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1 Introduction

Goodness-of-fit tests are important to assess whether a parametric distribution provides
an appropriate representation of the data. These tests can be divided in two main categories:
(i) directional tests, which are designed to have power against specific alternatives, such as
Neyman smooth test (Neyman, 1937 and Rayner and Best, 1989), Jarque and Bera’s (1980)
test of normality, as well as those proposed by Sefton (1992), Fiorentini, Sentana and Calzolari
(2003), Bontemps and Meddahi (2005, 2012), Mencia and Sentana (2012) and Tuvaandorj and
Zinde-Walsh (2014) among many others; (ii) omnibus tests, which are consistent against any
alternative to the null hypothesis, for instance the integrated conditional moment test of Bierens
(1982) and Bierens and Ploberger (1997), the conditional Kolmogorov test of Andrews (1997),
and the copula goodness-of-fit test of Genest, Huang and Dufour (2013). Our proposed tests
fall in this second category.

In particular, our testing procedure is based on the difference between the empirical and
theoretical characteristic functions (CF) for all possible values of their argument. This gives rise
to a continuum of moments in a L? space. Our aim is to construct a J test for overidentifying
restrictions based on these moments, as in Hansen (1982). However, what plays the role of the
covariance matrix in his test becomes now a covariance operator, whose inverse is unbounded.
Therefore, some regularization is needed to stabilize the inverse. We propose to use Tikhonov
regularization (see Kress, 1999) and consider two types of tests. The first one uses a fixed value
of the regularization parameter a. Given that o can be regarded as a bandwidth, this approach
is analogous to the fixed b asymptotics used in Kiefer and Vogelsang (2002). The second type
of tests allows « to converge to zero at an appropriate rate, in which case our proposed test is
closer in spirit to Hansen (1982)’s J test. In this second instance, however, the statistics would
tend to a diverging x? with infinite degrees of freedom. For that reason, we center and rescale
it following the procedure put forward by Carrasco and Florens (2000), who presented this type
of test for the first time.

We will consider various versions of our proposed tests depending on whether the parameter
vector € is known in advance or replaced by a consistent estimator, and whether we make
use of the analytical expression for the covariance operator or estimate it. We will derive the
asymptotic distribution of our tests under the null hypothesis and under local alternatives. We
will also characterize the alternatives for which our tests have maximum power.

The advantages of using the CF are multiple: (a) in some important examples, the distri-
bution function is only known in integral form whereas the CF has a closed form expression,

as in the cases of stable distributions and affine diffusions (see Singleton (2001) and Carrasco,



Chernov, Florens, and Ghysels (2007)); (b) handling multivariate random variables can be done
just as easily as the scalar case; (c) our tests have the same form and are computed in the
same manner for any CF tested; (d) our tests are consistent against any alternative to the null
hypothesis.

Various tests based on the empirical CF have been previously proposed: Feuerverger and
Mureika (1977), Epps and Pulley (1983), Hall and Welsh (1983), Baringhaus and Henze (1988),
Ghosh and Ruymgaart (1992), Fan (1997), Hong (1999), Su and White (2007), Chen and Hong
(2010), Bierens and Wang (2012) and Leucht (2012) among others. The main difference with
ours is that we not only consider a continuum of moments, but we also explicitly take into
account the correlation between the empirical CF for different values of its argument. Our work
is also related to Dufour and Valery (2016), who propose a regularized Wald test to deal with
the singularity of the covariance matrix.

The remainder of the paper is organized as follows. We introduce the tests in Section 2 and
derive the asymptotic properties of the J test with fixed regularization parameter o and known
(unknown) € in Section 3 (4). Next, we study the J test with vanishing « in Section 5. Finally,
Section 6 presents the results of our Monte Carlo simulations while Section 7 concludes. All the

proofs are collected in Appendix A and computational aspects are discussed in Appendix B.

2 Presentation of the tests and overview

Assume we observe a sample of random variables X1, Xo, ..., X, independent and identically
distributed (7id) taking their values on R? with ¢ > 1. The X; have probability density function
(pdf) f (z;0) indexed by a finite dimensional parameter ¢, which may be known or unknown,
and CF 9 (t;0) = E[e"™], where t € RY is its argument. As is well known, f (z;6) and v (¢;60)

are intimately related because the former is the Fourier transform of the latter, i.e.

b (t:0) = / ¢ f (210) da. (1)

Figure 1 presents the CFs for the univariate distributions that we consider in our Monte Carlo
study, namely, a standard normal, as well as standardized (zero mean - unit variance) versions
of the uniform and y2(2) distributions. Given that the first two examples are symmetrically
distributed around 0, the CF is real and symmetric around 0 too. In contrast, it contains an
(odd) imaginary component in the case of the asymmetric chi-square.

We are interested in testing Hop : ¢ = g (.;60), where 1y is a known CF and 6 is some

element of ©® C RP. Our testing procedures are based on the difference between the empirical



and theoretical CFs. Specifically, the relevant influence functions are

h(t0) = %Zhj (:6), 2)
j=1

hy(5:0) = €5~y (10). (3)

This gives rise to a continuum of moments since under the null E[h; (t;600)] = 0 for all t € R%.

Let 7 be an arbitrary probability density function on R?. Then, the function hj; (¢;0) is a
random element of L? (), the space of complex-valued functions which are square integrable
with respect to the density . The inner product on this space is defined for any functions f and
g of L?(7) as (f,g) = [ f(t) g (t)7 (t) dt, where the bar denotes the complex conjugate. L2 ()
is a Hilbert space and we will work on this space to derive the asymptotic distribution of our
test statistics.

By the central limit theorem of 7id random elements of a separable Hilbert space (see e.g.

Example 1.8.5 of van der Vaart and Wellner (1996)), we have that under Hy, as n goes to infinity
Vnh (t;60) = N (0, K)

in L2 (7r), where N (0, K) denotes a Gaussian process of L? (7). K is an integral operator from
L% (7r) to L* () such that
55)() = [k @ @), (@

where

ko (s,t) = Elh; (s;00) hj (s:60)] = o (s — £;60) — 1o (53 00) 1o (=13 0o) - ()

In the sequel, we denote by A; and ¢; the eigenvalues and eigenfunctions of K, respectively,
which are solutions to the functional equation (K¢;)(t) = A;¢;(t). Figures 2a and 2c present
the eigenfunctions associated with the largest two eigenvalues for the covariance operator K
for the standard normal when the weighting function mis itself a normal with zero mean and
scale parameter w for two values of w. In turn, Figures 2b and 2d do the same but for the
corresponding operator of the standardised uniform distribution on (—v/3,v/3). As can be seen
in these figures, if we arrange the eigenvalues in decreasing order, the eigenfunctions associated
to even (odd) eigenvalues are even (odd) functions in these two examples. We also report in
Figures 2e and 2f the largest five eigenvalues for those distributions. As we shall see below, the
main effect of changing w will be to change the relative weights given to small and large values
of the CF argument t¢.

We are interested in applying Hansen (1982)’s J test of overidentifying restrictions to our



continuum of moments. To illustrate the difficulties that may arise, assume for a moment
that h (0) is a finite dimensional M-vector obtained from a rough discretization of RY, so that
NOACN 4N (0,K) and K is a nonsingular M x M matrix. Assuming for simplicity that both

K and 6 are known, the usual J test for overidentifying restrictions is

J = nh’ (0)K"h(0), (6)
where * denotes the complex conjugate transpose of a vector/matrix. Now if we let M grow by
taking a denser and denser grid, then the matrix IC becomes increasingly ill-conditioned, in the
sense that the ratio of its largest eigenvalue to its smallest one increases dramatically, so K~}
may be numerically unreliable for large M.

In our setting, the covariance matrix K is replaced by the aforementioned covariance opera-
tor K (see Appendix B.1), which has a countable infinite number of eigenvalues \;, j = 1,2, ...
(arranged in decreasing order) and associated eigenfunctions ¢;. As we will see later on, this
operator is compact, meaning that its inverse is not bounded. Consequently, its smallest eigen-
values will converge to zero as j goes to infinity, so taking the inverse of K is problematic. In
terms of the spectral decomposition of K, the direct analogue to the J test statistic in (6) would

be written as

(v 1 i) = 57 5 (Vb o) ™

where the dependence on 6 is omitted for simplicity. This expression will blow up because of
the division by the small eigenvalues A; for large j. This is related to the problem of solving
an integral equation K f = g where ¢ is known and f is the object of interest. This problem
is said to be ill-posed because f is not continuous in g. Indeed, a small perturbation in g will
result in a large change in f. To stabilize the solution, one needs to use some regularization
scheme (see Kress (1999) and Carrasco, Florens, and Renault (2007) for various possibilities).
As in Carrasco and Florens (2000), we use Tikhonov regularization, which consists in replacing
K~'g by the regularized solution (K 21al )_1 Kg where a > 0 is a regularization parameter.

We use the notation (K‘")_1 for (K2 + aI)_l K, which is the operator with eigenvalues A;‘ia
j

VA

2
>\j+oc

and corresponding eigenfunctions ¢;, and (K O‘)fl/ 2 for the operator with eigenvalues
and the same eigenfunctions.

Thus, the regularized version of the J test is

o N (Vb)) ®)

Jcreeye v ~ X\ +a




Comparing the expressions (7) and (8), we observe that /\—lj has been replaced by )\;‘ﬁ, which is
J
bounded.

We will consider various versions of this test depending on whether:

e 0 is known or estimated,
e K is known or estimated,

e « is fixed or goes to zero.

Consider the case where « is fixed; if we are willing to assume that 8 is known, so that the
distribution under the null hypothesis is completely specified and the operator K is known, then
the first test we should consider is

Aj

2
)\j—i-a

J00.5) = 3 0 (Vah,o,) )
J

As we explain in Appendix B.1, the test statistic (9) can be arbitrarily approximated from
a numerical point of view by a modified version of the matrix expression (6). Specifically, if we

evaluated the CF at a very fine but discrete grid of M points over a finite range of values of the

K\ 2 -1 i\ 12
(3r) +1 (%)

Several issues related to the practical implementation of this test (in particular the compu-

argument ¢, then

|=

1/2
mewamwr(“> 0). (10)

M

tation of the eigenelements of K) are discussed in Appendix B.1.
When 6 is unknown, however, the operator K is only known up to 6. Let 6 be a consistent
estimator of 6 obtained for instance from

6= arg min

~ 2
h(.;e)H .
0O

In this context, the integral operator K can be defined as in (4) but with kernel

k(s,t) = 1o(s — t;0) — g (s;0)0(—t; 0).

Let {)\jé, qué} J=1,..., M be the eigenvalues and eigenfunctions of the operator Kj. Then the

second test we consider is

. A I Az
J(0,Ky) = Z )\2~J_i 5 <\/ﬁh‘(‘;0)7¢jé>2 = argminz 70 <\/ﬁh(_;9) 7¢jé>2'
J g0



Alternatively, we may prefer to estimate K using a sample covariance operator. In fact, there
are two obvious possibilities. The first one is to use the integral estimator K with uncentred

kernel
1 — . .
= ﬁ ; hi(sa Q)hi<_t7 9)7

where 0 is a consistent first step estimator of #. On the other hand, the second possibility is the
integral operator K with centred kernel

n

Fls,t) = > hi () hi (1)

=1

where
n

. . 1 .
hi(s) = hi (s;0) — h (t;0) = i — - Z et X,

=1
The advantage of the second estimator is that it does not require a first step estimator of 6
and thereby it may be more robust to misspecification. Either way, given that K and K have
finite range, they will have at most n nonzero eigenvalues, which (under some conditions) will
be consistent estimators of the largest eigenvalues of K.

For computational reasons, it is convenient to rewrite the test statistics (8), which use as
eigenvalues and eigenfunctions those of K and K , in terms of certain matrices and vectors (see
Carrasco et al (2007) for analogous expressions for K under time series dependence). Specifically,
we obtain the following two expressions:

i) The test based on K, which can be computed as

J(0,K5) = arg gnigy(@)* [al +C?] " v (6) (11)

€
where v (6) is a n x 1 vector with I-th element v; (0) = [ hy(¢;0)h (¢;0) 7 (t)dt, C is an n X n
matrix with (i,1) element ¢;/n with ¢; = <hl (t; 0 )y hi( 9 > see Appendlx B.2 for analytical

expressions for these integrals).

ii) The test based on K , whose matrix expression is

J(0, K) = argmin (6)" [ad + C?) 7' (0) (12)
(S

where © (0) is a n x 1 vector with I-th element & (8) = [ hy (t)h (t;0) 7 (t) dt, C'is an n X n matrix
with (i,1) element é&;/n with é; = (hy (), ki (). In this regard, note that C' = (I — £¢'/n)C(I —
20" /n), where £ is a vector of n ones.

In Sections 3 and 4, we will study the asymptotic distribution of the test statistics J(6g, K),
J(, Kp), J(0, Ké) and J(0, K) and show that they converge under Hy to a weighted sum of y2’s



whose weights depend on 6. Given the eigenvalues, those weights and hence their asymptotic
distributions are known, so we can compute the p-value of these quadratic forms in normal vari-
ables using Imhof (1961). Nevertheless, we rely on the parametric bootstrap in the simulations
to improve the small sample properties of our proposed procedures.

-1 . .
is a biased

For all the tests presented so far, « is fixed, so that our regularized inverse (K¢)
approximation of K 1. It is possible to approach K~! by letting a go to zero at a suitable rate.
However, a test based on (8) with « going to zero would tend to a chi-square with infinite degrees
of freedom, and hence diverge. For that reason, we explain next how to center and rescale it
following Carrasco and Florens (2000). Let h;(t; 0) denote the influence function (3) evaluated
at a consistent estimator of #. Similarly, let S\j denote the eigenvalues of K,

52 . .

Gj=—2—, Pn= a; and G, =2 a’. (13)

)‘j + « j=1 j=1

After appropriate centering and rescaling, we obtain:

i e s
an(’ é)_ \/ﬁ? .

In Section 5, we show that .J,, converges to a standard normal distribution under the null.

(14)

3 J test when « is fixed and the parameter is known
3.1 Distribution under local alternatives

The J (6o, K) statistic in (9) with « fixed is part of a larger class of tests based on weighted
L? statistics that we will denote by Tz in the sequel. Let B be a nonrandom bounded linear
operator from L? (1) to L? (r) and B, be a sequence of random bounded linear operators from
L? (7) to L? (7) such that || B,, — B]| Loasn goes to infinity, where ||.|| is the sup-norm. Assume
moreover that the null space of B equals {0}; otherwise the test would lack power against certain
alternatives. Popular choices of B satisfying our assumptions include B = I as in Epps and
Pulley (1983), Bierens and Wang (2012) and Leucht (2012), as well as B = (K®)™%/2 with oo > 0
fixed.

In this section and the next one we focus on tests based on weighted L? statistics
~ 12 ~
Ty = HBn\/HhH - /(Bn\/ﬁh)Q ()7 (t) dt, (15)

where h () = 1 [ — 4p (£)] and 1y (£) = 1 (¢ 00).



We look at local alternatives of the form

Hun sty = o+ (16)
where c is a scalar. In this context, n represents the direction of the alternative, while ¢ represents
the distance from the null. To guarantee the uniqueness of the representation, 1 needs to be
normalized. There are many possibilities. As the results of this subsection are not affected by
the choice of the normalization, we will not specify a normalization at this stage. Nevertheless,
we impose 77 (0) = 0 to preserve the property that 1, (0) = 1 which every CF needs to satisfy.

Similarly, we also need 7 (t) = 1 (—t) to preserve the property that 1, (t) = v,, (—t) for any CF.

Assume moreover that there is a constant € > 0 such that |n (¢)] < €for all¢,and 0 < ||Bn]| < oc.
CFs need to satisfy the condition |¢,,| < 1, which hopefully will be satisfied by ,, under Hy,
for n sufficiently large.

First, we establish some results on the operator K of form (4) with kernel (5), suppressing

the dependence on 6y for simplicity.

Lemma 1 K is a self-adjoint positive definite Hilbert-Schmidt operator from L? (1) to L? ()

and the sum of its eigenvalues is bounded by 1.

Lemma 1 implies two things: that K has a countable spectrum, and that the sum of its
eigenvalues is less than 1.

Example. Consider the CF of a univariate normal with mean p and variance o?; it turns
out that when using a normal weighting function with zero mean and scale parameter w, we can

obtain analytical solutions for the sums of both X’s and A\?’s. Specifically, the expressions are

1
P S
zj: / V1420202

and
4y2w2 4;1.21412

]_ 6_ 1+2o2w2 6_ 1+402w2 2

2\ = + —
zj: T w4202 | V1+20202 V1440202 1+ 40202 + 30408

As can be seen from the above expressions, the sums of both X’s and A\?’s depend on the scale

w of the weighting function.

Proposition 2 Under Hi,, as n goes to infinity
Vnh = N (cn, K)

in L? (7).



Let aj, ¢;, j = 1,2...,J be the eigenvalues (arranged in decreasing order) and eigenvectors

of BKB*. Further, let 6; = ¢ (Bn, ¢j>2 /a;j.

Proposition 3 Under Hy,, we have

o0 o0 2
d C<B777¢>
Tg — Zan? (1,(5]') = Zaj <6j + —a J
j=1 j=1 vV
where ij (1,65), j = 1,2,... denote independent noncentral chi-square random variables with
1 degree of freedom and non centrality parameter 6; while ej, j = 1,2,... are the underlying

independent standard normal variables.

Remark 1. The previous proposition will not apply if B = K~Y2. In that case B is not
bounded violating one of the assumptions. Moreover, A/ (0, 1) is not a Gaussian process because
the trace of its covariance operator (the identity operator) is infinite. We will discuss the case
B = (Ka)_1/2 when « goes to zero in Section 5.

Remark 2. We see that as soon as <B77, ¢j> = ( for some j, the test statistic T will have non
trivial power. But because {¢;} forms an orthonormal basis of L? (), then B = > (Bn,¢;) ¢;
and by Parseval’s identity, ||Bn||*> = > (Bn, q§j>2 > 0. It follows that (B, ¢;) cannot all be
zero simultaneously. Therefore, Ts has indeed non trivial power against all local alternatives
of the form Hi,, and against all fixed alternatives a fortiori. However, if <B?7, ¢j>2 is small (as
will be the case for most j since the sequence <B77, ¢j>2 is summable), the power against local
alternatives in the jth direction may be poor. In the next subsection, we will study the power

properties of these tests in more detail.

3.2 Alternatives with maximum power

It is well-known that there is no uniformly most powerful test for assessing Hy and that
goodness-of-fit tests have good power only against certain local alternatives (see Neuhaus (1976),
Janssen (2000), Escanciano (2009), and Lehmann and Romano (2005, Section 14.6)). In this
subsection, we will characterize the alternative with maximum power.

Given that there is a one-to-one mapping between the density and the CF through the
Fourier inversion theorem (see (1)), we can reformulate Hy and Hj, in terms of the density
instead. Thus, we obtain

Hy: f(z) = fo(x),

Hun () fu (@) = fo (2) [1 + 242

Let L?(fo) < oo denote the L? space of real functions ¢ (X) such that we can define

”SDH%%fO) = [¢* () fo (z)dz. Note that ¢ in Hyy, (c) is the same as ¢ in Hy, and u(x) de-

9



fined in H,y, () is related to i defined in Hy, through the relations

_ %fe*mn (t)dt
ulo) = fo(z) ’

1) = [eu) fole) da,

Moreover, the condition 7 (0) = 0 implies [u (z) fo () de = 0. Still, u needs to be normalized.
Many normalizations could be used. For convenience, we impose the normalization condition

lullp2(gy) = E [u?(X)] = 1, which corresponds to the following condition on 7:

/ ‘ / ey (t) dt

In this set up, we define the asymptotic local power function Ilg (a, c,u) as

2
dr = 1.

1
fo(z)

Ig (a,c,u) = lim P[Tp > ca|I:Iun ()],

n—oo

where ¢, is the critical value such that T achieves a level a, i.e. lim, .o P (T > c4|Hpy) = a.

To analyze the power of these statistics, it is useful to rewrite K as T*T, where T is an
operator from L? (m) to L2 (fo) and T* is the adjoint operator from L2 (fg) to L? (7). Such a
decomposition has been used to study the power of Cramer von Mises type tests by Neuhaus
(1976, equation (1.9)) and Escanciano (2009, p.168).

The operators T' and T™ are as follows:

T L2 (m) > 2 (fo),

(Te) (X) = [h(X;t)p (t) 7 (¢) dt,

T*: L?(fy) — L% (m), and

(T°6) (8) = [ h (2:4) 6 (2) fo () d.

Moreover, T'B* is compact and admits a singular system {\/(Tj, qu,goj}, where T'B*¢; =
Vaip; and BT*p; = | /ajp;. Therefore, ¢; are the eigenfunctions of BT*T'B* = BK B* and g,
those of B*I"I™B. Thus, ¢; can be interpreted as principal components weights.

Observe that 7 = T*u. Indeed, if we use the property of Fourier transforms and the fact

that [u(z) fo (x)dz = 0, we will have that

(T*u) (1) = / (€% — 4pg (8)]u (2) fo () da
= [ fow)do - vy 1) / w (@) fo (2)dz =1 (1),

Hence, the relation n = T™u implies that

10



(Bn,¢;) _ (BT*u,¢;) (u,TB'¢))

= =(u,p;). (17)
Vaj Vaj Vaj (:23)
From (17) and Proposition 2, it follows that under Hy, (c),
d o0
Tp — Zaj(ej + ¢ (u, g0j>)2. (18)
j=1

Note that the sequence p; j = 1,2, ... forms a complete orthonormal basis of R(TB*) =
L% (fo) N {u: E(u) =0}. Hence, the alternatives of interest are linear combinations of the
eigenfunctions ¢;. In this context, the analysis of the limiting distribution in (18) and the

orthogonality of the Lp;s allow us to establish the following results:

Proposition 4 The limiting power of Ilg(c, ¢,u) has the following properties.
() {Tp(a,c,u) s u € L2(fo), E(u) = 0, [[ull 125y = 1} = Tp(a, ¢, ¢y),
(b) HB(av Cy (Pj) < HB(@, Gy (Pz) fOT 1 S.] < ia

(c) limj—ollp(a,c,¢;) = a.

Proposition 4 says that (a) the maximum power is achieved for the local alternative u = ¢
corresponding to the first principal component, (b) the power decreases when considering higher-
order principal components, (c) finally, the power goes down to the level of the test, a, for the
highest frequency (case j — o0).

As we saw before, in general ; depends on B, so that the alternative with maximum power
will be different for different tests T'z.

But if we consider more specifically the cases B =1 and B = (K a)_l/ 2. the ; are the same
because they correspond to the eigenfunctions of 7T*. Hence, the alternative for which the tests
Tp for B=1 and B = (K a)_l/ 2 are the most powerful coincides, and corresponds to n = ©1-

When B = I, then a; = )\, i.e. the eigenvalues of K, which decline quickly towards 0. So the
test Tp with B = I concentrates its power on the first principal component. On the other hand,

2

when B = (K 0‘)_1/ 2, a; = /\2/\ er — instead, which will decline slower towards 0 if « is relatively
i

small. Consequently, power will be more balancedly spread among the first few directions when
B = (Kf")_l/2 than when B = I. Figure 3 illustrates the decline of A\; and a; in the case of a
uniform distribution. In the extreme case where a = 0, we would have a; = 1, which means that
power would be evenly spread among all alternatives. However, in this case the null distribution
is a Chi-square with infinite degrees of freedom and the resulting test has power equal to size
for any local alternative; see Lemma 14.3.1 of Lehmann and Romano (2005). We will consider

the case where o — 0 in greater detail in Section 5.

11



4 J test when « is fixed and the parameter is unknown
4.1 Distribution under local alternatives

Consider again local alternatives of the form (16), where c is a constant, n € L2 (r), n (0) =
0,7 (t) =n(—t) and | (t)| < € for some constant €.

Assumption 1. X;, i = 1,2, ... are independent, identically distributed.

Assumption 2. Under Hy,, ||B, — B|| £0. Under Hy, |By, — Bi| £ 0 where both B and
By are bounded linear operators and By may differ from B. The null spaces of B and B; equal
{0}.

In the sequel, we denote by Py the law of X; under Hy, P, the law of X; under Hy,, and P;
the law of X; under H;.

Assumption 3. P, is contiguous to Fp.

This condition is standard in the goodness-of-fit literature and imposes some mild restriction
on the density. Sufficient conditions for this assumption to be true are given in Lehmann and
Romano (2005). They also provide a variety of examples.

Assumption 4. The parameter space © is a compact subset of RP. The true parameter 6,
is contained in the interior of ©. 1, (7;6) is continuously differentiable with respect to 6.

Assumption 5 (identification). v (7;0) = 1, (7;0p) for all T < 0 = 0.

Let

0 = argmin HBJL (,0)”
0cO
and define
Mg (50)

Dy = 220\ 7)
0 00

6=0¢
Note the result in Proposition 2 remains valid here. Namely, \/nh (60) = N (cn, K) under
Hy,,, where K is an integral operator with kernel k (s,t) =1 (s — t;600) — ¥ (s;00) ¥ (—t;0p) .
Then

Proposition 5 Suppose Assumptions 1-5 hold. Under Hy, 0 is a consistent estimator of 0y and
Vn(d = 60) 5 N(0, (BDo, BDy) ™' (BDy, (BK B*) BDo) (BDy, BDg) ™).

Moreover, under Hy,

050, = arg min HBlEP1 (h; (50))]]-
0cOe

Let L be the operator from L? (7) to L? (7) such that for all ¢ € L? ()

(Lg) (1) = ¢ (1) = Do (7) (BDo, BDy) ™" (B*BDy, ¢) -

12



Let K be the integral operator from L? () to L? (7) with kernel

k(s,t) = k(s,t)— Do (s) (BDoy, BDo)~ " (KB*BDy) (t)
—Dy (t) (BDy, BDg) ™' (KB*BDy) (s)

+Dy (s) (BDy, BDo) ™ (BDy, (BK B*) BDy) (BDg, BDy) ' Dy (£)

In addition, let a;, 55]-, j = 1,2...,J denote the eigenvalues (arranged in decreasing order)

N N )
and eigenvectors of BK B*. Finally, define §; = c? <BL77, gzbj> /a;j.

Proposition 6 Suppose Assumptions 1-5 hold. Under Hyy,, we have
(i) /nh(0) = N(cLn, K) in L? (x).
(ii)
c <BL77, &j>

o0 oo
d ~ < ~
Tp 5 apG(1,0) = a; | e+ =
i=1 i=1 j

where X?(l,gj), j =1,2,..., L denote independent noncentral chi-square r.v. with 1 degree of
freedom and non centrality parameter Sj and ej, j = 1,2,... are the underlying independent

standard normal variables.

Proposition 6 implies that T has non trivial power against all local alternatives ) for which
Ln # 0, i.e. those n such that n # v’ Dy, where v is some p x 1 vector of constants. The following

example illustrates this condition:

Lemma 7 Assume Hg : 1 = 1, where 1 is the characteristic function of the N'(,0?). Let fo
be the pdf of the N'(u,0?). The test T has only trivial power against local alternatives of the

form
ait br?

Hun 2 by (1) = (Hﬁ—M)%(T)

for some constants a and b. Moreover the density corresponding to 1, is

a (x— z—p)? — o2
fn<x>={1+\/ﬁ( Uz”)+23ﬁ[( 2 ]}fo(w)~ (19)

It follows from Lemma 7 that when p and o? are estimated, the test T has trivial power
against alternatives of the form (19), which correspond to a second order Hermite expansion of
the Gaussian density. The two additive terms in (19) contain the first two Hermite polynomials,
which will be close to zero once p and o2 are estimated. This is similar to what is found in

other tests. For example, Bontemps and Meddahi (2005)’s moment test of normality cannot
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make use of the first two Hermite polynomials evaluated at the estimated parameters because
their sample means will converge to 0 in probability even after scaling them by /n.
The following result establishes that T has power against all fixed alternatives (including

those such that Ln = 0).
Proposition 8 Suppose Assumptions 1-5 hold. The test Tp is consistent.
In the next subsection, we analyze the power of our test in more detail.

4.2 Alternative with maximum power

We can follow the same steps as in Section 3.2 to characterize the alternatives for which
the tests Tp have maximum power.

As mentioned earlier, the null and alternatives can be equivalently expressed in terms of
either the characteristic function or the density of X;. Consider the hypotheses lfIO and ﬁun (c)
as defined in Section 3.2., where fy denotes now fo (x;60p). Let L?(fy) and assume the same
normalization of u and the same power function I (a, ¢, u) as before. Following Neuhaus (1976)
and Escanciano (2009), we can determine for which local alternative the test Tp has maximum
power.

Let h (z;t) = e —1)4 (.;0). To analyze power, it is useful to rewrite the covariance operator
K as T*T, where T is an operator from L? (r) to L? (fo) and T* is the operator from L? (fy) to
L? (), T* being the adjoint of 7. The operators T and T* are as follows;

T: L2 (r) — L2 (fo)

o) (X) = [[1(X:1) — Do (1) (BDo, BDo) ™ (BB Do,k (X; e (t) 7 (1) d,

T*: L2 (fg) — L% (m), and

(T*¢) (t) = [[h (z;t) — Do (t) (BDo, BDo) ™' (B*BDq, h (;.))|¢ () fo () dx

Moreover, BT*T B* = BK B* is compact and admits a singular system {a;, &Sj, ®;}, where
TB]*(% = \/ETjCoj and BT*COJ- = @éj. g?)j are the eigenfunctions of BT*TB and ®; are the

/_\

eigenfunctions of B*T'T*B. ©;, which can again be interpreted as principal components weights.
Observe that Ln = T*u. Hence,
<BLn,g~bj> <BT*u,{bj> <u,TB*E¢j>

= = - D . 2
= > > (u, ;) (20)

From (17) and Proposition 5, it follows that under Hy, (c),

Bi’zdj (ej+c<u,¢j>)2. (21)

Jj=1
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For those u such that T*u = 0, the tests T have power equal to size. Therefore, we will
focus on alternatives such that T*u # 0, alternatives which belong to the orthogonal space to
the null space of T* (denoted N (T™*)) — these are the alternatives corresponding to 1 such that
Ln # 0. For any compact operator T' we have the relation, N (T*)L = WT), where ﬁ
is the closure of the range of T. Note that the sequence @;, for j = 1,2,... form a complete
orthonormal basis of W Hence, the alternatives of interest are linear combinations of the
@;. The analysis of the limiting distribution in (21) and the orthogonality of the ; allow us to

establish an analogous result to Proposition 4:

Proposition 9 Suppose Assumptions 1-5 hold. The limiting power of llp (o, ¢,u) has the fol-
lowing properties.

(a) max,{Ilp (a,c,u) 1w € R(T), |lullp2(s,) =1} =B (a,c,@1),

(b) Ip (a,c, gb]) <IIp <a7 ¢, gbz) fO?” 1< .7 < i?

(¢c) limj_ollp (a,c, @;) = a.

As before, we observe that the maximum power is reached for the first principal component,

and that power declines toward size a for subsequent directions.

5 J test when a goes to zero
5.1 Distribution under local alternatives

As we discussed at the end of Section 2, the continuum of moments analogue to the overi-
dentification restrictions test diverges when « goes to zero, so we need to center and re-scale
this statistic appropriately as in (14). But because ¢, in the denominator of this expression
diverges as n goes to infinity, the rescaled test does not have power against contiguous alterna-
tives. Therefore, we need to consider alternatives that converges to Hg slower than the usual
n~1/2 rate. For that reason, in what follows we study the properties of .J,, (8, K) under local
alternatives of the form

Hop 2 9, (1) = ¥ (t;00) + ban (1)

where n € L2 (), n(0) =0, n(t) =n(—t), |n(t)| < € for some constant €, and b, is a sequence
of numbers going to zero at a rate slower than /n. The precise rate will be specified later on.
In the sequel, P»,, denotes the law of X; under Ho,,.

Assumption 6. Under Ho,,

~

Va0 = 80) = B (G (), vk (360)) + op, (1),
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where H is a positive definite p x p matrix and G is a p x 1 vector of L? (7).
The estimators mentioned in the previous sections satisfy this condition under Hy. In par-

ticular, in the case of the GMM estimator:

2
)

0 = arg min H(K“)flﬂ\/ﬁﬁ(-; é)‘
0cO

the condition is satisfied under Hy for H = <K_1/2D0, K_1/2D0> =7 and G = K~1'Dy, where
Dy (t) = O (t;60) /08 and T is the information matrix provided a goes to zero at a certain

rate (see Carrasco and Florens (2000)). Similarly, the MLE satisfies also this assumption under

Hy with H =7 and
G(t) = /e 50 dx.

To see this, check that

and

Under Hy,,, we have
Va{h(;0) — BT R(50)]} = N (0, K.,)
in L? (1) where K, : L? (7) — L? () such that
(Kup) (s) = / ko (s,8) 7 (£) dt
with

ks (s,t) = BEP[(hj (s;00) — Do (s) H (G, hj (:600))) (hj (t;00) — Do (t) H™ ' (G, h; (1;60)))"].

Assumption 7. Under Hy,,

K- KWH — 0and H(Ka)*lﬂ - (Kg)—l/QH —Op, (W)

The results stated in Assumption 7 are easy to establish under Hy (see Carrasco and Florens

(2000) and Carrasco et al (2007)).
2
Let {\jw, ®j} @ = 1,2, ... be the eigenvalues and eigenfunctions of K, and aj, = % Let
Jw

_ n . _ n 2
Pn = Zj:l Qjwy Gn = Zj:l Ao and

(Lwm) (5) =1 (s) — Do (s) H~ (G, 7).
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Moreover, let Hx be the reproducing kernel Hilbert space associated with K, defined as
2
f7 ¢ j
Hi = {feww) : ||f|r%<=2<;“> <oop.
Jw
Assumption 8.

Epn[\/ﬁib(s; é)] - \/ﬁbn (Lwn) (3) ="Vn (S)

where v,, € Hx and v, — 0 as n goes to infinity.
Assumption 8 slightly strengthens Assumption 6. Indeed by the mean value theorem, we

have

Vihisd) = Vi (ss0) - 220

= vk (s;00) = Do (5) H™' (G, \/nh (560) ) +op, (1) (22)

(6 — o)

Moreover, EP»[\/nh (s;00)] = v/nbun (s). Thus, Assumption 8 says that the expectation of the
term op,, (1) in Equation (22) belongs to the space H.
Assumption 9. p,/ (g,na) — 0 and p2 /(g,n) — 0 as n goes to infinity and a goes to zero.

Assumption 9 is very mild given that in Proposition 10 we will require na?

— 00, and also
from Lemma 9 in Carrasco and Florens (2000), it is known that if there exist 0 < 7 < 1 and
some positive constant ¢ such that p, ~ ca™7, then ¢, ~ ea™ 7 for some positive constant e (see

also remark 3 below).

Proposition 10 Suppose Assumptions 1, 4-9 hold. Assume that L,n € Hi and

2
nb:

Van

— d for some constant d. (23)

Under Hs,, we have

s o d
Jan (0. K) 5 N (d || LunllF 1)

asn — 00, @ — 0, and na® — co.

Remarks.

1. Under Hy, Ja, (9, K ) converges to the same pivotal distribution for any consistent esti-
mator satisfying Assumption 6. Hence, this test is robust to parameter uncertainty.

2. As the asymptotic distribution of J,,, (9,K ) is a standard normal distribution, critical
values from normal tabls can be readily used.

3. The condition (23) indicates the rate of by, which is related to the rate of the eigenvalues

Ajo, through g,. Let us consider an example where \j,, = j~™. Then ¢, ~ o~ 1/2m) (see Carrasco
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and Florens (2000, Example 2) for the case m = 1 and Wahba (1975) for the general case). So
condition (23) can be rewritten as b, ~ n~1/2q~1/(8m),

4. The test Jo, (0, K) has nontrivial power against local alternatives 1 (t,00) + cbnn ()
provided L,n # 0. In the case of the GMM estimator, this condition requires that n # v’ Dq for
any vector v.

5. The fact that J,, (0, K) has trivial power against 1/,/n alternatives is linked to the
rescaling of the statistic. In fact, all tests involving centering and rescaling exhibit the same lack
of power against contiguous alternatives. This includes Neyman’s smooth test with an increasing
number of polynomials (see Lehmann and Romano), the chi-square type test for conditional
moments (De Jong and Bierens, 1994), the goodness-of-fit tests considered by Eubank and
LaRiccia (1992), Hérdle and Mammen (1993) and the one considered by Ait-Sahalia, Bickel,
and Stocker (2001), among others.

6. In this section, we assumed 0 unknown. If 6 is known, one can use the test Jg, (0, K)
after replacing 0 by the true value 0y in the expression of the test statistic. The asymptotic
distribution remains the same. One could also use the known eigenvalues and eigenfunctions of
K instead of the estimated ones, but again the asymptotic distribution would not be altered.

7. Carrasco and Florens (2000) derived the asymptotic null distribution of J,, (6, K') under
a stronger assumption (Assumption 15: ¢,,/a, — 00). This assumption requires that the
eigenvalues go to zero very slowly, which is not realistic here. On the contrary, the eigenvalues
of K are likely to go to zero very fast, as illustrated in Figures 2e and 2f. For that reason, we
propose a new proof which relaxes this assumption.

8. The lack of power of J,,, (9, K ) against contiguous alternatives may speak in favor of tests
such that T’g, which have power against contiguous alternatives. However, the test J,,, (@, K )
may have higher power than T for higher frequency alternatives (case j — oo in Proposition
8); see Theorem 3 in Eubank and LaRiccia (1992). The next remark considers this issue from a
different angle.

9. Proposition 10 establishes the asymptotic distribution of .J,, (6, K) for 1 such that ||5]|5 <
oo. However, this condition is not necessarily satisfied, so it is of special interest to look at what

happens when it does not hold. Specifically, consider the case where

n

1 a?w 2
§ |<Lw77’ ¢lw>| — 00. (24)
v dn ) )\lw

The proof of Proposition 10 implies that the right rate for the alternatives Ha, is such that

R a2w
nbiﬁ > )\ZI [{Lun, d10)|* — d
=1
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for some constant d. It follows from (24) that nb2 — 0. Hence the test J,, (6, K) has power
against local alternatives which approach the null hypothesis at a faster rate than n~1/2. For
these alternatives, the power of the tests Tz presented earlier remain n~1/2. So the test J,, (6, K)
is able to detect certain alternatives which are closer to the null than the tests based on a fixed a.
This result is similar to what was observed by Fan and Li (2000) in the context of specification
tests for nonparametric regression. In particular, they show that nonparametric specification
tests such as that of Hiardle and Mammen (1993) with a fixed bandwidth has analogous properties
as the integrated conditional tests of Bierens (1982) and Bierens and Ploberger (1997). Further,
they show that kernel based tests with bandwidth going to zero can detect specific alternatives
(the so-called singular alternatives) at a faster rate than n~%/2. As we mentioned before, we can

interpret o as a bandwidth in our tests.

5.2 Numerical invariance to moment transformations

As is well known, the traditional J test corresponding to the continuous unpdated estimator
(CUE) is invariant to parameter-dependent linear transformations of the moments (see Hansen,
Heaton and Yaron (1995)). To illustrate this fact, let A (6) be the sample average of a vector of
moments and My be a (possibly complex-valued) square invertible matrix. Then, it is easy to

check that the J-test based on h (6) is the same as the J-test based on Mph (6) because:

J = nh (0)* My(MeKeM7) ™  Mph (8) = nh (0)* Ky 'k (6).

When one uses regularization to invert the covariance matrix, this result is not true in

general. Indeed, we have that

nh (0)* My (MaKo M) 2[(MpKgMg)? + o]~ (MpKg M)/ 2 Myh (0)

is not usually equal to

nh (0) Ky/* (K3 + o) 'Ky *h ()

unless Mpy is unitary, that is MgMy = My My = I, in which case the two expressions coincide.
When there is a continuum of moment conditions, an analogous result turns out to be true
for unitary transformations of h.

Define Uy as a nonrandom linear operator from L? () into L? (7). Let Uy be the adjoint of
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Up. By the Riesz representation theorem, there is a unique gy (., s) such that

(Ung) (5) = (g0 () .0 ()) = / o (1, 5) o () 7 (£) .

Let Kj be the covariance operator of h; (.;0) and Ky be the covariance operator of Uph; (.;0) .
The kernel of f(@ is such that

ko (s1,52) = E[(Ughi(0))(s1) (Ughi(.;0)) (s2)"]
= F [/ 9o (t,81) hi (t;0) 7 (t) dt/gg (u, s2) h; (u;0)m (u) du]

/g,9 (t,s1) {/ E[h; (t;0) h; (u;0)]gg (u, s2)m (u) du} m(t)dt
= {90 (-, 51), Kogo (-, 52)) -

Then, we can characterize Kjy:

(Foe) ) = [ [anttr) { / Blhs (t:6) B (w3 0)]go (w57 <u>du}7r<t>dw<s>7r<s>ds
= (UpKoUjp) (T

Proposition 11 Let Uy be an unitary operator from L? () to L? () i.e. UjUy = UgU; = 1.

Then, the following equality holds:

~

HUgh (9)” — ||A (9)] (25)

(UKot;)°

Kg

regardless of the sample size n.

This means that the CUE versions of tests Tg with B = (KO‘)_l/2 and J,, (0, K) are invariant
to unitary transformations of h. For non unitary transformations, the result is no longer true
because of the regularization. In contrast, Tp with B = I for instance is not even invariant to

unitary transformations.

6 Monte Carlo experiments

In this section, we assess the finite sample performance of our proposed tests by means of an
extensive Monte Carlo exercise. In addition, we compare them to several popular nonparametric
tests based on the empirical distribution function, as well as to directional tests that target

specific parametric alternatives to the null. In all cases, our sample size is n = 100.
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6.1 Testing univariate normality

The first design we consider is a univariate normal distribution, which is by far the most
common null hypothesis in distributional tests. In order to make our tests numerically invariant
to affine transformations of the observations, we systematically centre and standardize them us-
ing the sample mean and standard deviation (with denominator n), which are the ML estimators
under the null. As proved by Carrasco and Florens (2014), an asymptotically equivalent proce-
dure would estimate the mean and variance by minimizing the continuum of moment conditions
criterion function, but this would result in an increase of the computational costs. Either way,
we can set the true mean and variance to 0 and 1, respectively, without loss of generality.

We consider three versions of our test, which differ on the way the covariance operator is
estimated. The first one uses the theoretical covariance operator for a standard normal, which we
presented in Section 2. In turn, the second and third versions rely on the centred and uncentred
sample estimators using expressions (11) and (12), respectively, with the matrices C' and C
computed using the analytical integrals in Appendix B.2. Given that these two sample versions
produce very similar results, we only report the centred one in what follows. Importantly, the
test that uses the theoretical covariance operator offers two notable computational advantages:
i) the calculation of its eigenvalues and eigenfunctions depends on the number of grid points M,
which we set to 1,000, but not on the sample size, so it can be used with very large datasets;
and ii) we only need to compute those eigenelements once regardless of the number of Monte
Carlo simulations.

In view of the discussion in Section 2, we look at two values of the Tikhonov regularization
parameter o (.1 and .01) and two values for the scale parameter of the A/(0,w?) density defining
inner products (1 and v/10). As we have previously discussed, increasing w not only changes
the eigenvalues and eigenfunctions, but more intuitively, it pays relative more attention to the
characteristic function for large (in absolute terms) values of its argument .

In this univariate context, it is straightforward to compute the Cramer von Mises (CvM),
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) statistics on the basis of the probability
integral transforms (PIT) of the standardized observations obtained through the standard nor-
mal cdf (see Appendix B.3 for details). Their usual asymptotic distributions are invalid, though,
because those PITs make use of the sample mean and variance.

Further, we also compute two moment-based tests: one focusing on the fourth Hermite
polynomial (2% — 322 +1)/1/24 and another one that simultaneously looks at the third Hermite
polynomial (2% —32)/v/6 too. The advantage of working with Hermite polynomials is that they

are asymptotically invariant to parameter estimation under the null (see e.g. Bontemps and
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Meddahi (2005)). As is well known, these two statistics can be derived as Lagrange multiplier
tests against a variety of non-normal distributions (see e.g. Jarque and Bera (1980) or Mencia
and Sentana (2012)). Finally, we also compute the Bierens and Wang (2012) test described in
Appendix B.3 using a Matlab translation of their C+ code.

The first thing we do is to compute all the aforementioned tests for 10,000 simulated sam-
ples generated under the null, whence we obtain finite sample critical values. This parametric
bootstrap procedure automatically generates size-adjusted rejection rates, as forcefully argued
by Horowitz and Savin (2000); see also Dufour (2006) for a discussion of Monte Carlo tests.

Panels A-F of Table 1 contain those rejection rates for six different alternatives: a symmetric
Student t with 12 degrees of freedom; an asymmetric Student ¢ with the same number of degrees
of freedom but skewness parameter § = —.75; a scale mixture of two normals with the same
kurtosis as the symmetric ¢, 3.75, and mixture probability A = .1 (outlier case); another scale
mixture with the same kurtosis but A = .75 (inlier case); a location-scale mixture constructed in
such a way that it has same skewness and kurtosis as the normal and F(z°) = —1, E(2%) = 18;
and finally the second order Hermite expansion of the normal density mentioned in Lemma 7
with parameters a = .4 and b = .5. Details on how we simulate those distributions can be
found in Appendix B.4. Figure 4 presents the densities of these alternative distributions once
they have been standardized so that they all have 0 means and unit standard deviations in the
population.

The first four columns of each panel in Table 1 report the results for the test that is based on
the theoretical covariance operator, J (@, K}), for the different values of a and w that we consider.
In turn, the next four columns contain the same figures for the test J (9, K ) which uses centred
sample estimator of the covariance operator. As can be seen across the different panels, in all
cases the results seem robust to the choice of the regularization parameter o. For the majority of
the DGPs, J (6, K,) has more power when w = 1 while the performance of J(6, K) is better with
w = v/10. In addition, they generally outperform the other consistent tests that we consider,
with AD being the most powerful of them. Somewhat surprisingly, this is also true when the
DGP is the second order Hermite expansion of the normal mentioned in Lemma 7 (Panel F).
Nevertheless, it is important to remember that this lemma refers to local alternatives, while our
test is consistent versus fixed alternatives. Not surprisingly, the LM tests are the most powerful
testing procedures when the distribution under the alternative is the one they are designed to
detect. Specifically, S—t, the LM test against symmetric Student ¢ alternatives, in Panel A, and
A-t, the LM test against asymmetric Student ¢ alternatives, in Panel B.

In summary, our proposed tests display good power against a variety of alternatives.
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6.2 Testing uniformity

The second design we consider is a uniform distribution. Although this distribution does
not often arise as a model for natural phenomena, it plays a fundamental role in statistics for two
reasons: most computer-based pseudo-random number generators aim to draw uniform variates,
and the PITs of any continuous random variables are uniform. To facilitate the comparison with
the normal distribution, we transform the standard uniform random numbers by subtracting
from them their population mean (.5) and scaling them up by their population standard deviation
(v/12), so that the resulting distribution will become standardized.

We consider exactly the same versions of our tests as in Section 6.1, but with the expressions
for the population kernel and the centred and uncentred sample versions modified accordingly,
as explained in Appendix B.2. We also compute the three non-parametric tests based on the
CDF, as well as the Bierens and Wang (2012) test. As for directional tests, we consider two
possibilities. The first one is the LM test of uniform vs beta proposed by Sefton (1992), which
exploits the fact that a beta distribution with shape parameters a = b = 1 becomes uniform.
This test is based on the average scores with respect to the beta parameters evaluated under
the null, which are 1 + In(u) and 1 + In(1 — u), respectively.! The second directional test is a
moment test based on the first two Jacobi polynomials evaluated again under the null, namely
V3(2u — 1) and v/3(6u? — 6u + 1), which was proposed by Bontemps and Meddahi (2012). As
is well known, those polynomials constitute an orthonormal basis for the beta random variable.

The three panels of Table 2 contain the parametric bootstrap rejection rates for three different
alternatives. The first one is a symmetric, unimodal beta distribution with parameters a = b =
1.1. The second one is an asymmetric unimodal concave beta distribution with parameters
a = 1.1 and b = 1. Finally, the last distribution is generated as the standard Gaussian PITs of
observations drawn from the same asymmetric Student ¢ distribution with 12 degrees of freedom
and asymmetric parameter in Section 6.1. The motivation for including this alternative is that
we can use it to compare the direct application of our proposed tests to the original observations
and to a monotonic transformation of them.

The first four columns of each panel report the results for the test that based on the theo-
retical covariance operator, J(0p, K), for the different values of o and w that we consider, while
the next four columns focus on J (QO,IO( ). As in Section 6.1, the rejection rates of our tests

seem robust to the choice of the regularization parameter a. But in this case they are also

! The asymptotic variance for the scores reported by Sefton (1992) seems to be incorrect. As a result, we use
instead 1 for the two asymptotic variances and (6 — 72)/6 for the covariance. Hence, the LM test is T/2 times
the square of the difference between the two scores divided by 7r2/6 plus the square of their sum divided by
(12 — 72/6).
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less sensitive to the choice of w. As before, the test based on K outperforms the one that uses
centred sample estimator of the covariance operator K. Interestingly, both of them outperform
the competitors when the DGP is either a symmetric beta or the Gaussian PITs of observations
drawn from an asymmetric Student ¢. In contrast, CvM and AD are slightly more powerful when
the alternative is the asymmetric beta. Somewhat surprisingly, the LM test is not particularly

powerful.

6.3 Testing bivariate normality

Our next design is a bivariate normal distribution, which is by far the most common null
hypothesis in multivariate distributional tests. Once again, we make our tests numerically invari-
ant to affine transformations of the observations by systematically centring and standardizing
them using the sample mean and the Cholesky decomposition of the sample covariance matrix
(with denominator n), which are the ML estimators under the null.2  Thus, we can set the
true means and standard deviations to 0 and 1, respectively, and the correlation coefficient to 0
without loss of generality.

We consider exactly the same versions of our tests as in the Section 6.1, but with the
expressions for the population kernel and the centred and uncentred sample versions modified
accordingly (see Appendix B.2). However, we do not compute any classical non-parametric tests
because there is no consensus on distribution-free multivariate generalization of the CvM, KS
and AD statistics based on the joint distribution function. Nevertheless, we continue to apply
the Bierens and Wang (2012) test. By analogy with the univariate normal case in section 6.1, we
also consider two directional tests: the LM test of a multivariate normal against a multivariate
Student ¢ in Fiorentini, Sentana and Calzolari (2003) (denoted S—t), which effectively focuses on
Mardia’s (1970) coefficient of multivariate excess kurtosis, and the LM test against a generalized
hyperbolic distribution in Mencia and Sentana (2012) (denoted A-t), which also looks at third
moments in order to capture asymmetries in the multivariate distribution. By construction,
both tests are asymptotically invariant to parameter estimation under the null.

The three panels of Table 3 contain the parametric bootstrap rejection rates for three different
alternatives. The first one is a multivariate Student ¢ with 12 degrees of freedom. The second
one is an asymmetric Student ¢ with the same degrees of freedom and vector of asymmetric
parameters (—.75,—.75). Finally, the third alternative is a spherically symmetric bivariate

version of the outlier distribution considered in Section 6.1.

2 As we mentioned before, an asymptotically equivalent procedure would estimate the two means and variances
as well as the covariance by minimising the continuum of moment conditions criterion function, but this would
result in a huge increase of the computational cost.
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As in Table 1, the first four columns of each panel in Table 3 report the results for the test
J (9, K ) for the different values of a and w and the next four columns correspond to same figures
for the test J (é, K ). As can be seen in Table 3, in all cases the results seem robust to the choice
of the regularization parameter o. Moreover, for the DGPs we consider J (@, K 9) has more power
when w = 1 while the performance of J (é, K ) is better with w = v/10, as in the univariate case.
Interestingly, J (@, K) beats the S-t LM test when the DGPs is asymmetric Student ¢ and there
is a tie between J (@, K ) and S—t LM test when the alternative is a discrete-scale mixture of

normals.

6.4 Testing chi-square

The final design that we consider is a chi-square distribution with two degrees of freedom.
Like the uniform, the chi-square distribution does not often arise as a model for natural phe-
nomena. But it also plays a fundamental role in statistics because it is the distribution of the
(square) Mahalanobis distance of a multivariate normal random variable from its mean. In other
words, it corresponds to the distribution of (y; — u)' Y71 (y; — p) when y; ~ N(p, X).

We consider exactly the same versions of our tests as in Sections 6.1 and 6.2, but with the
expressions for the population kernel and the centred and uncentred sample versions in Appendix
B.2 suitably modified. In that regard, the main difference is that we define inner products using
a uniform density over [—w,w] for tractability, for values of w equal to 1 and v/10. Although
we standardize again the random draws by subtracting their population mean (=2) and scaling
them down by their population standard deviation (=2), their distribution remains asymmetric,
which implies that both the CF and the eigenfunctions of the associated covariance operator are
complex, as explained in Section 2. This creates a normalization problem because any complex
vector of unit length remains so after scaling its elements by any complex scalar on the unit
circle, €'V, where v € [0,27). Nevertheless, our proposed tests are numerically invariant to any
chosen normalization.

We also compute the three non-parametric tests, as well as the Bierens and Wang (2012)
test. As for directional tests, we consider two possibilities. The first one is the LM test of chi
square with N degrees of freedom versus F' with the same number of degrees of freedom in the
numerator but v degrees of freedom in the denominator proposed by Fiorentini, Sentana and
Calzolari (2003). This test is based on the average score with respect to the reciprocal of v
evaluated under the null, which coincides with the second order Laguerre polynomial

12
~¢% —2+2
4§ S+ 2,
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whose asymptotic variance for NV = 2 is 4 under the null. The second directional test is the LM
test against a gamma distribution with mean N but shape parameter o # N/2 developed in

Amengual and Sentana (2012). In this case, the score is proportional to

G-1)-nE) vl

whose asymptotic variance is 1'(1) — 1, where v(.) and +'(.) are the digamma and trigamma
functions, respectively.

The three panels of Table 4 contain the parametric bootstrap rejection rates for three different
alternatives. The first one is an F' distribution with 12 degrees of freedom in the denominator,
while the second one is a gamma distribution with shape parameter a = 2/3 and scale parameter
B = 3. Finally, the last distribution is generated as the square norm of observations drawn from
a bivariate asymmetric Student t distribution with 12 degrees of freedom. Once again, the
motivation for including this alternative is that we can use it to compare the direct application
of our proposed bivariate Gaussian tests to the original observations or to a transformation of
them which implicitly imposes spherical symmetry. In that regard, the F' distribution would
correspond to a bivariate Student ¢ while the gamma to a Kotz distribution.

As in Table 2, the first four columns of each panel of Table 4 report the results for the
test J (0o, K), for the different values of o and w that we consider, while the next four columns
contain the same figures for J(0p, K). Once again, the results seem robust to the choice of
the regularization parameter o, but at the same time they are less sensitive to the choice of w.
Still, for J (6o, K) the value w = 1 delivers higher rejection rates. As before, the test based on
the theoretical covariance operator outperforms the one using centred sample estimator of the
covariance operator. Interestingly, J (6, K) has more power than its competitors, except when

the DGP is Gamma.

7 Conclusion

In this paper, we propose goodness-of-fit tests based on comparing the empirical and theo-
retical characteristic functions. Our proposals are based on the continuum of moment conditions
analogue to the usual overidentifying restrictions test, and therefore take into account the cor-
relation between the influence functions for different argument values.

We consider different versions depending on whether the parameter vector 6 is known in
advance or replaced by a consistent estimator, and whether we make use of the analytical
expression for the covariance operator or estimate it. Relying on the theoretical covariance

operator offers substantial computational gains because the calculation of its eigenvalues and
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eigenvectors does not depend on the sample size, which allows its use with very large datasets.

We derive the asymptotic distribution of our proposed tests for fixed regularization parameter
and when this vanishes with the sample size. Both types of tests have very different asymptotic
properties. The fixed « J test has a nonstandard asymptotic distribution which depends on
nuisance parameters but has power against 1/4/n alternatives. In contrast, the vanishing «
J test has a standard normal asymptotic distribution but generally fails to reject local 1/y/n
alternatives, except for some specific alternatives which it can detect at a faster rate.

Our theoretical study of power sheds some light on the alternatives for which each test is
more powerful. While there is no test whose power dominates overall, it seems that fixing o at
a small positive value is a good compromise. An extensive Monte Carlo exercise confirms this
point by showing that our proposed tests display good power in finite samples against a variety
of alternatives.

Although we have focused on a random sample framework for pedagogical reasons, versions
of our tests robust to serial or cross-sectional dependence in the observations should be relatively
straightforward. The analysis of conditional distributions would also constitute a very valuable

but non-trivial addition with many potentially interesting empirical applications.
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Appendix

A Proofs and auxiliary results

Proof of Lemma 1. K is self-adjoint positive definite because it is a covariance operator

(k(s,t) = k(t,s)) and its null space is reduced to 0, i.e. Kf =0 = f = 0 (see the proof of
Proposition A.1, condition A.5(i) in Carrasco, Chernov, Florens, and Ghysels, 2007). K is a

Hilbert-Schmidt operator because its kernel is square integrable, indeed

//\k<s,t)|27r(s) dsm () dt < oc.

Consequently, K admits an infinite spectrum of positive eigenvalues. Let {);, goj} be the eigenval-
ues arranged in decreasing order and eigenfunctions (the eigenfunctions are taken orthonormal

in L? (7)) of K. By Mercer’s formula (see Carrasco, Florens, and Renault, 2007, Theorem 2.42),
k(t,s) = Z Ajp; () w; (s).
J

By setting s = t, we have

Z)\j:/k(t,t)ﬂ(t)dt.
Here k (t,5) = 9 (t — s) — ¢ (t) ¢ (—s) . Hence k (t,t) = 1 — |1 (¢)|* < 1. Tt follows that S \; <1
and therefore because the operator is self-adjoint positive definite 0 < \; < 1. Therefore )\j2~ <A

and hence /\jz < 1. So the Hilbert Schmidt norm of K is also bounded by 1:

1Kl = [ [ ko) s dsn @ de = 3722 <1

as desired. ]
Proof of Proposition 2. We check the conditions (a) to (¢) of Lemma 3.1 of Chen and
White (1998) on

1 cn
Wpiji=—=|hj——F—=).
Tovn ( ! ﬁ)
Checking (a): We need to check that for all p € L?(7), > i1 (Wags ) < N (0,02 (¢))

where o2 > 0. To do so, first notice that under Hi,, W, = —=[e!Xi — ¥, (t)]. We have
¥ vn n
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E[(Wyj,¢)) =0and (W,;,¢), j =1,2,...,n are independent. Moreover,

E|(Waso )] = E[(Whjr0) Wy 9

:E/

=L//EM@@NWAMw@M@MN@®W®ﬁ
1

= (g K,
- (¢, Knep)

@
/mﬂ@wmmmwww@ﬁﬂmﬁ

where K, is the integral operator with kernel

kn (s,t)
= ¢n (S - t) - wn (5) ¢n (_t)

= Wo(s =) = (8) v (<) + LD Oy gy () 1D @080,

vn vn vn n

Interchanging the order of integration is justified by the fact that % (p, Knp) < 0o. Now, we

check the conditions of Lindeberg-Feller central limit theorem (van der Vaart (1998), Propo-
sition 2.27) to establish > %) (Why, ¢) 4, N (0,02 (¢)) with 62 (p) = (p,K¢p) > 0. Let
Yo = (Whj, ). Here Y,,; are independent scalar random variables with zero mean and finite

variance. The two conditions for the CLT are

(1) ZEHYnj|2 I{|Y,;| >€}] — 0 forevery ¢ >0, and
j=1

(i) D V(¥a) — o (9).
j=1

Note that
Yl = (W )P
1 2
it 2
< | ogte —va ol 1o
C
< Zper?
n
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for some fixed constant C. Hence,

D EllYai* I{|Ynj] > €}]

j=1
Cllo|]? &
< SIS Py, >
7j=1
2 2
< Clel E":E[IYmH
- n , g2
7=1
c? o,
< -
< Sl

by Markov inequality. So condition (i) is satisfied. For (ii), we use the results above which give

> V(Y) = Y E[[(Waj, )]
j=1 =1
= (o, Knp)

— (¢, K¢),

and hence, (ii) is also satisfied.
Checking (b) and (c): By Remark 3.3 (ii) of Chen and White (1998), conditions (b) and (c)
can be replaced by the following condition:

Wi, ; strictly stationary and

lim B > W <C <o (A1)
j=1
We have
n 2 n n
B> Waj E<ZWW=Z"1>
=1 j=1 =1
= ZE<W”J7 Wny>
j=1
= i kn (s, s)
j=1

cn s cnil—s 62 S 2
= 1= o) = g (=) = () L 4 I

which is bounded because |t (s)|* < 1 by the property of CFs and |5 (s)| < C by assumption.
Therefore, (A1) is satisfied and Y 7_; Wy is tight.
It follows that /nh = > i1 Waj +en=N(cn, K) . O
Proof of Proposition 3. As B is bounded, we have (Chen and White (1992, working
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paper))
Bp/nh = N (¢Bn, BK B¥)

where B* is the adjoint of B. Let Z denote a Gaussian process N (0, BK B*) . By the continuous

mapping theorem,

| By % leBy + 217 = 3 (e (Bn. o) + (2.6,))°

where the equality uses the so-called Karhunen-Loeve representation of Gaussian processes:

v

and the fact that the ¢; form an orthonormal basis of L? (7). Moreover, <Z, q§j> /\/aj are iid

N (0,1). O
Proof of Proposition 4. The proof is similar to those of Neuhaus (1976, Theorem 2.2.)

7= (Z,¢;)0; =Y Va;
o =1

and Escanciano (2009, Theorem 1) and is not repeated here. ]

Proof of Proposition 5. Under our assumptions,
- P
HBnh(.;H)H B\ BEP[h; (;0)]]

uniformly in 6. (The uniformity part comes from the fact that i (.; 0)—E[h; (.;0)] = 1 > etXi—
g (t;60) does not depend on 6.) Moreover, E[h; (.;0)] = 1 (.;60) — ¥ (.;0). By the identifica-
tion assumption, the objective function reaches its minimum at 6 = 6y. Hence, 0 is consistent
under Hy.

We turn our attention toward the asymptotic normality. To simplify the notation, we write

o (68) for 1o (;6) and h(8) for h (6), and 22200 for 26a®| Ty first order condition of

the minimization problem gives

00

= 0= <B"8¢§§9)’Bnﬁ<eo>> - <Bna¢g;9>,3nawg§9> (0 eo>>

where 6 is between 6y and 0. Tt follows that

0 — 60) — < 5, ol0) Bna¢o<é>>‘1 < B 2000 oo (90)>

00 00 0

By the continuity of and the consistency of 9, we have

Ny
00
V0 — 0o) = (BDo, BDo) ™ ( B*BDo, vk (60)) + o, (1). (A2)
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The asymptotic normality follows from Proposition 1.

For the convergence of 0 to 61 under H 1, we use the same arguments as for the consistency
under Hy. The existence of the minimum comes from the fact that 1(.;0) is continuous in 6
and © is compact. O

Proof of Proposition 6.

(i) The mean value theorem gives

V(o) = vih(oo) ~ 200 /i — gy)

= \/ﬁiL (90) — Do\/ﬁ(é - 90) + op, (1)
= V/ith(60) — Do (BDo, BDo) ™ ( B*BDo, v/nh (6) ) + or, (1)

by Equation (A2). By the contiguity of P, to Py, it follows that
Vnh(0) = v/nh (60) + Do (BDy, BDy) ™! <B*BD0, NG (90)> Py, (A3)
By Proposition 2, we have under Hi,
Vth (80) = Do (BDy, BDo)~* ( B*BDo, \/nh (80) ) = N (L, K). (A4)

Combining Equations (A3) and (A4) yields v/nh(0) = N (Ln, K) under Hy,. The kernel of K
can be computed explicitly as follows:

k(s,t)
— E|(vnh(s) - Dy (s) (BDy, BDo) ™" ( B*BDy, \/nh ))

x(vnh (t) = Do (&) (BDo, BDo)~* ( B*BDy, \/ﬁh>>] .

Detailing the calculation for one of the 4 terms gives

E [DO (s) (BDy, BDg)™" <B*BD0, \/ﬁiz> \/ﬁm
— Dy (s)(BDo,BDg) ' E [ / B*BDy (u) vnh (u) 7 (u) du\/ﬁﬁ(t)]

= Dy (s)(BDo, BDy) ™! / B*BDy (u) Elh; () hj (t)]7 (u) du

= Dy(s)(BDy, BDg) * (KB*BDy) (t).

The other terms can be computed similarly.

(ii) The proof of (ii) is similar to that of Proposition 3 and hence omitted. O
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Proof of Lemma 7. The CF of a N (u,0?) is 1 (t) = ewt** Let 0 = (p, )/, then

Do — O _ it (1)
°T o0 ~Lo(t) )

Let v = (a,b) and n (t) = v' Dy = (azt — —) Yy (t). Now consider ¢, (t) = <1 + i“/—@ — F) o (t).

Observe that 1, (0) = 1, ¥,, (t) = ¢,, (—t). We need |, ()| < 1 which will be satisfied if b > 0

(and possibly for b < 0 and n large enough). So 1),, satisfies the necessary conditions to be a CF,

however these conditions are not sufficient. Necessary and sufficient conditions for a function
¥,, to be CF are that (a) ¢, (0) = 1, and (b) %,, is non-negative definite (see Theorem 4.2.2 of

Lukacs (1960)). It can be shown that, given v is a CF, 9,, will satisfy (b) for n large enough.
So 1, is a CF.

Moreover, 1,, (t) is absolutely integrable so the density (f,) corresponding to 1, satisfies:

fal@) = — / ity (1)

: ' 1 : b1 :
= o / e " (1) dt + —= \f2 / te” "y (t) dt — CNGET: / e 20 (t) dt

Note that . '
K2 _ite 05z [ e (2) dt
= / FemitT . (£) dit = 0
1 [ e 05 [eT Ty () dt
o /e oy (8) dt = —2 —

On the other hand

_ 2
o [ v 0= o e [‘(xzaf)] =h@.

ofp(x) 1 1 p[_(m—;&]

902 2ared 202
+<m2—05>2 \/Q%exp [_ <x2—05>2]
- | 212] fo @)
3fg/596) _ (w;ﬂ)fo (2)
It follows that f, (z) = {1+ & 4 b [%} b fo (@), 0

A~

Proof of Proposition 8. Under Hj, iz(.;@) = EPth; (501) = () — g (1;601) # 0, where
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¢ (.) is the CF of X; under Hi, and then the result follows. O
Preliminary results to the proof of Proposition 10.
The following lemmas will be used in the proof of Proposition 10.

Let hi, (s) = €*Xi — ), (s) and Yj, (s) be the process defined as
Yin (8) = hin (s) — Do (s) H" (G, hin) .

Because h;, © = 1,2, ... are iid with mean zero, Y;, i = 1, 2, ... are iid with mean 0 and covariance

E[Yin (8) Yin (t)] = kwn (s,t) under Ha,. Let K, be the integral operator with kernel k,,, and
()\l,n, qSlyn) be the eigenvalues and eigenfunctions of K,,. Note that K, converges to K, when

n goes to infinity and similarly ¢, ,, converges to ¢; ,, as n goes to infinity.
Yi'm n .
Lemma 12 Under Ha,, <<)\\/¢7l>>, [ =1,2,... are uncorrelated across | with zero mean and
l,n

variance equal to 1.

Proof of Lemma 12. We have

B [(Yins01) Wne6)] = B [ Yo ()80 6o (s)ds [ Vo @ (017 (1)

— [30) [ B[V 0V @] b0 ()7 6)dir (5) s
= <¢l,n7 Kwn¢l’,n>
[ naiti=v,
B 0 otherwise,

as desired. O

The following lemma is taken from Eubank and LaRiccia (1992) and is reproduced here for

convenience.

Lemma 13 (Lemma 2 of Eubank and LaRiccia (1992)) Let {Yin}; 1, n = 1,2, ... be a triangular
array of random variables that are #id within rows. Set wij, = Wijn (Y;n,an) + Wijn (an,Ym)
for some function wijy, (.,.) and assume that E [wijn|Yin] = 0 for all i,j < n. Define

w(n) = Z Wijn,

1<i<j<n
o (n)2 = Var(w(n)) = Z E (wfjn) ,
1<i<j<n
Gy = Z E (wfjn) ,
1<i<j<n
1<i<j<k<n
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and

GIV - § [E (wijnwiknwmjnwmkn) + B (wijnwimnwkjnwkmn>
1<i<j<k<m<n

Then, if Gy, Grr, and Gy are all of smaller order than o (n)4,

S

() 4 vr0.1).

o (n)

2

)‘l n n n 2
Lemma 14 Let a;, = W, Pnn = ijl A, G = 22].:1 Q- Under Hsy, :

Zl 12 e <\/ﬁﬁ (~;9> 7¢l,n>2 — Pn,n

dn,n

d
SN (ellLanlli 1)

Proof of Lemma 14. Our proof draws from the proof of Theorem 1 in Eubank and LaRiccia
(1992). Using the notation fz(@) = ﬁ(, @) and dropping the subscript n from a; ,,, Ains 15 Prns

and gy, n, We obtain

Van
X (Vath®) - BRG] + ERON. 6) ~ pr
- Vi
Sk (VA0 - RO ) e
_ - iR

where

2551, 8 (Vnlh(d) - E@)}, o) (VRED)), 61)

In a first step, we will show that R,, converges to d ||Lw77||§{ in probability under Ha, as n goes

to infinity and « goes to zero. In a second step, we will show that

o L 2
Ti & (Vo0 — EB@ o) =y
T

under Ho,,.

First step. By Assumption 8, we have

nb? aj 9 Z?:1%<Vm¢l>2
E(Ry) = —2> — (Lun, 6)° + l
= N Vin
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where the second term goes to zero. Moreover, 27:1 L (Lym, ¢l)2 — > )\il <Lw77:¢z>2 =

| Lon|3 and 2 Y dasn goes to infinity and a goes to zero. Therefore, E (Ry,) — d || Lon||%-

Van
Now we show that the variance of R,, goes to zero. Using the notation Y; = Y;,, we have
Y
22?:1 % <Z\/% 7¢l> <\/ﬁanwna¢l>
V (Rn) = V + Op'n (]‘)
Van
Anby, | i N~ @
= = — (Y}, L,n,
o v & Al< i 1) (Lwn, d1)
Anb? "
= nv 27<Y’Z7¢l> <LUJT}7 ¢l>
dn =1 1

because Y;, i = 1,2, ...,n are iid. As (Y, ¢;), | = 1,2... are uncorrelated by Lemma 12, we obtain

n

bQ
V(Rn> = on Z L., ¢l

TL

Anb?

< ™ || Lunllz — 0.

n

It follows that R,, converges to d ||L,n||% in probability under Ha,,.
Second step. We have

S g (Vath®) - B0} 6) e S (T Y0

= + 0p,,, (1
\/qfn \/q? P2 ( )
wy (n) + w (n)
= ————— 4 0p, (1)
Van
where
n n a
l
wl(n) HZZ)\ 27¢l — Pn,
=1 i=1
2 <~ a
1
wn) = = D> Me) (V)= Y win
=1 l1<7,<]<n 1<i<j<n
with

n

2
Wijn = ﬁz % (Yi, o) (Yj, 1) -

=1
First, we show that wi(n)/\/qn L 0. We have

n n

1
Blus(n)] = 5 303 L EY: 6]~ pn

=1 i=1

Z: pn = 0.
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As (Y;, ¢,)? are independent, across i, we have
Viwi(n)]

n - 2
S (mfl> ) 1)]

=1

1
= -V
n

n 9 2 2 2 2
_ CL71 <}/Zu¢l> _ aiay <}/l7¢l> _ <Yi7¢l/> _
— ZnE ( X L[ +> —FE " 1 Eyva 1]] (A5)
=1 12l
Using Lemma 12, we have
ajay (Y, &) (Yi, opr)”
Py o e B
n )\l )‘l’
1Al
. 2 . ’ 2
_ Z alal’E <Y7,7 ¢l> <}/Z) d)l > (A6)
n )\l )‘l’
1Al
ajag!
-> — (A7)
Il

Consider (A7):

2
ks S o Py
dn 1Al n gnm
which goes to zero by Assumption 9. To deal with the term (A6), we exploit the fact that for n

large enough, |Y;| = [e™Xi —p,, (t)] < |e®Xi| + [, (£)] = 2, hence ||V;[|* < 4 and [(V;, ¢;)|* < 4

by Cauchy-Schwarz and ||¢;|| = 1. Therefore, by Lemma 12,

(Yi, ¢)° (Yi, dp)” 4 2y 4
E( N " > < )\Mz'E(<Y“¢l,> ) =N

Hence,

ayay (Yi, 0)° (Y, o)’ aay  pn a
E E < — y
n ( Al Ay - Z na n Z A
1Al l
Note that

So, we obtain:

which goes to zero under Assumption 9.
The first term in (A5) can be treated in the same manner. So that V[w; (n)]/g, — 0 under
our assumptions and hence wy (n) /\/qn Zo.

Second, we show that

L N(0,1).
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To establish this result, we check all the conditions of Lemma 13.

o(n)?=V(w)= Y El(w]y)

1<i<j<n

where

. 2
E (w},) = ;E (Zii(ifiaéﬁﬂ (Yja¢z>>

=1

= QZ EYZ,@ V2 (Y5, 6]

= QZ%E (Y, ) 1EL(Y;, 1))

2
= nzz qn

because the (Y;, ¢;) are uncorrelated across | and independent across i. Hence,
2
o (n)” ~ qn.
Consider now the term Gj:

Gr= > Ew},).

1<i<j<n

We have

n 4
wh, = $<2<n,¢l>m,¢l>>

=1
16 <~ a}
= 4 j; i )" (V1) (ASa)
=1
16 '
+ia ié, L (%00 (¥5,00)" (Vi) (. 0) (AsH)
1A
16 “z a12/ 2 2 2 2
na )\2 >\l/ <Yla¢l> <}/}7¢l> <}/i7¢l’> <}/j?¢l’> . (ASC)
l;él’

Consider (A8a): Using |(Vi, ¢,)|* < 4 as before, we get E (Y, ¢;)[* < 4E|[(Y;, o) = 4.
Therefore,

4 n
l

n 4
Zi? za(lsl ]7¢l <162722

=1
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and

3

I
-
y‘g
ETSIENS
|
g
—~
Rrg
+2
R
~—

=1
< A
- Z(A%+a)2 - QQE !
Hence,
Zl<z<j§n(A8a) C
—0
a a?n?qy
as na®/?2 — .
Consider (A8b):
E(A8b) = N (Y, &) (Yi, di)] E[(Y], ¢1)° (
l;él’

By Cauchy-Schwarz,

(Y, 00 (Vi o) < Y, 601 B LY, 607

< 4y/BlYL 6BV 00

4/ NV A

Hence,
C n
E(A8h) < = Z Cp Z oL
L7 >‘l
Moreover,
3 4
al Al 1 n
5 = = < S < —.
zl:)\l? zl:()\%—i-oz)?' zl:()\?—l—oc) a
It follows that
.o (A8b
Zl§z<j§n( ) < C DPn 0
a gpno
Now, consider (A8c):
a? a,
B(asg) = 2> 37 ELY 60 (Vi 01 BI(Y, 61)7
1Al l
a? a?
< = Z —L U\
= 1 232
n o Al A
<

C a? ?
et L
(=)
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Moreover,

af N A N
ZN Zl:( ) zl:(

, X+ a)? A+ a) (O + )
> s < H
1 ()\l + Oé) o
Therefore,
>_1<i<j<n(A8C) C 0
a S o

It follows that G = o(a (n)?).

Now consider Gyy:

E(wz- w3 ) = iE

ijn “ikn

n 2 " i
(Z % (Y3, ér) (Y5, ¢1>> ( % (Yi, ) (Y, ¢l’>> ]
=1 =1

i 2 57 Y 0 (Y, 80 (¥ 60)° (¥i 6]

because the cross products equal zero. We have

E[(Yi, )% (Y5, 0002 (Yi, 60)° (Y, 0p)?] < AB[(Y:, &)1 B[, )21 E[(Yh b))

= 4NNy
Hence,
C a? Cq Z)\z
2,2 ay n
E (w0, wir,) < v ; ZZ )\* o
Zl§i<j§n E[wzjnwfkn] C
< - — 0.
qn ncaqgy

The other terms of G have the same form. Therefore, Gr; = o(o (n)*)
Consider Gry:

E (wijnwiknwmjnwmkn)

: (Ziim,«m <Yj,¢l>) ( 3 z,¢lf><Yk,¢z/>)
=1 =

= —F
(zn: iz <Ym’ ¢g> <Y], ¢g>) (Zn: ;l\gg'/ <Ym’ ¢g’> <Yk7 ¢g/>)]
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because (Y;, ¢;), [ =1,

It follows that

2... are uncorrelated across I. AsY;, i =1,2,...,

E (wijnwiknwmjnwmkn)

DY

In 1<i<j<k<m<n

IN

E (W; jnWikn Wrn jn Winken) <

are iid, we have

— 0.

As the other terms in Gy have the same form, we can conclude that Gy = o(o (n)?).

All the conditions of Lemma 13 are satisfied and the result follows.

Proof of Proposition 10. As in Carrasco and Florens (2000, proof of Theorem 10), the

proof proceeds in three steps.

Step 1. Let P, denote the projection which associates to an operator K the operator Ko

defined by the first n eigenvalues and eigenfunctions of K. We show that

¢1q: ||y mia)

under Ho,.

We have

IN

IN

because ||B,| < 1,

Step 2. Show that

under Hs,, as na?

to those of Theorems 4 and 10 in Carrasco and Florens (2000).

1

v dn
1

Van

(v

Van
o 1
P Mn1/2a3/4

~ P ~
Pn — Pnn — 0 and ¢, — ¢

|l | (R ¢
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w (KS,) ™2 V/nh(6)

(K™= P, <K3n>*1/2wh<é>H
<50 vk

}50

o)

nh(0)[| = 0, (1) and |[(R) 7172 = (K5,)712|| = 0, (1/(n}/2a¥/4)) by
Lemma B.2. of Carrasco, Chernov, Florens, and Ghysels (2007). Therefore (A9) is satisfied.

— 00. Under Assumption 7, this result can be established using a proof similar



Step 3. By Lemma 14, we have

Using steps 1 and 2, we obtain the desired result. ]

Py (KG,) ™2 V/nh(0)

dn.n dn,n

n A 2
= pun X5 (Vh(0) 610 )~ Pun
= - LN (|| Lanl% ).

Proof of Proposition 11. Let {¢;,\;} be the eigenfunctions and eigenvalues of Ky. Let
¢; such that ¢; = Ujv; and consequently Upg; = UgUj1p; = ;. We have

UpKogUgv; = UpKyo,

= Ay

Therefore, {1);, A;} are the eigenfunctions and eigenvalues of K. Tt follows that

Jeh o) = Y (o), v,)

)& 2
UpKoUy ) —Ajta

)

J

as desired. (]

B Computational details

B.1 Theoretical covariance operator

B.1.1 Eigenvalues and eigenfunctions

As we mentioned in Section 2, the eigenvalues and eigenfunctions of the covariance operator

K are the solutions to the functional equations

(K6,)(s) = / [o(t — 5) — Do (t)o(—5)|, (B)m(E)dt = Ajs;(5).

Given that it is not possible to find the analytical solution to this equation for arbitrary
distributions, we solve for ¢,(s) at a very fine but discrete grid of M points over a finite range of
values of the characteristic function argument ¢ as follows. For the sake of brevity we describe the
case in which ¢ is scalar. Let F(.) and Q(.) denote the cdf and quantile functions, respectively,
associated with the continuous density function 7(¢), which we assume integrates to 1 over

(t;,ty). Then, if we define v = F(t), the usual change of variable formula immediately implies
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that the integral between ¢; and t, of any function g(t) weighted by m(t)dt coincides with the
integral between 0 and 1 of g[Q(v)]dv. We exploit this equivalence to numerically approximate
all the required integrals using the rectangle method over M equidistant points between 0 and
1 regardless of 7(.).

Let IC be an M x M matrix whose elements are

VQwi) — Q(vy)] = QW)Y [-Q(vy)], i, j=1,..., M,

so that I effectively gives us the asymptotic covariance matrix of the sample average of an M x 1
vector of influence functions e’?)? —[Q(v;)], j = 1,..., M.

Given that the eigenvalues of K increase with M, we work with M ~'K, whose eigenvalues
stabilize. In this context, we take the decreasingly ordered eigenvalues of this scaled matrix as
an approximation to the decreasingly ordered eigenvalues of the theoretical covariance operator
K. Similarly, we also take the normalized eigenvectors of M 'K multiplied by M as an
approximation to the eigenfunctions of the covariance operator scaled so that they have unit

normi.

B.1.2 Test statistic

We compute the (scaled by y/n) average values of the “population principal components”
of the vector of influence functions e/@3)xr — Y[Q(vy)], 7 = 1,..., M by premultiplying the
scaled sample average of this vector by the eigenfunctions previously computed and dividing the
resulting expression by M.

Finally, we compute the T test statistic as a linear combination of the square norm of the

scaled average values of those principal components weighted by In effect, this Tg is

Aj
)\?Jra
numerically identical to the overidentifying restriction statistic of a discrete GMM procedure
based on the M x 1 vector of influence functions /@)%t — 4[Q(v;)], in which we replace the
inverse of the asymptotic covariance matrix M ~!/C by its Tikhonov regularized inverse, as in

(10).

B.2 Analytical expressions for c;

B.2.1 Univariate normal

Given that the CF of the standard normal is () e2t”, hi(t)hi(t) has the following four

terms

. L 71 2 . . 7; 27. _ 2
ezt(xz xy) _ e attHimit _ =5t let+€ -
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Using a NV(0,w?) density as weighting function 7, we obtain

cqg = c1(xi, 1) — ca(wy) — ca(—xp) + c3

where
Cl(l‘i,ﬂ?l) — /elt(xlxl)ﬁ(t)dt _ 67%“’2("“711)2’
__w?e?
_142 4 e 20+w?)
c\r)= [e 2 7(t)dt = ———
o / Wt ="
and

1

c3 = /e_t27r(t)dt = ——.
V14 2w?

B.2.2 Standardized uniform

Given that the CF of the standardized uniform is
_ i —iV/3t V3t
t) = ———(e —e ,
Y() 5 \/§t( )

hi(t)hi(t) has the following four terms

izt Tt

6—2i\/§t(62i\/§t _ 1)2

eit(mif:pl) _ e (efi\/gt _ €i\/§t) _ e

23t 2V/3t

Using a N(0,w?) density as weighting function 7, we obtain

—iV/3t i3t
(e — e - 1262

cqg = c1(xi, 1) — ca(wy) — ca(—x7) + €3

where
1

Cl(l‘i,a’)l) — /6Zt($zml)7r(t)dt _ 675“’2(531'*1[)2’

; 51Tt ) .
co(z) = / %(e"ﬁt—ezﬁt)w(t)dt

_ L {f[wmw
2w\ 6 V2

w(V3 + )

V2

+ erf

2

e — 1 4+ V6rw erf(v6w)

602

where erf is the error function i.e. erf(z) = % Iy e dt, and

m(t)dt =

e—2i\/§t(62i\/§t _ 1)2
@= 12¢2
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B.2.3 Bivariate standard normal

Given that the CF of the bivariate normal with zero mean and identity covariance matrix

is ¥(t1,t2) = e~z (i) hi(t1,t2)hi(t1, t2) has the following four terms
pilti(@ri—z1)Hta(22i—z2)] _ o5 ((FHE3)Fitrwrittowin) _ o5 (8 +3) ~i(trw1it+tawso) + ot
Using two independent A/(0,w?) densities as weighting functions 7 for both ¢; and t2, we obtain
cit = c1(xs, 21) — ca(x;) — co(—xp) + ¢3
where

Cl(xul'l) = //ei[t1(:511'—3611)-1-152(3621'—9021)]7.‘-(t1)7.r(t2)dtldt2 _ e—%w2[(mli_wll)2+($2i_$gl)2]’

w2(w%+w%)
2(14w?)

and

—t2_42 1
3 ://e W8y (th) o (te)dtrdts = 1+ 202

B.2.4 Standardized chi-square with 2 degrees of freedom

Given that the CF of the standardized x?(2) is ¥(t) = ie " /(i +t), hi(t)h(t) has the
following four terms

eit(mi—zl)iieit(lﬂi) jeit(+z)  jo—it(l4a) 1

i+t i—t i+t (i—t)(@+t)

Using a U(—w,w) density as weighting function 7, we obtain

cit = c1(xi, xp) — ca(x;) — ca(—xp) + ¢3

where

o) = [ et ppg = Sl = 2]

(o, 1) /6 m(t)dt w(w; — x7)
ieit(l—i-a;)

eor) = / —T()dt

6_(1"'3)

= —5; - iGilw -9 +2)] +iCillw+ )1 + )]}
e—(1+m)

{Si[(w+4)(1 4+ z)] — Si[(: — w)(1 + x)]},
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_ rzsin(t)
- Jo t

where Si is the sine integral function Si(z) dt, Ci is the cosine integral function

Ci(z) = — [° s gt and

z t

. w(t)dt arc tan(w)
= /(z’—t)(i+t) w

B.3 Classical goodness of fit tests

We briefly review below some classical goodness of fit tests (see for instance, Lehmann and
Romano (2005)), which serve as benchmarks in our Monte Carlo exercise. For convenience, we
present them for scalar X.

For testing Hy : F' = Fy versus Hy : F' # Fy, the classical Kolmogorov-Smirnov (KS) test is
based on a sup norm of the difference between the empirical distribution function F, and the
distribution function:

KS =supvn|F, () — Fo (z)] .

zeR

On the other hand, the Cramer-von-Mises (CvM) test is based on the L? norm of the differ-

CoM =n /_ h [E, (z) — Fy (2)]2dFy () .

Finally, the Anderson-Darling (AD) test differs from the Cramer-von-Mises by the weight:

O B - B )P
Ap=n | WS R @

So far, Fy was completely specified. For testing normality with unknown mean and variance,

the KS test is usually computed as

KS =supvn
z€R

o=+ (57

where ® is the distribution function of the standard normal and X and 62 are the maximum
likelihood estimators of the mean and variance. This version of the KS test is often referred
to as the Lilliefors test. The other tests can be similarly modified. A multivariate extension is
proposed in Andrews (1997).

Consider now the case X; € R?. To test Hy : ¢ = g (.;00) versus Hy : ¢ # g (.;60),
Bierens and Wang (2012) consider a L? test based on the empirical characteristic function and

a uniform weight:
2

1 “ " ~ dr
BW = / E el X5 _ ';0 _

where T = x%_, [~7;,7], 7, > 0 and 6 is a consistent estimator of .
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These four tests are consistent against any fixed alternative to the null hypothesis and have
power against 1/4/n alternatives too. However, for testing general distributions with unknown

parameter, their asymptotic distributions are not nuisance parameter free.

B.4 On simulating distributions

We simulate all the distributions under the null, as well as the symmetric Student ¢, gamma
and beta distributions, using the available MATLAB routines. Namely, we use rand.m for the
uniform, randn.m (mvnrnd.m) for the univariate (bivariate) normal, chi2rnd.m for the x?(2),
trnd.m (mvtrnd.m) times /(v — 2)/2 where v denotes the degrees of freedom for the univariate
(bivariate) symmetric Student ¢, gamrnd.m for the gamma and betarnd.m for the beta distrib-

ution. As for the remaining ones, the procedure is as follows.

B.4.1 Asymmetric Student ¢

The asymmetric ¢t distribution is a special case of the Generalized Hyperbolic family with
v =0 and —oco < v < —2 (see Mencia and Sentana (2012)). As explained by these authors,
if the number of degrees of freedom exceeds 4, we can easily simulate a standardized (zero
mean, unit variance) version of a univariate asymmetric Student ¢ distribution by exploiting its

representation as a location-scale mixture of normals,

XZ' = C(ﬁv V)V)B |:(1 - 1 H /871/ v Zla (BlO)

1-4 148 (1—4n)—1
(B.v.7) = 277"“*“% &

where n = —1/(2v), &; is distributed iid gamma with mean 1~
itd N(0,1).

If we further assume that n < 1/8, then the skewness and kurtosis coefficients of the asym-

1 and variance 2n~1, and Z;|¢; is

metric ¢ distribution will be

2

U
(1 —4n)(1 —6n)

BE(X?) = 168 (B,,7) 8%+ 6c2(8,v,7)—-—8

1—4n
and
2
E(XY) = 194 n-(10n +1) 4
+12¢°(8,v,7) n(2n 1) 5+ — 2 (B,v,7).

(1 —4n)(1 —6n)

Not surprisingly, we can obtain maximum asymmetry for a given kurtosis by letting | 3| — oc.

—4n

In contrast, a standardized version of the usual symmetric Student ¢ with 1/7 degrees of
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freedom is achieved when § = 0 for n < 1/2. Since limg_,oc(f,v,7) = 1, in that case the
coefficient of kurtosis becomes

1—-29
E(Xfl):?’m

for any n < 1/4, while the coefficient of asymmetry is obviously 0.

In the bivariate case the same location scale intepretation in (B10) applies but with Z;|¢;
being iid N(0,1). However, since the elements of the resulting random vector are correlated
when 5 # 0, we use the standardization procedure in Mencia and Sentana (2012).

We chose 12 degrees of freedom and 8 = —0.75 to avoid having too much power for both
the univariate and bivariate cases. According to the above calculations, in the univariate case
E(X}) = 3.75 for the symmetric Student ¢, while for its asymmetric version, F(X?) = —0.54
and E(X}) = 4.62.

B.4.2 Discrete location-scale mixtures of normals

Univariate discrete location-scale mixtures of normals (DLSMN) Let s; denote an

iid Bernoulli variate with P(s; = 1) = \. If zs; is 4id N(0,1), then

sit (-8,
A+ (1 =N

Xi = ! [5(51 - )\) +
14+ A1 — \)62

where 0 € R and 2 > 0, is a two component mixture of normals whose first two unconditional
moments are 0 and 1, respectively. The intuition is as follows. First, note that d(s; — A) is a
shifted and scaled Bernoulli random variable with 0 mean and variance A(1 — )62, But since
st + (1 — s¢)v/5 P
N e A

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance

that is orthogonal to d(s; — \), the sum of the two random variables will have variance 1+ A\(1 —
A\)62, which explains the scaling factor.

An equivalent way to define and simulate the same standardized random variable is as follows

X, = { Nt (n), 0%%(n)] with probability A (B11)

1
Nu3(n), 0%2(n)] with probability 1 — A
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where n = (0, 5, \) and

) = =N
14+ A(1 = \)62
i) = 2= A,
14+ M1 — \)62
\ B 1
O = AN =N
o3(n) = « = 5072 (n).

[T+ X1 = NN+ (1—N)#]
Therefore, we can immediately interpret ¢ as the ratio of the two variances. Similarly, since

_ 1i(n) — pi(n)
Va2 (n) + (1= Nai2(n)’

we can also interpret § as the parameter that regulates the distance between the means of the

two underlying components.

We can trivially extended this procedure to define and simulate standardized mixtures with
three or more components. Specifically, if we replace the normal random variable in the first
branch of (B11) by a k-component normal mixture with mean and variance given by 7 (n) and
o%%(n), respectively, then the resulting random variable will be a (k + 1)-component Gaussian
mixture with zero mean and unit variance.

In the case of two-component Gaussian mixtures, the parameters A, § and ¢ determine the

higher order moments of X; through the relationship
E(X?) = AE(«!]s; = 1) + (1 — \)E(ad]s; = 0),

where E(XZ] |s; = 1) can be obtained from the usual normal expressions

E(Xilst = 1) = pi(n)

E(X?|st = 1) = ui(n) + o1(n)

E(XP|st = 1) = pi*(n) + 3ui(n)oi?(n)

E(XHse = 1) = pi*(n) + 63 (n)oi?(n) + 3054 (n)

E(X7?|sy = 1) = pi®(n) + 10u33(n)os2(n) + 15u3 (n)ot* (n)

E(XP|s; = 1) = ui®(n) + 15u54 () o (n) + 45u12(n) ot (n) + 15078 (n)

etc. But since E(X;) = 0 and E(X?) = 1 by construction, straightforward algebra shows that

the skewness and kurtosis coefficients will be given by

30 (1 — A)(1 — ») S3(1 =X —2))

B = T AL+ ML= NFFE T L+ AL NP

7

=a(d, K, \) (B12)
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and

3N+ (1 — N2 662A(1 — A)[(1 — \) + 32)]
A4 (1= N)22[1+ A1 = N2 A4+ (1 = N)x[1 + M1 — N)é%)2
SN = N1 —3X(1 = \)]
[T+ A(1— N\)6%]2

=b(9, K, \). (B13)

Two issues are worth pointing out. First, a(d, x, ) is an odd function of §, which means that
6 and —9 yield the same skewness in absolute value. In this sense, if we set § = 0 then we will

3 Second,

obtain a discrete scale mixture of normals, which is always symmetric but leptokurtic.
b(d,k,\) is an even function of §, which implies that § and —d give rise to the same kurtosis.
For that reason, in what follows we mostly consider the case of § > 0.

For the symmetric alternatives, we calibrate the parameters by matching the kurtosis coef-
ficient to that one of the Student ¢ with 12 degrees of freedom (E(X}) = 3.75). Since there
are two parameters, we arbitrarily set the probability A to 1/10 for the so-called “outlier case”
(Panel C of Table 1) and to 3/4 for the so-called “inlier case” (Panel B of Table 1), delivering
values of » equal to 1/3 and (15 — 8v/3)/11, respectively.

As for the asymmetric mixture of three normals, we impose the same skewness and kurtosis
as the normal, and fix the fifth and sixth moments to —1 and 18 (as a reference, they are 0 and

15, respectively, in the Gaussian case), which together with arbitrary weights of 0.3, 0.3, and

0.4, allow us to fully characterize the corresponding alternative.

Multivariate scale mixture of two normals X; = ,/q;U;, with U; being uniform on the
unit sphere surface in R, is distributed as a two-point discrete mixture of normals (DSMN) if

and only if
RS S

where s; is an iid Bernoulli variate with P(s; = 1) = A, s is the variance ratio of the two
components, which for identification purposes we restrict to be in the range (0, 1] and ¢ is an
independent y2(N). The DSMN approaches the multivariate normal when » — 1, @ — 1 or
a — 0. Near the limit, though, the distributions can be radically different. For instance, given
that sc € (0,1] when o — 0T there are very few observations with very large variance (“outliers
case” ), while when o — 1~ the opposite happens, very few observations with very small variance
(“inliers case”). As all scale mixtures of normals, the distribution of z; is leptokurtic.

We calibrate the bivariate outlier distribution (Panel C of Table 3) by following the same

steps as in the univariate case.

3 Another way of obtaining discrete normal mixture distributions that are symmetric is by making A = % and

w=1.
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B.4.3 Standardized second order Hermite expansion of the standard normal

The standardized version of the density in Lemma 7 that we use as alternative to the

univariate normal can be written as

e~ 3+’ (1 1 a® + acal + e 2 bef(a + cx)? — 1]

Var 2ym

where ¢ = v/1 — a2 4+ by/2. Moreover, we can obtain an analytical expression for the correspond-

f(zia,b) =

ing cdf in terms of the error function erf,

a—i—cx)] B e—%(a+cx)2[a(b+\/§)+bcm]
V2 2ym ’

which is the basis for simulating from this distribution. Specifically, we generate a uniform

1
F(x;a,b)zi [1+erf<

random number u between 0 and 1 and then numerically find the root = to the equation

F(z;a,b) = u.
B.4.4 Scaled F

If we assume that X; is iid as a standardized symmetric multivariate ¢ with v degrees of

freedom, then
— 9\,
&

where Uj; is uniformly distributed on the unit sphere surface in RY, ¢, is a x2(NV), &; is a x%(v),

X; =

and u;, (;, and &, are mutually independent. Therefore, we can easily generate a scaled F'
random variable with mean N from the square Euclidean norm of an N-variate Student ¢ with

finite degrees of freedom.
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Figure 1: Examples

Figure la: Standard normal

of characteristic functions

0.6

041

0.2

s

-5

Figure 1b: Standardized uniform
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Figure 1c: Standardized x?(2)
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Figure 2: Eigenvalues and eigenfunctions of the covariance operator K

Figure 2a: 1 eigenfunction Figure 2b: 1% eigenfunction
of K for the standard normal of K for the (standardized) uniform
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Figure 2c: 2"¢ eigenfunction Figure 2d: 2" eigenfunction
of K for the standard normal of K for the (standardized) uniform
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Figure 2e: Eigenvalues of K (in logs) Figure 2f: Eigenvalues of K (in logs)
for the standard normal for the (standardized) uniform
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Notes: Eigenvalues and eigenfunctions are computed following the procedure described in Appendix B.1
with a grid of 1,000 points.
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Figure 3: Eigenvalues (\;’s) and weights (a;’s) of the covariance K for the standardized
Uniform distribution
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Notes: Eigenvalues are computed following the procedure described in Appendix B.1 with a grid of 1,000
points.
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Figure 4: Densities of alternatives to the univariate normal

Figure 4a: Symmetric Student ¢

Figure 4b: Asymmetric Student ¢
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Figure 4c: Scale mixture of two

Figure 4d: Third-moment symmetric

normals (outliers case)

and mesokurtic Gaussian mixture
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Figure 4c: Scale mixture of two

Figure 2f: Second-order Hermite

normals (inliers case)

expansion of the normal
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Notes: Figure 4a: Student ¢ with 12 degrees of freedom. Figure 4b: Asymmetric ¢t with 12 degrees of
freedom and skewness parameter § = —.75. Figure 4c: Discrete scale mixture with same kurtosis as the
symmetric ¢, 3.75, and A = 0.1 (outlier). Figure 4d: Discrete location-scale mixture of three normals
with same skewness and kurtosis as the normal and E(x®) = —1, E(2°) = 18. Figure 4e: Discrete scale
mixture with kurtosis 3.75 and A = 0.75 (inlier). Figure 4f: Second order expansion with a = 0.4 and
b =0.5. See Appendix B.3 for parameter definitions.
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Figure 5: Densities of alternatives to the uniform distribution

Figure ba: Symmetric beta (with parameters o = b = 1.1)
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Figure 5b: Asymmetric beta (with parameters a = 1.1, b = 1)
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Figure 5c: Gaussian PITs of observations
drawn from an asymmetric Student ¢
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Notes: Figure 5¢: asymmetric Student ¢ distribution with 12 degrees of freedom and skewness parameter
B = —.75. Density of Figure 5c is computed as the ratio of the pdfs of the asymmetric Student ¢ and the
normal.
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Figure 6b: Contours of a symmetric

Student ¢

Figure 6: Alternative distributions to the bivariate normal

Figure 6a: Symmetric Student ¢
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Figure 6f: Contours of an Asymmetric
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Figure 6e: Asymmetric Student ¢

Figure 6¢: Scale mixture of two
density
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Figures 4a-b: Student ¢ with 12 degrees of freedom. Figures 4c-d: Scale mixture with same
66

Mardia’s excess kurtosis coefficient as the symmetric ¢, 0.5, and A = 0.1. Figures 4e—f: Asymmetric
t with 12 degrees of freedom and skewness parameter § = —.75¢. See Appendix B.3 for parameter

Notes:
definitions.



Figure 7: Densities of alternatives to the x?(2)

Figure 7a: Scaled F' with 2 and 12 degrees of freedom
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Figure 7b: Gamma with parameters « = 2/3 and § = 3
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Figure 7c: Square norm of bivariate

draws from asymmetric Student ¢
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Notes: Figure 7c: asymmetric Student ¢ distribution with 12 degrees of freedom and skewness parameter
vector 8 = —.75(. Density of Figure 7c was computed by nonparametric estimation of a simulated sample
of size 5,000,000.
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