t alternatives, in Panel A, and

A�t, the LM test against asymmetric Student t alternatives, in Panel B.

In summary, our proposed tests display good power against a variety of alternatives.
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6.2 Testing uniformity

The second design we consider is a uniform distribution. Although this distribution does

not often arise as a model for natural phenomena, it plays a fundamental role in statistics for two

reasons: most computer-based pseudo-random number generators aim to draw uniform variates,

and the PITs of any continuous random variables are uniform. To facilitate the comparison with

the normal distribution, we transform the standard uniform random numbers by subtracting

from them their population mean (.5) and scaling them up by their population standard deviation

(
p
12), so that the resulting distribution will become standardized.

We consider exactly the same versions of our tests as in Section 6.1, but with the expressions

for the population kernel and the centred and uncentred sample versions modi�ed accordingly,

as explained in Appendix B.2. We also compute the three non-parametric tests based on the

CDF, as well as the Bierens and Wang (2012) test. As for directional tests, we consider two

possibilities. The �rst one is the LM test of uniform vs beta proposed by Sefton (1992), which

exploits the fact that a beta distribution with shape parameters a = b = 1 becomes uniform.

This test is based on the average scores with respect to the beta parameters evaluated under

the null, which are 1 + ln(u) and 1 + ln(1� u), respectively.1 The second directional test is a

moment test based on the �rst two Jacobi polynomials evaluated again under the null, namely
p
3(2u � 1) and

p
3(6u2 � 6u + 1), which was proposed by Bontemps and Meddahi (2012). As

is well known, those polynomials constitute an orthonormal basis for the beta random variable.

The three panels of Table 2 contain the parametric bootstrap rejection rates for three di¤erent

alternatives. The �rst one is a symmetric, unimodal beta distribution with parameters a = b =

1:1. The second one is an asymmetric unimodal concave beta distribution with parameters

a = 1:1 and b = 1. Finally, the last distribution is generated as the standard Gaussian PITs of

observations drawn from the same asymmetric Student t distribution with 12 degrees of freedom

and asymmetric parameter in Section 6.1. The motivation for including this alternative is that

we can use it to compare the direct application of our proposed tests to the original observations

and to a monotonic transformation of them.

The �rst four columns of each panel report the results for the test that based on the theo-

retical covariance operator, J(�0;K), for the di¤erent values of � and ! that we consider, while

the next four columns focus on J(�0; �K). As in Section 6.1, the rejection rates of our tests

seem robust to the choice of the regularization parameter �. But in this case they are also

1The asymptotic variance for the scores reported by Sefton (1992) seems to be incorrect. As a result, we use
instead 1 for the two asymptotic variances and (6 � �2)=6 for the covariance. Hence, the LM test is T=2 times
the square of the di¤erence between the two scores divided by �2=6 plus the square of their sum divided by
(12� �2=6).
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less sensitive to the choice of !. As before, the test based on K outperforms the one that uses

centred sample estimator of the covariance operator �K. Interestingly, both of them outperform

the competitors when the DGP is either a symmetric beta or the Gaussian PITs of observations

drawn from an asymmetric Student t. In contrast, CvM and AD are slightly more powerful when

the alternative is the asymmetric beta. Somewhat surprisingly, the LM test is not particularly

powerful.

6.3 Testing bivariate normality

Our next design is a bivariate normal distribution, which is by far the most common null

hypothesis in multivariate distributional tests. Once again, we make our tests numerically invari-

ant to a¢ ne transformations of the observations by systematically centring and standardizing

them using the sample mean and the Cholesky decomposition of the sample covariance matrix

(with denominator n), which are the ML estimators under the null.2 Thus, we can set the

true means and standard deviations to 0 and 1, respectively, and the correlation coe¢ cient to 0

without loss of generality.

We consider exactly the same versions of our tests as in the Section 6.1, but with the

expressions for the population kernel and the centred and uncentred sample versions modi�ed

accordingly (see Appendix B.2). However, we do not compute any classical non-parametric tests

because there is no consensus on distribution-free multivariate generalization of the CvM, KS

and AD statistics based on the joint distribution function. Nevertheless, we continue to apply

the Bierens and Wang (2012) test. By analogy with the univariate normal case in section 6.1, we

also consider two directional tests: the LM test of a multivariate normal against a multivariate

Student t in Fiorentini, Sentana and Calzolari (2003) (denoted S�t), which e¤ectively focuses on

Mardia�s (1970) coe¢ cient of multivariate excess kurtosis, and the LM test against a generalized

hyperbolic distribution in Mencía and Sentana (2012) (denoted A�t), which also looks at third

moments in order to capture asymmetries in the multivariate distribution. By construction,

both tests are asymptotically invariant to parameter estimation under the null.

The three panels of Table 3 contain the parametric bootstrap rejection rates for three di¤erent

alternatives. The �rst one is a multivariate Student t with 12 degrees of freedom. The second

one is an asymmetric Student t with the same degrees of freedom and vector of asymmetric

parameters (�:75;�:75). Finally, the third alternative is a spherically symmetric bivariate

version of the outlier distribution considered in Section 6.1.
2As we mentioned before, an asymptotically equivalent procedure would estimate the two means and variances

as well as the covariance by minimising the continuum of moment conditions criterion function, but this would
result in a huge increase of the computational cost.
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As in Table 1, the �rst four columns of each panel in Table 3 report the results for the test

J(�̂; K�̂) for the di¤erent values of � and ! and the next four columns correspond to same �gures

for the test J(�̂; �K). As can be seen in Table 3, in all cases the results seem robust to the choice

of the regularization parameter �. Moreover, for the DGPs we consider J(�̂; K�̂) has more power

when ! = 1 while the performance of J(�̂; �K) is better with ! =
p
10, as in the univariate case.

Interestingly, J(�̂; K�̂) beats the S�t LM test when the DGPs is asymmetric Student t and there

is a tie between J(�̂; �K) and S�t LM test when the alternative is a discrete-scale mixture of

normals.

6.4 Testing chi-square

The �nal design that we consider is a chi-square distribution with two degrees of freedom.

Like the uniform, the chi-square distribution does not often arise as a model for natural phe-

nomena. But it also plays a fundamental role in statistics because it is the distribution of the

(square) Mahalanobis distance of a multivariate normal random variable from its mean. In other

words, it corresponds to the distribution of (yi � �)0��1(yi � �) when yi � N (�;�).

We consider exactly the same versions of our tests as in Sections 6.1 and 6.2, but with the

expressions for the population kernel and the centred and uncentred sample versions in Appendix

B.2 suitably modi�ed. In that regard, the main di¤erence is that we de�ne inner products using

a uniform density over [�!; !] for tractability, for values of ! equal to 1 and
p
10. Although

we standardize again the random draws by subtracting their population mean (=2) and scaling

them down by their population standard deviation (=2), their distribution remains asymmetric,

which implies that both the CF and the eigenfunctions of the associated covariance operator are

complex, as explained in Section 2. This creates a normalization problem because any complex

vector of unit length remains so after scaling its elements by any complex scalar on the unit

circle, ei�, where � 2 [0; 2�). Nevertheless, our proposed tests are numerically invariant to any

chosen normalization.

We also compute the three non-parametric tests, as well as the Bierens and Wang (2012)

test. As for directional tests, we consider two possibilities. The �rst one is the LM test of chi

square with N degrees of freedom versus F with the same number of degrees of freedom in the

numerator but � degrees of freedom in the denominator proposed by Fiorentini, Sentana and

Calzolari (2003). This test is based on the average score with respect to the reciprocal of �

evaluated under the null, which coincides with the second order Laguerre polynomial

1

4
&2 � 2& + 2;
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whose asymptotic variance for N = 2 is 4 under the null. The second directional test is the LM

test against a gamma distribution with mean N but shape parameter � 6= N=2 developed in

Amengual and Sentana (2012). In this case, the score is proportional to� &
2
� 1
�
�
h
ln
� &
2

�
�  (1)

i
;

whose asymptotic variance is  0(1) � 1, where  (:) and  0(:) are the digamma and trigamma

functions, respectively.

The three panels of Table 4 contain the parametric bootstrap rejection rates for three di¤erent

alternatives. The �rst one is an F distribution with 12 degrees of freedom in the denominator,

while the second one is a gamma distribution with shape parameter � = 2=3 and scale parameter

� = 3. Finally, the last distribution is generated as the square norm of observations drawn from

a bivariate asymmetric Student t distribution with 12 degrees of freedom. Once again, the

motivation for including this alternative is that we can use it to compare the direct application

of our proposed bivariate Gaussian tests to the original observations or to a transformation of

them which implicitly imposes spherical symmetry. In that regard, the F distribution would

correspond to a bivariate Student t while the gamma to a Kotz distribution.

As in Table 2, the �rst four columns of each panel of Table 4 report the results for the

test J(�0;K), for the di¤erent values of � and ! that we consider, while the next four columns

contain the same �gures for J(�0; �K). Once again, the results seem robust to the choice of

the regularization parameter �, but at the same time they are less sensitive to the choice of !.

Still, for J(�0;K) the value ! = 1 delivers higher rejection rates. As before, the test based on

the theoretical covariance operator outperforms the one using centred sample estimator of the

covariance operator. Interestingly, J(�0;K) has more power than its competitors, except when

the DGP is Gamma.

7 Conclusion

In this paper, we propose goodness-of-�t tests based on comparing the empirical and theo-

retical characteristic functions. Our proposals are based on the continuum of moment conditions

analogue to the usual overidentifying restrictions test, and therefore take into account the cor-

relation between the in�uence functions for di¤erent argument values.

We consider di¤erent versions depending on whether the parameter vector � is known in

advance or replaced by a consistent estimator, and whether we make use of the analytical

expression for the covariance operator or estimate it. Relying on the theoretical covariance

operator o¤ers substantial computational gains because the calculation of its eigenvalues and
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eigenvectors does not depend on the sample size, which allows its use with very large datasets.

We derive the asymptotic distribution of our proposed tests for �xed regularization parameter

and when this vanishes with the sample size. Both types of tests have very di¤erent asymptotic

properties. The �xed � J test has a nonstandard asymptotic distribution which depends on

nuisance parameters but has power against 1=
p
n alternatives. In contrast, the vanishing �

J test has a standard normal asymptotic distribution but generally fails to reject local 1=
p
n

alternatives, except for some speci�c alternatives which it can detect at a faster rate.

Our theoretical study of power sheds some light on the alternatives for which each test is

more powerful. While there is no test whose power dominates overall, it seems that �xing � at

a small positive value is a good compromise. An extensive Monte Carlo exercise con�rms this

point by showing that our proposed tests display good power in �nite samples against a variety

of alternatives.

Although we have focused on a random sample framework for pedagogical reasons, versions

of our tests robust to serial or cross-sectional dependence in the observations should be relatively

straightforward. The analysis of conditional distributions would also constitute a very valuable

but non-trivial addition with many potentially interesting empirical applications.

27



Appendix

A Proofs and auxiliary results

Proof of Lemma 1. K is self-adjoint positive de�nite because it is a covariance operator

(k (s; t) = k (t; s)) and its null space is reduced to 0, i.e. Kf = 0 ) f = 0 (see the proof of

Proposition A.1, condition A.5(i) in Carrasco, Chernov, Florens, and Ghysels, 2007). K is a

Hilbert-Schmidt operator because its kernel is square integrable, indeedZ Z
jk (s; t)j2 � (s) ds� (t) dt <1:

Consequently, K admits an in�nite spectrum of positive eigenvalues: Let f�j ; 'jg be the eigenval-

ues arranged in decreasing order and eigenfunctions (the eigenfunctions are taken orthonormal

in L2 (�)) of K. By Mercer�s formula (see Carrasco, Florens, and Renault, 2007, Theorem 2.42),

k (t; s) =
X
j

�j'j (t)'j (s) :

By setting s = t, we have X
�j =

Z
k (t; t)� (t) dt:

Here k (t; s) =  (t� s)� (t) (�s) : Hence k (t; t) = 1� j (t)j2 � 1. It follows that
P
�j � 1

and therefore because the operator is self-adjoint positive de�nite 0 � �j � 1: Therefore �2j � �j

and hence
P
�2j � 1: So the Hilbert Schmidt norm of K is also bounded by 1:

kKk2HS =
Z Z

jk (t; s)j2 � (s) ds� (t) dt =
X

�2j � 1;

as desired. �
Proof of Proposition 2. We check the conditions (a) to (c) of Lemma 3.1 of Chen and

White (1998) on

Wnj =
1p
n

�
hj �

c�p
n

�
:

Checking (a): We need to check that for all ' 2 L2 (�),
Pn

j=1 hWnj ; 'i
d! N

�
0; �2 (')

�
where �2 (') > 0. To do so, �rst notice that under H1n, Wnj =

1p
n
[eitXj �  n (t)]. We have
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E [hWnj ; 'i] = 0 and hWnj ; 'i, j = 1; 2; :::; n are independent. Moreover,

E[jhWnj ; 'ij2] = E[hWnj ; 'i hWnj ; 'i]

= E

Z Z
Wnj (s)' (s)Wnj (t)' (t)� (s) ds� (t) dt

=

Z Z
E[Wnj (s)Wnj (t)]' (s)' (t)� (s) ds� (t) dt

=
1

n
h';Kn'i

where Kn is the integral operator with kernel

kn (s; t)

=  n (s� t)�  n (s) n (�t)

=  0 (s� t)�  0 (s) 0 (�t) +
c� (s� t)p

n
� c� (s)p

n
 0 (�t)� c 0 (s)

� (�t)p
n

+ c2
� (s) � (�t)

n
:

Interchanging the order of integration is justi�ed by the fact that 1
n h';Kn'i < 1. Now, we

check the conditions of Lindeberg-Feller central limit theorem (van der Vaart (1998), Propo-

sition 2.27) to establish
Pn

j=1 hWnj ; 'i
d! N

�
0; �2 (')

�
with �2 (') = h';K'i > 0: Let

Ynj = hWnj ; 'i. Here Ynj are independent scalar random variables with zero mean and �nite

variance. The two conditions for the CLT are

(i)
nX
j=1

E[jYnj j2 I fjYnj j > "g] ! 0 for every " > 0, and

(ii)
nX
j=1

V (Ynj) ! �2 (') :

Note that

jYnj j2 = jhWnj ; 'ij2

�




 1pn [eitxj �  n (t)]





2 k'k2
� C

n
k'k2
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for some �xed constant C. Hence,

nX
j=1

E[jYnj j2 I fjYnj j > "g]

� C k'k2

n

nX
j=1

P [jYnj j > "]

� C k'k2

n

nX
j=1

E[jYnj j2]
"2

� C2

n"2
k'k4

by Markov inequality. So condition (i) is satis�ed. For (ii), we use the results above which give

nX
j=1

V (Ynj) =
nX
j=1

E[jhWnj ; 'ij2]

= h';Kn'i

! h';K'i ;

and hence, (ii) is also satis�ed.

Checking (b) and (c): By Remark 3.3 (ii) of Chen and White (1998), conditions (b) and (c)

can be replaced by the following condition:

Wn;j strictly stationary and

lim
n!1

E

������
nX
j=1

Wnj

������
2

� C <1: (A1)

We have

E

������
nX
j=1

Wnj

������
2

= E

*
nX
j=1

Wnj ;
nX
l=1

Wnl

+

=
nX
j=1

E


Wnj ;Wnj

�
=

nX
j=1

kn (s; s)

= 1� j 0 (s)j2 �
c� (s)p

n
 0 (�s)�  0 (s)

c� (�s)p
n

+
c2 j� (s)j2

n

which is bounded because j 0 (s)j2 � 1 by the property of CFs and j� (s)j < C by assumption.

Therefore, (A1) is satis�ed and
Pn

j=1Wnj is tight.

It follows that
p
nĥ =

Pn
j=1Wnj + c� ) N (c�;K) : �

Proof of Proposition 3. As B is bounded, we have (Chen and White (1992, working
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paper))

Bn
p
nĥ) N (cB�;BKB�)

where B� is the adjoint of B. Let Z denote a Gaussian process N (0; BKB�) : By the continuous

mapping theorem, 


Bpnĥ


2 d! kcB� + Zk2 =
X
j

�
c


B�; �j

�
+


Z; �j

��2
where the equality uses the so-called Karhunen-Loeve representation of Gaussian processes:

Z =
1X
j=1



Z; �j

�
�j =

1X
j=1

p
aj



Z; �j

�
p
aj

�j

and the fact that the �j form an orthonormal basis of L2 (�). Moreover,


Z; �j

�
=
p
aj are iid

N (0; 1). �
Proof of Proposition 4. The proof is similar to those of Neuhaus (1976, Theorem 2.2.)

and Escanciano (2009, Theorem 1) and is not repeated here. �
Proof of Proposition 5. Under our assumptions,


Bnĥ (:; �)


 P0!



BEP0 [hj (:; �)]


uniformly in �. (The uniformity part comes from the fact that ĥ (:; �)�E[hj (:; �)] = 1

n

Pn
j=1 e

itXj�

 0 (t; �0) does not depend on �.) Moreover, E[hj (:; �)] =  0 (:; �0)�  0 (:; �). By the identi�ca-

tion assumption, the objective function reaches its minimum at � = �0. Hence, �̂ is consistent

under H0.

We turn our attention toward the asymptotic normality. To simplify the notation, we write

 0 (�) for  0 (:; �) and ĥ (�) for ĥ (:; �), and
@ 0(�̂)
@� for @ 0(�)

@�

���
�=�̂
. The �rst order condition of

the minimization problem gives*
Bn

@ 0(�̂)

@�
;Bnĥ(�̂)

+

= 0 =

*
Bn

@ 0(�̂)

@�
;Bnĥ (�0)

+
�
*
Bn

@ 0(�̂)

@�
;Bn

@ 0(
~�)

@�
(�̂ � �0)

+

where ~� is between �0 and �̂. It follows that

p
n(�̂ � �0) =

*
Bn

@ 0(�̂)

@�
;Bn

@ 0(
~�)

@�

+�1*
Bn

@ 0(�̂)

@�
;Bn

p
nĥ (�0)

+

By the continuity of @ 0@� and the consistency of �̂, we have

p
n(�̂ � �0) = hBD0; BD0i�1

D
B�BD0;

p
nĥ (:; �0)

E
+ oP0 (1) : (A2)
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The asymptotic normality follows from Proposition 1.

For the convergence of �̂ to �1 under H1, we use the same arguments as for the consistency

under H0. The existence of the minimum comes from the fact that  0(:; �) is continuous in �

and � is compact. �
Proof of Proposition 6.

(i) The mean value theorem gives

p
nĥ(�̂) =

p
nĥ(�0)�

@ 0(
~�)

@�

p
n(�̂ � �0)

=
p
nĥ (�0)�D0

p
n(�̂ � �0) + oP0 (1)

=
p
nĥ (�0)�D0 hBD0; BD0i�1

D
B�BD0;

p
nĥ (�0)

E
+ oP0 (1)

by Equation (A2). By the contiguity of Pn to P0, it follows that

p
nĥ(�̂)�

p
nĥ (�0) +D0 hBD0; BD0i�1

D
B�BD0;

p
nĥ (�0)

E
Pn! 0: (A3)

By Proposition 2, we have under H1n

p
nĥ (�0)�D0 hBD0; BD0i�1

D
B�BD0;

p
nĥ (�0)

E
) N (L�; ~K): (A4)

Combining Equations (A3) and (A4) yields
p
nĥ(�̂) ) N (L�; ~K) under H1n. The kernel of ~K

can be computed explicitly as follows:

~k (s; t)

= E
h
(
p
nĥ (s)�D0 (s) hBD0; BD0i�1

D
B�BD0;

p
nĥ
E
)

�(
p
nĥ (t)�D0 (t) hBD0; BD0i�1

D
B�BD0;

p
nĥ
E
)

�
:

Detailing the calculation for one of the 4 terms gives

E
h
D0 (s) hBD0; BD0i�1

D
B�BD0;

p
nĥ
Ep

nĥ (t)
i

= D0 (s) hBD0; BD0i�1E
�Z

B�BD0 (u)
p
nĥ (u)� (u) du

p
nĥ (t)

�
= D0 (s) hBD0; BD0i�1

Z
B�BD0 (u)E[hj (u)hj (t)]� (u) du

= D0 (s) hBD0; BD0i�1 (KB�BD0) (t) :

The other terms can be computed similarly.

(ii) The proof of (ii) is similar to that of Proposition 3 and hence omitted. �
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Proof of Lemma 7. The CF of a N (�; �2) is  0 (t) = ei�t�
�2t2

2 . Let � =
�
�; �2

�0, then
D0 =

@ 0
@�

=

 
it 0 (t)

� t2

2  0 (t)

!
:

Let v = (a; b) and � (t) = v0D0 =
�
ait� bt2

2

�
 0 (t). Now consider  n (t) =

�
1 + aitp

n
� bt2

2
p
n

�
 0 (t).

Observe that  n (0) = 1,  n (t) =  n (�t). We need j n (t)j < 1 which will be satis�ed if b > 0

(and possibly for b < 0 and n large enough). So  n satis�es the necessary conditions to be a CF,

however these conditions are not su¢ cient. Necessary and su¢ cient conditions for a function

 n to be CF are that (a)  n (0) = 1, and (b)  n is non-negative de�nite (see Theorem 4.2.2 of

Lukacs (1960)). It can be shown that, given  0 is a CF,  n will satisfy (b) for n large enough.

So  n is a CF.

Moreover,  n (t) is absolutely integrable so the density (fn) corresponding to  n satis�es:

fn (x) =
1

2�

Z
e�itx n (t) dt

=
1

2�

Z
e�itx

�
1 +

aitp
n
� bt2

2
p
n

�
 0 (t) dt

=
1

2�

Z
e�itx (t) dt+

aip
n

1

2�

Z
te�itx 0 (t) dt�

b

2
p
n

1

2�

Z
e�itxt2 0 (t) dt:

Note that
i

2�

Z
te�itx 0 (t) dt =

@ 1
2�

R
e�itx 0 (t) dt

@�

1

2�

Z
e�itxt2 0 (t) dt = �2

@ 1
2�

R
e�itx 0 (t) dt

@�2
:

On the other hand

1

2�

Z
e�itx (t) dt =

1p
2��2

exp

"
�(x� �)

2

2�2

#
� f0 (x) :

@f0 (x)

@�2
= �1

2

1p
2��3

exp

"
�(x� �)

2

2�2

#

+
(x� �)2

2�4
1p
2��2

exp

"
�(x� �)

2

2�2

#

=

"
(x� �)2

2�4
� 1

2�2

#
f0 (x) :

@f0 (x)

@�
=
(x� �)
�2

f0 (x)

It follows that fn (x) =
n
1 + ap

n
(x��)
�2

+ b
2
p
n

h
(x��)2��2

2�4

io
f0 (x). �

Proof of Proposition 8. Under H1, ĥ(:; �̂)
P1! EP1hj (:; �1) =  (:) �  0 (:; �1) 6= 0, where
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 (:) is the CF of Xj under H1, and then the result follows. �
Preliminary results to the proof of Proposition 10.

The following lemmas will be used in the proof of Proposition 10.

Let hin (s) = eisXi �  n (s) and Yin (s) be the process de�ned as

Yin (s) = hin (s)�D0 (s)H�1 hG; hini :

Because hin i = 1; 2; ::: are iid with mean zero, Yin i = 1; 2; ::: are iid with mean 0 and covariance

E[Yin (s)Yin (t)] � k!n (s; t) under H2n. Let K!n be the integral operator with kernel k!n and�
�l;n; �l;n

�
be the eigenvalues and eigenfunctions of K!n. Note that K!n converges to K! when

n goes to in�nity and similarly �l;n converges to �l;! as n goes to in�nity.

Lemma 12 Under H2n;
�
hYin;�l;nip

�l;n

�
, l = 1; 2; ::: are uncorrelated across l with zero mean and

variance equal to 1.

Proof of Lemma 12. We have

E
h

Yin; �l;n

� 

Yin; �l0;n

�i
= E

Z
Yin (s)�l;n (s)� (s) ds

Z
Yin (t)�l0;n (t)� (t) dt

=

Z
�l;n (s)

Z
E
h
Yin (s)Yin (t)

i
�l0;n (t)� (t) dt� (s) ds

=


�l;n;K!n�l0;n

�
=

(
�l;n if l = l0;

0 otherwise,

as desired. �
The following lemma is taken from Eubank and LaRiccia (1992) and is reproduced here for

convenience.

Lemma 13 (Lemma 2 of Eubank and LaRiccia (1992)) Let fYingni=1, n = 1; 2; ::: be a triangular
array of random variables that are iid within rows. Set wijn = wijn (Yin; Yjn) + wijn (Yjn; Yin)
for some function wijn (:; :) and assume that E [wijnjYin] = 0 for all i; j � n. De�ne

w (n) =
X

1�i<j�n
wijn;

� (n)2 = V ar (w (n)) =
X

1�i<j�n
E
�
w2ijn

�
;

GI =
X

1�i<j�n
E
�
w4ijn

�
;

GII =
X

1�i<j<k�n

�
E
�
w2ijnw

2
ikn

�
+ E

�
w2jinw

2
jkn

�
+ E

�
w2kinw

2
kjn

��
;
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and

GIV =
X

1�i<j<k<m�n
[E (wijnwiknwmjnwmkn) + E (wijnwimnwkjnwkmn)

+E (wimnwiknwjknwjmn)] :

Then, if GI , GII , and GIV are all of smaller order than � (n)
4 ;

w (n)

� (n)

d! N (0; 1) :

Lemma 14 Let al;n =
�2l;n

�2l;n+�
, pn;n =

Pn
j=1 al;n, qn;n = 2

Pn
j=1 a

2
l;n. Under H2n :

Pn
l=1

al;n
�l;n

Dp
nĥ
�
:; �̂
�
; �l;n

E2
� pn;n

p
qn;n

d! N
�
c kL!�k2K ; 1

�
:

Proof of Lemma 14. Our proof draws from the proof of Theorem 1 in Eubank and LaRiccia

(1992). Using the notation ĥ(�̂) � ĥ(:; �̂) and dropping the subscript n from al;n, �l;n, �l;n, pn;n;

and qn;n, we obtain Pn
l=1

al
�l

Dp
nĥ(�̂); �l

E2
� pn

p
qn

=

Pn
l=1

al
�l

Dp
nfĥ(�̂)� E[ĥ(�̂)] + E[ĥ(�̂)]g; �l

E2
� pn

p
qn

=

Pn
l=1

al
�l

Dp
nfĥ(�̂)� E[ĥ(�̂)]g; �l

E2
� pn

p
qn

+Rn

where

Rn =
2
Pn

l=1
al
�l

Dp
nfĥ(�̂)� E[ĥ(�̂)]g; �l

EDp
nE[ĥ(�̂)]; �l

E
p
qn

+

Pn
l=1

al
�l

Dp
nE[ĥ(�̂)]; �l

E2
p
qn

:

In a �rst step, we will show that Rn converges to d kL!�k2K in probability under H2n as n goes

to in�nity and � goes to zero. In a second step, we will show that

Pn
l=1

al
�l

Dp
nfĥ(�̂)� E[ĥ(�̂)]g; �l

E2
� pn

p
qn

d! N (0; 1)

under H2n.

First step. By Assumption 8, we have

E (Rn) =
nb2np
qn

nX
l=1

al
�l
hL!�; �li2 +

Pn
l=1

al
�l
h�n; �li2p
qn
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where the second term goes to zero. Moreover,
Pn

l=1
al
�l
hL!�; �li2 !

P1
l=1

1
�l
hL!�; �li2 =

kL!�k2K and nb2np
qn
! d as n goes to in�nity and � goes to zero. Therefore, E (Rn)! d kL!�k2K .

Now we show that the variance of Rn goes to zero. Using the notation Yi = Yin, we have

V (Rn) = V

242Pn
l=1

al
�l

DPn
i=1 Yip
n

; �l

E
h
p
nbnL!�; �li

p
qn

35+ opn (1)
=

4nb2n
qn

V

"Pn
i=1p
n

nX
l=1

al
�l
hYi; �li hL!�; �li

#

=
4nb2n
qn

V

"
nX
l=1

al
�l
hYi; �li hL!�; �li

#

because Yi, i = 1; 2; :::; n are iid. As hYi; �li, l = 1; 2::: are uncorrelated by Lemma 12, we obtain

V (Rn) =
4nb2n
qn

nX
l=1

a2l
�l
jhL!�; �lij2

� 4nb2n
qn

kL!�k2K ! 0:

It follows that Rn converges to d kL!�k2K in probability under H2n:

Second step. We have

Pn
l=1

al
�l

Dp
nfĥ(�̂)� E[ĥ(�̂)]g; �l

E2
� pn

p
qn

=

Pn
l=1

al
�l

D
1p
n

Pn
i=1 Yi; �l

E2
� pn

p
qn

+ op2n (1)

=
w1 (n) + w (n)p

qn
+ op2n (1)

where

w1(n) =
1

n

nX
l=1

nX
i=1

al
�l
hYi; �li2 � pn;

w(n) =
2

n

nX
l=1

al
�l

X
1�i<j�n

hYi; �li hYj ; �li =
X

1�i<j�n
wijn

with

wijn =
2

n

nX
l=1

al
�l
hYi; �li hYj ; �li :

First, we show that w1(n)=
p
qn

P! 0: We have

E[w1(n)] =
1

n

nX
l=1

nX
i=1

al
�l
E[hYi; �li2]� pn

=
nX
l=1

al � pn = 0:
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As hYi; �li2 are independent across i, we have

V [w1(n)]

=
1

n
V

"
nX
l=1

al

 
hYi; �li2

�l
� 1
!#

=
nX
l=1

a2l
n
E

24 hYi; �li2
�l

� 1
!235+X

l 6=l0

alal0

n
E

" 
hYi; �li2

�l
� 1
! 

hYi; �l0i2

�l0
� 1
!#

(A5)

Using Lemma 12, we have

X
l 6=l0

alal0

n
E

" 
hYi; �li2

�l
� 1
! 

hYi; �l0i2

�l0
� 1
!#

=
X
l 6=l0

alal0

n
E

 
hYi; �li2

�l

hYi; �l0i2

�l0

!
(A6)

�
X
l 6=l0

alal0

n
: (A7)

Consider (A7):
1

qn

X
l 6=l0

alal0

n
� p2n
qnn

which goes to zero by Assumption 9. To deal with the term (A6), we exploit the fact that for n

large enough, jYij =
��eitXi �  n (t)�� � ��eitXi�� + j n (t)j = 2, hence kYik2 � 4 and jhYi; �lij2 � 4

by Cauchy-Schwarz and k�lk = 1. Therefore, by Lemma 12,

E

 
hYi; �li2

�l

hYi; �l0i2

�l0

!
� 4

�l�l0
E
�
hYi; �l0i2

�
=
4

�l
:

Hence, X
l 6=l0

alal0

n
E

 
hYi; �li2

�l

hYi; �l0i2

�l0

!
�
X
l 6=l0

alal0

n�l
=
pn
n

X
l

al
�l
:

Note that X
l

al
�l
=
X
l

�l

�2l + �
� 1

�

X
l

�l:

So, we obtain:
pn
qnn

X
l

al
�l
� pn
qnn�

which goes to zero under Assumption 9.

The �rst term in (A5) can be treated in the same manner. So that V [w1 (n)]=qn ! 0 under

our assumptions and hence w1 (n) =
p
qn

P! 0:

Second, we show that
w (n)
p
qn

d! N (0; 1) :
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To establish this result, we check all the conditions of Lemma 13.

� (n)2 = V (wn) =
X

1�i<j�n
E(w2ijn)

where

E
�
w2ijn

�
=

4

n2
E

24 nX
l=1

al
�l
hYi; �li hYj ; �li

!235
=

4

n2

nX
l=1

a2l
�2l
E[hYi; �li2 hYj ; �li2]

=
4

n2

nX
l=1

a2l
�2l
E[hYi; �li2]E[hYj ; �li2]

=
4

n2

nX
l=1

a2l =
2qn
n2

because the hYi; �li are uncorrelated across l and independent across i. Hence,

� (n)2 � qn:

Consider now the term GI :

GI =
X

1�i<j�n
E(w4ijn):

We have

w4ijn =
16

n4

 
nX
l=1

al
�l
hYi; �li hYj ; �li

!4

=
16

n4

nX
l=1

a4l
�4l
hYi; �li4 hYj ; �li4 (A8a)

+
16

n4

X
l 6=l0

a3l
�3l

al0

�l0
hYi; �li3 hYj ; �li3 hYi; �l0i hYj ; �l0i (A8b)

+
16

n4

X
l 6=l0

a2l
�2l

a2l0

�2l0
hYi; �li2 hYj ; �li2 hYi; �l0i2 hYj ; �l0i2 : (A8c)

Consider (A8a): Using jhYi; �lij2 � 4 as before, we get E jhYi; �lij4 � 4E jhYi; �lij2 = 4�l.

Therefore,
nX
l=1

a4l
�4l
hYi; �li4 hYj ; �li4 � 16

nX
l=1

a4l
�2l
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and

nX
l=1

a4l
�2l

=
nX
l=1

�6l
(�2l + �)

4

=
nX
l=1

�4l
(�2l + �)

2

�2l
(�2l + �)

2

�
nX
l=1

�2l
(�2l + �)

2
� 1

�2

nX
l=1

�2l :

Hence, P
1�i<j�n(A8a)

q2n
� C

�2n2q2n
! 0

as n�3=2 !1.

Consider (A8b):

E(A8b) =
16

n4

X
l 6=l0

a3l
�3l

al0

�l0
E[hYi; �li3 hYi; �l0i]E[hYj ; �li3 hYj ; �l0i]:

By Cauchy-Schwarz,

E[hYi; �li3 hYi; �l0i] �
q
E[hYi; �li6]E[hYi; �l0i2]

� 4

q
E[hYi; �li2]E[hYi; �l0i2]

= 4
p
�l
p
�l0 :

Hence,

E(A8b) � C

n4

X
l 6=l0

a3l
�2l
al0 � C

pn
n4

X
l

a3l
�2l
:

Moreover, X
l

a3l
�2l
=
X
l

�4l
(�2l + �)

3
�
X
l

1

(�2l + �)
� n

�
:

It follows that P
1�i<j�n(A8b)

q2n
� C

pn
q2nn�

! 0:

Now, consider (A8c):

E (A8c) =
16

n4

X
l 6=l0

a2l
�2l

a2l0

�2l0
E[hYi; �li2 hYi; �l0i2]E[hYj ; �li2 hYj ; �l0i2]

� C

n4

X
l 6=l0

a2l
�2l

a2l0

�2l0
�l�l0

� C

n4

 X
l

a2l
�l

!2
:
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Moreover,

X
l

a2l
�l

=
X
l

�3l
(�2l + �)

2
=
X
l

�2l
(�2l + �)

�l

(�2l + �)

�
X
l

�l

(�2l + �)
�
P

l �l
�

:

Therefore, P
1�i<j�n(A8c)

q2n
� C

�2n2q2n
! 0:

It follows that GI = o(� (n)4):

Now consider GII :

E
�
w2ijnw

2
ikn

�
=

1

n4
E

24 nX
l=1

al
�l
hYi; �li hYj ; �li

!2 nX
l0=1

al0

�l0
hYi; �l0i hYk; �l0i

!235
=

1

n4

X
l;l0

a2l a
2
l0

�2l �
2
l0
E[hYi; �li2 hYj ; �li2 hYi; �l0i2 hYk; �l0i2]

because the cross products equal zero. We have

E[hYi; �li2 hYj ; �li2 hYi; �l0i2 hYk; �l0i2] � 4E[hYi; �li2]E[hYj ; �li2]E[hYk; �l0i2]

= 4�2l �l0 :

Hence,

E
�
w2ijnw

2
ikn

�
� C

n4

X
l

a2l
X
l0

a2l0

�l0
� Cqn

n4

P
�l
�

:

P
1�i<j�nE[w

2
ijnw

2
ikn]

q2n
� C

n2�qn
! 0:

The other terms of GII have the same form. Therefore, GII = o(� (n)4):

Consider GIV :

E (wijnwiknwmjnwmkn)

=
1

n4
E

" 
nX
l=1

al
�l
hYi; �li hYj ; �li

! 
nX
l0=1

al0

�l0
hYi; �l0i hYk; �l0i

!
0@ nX
g=1

ag
�g



Ym; �g

� 

Yj ; �g

�1A0@ nX
g0=1

ag0

�g0



Ym; �g0

� 

Yk; �g0

�1A35
=

1

n4

nX
l=1

a4l
�4l
E[hYi; �li2 hYj ; �li2 hYm; �li2 hYk; �li2]
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because hYi; �li, l = 1; 2::: are uncorrelated across l. As Yi, i = 1; 2; :::, are iid, we have

E (wijnwiknwmjnwmkn) =
1

n4

nX
l=1

a4l
�4l
E[hYi; �li2]4

=
1

n4

nX
l=1

a4l

� qn
n4
:

It follows that
1

q2n

X
1�i<j<k<m�n

E (wijnwiknwmjnwmkn) �
1

qn
! 0:

As the other terms in GIV have the same form, we can conclude that GIV = o(� (n)4):

All the conditions of Lemma 13 are satis�ed and the result follows. �
Proof of Proposition 10. As in Carrasco and Florens (2000, proof of Theorem 10), the

proof proceeds in three steps.

Step 1. Let Pn denote the projection which associates to an operator K the operator K2

de�ned by the �rst n eigenvalues and eigenfunctions of K. We show that

1
p
qn

n


(K̂�)�1=2
p
nĥ(�̂)




� 


Pn (K�
!n)

�1=2pnĥ(�̂)



o P! 0 (A9)

under H2n.

We have

1
p
qn

n


(K̂�)�1=2
p
nĥ(�̂)




� 


Pn (K�
!n)

�1=2pnĥ(�̂)



o

� 1
p
qn




[(K̂�)�1=2 � Pn (K�
!n)

�1=2]
p
nĥ(�̂)





� 1

p
qn
kPnk




(K̂�)�1=2 � (K�
!n)

�1=2






pnĥ(�̂)




= Op

�
1

p
qnn1=2�3=4

�

because kPnk � 1,



pnĥ(�̂)


 = Op (1) and




(K̂�)�1=2 � (K�
!n)

�1=2



 = Op

�
1=(n1=2�3=4)

�
by

Lemma B.2. of Carrasco, Chernov, Florens, and Ghysels (2007). Therefore (A9) is satis�ed.

Step 2. Show that

p̂n � pn;n
P! 0 and q̂n � qn;n

P! 0

under H2n as n�2 !1: Under Assumption 7, this result can be established using a proof similar

to those of Theorems 4 and 10 in Carrasco and Florens (2000).
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Step 3. By Lemma 14, we have


Pn (K�
!n)

�1=2pnĥ(�̂)



� pn;n

p
qn;n

=

Pn
l=1

al;n
�l;n

Dp
nĥ(�̂); �l;n

E2
� pn;n

p
qn;n

d! N (c kL!�k2K ; 1):

Using steps 1 and 2, we obtain the desired result. �
Proof of Proposition 11. Let f�j ; �jg be the eigenfunctions and eigenvalues of K�. Let

 j such that �j = U�� j and consequently U��j = U�U
�
� j =  j . We have

U�K�U
�
� j = U�K��j

= �jU��j

= �j j :

Therefore, f j ; �jg are the eigenfunctions and eigenvalues of ~K. It follows that


U�ĥ (�)


2
(U�K�U

�
� )

� =
X
j

�j

�2j + �

D
U�ĥ (�) ;  j

E2
=

X
j

�j

�2j + �

D
ĥ (�) ; U�� j

E2
=

X
j

�j

�2j + �

D
ĥ (�) ; �j

E2
=




ĥ (�)


2
K�
�

;

as desired. �

B Computational details

B.1 Theoretical covariance operator

B.1.1 Eigenvalues and eigenfunctions

As we mentioned in Section 2, the eigenvalues and eigenfunctions of the covariance operator

K are the solutions to the functional equations

(K�j)(s) =

Z
[ 0(t� s)�  0(t) 0(�s)]�j(t)�(t)dt = �j�j(s):

Given that it is not possible to �nd the analytical solution to this equation for arbitrary

distributions, we solve for �j(s) at a very �ne but discrete grid ofM points over a �nite range of

values of the characteristic function argument t as follows. For the sake of brevity we describe the

case in which t is scalar. Let F (:) and Q(:) denote the cdf and quantile functions, respectively,

associated with the continuous density function �(t), which we assume integrates to 1 over

(tl; tu). Then, if we de�ne � = F (t), the usual change of variable formula immediately implies
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that the integral between tl and tu of any function g(t) weighted by �(t)dt coincides with the

integral between 0 and 1 of g[Q(�)]d�. We exploit this equivalence to numerically approximate

all the required integrals using the rectangle method over M equidistant points between 0 and

1 regardless of �(:).

Let K be an M �M matrix whose elements are

 [Q(�i)�Q(�j)]�  [Q(�i)] [�Q(�j)]; i; j = 1; : : : ;M;

so that K e¤ectively gives us the asymptotic covariance matrix of the sample average of anM�1

vector of in�uence functions eiQ(�j)xl �  [Q(�j)], j = 1; : : : ;M .

Given that the eigenvalues of K increase with M , we work with M�1K, whose eigenvalues

stabilize. In this context, we take the decreasingly ordered eigenvalues of this scaled matrix as

an approximation to the decreasingly ordered eigenvalues of the theoretical covariance operator

K. Similarly, we also take the normalized eigenvectors of M�1K multiplied by
p
M as an

approximation to the eigenfunctions of the covariance operator scaled so that they have unit

norm.

B.1.2 Test statistic

We compute the (scaled by
p
n) average values of the �population principal components�

of the vector of in�uence functions eiQ(�j)xl �  [Q(�j)], j = 1; : : : ;M by premultiplying the

scaled sample average of this vector by the eigenfunctions previously computed and dividing the

resulting expression by M .

Finally, we compute the TB test statistic as a linear combination of the square norm of the

scaled average values of those principal components weighted by �j
�2j+�

. In e¤ect, this TB is

numerically identical to the overidentifying restriction statistic of a discrete GMM procedure

based on the M � 1 vector of in�uence functions eiQ(�j)xl �  [Q(�j)], in which we replace the

inverse of the asymptotic covariance matrix M�1K by its Tikhonov regularized inverse, as in

(10).

B.2 Analytical expressions for cil

B.2.1 Univariate normal

Given that the CF of the standard normal is  (t) = e�
1
2
t2 , hi(t)hl(t) has the following four

terms

eit(xi�xl) � e�
1
2
t2+ixit � e�

1
2
t2�ixlt + e�t

2
:

43



Using a N (0; !2) density as weighting function �, we obtain

cil = c1(xi; xl)� c2(xi)� c2(�xl) + c3

where

c1(xi; xl) =

Z
eit(xi�xl)�(t)dt = e�

1
2
!2(xi�xl)2 ;

c2(x) =

Z
e�

1
2
t2+ixt�(t)dt =

e
� !2x2

2(1+!2)

p
1 + !2

;

and

c3 =

Z
e�t

2
�(t)dt =

1p
1 + 2!2

:

B.2.2 Standardized uniform

Given that the CF of the standardized uniform is

 (t) =
i

2
p
3t
(e�i

p
3t � ei

p
3t);

hi(t)hl(t) has the following four terms

eit(xi�xl) � ieixit

2
p
3t
(e�i

p
3t � ei

p
3t)� ie�ixlt

2
p
3t
(e�i

p
3t � ei

p
3t)� e�2i

p
3t(e2i

p
3t � 1)2

12t2
:

Using a N (0; !2) density as weighting function �, we obtain

cil = c1(xi; xl)� c2(xi)� c2(�xl) + c3

where

c1(xi; xl) =

Z
eit(xi�xl)�(t)dt = e�

1
2
!2(xi�xl)2 ;

c2(x) =

Z
ieixt

2
p
3t
(e�i

p
3t � ei

p
3t)�(t)dt

=
1

2!

r
�

6

(
erf

"
!(
p
3� x)p
2

#
+ erf

"
!(
p
3 + x)p
2

#)
;

where erf is the error function i.e. erf(z) = 2p
�

R z
0 e

�t2dt, and

c3 = �
Z
e�2i

p
3t(e2i

p
3t � 1)2

12t2
�(t)dt =

e�6!
2 � 1 +

p
6�! erf(

p
6!)

6!2
:
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B.2.3 Bivariate standard normal

Given that the CF of the bivariate normal with zero mean and identity covariance matrix

is  (t1; t2) = e�
1
2
(t21+t

2
2), hi(t1; t2)hl(t1; t2) has the following four terms

ei[t1(x1i�x1l)+t2(x2i�x2l)] � e�
1
2
(t21+t

2
2)+i(t1x1i+t2xi2) � e�

1
2
(t21+t

2
2)�i(t1x1i+t2xi2) + e�t

2
1�t22 :

Using two independent N (0; !2) densities as weighting functions � for both t1 and t2, we obtain

cil = c1(xi; xl)� c2(xi)� c2(�xl) + c3

where

c1(xi; xl) =

Z Z
ei[t1(x1i�x1l)+t2(x2i�x2l)]�(t1)�(t2)dt1dt2 = e�

1
2
!2[(x1i�x1l)2+(x2i�x2l)2];

c2(x) =

Z Z
e�

1
2
(t21+t

2
2)+i(t1x1+t2x2)�(t1)�(t2)dt1dt2 =

e
�!2(x21+x

2
2)

2(1+!2)

(1 + !2)
;

and

c3 =

Z Z
e�t

2
1�t22�1(t1)�2(t2)dt1dt2 =

1

1 + 2!2
:

B.2.4 Standardized chi-square with 2 degrees of freedom

Given that the CF of the standardized �2(2) is  (t) = ie�it=(i + t), hi(t)hl(t) has the

following four terms

eit(xi�xl) � ieit(1+xi)

i+ t
� ieit(1+xi)

i� t � ie�it(1+xl)

i+ t
� 1

(i� t)(i+ t) :

Using a U(�!; !) density as weighting function �, we obtain

cil = c1(xi; xl)� c2(xi)� c2(�xl) + c3

where

c1(xi; xl) =

Z
eit(xi�xl)�(t)dt =

sin[!(xi � xl)]
!(xi � xl)

;

c2(x) =

Z
ieit(1+x)

i+ t
�(t)dt

=
e�(1+x)

2!
f� � iCi[(! � i)(1 + x)] + iCi[(! + i)(1 + x)]g

+
e�(1+x)

2!
fSi[(! + i)(1 + x)]� Si[(i� !)(1 + x)]g ;
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where Si is the sine integral function Si(z) =
R z
0
sin(t)
t dt, Ci is the cosine integral function

Ci(z) = �
R1
z

cos(t)
t dt, and

c3 = �
Z

�(t)dt

(i� t)(i+ t) =
arc tan(!)

!
:

B.3 Classical goodness of �t tests

We brie�y review below some classical goodness of �t tests (see for instance, Lehmann and

Romano (2005)), which serve as benchmarks in our Monte Carlo exercise. For convenience, we

present them for scalar X.

For testing H0 : F = F0 versus H1 : F 6= F0, the classical Kolmogorov-Smirnov (KS) test is

based on a sup norm of the di¤erence between the empirical distribution function F̂n and the

distribution function:

KS = sup
x2R

p
n
���F̂n (x)� F0 (x)��� :

On the other hand, the Cramer-von-Mises (CvM) test is based on the L2 norm of the di¤er-

ence:

CvM = n

Z 1

�1
[F̂n (x)� F0 (x)]2dF0 (x) :

Finally, the Anderson-Darling (AD) test di¤ers from the Cramer-von-Mises by the weight:

AD = n

Z 1

�1

[F̂n (x)� F0 (x)]2
F0 (x) [1� F0 (x)]

dF0 (x) :

So far, F0 was completely speci�ed. For testing normality with unknown mean and variance,

the KS test is usually computed as

KS = sup
x2R

p
n

����F̂n (x)� ��x� �X

�̂

�����
where � is the distribution function of the standard normal and �X and �̂2 are the maximum

likelihood estimators of the mean and variance. This version of the KS test is often referred

to as the Lilliefors test. The other tests can be similarly modi�ed. A multivariate extension is

proposed in Andrews (1997).

Consider now the case Xj 2 Rq. To test H0 :  =  0 (:; �0) versus H1 :  6=  0 (:; �0),

Bierens and Wang (2012) consider a L2 test based on the empirical characteristic function and

a uniform weight:

BW =

Z
�

������ 1pn
nX
j=1

[ei�
0Xj �  0(:; �̂)]

������
2

d�

2q�ql=1� l

where � = �ql=1 [�� l; � l] ; � l > 0 and �̂ is a consistent estimator of �.
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These four tests are consistent against any �xed alternative to the null hypothesis and have

power against 1=
p
n alternatives too. However, for testing general distributions with unknown

parameter, their asymptotic distributions are not nuisance parameter free.

B.4 On simulating distributions

We simulate all the distributions under the null, as well as the symmetric Student t, gamma

and beta distributions, using the available Matlab routines. Namely, we use rand.m for the

uniform, randn.m (mvnrnd.m) for the univariate (bivariate) normal, chi2rnd.m for the �2(2),

trnd.m (mvtrnd.m) times
p
(� � 2)=2 where � denotes the degrees of freedom for the univariate

(bivariate) symmetric Student t, gamrnd.m for the gamma and betarnd.m for the beta distrib-

ution. As for the remaining ones, the procedure is as follows.

B.4.1 Asymmetric Student t

The asymmetric t distribution is a special case of the Generalized Hyperbolic family with


 = 0 and �1 < � < �2 (see Mencía and Sentana (2012)). As explained by these authors,

if the number of degrees of freedom exceeds 4, we can easily simulate a standardized (zero

mean, unit variance) version of a univariate asymmetric Student t distribution by exploiting its

representation as a location-scale mixture of normals,

Xi = c(�; �; 
)�

�
(1� 2�)
��t

� 1
�
+

s
(1� 2�)
��i

p
c(�; �; 
)Zi; (B10)

c(�; �; 
) =
1� 4�
2�

p
1 + 8�0��=(1� 4�)� 1

2�0�

where � = �1=(2�), �i is distributed iid gamma with mean ��1 and variance 2��1, and Zij�i is

iid N (0; 1).

If we further assume that � < 1=8, then the skewness and kurtosis coe¢ cients of the asym-

metric t distribution will be

E(X3
i ) = 16c

3(�;�; 
)
�2

(1� 4�)(1� 6�)�
3 + 6c2(�; �; 
)

�

1� 4��

and

E(X4
i ) = 12c

4(�; �; 
)
�2(10� + 1)

(1� 4�)(1� 6�)(1� 8�)�
4

+12c3(�; �; 
)
�(2� + 1)

(1� 4�)(1� 6�)�
2 + 3

1� 2�
1� 4� c

2(�; �; 
):

Not surprisingly, we can obtain maximum asymmetry for a given kurtosis by letting j�j ! 1.

In contrast, a standardized version of the usual symmetric Student t with 1=� degrees of
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freedom is achieved when � = 0 for � < 1=2. Since lim�!0 c(�; �; 
) = 1, in that case the

coe¢ cient of kurtosis becomes

E(X4
i ) = 3

1� 2�
1� 4�

for any � < 1=4, while the coe¢ cient of asymmetry is obviously 0.

In the bivariate case the same location scale intepretation in (B10) applies but with Zitj�i
being iid N (0; I). However, since the elements of the resulting random vector are correlated

when � 6= 0, we use the standardization procedure in Mencía and Sentana (2012).

We chose 12 degrees of freedom and � = �0:75 to avoid having too much power for both

the univariate and bivariate cases. According to the above calculations, in the univariate case

E(X4
i ) = 3:75 for the symmetric Student t, while for its asymmetric version, E(X3

i ) = �0:54

and E(X4
i ) = 4:62.

B.4.2 Discrete location-scale mixtures of normals

Univariate discrete location-scale mixtures of normals (DLSMN) Let si denote an

iid Bernoulli variate with P (si = 1) = �. If zijsi is iid N(0; 1), then

Xi =
1q

1 + �(1� �)�2

"
�(si � �) +

si + (1� si)
p
{p

�+ (1� �){
Zi

#
;

where � 2 R and { > 0, is a two component mixture of normals whose �rst two unconditional

moments are 0 and 1, respectively. The intuition is as follows. First, note that �(st � �) is a

shifted and scaled Bernoulli random variable with 0 mean and variance �(1� �)�2. But since

st + (1� st)
p
{p

�+ (1� �){
Zt

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance

that is orthogonal to �(st��), the sum of the two random variables will have variance 1+�(1�

�)�2, which explains the scaling factor.

An equivalent way to de�ne and simulate the same standardized random variable is as follows

Xi =

(
N [��1(�); �

�2
1 (�)] with probability �

N [��2(�); �
�2
2 (�)] with probability 1� �

(B11)
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where � = (�;{; �)0 and

��1(�) =
�(1� �)q

1 + �(1� �)�2
;

��2(�) = � ��q
1 + �(1� �)�2

= � �

1� ��
�
1(�);

��21 (�) =
1

[1 + �(1� �)�2][�+ (1� �){]
;

��22 (�) =
{

[1 + �(1� �)�2][�+ (1� �){]
= {��21 (�):

Therefore, we can immediately interpret { as the ratio of the two variances. Similarly, since

� =
��1(�)� ��1(�)p

���21 (�) + (1� �)��21 (�)
;

we can also interpret � as the parameter that regulates the distance between the means of the

two underlying components.

We can trivially extended this procedure to de�ne and simulate standardized mixtures with

three or more components. Speci�cally, if we replace the normal random variable in the �rst

branch of (B11) by a k-component normal mixture with mean and variance given by ��1(�) and

��21 (�), respectively, then the resulting random variable will be a (k + 1)-component Gaussian

mixture with zero mean and unit variance.

In the case of two-component Gaussian mixtures, the parameters �, � and { determine the

higher order moments of Xi through the relationship

E(Xj
i ) = �E(xji jsi = 1) + (1� �)E(x

j
i jsi = 0);

where E(Xj
i jsi = 1) can be obtained from the usual normal expressions

E(Xijst = 1) = ��1(�)

E(X2
i jst = 1) = ��21 (�) + �

�2
1 (�)

E(X3
i jst = 1) = ��31 (�) + 3�

�
1(�)�

�2
1 (�)

E(X4
i jst = 1) = ��41 (�) + 6�

�2
1 (�)�

�2
1 (�) + 3�

�4
1 (�)

E(X5
i jst = 1) = ��51 (�) + 10�

�3
1 (�)�

�2
1 (�) + 15�

�
1(�)�

�4
1 (�)

E(X6
i jst = 1) = ��61 (�) + 15�

�4
1 (�)�

�2
1 (�) + 45�

�2
1 (�)�

�4
1 (�) + 15�

�6
1 (�)

etc. But since E(Xi) = 0 and E(X2
i ) = 1 by construction, straightforward algebra shows that

the skewness and kurtosis coe¢ cients will be given by

E(X3
i ) =

3��(1� �)(1� {)
[�+ (1� �){][1 + �(1� �)�2]3=2

+
�3(1� �)�(1� 2�)
[1 + �(1� �)�2]3=2

= a(�; �; �) (B12)
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and

E(X4
i ) =

3[�+ (1� �){2]
[�+ (1� �){]2[1 + �(1� �)�2]2

+
6�2�(1� �)[(1� �) + {�]

[�+ (1� �){][1 + �(1� �)�2]2

+
�4�(1� �)[1� 3�(1� �)]

[1 + �(1� �)�2]2
= b(�; �; �): (B13)

Two issues are worth pointing out. First, a(�; �; �) is an odd function of �, which means that

� and �� yield the same skewness in absolute value. In this sense, if we set � = 0 then we will

obtain a discrete scale mixture of normals, which is always symmetric but leptokurtic.3 Second,

b(�; �; �) is an even function of �, which implies that � and �� give rise to the same kurtosis.

For that reason, in what follows we mostly consider the case of � � 0.

For the symmetric alternatives, we calibrate the parameters by matching the kurtosis coef-

�cient to that one of the Student t with 12 degrees of freedom (E(X4
i ) = 3:75). Since there

are two parameters, we arbitrarily set the probability � to 1=10 for the so-called �outlier case�

(Panel C of Table 1) and to 3=4 for the so-called �inlier case�(Panel B of Table 1), delivering

values of { equal to 1=3 and (15� 8
p
3)=11, respectively.

As for the asymmetric mixture of three normals, we impose the same skewness and kurtosis

as the normal, and �x the �fth and sixth moments to �1 and 18 (as a reference, they are 0 and

15, respectively, in the Gaussian case), which together with arbitrary weights of 0:3, 0:3, and

0:4, allow us to fully characterize the corresponding alternative.

Multivariate scale mixture of two normals Xi =
p
& iUi, with Ui being uniform on the

unit sphere surface in RN , is distributed as a two-point discrete mixture of normals (DSMN) if

and only if

& i � X 0
iXi =

si + (1� si){
�+ (1� �){ &oi

where si is an iid Bernoulli variate with P (si = 1) = �, { is the variance ratio of the two

components, which for identi�cation purposes we restrict to be in the range (0; 1] and &oi is an

independent �2(N). The DSMN approaches the multivariate normal when { ! 1, � ! 1 or

� ! 0. Near the limit, though, the distributions can be radically di¤erent. For instance, given

that { 2 (0; 1] when �! 0+ there are very few observations with very large variance (�outliers

case�), while when �! 1� the opposite happens, very few observations with very small variance

(�inliers case�). As all scale mixtures of normals, the distribution of xi is leptokurtic.

We calibrate the bivariate outlier distribution (Panel C of Table 3) by following the same

steps as in the univariate case.

3Another way of obtaining discrete normal mixture distributions that are symmetric is by making � = 1
2
and

{ = 1.
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B.4.3 Standardized second order Hermite expansion of the standard normal

The standardized version of the density in Lemma 7 that we use as alternative to the

univariate normal can be written as

f(x; a; b) =
e�

1
2
(a+cx)2c[1 + a2 + acx]p

2�
+
e�

1
2
(a+cx)2bc[(a+ cx)2 � 1]

2
p
�

where c =
p
1� a2 + b

p
2: Moreover, we can obtain an analytical expression for the correspond-

ing cdf in terms of the error function erf,

F (x; a; b) =
1

2

�
1 + erf

�
a+ cxp

2

��
� e�

1
2
(a+cx)2 [a(b+

p
2) + bcx]

2
p
�

;

which is the basis for simulating from this distribution. Speci�cally, we generate a uniform

random number u between 0 and 1 and then numerically �nd the root x to the equation

F (x; a; b) = u.

B.4.4 Scaled F

If we assume that Xi is iid as a standardized symmetric multivariate t with � degrees of

freedom, then

Xi =

s
(� � 2)�i

�i
Ui

where Ui is uniformly distributed on the unit sphere surface in RN , �i is a �2(N), �i is a �2(�),

and ui, �i, and �i are mutually independent. Therefore, we can easily generate a scaled F

random variable with mean N from the square Euclidean norm of an N -variate Student t with

�nite degrees of freedom.
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Figure 1: Examples of characteristic functions

Figure 1a: Standard normal
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Figure 1b: Standardized uniform
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Figure 1c: Standardized �2(2)
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Figure 2: Eigenvalues and eigenfunctions of the covariance operator K

Figure 2a: 1st eigenfunction Figure 2b: 1st eigenfunction

of K for the standard normal of K for the (standardized) uniform
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Figure 2c: 2nd eigenfunction Figure 2d: 2nd eigenfunction

of K for the standard normal of K for the (standardized) uniform
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Figure 2e: Eigenvalues of K (in logs) Figure 2f: Eigenvalues of K (in logs)

for the standard normal for the (standardized) uniform
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Notes: Eigenvalues and eigenfunctions are computed following the procedure described in Appendix B.1
with a grid of 1,000 points.
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Figure 3: Eigenvalues (�j�s) and weights (aj�s) of the covariance K for the standardized
Uniform distribution
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Notes: Eigenvalues are computed following the procedure described in Appendix B.1 with a grid of 1,000
points.
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Figure 4: Densities of alternatives to the univariate normal

Figure 4a: Symmetric Student t Figure 4b: Asymmetric Student t
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Figure 4c: Scale mixture of two Figure 4d: Third-moment symmetric
normals (outliers case) and mesokurtic Gaussian mixture
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Figure 4c: Scale mixture of two Figure 2f: Second-order Hermite
normals (inliers case) expansion of the normal
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Notes: Figure 4a: Student t with 12 degrees of freedom. Figure 4b: Asymmetric t with 12 degrees of
freedom and skewness parameter � = �:75. Figure 4c: Discrete scale mixture with same kurtosis as the
symmetric t, 3:75, and � = 0:1 (outlier). Figure 4d: Discrete location-scale mixture of three normals
with same skewness and kurtosis as the normal and E(x5) = �1, E(x6) = 18. Figure 4e: Discrete scale
mixture with kurtosis 3.75 and � = 0:75 (inlier). Figure 4f: Second order expansion with a = 0:4 and
b = 0:5. See Appendix B.3 for parameter de�nitions.
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Figure 5: Densities of alternatives to the uniform distribution

Figure 5a: Symmetric beta (with parameters � = b = 1:1)
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Figure 5b: Asymmetric beta (with parameters a = 1:1; b = 1)
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Figure 5c: Gaussian PITs of observations
drawn from an asymmetric Student t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

Notes: Figure 5c: asymmetric Student t distribution with 12 degrees of freedom and skewness parameter
� = �:75. Density of Figure 5c is computed as the ratio of the pdfs of the asymmetric Student t and the
normal.
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Figure 6: Alternative distributions to the bivariate normal

Figure 6a: Symmetric Student t Figure 6b: Contours of a symmetric
density Student t
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Figure 6c: Scale mixture of two Figure 6d: Contours of a scale mixture
normals (outliers case) density of two normals (outliers case)
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Figure 6e: Asymmetric Student t Figure 6f: Contours of an Asymmetric
density Student t
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Notes: Figures 4a�b: Student t with 12 degrees of freedom. Figures 4c�d: Scale mixture with same
Mardia�s excess kurtosis coe¢ cient as the symmetric t, 0:5, and � = 0:1. Figures 4e�f: Asymmetric
t with 12 degrees of freedom and skewness parameter � = �:75`. See Appendix B.3 for parameter
de�nitions.
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Figure 7: Densities of alternatives to the �2(2)

Figure 7a: Scaled F with 2 and 12 degrees of freedom
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Figure 7b: Gamma with parameters � = 2=3 and � = 3
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Figure 7c: Square norm of bivariate
draws from asymmetric Student t
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Notes: Figure 7c: asymmetric Student t distribution with 12 degrees of freedom and skewness parameter
vector � = �:75`. Density of Figure 7c was computed by nonparametric estimation of a simulated sample
of size 5,000,000.
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